Long-term growth response of Douglas-fir to ammonium nitrate fertilizer.
Richard E. Miller; Robert F. Tarrant
1983-01-01
The effect of a single application of ammonium nitrate fertilizer on diameter, height, and volume growth of a Site IV plantation of Pseudotsuga menziesii was measured repeatedly during a 15-year period. Fertilizer dosages of 157, 314, and 471 kg N/ha increased gross volume growth during the 15-year period by an average of 5 I, 88, and 111 percent,...
Richard E. Miller; Timothy B. Harrington; Harry W. Anderson
2016-01-01
Amendment of soil nutrients through fertilization is used to increase wood production of forest stands. Subsequent allocation of growth to individual trees and the resulting increase in stand volume and value, however, depend on stand density at the time of treatment. Our primary research question was: To what extent can volume growth per acre in precommercially...
Growth response to fertilizer in a young aspen-birch stand
Miroslaw M. Czapowskyj; Lawrence O. Safford
1978-01-01
A thinned aspen-birch-red maple stand was fertilized with N, P, and N plus P, both with and without lime (L). Overall, treatments with N increased height growth by an average of 79 percent, and volume growth by 69 percent, over treatments without N. Lime tended to increase both average height and volume growth over each corresponding treatment without lime. The amount...
Richard E. Miller; Donald L. Reukema; John W. Hazard
1996-01-01
In a nitrogen-deficient plantation in southwest Washington, we (1) compared effects of 224 kg N/ha as ammonium nitrate, urea, and biuret on volume growth of dominant and codominant Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco); (2) determined how 8-year response of these trees to fertilization was related to...
Fertilization and spacing effects on growth of planted ponderosa pine.
P.H. Cochran; R.P. Newman; James W. Barrett
1991-01-01
Fertilizer placed in the planting hole increased height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) early in the life of the plantation. Later broadcast applications of fertilizer may have had little effect on growth. Wider spacings produced larger trees but less volume per acre than narrower spacings after average tree height...
Response to urea and ammonium nitrate fertilization in an 80-year-old Douglas-fir stand
Richard E. Miller; Constance A. Harrington
1979-01-01
Volume growth response to 200 Ib of nitrogen per acre applied as urea or ammonium nitrate was monitored for 4 yr in an 80-yr-old, site I, Douglas-fir stand. Fertilization increased gross total cubic growth by 20 percent over the controls. Response to urea and to ammonium nitrate was similar. The rapid volume growth on the control plots, 34 2 ft 3...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.E.; Reukema, D.L.; Hazard, J.W.
1996-03-01
In a nitrogen-deficient plantation in southwest Washington, the authors (1) compared effects of 224 kg N/ha as ammonium nitrate, urea, and biuret on volume growth of dominant and codominant Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco); (2) determined how 8-year response of these trees to fertilization was related to their distance from a strip of the plantation interplanted with nitrogen-fixing red alder (alnus rubra Bong.); and (3) observed effects of biuret on understory vegetation. On both sides of the strip centerline, the authors grouped subject trees into 30 plots of 4 trees each, based on slope position and distance frommore » alder. The authors randomly assigned three fertilizers and a control within each plot. They analyzed separately data from east and west of the mixed stand certerline. Initial volume differed greatly among the 120 trees on each side, so they used covariance analysis to adjust observed treatment means. Adjusted mean volume growth was increased (p equal to or less than 0.10) by 22 to 28 percent on the east side and by 11 to 14 percent on the west side, with no significant difference in response to the three fertilizers.« less
James D. Haywood; Allan E. Tiarks
1990-01-01
Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control...
Pinus Taeda L. response to fertilization, Herbaceous plant control, and woody plant control
Allan E. Tiarks; James D. Haywood
1986-01-01
On an intensively prepared site, a complete fertilizer applied at planting, and control of herbaceous and woody plants for the first 4 years, increased Pinus taeda L. volume at age 5 to 25.9 m3/ha compared to 11.8 m3/ha without the treatments. The fertilizer and competition control factors affected pine...
Fertilization selection on egg and jelly-coat size in the sand dollar Dendraster excentricus.
Levitan, D R; Irvine, S D
2001-12-01
Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm-egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in five replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly-coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.
Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.
Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F
2015-03-01
Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Eric J. Ward; Jean-Christophe Domec; Marshall A. Laviner; Thomas R. Fox; Ge Sun; Steve McNulty; John King; Asko Noormets
2015-01-01
While mid-rotation fertilization increases productivity in many southern pine forests, it remains unclear what impact such management may have on stand water use. We examined the impact of nutrient and water availability on stem volume, leaf area, transpiration per unit ground area (EC) and canopy conductance per unit leaf area (GS...
Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.
2014-01-01
Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.
Economic impact of storage and handling regulations on retail fertilizer and pesticide firms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akridge, J.T.; Rogers, D.S.
1994-12-31
A budgeting model was developed to estimate the cost of retailing dry bulk fertilizer, liquid bulk fertilizer, anhydrous ammonia, and pesticides for three sizes of facilities. Estimates were obtained of the cost to upgrade each of the model plants to comply with Indiana`s recently enacted regulations on the handling and storage of fertilizers and pesticides. In addition, various strategies (increasing price and increasing volume) that dealers might employ to rationalize these investments were assessed. Results suggest that there are significant scale economies associated with the regulations and that smaller plants will have a more difficult time rationalizing the investment thanmore » larger plants. Dealers will need to consider a range of strategies to offset the increase in annual operating costs resulting from these environmental investments.« less
Evolution of egg target size: an analysis of selection on correlated characters.
Podolsky, R D
2001-12-01
In broadcast-spawning marine organisms, chronic sperm limitation should select for traits that improve chances of sperm-egg contact. One mechanism may involve increasing the size of the physical or chemical target for sperm. However, models of fertilization kinetics predict that increasing egg size can reduce net zygote production due to an associated decline in fecundity. An alternate method for increasing physical target size is through addition of energetically inexpensive external structures, such as the jelly coats typical of eggs in species from several phyla. In selection experiments on eggs of the echinoid Dendraster excentricus, in which sperm was used as the agent of selection, eggs with larger overall targets were favored in fertilization. Actual shifts in target size following selection matched quantitative predictions of a model that assumed fertilization was proportional to target size. Jelly volume and ovum volume, two characters that contribute to target size, were correlated both within and among females. A cross-sectional analysis of selection partitioned the independent effects of these characters on fertilization success and showed that they experience similar direct selection pressures. Coupled with data on relative organic costs of the two materials, these results suggest that, under conditions where fertilization is limited by egg target size, selection should favor investment in low-cost accessory structures and may have a relatively weak effect on the evolution of ovum size.
Du, Shao-ping; Ma, Zhong-ming; Xue, Liang
2015-12-01
In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen fertilization was the optimal combination of obtaining the high yield and high efficiency.
Determining productivity gains from herbaceous vegetation management with 'age-shift' calculations
David B. South; James H. Miller; Mark O. Kimberley; Curtis L. Vanderschaaf
2006-01-01
Gains in stand volume that result from competition control and fertilization are sometimes reported as 'percentage gains'. Because percentage gains arithmetically decline over time asstand volume increases, plantation managers have difficultyin using percentage gains to project growth and revenues. The 'age-shift' method quantifies the year...
Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann
2016-01-01
The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.
Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann
2016-01-01
The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585
B. G. Blackmon
1977-01-01
When five rates of nitrogen fertilizer (0 to 672 kg/ha) were tested in two eastern cottonwood (Populus deltoides Bartr.) plantations 7 and 10 years old in the Mississippi River floodplain , first season volume growth was more than doubled by fertilization . By the end of the third season, the direct effect of fertilization had apparently disappeared although a volume...
Utilization of third-party in vitro fertilization in the United States.
Kushnir, Vitaly A; Darmon, Sarah K; Shapiro, Alice J; Albertini, David F; Barad, David H; Gleicher, Norbert
2017-03-01
The use of in vitro fertilization that includes third-party in vitro fertilization is increasing. However, the relative contribution of third-party in vitro fertilization that includes the use of donor oocytes, sperm, or embryo and a gestational carrier to the birth cohort after in vitro fertilization is unknown. The purpose of this study was to examine the contribution of third-party in vitro fertilization to the in vitro fertilization birth cohort over the past decade. This retrospective analysis investigated 1,349,874 in vitro fertilization cycles that resulted in 421,525 live births and 549,367 liveborn infants in the United States from 2004-2013. Cycles were self-reported by fertility centers to a national registry: Society for Assisted Reproductive Technologies Clinic Outcome Reporting System. Third-party in vitro fertilization accounted for 217,030 (16.1%) of all in vitro fertilization cycles, 86,063 (20.4%) of all live births, and 115,024 (20.9%) of all liveborn infants. Overall, 39.7% of third-party in vitro fertilization cycles resulted in a live birth, compared with 29.6% of autologous in vitro fertilization cycles. Use of third-party in vitro fertilization increased with maternal age and accounted for 42.2% of all in vitro fertilization cycles and 75.3% of all liveborn infants among women >40 years old. Oocyte donation was the most common third-party in vitro fertilization technique, followed by sperm donation. Over the study period, annual cycle volume and live birth rates gradually increased for both autologous in vitro fertilization and third-party in vitro fertilization (P<.0001 for all). Live birth rates were the highest when multiple third-party in vitro fertilization modalities were used, followed by oocyte donation. Third-party in vitro fertilization use and efficacy have increased over the past decade, now comprising >20% of the total in vitro fertilization birth cohort. In women who are >40 years old, third-party in vitro fertilization has become the dominant treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang
2016-03-01
Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.
Response of turf and quality of water runoff to manure and fertilizer.
Gaudreau, J E; Vietor, D M; White, R H; Provin, T L; Munster, C L
2002-01-01
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.
Dorado, J; Acha, D; Ortiz, I; Gálvez, M J; Carrasco, J J; Díaz, B; Gómez-Arrones, V; Calero-Carretero, R; Hidalgo, M
2013-12-01
Sperm quality has an important role in determining fertility. The aims of this study were to compare the conventional sperm parameters, plus the characteristics of the motility patterns of the different sperm subpopulations, of donkey donors with different fertility level, and to determine their relationships to fertility. Thirty ejaculates from 6 Andalusian donkeys were assessed for gel-free volume, pH, sperm concentration, motility and morphology. The fertility of donkeys was classified on the basis of pregnancy rates per cycle, where donkeys with a per cycle pregnancy rate ≥60% were considered to be "fertile" (n=3) and those with a per cycle pregnancy rate <40% were categorized to be "sub-fertile" (n=3). Significant differences (P<0.001) between the "fertile" and the "sub-fertile" group were found for total and progressive motility, and for straight line velocity. Sperm variables associated (P<0.05) with an increase in percent pregnant per cycle included total motility (r=0.37), progressive motility (r=0.53), curvilinear velocity (r=0.44), straightness (r=0.39), beat cross frequency (r=0.44), and gel-free volume (r=0.53). Four sperm subpopulations (sP) were identified in fresh semen: sP1 (slow and non-progressive spermatozoa, 20%), sP2 (moderately slow but progressive spermatozoa, 71.2%), sP3 (highly active but non-progressive spermatozoa, 2.9%), and sP4 (highly active and progressive spermatozoa, 5.9%). The lowest percentage (3.1%; P<0.001) of sP4 spermatozoa was observed in the "sub-fertile" group. Three of the sperm subpopulations were related (P<0.05) to fertility (sP2, r=0.54; sP3, r=0.45; sP4, r=0.56). In conclusion, we were able to relate the fertility of donkeys with in vitro measures of sperm motility using computer-assisted sperm analysis techniques. Copyright © 2013 Elsevier B.V. All rights reserved.
Maximizing pine tip moth control: Timing is everything
Christopher J. Fetting
1999-01-01
The impact of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), has become of increasing concern as standard silvicultural practices have intensified in southern pine production. The associated silvicultural manipulations of site preparation, herbaceous weed control, release, bedding and fertilization have shortened rotation lengths and increased volume...
Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?
Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng
2015-07-01
Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hanum, C.
2018-02-01
Soybean is one of the plants that require much amounts of phosphate. P nutrient, microclimate modification and plant spacing arrangement is the efforts to improve grain yield. The objective of the research was to study the effect of P fertilization, mulching straw and plant spacing on growth, yield and movement of P nutrient on soybean. The study was conducted at Cengkeh Turi Binjai using factorial randomized block design with 3 factors. The first factors was P fertilizer 0, 100, and 200 kg/ha, the second factor was thickness of rice straw mulch 0 and 5 cm, and third factors was plant spacing 30 cm x 15 cm, 40 cm x 20 cm, and 50 cm x 25 cm. The results of the research showed that phosphate fertilizer (200 kg/ha) significantly increased levels of phosphate in the shoot. Plant spacing (50 cm x 25 cm) increased root volume. The interaction of phosphate fertilizer (200 kg/ha) and spacing (50 cm x 25 cm) increased the phosphate level by 93.33% in shoot. Plant spacing (50 cm x 25 cm) produced the largest of 100 grains weight as compared to other plant spacing.
Direct effects of increasing carbon dioxide on vegetation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strain, B R; Cure, J D
1985-12-01
CO/sub 2/ is an essential environmental resource. It is required as a raw material of the orderly development of all green plants. As the availability of CO/sub 2/ increases, perhaps reaching two or three times the concentration prevailing in preindustrial times, plants and all other organisms dependent on them for food will be affected. Humans are releasing a gaseous fertilizer into the global atmosphere in quantities sufficient to affect all life. This volume considers the direct effects of global CO/sub 2/ fertilization on plants and thus on all other life. Separate abstracts have been prepared for individual papers. (ACR)
Effect of uterine size on fertility of lactating dairy cows.
Baez, Giovanni M; Barletta, Rafael V; Guenther, Jerry N; Gaska, Jerry M; Wiltbank, Milo C
2016-05-01
There are multiple reasons for reduced fertility in lactating dairy cows. We hypothesized that one cause of reduced fertility could be the overall size of the reproductive tract, particularly the uterus, given well-established uterine functions in many aspects of the reproductive process. Thus, the objectives of this study were to evaluate the variability in uterine size in primiparous and multiparous dairy cows and to analyze whether there was an association between uterine size and fertility, particularly within a given parity. Lactating Holstein dairy cows (n = 704) were synchronized to receive timed artificial insemination (TAI) on Day 81 ± 3 of lactation by using the Double-Ovsynch protocol (GnRH-7d-PGF-3d-GnRH-7d-GnRH-7d-PGF-56h-GnRH-16h-TAI). At the time of the last injection of PGF, uterine diameter was determined at the greater curvature using ultrasound, uterine length was determined by rectal palpation, and uterine volume was calculated from these two measurements. Blood samples were also taken to measure progesterone to assure synchronization of all cows used in the final analysis (n = 616; primiparous, n = 289; multiparous, n = 327). Primiparous cows had greater percentage pregnant/AI (P/AI) compared to multiparous cows (49.8% vs. 39.1% at 67 days of pregnancy diagnosis, P = 0.009). Diameter, length, and volume of the uterus were larger in multiparous than in primiparous cows (P < 0.001). For multiparous cows, uterine diameter and volume were smaller in cows that became pregnant compared to cows that were not pregnant to the TAI with a similar tendency observed in primiparous cows. Logistic regression and quartile analysis also showed that as uterine volume increased, there was decreased P/AI in either primiparous or multiparous cows. Thus, there is a negative association between uterine size and fertility in lactating dairy cows with a larger uterus associated with reduced fertility, particularly for multiparous cows. Copyright © 2016 Elsevier Inc. All rights reserved.
New technique for fertilizing eggs of burbot, asp and ide under hatchery conditions.
Kucharczyk, Dariusz; Nowosad, Joanna; Łuczyński, Marek J; Targońska, Katarzyna
2016-09-01
The development of a new protocol for egg fertilization may increase embryo survival and benefit the aquaculture process. In the present study, a new technique of partially adding sperm to activated eggs in the artificial fertilization of burbot (Lota lota), ide (Leuciscus idus) and asp (Aspius aspius) eggs was evaluated. If the same volume of sperm was divided into two or three parts and added to eggs in 30-60s intervals, it significantly improved embryo survival at the eyed-egg-stage of development. In the present study, the periodic addition of spermatozoa to eggs affected fertilization (ide and asp) and embryo survival rates (ide, asp and burbot) and might be successfully applied under hatchery conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Lundberg, Frida E; Johansson, Anna L V; Rodriguez-Wallberg, Kenny; Brand, Judith S; Czene, Kamila; Hall, Per; Iliadou, Anastasia N
2016-04-13
Ovarian stimulation drugs, in particular hormonal agents used for controlled ovarian stimulation (COS) required to perform in vitro fertilization, increase estrogen and progesterone levels and have therefore been suspected to influence breast cancer risk. This study aims to investigate whether infertility and hormonal fertility treatment influences mammographic density, a strong hormone-responsive risk factor for breast cancer. Cross-sectional study including 43,313 women recruited to the Karolinska Mammography Project between 2010 and 2013. Among women who reported having had infertility, 1576 had gone through COS, 1429 had had hormonal stimulation without COS and 5958 had not received any hormonal fertility treatment. Percent and absolute mammographic densities were obtained using the volumetric method Volpara™. Associations with mammographic density were assessed using multivariable generalized linear models, estimating mean differences (MD) with 95 % confidence intervals (CI). After multivariable adjustment, women with a history of infertility had 1.53 cm(3) higher absolute dense volume compared to non-infertile women (95 % CI: 0.70 to 2.35). Among infertile women, only those who had gone through COS treatment had a higher absolute dense volume than those who had not received any hormone treatment (adjusted MD 3.22, 95 % CI: 1.10 to 5.33). No clear associations were observed between infertility, fertility treatment and percent volumetric density. Overall, women reporting infertility had more dense tissue in the breast. The higher absolute dense volume in women treated with COS may indicate a treatment effect, although part of the association might also be due to the underlying infertility. Continued monitoring of cancer risk in infertile women, especially those who undergo COS, is warranted.
Macfarlane, Christopher P.; Hoysak, Drew J.; Liley, N. Robin; Gage, Matthew J.G.
2009-01-01
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan's theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results. PMID:19364734
Macfarlane, Christopher P; Hoysak, Drew J; Liley, N Robin; Gage, Matthew J G
2009-07-07
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan's theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.
Nitrogen Fertilization Increases Cottonwood Growth on Old-Field Soil
B. G. Blackmon; E. H. White
1972-01-01
Nitrogen (150 lb ./acre as NH4N03 ) applied to a 6-year-old eastern cottonwood plantation in an old field on Commerce silt loam soil increased diameter, basal area, and volume growth by 200 percent over untreated controls. The plantation did not respond to 100 pounds P per acre from concentrated superphosphate.
Mansour, N; Lahnsteiner, F; Patzner, R A
2011-01-15
This study established the first protocol for collection of gametes from live axolotl, Ambystoma mexicanum, by gentle abdominal massage and in vitro fertilization. To stimulate spermiation and ovulation, human chorionic gonadotrophin (hCG) and Ovopel pellets, which are commercially used to stimulate spawning in fish, were tested. The hCG was more effective than Ovopel pellets and yielded a higher semen volume in the injected males and a shorter response time in the females. Collected semen by this method was already motile and fertile. Fertile eggs could be collected in 3-4 successive collection times after the female has started the typical spawning behaviour. The fertilization condition that yielded the highest hatching rate was mixing semen with eggs before the addition of a fertilization saline solution (20 mmol/l NaCl, 1 mmol/l KCl, 1 mmol/l Mg(2)SO(4), 1 mmol Ca(2)Cl, 3 mmol NaHCO(3), 10 mmol/l Tris, pH 8.5 - Osmolality = 65 mosmol/kg). When the pH of the fertilization solution was increased to ≥ 10, the hatching rate was significantly increased. The use of fertilization solutions with osmolalities of ≥ 150 and ≥ 182 were accompanied with a significant decrease in hatching rates and the appearance of deformed larvae, respectively. In conclusion, a reliable protocol for gamete collection from live axolotl is established as a laboratory model of in vitro fertilization for urodele amphibians. This protocol may be transferable to endangered urodeles. Copyright © 2011 Elsevier Inc. All rights reserved.
Chrisopher B Allen; Rodney E. Will; Terry Sarigumba; Marshall A. Jacobson; Richard F. Daniels; Stephen A. Kennerly
2004-01-01
We measured the effects of irrigation and varying levels of fertilization on intercepted photosynthetically active radiation (IPAR), projected leaf area index (LAI), and foliar nitrogen concentration ([N]) in order to determine the relationship between resource availability, canopy size, and stem-volume growth. Stands of sycamore (Platanus occidentalis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.
2003-10-01
The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damagemore » levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.« less
NASA Astrophysics Data System (ADS)
Graham, Thomas; Wheeler, Raymond
2016-06-01
The objective of this study was to evaluate root restriction as a tool to increase volume utilization efficiency in spaceflight crop production systems. Bell pepper plants (Capsicum annuum cv. California Wonder) were grown under restricted rooting volume conditions in controlled environment chambers. The rooting volume was restricted to 500 ml and 60 ml in a preliminary trial, and 1500 ml (large), 500 ml (medium), and 250 ml (small) for a full fruiting trial. To reduce the possible confounding effects of water and nutrient restrictions, care was taken to ensure an even and consistent soil moisture throughout the study, with plants being watered/fertilized several times daily with a low concentration soluble fertilizer solution. Root restriction resulted in a general reduction in biomass production, height, leaf area, and transpiration rate; however, the fruit production was not significantly reduced in the root restricted plants under the employed environmental and horticultural conditions. There was a 21% reduction in total height and a 23% reduction in overall crown diameter between the large and small pot size in the fruiting study. Data from the fruiting trial were used to estimate potential volume utilization efficiency improvements for edible biomass in a fixed production volume. For fixed lighting and rooting hardware situations, the majority of improvement from root restriction was in the reduction of canopy area per plant, while height reductions could also improve volume utilization efficiency in high stacked or vertical agricultural systems.
Graham, Thomas; Wheeler, Raymond
2016-06-01
The objective of this study was to evaluate root restriction as a tool to increase volume utilization efficiency in spaceflight crop production systems. Bell pepper plants (Capsicum annuum cv. California Wonder) were grown under restricted rooting volume conditions in controlled environment chambers. The rooting volume was restricted to 500ml and 60ml in a preliminary trial, and 1500ml (large), 500ml (medium), and 250ml (small) for a full fruiting trial. To reduce the possible confounding effects of water and nutrient restrictions, care was taken to ensure an even and consistent soil moisture throughout the study, with plants being watered/fertilized several times daily with a low concentration soluble fertilizer solution. Root restriction resulted in a general reduction in biomass production, height, leaf area, and transpiration rate; however, the fruit production was not significantly reduced in the root restricted plants under the employed environmental and horticultural conditions. There was a 21% reduction in total height and a 23% reduction in overall crown diameter between the large and small pot size in the fruiting study. Data from the fruiting trial were used to estimate potential volume utilization efficiency improvements for edible biomass in a fixed production volume. For fixed lighting and rooting hardware situations, the majority of improvement from root restriction was in the reduction of canopy area per plant, while height reductions could also improve volume utilization efficiency in high stacked or vertical agricultural systems. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.
The short-term effects of fertilization on loblolly pine photosynthesis and biomass
Nathan King; John Seiler; Thomas R. Fox; Kurt Johnsen
2006-01-01
The physiological processes in loblolly pine leading to enhanced growth in response to fertilization have not been clearly established. We tracked net photosynthesis (Pn), height, basal diameter, and volume changes in loblolly pine seedlings in response to fertilization during the entire 2004 growing season. Pn measurements...
Volume growth and response to thinning and fertilizing of Douglas-fir stands in southwestern Oregon.
R.E. Miller; G.W. Clendenen; D. Bruce
1987-01-01
From data for 114 thinning and fertilizing trials in forests of southwestern Oregon and northern California with 5 or more years of observation, we produced equations to estimate gross cubic volume growth of 10- to 70-year-old Douglas-fir stands. These equations use stand escriptors (breast-height age, site index, and relative density) and treatment descriptors to...
Response of thinned White fir stands to fertilization with nitrogen plus sulphur.
P.H. Cochran
1991-01-01
A single application of 200 pounds nitrogen (N) plus 33 pounds of sulphur (S) per acre to white fir (Abies concolor (Gord. & Glen.) Lindl.) increased periodic annual increments of basal area and volume by 1.7 ft2acre-1year-1 and 43 to 68 ft3acre
Global nutrient cycles have been altered by use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutr...
Gijbels, Pieter; Ceulemans, Tobias; Van den Ende, Wim; Honnay, Olivier
2015-11-01
Floral traits have evolved to maximize reproductive success by attracting pollinators and facilitating pollination. Highly attractive floral traits may, however, also increase the degree of self-pollination, which could become detrimental for plant fitness through inbreeding depression. Floral nectar is a trait that is known to strongly mediate pollinator attraction and plant reproductive success, but the particular role of the nectar amino acid (AA) composition is poorly understood. Therefore, we experimentally manipulated the nectar AA composition and abundance of the Lepidoptera-pollinated orchid Gymnadenia conopsea through soil fertilization, and we quantified AA content and AA composition through high performance anion exchange chromatography with pulsed amperometric detection. Mixed models were then used to evaluate differences in pollinia removal, fruit set, seed set and degree of selfing between fertilized and control individuals. Selfing rates were estimated using microsatellite markers. We found that fertilized individuals had a significantly higher nectar AA content and an altered AA composition, whereas plant height, number of flowers, nectar volume and sugar concentration remained unchanged. Fertilized individuals also had significantly more pollinia removed and a higher fruit set, whereas control plants that did not receive the fertilization treatment had significantly fewer selfed seeds, and more viable seeds. Although we cannot exclude a role of changes in floral scent following the fertilization treatment, our results strongly suggest a relation among nectar AA composition, fruiting success and selfing rates. Our results also indicate potential consequences of nutrient pollution for plant reproductive success, through the induced changes in nectar AA composition.
Embryology of Maldives clownfish, Amphiprion nigripes (Amphiprioninae)
NASA Astrophysics Data System (ADS)
Ghosh, Swagat; Kumar, Thipramalai Thankappanpillai Ajith; Balasubramanian, Thangavel
2012-06-01
This study investigated the embryonic development of Maldives clownfish Amphiprion nigripes under natural conditions (28-30°C) at a lagoon of Agatti Island, Lakshadweep, India. The newly deposited fish egg was capsule-shaped and orange-red, with a (0.73 ± 0.04) mm3 yolk containing 5-10 fat globules. The embryonic development of fertilized eggs was divided into 26 stages and the time elapsing for each stage was recorded. Results showed that the cleavage was rapid, with the first division observed 1 h 20 min after fertilization. Blastulation occurred 4 h later, followed by gastrulation 12 h after fertilization, with a yolk volume of (0.61 ± 0.06) mm3. The organogenesis process started 22 h after fertilization when the blastopores closed and notochord formation began. The embryonic stage was recorded 24 h later, with the appearance of forebrain, midbrain, hindbrain, melanophores on yolk-sac and 22 somites, and a decreased yolk volume of (0.54 ± 0.08) mm3. Other organs developed well 31 h after fertilization, whereas the heart started beating and blood circulation began 78 h later. Red pigmentation (erytrophores) appeared 96 h after fertilization, with a small yolk volume of (0.22 ± 0.02) mm3. Mouth developed well and eyes were noticeable 120 h later, with head, pectoral fin and tail frequently moving 144 h after fertilization. The embryo reached the pre-hatching stage 168 h later and started to hatch after 170-180 h incubation. This study first detailed the embryonic development and yolk absorption of A. nigripes under natural conditions.
Application of water footprint in a fertirrigated melon crop under semiarid conditions: A review.
NASA Astrophysics Data System (ADS)
Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana
2015-04-01
In recent times, there has been a major increase in the use of water and fertilizers in order to increase agricultural production, while at the same time there has increased evidence that aquifers are reducing their water level, enriched by nutrient and degraded as a result of pollution. So best management practices are needed for much of cropped, irrigated and fertirrigated land, to avoid contamination of fresh water and groundwater. The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). This study is focused in calculating the crops WF using a real case of study in a fertirrigated melon crop under semiarid conditions which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions applying mineral and organic fertilizers. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. This application help us to review the different concepts in which is based WF. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03-01. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, winery waste, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands.
Rice, Pamela J; Horgan, Brian P
2017-02-15
Maintaining quality golf course turf often requires irrigation and application of fertilizer. The transport of excess nutrients with runoff water from highly managed and fertilized biological systems to surrounding surface waters has been shown to result in enhanced algal blooms and promotion of eutrophication. Environmental stewardship includes looking for new approaches to reduce adverse environmental impacts of current practices. One strategy is to replace traditional turfgrass with low-maintenance turfgrass species. Fescue grasses have been shown to provide characteristics desirable for golf course fairways. Thus side-by-side studies comparing runoff from plots planted in creeping bentgrass (CGB) or fine fescue mixture (FFM), similarly managed as a golf course fairway, were conducted to measure runoff volumes and the amount of ammonium nitrogen (NH 4 -N) and nitrate nitrogen (NO 3 -N) transported off-site with runoff. Greater runoff volumes and mass of applied nutrients were measured in the runoff from the FFM, representing a 38% and 56% median increase in the off-site mass transport of NH 4 -N and NO 3 -N with surface flow. Shoot density, thatch depth and soil moisture were the most important factors related to runoff volume. Results of this research will be useful to grounds superintendents and researchers for selecting and developing management strategies to improve environmental stewardship of managed turf while providing desired turf quality. Published by Elsevier B.V.
Kou, Meng; Tang, Zhonghou; Zhang, Aijun; Li, Hongmin; Wei, Meng
2017-01-01
Humic acid (HA), not only promote the growth of crop roots, they can be combined with nitrogen (N) to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N) on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD), peroxidase (POD), and Catalase (CAT) as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA) content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index. PMID:29253886
C.E. Peterson; J.W. Hazard
1990-01-01
Hypothesis testing for differences in growth responses among physiographic strata, thinning levels, and fertilizer dosage levels resulted in a set of empirical models for predicting volume increment response of even aged coastal Douglas-fir to nitrogen fertilizer. Absolute and percent responses are estimated for stands both thinned and unthinned, as a function of...
Morthorst, Jane E; Korsgaard, Bodil; Bjerregaard, Poul
2016-02-01
Pregnant eelpout were exposed via the water to known endocrine disrupting compounds (EDCs) to clarify if EDCs could be causing the increased eelpout fry malformation frequencies observed in coastal areas receiving high anthropogenic input. The presence of a teratogenic window for estrogen-induced malformations was also investigated by starting the exposure at different times during eelpout pregnancy. Both 17α-ethinylestradiol (EE2) (17.8 ng/L) and pyrene (0.5 μg/L) significantly increased fry malformation frequency whereas 4-t-octylphenol (4-t-OP) up to 14.3 μg/L did not. Vitellogenin was significantly induced by EE2 (5.7 and 17.8 ng/L) but not by 4-t-OP and pyrene. A critical period for estrogen-induced fry malformations was identified and closed between 14 and 22 days post fertilization (dpf). Exposure to 17β-estradiol (E2) between 0 and 14 dpf caused severe malformations and severity increased the closer exposure start was to fertilization, whereas malformations were absent by exposure starting later than 14 dpf. Data on ovarian fluid volume and larval length supported the suggested teratogenic window. Larval mortality also increased when exposure started right after fertilization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fibroids and in-vitro fertilization: which comes first?
Rackow, Beth W; Arici, Aydin
2005-06-01
There is no consensus about the impact of uterine fibroids on fertility. This review explores past and recent studies that investigated the effects of submucosal, intramural, and subserosal fibroids on in-vitro fertilization (IVF) outcomes. We discuss the importance of proper evaluation of the uterus and endometrial cavity, and current options for optimal fibroid management in patients desiring fertility. Several studies have reviewed the data on fibroids and infertility, further exploring this potential relationship. Two recent studies investigated reproductive outcomes before and after myomectomy, and IVF outcomes based on fibroid size and location. Both studies concluded that fibroids can impair reproductive outcomes. Several papers thoroughly reviewed medical and surgical management options for patients with fibroids and desired fertility. Although several medical therapies may reduce fibroid volume or decrease menorrhagia, myomectomy remains the standard of care for future fertility. Recent data identified an increased rate of pregnancy complications after uterine artery embolization compared with laparoscopic myomectomy. A new procedure, magnetic resonance imaging-guided focused ultrasound ablation, shows promise for the management of symptomatic fibroids, and possibly for the management of fibroids prior to pregnancy. As with embolization, more data are needed to evaluate postprocedure fertility and pregnancy outcomes. Fibroid location, followed by size, is the most important factor determining the impact of fibroids on IVF outcomes. Any distortion of the endometrial cavity seriously affects IVF outcomes, and myomectomy is indicated in this situation. Myomectomy should also be considered for patients with large fibroids, and for patients with unexplained unsuccessful IVF cycles.
Intensive Cultural Practices Increase Growth of Juvenile Slash Pine in Florida Sandhills
James B. Baker
1973-01-01
Growth of slash pine planted on a well-prepared Florida sandhill site and treated with NP fertilizer, irrigation, and weed control (applied singly and in factorial combination) was improved in almost direct proportion to the number of treatments applied. Five years after planting, untreated trees averaged 1.7 m tall, 1.52 cm dbh, and 821 cm³ in stemwood volume...
Broiler Breeder Sperm Mobility Phenotype and its Effects on Female Fertility
USDA-ARS?s Scientific Manuscript database
Semen quality in poultry can be characterized by different phenotypic traits including volume, concentration, mobility, viability, and sperm morphology. To date, sperm mobility phenotype has been shown to be the most reliable indicator of male fertilizing potential under artificial insemination (AI...
[Effects of micronutrient fertilizer application on yield and quality of Aconitum carmichaeli].
Luo, Yi; Chen, Xingfu; Liu, Sha; Xiang, Dabing; Li, Jia; Shu, Guangming; Xia, Yanli
2011-01-01
To study the effects of Fe, Zn, B and Mn fertilizer with different ratio on the yield and quality of Aconitum carmichaeli. Field experiment with the uniform design was applied, the yield and the contents of the total alkaloids and diester-alkaloids were measured. Fe, Zn, B and Mn fertilizer of appropriate ratio could promote the growth of vegetative organs, increase the biomass, the content of alkaloids and the yield of Aconite significantly. Fe, Zn fertilizer of highly concentrated ratio increased the proportion of first sub-roots, but inhibited the growth of other vegetative organs, the number of roots was less than that with other treatments, so it was not conducive to the formation of production. High concentration of Mn was not conducive to the growth of underground of Aconite, its number of sub-roots was fewer, but the number of third sub-roots was more than that with other treatments, the yield was low. The yield treated with low concentration of B was 10% higher than that with high concentration, and the high concentration of B was not conducive to increase the content of the alkaloids. Among these treatments, The fourth treatment was the optimal combination, of which the volume of sub-roots was the largest and the most homogeneous, the growth of the vegetative organs was better and the accumulation of dry matters was more, the yield of this treatment was 10,754.7 kg x hm(-2), which was increased by 14.9%, and the content of alkaloid was increased by 13.9%. The ratio of 4 is the best treatment for high yield and quality cultivation of Aconite.
Rational design of an on-site volume reduction system for source-separated urine.
Pahore, Muhammad Masoom; Ito, Ryusei; Funamizu, Naoyuki
2010-04-01
Human urine contains nitrogen, phosphorus and potassium, which can be applied as fertilizer in agriculture, replacing commercial fertilizer. However, owing to the low nutrient content of the urine, huge quantities must be transported to farmland to meet the nutrient demand of crops. This highly increases the transportation cost for the farmers. To address the transportation issue, a new on-site volume reduction system was tested at the laboratory scale based on water evaporation from vertical gauze sheets. A mathematical water transport model was proposed to evaluate the performance of the system. The mass transfer coefficient and the resistance of water flow through the sheet in the water transport model were obtained from the experiments. The results agreed with the simulated data, thereby confirming the proposed model. The model was then applied to the dry climate of southern Pakistan, having an air temperature of 30-40 degrees C and air humidity of 20-40%, for an 80% volume reduction of 10 L urine per day, which corresponds to a family of 10 members (average for a household in Pakistan). The findings revealed that the estimated size of the vertical sheet is 440-2060 cm2, which is only a small area for setting up the system at a household level.
Hagedorn, Mary; Carter, Virginia L
2011-01-01
Although conventional cryopreservation is a proven method for long-term, safe storage of genetic material, protocols used by the zebrafish community are not standardized and yield inconsistent results, thereby putting the security of many genotypes in individual laboratories and stock centers at risk. An important challenge for a successful zebrafish sperm cryopreservation program is the large variability in the post-thaw in vitro fertilization success (0 to 80%). But how much of this variability was due to the reproductive traits of the in vitro fertilization process, and not due to the cryopreservation process? These experiments only assessed the in vitro process with fresh sperm, but yielded the basic metrics needed for successful in vitro fertilization using cryopreserved sperm, as well. We analyzed the reproductive traits for zebrafish males with a strict body condition range. It did not correlate with sperm volume, or motility (P>0.05), but it did correlate with sperm concentration. Younger males produced more concentrated sperm (P<0.05). To minimize the wastage of sperm during the in vitro fertilization process, 10(6) cells/ml was the minimum sperm concentration needed to achieve an in vitro fertilization success of ≥ 70%. During the in vitro process, pooling sperm did not reduce fertilization success (P>0.05), but pooling eggs reduced it by approximately 30 to 50% (P<0.05). This reduction in fertilization success was due not to the pooling of the females' eggs, but to the type of tools used to handle the eggs. Recommendations to enhance the in vitro process for zebrafish include: 1) using males of a body condition closer to 1.5 for maximal sperm concentration; 2) minimizing sperm wastage by using a working sperm concentration of 10(6) motile cells/ml for in vitro fertilization; and 3) never using metal or sharp-edged tools to handle eggs prior to fertilization.
Zebrafish Reproduction: Revisiting In Vitro Fertilization to Increase Sperm Cryopreservation Success
Hagedorn, Mary; Carter, Virginia L.
2011-01-01
Although conventional cryopreservation is a proven method for long-term, safe storage of genetic material, protocols used by the zebrafish community are not standardized and yield inconsistent results, thereby putting the security of many genotypes in individual laboratories and stock centers at risk. An important challenge for a successful zebrafish sperm cryopreservation program is the large variability in the post-thaw in vitro fertilization success (0 to 80%). But how much of this variability was due to the reproductive traits of the in vitro fertilization process, and not due to the cryopreservation process? These experiments only assessed the in vitro process with fresh sperm, but yielded the basic metrics needed for successful in vitro fertilization using cryopreserved sperm, as well. We analyzed the reproductive traits for zebrafish males with a strict body condition range. It did not correlate with sperm volume, or motility (P>0.05), but it did correlate with sperm concentration. Younger males produced more concentrated sperm (P<0.05). To minimize the wastage of sperm during the in vitro fertilization process, 106 cells/ml was the minimum sperm concentration needed to achieve an in vitro fertilization success of ≥ 70%. During the in vitro process, pooling sperm did not reduce fertilization success (P>0.05), but pooling eggs reduced it by approximately 30 to 50% (P<0.05). This reduction in fertilization success was due not to the pooling of the females' eggs, but to the type of tools used to handle the eggs. Recommendations to enhance the in vitro process for zebrafish include: 1) using males of a body condition closer to 1.5 for maximal sperm concentration; 2) minimizing sperm wastage by using a working sperm concentration of 106 motile cells/ml for in vitro fertilization; and 3) never using metal or sharp-edged tools to handle eggs prior to fertilization. PMID:21698162
Sex Determination and Polyploid Gigantism in the Dwarf Surfclam (Mulinia Lateralis Say)
Guo, X.; Allen-Jr., S. K.
1994-01-01
Mulinia lateralis, the dwarf surfclam, is a suitable model for bivalve genetics because it is hardy and has a short generation time. In this study, gynogenetic and triploid. M. lateralis were successfully induced. For gynogenesis, eggs were fertilized with sperm irradiated with ultraviolet light and subsequently treated with cytochalasin B to block the release of the second polar body (PB2). Triploidy was induced by blocking PB2 in normally fertilized eggs. The survival of gynogenetic diploids was very low, only 0.7% to 8 days post-fertilization (PF), compared with 15.2% in the triploid groups and 27.5% in the normal diploid control. Larvae in all groups metamorphosed at 8-10 days PF, and there was no significant post-larval mortality. At sexual maturation (2-3 months PF), all gynogenetic diploids were female, and there was no significant difference (P > 0.05) in sex ratio between diploids and triploids. These results suggested that the dwarf surfclam may have an XX-female, XY-male sex determination with Y-domination. Compared with diploids, triploids had a relative fecundity of 59% for females and 80% for males. Eggs produced by triploid females were 53% larger (P < 0.001) in volume than those from diploid females. In both length and weight measurements at three months PF, the gynogenetic diploids were not significantly (P > 0.33) different from normal diploid females, suggesting that inbreeding depression was minimal in meiosis II gynogens. Triploid clams were significantly larger (P < 0.001) than normal diploids. We hypothesize that the increased body-size in triploids was caused by a polyploid gigantism due to the increased cell volume and a lack of cell-number compensation. PMID:7896101
Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra
2015-01-01
A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil–plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. PMID:26112323
Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra
2015-11-01
A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...
Echternkamp, S E; Cushman, R A; Allan, M F
2009-11-01
Long-term genetic selection of cattle for fraternal twins has increased the frequency of twin and triplet ovulations. In contrast, the ratio of fetal numbers to ovulation sites in pregnant females with twin (0.83) or triplet (0.73) ovulations is <1.0 and the number of calves per parturition is 1.6 and 2.0, respectively. Failure of individual twin or triplet ovulations to yield a conceptus in fertile females indicates a significant contribution of ovulation or oocyte anomalies to increased fertilization failure or early embryonic mortality. The present objective was to identify physiological traits affecting conception in cyclic cattle expressing multiple ovulations naturally, including the effect of ovulation rate on follicle or corpus luteum (CL) size, and their relationship to conception. Diameter of the individual ovulatory follicles was measured by transrectal ultrasonography at AI and ranged from 8 to 30 mm, with a trend for diameter of the individual follicles, and associated CL, to decrease with increasing ovulation rate. Independent of ovulation rate, ovulatory follicles were smaller (P < 0.05) for nulliparous heifers (1.5 yr) compared with parous cows (> or =2.5 yr). Pregnancy and fetal status were diagnosed by transrectal ultrasonography between 42 and 72 d after AI. Fertility was reduced (P < 0.01) for small twin or triplet ovulatory follicles (8 to 8.9 mm vs. 10 to 17.9 mm diam.), whereas fertility in monovular females was reduced (P < 0.01) for large ovulatory follicles (> or =22 vs. 14 to 17.9 mm). Plasma progesterone concentrations increased with ovulation rate and were correlated positively with total CL or ovulatory follicle volume per female, indicating that CL size and function were influenced by the size of the follicle of origin. Progesterone was greater (P < 0.05) in the blood of nulliparous heifers compared with parous cows. The increased proportion of small ovulatory follicles associated with twin and triplet ovulations indicates that some ovulatory follicles were either selected to ovulate at a lesser stage of maturity or rescued while undergoing atresia, thus compromising oocyte competency or ovulation. Of greatest importance for reduced fertility was the greater incidence of pregnancy losses occurring in the middle of gestation in females gestating 2 or more fetuses as an apparent effect of uterine crowding, especially when 2 or more fetuses were contained within 1 uterine horn.
Kairo, Guillaume; Poquet, Yannick; Haji, Haïthem; Tchamitchian, Sylvie; Cousin, Marianne; Bonnet, Marc; Pelissier, Michel; Kretzschmar, André; Belzunces, Luc P; Brunet, Jean-Luc
2017-09-01
Concern about the reproductive toxicity of plant protection products in honey bee reproducers is increasing. Because the reproductive capacity of honey bees is not currently considered during the risk assessment procedure performed during plant protection product registration, it is important to provide methods to assess such potential impairments. To achieve this aim, we used 2 different approaches that involved semifield and laboratory conditions to study the impact of fipronil on drone fertility. For each approach, the drones were reared for 20 d, from emergence to sexual maturity, and exposed to fipronil via a contaminated sugar solution. In both groups, the effects of fipronil were determined by studying life traits and fertility indicators. The results showed that the survival and maturity rates of the drones were better under laboratory conditions than under semifield conditions. Moreover, the drones reared under laboratory conditions produced more seminal fluid. Although these differences could be explained by environmental factors that may vary under semifield conditions, it was found that regardless of the approach used, fipronil did not affect survival rates, maturity rates, or semen volumes, whereas it did affect fertility by inducing a decrease in spermatozoa quantity that was associated with an increase in spermatozoa mortality. These results confirm that fipronil affects drone fertility and support the relevance of each approach for assessing the potential reproductive toxicity of plant protection products in honey bees. Environ Toxicol Chem 2017;36:2345-2351. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
The cooling time of fertile chicken eggs at different stages of incubation.
Mortola, Jacopo P; Gaonac'h-Lovejoy, Vanda
2016-01-01
We asked whether or not the thermal characteristics of fertile avian eggs changed throughout incubation. The cooling and warming times, expressed by the time constant τ of the egg temperature response to a rapid change in ambient temperature, were measured in fertile chicken eggs at early (E7), intermediate (E11) and late (E20) stages of embryonic development. Same measurements were conducted on eggs emptied of their content and refilled with water by various amounts. The results indicated that (1) the τ of a freshly laid egg was ~50 min; (2) τ decreased linearly with the drop in egg water volume; (3) the dry eggshell had almost no thermal resistance but its wet inner membrane contributed about one-third to the stability of egg temperature; (4) the egg constituents (yolk, albumen and embryonic tissues) and the chorioallantoic circulation had no measurable effect on τ; (5) the presence of an air pocket equivalent in volume to the air cell of fertile eggs reduced τ by about 3 min (E7), 5 min (E11) and 11 min (E20). Hence, in response to warming the egg τ at E20 was slightly shorter than at E7. In response to cooling, the egg τ at E20 was similar to, or longer than, E7 because embryonic thermogenesis (evaluated by measurements of oxygen consumption during cold) offset the reduction in τ introduced by the air cell. In conclusion, until the onset of thermogenesis the thermal behavior of a fertile egg is closely approximated by that of a water-filled egg with an air volume equivalent to the air cell. It is possible to estimate the cooling τ of avian eggs of different species from their weight and incubation time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Managing Leaf Area for Maximum Volume Production in a Loblolly Pine Plantation
Shufang Yu; Quang V. Cao; Jim L. Chambers; Zhenmin Tang; James D. Haywood
1999-01-01
To manage loblolly pine (Pinus taeda L.) stands for maximum volume growth, the relationships between volume growth and leaf area at the tree and stand level under different cultural practices (thinning and fertilization) were examined. Forty-eight trees were harvested in 1995, six years after treatment, for individual tree measurements, and 336...
Ng, Ernest Hung Yu; Chan, Carina Chi Wai; Tang, Oi Shan; Ho, Pak Chung
2007-07-01
We compared the ultrasonographic parameters for endometrial receptivity between 2 consecutive in vitro fertilization (IVF) cycles in the same patients. Patients who had undergone 2 in vitro fertilization cycles between November 2002 and December 2004 were recruited. A 3-dimensional ultrasonographic examination with power Doppler imaging was performed on the day of oocyte retrieval to determine the endometrial thickness, endometrial pattern, pulsatility and resistive indices of uterine vessels, endometrial volume, vascularization index, flow index, and vascularization flow index of endometrial and subendometrial regions. Of 662 patients, 95 (14.4%) underwent 2 consecutive cycles using the same stimulation regimen during the study period. There were no significant differences in these ultrasonographic parameters between the first and second cycles. The intraclass correlation coefficient (ICC) for endometrial volume was significantly higher than that of other ultrasonographic parameters. The ICC for the endometrial thickness, uterine pulsatility index, and endometrial 3-dimensional power Doppler flow indices were similar. Ultrasonographic parameters for endometrial receptivity were comparable in the 2 consecutive stimulated cycles. The endometrial volume had the highest ICC among these ultrasonographic parameters and was most reproducible between 2 cycles.
Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.
NASA Astrophysics Data System (ADS)
Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana
2017-04-01
In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions. Different doses of ammonium nitrate were used as well as waste compost derived from the wine-distillery industry, which is relevant in this area. Grey WF was estimated in both type of fertilizers using Castellanos et al. [3] methodology. The results showed that in the case of inorganic fertilization gray WF experiment a huge increase when the optimum dose were exceeded. Meanwhile, in the case of organic fertilization, even the doses exceeded the optimum, the increase gray WF was significantly lower. The discussion of these results will be presented based on the mineralization rate and N content of irrigation water. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03. [1] ITAP, 2011. Protocolo para el seguimiento y control de los programas de actuación en las zonas vulnerables a la contaminación por nitratos de Castilla-La Mancha. Available in: www.itap.es. [2] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands. [3] Castellanos, M.T., Cartagena, M.C., Requejo, M.I. Arce, A., Cabello, M.J., Ribas, F., Tarquis, A.M. 2016. Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions. Agricultural Water Management 170: 81-90.
Birch Stands Growth Increase in Western Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Kuzmichev, Valeriy V.; Im, Sergey T.; Ranson, Kenneth J.
2014-01-01
Birch (Betula pendula Roth) growth within the Western Siberia forest-steppe was analyzed based on long-term (1897-2006) inventory data (height, diameter at breast height [dbh], and stand volume). Analysis of biometry parameters showed increased growth at the beginning of twenty-first century compared to similar stands (stands age = 40-60 years) at the end of nineteenth century. Mean height, dbh, and stem volume increased from 14 to 20 m, from 16 to 22 cm, and from approx. 63 to approx. 220 cu m/ha, respectively. Significant correlations were found between the stands mean height, dbh, and volume on the one hand, and vegetation period length (r(sub s) = 0.71 to 0.74), atmospheric CO2 concentration (r(sub s) = 0.71 to 0.76), and drought index (Standardized Precipitation-Evapotranspiration Index, r(sub s) = -0.33 to -0.51) on the other hand. The results obtained have revealed apparent climate-induced impacts (e.g. increase of vegetation period length and birch habitat drying due to drought increase) on the stands growth. Along with this, a high correlation of birch biometric parameters and [CO2] in ambient air indicated an effect of CO2 fertilization. Meanwhile, further drought increase may switch birch stand growth into decline and greater mortality as has already been observed within the Trans-Baikal forest-steppe ecotone.
Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities.
Byrne, Maria; Soars, Natalie; Selvakumaraswamy, Paulina; Dworjanyn, Symon A; Davis, Andrew R
2010-05-01
Marine invertebrate gametes are being spawned into an ocean simultaneously warming, acidifying and increasing in pCO(2). Decreased pH/increased pCO(2) narcotizes sperm indicating that acidification may impair fertilization, exacerbating problems of sperm limitation, with dire implications for marine life. In contrast, increased temperature may have a stimulatory effect, enhancing fertilization. We investigated effects of ocean change on sea urchin fertilization across a range of sperm densities. We address two predictions: (1) low pH/increased pCO(2) reduces fertilization at low sperm density and (2) increased temperature enhances fertilization, buffering negative effects of acidification and increased pCO(2). Neither prediction was supported. Fertilization was only affected by sperm density. Increased acidification and pCO(2) did not reduce fertilization even at low sperm density and increased temperature did not enhance fertilization. It is important to identify where vulnerabilities lie across life histories and our results indicate that sea urchin fertilization is robust to climate change stressors. However, developmental stages may be vulnerable to ocean change. Copyright 2009 Elsevier Ltd. All rights reserved.
In Vitro Measures for Assessing Boar Semen Fertility.
Jung, M; Rüdiger, K; Schulze, M
2015-07-01
Optimization of artificial insemination (AI) for pig production and evaluation of the fertilizing capacity of boar semen are highly related. Field studies have demonstrated significant variation in semen quality and fertility. The semen quality of boars is primarily affected by breed and season. AI centres routinely examine boar semen to predict male fertility. Overall, the evaluation of classical parameters, such as sperm morphology, sperm motility, sperm concentration and ejaculate volume, allows the identification of ejaculates corresponding to poor fertility but not high-efficiency prediction of field fertility. The development of new sperm tests for measuring certain sperm functions has attempted to solve this problem. Fluorescence staining can categorize live and dead spermatozoa in the ejaculate and identify spermatozoa with active mitochondria. Computer-assisted semen analysis (CASA) provides an objective assessment of multiple kinetic sperm parameters. However, sperm tests usually assess only single factors involved in the fertilization process. Thus, basing prediction of fertilizing capacity on a selective collection of sperm tests leads to greater accuracy than using single tests. In the present brief review, recent diagnostic laboratory methods that directly relate to AI performance as well as the development of a new boar fertility in vitro index are discussed. © 2015 Blackwell Verlag GmbH.
Effect of Expansion of Fertilization Width on Nitrogen Recovery Rate in Tea Plants
NASA Astrophysics Data System (ADS)
Nonaka, Kunihiko; Hirono, Yuhei; Watanabe, Iriki
In cultivation of tea plants, large amounts of nitrogen, compared to amounts used for other crops, have been used for fertilization, resulting in degradation of the soil environment between hedges and an increase in concentrations of nitrate nitrogen in surrounding water systems. To reduce the environmental load, new methods of fertilizer application are needed. This report deals with the effect of expansion of fertilization width on nitrogen recovery rate in tea plants. In the test field, 15 N-labeled ammonium sulfate had been applied over custom fertilization by between-hedges fertilization (fertilization width of 15cm) and wide fertilization (fertilization width of 40cm), nitrogen recovery rates were compared. Expansion of fertilization width resulted in an approximately 30% increase in nitrogen recovery rate compared to that in the case of fertilization between hedges. Increases in nitrogen recovery rates were observed with fallapplied fertilization, spring-applied fertilization, pop-up fertilizer application, and summerapplied fertilization.
Adviento-Borbe, M Arlene A; Barnes, Brittany D; Iseyemi, Oluwayinka; Mann, Amanda M; Reba, Michele L; Robertson, William J; Massey, Joseph H; Teague, Tina G
2018-02-01
Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrogen (N) fertilizer placement on characteristics of runoff water quality during the growing season. The experiment was designed as a randomized complete block design with conventional (CT) and conservation furrow tillage (FT) in combination with either urea (URN) broadcast or 32% urea ammonium nitrate (UAN) injected, each applied at 101kgNha -1 . Concentrations of ammonium (NH 4 -N), nitrate (NO 3 -N), nitrite (NO 2 -N), and dissolved phosphorus (P) in irrigation runoff water and lint yields were measured in all treatments. The intensity and chemical form of nutrient losses were primarily controlled by water runoff volume and agronomic practice. Across tillage and fertilizer N treatments, median N concentrations in the runoff were <0.3mgNL -1 , with NO 3 -N being relatively the highest among N forms. Concentrations of runoff dissolved P were <0.05mgPL -1 and were affected by volume of runoff water. Water pH, specific electrical conductivity, alkalinity and hardness were within levels that common to local irrigation water and less likely to impair pollution in waterways. Lint yields averaged 1111kgha -1 and were higher (P-value=0.03) in FT compared to CT treatments. Runoff volumes across irrigation events were greater (P-value=0.02) in CT than FT treatments, which increased NO 3 -N mass loads in CT treatments (394gNO 3 -Nha -1 season -1 ). Nitrate-N concentrations in CT treatments were still low and pose little threat to N contaminations in waterways. The findings support the adoption of conservation practices for furrow tillage and N fertilizer placement that can reduce nutrient runoff losses in furrow irrigation systems. Published by Elsevier B.V.
1972-01-01
allocation. Pri- marily it is concerned with any land use that increases surface water runoff and soil compaction, two phenomena that decrease recharge... runoff . Forested filter strips between range and reser- voir boundary should be developed as a land use for water quality control and quail habitat. High...shown on Plates G-10 and G-11) some measures will also be necessary to prevent fertilizer pollution of the reservoir from excessive surface runoff . G
Serafini, R; Longobardi, V; Spadetta, M; Neri, D; Ariota, B; Gasparrini, B; Di Palo, R
2014-02-01
Aim of this study was to test the reliability of Trypan blue/Giemsa staining to evaluate sperm membrane integrity, acrosomal intactness and morphology in stallion to verify whether it could be applied in vitro as useful tool for sperm fertilizing ability. Fertility data on inseminated mares were collected to evaluate the relationship of sperm quality to pregnancy rates. Forty-one ejaculates were collected from 3 stallions of Salernitano Horse Breed and evaluated for gross appearance, volume, visual motility and membrane integrity with Trypan blue/Giemsa staining and thirty-five mares were inseminated during the breeding season from April to July. Differences among stallions were found in volume, sperm concentration (p < 0.05) and visual motility (p < 0.01). A decrease in sperm motility, concentration (p < 0.05) and total sperm number was found in June-July (p < 0.01). Live sperm with intact acrosome (LSIA) and proximal droplets (PD) were lower (p < 0.01) in June-July, while acrosome reacted sperm (ARS) percentage increased (p < 0.05). No fertility differences were found among stallions with an average fertility per cycle of 44.6% and a pregnancy rate of 68.6%. Higher percentages of LSIA were found in the ejaculates used to inseminate mares that became pregnant vs those used in mares not pregnant (p < 0.05). The significance of LSIA as test variable to verify the reliability of Trypan blue/Giemsa staining was confirmed by Receiver operating characteristic ROC analysis and the sensitivity of the test was 85% at a cut-off value of 48% LSIA. Trypan blue-Giemsa showed to be an accurate method that can be applied on field to evaluate sperm membrane integrity and to identify poor-quality ejaculates. © 2013 Blackwell Verlag GmbH.
Elia, Antonio; Conversa, Giulia
2015-01-01
Reduced water availability and environmental pollution caused by nitrogen (N) losses have increased the need for rational management of irrigation and N fertilization in horticultural systems. Decision support systems (DSS) could be powerful tools to assist farmers to improve irrigation and N fertilization efficiency. Currently, fertilization by drip irrigation system (fertigation) is used for many vegetable crops around the world. The paper illustrates the theoretical basis, the methodological approach and the structure of a DSS called GesCoN for fertigation management in open field vegetable crops. The DSS is based on daily water and N balance, considering the water lost by evapotranspiration (ET) and the N content in the aerial part of the crop (N uptake) as subtraction and the availability of water and N in the wet soil volume most effected by roots as the positive part. For the water balance, reference ET can be estimated using the Penman-Monteith (PM) or the Priestley-Taylor and Hargreaves models, specifically calibrated under local conditions. Both single or dual Kc approach can be used to calculate crop ET. Rain runoff and deep percolation are considered to calculate the effective rainfall. The soil volume most affected by the roots, the wet soil under emitters and their interactions are modeled. Crop growth is modeled by a non-linear logistic function on the basis of thermal time, but the model takes into account thermal and water stresses and allows an in-season calibration through a dynamic adaptation of the growth rate to the specific genetic and environmental conditions. N crop demand is related to DM accumulation by the N critical curve. N mineralization from soil organic matter is daily estimated. The DSS helps users to evaluate the daily amount of water and N fertilizer that has to be applied in order to fulfill the water and N-crop requirements to achieve the maximum potential yield, while reducing the risk of nitrate outflows.
R. Kasten Dumroese; Deborah S. Page-Dumroese; Robert E. Brown
2011-01-01
Nursery irrigation regimes that recharged container capacity when target volumetric water content reached 72%, 58%, and 44% (by volume) influenced Pinus ponderosa Douglas ex Lawson & C. Lawson growth more than either a 1:1 (by volume) Sphagnum peat - vermiculite (PV) or a 7:3 (by volume) Sphagnum peat - sawdust (PS) medium. Exponential fertilization avoided...
Fertilization Increases Below-Ground Carbon Sequestration of Loblolly Pine Plantations
K.H. Johnsen; J.R. Butnor; C. Maier; R. Oren; R. Pangle; L. Samuelson; J. Seiler; S.E. McKeand; H.L. Allen
2001-01-01
The extent of fertilization of southern pine forests is increasing rapidly; industrial fertilization increased from 16,200 ha per year in 1988, to 344,250 ha in 1998. Fertilization increases stand productivity and can increase carbon (C) sequestration by: 1) increasing above-ground standing C; 2) increasing C stored in forest products; and 3) increasing below-ground...
Site Preparation and Fertilization Effects on Growth of Slash Pine for Two Rotations
A.E. Tiarks; J.D. Haywood
1996-01-01
Two replicated site preparation studies were used to examine the effect of management on pine height and volume growth in the next rotation on Paleudults. Treatments included notillage,flat disking, bedding, and fertilization. The first rotation of planted slash pine (pinus elliottii Engelm.var. eliottii)was measured for 15 yr on one site and 20 yr at the other,...
Influence of long-term fertilization on soil physicochemical properties in a brown soil
NASA Astrophysics Data System (ADS)
Li, Dongdong; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng
2018-01-01
This study aims to explore the influence on soil physicochemical properties under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen and phosphate fertilizer).The results showed thatthe long-term application of chemical fertilizers reduced soil pH value, while the application of organic fertilizers increased pH value. Fertilization significantly increased the content of AHN, TN and SOM. Compared with the CK treatment and chemical fertilizer treatments, organic fertilizer treatments significantly increased the content of AP and TP. The content of AK and TK were no significant difference in different treatment.
Xu, Fuli; Liang, Yinli; Zhang, Chenge; Du, Sheni; Chen, Zhijie
2004-07-01
This paper studied the effect of fertilization on cucumber growth and yield, soil microbial biomass and soil enzyme activities in sunlight greenhouse in Loess Plateau. The results indicated that the growth and yield of cucumber were increased with application of manure and methane. Foliage application reduced the application rate of NP and manure. Fertilization had an obvious effect on the biological characteristics of soil in sunlight greenhouse. The number of bacteria was increased by manure and foliage fertilization, and that of fungi was increased by NP and methane fertilization but decreased by manure fertilization. Fertilization with manure, NP and methane also remarkably increased the number of actinomyces and the activities of urease, phosphatase and sucrase in soil. The activities of soil urease and phosphatase were increased by fertilization of manure, but little effect was found with fertilization of NP and methane.
El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2014-01-01
Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782
El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2014-01-01
Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.
Burwell, Robert W; Beasley, Jeffrey S; Gaston, Lewis A; Borst, Steven M; Sheffield, Ron E; Strahan, Ron E; Munshaw, Gregg C
2011-01-01
Nutrient and sediment runoff from newly constructed levee embankments pose a threat to water quality during soft armor vegetation establishment. Research was initiated in 2008 and 2009 to evaluate the effect of bermudagrass ( L.) coverage and N source on nutrient and sediment runoff from levee embankments during establishment. Bermudagrass plots were seeded at 195.3 kg pure live seed ha and fertilized at 50 kg N ha using a water-soluble N source, urea or NH-NO, or slow-release N source, S-coated urea (SCU) or urea formaldehyde (UF), with controls unfertilized. Vegetative cover percentage, time until the onset of runoff, runoff volume, and total solids (TS), NO-N, and NH-N concentrations were measured from simulated and natural rainfall events for 70 d in 2008 and 56 d in 2009. Bermudagrass at 90% grass cover delayed the onset of runoff an additional 441 to 538 s and reduced runoff volumes 74 to 84% of that exhibited at 10% grass cover. Nitrogen fertilizers did not accelerate bermudagrass growth sufficiently, however, to reduce TS loading compared with unfertilized bermudagrass in either year of the study. The application of urea and SCU resulted in cumulative N losses of 2.45 and 3.13 kg ha compared with 1.59 kg ha from the unfertilized bermudagrass in 2008, and 1.73 kg ha from NH-NO vs. 0.24 kg ha from controls in 2009. Only UF increased bermudagrass establishment without increasing cumulative N losses compared with unfertilized bermudagrass. Therefore, the benefit of greater erosion and runoff resistance expected from N-accelerated vegetative growth did not occur but had the unintended consequence of higher N losses when water-soluble N and SCU fertilizers were applied. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Semen parameters in fertile US men: the Study for Future Families.
Redmon, J B; Thomas, W; Ma, W; Drobnis, E Z; Sparks, A; Wang, C; Brazil, C; Overstreet, J W; Liu, F; Swan, S H
2013-11-01
Establishing reference norms for semen parameters in fertile men is important for accurate assessment, counselling and treatment of men with male factor infertility. Identifying temporal or geographic variability in semen quality also requires accurate measurement of semen parameters in well-characterized, defined populations of men. The Study for Future Families (SFF) recruited men who were partners of pregnant women attending prenatal clinics in Los Angeles CA, Minneapolis MN, Columbia MO, New York City NY and Iowa City IA. Semen samples were collected on site from 763 men (73% White, 15% Hispanic/Latino, 7% Black and 5% Asian or other ethnic group) using strict quality control and well-defined protocols. Semen volume (by weight), sperm concentration (hemacytometer) and sperm motility were measured at each centre. Sperm morphology (both WHO, 1999 strict and WHO, 1987) was determined at a central laboratory. Mean abstinence was 3.2 days. Mean (median; 5th-95th percentile) values were: semen volume, 3.9 (3.7; 1.5-6.8) mL; sperm concentration, 60 (67; 12-192) × 10(6) /mL; total sperm count 209 (240; 32-763) × 10(6) ; % motile, 51 (52; 28-67) %; and total motile sperm count, 104 (128; 14-395) × 10(6) respectively. Values for sperm morphology were 11 (10; 3-20) % and 57 (59; 38-72) % normal forms for WHO (1999) (strict) and WHO (1987) criteria respectively. Black men had significantly lower semen volume, sperm concentration and total motile sperm counts than White and Hispanic/Latino men. Semen parameters were marginally higher in men who achieved pregnancy more quickly but differences were small and not statistically significant. The SFF provides robust estimates of semen parameters in fertile men living in five different geographic locations in the US. Fertile men display wide variation in all of the semen parameters traditionally used to assess fertility potential. © 2013 American Society of Andrology and European Academy of Andrology.
Semen collection and fertility in naturally fertile sandhill cranes
Chen, G.; Gee, G.F.; Nicolich, Jane M.; Taylor, J.A.; Urbanek, R.P.; Stahlecker, D.W.
1997-01-01
Aviculturists often ask if semen collection will interfere with fertility in naturally fertile pairs of cranes. We used 12 naturally fertile Florida sandhill crane (Grus canadensis pratensis) pairs for this study, 6 control and 6 experimental. All pairs had produced fertile eggs in previous years and were in out-of-doors pens scattered throughout different pen complexes, within auditory range but physically isolated. Semen was collected on Tuesday mornings and Friday afternoons from 26 February 1993 to 4 June 1993. We used standard artificial insemination methods to collect and to evaluate the semen and spermatozoa. Semen collection did not affect semen quality or quantity. Semen volume, sperm density, sperm motility, sperm morphology, sperm live, sperm number per collection, and male response to semen collection exhibited significant daily variation (P < 0.05). Although semen collection began 13 days before the first egg in the experimental group, we observed no differences in the date of first egg laid or in fertility between experimental and control groups. Also, we observed no differences in the interval between clutches or in the percentage of broken eggs between experimental and control groups. Sires consistently producing better semen samples produced fewer fertile eggs than sires producing poorer semen samples (r = 0.60).
Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan
2014-01-01
Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole. PMID:25380401
Luo, Long-Zao; Li, Yu; Zhang, Wen-An; Xiao, Hou-Jun; Jiang, Tai-Ming
2013-10-01
An analysis was made on the 16-year experimental data from the long term fertilization, experiment of maize on a yellow soil in Guizhou of Southwest China. Four treatments, i. e. , no fertilization (CK), chemical fertilization (165 kg N x hm(-2), 82.5 kg P2O5 x hm(-2), and 82.5 kg K2O x hm(-2), NPK), organic manure (30555 kg x hm(-2), M), and combined applicatioin of chemical fertilizers and organic manure (NPKM), were selected to analyze the variation trends of maize yield and fertilizer use efficiency on yellow soil under effects of different long term fertilization modes, aimed to provide references for evaluating and establishing long term fertilization mode and promote the sustainable development of crop production. Overall, the maize yield under long term fertilization had an increasing trend, with a large annual variation. Treatment NPKM had the best yield-increasing effect, with the maize yield increased by 4075.71 kg x hm(-2) and the increment being up to 139.2%. Long term fertilization increased the fertilizer utilization efficiency of maize. In treatment M, the nitrogen and phosphorus utilization rates were increased significantly by 35.4% and 18.8%, respectively. Treatment NPK had obvious effect in improving potassium utilization rate, with an increment of 20% and being far higher than that in treatments M (8.7%) and NPKM (9.2%). The results showed that long term fertilization, especially the combined application of chemical fertilizers and organic manure, was of great importance in increasing crop yield and fertilizer use efficiency.
James D. Haywood
2005-01-01
Two cultural treatments were applied in an overstocked loblolly pine (Pinus taeda L.) plantaiton (2,900 trees/ha after eight growing seasons): precommercial thinning (Yes or no) to 747 trees/ha after the eighth growing season and broadcast fertilization (yes or no) with diammonium phosphate (150 kg/ha of P and 135 kg/ha of N) early in the ninth...
Lymberopoulos, A G; Amiridis, G S; Kühholzer, B; Besenfelder, U; Christodoulou, V; Vainas, E; Brem, G
2001-06-01
Forty superovulated dairy ewes of the Greek Chios breed were used in an experiment to evaluate the efficiency of laparoscopic intrauterine insemination on fertilization and embryo recovery rates as well as embryo quality. Estrus was synchronized by intravaginal progestagen impregnated sponges and superovulation was induced by administration of 8.8 mg o-FSH i.m. following a standard 8 dose protocol. A small volume (0.3 mL) of diluted fresh ram semen was deposited in each uterine horn 24 to 28 h after onset of the estrus by a laparoscopic technique. The animals were allocated randomly into two groups (Group A and B) of 20 animals each. In Group A, embryos were recovered 18 to 24 h after the intrauterine insemination and in Group B on Day 6. The average number of corpora lutea was 12.8 +/- 1.2 and 11.5 +/- 1.1 (+/- SEM); the overall embryo recovery was 66.4% and 57% and the percentage of recovered fertilized ova was 81% and 82.8% in Groups A and B, respectively. More fertilized ova were collected per ewe from Group A (P < or = 0.1). Results indicated that in Chios breed, superovulation using homologous FSH combined with laparoscopic AI leads to good ovarian response with satisfactory results in fertilization, embryo recovery and quality of embryos. This could lead to improved and more efficient methods for obtaining large numbers of high quality oocytes and embryos for embryo transfer programs which could contribute to genetic improvement and increase of the population size.
Lü, Wen-zhou; Qiao, Yu-xiang; Yu, Ning; Shi, Rong-hua; Wang, Guang-ming
2015-09-01
The disposal of urban scattered human feces has become a difficult problem for the management of modern city. In present study, the scattered human feces underwent the collection, scum removal, flocculation and dehydration, finally became the granular fertilizer; the effects of the ratio of fertilizer to soil on the growth of the pakchoi and the quality of soil and leaching water were evaluated, and the feasibility of granular fertilizer manuring the pakchoi was discussed by pot experiments. The results showed that the granular fertilizer significantly enhanced the production of the pakchoi which were not polluted by the intestinal microorganisms under the experiment conditions; meanwhile, at the proper ratio of fertilizer to soil, the concentration of these microorganisms in the leaching water was lower than that in the control check. Chemical analyses of soil revealed that the nutrient content of nitrogen, phosphorus, potassium and organic matters in soil became much richer in all treatments. In addition, the granular fertilizer improved the physical- chemical properties of soil, including raising the level of soil porosity and reducing the volume weight of soil. Application of granular fertilizer won't pollute the soil or leaching water; instead, it can also prevent nitrogen, potassium and intestinal microorganisms from leaching inio ground water at the proper ratio of granular fertilizer to soil.
Fertility of the early post-eruptive surfaces of Kasatochi Island volcano
Michaelson, G. J.; Wang, Bronwen; Ping, C. L.
2016-01-01
In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from <1 mg N kg-1 in the new pyroclastic surfaces to up to 42 mg N kg-1 and increased soil biological respiration of CO2 from essentially zero to a level about 40% that of the LS surface. Laboratory plant growth trials using Lupinus nootkatensis and Leymus mollis indicated that the influence of eroded and redeposited LS in amounts as little as 10% by volume mixed with new pyroclastic materials could aid plant recovery by supplying vital N and soil biota to plants as propagules are introduced to the new surface. Erosion-exposure of fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.
Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro
2014-06-01
Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.
Response of Artemisia annua L. to shade and manure fertilizer application in lowland altitude
NASA Astrophysics Data System (ADS)
Permana, H. H.; Widyastuti, Y.; Samanhudi; Yunus, A.
2018-03-01
Artemisia is a plant producing artemisinin substance which is the main compound in the treatment of malaria. Artemisia comes from China, usually grows wild in native habitats in the plains with an altitude of 1,000-1,500 meters above the sea level. Artemisia development efforts in Indonesia hampered by limited land with the required altitude due to their competition with vegetable crops. Based on this reason, this research is conducted to observe the growth of artemisia planted in lowland with the help of shade and manure. This study aims to determine the level of shade and best manure on the growth of Artemisia. Research conducted at the Laboratory of the Faculty of Agriculture UNS Jumantono using nested design with two factors, shade as main factor and manure fertilizer as sub factor. The data analysis used F test with confidence level of 5%, if significant, then continued with DMRT (Duncan Multiple Range Test). The results showed the treatment of shade gave no difference in growth within 50% shade, 75% shade as well as without shade treatment. Goat manure fertilizer gave the highest result and able to increase plant height, number of branches, flower weight and root volume.
Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana
2016-01-01
The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees. PMID:27764099
Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana
2016-01-01
The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.
Luo, Yunjian; Zhang, Xiaoquan; Wang, Xiaoke; Ren, Yin
2014-01-01
Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m-3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0-25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1-29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1-4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF).
Wang, Xiaoke; Ren, Yin
2014-01-01
Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m−3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0–25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1–29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1–4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF). PMID:24728222
Rago, R; Marcucci, I; Leto, G; Caponecchia, L; Salacone, P; Bonanni, P; Fiori, C; Sorrenti, G; Sebastianelli, A
2015-01-01
The aim of the present study was to evaluate the effectiveness of the combined administration of myo-inositol and α-lipoic acid in polycystic ovary syndrome (PCOS) patients with normal body mass index (BMI), who had previously undergone intracytoplasmic sperm injection (ICSI) and received myo-inositol alone. Thirty-six of 65 normal-weight patients affected by PCOS who did not achieve pregnancy and one patient who had a spontaneous abortion were re-enrolled and given a cycle of treatment with myo-inositol and α-lipoic acid. For all female partners of the treated couples, the endocrine-metabolic and ultrasound parameters, ovarian volume, oocyte and embryo quality, and pregnancy rates were assessed before and after three months of treatment and compared with those of previous in vitro fertilization (IVF) cycle(s). After supplementation of myo-inositol with α-lipoic acid, insulin levels, BMI and ovarian volume were significantly reduced compared with myo-inositol alone. No differences were found in the fertilization and cleavage rate or in the mean number of transferred embryos between the two different treatments, whereas the number of grade 1 embryos was significantly increased, with a significant reduction in the number of grade 2 embryos treated with myo-inositol plus α-lipoic acid. Clinical pregnancy was not significantly different with a trend for a higher percentage for of myo-inositol and α-lipoic acid compared to the myo-inositol alone group. Our preliminary data suggest that the supplementation of myo-inositol and α-lipoic acid in PCOS patients undergoing an IVF cycle can help to improve their reproductive outcome and also their metabolic profiles, opening potential for their use in long-term prevention of PCOS.
Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A
2011-01-01
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.
Iron in the Ross Sea: 2. Impact of discrete iron addition strategies
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.; Tagliabue, Alessandro
2005-03-01
Presented are results of a regional-scale numerical investigation into the effectiveness of Fe fertilization as a means to increase the efficiency of the biological pump in Fe-limited waters of the Ross Sea, Antarctica. This investigation was conducted using a modified version of the Coupled Ice And Ocean (CIAO) ecosystem model of the Ross Sea sector of the Southern Ocean. Four sets of experiments were performed, investigating the impacts of differences in (1) timing of fertilization, (2) duration of fertilization, (3) amount of Fe added, and (4) size of the fertilized patch. Results show that the stimulation of air-sea CO2 exchange (FCO2) depends primarily on the timing of fertilization, regardless of the amount of Fe added. When Fe was added at the optimal time of year, FCO2 from the atmosphere into the Ross Sea was increased by 3-22%, depending on fertilization strategy. Increasing patch size produced the largest response, and increasing initial Fe concentration produced the smallest. In all cases, as the intensity of Fe fertilization increased, the fertilization efficiency (increase in CO2 uptake per unit added Fe) dropped. Strategies that maximized the fertilization efficiency resulted in relatively little additional CO2 being drawn out of the atmosphere. To markedly increase oceanic uptake of atmospheric CO2 would require the addition of large amounts of Fe due to the low fertilization efficiencies associated with maximum air-sea CO2 exchange. Our results also show that differences in the fertilization strategy should be kept in mind when comparing the results of different Fe fertilization experiments.
The effect of dietary supplementation of algae rich in docosahexaenoic acid on boar fertility.
Murphy, E M; Stanton, C; Brien, C O '; Murphy, C; Holden, S; Murphy, R P; Varley, P; Boland, M P; Fair, S
2017-03-01
The objective of this study was to assess the effects of dietary supplementation of a commercial algal product rich in docosahexaenoic acid (DHA) on boar fertility as assessed in vitro and in vivo. Boars were fed one of three experimental diets for 19 weeks: (i) Control (Ctl) diet (n = 31), (ii) Ctl diet plus 75g All-G-Rich per day (n = 31) or (iii) Ctl diet plus 150g All-G-Rich per day (n = 30). Parameters assessed were (i) raw semen quality; volume, sperm concentration, total motility and morphology (ii) liquid semen quality; progressive motility, viability, hypotonic resistance and acrosomal integrity (iii) frozen-thawed semen quality; motility, thermal stress, viability, membrane fluidity and mitochondrial activity (iv) sperm and seminal plasma (SP) fatty acid composition (FAC) (v) total antioxidant capacity (TAC) of SP and (vi) farrowing rates and litter sizes of sows (n = 1158) inseminated with liquid semen. Boars consuming 75g All-G-Rich had a larger semen volume (P < 0.05) and a higher total sperm number (P < 0.01) than the Ctl treatment, however, there was no effect of treatment on any other semen quality parameter (P > 0.05). There was no effect of dietary treatment on the FAC and TAC of SP or on farrowing rate and litter size (P > 0.05). There was an effect of dietary treatment on the FAC of sperm, represented by an 1.72 and 1.60 fold increase in the DHA content for 75 and 150g treatments, respectively, compared to the Ctl treatment. In conclusion, a significant increase in semen volume and total sperm number in boars supplemented 75g All-G-Rich daily, resulted in an increase in production of 3 to 4 more doses per ejaculate, thus, indicating that the feeding regime described within this study has the potential for increasing the output of boar studs. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan
2015-10-01
Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20∼40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk.
Wilkison, D.H.; Blevins, D.W.; Silva, S.R.
2000-01-01
The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.
2000-07-01
Poverty; growing gap between rich and poor 30. Increasing intensive use of chemical fertilizer, pesticides and detergents 31. Destruction of coral reefs ... oceans 24. Fishery depletion due to over-fishing 25. Forest fires like those in Indonesia, Australia, Amazonian and Mediterranean countries 26...to abate eutrophication and acidification , as well as pollution of the marine environment, in particular coastal areas, from land-based sources
A Compatible Stem Taper-Volume-Weight System For Intensively Managed Fast Growing Loblolly Pine
Yugia Zhang; Bruce E. Borders; Robert L Bailey
2002-01-01
eometry-oriented methodology yielded a compatible taper-volume-weight system of models whose parameters were estimated using data from intensively managed loblolly pine (Pinus taeda L.) plantations in the lower coastal plain of Georgia. Data analysis showed that fertilization has significantly reduced taper (inside and outside bark) on the upper...
Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Fu, Dafang
2016-08-01
Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. Copyright © 2016. Published by Elsevier B.V.
Impact of emotional disorders on semen quality in men treated for infertility.
Wdowiak, Artur; Bień, Agnieszka; Iwanowicz-Palus, Grażyna; Makara-Studzińska, Marta; Bojar, Iwona
2017-02-01
Semen quality depends on factors such as lifestyle, environment, and hormone secretion. The purpose of the study was to assess the correlation between emotional disorders and the secretion of selected hormones, and to assess the impact of these disorders on semen quality. The study covered 60 fertile and 112 subfertile males. The sperm was obtained by masturbation, and examined directly after liquidation according to the 2010 criteria of the World Health Organization. The research instruments used were: the Beck Depression Inventory (BDI), and the State-Trait Anxiety Inventory (STAI). A morning blood sample (5 mL volume) was obtained and sent to an authorized laboratory to assess serum levels of testosterone, LH, FSH, prolactin, SHBG, DHEA-S and cortisol. In the group of infertility patients, higher BDI scores were correlated with significantly decreased testosterone levels (p=0.001), and increased prolactin and cortisol (p<0.001); statistically significant negative correlations were also found between BDI score and SHBG and DHEA-S (p<0.001) levels. Higher STAI-1 and STAI-2 in the low-fertility group were associated with higher mean prolactin and cortisol levels (p<0.001). Sperm count was shown to be correlated with BDI, STAI-1 and STAI-2 scores (p<0.001). Semen volume also correlated with BDI, STAI-1 and STAI-2 scores (p<0.001). Depression and anxiety in subfertile males are associated with lower secretion of SHBG and DHEA-S, and higher secretion of cortisol and prolactin. Depression and anxiety in male patients cause decreased semen volume and sperm density.
Kasimanickam, R K; Kasimanickam, V R; Arangasamy, A; Kastelic, J P
2017-02-01
Mammalian sperm are exposed to a natural hypoosmotic environment during male-to-female reproductive tract transition; although this activates sperm motility in vivo, excessive swelling can harm sperm structure and function. Aquaporins (AQPs) is a family of membrane-channel proteins implicated in sperm osmoregulation. The objective was to determine associations among relative sperm volume shift, hypoosmotic swelling test (HOST), sperm aquaporin (AQP) 7 mRNA abundances, and sire conception rate (SCR; fertility estimate) in Holstein bulls at a commercial artificial insemination center. Three or four sires for each full point SCR score from -4 to +4 were included. Each SCR estimate for study bulls (N = 30) was based on > 500 services (mean ± SEM) of 725 ± 13 services/sire). Sperm from a single collection day (two ejaculates) from these commercial Holstein bulls were used. Relative mRNA expression of AQP7 in sperm was determined by polymerase chain reaction. Mean relative sperm volume shift and percentage of sperm reacted in a HOST (% HOST) were determined (400 sperm per bull) after incubating in isoosmotic (300 mOsm/kg) and hypoosmotic (100 mOsm/kg) solutions for 30 min. There was no correlation between %HOST and SCR (r = 0.28 P > 0.1). However, there was a positive correlation between relative sperm volume shift and SCR (r = 0.65, P < 0.05). Furthermore, AQP7 mRNA abundance was positively correlated to both relative volume shift (r = 0.73; P < 0.05) and to SCR (r = 0.67; P < 0.05). The mRNA expressions of AQP7 and relative sperm volume shift differed (P < 0.05) among low- (<2 SCR), average- (-2 to +2) and high- (>2) fertility sire groups. In conclusion, bulls with higher SCR had significantly greater AQP7 mRNA abundance in frozen-thawed sperm. This plausibly contributed to greater regulation of sperm volume shift, which apparently conferred protection from detrimental swelling and impaired functions. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Yu-Lan; Sun, Cai-Xia; Chen, Zhen-Hua; Li, Dong-Po; Liu, Xing-Bin; Chen, Li-Jun; Wu, Zhi-Jie; Du, Jian-Xiong
2010-05-01
The infrared spectrum was used to discuss structure change of soil humus and components of chemical groups in soil humic acids (HA) and fulvic acids (FA) isolated from soils in different fertilization treatment after 26 year's fertilization. The result indicated that using the infrared spectroscopy method for the determination of humus, humus fractions (HA and FA) and their structure is feasible. Fertilization affected the structure and content of soil humus and aromatization degree. After 26 years' fertilization, the infrared spectrum shapes with different treatments are similar, but the characteristic peak intensity is obviously different, which reflects the effects of different fertilization treatments on the structure and amounts of soil humus or functional groups. Compared with no fertilization, little molecule saccharides decreased and aryl-groups increased under application of inorganic fertilizer or combined application of organic and chemical fertilizer. The effect was greater in Treatment NPK and M+NPK than in Treatment M1 N and M2 N. Organic and NPK fertilizer increased the development of soil and increased soil quality to a certain extent. Results showed that organic fertilization increased aromatization degree of soil humus and humus fractions distinctly. The authors could estimate soil humus evolvement of different fertilization with infrared spectroscopy.
Volume 3a - Area Source Methods - Additional Documents
Nonpoint (area) source emission reference materials from the Emissions Inventory Improvement Program (EIIP). Provides nonpoint source guidance on ammonia emissions from natural landscapes, fertilized soils, and nonagricultural sources.
Zhang, Yun-Wei; Xu, Zhi; Tang, Li; Li, Yan-Hong; Song, Jian-Qun; Xu, Jian-Qin
2013-09-01
A field experiment was conducted to study the effects of applying different organic fertilizers (refined organic fertilizer and bio-organic fertilizer) and their combination with 20% reduced chemical fertilizers on the microbes in rhizospheric soil of flue-cured tobacco, the resistance of the tobacco against bacterial wilt, and the tobacco yield and quality. As compared with conventional chemical fertilization (CK), applying refined organic fertilizer (ROF) or bio-organic fertilizer (BIO) in combining with 20% reduced chemical fertilization increased the bacterial number and the total microbial number in the rhizospheric soil significantly. Applying BIO in combining with 20% reduced chemical fertilization also increased the actinomyces number in the rhizospheric soil significantly, with an increment of 44.3% as compared with that under the application of ROF in combining with 20% reduced chemical fertilization, but decreased the fungal number. As compared with CK, the ROF and BIO increased the carbon use capacity of rhizospheric microbes significantly, and the BIO also increased the capacity of rhizospheric microbes in using phenols significantly. Under the application of ROF and BIO, the disease incidence and the disease index of bacterial wilt were decreased by 4% and 8%, and 23% and 15.9%, and the proportions of high grade tobacco leaves increased significantly by 10.5% and 9.7%, respectively, as compared with those in CK. BIO increased the tobacco yield and its output value by 17.1% and 18.9% , respectively, as compared with ROF.
Antral follicle count in normal (fertility-proven) and infertile Indian women.
Agarwal, Arjit; Verma, Ashish; Agarwal, Shubhra; Shukla, Ram Chandra; Jain, Madhu; Srivastava, Arvind
2014-07-01
Antral follicle count (AFC) has been labeled as the most accurate biomarker to assess female fecundity. Unfortunately, no baseline Indian data exists, and we continue using surrogate values from the Western literature (inferred from studies on women, grossly different than Indian women in morphology and genetic makeup). (1) To establish the role of AFC as a function of ovarian reserve in fertility-proven and in subfertile Indian women. (2) To establish baseline cut-off AFC values for Indian women. Prospective observational case-control study. Thirty patients undergoing workup for infertility were included and compared to equal number of controls (women with proven fertility). The basal ovarian volume and AFC were measured by endovaginal. USG the relevant clinical data and hormonal assays were charted for every patient. SPSS platform was used to perform the Student's t-test and Mann-Whitney U-test for intergroup comparisons. Correlations were determined by Pearson's ranked correlation coefficient. Regression analysis revealed the highest correlation of AFC and age in fertile and infertile patients with difference in mean AFC of both the groups. Comparison of the data recorded for cases and controls showed no significant difference in the mean ovarian volume. AFC has the closest association with chronological age in normal and infertile Indian women. The same is lower in infertile women than in matched controls. Baseline and cut-off values in Indian women are lower than that mentioned in the Western literature.
Domec, Jean-Christophe; Ogée, Jérôme; Noormets, Asko; Jouangy, Julien; Gavazzi, Michael; Treasure, Emrys; Sun, Ge; McNulty, Steve G; King, John S
2012-06-01
Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the process-based model MuSICA, this study indicated that HR can mitigate the effects of soil drying and had important implications for carbon uptake potential and net ecosystem exchange (NEE), especially when N fertilization is considered. At the coastal site (C), characterized by deep organic soil, HR increased dry season tree transpiration (T) by up to 40%, and such an increase affected NEE through major changes in gross primary productivity (GPP). Deep-rooted trees did not necessarily translate into a large volume of HR unless soil texture allowed large water potential gradients to occur, as was the case at the sandy site (S). At the Piedmont site (P) characterized by a shallow clay-loam soil, HR was low but not negligible, representing up to 10% of T. In the absence of HR, it was predicted that at the C, S and P sites, annual GPP would have been diminished by 19, 7 and 9%, respectively. Under future climate conditions HR was predicted to be reduced by up to 25% at the C site, reducing the resilience of trees to precipitation deficits. The effect of HR on T and GPP was predicted to diminish under future conditions by 12 and 6% at the C and P sites, respectively. Under future conditions, T was predicted to stay the same at the P site, but to be marginally reduced at the C site and slightly increased at the S site. Future conditions and N fertilization would decrease T by 25% at the C site, by 15% at the P site and by 8% at the S site. At the C and S sites, GPP was estimated to increase by 18% and by >70% under future conditions, respectively, with little effect of N fertilization. At the P site, future conditions would stimulate GPP by only 12%, but future conditions plus N fertilization would increase GPP by 24%. As a consequence, in all sites, water use efficiency was predicted to improve dramatically with future conditions. Modeling the effect of reduced annual precipitation indicated that limited water availability would decrease all carbon fluxes, including NEE and respiration. Our simulations highlight the interactive effects of nutrients and elevated CO(2), and showed that the effect of N fertilization would be greater under future climate conditions.
Energizing marginal soils: A perennial cropping system for Sida hermaphrodita
NASA Astrophysics Data System (ADS)
Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.
2017-04-01
As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great potential to increase the soil fertility of marginal substrates and produce substantial biomass yields.
Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun
2012-01-01
A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.
Oyeyipo, Ibukun Peter; Raji, Yinusa; Emikpe, Benjamin Obukowho; Bolarinwa, Adeyombo Folashade
2011-07-01
Infertility is common among couples of child-bearing age and approximately half of known causes of primary infertility are attributable to male factor. It is still unclear whether the injurious effects of cigarette smoking on sperm characteristics and infertility are due to nicotine. Therefore, the present study investtigated the effects of orally administered of nicotine on sperm characteristics and libido in adult male albino rats. The study also sought nicotine effects on fertility rate, litter size and weight in female animals cohabited with nicotine treated male rats. Forty male and twenty-five female rats were used for the study. The male rats were divided into five groups and were treated for a period of 30 days with nicotine 0.5 mg/kg (low dose) and 1.0 mg/kg (high dose) per body weight while the control rats received 0.2 ml/kg normal saline. The fourth and fifth groups were gavaged with 0.5 mg/kg and 1.0 mg/kg body weight of nicotine but were left untreated for another 30 days. These groups served as the recovery groups. At the end of each experimental period, sperm analysis, fertility study, litter weight and size were determined. Sperm motility and count significantly decreased (P < 0.05) while the percentage of abnormality significantly increased (P < 0.05) in both treatment groups. However, there was an insignificant decrease (P > 0.05) in the viability and semen volume of the treated groups. Fertility studies revealed that nicotine reduced libido in male rats, litter weight and number delivered by the untreated female during the experiments. The present study showed that nicotine has a dose-dependent deleterious effect on the sperm characteristics and that fertility is ameliorated by nicotine cessation in male rats.
Reproductive change in Bangladesh: evidence from recent data.
Amin, R; Chowdhury, J; Ahmed, A U; Hill, R B; Kabir, M
1993-12-01
This analysis pertains to an examination of fertility trends, differences, contraceptive use, and fertility preferences in Bangladesh. Data were obtained from the 1969 National Impact Survey of Family Planning; the 1975 and 1989 Bangladesh Fertility Surveys; and the 1983, 1985, and 1991 Contraceptive Prevalence Surveys. Age specific fertility rates (ASFR), current pregnancy rates, and the mean number of children ever born (CEB) are the estimated fertility measures. The P/F ratios show a significant fertility decline since 1983. Total marital fertility declined from 7 births in the 1960s to 5.2 in the late 1980s. The average number of CEB declined from 4.3 in 1969 to 3.7 in 1991. The percentage of pregnant women declined from 13.3 to 10.6. The ASFR declined primarily among older married women. Fertility declined among all groups including landowners and landless, the educated and the uneducated, rural and urban populations. The extent of decline varies by group. The total marital fertility rate (TMFR) declined more for the educated and the urban populations. Chittagong region had the higher fertility regardless of the period. TMFR was lower among contraceptive users compared to nonusers. The increase in contraceptive use was from 4 to 40% between 1969 and 1991. The following factors affected the extent of fertility decline: contraceptive use, reduced child mortality concomitant with extended lactation and amenorrhea, increased malnutrition, and/or improvements in child survival. Fertility was depressed under conditions of increased poverty, which may stimulate contraceptive use and lead to malnutrition and subfecundity. The higher Chittagong fertility pattern is not explained by regional comparisons of pregnancy wastage, stillbirths, and induced abortion. Desire for no more children increased from 46 to 58% during 1969-91. The average preferred family size is declining. High density and deep-seated poverty explain fertility decline in regions other than Chittagong. Demand for contraception may increase with increases in family planning home visits and educational opportunities.
Bittar, Joely F F; Bassi, Paula B; Moura, Dênia M; Garcia, Guilherme C; Martins-Filho, Olindo Assis; Vasconcelos, André B; Costa-Silva, Matheus F; Barbosa, Cristiano P; Araújo, Márcio S S; Bittar, Eustáquio R
2015-10-14
Trypanosomiasis is a disease caused by Trypanosoma (Dutonella) vivax, a hemoprotozoa that can affect bovines. In South America, the sanguineous form is mechanically transmitted from one mammalian host (ruminant) to another by the bite of a blood-sucking insect or by needles contaminated with infected blood. The negative impact of the parasitosis caused by T. vivax infection on the reproductive activity of male and female ruminants is known to reduce fertility. In males, alterations such as degeneration, diffuse or interlobular inflammatory infiltrate found in ovine and bovine testicles, can affect fertility through decreased sperm quality. This study evaluated the impact of natural infection with T. vivax on Zebu bulls from the Central Station of Artificial Insemination (CSAI) with regard to libido and the negative effects caused by this protozoan on semen quality. Blood samples of 44 animals were collected to evaluate the presence of the trypomastigote form of T. vivax in blood smears obtained from hematocrit and buffy coat, and antibody titer IgG anti T. vivax in indirect Immunoflorescence (IFI). Furthermore, data related to libido, ejaculate volume, spermatic concentration, and seminal vigor were recorded for these animals employing the criteria of the CSAI. Nine animals (20.45 %) showed T. vivax trypomastigotes and parasitemia between 0.02 and 0.07, and antibody titers from 1:80 to 1:320 in IFI. Twenty nine negative animals in parasitological tests were not reactive in IFI, and six animals presented the antibodies IgG anti T. vivax in IFI. Data on reproductive activity showed that animals infected with T. vivax have a decreased libido and an increased spermatic volume, whereas other factors related to the reproductive process such as spermatic concentration, motility and spermatic force, were unchanged in infected bulls. The T. vivax infection in Zebu bulls from CSAI caused patent parasitemia, induced a febrile state, promoted reduction in the libido and increased the ejaculate volume. These conditions together may account to decrease the performance of these animals.
Nitrous oxide emission from highland winter wheat field after long-term fertilization
NASA Astrophysics Data System (ADS)
Wei, X. R.; Hao, M. D.; Xue, X. H.; Shi, P.; Wang, A.; Zang, Y. F.; Horton, R.
2010-06-01
Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.78 and 1.98 kg N2O ha-1 increases, while manure + phosphorous offset 0.67 and 1.64 kg N2O ha-1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and less N2O flux and annual emission in M than in N.
Nitrous oxide emission from highland winter wheat field after long-term fertilization
NASA Astrophysics Data System (ADS)
Wei, X. R.; Hao, M. D.; Xue, X. H.; Shi, P.; Horton, R.; Wang, A.; Zang, Y. F.
2010-10-01
Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N2O-N ha-1 increases, while manure + phosphorous offset 0.43 and 1.04 kg N2O-N ha-1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and lower N2O flux and annual emission in m than in N.
Does Electrification Spur the Fertility Transition? Evidence From Indonesia.
Grimm, Michael; Sparrow, Robert; Tasciotti, Luca
2015-10-01
We analyze various pathways through which access to electricity affects fertility in Indonesia, using a district difference-in-difference approach. The electrification rate increased by 65 % over the study period, and our results suggest that the subsequent effects on fertility account for about 18 % to 24 % of the overall decline in fertility. A key channel is increased exposure to television. Using in addition several waves of Demographic and Health Surveys, we find suggestive evidence that increased exposure to TV affects, in particular, fertility preferences and increases the effective use of contraception. Reduced child mortality seems to be another important pathway.
Fertility drugs and cancer: a guideline.
2016-12-01
Methodological limitations in studying the association between the use of fertility drugs and cancer include the inherent increased risk of cancer in women who never conceive, the low incidence of most of these cancers, and that the age of diagnosis of cancer typically is many years after fertility drug use. Based on available data, there does not appear to be a meaningful increased risk of invasive ovarian cancer, breast cancer, or endometrial cancer following the use of fertility drugs. Several studies have shown a small increased risk of borderline ovarian tumors; however, there is insufficient consistent evidence that a particular fertility drug increases the risk of borderline ovarian tumors, and any absolute risk is small. Given the available literature, patients should be counseled that infertile women may be at an increased risk of invasive ovarian, endometrial, and breast cancer; however, use of fertility drugs does not appear to increase this risk. Copyright © 2016. Published by Elsevier Inc.
Wang, Shaojun; Chen, Han Y. H.; Tan, Yan; Fan, Huan; Ruan, Honghua
2016-01-01
Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon’s and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability. PMID:26857390
Wang, Shaojun; Chen, Han Y H; Tan, Yan; Fan, Huan; Ruan, Honghua
2016-02-09
Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon's and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability.
Rising up: Fertility trends in Egypt before and after the revolution
el-Shitany, Atef; Sholkamy, Hania; Benova, Lenka
2018-01-01
In 2014, Egypt’s Demographic and Health Survey (EDHS) documented an increase in the total fertility rate (TFR) to 3.5, up from a low of 3.0 recorded by the 2008 EDHS. The increase has been anecdotally attributed to the social upheaval following Egypt’s January 2011 revolution, but little is known about when fertility first began to increase and among which sub-groups of women. Using birth histories from seven rounds of EDHS (1992–2014), this study reconstructed fertility rates for single years from 1990–2013 and examined patterns of childbearing in five-year birth cohorts of women. We found that the decline in fertility reversed in 2007, earlier than postulated, plateaued and then increased again in 2013. The increase in TFR coincided with a convergence of fertility rates across education levels, and there is evidence of a shift toward childbearing at younger ages among more educated women, which may be inflating period measures of fertility. PMID:29346389
Andia, Irene; Emenyonu, Nneka; Guzman, David; Kaida, Angela; Pepper, Larry; Hogg, Robert; Bangsberg, David R.
2013-01-01
To assess the association between antiretroviral therapy (ART) and fertility history and desire among HIV-positive Ugandan women, we conducted a cross-sectional study among HIV-positive Ugandan women aged 18–50 years who attended an HIV clinic at Mbarara University in western Uganda between November 1, 2005 and June 6, 2006. Of 538 women approached, 501 were enrolled. ART use was associated with increased odds of fertility desire (AOR 2.99, 95% CI 1.38–6.28), and decreased odds of pregnancy (AOR 0.56, 95% CI 0.33–0.95) and live birth (AOR 0.30, 95% CI 0.13–0.66). ART was associated with an increase in fertility desire, but was not associated with an increase in fertility. Additional studies will be needed to determine if this greater fertility desire among ART-treated women leads to an increase in fertility as ART use expands. PMID:18389364
Maier, Marissa; Andia, Irene; Emenyonu, Nneka; Guzman, David; Kaida, Angela; Pepper, Larry; Hogg, Robert; Bangsberg, David R
2009-06-01
To assess the association between antiretroviral therapy (ART) and fertility history and desire among HIV-positive Ugandan women, we conducted a cross-sectional study among HIV-positive Ugandan women aged 18-50 years who attended an HIV clinic at Mbarara University in western Uganda between November 1, 2005 and June 6, 2006. Of 538 women approached, 501 were enrolled. ART use was associated with increased odds of fertility desire (AOR 2.99, 95% CI 1.38-6.28), and decreased odds of pregnancy (AOR 0.56, 95% CI 0.33-0.95) and live birth (AOR 0.30, 95% CI 0.13-0.66). ART was associated with an increase in fertility desire, but was not associated with an increase in fertility. Additional studies will be needed to determine if this greater fertility desire among ART-treated women leads to an increase in fertility as ART use expands.
NASA Astrophysics Data System (ADS)
Peng, X.; Ji, Q.; Angell, J.; Kearns, P.; Bowen, J. L.; Ward, B. B.
2014-12-01
Intensified sedimentary production of nitrous oxide (N2O), one of the most potent greenhouse gases, is one of the many possible environmental consequences of elevated nitrogen (N) loading into estuarine ecosystems. This study investigates the response to over 40 years of fertilization of nitrogen removal processes in the sediments of the Great Sippewissett Marsh in Falmouth, MA. Sediment slurries were incubated (1.5 hr) with trace amounts (< 10% of ambient concentration) of 15NH4+ + 14NO3- or 15NO3- + 14NH4+. An additional parallel incubation with 15NH4+ + 14NO3- and 1 mM of allylthiourea (ATU) was included to measure rates of anaerobic ammonia oxidation (anammox). Well-homogenized slurries filled about 10% of the volume in the gas-tight incubation vials, and the rest of the volume was replaced with an O2/He (20%/80%) mixture. The production of 29N2, 44N2O and 45N2O were determined using isotope ratio mass spectrometry. The rate of total N2O production in fertilized sediments (0.89 nmol hr-1 g-1 wet weight) was 30-fold higher than in unfertilized sediments. The ratio of N2O to N2 production was also significantly higher in fertilized sediments (2.9%) than in unfertilized sediments (1.2%). This highlights the disproportionally large effect of long-term fertilization on N2O production in salt marsh sediments. The reduced oxygen level and higher ammonium concentrations in situ probably contributed to the significant rise in N2O production as a result of long-term fertilization. When detected, anammox and coupled nitrification-denitrification accounted for 10% and 14% of the total N2 production in fertilized sediments (30.5 nmol hr-1 g-1 wet weight), respectively, whereas neither was detected in unfertilized sediments. Thus these experiments indicate that N loading has important effects on multiple N cycle processes that result in N loss and N2O production.
Plant Growth-promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers
USDA-ARS?s Scientific Manuscript database
Efforts to reduce fertilizer rates while increasing nutrient uptake to maintain high yields are very important due to the increasing cost of fertilizers and their potential negative environmental impacts. The objectives of this study were to determine (i) if reduced rates of inorganic fertilizer cou...
Cao, Dan; Zong, Liang-gang; Xiao, Jun; Zhang, Qian; Zhao, Yan
2010-10-01
Field trials of organic farming were conducted to examine the effects of different bio-fertilizers on the organically cultured cucumber growth, soil enzyme activities, and soil microbial biomass. Four treatments were installed, i. e., organic fertilizer only (CK), bio-fertilizer "Zhonghe" combined with organic fertilizer (ZHH), bio-fertilizer "NST" combined with organic fertilizer (NST), and bio-fertilizer "Bio" combined with organic fertilizer (BIO). Bio-fertilizers combined with organic fertilizer increased the cucumber yield significantly, and improved the root growth and leaf chlorophyll content. Comparing with that in CK, the cucumber yield in treatments ZHH, NST, and BIO was increased by 10.4%, 12.4%, and 29.2%, respectively. At the seedling stage, early flowering stage, and picking time of cucumber, the soil microbial biomass C and N in treatments ZHH, NST, and BIO were significantly higher than that in CK, and the activities of soil urease, acid phosphatase, and catalase were also higher.
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, K.; Wu, Z.; Guan, X.
2017-12-01
In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.
NASA Astrophysics Data System (ADS)
Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.
2014-10-01
Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.
Experimental parameterisation of principal physics in buoyancy variations of marine teleost eggs.
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Sundby, Svein
2014-01-01
It is generally accepted that the high buoyancy of pelagic marine eggs is due to substantial influx of water across the cell membrane just before ovulation. Here we further develop the theoretical basis by applying laboratory observations of the various components of the fertilized egg in first-principle equations for egg specific gravity (ρ(egg)) followed by statistical validation. We selected Atlantic cod as a model animal due to the affluent amount of literature on this species, but also undertook additional dedicated experimental works. We found that specific gravity of yolk plus embryo is central in influencing ρ(egg) and thereby the buoyancy. However, our established framework documents the effect on ρ(egg) of the initial deposition of the heavy chorion material in the gonad prior to spawning. Thereafter, we describe the temporal changes in ρ(egg) during incubation: Generally, the eggs showed a slight rise in ρ(egg) from fertilization to mid-gastrulation followed by a gradual decrease until full development of main embryonic organs just before hatching. Ontogenetic changes in ρ(egg) were significantly associated with volume and mass changes of yolk plus embryo. The initial ρ(egg) at fertilization appeared significantly influenced by the chorion volume fraction which is determined by the combination of the final chorion volume of the oocyte and of the degree of swelling (hydrolyzation) prior to spawning. The outlined principles and algorithms are universal in nature and should therefore be applicable to fish eggs in general.
Experimental Parameterisation of Principal Physics in Buoyancy Variations of Marine Teleost Eggs
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Sundby, Svein
2014-01-01
It is generally accepted that the high buoyancy of pelagic marine eggs is due to substantial influx of water across the cell membrane just before ovulation. Here we further develop the theoretical basis by applying laboratory observations of the various components of the fertilized egg in first-principle equations for egg specific gravity (ρegg) followed by statistical validation. We selected Atlantic cod as a model animal due to the affluent amount of literature on this species, but also undertook additional dedicated experimental works. We found that specific gravity of yolk plus embryo is central in influencing ρegg and thereby the buoyancy. However, our established framework documents the effect on ρegg of the initial deposition of the heavy chorion material in the gonad prior to spawning. Thereafter, we describe the temporal changes in ρegg during incubation: Generally, the eggs showed a slight rise in ρegg from fertilization to mid-gastrulation followed by a gradual decrease until full development of main embryonic organs just before hatching. Ontogenetic changes in ρegg were significantly associated with volume and mass changes of yolk plus embryo. The initial ρegg at fertilization appeared significantly influenced by the chorion volume fraction which is determined by the combination of the final chorion volume of the oocyte and of the degree of swelling (hydrolyzation) prior to spawning. The outlined principles and algorithms are universal in nature and should therefore be applicable to fish eggs in general. PMID:25122447
NASA Astrophysics Data System (ADS)
Trofymow, J. A.; Metsaranta, J. M.; Black, T. A.; Jassal, R. S.; Filipescu, C.
2013-12-01
In coastal BC, 6,000-10,000 ha of public and significant areas of private forest land are annually fertilized with nitrogen, with or without thinning, to increase merchantable wood and reduce rotation age. Fertilization has also been viewed as a way to increase carbon (C) sequestration in forests and obtain C offsets. Such offset projects must demonstrate additionality with reference to a baseline and include monitoring to verify net C gains over the project period. Models in combination with field-plot measurements are currently the accepted methods for most C offset protocols. On eastern Vancouver Island, measurements of net ecosystem production (NEP), ecosystem respiration (Re) and gross primary productivity (GPP) using the eddy-covariance (EC) technique as well as component C fluxes and stocks have been made since 1998 in an intermediate-aged Douglas-fir dominated forest planted in 1949. In January 2007 an area around the EC flux tower was aerially fertilized with 200 kg urea-N ha-1. Ground plots in the fertilized area and an adjacent unfertilized control area were also monitored for soil (Rs) and heterotrophic (Rh) respiration, litterfall, and tree growth. To determine fertilization effects on whole tree growth, sample trees were felled in both areas for the 4-year (2003-06) pre- and the 4-year (2007-10) post-fertilization periods and were compared with EC NEP estimates and tree-ring based NEP estimates from Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) for the same periods. Empirical equations using climate and C fluxes from 1998-2006 were derived to estimate what the EC fluxes would have been in 2007-10 for the fertilized area had it been unfertilized. Mean EC NEP for 2007-10 was 561 g C m2 y-1 , a 64% increase above pre-fertilization NEP (341 g C m2 y-1) or 28% increase above estimated unfertilized NEP (438 g C m2 y-1). Most of the increase was attributed to increased tree C uptake (i.e., GPP), with little change in Re. In 2007 fertilization caused a small increase in Rs and litter decay, and a small decrease in Rh. Litterfall rates averaged 100 g C m2 y-1 and did not differ between fertilized and control plots. Stem wood increments for 2007-10 indicated aboveground growth in fertilized trees was 35% greater than in control trees. However this was due to fertilized tree growth being 30% greater and control trees 5% less when compared to growth in the pre-fertilization period. Preliminary examination of root wood increments indicated that the post-fertilization growth was less than pre-fertilization growth, suggesting that the post-fertilization NPP was lower than if just estimated from stem wood. Mean CBM-CFS3 NEP for seven groundplots around the tower were 465 g C m2 y-1 for 2007-10, a 34% increase above pre-fertilization model NEP (347 g C m2 y-1). Using post- and pre-fertilization values, fertilization effects on EC NEP (64%) were nearly twice that of CBM-CFS3 model NEP (34%) or biometric tree growth (30%). However, if fertilized and unfertilized control values for 2007-10 were used; fertilization effects on EC NEP (28%) were comparable to those from biometric tree growth (35%). Results suggest choice of an appropriate baseline will be important in determining the C gains of forest C offset projects.
Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin
2013-12-01
A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a relative increase in the second year, while the plant-parasitic index had a relative decrease. It was suggested that the application of organic manure could increase the abundance of soil microbivorous nematodes, and made the soil environment tend to be healthy.
Stockfors, Jan; Linder, Sune
1998-03-01
To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.
Forest growth modeling and prediction (Volumes 1 & 2).
Alan R. Ek; Stephen R. Shifley; Thomas E. Burk
1988-01-01
Proceedings of the August 23-27 IUFRO Conference, Minneapolis, Minnesota. Includes 143 manuscripts dealing with growth and yield modeling; regeneration; site characterization; effects of fertilization, genetics, and disturbance; density management; evaluation; estimation; inventory; and application.
Effects of Long-term Fertilization on Potassium Fixation Capacity in Brown Soil
NASA Astrophysics Data System (ADS)
Li, Na; Guo, Chunlei; Wang, Yue; Gao, Tianyi; Yang, Jinfeng; Han, Xiaori
2018-01-01
This study concentrated on the research of features of fixation. The objective of this study was to provide theoretical foundation of rational application of potassium fertilizer along with improving fertilizer availability ratio. A 32 years long-term experiment was conducted to evaluate the effects of fertilizer application on potassium changes and the factors affecting K fixation on brown soil by simulation in laboratory. When the concentration of exogenous potassium was in range of 400∼4000 mg·kg-1, potassium fixation capacity increased along with the rise of concentration of exogenous potassium, whereas K fixation rate reduced; Compared with no-potassium fertilizer, application of potassium fertilizer and organic fertilizer reduced soil potassium fixation capacity. Potassium rate and fixation-release of potassium character in soil should be taken into comprehensive consideration for rational fertilization to maintain or improve soil fertility for increasing potassium fertilizers efficiency in agriculture.
Li, Rui; Tai, Rui; Wang, Dan; Chu, Gui-Xin
2017-10-01
A four year field study was conducted to determine how soil biological properties and soil aggregate stability changed when organic fertilizer and biofertilizer were used to reduce chemical fertilizer application to a drip irrigated cotton field. The study consisted of six fertilization treatments: unfertilized (CK); chemical fertilizer (CF, 300 kg N·hm -2 ; 90 kg P2O5 · hm -2 , 60 kg K2 O·hm -2 ); 80% CF plus 3000 kg·hm -2 organic fertilizer (80%CF+OF); 60% CF plus 6000 kg·hm -2 organic fertilizer (60%CF+OF); 80% CF plus 3000 kg·hm -2 biofertilizer (80%CF+BF); and 60% CF plus 6000 kg·hm -2 biofertilizer (60%CF+BF). The relationships among soil organic C, soil biological properties, and soil aggregate size distribution were determined. The results showed that organic fertilizer and biofertilizer both significantly increased soil enzyme activities. Compared with CF, the biofertilizer treatments increased urease activity by 55.6%-84.0%, alkaline phosphatise activity by 53.1%-74.0%, invertase activity by 15.1%-38.0%, β-glucosidase activity by 38.2%-68.0%, polyphenoloxidase activity by 29.6%-52.0%, and arylsulfatase activity by 35.4%-58.9%. Soil enzyme activity increased as the amount of organic fertilizer and biofertilizer increased (i.e., 60%CF+OF > 80%CF+OF, 60%CF+BF > 80%CF+BF). Soil basal respiration decreased significantly in the order BF > OF > CF > CK. Soil microbial biomass C and N were 22.3% and 43.5% greater, respectively, in 60%CF+BF than in CF. The microbial biomass C:N was significantly lower in 60%CF+BF than in CF. The organic fertilizer and the biofertilizer both improved soil aggregate structure. Soil mass in the >0.25 mm fraction was 7.1% greater in 80%CF+OF and 8.0% greater in (60%CF+OF) than in CF. The geometric mean diameter was 9.2% greater in 80%CF+BF than in 80%CF+OF. Redundancy analysis and cluster analysis both demonstrated that soil aggregate structure and biological activities increased when organic fertilizer and biofertilizer were used to reduce chemical fertilizer application. In conclusion, the organic fertilizer and the biofertilizer significantly increased SOC, soil enzyme activity, and soil microbial biomass C and N. The organic fertilizers also improved soil aggregation. Therefore, soil quality could be improved by using these fertilizers to reduce chemical fertilizer application, especially under drip-irrigation.
The influence of rural-urban migration on migrant's fertility behavior in Cameroon.
Lee, B S
1992-01-01
Preliminary analysis of Cameroon fertility data suggests that rural stayers do not have a significantly higher fertility than rural-urban migrants in contrast to hypotheses suggested in the literature. Bongaarts and Caldwell both suggest that modernization plays a role in African fertility and migration patterns by increasing exposure to childbearing. Supply constraints are changed by higher levels of education, short duration of postpartum abstinence, less prevalence of polygamy, and more stable marriages. The influence of relatives may be weaker and the fear of losing a husband greater, which influence earlier returns to sexual relations. Because the levels of fertility of stayers and movers may be equal does not suggest that movers do not adapt fertility to urban norms. Analysis was conducted with d ata from the 1978 Cameroon World Fertility Survey on 8219 women aged 15-54 years for rural nonmigrants, rural-rural migrants, and rural-urban migrants. Rural-urban migrants were found to be better educated, have fewer cases of infertility, and have more stable first marriages. Descriptive statistics are provided for migrants and nonmigrants. Cross classification analysis shows that fertility is not lower for women with higher education, even when migration status is controlled for. Multivariate regression results in an autoregressive model in a first difference form indicated that the fertility rate of rural-urban migrant women was significantly higher than that of rural staryers during the period of 5-9 years after migration. The urban effect acts to reduce migrants' fertility by about .13 births. Comparisons are made with Mexican and Korean migration behavior, which reflect decreased fertility after migration of 1.5 births and 2.6 births, respectively. The suggestion is that the fertility-increasing effect of supply conditions in Cameroon is significantly offset by the fertility-depressing adaptation effect of migration to urban areas. It is expected that eventually fertility will decline as economic development continues and women's educational levels increase. Stability in marriages will increase women's confidence needed to control fertility and contribute to the increased use of contraceptives.
Fertility drugs and ovarian cancer.
Ali, Aus Tariq
2017-06-20
The aetiology of ovarian cancer is multifactorial with both endogenous and exogenous risk factors playing an important role. The exact pathogenesis of ovarian cancer is still not well understood, despite the number of hypotheses published. Due to an increase in the number of women using fertility drugs, much attention has been focused on the long-term health effects of such drugs. Although fertility drugs facilitate the ovulation process, it is however associated with a significant increase in hormone concentrations, placing exposed women at increased risk of gynaecological cancer. Many clinical and epidemiological studies have examined the association between fertility drugs and ovarian cancer risk. Results from these studies have been contradictory, as some studies have reported an increased risk of ovarian cancer while others reported no increased risk. Nevertheless, recent studies have shown that women who used fertility drugs and did not conceive had a higher risk of developing ovarian cancer, compared to women who used fertility drugs and conceived and delivered successfully. This review discusses the effect of fertility drugs on the risk of developing ovarian cancer, providing details on four possible scenarios associated with fertility treatment. In addition, the limitations of previous studies and their impact on our understanding of the association between fertility drugs and ovarian cancer also have been highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Siddique, Mohammad Abdul Momin; Butts, Ian Anthony Ernest; Psenicka, Martin; Linhart, Otomar
2015-08-01
Standardization of fertilization protocols for sterlet Acipenser ruthenus is crucial for improving reproductive techniques and for conservation purposes. Our objectives were to determine the number of sperm (tested 430,000:1, 43,000:1, 4300:1, 430:1 sperm to egg) required to fertilize eggs and explore how pre-incubation of eggs in freshwater for 0min, 0.5min, 1min, and 10min interacts with different sperm ratios. Fertilization success ranged from 29.7% at 430:1 to 84.2% at 430,000:1. Pre-incubation time had no effect on fertilization success at 430,000:1 and 43,000:1 sperm to egg ratios, while it was significant at the 4300:1 and 430:1 ratios. The use of adequate experimental suboptimal sperm to egg ratio revealed a positive effect of pre-incubation time, such that at the 430:1 ratio, 0.5min pre-incubation increased the fertilization rate than 10min. At 0min pre-incubation the proportion of fertilized eggs increased at the 430,000:1 ratio, while at 1min fertilization increased at the 4300:1 ratio. At the 10min pre-incubation time, fertilization increased at the 43,000:1 ratio. Moreover, at the 0.5min pre-incubation time, the 43,000:1 ratio increased the fertilization rate than the 430:1 ratio. Generally, for 430:1 ratio, the fertilization rate is lower than in control. Transmission electron microscopy showed that pre-incubation of eggs in water for <10min does not trigger a cortical reaction or the formation of a perivitelline space. Results suggest that with a low sperm to egg ratio 0.5 to 1min pre-incubation of eggs in freshwater prior to fertilization can enhance fertilization rate of sterlet. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei
2016-01-01
Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m2 and 20-40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.
[Effects of alkaline fertilizer on cadmium content in rice and paddy soil.
Zhang, Liang Liang; Fan, Xiao Lin; Zhang, Li Dan; Liu, Fang
2016-03-01
A field plot trial was conducted at Songbai Village, Chenzhou, Hunan Province to exa-mine the effects of alkaline fertilizer with and without combination application of bacterial regent on cadmium accumulation in rice and paddy soil. Compared with the conventional fertilizer, the alkaline fertilizer reduced the available cadmium content in soil at the tillering, filling and the harvest stages by 8.3%, 6.7% and 16.4% respectively. Compared with the Cd content in soil before transplanting, it was reduced by 7.2% at harvest time in alkaline fertilizer treatment, while increased by 11.0% in the conventional fertilizer treatment. The available cadmium content in soil was increased by 1.2% to 23.3% by bacterial regent. Compared with the conventional fertilizer, the cadmium content of root, stem sheath, leaf, grain and brown rice of the alkaline fertilizer treatment reduced by 54.9%, 56.6%, 41.8%, 62.7% and 67.6% respectively. The alkaline fertilizer treatment combined with bacterial regent increased the cadmium content of brown rice by 63.2%. It was concluded that the alkaline fertilizer could significantly reduce the available cadmium content in both soil and the different organs of the rice, however, when it was combined with bacterial regent together, the effect of alkaline fertilizer to reduce Cd content of brown rice would be declined.
Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei
2016-01-11
Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ(13)C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m(2) and 20-40 cm = 1770.6 gC m(2)) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.
NASA Astrophysics Data System (ADS)
Hartati, S.; Suryono; Purnomo, D.
2018-03-01
The study aimed to determine the appropriate dose of K-type fertilizer on the production and quality of IR-64 rice varieties in Entisols. The study was conducted on Entisols, Nglarang, Basin, Kebonarum, Klaten, Central Java, Indonesia. Randomized Complete Block Design (RCBD) was used with 2 factors and three replicates. Factor I: types of K fertilizer: KCl, ZK, and KNO3. Factor II: K fertilizer dose consists of four levels: 0, 50, 100 and 150 kg K2O ha-1. The results showed that the type of K fertilizer KCl, ZK, and KNO3 gave similar effect on growth and yield of rice variety IR 64 on Entisols. Dose of K fertilizer increased the growth and yield of rice but an increased dose provides improved meaningful results. K fertilizer with a dose of 50 kg ha-1 K2O is the most efficient, with the agronomic efficiency for dry grain highest yield of 13.6 kg/kg K2O achieved by ZK fertilizer.
The effects of semen collection on fertility in captive, naturally fertile, sandhill cranes
Chen, G.; Gee, G.F.; Nicolich, Jane M.; Taylor, J.A.
2001-01-01
We tested to see if semen collection interferes with fertility in naturally fertile pairs of cranes. We used 12 naturally fertile, Florida sandhill crane (Grus canadensis pratensis) pairs for this study, 6 control and 6 experimental. All pairs had previously produced fertile eggs. Semen was collected on Tuesday mornings and Friday afternoons from 26 February 1993 to 4 June 1993. We used standard artificial insemination methods to collect and to evaluate the semen and spermatozoa. Semen collection had minimal effect on semen quality and semen quantity. Semen volume, sperm density, sperm motility, sperm morphology, sperm viability, sperm number per collection, and male response to semen collection exhibited significant daily variation. Although semen collection began 13 days before the first egg in the experimental group, we did not observe differences in the date of first egg laid or in fertility between experimental and control groups. Also, we observed no statistically significant differences in the interval between clutches or in the percentage of broken eggs between experimental and control groups. However, 4 eggs were broken by adults during the disturbance associated with capturing birds for semen collection. We found that females with mates from which we consistently gathered better semen samples produced fewer fertile eggs than females with sires producing poorer semen samples (r = 0.60). We interpret these results to mean that males that were successfully breeding with their mates had little left at the time of our collection.
Crop Fertilization Impacts Epidemics and Optimal Latent Period of Biotrophic Fungal Pathogens.
Précigout, Pierre-Antoine; Claessen, David; Robert, Corinne
2017-10-01
Crop pathogens are known to rapidly adapt to agricultural practices. Although cultivar resistance breakdown and resistance to pesticides have been broadly studied, little is known about the adaptation of crop pathogens to fertilization regimes and no epidemiological model has addressed that question. However, this is a critical issue for developing sustainable low-input agriculture. In this article, we use a model of life history evolution of biotrophic wheat fungal pathogens in order to understand how they could adapt to changes in fertilization practices. We focus on a single pathogen life history trait, the latent period, which directly determines the amount of resources allocated to growth and reproduction along with the speed of canopy colonization. We implemented three fertilization scenarios, corresponding to major effects of increased nitrogen fertilization on crops: (i) increase in nutrient concentration in leaves, (ii) increase of leaf lifespan, and (iii) increase of leaf number (tillering) and size that leads to a bigger canopy size. For every scenario, we used two different fitness measures to identify putative evolutionary responses of latent period to changes in fertilization level. We observed that annual spore production increases with fertilization, because it results in more resources available to the pathogens. Thus, diminishing the use of fertilizers could reduce biotrophic fungal epidemics. We found a positive relationship between the optimal latent period and fertilization when maximizing total spore production over an entire season. In contrast, we found a negative relationship between the optimal latent period and fertilization when maximizing the within-season exponential growth rate of the pathogen. These contrasting results were consistent over the three tested fertilization scenarios. They suggest that between-strain diversity in the latent period, as has been observed in the field, may be due to diversifying selection in different cultural environments.
Effect of fertilizer application on NO and N2O fluxes from agricultural fields
NASA Astrophysics Data System (ADS)
Harrison, Roy M.; Yamulki, Sirwan; Goulding, K. W. T.; Webster, C. P.
1995-12-01
Losses of fertilizer as NO and N2O were studied at Broadbalk field, Rothamsted Experimental Station in England, on which subplots have been subject to differing constant levels of fertilizer application for many years. Fluxes of NO and N2O were measured using open- and closed-chamber techniques, respectively. Fluxes from unfertilized soil ranged from 0.3 to 4.8 ng N m-2 s-1 for NO and 0.23 to 3.0 ng N m-2 s-1 for N2O. The corresponding fluxes from the plot with the highest fertilizer application (92 kg N ha-1 yr-1 as NH4NO3) ranged from 0.5 to 64 ng N m-2 s-1 for NO and 0.4 to 240 ng N m-2 s-1 for N2O. Application of increasing amounts of fertilizer substantially enhanced emission rates of both NO and N2O. However, the amount of increase was controlled by competition between the crop and the microorganisms for the available soil nutrients, and loss of N2O to the atmosphere increased sharply at superoptimal levels of fertilizer application. The fertilizer-derived NO and N2O emissions represented approximately 90% of the total emission of these gases during the 25-day sampling period after fertilizer application. The results suggest that while increasing the amount of fertilizer increases both NO and N2O fluxes simultaneously, the NO/N2O emission ratio decreases. Results from laboratory experiments showed that the magnitude of the fertilizer loss as N2O was strongly affected by the form of the applied fertilizer.
Peng, Xingxing; Guo, Zheng; Zhang, Yujiao; Li, Jun
2017-07-14
The Loess Plateau, China, is the world's largest apple-producing region, and over 80% of the orchards are in rainfed (dryland) areas. Desiccation of the deep soil layer under dryland apple orchards is the main stressor of apple production in this region. Fertilization is a factor that causes soil desiccation in dryland apple orchards. Given its applicability and precision validations, the Environmental Policy Integrated Climate (EPIC) model was used to simulate the dynamics of fruit yield and deep soil desiccation in apple orchards under six fertilization treatments. During the 45 years of study, the annual fruit yield under the fertilization treatments initially increased and then decreased in a fluctuating manner, and the average fruit yields were 24.42, 27.27, 28.69, 29.63, 30.49 and 29.43 t/ha in these respective fertilization treatments. As fertilization increased, yield of the apple orchards increased first and then declined,desiccation of the soil layers occurred earlier and extended deeper, and the average annual water consumption, over-consumption and water use efficiency increased as fertilization increased. In terms of apple yields, sustainable soil water use, and economic benefits, the most appropriate fertilization rate for drylands in Luochuan is 360-480 kg/ha N and 180-240 kg/ha P.
Higher fertilizer inputs increase fitness traits of brown planthopper in rice
USDA-ARS?s Scientific Manuscript database
ice (Oryza sativa L.) is the primary staple food source for more than half of the world's population. In many developing countries, increased use of fertilizers is a response to increase demand for rice. In this study, we investigated the effects of three principal fertilizer components (nitrogen, p...
Rose, T J; Impa, S M; Rose, M T; Pariasca-Tanaka, J; Mori, A; Heuer, S; Johnson-Beebout, S E; Wissuwa, M
2013-07-01
Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.
Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C
2004-01-01
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.
Effect of nitrogen fertilizer on growth, form, and wood quality of eastern cottonwood
D.S. DeBell; E.H. Mallonee; L.T. Alford
1975-01-01
A 9-year-old cottonwood plantation near Fitler, Mississippi was fertilized with ammonium nitrate (150 and 300 lbs N/A) in May 1970. Fertilizer increased diameter (b.h.) growth of dominant, codominant, and intermediate crown classes by 109, 174 and 482 percent, respectively. Form class of fertilized trees also increased. On a whole-stem basis, specific gravity declined...
Effect of Fertilization on Survival and Early Growth of Direct-Seeded Red Pine
David H. Alban
1971-01-01
Fertilization resulted in increased height and top weight of red pine seedlings by the end of the second growing season, but also resulted in considerable seedling mortality. A high level of watering also increased seedling growth but to a much less extent than fertilization. Fertilization of 1-year-old seedlings resulted in dramatic changes in their chemical...
C. H. Pham; Howard G. Halverson; Gordon M. Heisler
1978-01-01
Red maple (Acer rubrum L.) seedlings were grown in a greenhouse using three treatments: two soil horizons, two soil moisture regimes, and three nutrient levels. Fertilization increased growth under moist conditions on the more fertile topsoil. Under dry conditions, fertilization had no effect on growth in subsoil, and slightly increased growth in...
Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin
2018-01-15
The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.
Fertilization increases paddy soil organic carbon density.
Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun
2012-04-01
Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.
Fertilization increases paddy soil organic carbon density*
Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun
2012-01-01
Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369
Sun, Jia Un; Fu, Qing Xia; Gu, Jie; Wang, Xiao Juan; Gao, Hua
2016-03-01
A field experiment was conducted to compare the effects of three fertilizer managements (bio-organic fertilizer, traditional organic fertilizer and chemical fertilizer) and a no-fertilizer control on soil enzyme activities and microbial community functional diversity in a kiwifruit orchard. The results showed that the soil invertase and FDA hydrolase activities in the bio-organic fertilizer treatment were 12.2%-129.4% and 18.8%-87.4% higher than those in the no-fertilizer control during kiwifruit growth period, respectively. The application of bio-organic fertilizer also increased soil urease and acid phosphatase activities at the expanding stage and maturity stage. The Biolog results suggested that bio-organic fertilizer treatment improved the average well color development (AWCD) and increased the species diversity, richness and evenness. The relative ratios of six groups of carbon sources by microbes were changed to some extent after the application of bio-organic fertilizer. Compared with the no-fertilizer control, bio-organic fertilizer application decreased the capacity of microbes in using amino acids, but enhanced the utilization of polyphenols and polyamines. The principal components analysis demonstrated that the differentiation of microbial community was mainly in utilization of carbohydrates, amino acids and carboxylic acids.
Alteration of biochar characteristics through Post Production Treatments
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Kammann, Claudia; Glaser, Bruno
2013-04-01
The application of pure, untreated biochar to temperate soils does not lead to substantial increase in soil fertility and plant growth. Moreover, the application of 10 tonnes or more of biochar per hectare is not economically viable on most farms. To be more efficient in improving soil fertility, increasing SOM and ecosystem services, new methods of using biochar in farm settings need to be developed. To improve the effect of biochar on plant growth, biochar can be enhanced by (1) adding nutrients, (2) inoculating it with beneficial microorganisms, (3) improving its surface reactivity and thus its sorption dynamic, (4) increasing its porous volume, and/or (5) fostering the creation of biochar-mineral-organic complexes. These supplementary biochar enhancements can be achieved through different methods of feedstock blending and biochar post-production treatment which can be classified according to the resulting surface alteration of biochar: 1. Addition of nutrients, MOs, minerals in liquid solution which get soaked into the biochar pores without or with only slight surface alteration, resulting in enriched biochar. 2. Physico-chemical activation (treatment with acids, vapours, toasting with minerals …) resulting in alteration of the surface, pore volume and functional groups. 3. Bio-chemical activation through the interaction of biochar with organic compounds, minerals, nutrients and microorganisms in a biological very active environment, resulting in the complexation of biochar, minerals and organic compounds. Whereas physico-chemical activation is a highly technical process and has to be done by professional biochar producers, bio-chemical activation and enrichment can be done very efficiently by the farmer himself. On-farm enrichment and activation of biochar help to close the organic nutrient cycles of the farm, improving agronomic system efficiency and thus becoming economically viable. Adding biochar to highly labile organic matter like manure, sludge or compost improves decomposition and complexation, and helps to stabilize their nutrients and carbon. The combination of biochar and lacto-acid-bacteria in silage, feed, bedding and liquid manure treatment decreases methane and ammonia emissions, increases the feed-energy balance, and boosts animal health. On every step of this cascading use of biochar in animal husbandry, the biochar becomes more oxidized, more activated and more enriched with nutrients. When finally applied to the soil, biochar acts as carrier for nutrients and thus works to improve soil fertility. Much more research is needed in the field of biochar post-treatment and into each of the different possible farm uses. Nevertheless, sufficient serious research has already been done and published, enabling us to judge the importance of post-treating biochar to improve its agronomic performance and value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Zhongmin; Su, Weiqin; Chen, Huaihai
Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less
Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; ...
2018-04-25
Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less
Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; Barberán, Albert; Zhao, Haochun; Yu, Mengjie; Yu, Lu; Brookes, Philip C; Schadt, Christopher W; Chang, Scott X; Xu, Jianming
2018-04-12
Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide. © 2018 John Wiley & Sons Ltd.
ENDURING ECONOMIC HARDSHIP, WOMEN'S EDUCATION, MARRIAGE AND FERTILITY TRANSITION IN KINSHASA.
Shapiro, David
2015-03-01
This paper examines fertility transition in Kinshasa, capital of the Democratic Republic of the Congo (DRC) and second-largest city in sub-Saharan Africa. Shapiro (1996) documented the onset of fertility transition in the city, using data from 1990. Women's education was strongly inversely related to fertility, beginning with secondary schooling, and increases in women's education were important in initiating fertility transition in the city. The paper uses data from the 2007 Demographic and Health Survey in the DRC to examine fertility in Kinshasa and assess fertility transition since 1990, a period characterized by severe adverse economic conditions in the DRC. Fertility transition has continued at a strong pace. In part this reflects increased educational attainment of women, but it appears also to be largely a consequence of enduring economic hardship. The ongoing fertility decline has been accompanied by substantial delays in entry to marriage and childbearing, reflecting adverse economic conditions, which in turn have contributed to continuing declines in fertility.
Tan, Grace Hwei Ching; Shamji, Tushar; Mehta, Akash; Chandrakumaran, Kandiah; Dayal, Sanjeev; Mohamed, Faheez; Carr, Norman J; Rowaiye, Babtunde; Cecil, Tom; Moran, Brendan J
2018-05-01
Radiological imaging often underestimates the extent of low volume peritoneal disease. The benefit of laparoscopy in assessing peritoneal metastases from colorectal and gastric cancer is accepted, but is inconclusive for appendiceal malignancy. We report our experience of diagnostic (DL) and therapeutic laparoscopy (TL) in patients with appendiceal tumours to determine indications and role in assessment and management. A retrospective review of a National Peritoneal Malignancy Centre's prospectively maintained database was performed. All patients with appendiceal neoplasms who underwent DL or TL between September 2011 and January 2016 were included. The indications and outcomes of the laparoscopy, complications and interval to laparotomy were evaluated. Six hundred and eighty-five patients underwent surgery for appendiceal neoplasms during the study period, of which 73 (10.6%) underwent laparoscopy (50 DL, 23 TL). The main indications for DL were to clarify imaging and stage patients with high-risk histology. Indications for TL were an abnormal appendix without gross pseudomyxoma peritonei (PMP) or with low volume PMP, and concerns for fertility in the presence of PMP. DL resulted in 16 patients (32%) avoiding laparotomy because of extensive disease or no tumour found. Overall, 28 patients were assessed to have resectable disease and at laparotomy, 25/28 had complete cytoreduction with three patients unresectable. In the TL group, appendicectomy and peritoneal lavage was achieved in all four women with fertility concerns, allowing them to conceive thereafter. There were no complications. Patients with high-risk appendiceal neoplasm may benefit from DL, and potentially avoid unnecessary laparotomy. TL is useful in patients with low volume PMP and may aid fertility in selected patients.
Five Years of Nitrogen Fertilization in a Sweetgum-Oak Stand
W. M. Broadfoot
1966-01-01
Diameter and height growth were significantly increased in a 20-year-old sweetgum-oak stand by annual surface application of ammonium nitrate and of complete N-P-K fertilizer. Nitrogen fertilization significantly increased the nitrogen content of foliage. With increasing nitrate application, exchangeable potassium in the soil 1 year after treatment decreased.
Wang, Rui; Shi, Xue-gen; Wei, You-zhang; Yang, Xiao-e; Uoti, Juhani
2006-01-01
Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of compound fertilizers increased available P, K and Mg contents in soil but decreased alkali-hydrolyzable N contents in soil and N, P and K contents in leaves. In the tea experiment, application of compound fertilizers increased available P, K and Mg contents in soil and N, P, K and Mg contents in leaves but decreased alkali-hydrolyzable N in soil compared with the urea treatment. Application of compound fertilizers could improve the quality of citrus and tea, increase their yields and enhance their economical profits significantly. Compared with the control, application of compound fertilizers increased citrus yields by 6.31, 12.94 and 17.69 t/ha, and those of tea by 0.51, 0.86 and 1.30 t/ha, respectively. Correspondingly, profits were increased by 21.4% to 61.1% for citrus and by 10.0% to 15.7% for tea. Optimal rates of compound fertilizers were recommended for both crops. PMID:16909469
Book examines fertility and politics in Egypt, India, Kenya, and Mexico.
1998-09-01
The politics of fertility control refers to the role of the state in regulating individual behavior. It is about the influence of academics and intellectuals, the motivations of officials and bureaucrats, and the interests of international donors. The politics of fertility control is also about the control which one class or ethnic group exerts over another, and the gender relations within and beyond the household. The Population Council's book, "Do Population Policies Matter? Fertility and Politics in Egypt, India, Kenya, and Mexico," examines what makes the population policies of those four countries either succeed or fail. The analyses show how and why the creation, implementation, and effectiveness of population policies vary over time both within and between countries. Furthermore, the authors demonstrate that effective population policies require political commitment and courage, broad support, adequate funding, good design and management, and a sound concept. The volume's case studies explore population policy-making from both historical and contemporary perspectives in the individual country contexts.
Wang, Wen Feng; Li, Chun Hua; Huang, Shao Wen; Gao, Wei; Tang, Ji Wei
2016-03-01
A fixed-site greenhouse vegetable fertilization experiment was carried out to study effects of 6 fertilization patterns on soil enzyme activities in Tianjin City, Northern China. The results showed that during the growing stages of tomato, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased first and then decreased, while soil urease activities increased first and then became flat. Compared with the chemical nitrogen fertilizer treatment, soil enzyme activities were much higher in treatments of combined application of organic materials with chemical fertilizers, and rose with the increasing input of pig manure and especially the application of straw. A significant positive correlation was found between soil enzyme activities, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contents at different growing stages of tomato. Under the condition of same nutrient input, the combined application of inorganic fertilizers with organic materials, especially a certain amount of corn straw, was capable of increasing soil enzyme activities and keeping soil fertility and sustainability in greenhouse vegetable production.
Moorad, Jacob A.
2012-01-01
Modernization has increased longevity and decreased fertility in many human populations, but it is not well understood how or to what extent these demographic transitions have altered patterns of natural selection. I integrate individual-based multivariate phenotypic selection approaches with evolutionary demographic methods to demonstrate how a demographic transition in 19th century female populations of Utah altered relationships between fitness and age-specific survival and fertility. Coincident with this demographic transition, natural selection for fitness, as measured by the opportunity for selection, increased by 13–20% over 65 years. Proportional contributions of age-specific survival to total selection (the complement to age-specific fertility) diminished from approximately 1/3 to 1/7 following a marked increase in infant survival. Despite dramatic reductions in age-specific fertility variance at all ages, the absolute magnitude of selection for fitness explained by age-specific fertility increased by approximately 45%. I show that increases in the adaptive potential of fertility traits followed directly from decreased population growth rates. These results suggest that this demographic transition has increased the adaptive potential of the Utah population, intensified selection on reproductive traits, and de-emphasized selection on survival-related traits. PMID:23730757
Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina
2017-01-01
Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei
2016-01-01
Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C. PMID:26750143
Daniluk, J C; Koert, E
2015-02-01
How effective is online education in increasing knowledge of fertility and assisted reproductive technologies (ART), and changing beliefs about the timing of parenthood? Exposure to an online educational intervention resulted in immediate changes in participants' beliefs about the ideal timing of parenthood, and a significant increase in their knowledge of fertility and ART treatments and options; most of these changes were not sustained over time, particularly for men. Research has identified significant gaps in men's and women's knowledge of fertility and ART, contributing to the trend to delay childbearing. Effective educational programs need to be developed, to support informed fertility and child-timing decisions. Pre-post intervention study of 199 currently childless men and women, and a 6-month follow-up of 110 of these participants. One hundred and ninety-nine childless participants between the ages of 18 and 35 were asked to complete 4 beliefs and 22 knowledge questions prior to, and immediately after, reading 10 online posts related to: fertility testing and preservation, fertility history and lifespan, the effects of health and fitness on fertility, and assisted reproduction. Six months later, 110 of the original sample repeated the 26-item survey. Participants' fertility and ART knowledge scores increased significantly immediately after the intervention, as did their confidence in their fertility and ART knowledge. Participants' beliefs about the ideal and latest age a woman or man should consider producing a child decreased. However, 6 months later, participants' beliefs and knowledge levels largely returned to their pre-intervention levels, particularly for the men in the study. The sample size and the recruitment methods may limit the generalizability of these findings. Previous studies have demonstrated the short-term efficacy of online educational approaches to increase fertility knowledge and support informed family planning decisions. Web-based approaches have the benefit of being easily and conveniently accessed by individuals worldwide. However, the findings of the current study call into question the long-term efficacy of online fertility education, and suggest that variables such as gender and relevance need to be considered in assessing the efficacy of online fertility education strategies. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sperm Flagellum Volume Determines Freezability in Red Deer Spermatozoa
Ros-Santaella, José Luis; Domínguez-Rebolledo, Álvaro Efrén; Garde, José Julián
2014-01-01
The factors affecting the inter-individual differences in sperm freezability is a major line of research in spermatology. Poor sperm freezability is mainly characterised by a low sperm velocity, which in turn is associated with low fertility rates in most animal species. Studies concerning the implications of sperm morphometry on freezability are quite limited, and most of them are based on sperm head size regardless of the structural parts of the flagellum, which provides sperm motility. Here, for the first time, we determined the volumes of the flagellum structures in fresh epididymal red deer spermatozoa using a stereological method under phase contrast microscopy. Sperm samples from thirty-three stags were frozen and classified as good freezers (GF) or bad freezers (BF) at two hours post-thawing using three sperm kinetic parameters which are strongly correlated with fertility in this species. Fourteen stags were clearly identified as GF, whereas nineteen were BF. No significant difference in sperm head size between the two groups was found. On the contrary, the GF exhibited a lower principal piece volume than the BF (6.13 µm3 vs 6.61 µm3, respectively, p = 0.006). The volume of the flagellum structures showed a strong negative relationship with post-thawing sperm velocity. For instance, the volume of the sperm principal piece was negatively correlated with sperm velocity at two hours post-thawing (r = −0.60; p<0.001). Our results clearly show that a higher volume of the sperm principal piece results in poor freezability, and highlights the key role of flagellum size in sperm cryopreservation success. PMID:25380133
Siddikee, Md. Ashaduzzaman; Zereen, Mst Israt; Li, Cai-Feng; Dai, Chuan-Chao
2016-01-01
Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G+/G−, sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N. PMID:27596935
Urea encapsulation in modified starch matrix for nutrients retention
NASA Astrophysics Data System (ADS)
Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariff, Mohd. Hazwan Bin Mohd.; Ariwahjoedi, Bambang
2014-10-01
It has been estimated that 20-70% of the used urea goes to the environment via leaching, nitrification and volatilization which not only harms the environment but also reduces the urea efficiency. By coating the urea granules, the farmers can achieve high urea performance through controlling the excess release of nitrogen. Up until now, different materials have been tested for nutrients retention. However, most of them are either expensive or unfriendly to the environment. Being cheap and biodegradable materials, the starches may also be used to coat the urea fertilizer for controlling the nutrients release. However, the pure starches do not meet the standards set by many industrial processes due to their slow tacking and too low viscosities and should be modified for getting smooth, compact and mechanically stronger coatings. In these studies, the tapioca starch was modified by reacting it with urea and different masses of borax. The prepared solutions were used to coat the urea granules of 3.45 mm average diameter. Different volumes (1, 1.5 and 2 mL) of each solution were used to coat 30 g of urea fluidized above the minimum level of fluidization. It was noticed that the coating thickness, percent coating, dissolution rate and percent release follow an increasing trend with an increase of solution volume; however, some random results were obtained while investigating the solution volume effects on the percent release. It was seen that the nutrients percent release over time increases with an increase in solution volume from 1 to 1.5 mL and thereafter reaches to a steady state. It confirms that the 1.5 mL of solution for 30 g urea samples will give the optimized coating results.
[Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].
Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing
2014-06-01
Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang.
Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao
2007-01-01
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.
Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao
2007-01-01
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the α subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils. PMID:17098920
Stewart, T M; Liu, D Y; Garrett, C; Jørgensen, N; Brown, E H; Baker, H W G
2009-07-01
The World Health Organization developed a time to pregnancy (TTP) study (number of menstrual cycles taken to conceive) to determine whether the average TTP is increasing and semen quality decreasing with time. The present study describes clinical, semen and hormone characteristics obtained from male partners of pregnant women in Melbourne, Australia, and examines the associations between these characteristics. Male partners (n = 225) of pregnant women (16-32 weeks) who conceived naturally had physical examination, health and lifestyle questionnaires, semen and hormone (FSH, LH, sex hormone-binding globulin, testosterone and Inhibin B) analyses. Previously known associations between semen, hormone and clinical variables were confirmed as significant: sperm numbers (concentration and total sperm count) correlated positively with Inhibin B and inversely with FSH and left varicocele, while total testicular volume correlated positively with sperm numbers and Inhibin B and inversely with FSH. However, only abstinence, total testicular volume, varicocele grade and obesity (BMI > 30 kg/m2) were independently significantly related to total sperm count. Compared with those with BMI < 30 (n = 188), obese subjects (n = 35) had significantly lower total sperm count (mean 324 versus 231 million, P = 0.013) and Inhibin B (187 versus 140 pg/ml, P < 0.001) but not FSH (3.4 versus 4.0 IU/l, P = 0.6). Obese fertile men appear to have reduced testicular function. Whether this is cause or effect, i.e. adiposity impairing spermatogenesis or reduced testicular function promoting fat deposition, remains to be determined.
Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien
2007-06-01
This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to competitive displacement by Zn. Finally, the observed acidification of soils with fertilizer application will also contribute to metal solubilisation.
[Fertility in rural and urban areas of Mexico].
Garcia Y Garma, I O
1989-01-01
Data from 6 fertility surveys conducted in Mexico between 1969-87 were used to compare rural and urban fertility and to determine whether a significant level of contraceptive usage could be achieved in rural areas despite their lack of socioeconomic development. Age-specific marital fertility rates were calculated for the 4 national-level and 2 rural fertility surveys. The index of fertility control developed by Coale and Trussel was calculated for rural, urban, and all areas. The marital total fertility rate in rural areas declined from 10.6 in 1970 to 7.4 in 1982, a decline of 2.5% annually. From 1982-87 the annual rate of decline in rural fertility slowed to 1.6%, reaching 6.8 children in 1987. The urban marital total fertility rate declined from 7.72 in 1976 to 5.03 in 1987, while the marital total fertility rate for Mexico as a whole declined from 9.04 in 1976 to 5.85 in 1987. The indices of fertility control showed slowly increasing use of contraception in rural areas starting from the very low level of 1969. The urban index of fertility control showed some contraceptive use for all age groups in all surveys. The increases in contraceptive usage were considerable in rural areas from 1976-82 and much less marked in urban areas. From 1982-87 the inverse was observed and the fertility decline in urban areas was more marked. The condition of natural fertility found in rural areas in 1969 subsequently disappeared. Over time, fertility decline and use of contraception have intensified. Contraception is widely practiced in urban areas and is continuing to become more prevalent. The rural fertility decline in 1976-82 suggests that at least sometimes increases in fertility control are more important in rural areas than in urban areas. The theory of modernization, which holds that fertility decline in developed countries is attributable to factors associated with the process of modernization, thus comes into question. However, it is probable that a sustained fertility decline in the most depressed rural areas will be achieved only with substantial socioeconomic change.
Organic fertilization for soil improvement in a vegetable cropping system
NASA Astrophysics Data System (ADS)
Verhaeghe, Micheline; De Rocker, Erwin; De Reycke, Luc
2016-04-01
Vegetable Research Centre East-Flanders Karreweg 6, 9770 Kruishoutem, Belgium A long term trial for soil improvement by organic fertilization was carried out in Kruishoutem from 2001 till 2010 in a vegetable rotation (carrots - leek - lettuce (2/year) - cauliflower (2/year) - leek - carrots - lettuce (2/year) - cauliflower (2/year) - leek and spinach). The trial compared yearly applications of 30 m²/ha of three types of compost (green compost, vfg-compost and spent mushroom compost) with an untreated object which did not receive any organic fertilization during the trial timescale. The organic fertilization was applied shortly before the cropping season. Looking at the soil quality, effects of organic fertilization manifest rather slow. The first four years after the beginning of the trial, no increase in carbon content of the soil is detectable yet. Although, mineralization of the soil has increased. The effect on the mineralization is mainly visible in crops with a lower N uptake (e.g. carrots) leading to a higher nitrate residue after harvest. Effects on soil structure and compaction occur rather slowly although, during the first two cropping seasons compost applications increase the water retention capacity of the soil. Compost increases the pH of the soil from the first year on till the end of the trial in 2010. Thus, organic fertilization impedes acidification in light sandy soils. Also soil fertility benefits from compost by an increase in K-, Ca- and Mg- content in the soil from the second year on. After 10 years of organic fertilization, yield and quality of spinach were increased significantly (p<0.05) compared to the untreated object. Also leek (2002 and 2009) and lettuce (2003 and 2007) benefit from organic fertilization.
Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics
Milly, P.C.D.
1997-01-01
A possible consequence of increased concentrations of greenhouse gases in Earth's atmosphere is "summer dryness," a decrease of summer plant-available soil water in middle latitudes, caused by increased availability of energy to drive evapotranspiration. Results from a numerical climate model indicate that summer dryness and related changes of land-surface water balances are highly sensitive to possible concomitant changes of plant-available water-holding capacity of soil, which depends on plant rooting depth and density. The model suggests that a 14% decrease of the soil volume whose water is accessible to plant roots would generate the same summer dryness, by one measure, as an equilibrium doubling of atmospheric carbon dioxide. Conversely, a 14% increase of that soil volume would be sufficient to offset the summer dryness associated with carbon-dioxide doubling. Global and regional changes in rooting depth and density may result from (1) plant and plant-community responses to greenhouse warming, to carbon-dioxide fertilization, and to associated changes in the water balance and (2) anthropogenic deforestation and desertification. Given their apparently critical role, heretofore ignored, in global hydroclimatic change, such changes of rooting characteristics should be carefully evaluated using ecosystem observations, theory, and models.
He, Binghui; Zhong, Zhangcheng
2004-06-01
The study showed that the efficiency of various treatments in improving the height growth of Ginkgo biloba was organic fertilizer plus intercropping > soil preparation by blasting plus intercropping > organic fertilizer > soil preparation by blasting > intercropping, and the height growth increased by 14.5%, 8.6%, 5.7%, 3.2% and 0, respectively. The efficiency of the treatments in improving new shoot growth was organic fertilizer plus intercropping > soil preparation by blasting plus intercropping > intercropping > organic fertilizer > soil preparation by blasting, and the new shoot growth increased by 58.1%, 36.6%, 33.1%, 30.2% and 14.0%, respectively. Soil preparation, organic fertilization and intercropping had no different effect on the number of long shoots, but their effect on the numbers of short shoots and leaves was significantly different. The most efficient treatment in improving the medicine content was organic fertilization plus intercropping. Compared with control, the content of quercetin and rutin in Ginkgo biloba leaves increased by 420% and 220%, respectively.
The Decoupling of Marriage and Parenthood? Trends in the Timing of Marital First Births, 1945–2002
Hayford, Sarah R.; Guzzo, Karen Benjamin; Smock, Pamela J.
2014-01-01
Family formation changed dramatically over the twentieth century in the United States. The impact of these changes on childbearing has primarily been studied in terms of nonmarital fertility. However, changes in family formation behavior also have implications for fertility within marriage. We use data from ten fertility surveys to describe changes in the timing of marital childbearing from the 1940s through the 21st century for non-Hispanic white and non-Hispanic black women. Based on harmonized data from the Integrated Fertility Survey Series, our results suggest increasing divergence in fertility timing for white women. A growing proportion of marriages begin with a premarital conception; at the same time, an increasing proportion of white women are postponing fertility within marriage. For black women, marital fertility is increasingly postponed beyond the early years of marriage. Evaluating the sequencing of marriage and parenthood over time is critical to understanding the changing meaning of marriage. PMID:24791019
Bayesian Inference of Baseline Fertility and Treatment Effects via a Crop Yield-Fertility Model
Chen, Hungyen; Yamagishi, Junko; Kishino, Hirohisa
2014-01-01
To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM) on maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max) yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer. PMID:25405353
Varicocele is associated with abnormal retention of cytoplasmic droplets by human spermatozoa.
Zini, A; Defreitas, G; Freeman, M; Hechter, S; Jarvi, K
2000-09-01
To determine whether varicocele is associated with retention of sperm cytoplasmic droplets in infertile men. Retrospective study. University infertility clinic. Nonazoospermic men with idiopathic (n = 69) and varicocele-associated infertility (n = 73), and 20 fertile controls presenting for vasectomy. None. Standard semen parameters and percentage of spermatozoa with cytoplasmic droplets on Papanicolaou smears. No statistically significant differences were found between the fertile and infertile groups with respect to semen volume. Fertile controls had significantly greater mean percent sperm motility and normal morphology than infertile men. The mean percentage of sperm with residual cytoplasm was statistically significantly different in all three groups. Infertile men with varicocele had the highest percentage of sperm with cytoplasmic droplets, the next highest level being in men with idiopathic infertility and the lowest level in fertile controls (11.7 +/- 1.0, 8.1 +/- 0.9 and 3.2 +/- 0.4%, respectively, P<.0001). Our data show that idiopathic and even moreso, varicocele-related male infertility are conditions associated with impaired disposal of residual sperm cytoplasm by the testis and/or epididymis. These data provide a possible mechanism for the observed semen abnormalities and reduced fertility potential associated with varicocele and idiopathic male infertility.
Reduced blastocyst formation in reduced culture volume.
De Munck, N; Santos-Ribeiro, S; Mateizel, I; Verheyen, G
2015-09-01
The aim of this prospective sibling oocyte study was to evaluate whether reduced culture volume improves blastocyst formation. Twenty-three patients with extended embryo culture until day 5 were selected for the study. After injection, 345 sibling oocytes were individually cultured in either 25 or 7 μl droplets of Origio cleavage medium under oil. On day 3 of development, embryos were transferred to droplets with the corresponding volume of Origio blastocyst culture medium. Fertilization and embryo quality on day 3 and day 5/6 were evaluated. No statistically significant difference (p = 0.326) in fertilization rate was observed (81.3 versus 83.0 %). There was no significant difference in terms of the number of excellent and good-quality embryos obtained on day 3 between both groups (p = 0.655). Embryo culture in 25 μl droplets led to more embryos with a higher cell number when compared to 7 μl culture (p = 0.024). On day 3, 132 and 131 embryos were considered for further culture until day 5/6. Blastulation rates were significantly higher in the 25 μl group (75.0 versus 61.6 %; p = 0.017) and significantly more day 5 embryos with excellent and good quality were found in this group (54.5 versus 40.5 %; p = 0.026). Finally, the utilization rates expressed per mature oocyte (41.4 versus 29.8 %; p = 0.043), per fertilized oocyte (50.7 versus 36.6 %; p = 0.023), and per day 3 embryo undergoing extended culture to day 5/6 (54.5 versus 39.7 %; p = 0.019) were all significantly higher in the 25 μl group. Reduced culture volume (7 μl) negatively impacts early development by reducing the cell number on day 3 and both blastocyst formation and quality.
Co-pyrolyzing plastic mulch waste with animal manures
USDA-ARS?s Scientific Manuscript database
Pyrolyzing various livestock and agricultural wastes produces power and value-added byproducts. It also substantially reduces ultimate waste volume to be disposed of and improves soil fertility and promotes carbon sequestration via soil application of biochar. Researchers found that manure-derived ...
Impacts of 120 years of fertilizer addition on a temperate grassland ecosystem
Kidd, Jonathan; Manning, Peter; Simkin, Janet; Peacock, Simon; Stockdale, Elizabeth
2017-01-01
The widespread application of fertilizers has greatly influenced many processes and properties of agroecosystems, and agricultural fertilization is expected to increase even further in the future. To date, most research on fertilizer impacts has used short-term studies, which may be unrepresentative of long-term responses, thus hindering our capacity to predict long-term impacts. Here, we examined the effects of long-term fertilizer addition on key ecosystem properties in a long-term grassland experiment (Palace Leas Hay Meadow) in which farmyard manure (FYM) and inorganic fertilizer treatments have been applied consistently for 120 years in order to characterize the experimental site more fully and compare ecosystem responses with those observed at other long-term and short-term experiments. FYM inputs increased soil organic carbon (SOC) stocks, hay yield, nutrient availability and acted as a buffer against soil acidification (>pH 5). In contrast, N-containing inorganic fertilizers strongly acidified the soil (
Liu, Enke; Yan, Changrong; Mei, Xurong; Zhang, Yanqing; Fan, Tinglu
2013-01-01
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0-100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0-20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0-60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0-60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0-60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0-60 cm depth were increased by 64.9-91.9%, 42.5-56.9%, and 74.7-99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization.
Zeng, Shu-Cai; Chen, Bei-Guang; Jiang, Cheng-Ai; Wu, Qi-Tang
2007-01-01
Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and proper rates of applications were of key importance to both crop yields and environmental protection. In this article, the impact of four fertilizers, i.e., inorganic compound fertilizer, organic compound fertilizer, pig manure compost, and peanut cake (peanut oil pressing residue), on chestnut (Castanea mollissima Blume) growth on a slope in South China, and on the total N and total P concentrations in runoff waters have been investigated during two years of study, with an orthogonal experimental design. Results show that the organic compound fertilizer and peanut cake promote the heights of young chestnut trees compared to the control. In addition, peanut cake increases single-fruit weights and organic compound fertilizer raises single-seed weights. All the fertilizers increased the concentrations of total N and total P in runoff waters, except for organic compound fertilizer, in the first year experiment. The observed mean concentrations of total N varied from 1.6 mg/L to 3.2 mg/L and P from 0.12 mg/L to 0.22 mg/L, which were increased with the amount of fertilizer applications, with no pattern of direct proportion. On the basis of these experiment results, organic compound fertilizer at 2 kg/tree and peanut cake at 1 kg/tree are recommended to maximize chestnut growth and minimize water pollution.
Variation in Nutrient Release of Polymer-Coated Fertilizers
Douglass F. Jacobs
2005-01-01
Polymer-coated fertilizers (PCF) are used primarily in horticultural plant production. However, interest in using these fertilizers in forest tree nurseries has increased over the last decade. Compared to immediately-available forms of fertilizer and other controlled-release fertilizer types, PCF tend to release nutrients in a relatively consistent flow over time. This...
USDA-ARS?s Scientific Manuscript database
Chemical fertilizers are being extensively used to satisfy the increasing demand for food. However, utilization of chemical fertilizers can be costly and over application for ensuring crop productivity may lead to environmental problems. As a result, interest in using bio-fertilizers to improve soil...
NASA Astrophysics Data System (ADS)
Dewi Pertaminingsih, Lolita; Prihastanti, Erma; Parman, Sarjana; Subagio, Agus; Ngadiwiyana
2018-05-01
Corn is one of the most important sources of carbohydrate and protein in Indonesia, while black corn has not been widely known. One way to increase the growth of black corn plants is to optimize the use of fertilizer, i.e. by a combination of NPK fertilizer with NanoChisil or Nanosilica fertilizer. NanoChisil is a fertilizer with chitosan and silica, while nanosil fertilizer is a fertilizer with silica content. Both of these fertilizers are nano-sized. NPK is a fertilizer with nutrient contents of Nitrogen, Phospor and Potassium. This study aims to determine the combination effect of NPK fertilizer with NanoChisil or Nanosilica on the growth of black corn plants. This research used Completely Randomized Design (CRD). The treatments used were P0 control (without fertilization); P1 (25% NanoChisil 75% NPK combination); P2 (25% Nanosilica 75% NPK combination); P3 (100% NanoChisil); P4 (100% Nanosilica). The study consisted of 5 treatments with 5 repititions. The research parameters consist of plant height, number of leaves, wet weight, dry weight, and the stomata amount. The data analysis used is Analysis of Variance (ANOVA) if the difference is evident, the analysis is continued by Duncan Multiple Range Test (DMRT) at 95% significant level. The results showed the use of NPK fertilizer combination with NanoChisil and NPK fertilizer with Nanosilica have an effect to increase plant height, number of leaves, wet weight, and dry weight. The allocation of 25% NanoChisil 75% NPK is most optimal in increasing plant height, number of leaves, wet weight, and dry weight.
Suitable sources of nitrogen and potassium fertilizer for fertigation of northern highbush blueberry
USDA-ARS?s Scientific Manuscript database
Many blueberry growers are switching from broadcasting granular fertilizers to using fertigation through a drip irrigation system. Fertigation increases growth and production without increasing the need for more fertilizer. The objective of the present study was to evaluate different liquid sources ...
NASA Astrophysics Data System (ADS)
Tang, J.; Wang, Y.
2013-12-01
Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long-term fertilization. OC mainly existed in the macroaggregate (> 0.25 mm) of red soils after the long-term fertilization, and the organic matter was the most important colloid material for macroaggregates. We conclude that the long-term, appropriate application of chemical fertilizer and the combination with organic manure were the most effective measures to improve soil structure and organic carbon contents in red soil regions.
Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish
Mukhi, S.; Patino, R.
2007-01-01
The objectives of this study were to determine the effects of prolonged exposure to perchlorate on (1) thyroid status and reproductive performance of adult zebrafish (Danio rerio) and (2) F1 embryo survival and early larval development. Using a static-renewal procedure, mixed sex populations of adult zebrafish were exposed to 0, 10, and 100 mg/l nominal concentrations of waterborne perchlorate for 10 weeks. Thyroid histology was qualitatively assessed, and females and males were separated and further exposed to their respective treatments for six additional weeks. Eight females in each tank replicate (n = 3) were paired weekly with four males from the same respective treatment, and packed-egg (spawn) volume (PEV) was measured each of the last five weeks. At least once during weeks 14-16 of exposure, other end points measured included fertilization rate, fertilized egg diameter, hatching rate, standard length, and craniofacial development of 4-day-postfertilization larvae and thyroid hormone content of 3.5-h embryos and of exposed mothers. At 10 weeks of exposure, perchlorate at both concentrations caused thyroidal hypertrophy and colloid depletion. A marked reduction in PEV was observed toward the end of the 6-week spawning period, but fertilization and embryo hatching rates were unaffected. Fertilized egg diameter and larval length were increased by parental exposure to perchlorate. Larval head depth was unaffected but the forward protrusion of the lower jaw-associated cartilage complexes, Meckel's and ceratohyal, was decreased. Exposure to both concentrations of perchlorate inhibited whole-body thyroxine content in mothers and embryos, but triiodothyronine content was unchanged. In conclusion, prolonged exposure of adult zebrafish to perchlorate not only disrupts their thyroid endocrine system but also impairs reproduction and influences early F1 development. ?? 2007 Oxford University Press.
Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng
2014-11-01
A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.
Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil
2015-01-01
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement.
Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil
2015-01-01
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement. PMID:26252377
Ma, Zhong-ming; Du, Shao-ping; Xue, Liang
2015-11-01
The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.
The asymmetry of avian egg-shape: an adaptation for reproduction on dry land
Mao, Kun-Ming; Murakami, Ayako; Iwasawa, Atsushi; Yoshizaki, Norio
2007-01-01
The present study describes the biological meaning of the asymmetrical shape in avian reproduction using quail. During the incubation of eggs, water was gradually lost and the air chamber which appeared in between the inner and outer shell membranes at the blunt end expanded, so that the angle made by the long egg-axis and the horizontal line increased, presumably because the centre of gravity of the egg contents moved toward the sharp end. The increase in angle occurred in both fertile and infertile eggs, suggesting that this phenomenon occurs irrespective of fertility and is due to the asymmetrical shape. The increase in the volume of the air chamber resulted in an increase in the area of the inner shell membrane at the chamber to satisfy the amount of gas exchange needed by the developing embryo for better hatching. We isolated a 300-kDa protein from the inner shell membrane. It was produced by cells in the luminal epithelium of the oviductal isthmus and was found in the cortex of the fibres of shell membranes and a lining surrounding the air chamber. The lining comprised a medial layer between the inner and outer shell membranes in uterine eggs. The asymmetrical ellipsoid produces the air chamber at the blunt end of the avian egg during its sojourn in the oviductal isthmus, to maintain the blunt end up after oviposition and to raise that end during incubation in a dry environment, leading to high hatchability. PMID:17523938
Daniluk, J.C.; Koert, E.
2015-01-01
STUDY QUESTION How effective is online education in increasing knowledge of fertility and assisted reproductive technologies (ART), and changing beliefs about the timing of parenthood? SUMMARY ANSWER Exposure to an online educational intervention resulted in immediate changes in participants' beliefs about the ideal timing of parenthood, and a significant increase in their knowledge of fertility and ART treatments and options; most of these changes were not sustained over time, particularly for men. WHAT IS KNOWN ALREADY Research has identified significant gaps in men's and women's knowledge of fertility and ART, contributing to the trend to delay childbearing. Effective educational programs need to be developed, to support informed fertility and child-timing decisions. STUDY DESIGN, SIZE, DURATION Pre-post intervention study of 199 currently childless men and women, and a 6-month follow-up of 110 of these participants. PARTICIPANTS/MATERIALS, SETTING, METHODS One hundred and ninety-nine childless participants between the ages of 18 and 35 were asked to complete 4 beliefs and 22 knowledge questions prior to, and immediately after, reading 10 online posts related to: fertility testing and preservation, fertility history and lifespan, the effects of health and fitness on fertility, and assisted reproduction. Six months later, 110 of the original sample repeated the 26-item survey. MAIN RESULTS AND THE ROLE OF CHANCE Participants' fertility and ART knowledge scores increased significantly immediately after the intervention, as did their confidence in their fertility and ART knowledge. Participants' beliefs about the ideal and latest age a woman or man should consider producing a child decreased. However, 6 months later, participants' beliefs and knowledge levels largely returned to their pre-intervention levels, particularly for the men in the study. LIMITATIONS, REASONS FOR CAUTION The sample size and the recruitment methods may limit the generalizability of these findings. WIDER IMPLICATIONS OF THE FINDINGS Previous studies have demonstrated the short-term efficacy of online educational approaches to increase fertility knowledge and support informed family planning decisions. Web-based approaches have the benefit of being easily and conveniently accessed by individuals worldwide. However, the findings of the current study call into question the long-term efficacy of online fertility education, and suggest that variables such as gender and relevance need to be considered in assessing the efficacy of online fertility education strategies. STUDY FUNDING/COMPETING INTERESTS This research was funded through a Canadian Institutes of Health Research Knowledge Translation Grant #KTB-117428. No competing interests. PMID:25480922
Onofrei, Vasilica; Burducea, Marian; Lobiuc, Andrei; Teliban, Gabriel-Ciprian; Ranghiuc, Gabriel; Robu, Teodor
2017-03-01
Basil is an important medicinal and culinary herb, cultivated on large areas in many countries. With the growing necessity of ecological products, organic crops need to be expanded, but a more complete characterization of such agriculture systems is required. The present paper aims to evaluate total phenolics and flavonoid contents, antioxidant activity of Ocimum basilicum L. under organic fertilization with four different foliar fertilizers (Fylo®, Geolino Plants&Flowers®, Cropmax®, Fitokondi®). The total content of phenolic compounds was stimulated by all foliar fertilizers used in the experiment. In the first year, the highest increase was obtained in plants fertilized with Fylo (29%) and Fitokondi (27%) while in the second year Fitokondi fertilizer treatment lead to the highest increase of total phenolics (28%) compared to the control plants. The production of total phenolics was enhanced in the second year probably because the experiment was started earlier on April compared to first year. Foliar fertilization of basil plants can thus be used to obtain increased yield and phenolic compounds synthesis with little effect on the physiological parameters that were analyzed, allowing better performance of basil under organic fertilization.
Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.
Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H
2010-01-01
Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.
Dominant Douglas-fir respond to fertilizing and thinning in southwest Oregon
Richard E. Miller; Richard L. Williamson
1974-01-01
In 30-year-old, Site IV Douglas-fir in southwest Oregon, fertilizing increased average 4-year basal area growth of dominant trees by 57 and 28 percent on clay loam and sandy loam soils, respectively. Fertilizing with thinning increased growth by 94 and 132 percent over untreated growth. Thinning on clay loam soil increased growth by 53 percent. Treatment did not affect...
NASA Astrophysics Data System (ADS)
Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi
2017-01-01
Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.
[Effects of long-term fertilization on organic nitrogen fractions in aquic brown soil].
Ren, Jin Feng; Zhou, Hua; Ma, Qiang; Xu, Yong Gang; Jiang, Chun Ming; Pan, Fei Fei; Yu, Wan Tai
2017-05-18
The purpose of present research was to investigate how different fertilization regimes altered soil organic nitrogen fractions and their inter-annual dynamics based on a series of long-term experiment (initiated at 1990), including: CK (non-fertilization); M (recycled pig manure); NPK (chemical fertilizer NPK); NPK + M (recycled pig manure with chemical fertilizer NPK). The results showed that soil organic nitrogen components under the different fertilization treatments presented contrastive patterns from the establishment the experiments to 2015. Generally, acid hydrolysable organic nitrogen content increased year by year. The amino acid nitrogen content under CK and NPK treatments consistently declined, although amino acid nitrogen for M and NPK+M treatments showed a increasing trend. These phenomena were probably ascribed to the utilization of soil amino acids by microbes. From 1990 to 2015, NPK treatment substantially elevated the content of acid-released ammonium nitrogen by 31.1% compared with CK (mean value across the experiment), and for the treatments using organic manure (M and NPK+M), the contents of all fractions of soil organic nitrogen increased. Notably, the increase magnitudes for NPK+M were more dramatic than those of M. These results demonstrated that combined use of organic and inorganic fertilizers could more effectively elevate soil organic nitrogen, subsequently helping to improve the capacity of soil nitrogen supply and enhance the soil fertility.
Assessment of global grey water footprint of major food crops
NASA Astrophysics Data System (ADS)
Yang, Hong; Liu, Wenfeng; Antonelli, Marta
2016-04-01
Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.
Rose, T. J.; Impa, S. M.; Rose, M. T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S. E.; Wissuwa, M.
2013-01-01
Background Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. Scope This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Conclusions Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars. PMID:23071218
Patriquin, W
1988-03-01
Focus is on Malaysia -- its population and land area, its total fertility rate and mortality rate, economic development, contraceptive usage, and population policy. In 1987 Malaysia's population was estimated to be 16.1 million with births 31/1000 population and deaths 7/1000 population. The rate of natural increase is 2.4%, the total fertility rate 3.9 children/woman, and the infant mortality rate 30/1000 live births. Ethnically, Malaysia is made up of several distinct groups. Indigenous Malays are the most numerous -- about 50% of the population. Their unique characteristics include that they are Moslem, rural, and usually of lower economic status. Chinese make up the 2nd largest group of Malaysians, nearly 1/3 of the population. This group is active in trade, business, and finance and possesses considerable economic power. About 10% of the population is of Indian descent. Malaysia has experienced much economic growth. Traditional exports grew in volume and value during the 1970; the petroleum sector expanded so rapidly it accounts for 1/4 of all exports. One reason for Malaysia's rapid economic growth is the government's promotion of industrialization and foreign investment. According to the 1982 contraceptive prevalence survey, 42% of currently married women 15-44 years were using contraception. The government considers the current rate of national increase to be satisfactory, but in 1984 it adopted a population policy to more than quadruple its population in 2100 to 70 million. It intends to accomplish this by instituting pronatalist incentives to help the fall in the national growth rate. The government's rationale for more population growth is that a larger domestic population could better support industrial growth that otherwise might be stymied by "protectionist policies practiced by developed countries." Incentives to encourage fertility include income-tax deductions and maternity benefits for women who have up to 5 children.
Influence of dissolved oxygen conditions on toxicity of ammonium nitrate to larval natterjack toads.
Ortiz-Santaliestra, Manuel E; Marco, Adolfo
2015-07-01
Temporary ponds, where many amphibians from temperate regions breed, show an annual cycle with a maximum water volume in spring followed by a progressive desiccation throughout late spring and summer. This desiccation leads to a decrease in dissolved oxygen and an increase in nitrogen levels, which can additionally increase because of anthropogenic sources such as chemical fertilizers. We analyzed the toxicity posed by environmentally relevant levels of a common nitrogenous fertilizer, ammonium nitrate, at different conditions of oxygen availability to Bufo calamita tadpoles, which typically develop in ephemeral ponds. Ammonium nitrate (90.3 mg N-NO3NH4/l) and hypoxic conditions (initial dissolved oxygen 4.53 ± 0.40 mg/l) caused significant lethal effects after 7 and 12 days of exposure, respectively. At the end of experiment (16 days), mortality rates were 32.5 % in individuals exposed to the fertilizer and 15 % in those growing under hypoxic conditions. When both stressors were combined, they showed an additive effect on tadpole survival. Malformations, such as oedemas and spinal curvatures, and locomotory abnormalities, were detected after 12 days of experiment in >90 % of individuals exposed to 45.2 mg N-NO3NH4/l under hypoxic conditions, whereas none of these stressors by separate related to abnormality rates >35 %. Delayed development was also observed in tadpoles exposed to ammonium nitrate with hypoxia affecting developmental rate only after 12 days of exposure. The results are discussed in terms of potential mechanisms linking negative effects of both factors as well as in terms of potential alterations of the ecological plasticity that often allows amphibians to survive in unpredictable environments.
NASA Astrophysics Data System (ADS)
Wilson, H. F.; Elliott, J. A.; Glenn, A. J.
2017-12-01
Runoff generation and the associated export of nitrogen, phosphorus, and organic carbon on the Northern Great Plains have historically been dominated by snowmelt runoff. In this region the transport of elements primarily occurs in dissolved rather than particulate forms, so cropland management practices designed to reduce particulate losses tend to be ineffective in reducing nutrient runoff. Over the last decade a higher frequency of high volume and intensity rainfall has been observed, leading to rainfall runoff and downstream flooding. To evaluate interactions between tillage, crop residue management, fertilization practices, weather, and runoff biogeochemistry a network of 18 single field scale watersheds (2-6 ha.) has been established in Manitoba, Canada over a range of fertilization (no input to high input) and tillage (zero tillage to frequent tillage). Soils in this network are typical of cropland in the region with clay or clay loam textures, but soil phosphorus differs greatly depending on input practices (3 to 25 mg kg-1 sodium bicarbonate extractable P). Monitoring of runoff chemistry and hydrology at these sites was initiated in 2013 and over the course of 5 years high volume snowmelt runoff from deep snowpack (125mm snow water equivalent), low volume snowmelt from shallow snowpack (25mm snow water equivalent) and extreme rainfall runoff events in spring have all been observed. Event based analyses of the drivers of runoff chemistry indicate that spring fertilization practices (depth, amount, and timing) influence concentrations of N and P in runoff during large rainfall runoff events, but for snowmelt runoff the near surface soil chemistry, tillage, and crop residue management are of greater importance. Management recommendations that might be suggested to reduce nutrient export and downstream eutrophication in the region differ for snowmelt and rainfall, but are not mutually exclusive.
Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang
2014-01-01
With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure. PMID:24830463
Investigating the association between HIV/AIDS and recent fertility patterns in Kenya.
Magadi, Monica Akinyi; Agwanda, Alfred O
2010-07-01
Findings from previous studies linking the HIV/AIDS epidemic and fertility of populations have remained inconclusive. In sub-Saharan Africa, demographic patterns point to the epidemic resulting in fertility reduction. However, evidence from the 2003 Kenya Demographic and Health Survey (KDHS) has revealed interesting patterns, with regions most adversely affected with HIV/AIDS showing the clearest reversal trend in fertility decline. While there is suggestive evidence that fertility behaviour in some parts of sub-Saharan Africa has changed in relation to the HIV/AIDS epidemic, more rigorous empirical analysis is necessary to better understand this relationship. In this paper, we examine individual and contextual community HIV/AIDS factors associated with fertility patterns in Kenya, paying particular attention to possible mechanisms of the association. Multilevel models are applied to the 2003 KDHS, introducing various proximate fertility determinants in successive stages, to explore possible mechanisms through which HIV/AIDS may be associated with fertility. The results corroborate findings from earlier studies of the fertility inhibiting effect of HIV among infected women. HIV-infected women have 40 percent lower odds of having had a recent birth than their uninfected counterparts of similar background characteristics. Further analysis suggests an association between HIV/AIDS and fertility that exists through proximate fertility determinants relating to sexual exposure, breastfeeding duration, and foetal loss. While HIV/AIDS may have contributed to reduced fertility, mainly through reduced sexual exposure, there is evidence that it has contributed to increased fertility, through reduced breastfeeding and increased desire for more children resulting from increased infant/child mortality (i.e. a replacement phenomenon). In communities at advanced stages of the HIV/AIDS epidemic, it is possible that infant/child mortality has reached appreciably high levels where the impact of replacement and reduced breastfeeding duration is substantial enough to result in a reversal of fertility decline. This provides a plausible explanation for the patterns observed in regions with particularly high HIV prevalence in Kenya. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Fertility transition in Bangladesh: trends and determinants.
Kabir, M; Uddin, M M
1987-12-01
The poor quality of data on Bangladesh fertility hampers any analysis of the country's recent demographic trends. In general, however, it appears that total fertility remained stable between the 1960s and 1975, and then fell by about 12% in the 1975-85 period. The change in fertility appears attributable to an increase in the contraceptive prevalence rate and a decline in the proportion married in the younger age groups. Bangladesh is, according to Bongaart's classification, in the second phase of demographic transition during which contraceptive use is modest and breastfeeding exerts an important curb on fertility. However, there is evidence of a latent demand for family planning to space births; improved contraceptive practice is the factor most likely to bring about large fertility reductions in the years ahead. Contraceptive prevalence is estimated to have increased from 8% of currently married women in 1975 to 25% in 1985 and there have been steady increased in method effectiveness. Other determinants, such as spouse separation, postpartum abstinence, abortion, and sterility must also be considered in predicting future fertility trends in Bangladesh.
Wang, Li; Li, Jun; Li, Juan; Bai, Wei-Xia
2014-03-01
A field experiment on effects of tillage rotation and fertilization on corn continuous cropping-practiced lands was carried out in Heyang of Shaanxi in 2007-2012. The tillage types included annual rotation of no-tillage and subsoiling (NT-ST), subsoiling and conventional tillage (ST-CT), or conventional tillage and no-tillage (CT-NT), and yearly practice of no tillage (NT-NT), subsoiling (ST-ST) or conventional tillage (CT-CT). The fertilization treatments included balanced fertilization, low-rate fertilization and conventional fertilization, which were separately practiced against the different tillage types. The experiment investigated compositions, mean mass diameters (MWD), geometrical mean diameters (GMD) and fraction dimension numbers (D) of soil aggregates in 0-40 cm soil and contents of organic carbon in 0-60 cm soil. The results indicated that: 1) The increased tillage intensity caused the reduced mechanical stability and content of soil aggregates and increased soil organic carbon loss. No-tillage or tillage rotation increased the MWD, GMD and contents of soil organic carbon and soil aggregates with diameters of more than 0.25 mm, but decreased D. Under the same fertilization treatment, the contents of soil aggregates with diameters of more than 0.25 mm were ranked in the order of NT-NT>NT-ST>NT-CT>ST-ST>CT-ST>CT-CT, and under the same tillage rotations, the soil aggregates were more stable with the balanced or low- rate fertilization than with the conventional fertilization. 2) Mathematical fractal dimension fitting of soil aggregates indicated that the fractal dimension numbers of soil aggregates ranged within 2.247-2.681 by dry sieving and 2.897-2.976 by wet sieving. In 0-30 cm soil, the fractal dimension numbers of soil aggregates were significantly lower under no-tillage or tillage rotation than under conventional tillage, and in 0-40 cm soil, the fractal dimensions of soil aggregates increased with soil depth, and tended to stabilize at the soil depth of 40 cm. 3) The different fertilization treatments exerted significantly different influences on the contents of soil organic carbon (P < 0.05), which tended to decline with soil depth. Compared to the conventional fertilization, the balanced fertilization increased the content of soil organic carbon by 6.9%, and the contents of soil organic carbon increased as the diameters of soil aggregates increased. The correlation analysis showed that the contents of soil aggregates with diameters of 0.25-2 mm significantly affected the content of soil organic carbon, with the coefficient of determination being 0.848 (P < 0.01).
Sainju, Upendra M; Stevens, William B; Caesar-Tonthat, Thecan; Liebig, Mark A
2012-01-01
Management practices, such as irrigation, tillage, cropping system, and N fertilization, may influence soil greenhouse gas (GHG) emissions. We quantified the effects of irrigation, tillage, crop rotation, and N fertilization on soil CO, NO, and CH emissions from March to November, 2008 to 2011 in a Lihen sandy loam in western North Dakota. Treatments were two irrigation practices (irrigated and nonirrigated) and five cropping systems (conventional-tilled malt barley [ L.] with N fertilizer [CT-N], conventional-tilled malt barley with no N fertilizer [CT-C], no-tilled malt barley-pea [ L.] with N fertilizer [NT-PN], no-tilled malt barley with N fertilizer [NT-N], and no-tilled malt barley with no N fertilizer [NT-C]). The GHG fluxes varied with date of sampling and peaked immediately after precipitation, irrigation, and/or N fertilization events during increased soil temperature. Both CO and NO fluxes were greater in CT-N under the irrigated condition, but CH uptake was greater in NT-PN under the nonirrigated condition than in other treatments. Although tillage and N fertilization increased CO and NO fluxes by 8 to 30%, N fertilization and monocropping reduced CH uptake by 39 to 40%. The NT-PN, regardless of irrigation, might mitigate GHG emissions by reducing CO and NO emissions and increasing CH uptake relative to other treatments. To account for global warming potential for such a practice, information on productions associated with CO emissions along with NO and CH fluxes is needed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sun, Feng-xia; Zhang, Wei-hua; Xu, Ming-gang; Zhang, Wen-ju; Li, Zhao-qiang; Zhang, Jing-ye
2010-11-01
In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers = applying organic manure > non-fertilization > inorganic fertilization = inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, amino acids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.
Torres, Leticia; Liu, Yue; Guitreau, Amy; Yang, Huiping; Tiersch, Terrence R
2017-12-01
Quality control (QC) is essential for reproducible and efficient functioning of germplasm repositories. However, many biomedical fish models present significant QC challenges due to small body sizes (<5 cm) and miniscule sperm volumes (<5 μL). Using minimal volumes of sperm, we used Zebrafish to evaluate common QC endpoints as surrogates for fertilization success along sequential steps of cryopreservation. First, concentrations of calibration bead suspensions were evaluated with a Makler ® counting chamber by using different sample volumes and mixing methods. For sperm analysis, samples were initially diluted at a 1:30 ratio with Hanks' balanced salt solution (HBSS). Motility was evaluated by using different ratios of sperm and activation medium, and membrane integrity was analyzed with flow cytometry at different concentrations. Concentration and sperm motility could be confidently estimated by using volumes as small as 1 μL, whereas membrane integrity required a minimum of 2 μL (at 1 × 10 6 cells/mL). Thus, <5 μL of sperm suspension (after dilution to 30-150 μL with HBSS) was required to evaluate sperm quality by using three endpoints. Sperm quality assessment using a combination of complementary endpoints enhances QC efforts during cryopreservation, increasing reliability and reproducibility, and reducing waste of time and resources.
After the demographic transition: policy responses to low fertility in four Asian countries.
Greenspan, A
1994-09-01
In the low fertility countries of South Korea, Taiwan, Singapore, and Thailand, policy-makers are concerned about the consequences of low growth. In South Korea, a family planning (FP) program was instituted in the early 1960s, and fertility declined to 1.6 by 1987. Rural fertility is still higher at 1.96, and abortion rates are high. 32.2% of fertility reduction is accomplished through abortion. South Korean population will not stabilize until 2021, at 50.6 million people. The elderly are expected to increase and strain housing, energy, and land resources. Government support for FP is being reduced, while private sector services are being enhanced. Government sterilization programs have been reduced significantly, and revisions in the Medical Insurance Law will cover part of contraceptive cost. Integrated services are being established. Many argue for an emphasis on birth spacing, child and family development, sex education, and care of the elderly. In Taiwan, replacement level fertility was reached in 1983. Policy in 1992 recommended increasing fertility from 1.6 to 2.1. The aim was to stabilize population without pronatalist interventions. Regardless of policy decisions, population growth will continue over the next 40 years, and the extent of aging will increase. In Singapore since the 1960s, the national government focused on encouraging small families through fertility incentives, mass media campaigns, and easy access to FP services. Fertility declined to 1.4 in 1988. Since 1983, government has established a variety of pronatalist incentives. In 1989, fertility increased to 1.8. The pronatalist shift is viewed as not likely to succeed in dealing with the concern for an adequate work force to support the elderly and economic development. In Thailand, fertility declined the fastest to 2.4 in 1993. The key factors were rapid economic and social development, a supportive cultural setting, strong demand for fertility control, and a successful FP program. The goal is to reduce fertility to 1.2 by 1996. Replacement level may be reached in 2000 or 2005. Future trends are not clear.
Mínguez-Alarcón, Lidia; Mendiola, Jaime; López-Espín, José J; Sarabia-Cos, Laura; Vivero-Salmerón, Guillermo; Vioque, Jesús; Navarrete-Muñoz, Eva M; Torres-Cantero, Alberto M
2012-09-01
What are the associations between the dietary intake of antioxidant nutrients and semen parameters in young men? Our study suggests that some sperm parameters are sensitive to dietary intake of antioxidant nutrients. A few reports have suggested that some dietary factors might be related to semen quality. However, the relationship between the intake of antioxidant nutrients and semen quality in young men remains unexplored. In this cross-sectional study, 215 young men were included between October 2010 and November 2011. Healthy university students with complete dietary and semen quality data were analyzed. Dietary intake was recorded using a validated food frequency questionnaire. The associations between the energy-adjusted nutrient intake of antioxidants in quartiles and the semen volume, sperm concentration, sperm motility, sperm morphology, total sperm count and total motile sperm count were assessed using multivariate linear regression. Out of 240 students who contacted us, 223 (92.9%) were eligible to participate in this study, and 215 attended the clinical appointment. In the multivariate adjusted linear regression models, there was a positive association between dietary intakes of cryptoxanthin (P(trend) = 0.03), vitamin C (P(trend) = 0.04), lycopene (P(trend) = 0.03) and β-carotene (P(trend) = 0.04) and total motile sperm count. The semen volume increased with higher intakes of vitamin C (P(trend) = 0.04). Only one sample of semen was taken for each subject. However, there are indications that one semen sample may be sufficient to characterize the semen quality of the individuals in epidemiological studies. Bias due to measurement errors may also occur since there is no perfect method to assess diet. However, any bias due to measurement error would be non-differential and would reduce, not increase, the strength of the associations. Although selection bias in cross-sectional studies might not always be ruled out, our subjects were university student volunteers who were rewarded for their participation and the study was not advertised as a fertility study. Previous articles in this area have focused mainly on men attending fertility clinics, thus our study brings generalizability to young men of the general population with unknown or untested fertility. Some of our results are in agreement with the previously reported papers.
Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.
2014-01-01
The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. PMID:25324836
Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng
2005-10-01
A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.
Enhanced-efficiency fertilizer effects on cotton yield and quality in the Coastal Plains
USDA-ARS?s Scientific Manuscript database
Interest in the use of enhanced-efficiency N fertilizer (EENFs) sources has increased in recent years due to the potential of these new EENF sources to increase crop yield, while at the same time decreasing N loss from agricultural fields. The efficacy of these fertilizer sources on cotton productio...
Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality
USDA-ARS?s Scientific Manuscript database
Interest in urea-ammonium sulfate (UAS) as a N fertilizer is increasing due, in part, to increased restriction on ammonium nitrate. This has resulted in UAS being marketed as an alternative fertilizer source; however, UAS has not been widely tested. A cotton (Gossypium hirsutum L.) field study was c...
Below replacement fertility preferences in Shanghai
Merli, M. Giovanna; Morgan, S. Philip
2013-01-01
China has joined the group of low-fertility countries; it has a TFR somewhere in the range of 1.4 to 1.6. Much speculation about China’s future fertility depends on whether individual’s fertility intentions and preferences are much higher than the state’s fertility goals. If so, then a relaxation of family planning restrictions could lead to a substantial fertility increase. We directly ask a probability sample of Shanghai registered residents and migrants whether a policy relaxation would lead them to have additional children. Our results show that small families (one or two children) are intended in this urban setting. If family planning policy were relaxed, a relatively small fraction (fewer than 14%) reports that they would revise their intentions upward. Even this modest increase (as much as 10%) is suspect because factors that can deflate fertility relative to intentions are likely more powerful than the inflationary ones (in Shanghai). These empirical findings help ground speculations on the future of fertility in the hypothetical absence of policy constraints. PMID:24039621
Farmers behavior on using fertilizer in West Java
NASA Astrophysics Data System (ADS)
Perdana, Tomy; Renaldy, Eddy; Utami, Hesty Nurul; Sadeli, Agriani Hermita; Mahra Arari, H.; Ginanjar, Tetep; Ajeng Sesy N., P.; Fernianda Rahayu, H.; Sanjaya, Sonny
2018-02-01
Fertilizer is one of the important materials in farming system to improve quality and quantity of harvest. Most of farmers in Indonesia using fertilizer, one of substantial fertilizer is NPK that contain of complex nutrient, there are nitrogen, phosphorus and potassium. There are tendency for farmers using NPK based on quality products and speed of decomposition. Nowadays, market size for NPK fertilizer has been dramatically increase and it will impact on intensify of fertilizer use. The potential requirement in marketing does not balanced with consumer behavior analysis. Meanwhile, agricultural sector (include horticulture, floriculture, bio-pharmacy and plantation) have been wieldly increase of the farming system annualy. This research is study case which is analyzed local NPK fertilizer competitive advantage compared to imported NPK fertilizer through consumer point of view towards product quality in four districts in West Java province, i.e., West Bandung, Garut, Bogor and Cianjur District with target respondents are farmers who use NPK fertilizer. NPK fertilizer qualities are based on product attributes, which are; availability, nutrient content, price, basic ingredients, form of fertilizer, speed of decomposition, label, color, type, design and size of packaging. It was analyzed using sematic differential attitude models and multi attribute attitude snake diagram model. The evaluation ranking of consumers interests towards fertilizer attribute characteristics showed that consumer intention before deciding to buy or use a NPK fertilizer will consider nutrient content, speed of decomposition, form of fertilizer and availability of products. Consumer's attitude towards all NPK fertilizer attribute quality illustrated that imported fertilizer is considered to be more positive than local fertilizer. Fertilizer companies or industries should be able to maintain their fertilizer production especially concerning nutrient content and availability of products through a better production which appropriate with consumer's needs. Nutrient contents, form and speed of decomposition of fertilizer should be adapted with current state of farming activities
Effect of Increasing Nitrogen Deposition on Soil Microbial Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shengmu; Xue, Kai; He, Zhili
2010-05-17
Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less
El-Nabawy, El-Said M.; Tsuda, Katsuo; Sakamaki, Yositaka; Oda, Asahi; Ushijima, Yurie
2016-01-01
The main goal of this study was to identify the treatment that increases the populations of spiders, which are effective predators in agroecosystems. In 2013 and 2014 the experimental eggplant (Solanum melongena L.) field was two different treatments, organic fertilizers and chemical fertilizer treatment, and in 2014 we surrounded organic fertilizer plots with the flowering plants mealy cup sage (Salvia farinacea Benth.), spearmint (Mentha spicata L.), and basil (Ocimum basilicum L.). Analysis using repeated measures ANOVA revealed significant influences of fertilizer type on the numbers of linyphiid spiders and Collembola in 2013. In 2014, the numbers of Collembola, thrips, and lycosid and linyphiid spider were higher in organic fertilizer with flowering plants treatment comparing with the chemical fertilizer treatment. Moreover, the numbers of Henosepilachna vigintioctopunctata (F.) were significantly lower in the organic fertilizer with flowering plants treatment than in chemical fertilizers treatment. Finally, we expect that Thysanoptera and Collembola were important alternative prey for linyphiid and lycosid spiders and the use of organic fertilizer and flowering plants enhanced the density of these spiders, and may increase their effectiveness in suppressing the populations of H. vigintioctopunctata (F.). PMID:28076280
Gough, L.; Grace, J.B.
1997-01-01
The effects of competitive suppression by vines on the non-vine plant community have received little attention in temperate habitats. This study investigated the impact vines have on their herbaceous hosts in a wetland community at two soil fertility levels. Plots in an oligohaline marsh were treated in a 2 x 2 factorial design with vine removal and fertilization over two growing seasons. There was no significant interaction between removal and fertilization treatments on any of the measured variables. Vine removal initially caused an increase in light penetration through the canopy, but by the end of the study, plots with vines removed had less light due to a 25% increase in biomass by the plants released from competition with vines. For plots with vines removed, species richness was higher during a brief period in the spring of the second year, but by the end of the study, richness in removal plots decreased relative to controls. Fertilization caused a 40% increase in biomass overall, although only two species, Sagittaria lancifolia L. and Polygonum punctatum Ell., showed dramatic increases. Despite fertilization causing a 40% decrease in light penetration to the ground, no change in species richness was observed. Overall, these results show that vine cover in this wetland suppresses non-vine species and reduces community biomass. Removal of vines increased biomass of non-vine dominants but resulted in only an ephemeral change in species richness. Fertilization did not increase the effects of vines on the non-vine community.
Bibliography of Family Planning and Population, Volume 1 Number 3.
ERIC Educational Resources Information Center
Linzell, Dinah, Comp.
Compiled from the world's research literature, this bi-monthly classified list of references on population and family planning emphasizes recently published material, primarily journal literature. Topics covered include: population and fertility; reproductive behaviour; the family; education in population, family planning, and sex; family…
Forest Nursery Notes, Volume 30, Issue 1
R. Kasten Dumroese; Tom D. Landis
2010-01-01
Forest Nursery Notes (FNN) is a nursery news and literature service that is distributed free of charge to over 1,200 cooperators in the United States, Canada, and other foreign countries. This issue's topics include: fertigation, holdover nursery stock, late-season fertilization, and bird damage.
Li, Yilin; Shi, Weiming; Wang, Xingxiang
2014-01-01
The differences in rhizosphere nitrification activities between high- and low- fertility soils appear to be related to differences in dissolved oxygen concentrations in the soil, implying a relationship to differences in the radial oxygen loss (ROL) of rice roots in these soils. A miniaturised Clark-type oxygen microelectrode system was used to determine rice root ROL and the rhizosphere oxygen profile, and rhizosphere nitrification activity was studied using a short-term nitrification activity assay. Rice planting significantly altered the oxygen cycling in the water-soil system due to rice root ROL. Although the oxygen content in control high-fertility soil (without rice plants) was lower than that in control low-fertility soil, high rice root ROL significantly improved the rhizosphere oxygen concentration in the high-fertility soil. High soil fertility improved the rice root growth and root porosity as well as rice root ROL, resulting in enhanced rhizosphere nitrification. High fertility also increased the content of nitrification-induced nitrate in the rhizosphere, resulting in enhanced ammonium uptake and assimilation in the rice. Although high ammonium pools in the high-fertility soil increased rhizosphere nitrification, rice root ROL might also contribute to rhizosphere nitrification improvement. This study provides new insights into the reasons that an increase in soil fertility may enhance the growth of rice. Our results suggest that an amendment of the fertiliser used in nutrient- and nitrification-poor paddy soils in the red soil regions of China may significantly promote rice growth and rice N nutrition. PMID:25291182
Hu, Jia-Dong; Mao, Ge; Zhang, Zhi-Wei; Ma, Cun-de; Liang, Zong-Suo; Xia, Guang-Dong; Dong, Juan-E
2017-08-01
The research studies the effect of different fertilization treatments on yield and accumulation of secondary metabolites of Codonopsis pilosula by using single factor randomized block design, in order to ensure reasonable harvesting time and fertilization ratio, and provide the basis for standardized cultivation of C. pilosula. According to the clustering results, the nitrogen fertilizer benefitted for the improvement of root diameter and biomass of C. pilosula. The phosphate fertilizer could promote the content of C. pilosula polysaccharide. The organic fertilizers could increase the content of lobetyolin. With the time going on, C. pilosula's yield, polysaccharide and ehanol-soluble extracts increased while the content of lobetyolin decreased. According to various factors, October is a more reasonable harvest period. Organic fertilizers are more helpful to the yield and accumulation of secondary metabolites of C. pilosula. Copyright© by the Chinese Pharmaceutical Association.
Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).
Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu
2014-04-22
Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.
Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)
Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu
2014-01-01
Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896
Fertilization Increases Growth of Sawlog-Size Yellow-Poplar and Red Oak in West Virginia
N. I. Lamson
1978-01-01
Sawlog-size even-aged hardwood stands in north-central West Virginia were fertilized with N, P, and K, singly and in combinations. Applications of N alone increased the annual basal area growth of yellow-poplar more than that of red oak during the first 7 years after fertilization, whereas P alone increased the annual basal area growth of red oak more than that of...
Osuagwu, G G E; Edeoga, H O
2013-04-15
The influence of NPK inorganic fertilizer treatment on the proximate composition of the leaves of Ocimum gratissimum (L.) and Gongronema latifolium (Benth) was investigated. Cultivated O. gratissimum and G. latifolium were treated with NPK (15:15:15) fertilizer at 100, 200, 300, 400 and 500 kg h(-1) treatment levels in planting buckets derived using the furrow slice method two months after seedling emergence. No fertilizer treatment served as control. The leaves of the plants were harvested for analysis one month after treatment. The leaf was used for the analysis because it the most eaten part. Fertilizer treatment significantly (p < 0.05) increased the dry matter, moisture content, ash, crude protein, crude fibre, crude fat contents of the leaves of both plants. On the other hand, fertilizer treatment significantly, (p < 0.05) decreased the carbohydrate and the calorific value of the leaves of the plants. The increase in the concentrations of these substances as a result of fertilizer of fertilizer treatment might be due to the role of fertilizer in chlorophyll content of plant's leaves, which in turn enhanced the process of photosynthesis leading to increased synthesis of these substances. The decrease in the carbohydrate content might be due to its conversion to other materials in the plants. The results obtained were discussed in line with current literatures.
Fungi benefit from two decades of increased nutrient availability in tundra heath soil.
Rinnan, Riikka; Michelsen, Anders; Bååth, Erland
2013-01-01
If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.
Gadani, B; Bucci, D; Spinaci, M; Tamanini, C; Galeati, G
2017-03-01
Thawing is one of the most delicate process after semen cryopreservation as spermatozoa pass from a dormant metabolic stage to a sudden awakening in cellular metabolism. The rapid oxygen utilization leads to an overproduction of reactive oxygen species that can damage sperm cells, thus causing a significant decrease of fertilizing potential of frozen-thawed spermatozoa. Resveratrol (Res) is a natural grape-derived phytoalexin and Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea (Camellia sinensis); both molecules are known to possess high levels of antioxidant activity. The objective of the present study was to assess the effect of different concentrations of Res (0.5, 1 or 2 mM; Experiment 1) or EGCG (25, 50 or 100 μM; Experiment 2) supplementation to thawing boar semen extender on sperm quality parameters (viability and acrosome integrity) and in vitro fertilization (IVF). Semen after thawing and dilution with three volumes of Beltsville Thawing Solution (BTS), was immediately divided in control group without antioxidants addition (CTR) and either Res or EGCG groups. Sperm viability and acrosome integrity were evaluated in CTR, Res or EGCG groups after 1 h of incubation at 37 °C. The addition of different doses of Res or EGCG to thawing extender for 1 h did not induce any effect on boar sperm viability and acrosome integrity. However, both Res and EGCG treated samples exhibited a significantly higher penetration rate compared with CTR when used for IVF. In particular the treatment with all the EGCG concentrations increased the penetration rate (P < 0.01) while only Res 2 mM induced a significant increase of this parameter (P < 0.01). In addition, EGCG 25 and 50 μM supplementation significantly increased total fertilization efficiency as compared to control (EGCG 25 μM: 40.3 ± 8.2 vs 26.8 ± 9.5, P < 0.05; EGCG 50 μM: 40.4 ± 7.8 vs 26.8 ± 9.5, P < 0.01). The same effect was observed with Res 2 mM (51.0 ± 7.6 vs 29.6 ± 11.3, P < 0.01). In conclusion, our results indicate that the addition of different doses of the two antioxidants to thawed spermatozoa for one hour, even if does not exert any effect on sperm viability and acrosome integrity, efficiently improves in vitro penetration rate. Moreover, both molecules (EGCG 25 and 50 μM and Res 2 mM) significantly increases the total efficiency of fertilization. Copyright © 2016 Elsevier Inc. All rights reserved.
Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César
2014-06-01
Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Yaoxian; Hickman, Jonathan E.; Wu, Shiliang
2018-05-01
Fertilizer-induced nitrogen oxides (NOx) emissions in sub-Saharan Africa are expected to increase substantially in the coming decades, driven by increasing application of fertilizers to increase crop yields in an effort to attain food security across the continent. In many parts of sub-Saharan Africa, surface ozone (O3) is sensitive to increasing atmospheric concentrations of NOx. In this study, we employ the GEOS-Chem chemical transport model to conduct a preliminary investigation of the impacts on O3 air quality and the consequential crop damage associated with increasing fertilizer-induced NOx emissions in sub-Saharan Africa. Our simulation results, constrained by field NO flux measurements for the years 2011 and 2012 in response to a variety of fertilizer application rates in western Kenya, show that the enhancements in NO flux with fertilizer application rate of 150 kg N ha-1 can increase surface NOx and O3 concentrations by up to 0.36 and 2.8 ppbv respectively during the growing season. At the same time, accumulated O3 exposure during the crop growing season (expressed as AOT40 values) could increase by up to 496 ppb h, leading to crop yield decline of about 0.8% for O3-sensitive crops. Our results suggest that, when accounting for the consequential impacts on surface O3 air quality and crop damage over sub-Saharan Africa, agricultural intensification is possible without substantial impacts on crop productivity because the relatively small decline of crop yield resulting from O3 damage appears unlikely to outweigh the gain in crop yield from fertilization.
NASA Astrophysics Data System (ADS)
Tammik, Kerttu; Kauer, Karin; Astover, Alar
2017-04-01
The objective of this study was to determine whether it is possible to assess the impact of different management practices (crop rotation, fertilization (organic and mineral fertilizers) on the chemical composition of soil organic matter, using Fourier transform infrared spectroscopy (FTIR). The study is based IOSDV long-term (established in 1989) three field crop rotation (potato-wheat-barely) experiment located in Tartu, Estonia. Soil samples (Stagnic Albeluvisol) were collected from the 0-20 cm depth in the autumn of 2015, air dried, sieved to 2 mm and grinded to obtain homogeneous samples. The content of soil organic matter was measured by the dry combustion method in a varioMax CNS elemental analyser (ELEMENTAR, Germany). The samples were analysed using Thermo-Nicolet iS10 Fourier Transform Infrared Spectrophotometer (FT-IR) and OMNIC software. An intense and sharp peak was recorded in the region of Si-O vibrations of clay minerals and polysaccharides in all samples analysed. The volume of the peak correlated with the quantity of fertilizers administered
[Effects of long-term fertilization on enzyme activities in black soil of Northeast China].
Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu
2008-03-01
In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.
Swelling mechanism of urea cross-linked starch-lignin films in water.
Sarwono, Ariyanti; Man, Zakaria; Bustam, M Azmi; Subbarao, Duvvuri; Idris, Alamin; Muhammad, Nawshad; Khan, Amir Sada; Ullah, Zahoor
2018-06-01
Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10 -7 cm 2 /s at 25°C, from 5.3 to 2.9 × 10 -7 cm 2 /s at 35°C and from 6.2 to 3.8 × 10 -7 cm 2 /s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
Fertilizing and thinning northern hardwoods in the Lake States.
Douglas M. Stone
1977-01-01
Reports results of fertilizing and thinning pole-size sugar maple and yellow birch crop trees on six different sites. Thinning significantly increased diameter growth, but fertilization did not. Crop trees on moist (moderately well-drained) soils have tended to respond to fertilization. Discusses silvicultural implications.
Effects of long-term fertilization on soil humic acid composition and structure in Black Soil
Zhang, Jiuming; Wang, Jingkuan; An, Tingting; Wei, Dan; Chi, Fengqin; Zhou, Baoku
2017-01-01
The composition and structure of humic acid (HA) can be affected by fertilization, but the short-term effects are difficult to detect using traditional analysis methods. Using a 35-year long-term experiment in Black Soil, the molecular structure of HA was analyzed with Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance spectroscopy (NMR), and fluorescence spectroscopy. Variation in HA was analyzed after long-term fertilization, including fertilization with manure (M), inorganic N, P and K fertilizer (NPK), manure combined with inorganic N, P, and K fertilizer (MNPK), and a no-fertilizer control (CK). The application of each fertilizer treatment increased crop yields compared with the CK treatment, and the MNPK treatment increased crop yield the most. The ratio of main IR absorption peak of HA at 2,920 cm−1 compared with the peak at 2,850 cm−1 (2920/2850) was higher in the NPK and MNPK treatments compared with the CK treatment. The application of manure (MNPK and M treatments) increased the ratio of hydrogen to carbon (H/C) in HA, and raised the ratio of the main IR absorption peak of HA at 2920 cm−1 to that at 1720 cm−1 (2920/1720). Manure treatments also raised the ratio of aliphatic carbon (C) to aromatic C, alkyl C to alkoxy C and hydrophobic C to hydrophilic C and the fluorescence index (f 450/500), but decreased the degree of aromatization of HA, when compared with the CK treatment. The ratio between each type of C in HA was similar among all the fertilizer treatments, but NPK had a lower ratio of H/C and a lower content of aliphatic C compared with the CK treatment. These results indicated that the molecular structure of HA in Black Soil tends to be aliphatic, simpler, and younger after the application of manure. While the application of inorganic fertilizers increased in the degree of condensation of HA and made HA structure complicated. The application of manure alone or combined with inorganic fertilizers may be an effective way to increase crop yield and improve the structure of soil organic matter. PMID:29095840
NASA Astrophysics Data System (ADS)
Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.
2015-04-01
Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.
Liu, Enke; Yan, Changrong; Mei, Xurong; Zhang, Yanqing; Fan, Tinglu
2013-01-01
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0–100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0–20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0–60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0–60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0–60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0–60 cm depth were increased by 64.9–91.9%, 42.5–56.9%, and 74.7–99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization. PMID:23437161
Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia
2015-01-01
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871
Adolfsson, Lisa; Solymosi, Katalin; Andersson, Mats X; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia
2015-01-01
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with P(i) fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i) fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i) supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i)-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i) fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i)-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.
Stanislavov, R; Rohdewald, P
2014-12-01
The aim of this study was to investigate the influence of Prelox®R, a combination of French maritime pine bark extract (Pycnogenol®), L-arginine, L-citrulline and roburins, on male fertility. Sperm quality of 50 subfertile men was tested in monthly intervals in a double-blind, randomized, placebo controlled, crossover study. Patients received 2 tablets Prelox®R or placebo twice daily during test periods. Following a run-in period of 1 month, patients received either Prelox®R or a placebo for 1 month. After a wash-out period of 1 month, patients received Prelox®R or a placebo in a crossover manner for 1 month. Sperm volume, concentration of spermatozoa, total count, motility, vitality and morphology were measured by standard methods of calculation of the Fertility Index (FI) in monthly intervals. Activity of e-NOS in sperm was evaluated in parallel by measuring the quantity of L-citulline produced from L-arginine. Supplementation with Prelox®R enhanced sperm volume and concentration, motility, vitality and morphology significantly versus placebo. The Fertility Index rose to normal values during treatment with Prelox®R. e-NOS activity in sperm was elevated by Prelox®R. No adverse effects were reported. Prelox®R offers a safe method to improve quality of human spermatozoa in subfertile men.
Elective oocyte cryopreservation for deferred childbearing.
Goldman, Kara N; Grifo, Jamie A
2016-12-01
Elective oocyte cryopreservation for deferred childbearing has gained popularity worldwide, commensurate with increased knowledge regarding age-related fertility decline. The purpose of this review is to summarize recent data regarding trends in delayed childbearing, review recent findings surrounding age-related fertility decline, acknowledge significant gaps in knowledge among patients and providers regarding fertility decline and review outcomes following elective oocyte cryopreservation. Despite an inevitable decline in fertility and increase in miscarriage with increasing female age, there is a growing worldwide trend to delay childbearing. Patients and providers alike demonstrate large gaps in knowledge surrounding age-related fertility decline. Oocyte cryopreservation is clinically approved for medically indicated fertility preservation, but a growing number of women are using oocyte cryopreservation to defer childbearing and maintain reproductive autonomy. Mounting data support the efficacy and safety of oocyte cryopreservation when used to electively defer childbearing, with recent studies demonstrating rates of euploidy, implantation and live birth rates equivalent to in-vitro fertilization (IVF) with fresh oocytes. Oocyte cryopreservation provides women with an option to defer childbearing and maintain reproductive autonomy, with IVF success rates on par with fresh IVF. However, it is critical that patients understand the limitations of oocyte cryopreservation. Greater education regarding age-related fertility decline should be geared toward patients and providers to prevent unintended childlessness.
Fertility transition and adverse child sex ratio in districts of India.
Mohanty, Sanjay K; Rajbhar, Mamta
2014-11-01
Demographic research in India over the last two decades has focused extensively on fertility change and gender bias at the micro-level, and less has been done at the district level. Using data from the Census of India 1991-2011 and other sources, this paper shows the broad pattern of fertility transition and trends in the child sex ratio in India, and examines the determinants of the child sex ratio at the district level. During 1991-2011, while the Total Fertility Rate (TFR) declined by 1.2 children per woman, the child sex ratio fell by 30 points in the districts of India. However, the reduction in fertility was slower in the high-fertility compared with the low-fertility districts. The gender differential in under-five mortality increased in many districts of India over the study period. The decline in the child sex ratio was higher in the transitional compared with the low-fertility districts. The transitional districts are at higher risk of a low child sex ratio due to an increased gender differential in mortality and increase in the practice of sex-selective abortions. The sex ratio at birth and gender differential in mortality explains one-third of the variation, while region alone explains a quarter of the variation in the child sex ratio in the districts of India.
NASA Astrophysics Data System (ADS)
Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Lu, Dianjun; Zhou, Jianmin
2016-10-01
Appropriate fertilization practice is crucial to achieve maximum wheat grain yield with minimum nitrogen (N) loss. A field 15N micro-plot experiment was conducted to determine the effects of application methods [split application (SA) and band application (BA)] and N rates (60, 150 and 240 kg ha-1) on the wheat grain yield, urea-15N fate and N efficiency in Jiangyan County, China. At high N rates, wheat grain yield was significantly higher for SA than BA treatment, but there was no difference at the lower N rates. Plant N derived from fertilizer was higher in SA than in BA treatment. The high N fertilizer application increased total N uptake by wheat derived from fertilizer, but wheat plant N derived from soil was not affected by the N rate. Fertilizer-N recovery in SA treatment was higher than in BA treatment. Residual N recovery in the 0-80 cm soil layer was 31-51%, which decreased with increasing N rate. The highest N loss was found for BA treatment at the N application of 240 kg ha-1. The one-time BA of N fertilizer, especially for higher N rates, led to reduced wheat grain yield and N efficiency, and increased the N loss.
Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.
Wang, Yiyao; Li, Huaizheng; Xu, Zuxin
2016-01-01
Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.
Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming
2017-11-01
A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack of P, would not benefit the sustainable use of nutrients in yellow soil.
NASA Astrophysics Data System (ADS)
Vyborova, Oxana
2010-05-01
The fertility of soil is a capacity for ensuring plants by water, nutrients, air and capacity for making optimal conditions for growth and development of plants. The result of it is a yield. The main characteristic of fertility of soil is maintenance of humus. The humus is important part of organic matter. The supporting of soil fertility is impossible by traditional methods. The amount of receiving mineral fertilizers in agriculture will not increase in future, because mineral fertilizers are very expensive. The mineral fertilizers don't influence on maintenance of total amount of humus in soil and improve the circulation of nutrients. Every hectare of fields have to receive no less than 8-10 tons of organic fertilizers, therefore we will have self-supporting balance of humus and the fertility of soils will be increasing. Consequently we are looking for new types of organic materials and we include them in modern agro technologies. One of them is an organomineral fertilizer (lignitic materials). The humic chemicals in the form of lignitic materials of natrium, potassium and ammonium are permitted for using them in agriculture at the beginning of 1984. The Department of agriculture in Russian Federation considered the problem of using humic chemicals and made a decision to use them on the fields of our country, because the lignitic materials can restore the fertility of our fields. The lignitic materials increase the amount of spore-forming bacteria, mold fungi and actinomycete. Therefore the organic decomposition occurs more strongly, the processes of humification increase the speed and the amount of humus rises in the soil. The new forming humus has a high biological activity and it improves chemical and physical soil properties. The addition of lignitic materials in soil activates different groups of microorganisms, which influence on mobilization of nutrients and transformation from potential to effective fertility. The inclusion of humic fertilizers improves physical, physicochemical properties of soils, its air, water and thermal rate. Humic acids with mineral and organomineral particles of soil form the soil absorbent complex. The inclusion of humic fertilizers promotes the process when humic substances form a very valuable water-stable clumpy-granular structure, which improves water-carrying and water-holding capacity, its air permeability by agglutination of mineral particles with each other. The soils, where humic fertilizers are carried in soils regularly, are more stable for influence of chemical polluting substances (for example, radioactive nuclides, heavy metals, pesticides) than poor soils. The inclusion of humic fertilizers is very important in period of urbanization and cropping on the plough-lands not far from a big industrial area. The lignitic materials tie together the detrimental compounds formed the insoluble complex in soil solution. The detrimental compounds don't go into plants, subsoil waters and atmosphere. The lignitic watering of soils (in concentration from 0.1 to 0.01%) increases biological activity of soil in a man-caused zones and it promotes to stability of plants to detrimental emission of enterprises. Today the problem of processing of sugar-beet industry is very important. In the result of storing sugar-beet wastes the pollution of environment is occurred, examples of this pollution are gassing, salinization of soils and ground waters by filtrational sediments. One of these wastes is defecation sludge. The defecation sludge consists of CaCO3, organic matter, nitrogen, phosphorus, potassium and microelements. The technology of receiving N-Ca fertilizer based on defecate was developed because of impossibility of using this waste in pure form. For available data, using of these fertilizers improves the soil fertility and degree of pollution by heavy metals don't exceed an acceptance limits.
Effects of thinning and fertilizing on production of western white pine seed
Burton V. Barnes
1969-01-01
In a 40-year-old western white pine plantation developed as a seed production area, heavy thinning and application of fertilizer in the fall significantly increased strobilus production the following spring. Applying fertilizer increased seed weight and cone length significantly, but thinning did not. Insects severely damaged the cone crop in the thinned...
A Loblolly Pine Management Guide: When and Where to Apply Fertilizer
Carol G. Wells; Lee Allen
1985-01-01
Growth rates in loblolly pine (Pinus taeda L.) stands can often be increased markedly by applying phosphorus, nitrogen, or nitrogen and phosphorus fertilizers. On phosphorus-deficient Lowe Coastal Plain sites, the growth improvement from phosphorus fertilization of loblolly pine often amounts to an increase in site index (age 25) of 15 feet.Nitrogen and nitrogen plus...
R. Kasten Dumroese; Anthony S. Davis; Douglass F. Jacobs
2011-01-01
Planting koa (Acacia koa A. Gray) in Hawai'i, USA aids in restoration of disturbed sites essential to conservation of endemic species. Survival and growth of planted seedlings under vegetative competition typically increases with initial plant size. Increasing container size and fertilizer rate may produce larger seedlings, but high fertilization can lead to...
Koistinen, Hannu; Soini, Tuuli; Leinonen, Jari; Hyden-Granskog, Christel; Salo, Jaakko; Halttunen, Mervi; Stenman, Ulf-Håkan; Seppälä, Markku; Koistinen, Riitta
2002-03-01
Semenogelin plays an important role in sperm clotting and is degraded into smaller fragments by prostate-specific antigen (PSA) during clot liquefaction. Semenogelin and its fragments inhibit sperm motility in vitro. We studied the expression of semenogelin I mRNA and its localization in various tissues of the male genital tract. We also studied semenogelin concentrations with respect to sperm parameters and the outcome of in vitro fertilization. Semenogelin protein was detected by immunohistochemical staining and semenogelin I mRNA was detected by Northern blot analysis in the seminal vesicles and ampullary part of the vas deferens, whereas specimens from the prostate, epididymis, testis, and the female genital tract were negative. Using monoclonal antibodies against semenogelin, an immunofluorometric assay was developed to measure semenogelin levels in seminal plasma and to evaluate possible correlations with sperm parameters and fertilization in vitro. No correlation was found between the semenogelin concentration and the volume of the ejaculate, sperm concentration, sperm motility, or in vitro fertilization rate. Semenogelin levels were positively correlated with the total protein concentration in seminal plasma, and there was an inverse correlation between the concentration of semenogelin and that of PSA. The levels of semenogelin appear to bear no relationship to the in vitro fertilization capacity of the spermatozoa.
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
The impact of BMI on sperm parameters and the metabolite changes of seminal plasma concomitantly.
Guo, Dan; Wu, Wei; Tang, Qiuqin; Qiao, Shanlei; Chen, Yiqiu; Chen, Minjian; Teng, Mengying; Lu, Chuncheng; Ding, Hongjuan; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Sha, Jiahao; Wang, Xinru
2017-07-25
The development of male infertility increased rapidly worldwide, which coinciding with the epidemic of obesity. However, the impact of weight abnormalities on sperm quality is still contestable. To assess the correlation between BMI and sperm parameters, we searched relevant articles in PubMed, Embase, Web of science, and Wanfang database published until June 2015 without language restriction. Otherwise, we also recruited some participants who attended fertility clinic as well as some general populations in this report. We performed a systematic review and meta-analysis about BMI and sperm parameters containing total sperm count, concentration, semen volume and sperm motility (overall and progressive). Metabolomic analysis of seminal plasma was performed to explore the mechanism from a new perspective. This study found standardized weighted mean differences (SMD) in sperm parameters (total sperm count, sperm concentration, and semen volume) of abnormal weight groups decreased to different degree compared to normal weight. Dose-response analysis found SMD of sperm count, sperm concentration and semen volume respectively fell 2.4%, 1.3% and 2.0% compared with normal weight for every 5-unit increase in BMI. Metabolomic analysis of seminal plasma showed that spermidine and spermine were likely to play a vital role in the spermatogenesis progress. This systematic review with meta-analysis has confirmed there was a relationship between BMI and sperm quality, suggesting obesity may be a detrimental factor of male infertility.
Development of a low-volume sprayer for an unmanned autonomous helicopter
USDA-ARS?s Scientific Manuscript database
An UAV (Unmanned Aerial Vehicle) can fly over much smaller areas with much lower flight altitudes than conventional, piloted airplanes. In agriculture, UAVs have been mainly developed and used for chemical application and remote sensing. Application of fertilizers and chemicals is frequently needed ...
Arthington, J D; Rechcigl, J E; Yost, G P; McDowell, L R; Fanning, M D
2002-10-01
To assess the impact of S fertilization on bahiagrass (Paspalum notatum) quality and Cu metabolism in cattle, two studies were conducted during the summer grazing season (1999 and 2000). Pasture replicates (16.2 ha; n = 2/treatment) received the same fertilizer treatment in each growing season, consisting of 1) 67 kg N/ha from ammonium sulfate (AS), 2) 67 kg N/ha from ammonium nitrate (AN), and 3) control (no fertilizer; C). Forage sampling was conducted at 28-d intervals following fertilization by the collection of whole plants (four samples/pasture) in randomly distributed 1-m2 grazing exclusion cages and analyzed for CP, in vitro organic matter digestibility, S, P, Ca, K, Mg, Na, Fe, Al, Mn, Cu, and Zn. To determine the effect of fertilizer treatment on liver trace mineral concentrations in grazing cattle, random liver tissue samples were collected (n = 12; four/treatment) at the start and end of the study period in 2000. Ammonium sulfate fertilization increased (P < 0.001) forage S concentration in both years. Plant tissue N concentrations were increased by N fertilization, regardless of source, in 2000, but not in 1999. Cows grazing AS pastures had lower (P < 0.05) liver Cu concentrations at the end of the study period in 2000 compared to AN and C. In Exp. 2, 37 Cu-deficient heifers grazing AS fertilized pastures were obtained from the same location and allocated to one of two treatments, consisting of supplements providing 123 mg/d of either inorganic (Cu sulfate; n = 12) or organic (Availa-Cu; n = 15) Cu. Treatments were delivered for 83 d. Liver Cu increased over time in all heifers regardless of treatment; however, heifers supplemented with Availa-Cu tended (P = 0.09) to have higher mean liver Cu concentrations than those receiving Cu sulfate. The results of these studies indicate that AS fertilization of bahiagrass increases forage S concentrations. When provided free-choice access to a complete salt-based trace mineral supplement, cows grazing AS-fertilized pastures had lower liver Cu concentrations than cows grazing pastures fertilized with AN; upon removal from high-S pastures, cattle were able to respond to Cu supplementation.
Artificial insemination in pigs today.
Knox, R V
2016-01-01
Use of artificial insemination (AI) for breeding pigs has been instrumental for facilitating global improvements in fertility, genetics, labor, and herd health. The establishment of AI centers for management of boars and production of semen has allowed for selection of boars for fertility and sperm production using in vitro and in vivo measures. Today, boars can be managed for production of 20 to 40 traditional AI doses containing 2.5 to 3.0 billion motile sperm in 75 to 100 mL of extender or 40 to 60 doses with 1.5 to 2.0 billion sperm in similar or reduced volumes for use in cervical or intrauterine AI. Regardless of the sperm dose, in liquid form, extenders are designed to sustain sperm fertility for 3 to 7 days. On farm, AI is the predominant form for commercial sow breeding and relies on manual detection of estrus with sows receiving two cervical or two intrauterine inseminations of the traditional or low sperm doses on each day detected in standing estrus. New approaches for increasing rates of genetic improvement through use of AI are aimed at methods to continue to lower the number of sperm in an AI dose and reducing the number of inseminations through use of a single, fixed-time AI after ovulation induction. Both approaches allow greater selection pressure for economically important swine traits in the sires and help extend the genetic advantages through AI on to more production farms. Copyright © 2016 Elsevier Inc. All rights reserved.
Ye, Miao; Sun, Linghong; Yang, Ru; Qi, KeZong
2017-01-01
The proper culture conditions for producing cellulase of Bacillus amyloliquefaciens S1, isolated from the cecum of goose was optimized by single-factor experiment combined with orthogonal test. The properties of the cellulase were investigated by DNS method. The appropriate doses of B. amyloliquefaciens S1 were obtained by adding them to goose feed. It indicated that the suitable culture conditions of producing cellulase were the culture temperature of 37°C, the initial pH of 7.0, the incubation time of 72 h and the loaded liquid volume of 75 ml per 250 ml. The effects of each factor on producing cellulase by B. amyloliquefaciens S1 were as follows: initial pH > incubation time = culture temperature > loaded liquid volume. The optimum reaction temperature and pH were 50°C and 7.0, respectively. This enzyme is a kind of neutral cellulase that possesses resistance to heat and acidity. It showed high activity to absorbent cotton, soya bean meal and filter paper. By adding different doses of B. amyloliquefaciens S1 to the goose feed, it was found that the egg production, average egg weight, fertilization rate and the hatching rate were promoted both in experiment 1 (1.5 g kg−1) and experiment 2 (3 g kg−1). Also the difference of egg production, fertilization rate and hatching rate between experiment 1 and control group was obvious (p < 0.05), and the average egg weight was significantly increased in experiment 2 (p < 0.05). PMID:29134097
Correlations in fertility across generations: can low fertility persist?
Kolk, Martin; Cownden, Daniel; Enquist, Magnus
2014-03-22
Correlations in family size across generations could have a major influence on human population size in the future. Empirical studies have shown that the associations between the fertility of parents and the fertility of children are substantial and growing over time. Despite their potential long-term consequences, intergenerational fertility correlations have largely been ignored by researchers. We present a model of the fertility transition as a cultural process acting on new lifestyles associated with fertility. Differences in parental and social influences on the acquisition of these lifestyles result in intergenerational correlations in fertility. We show different scenarios for future population size based on models that disregard intergenerational correlations in fertility, models with fertility correlations and a single lifestyle, and models with fertility correlations and multiple lifestyles. We show that intergenerational fertility correlations will result in an increase in fertility over time. However, present low-fertility levels may persist if the rapid introduction of new cultural lifestyles continues into the future.
Correlations in fertility across generations: can low fertility persist?
Kolk, Martin; Cownden, Daniel; Enquist, Magnus
2014-01-01
Correlations in family size across generations could have a major influence on human population size in the future. Empirical studies have shown that the associations between the fertility of parents and the fertility of children are substantial and growing over time. Despite their potential long-term consequences, intergenerational fertility correlations have largely been ignored by researchers. We present a model of the fertility transition as a cultural process acting on new lifestyles associated with fertility. Differences in parental and social influences on the acquisition of these lifestyles result in intergenerational correlations in fertility. We show different scenarios for future population size based on models that disregard intergenerational correlations in fertility, models with fertility correlations and a single lifestyle, and models with fertility correlations and multiple lifestyles. We show that intergenerational fertility correlations will result in an increase in fertility over time. However, present low-fertility levels may persist if the rapid introduction of new cultural lifestyles continues into the future. PMID:24478294
Margesin, Rosa; Hämmerle, Marion; Tscherko, Dagmar
2007-02-01
We investigated the influence of three factors-diesel oil concentration [2500, 5000, 10,000, 20,000 mg total petroleum hydrocarbons (TPH) kg(-1) soil], biostimulation (unfertilized, inorganic fertilization with NPK nutrients, or oleophilic fertilization with Inipol EAP22), and incubation time-on hydrocarbon removal, enzyme activity (lipase), and microbial community structure [phospholipid fatty acids (PLFA)] in a laboratory soil bioremediation treatment. Fertilization enhanced TPH removal and lipase activity significantly (P < or = 0.001). The higher the initial contamination, the more marked was the effect of fertilization. Differences between the two fertilizers were not significant (P > 0.05). Microbial communities, as assessed by PLFA patterns, were primarily influenced by the TPH content, followed by fertilization, and the interaction of these two factors, whereas incubation time was of minor importance. This was demonstrated by three-factorial analysis of variance and multidimensional scaling analysis. Low TPH content had no significant effect on soil microbial community, independent of the treatment. High TPH content generally resulted in increased PLFA concentrations, whereby a significant increase in microbial biomass with time was only observed with inorganic fertilization, whereas oleophilic fertilization (Inipol EAP22) tended to inhibit microbial activity and to reduce PLFA contents with time. Among bacteria, PLFA indicative of the Gram-negative population were significantly (P < or = 0.05) increased in soil samples containing high amounts of diesel oil and fertilized with NPK after 21-38 days of incubation at 20 degrees C. The Gram-positive population was not significantly influenced by TPH content or biostimulation treatment.
USDA-ARS?s Scientific Manuscript database
Increased numbers of antral follicles have been associated with decreased calving day, increased fertility, increased serum estradiol concentrations, increased serum progesterone concentrations, and increased estrus behavior in cattle. In addition, cows with increased fertility have been shown to h...
Dynamics of N-NH4 +, N-NO3 -, and total soil nitrogen in paddy field with azolla and biochar
NASA Astrophysics Data System (ADS)
Dewi, W. S.; Wahyuningsih, G. I.; Syamsiyah, J.; Mujiyo
2018-03-01
Nitrogen (N) is one of macronutrients which is dynamic in the soil and becomes constraint factor for rice crops. The addition of nitrogen fertilizers and its absorption in paddy field causes the dynamics of nitrogen, thus declines of N absorption efficiency. The aim of this research is to know influence Azolla, biochar and different varieties application on N-NH4 +, N-NO3 -, and total soil N in paddy field. This research was conducted in a screen house located in Jumantono Laboratory, Faculty of Agriculture, Universitas Sebelas Maret (UNS) with altitude 170 m asl from April to June 2016. Treatment factors that were examined consisted of azolla (0 and 10 tons/ha), biochar (0 and 2 tons/ha), and rice varieties (Cisadane, Memberamo, Ciherang, IR64). The results of this research showed that there was no interaction between azolla, biochar and varieties. Nevertheless, azolla treatment with dose of 10 tons/ha increased soil NH4 + content (41 days after planting, DAP) by 13.4% but tend to decrease at 70 and 90 DAP. Biochar treatment with dose of 2 ton/ha increases NO3 - soil content (70 DAP) by 1.7% but decreases total N soil by 5.8% (41 DAP) and 4.7% (90 DAP). Different rice varieties generated different soil NH4 + content (41 DAP) and rice root volume. Cisadane variety can increase soil NH4 + content (41 DAP) by 52.08% and root volume by 51.80% (90 DAP) compared with Ciherang variety. Organic rice field management with azolla and biochar affects the availability of N in the soil and increase N absorption efficiency through its role in increasing rice root volume.
Public policy, risk and fertility in Bangladesh: a comment.
Robinson, W C
1983-09-01
In their report for the Planning Commission and the US Agency for International Development (USAID), Dhaka, Cain and Lieberman argue that Bangladesh's present family planning program efforts will be fruitless until some minimum level of economic security is provided for the nation's households. They specifically propose an employment guarantee scheme, but other approaches are also possible. The author estimates exactly how such an "economic risk" reducing scheme might be implemented by the government, how much it would cost, and its logical and empirical foundations. He offers 4 reasons for rejecting the idea. 1) The level of economic well being which would reduce fertility is unclear in their model, and it would not be a moderate income; at 250 Taka a month would a man feel secure, even if this were guaranteed to him and he believed the guarantee? 2) The cost to the government of even raising all presently unemployed, disabled, or aged indigent persons to slightly above the poverty level would be several times the yearly development budget. 3) The logical and theoretical underpinnings of the model appear confused and questionable. Cain's model of children as insurance against risk by guaranteeing future family income labor supply is not borne out by the historical evidence. The latter shows fertility has fallen slightly in response to growing economic pressure, not risen; that land owners have higher fertility than non-owners; that there is a substantial volume of unwanted fertility--not all births are viewed as functional or valuable; and that contraceptive rates are as high as 40% in parts of rural Bangladesh. 4) The following 2 data sets show that the empirical evidence for such a link between risk and fertility is negative: a) district level fertility data from the 1981 Census in conjunction with an index of "famine proneness" prepared by the Ministry of Food, and b) the Bangladesh Fertility Survey fertility and community characteristics data. The author concedes the idea deserves serious consideration, but disproves its thesis.
Wang, Lijuan; Zhao, He; Robinson, Brian E.
2017-01-01
With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000–2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas. PMID:28678841
Wang, Lijuan; Zheng, Hua; Zhao, He; Robinson, Brian E
2017-01-01
With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000-2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas.
Prado, Julia; Quesada, Carlos; Gosney, Michael; Mickelbart, Michael V; Sadof, Clifford
2015-06-01
Although leaf nitrogen (N) has been shown to increase the suitability of hosts to herbivorous arthropods, the responses of these pests to N fertilization on susceptible and resistant host plants are not well characterized. This study determined how different rates of N fertilization affected injury caused by the potato leafhopper (Empoasca fabae Harris) and the abundance of maple spider mite (Oligonychus aceris (Shimer)) on 'Red Sunset' red maple (Acer rubrum) and 'Autumn Blaze' Freeman maple (Acer×freemanii) during two years in Indiana. N fertilization increased leaf N concentration in both maple cultivars, albeit to a lesser extent during the second year of the study. Overall, Red Sunset maples were more susceptible to E. fabae injury than Autumn Blaze, whereas Autumn Blaze maples supported higher populations of O. aceris. Differences in populations of O. aceris were attributed to differences between communities of stigmaeid and phytoseiid mites on each cultivar. Injury caused by E. fabae increased with N fertilization in a dose-dependent manner in both cultivars. Although N fertilization increased the abundance of O. aceris on both maple cultivars, there was no difference between the 20 and 40 g rates. We suggest the capacity of N fertilization to increase O. aceris on maples could be limited at higher trophic levels by the community of predatory mites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
El-Nabawy, El-Said M; Tsuda, Katsuo; Sakamaki, Yositaka; Oda, Asahi; Ushijima, Yurie
2016-01-01
The main goal of this study was to identify the treatment that increases the populations of spiders, which are effective predators in agroecosystems. In 2013 and 2014 the experimental eggplant (Solanum melongena L.) field was two different treatments, organic fertilizers and chemical fertilizer treatment, and in 2014 we surrounded organic fertilizer plots with the flowering plants mealy cup sage (Salvia farinacea Benth.), spearmint (Mentha spicata L.), and basil (Ocimum basilicum L.). Analysis using repeated measures ANOVA revealed significant influences of fertilizer type on the numbers of linyphiid spiders and Collembola in 2013. In 2014, the numbers of Collembola, thrips, and lycosid and linyphiid spider were higher in organic fertilizer with flowering plants treatment comparing with the chemical fertilizer treatment. Moreover, the numbers of Henosepilachna vigintioctopunctata (F.) were significantly lower in the organic fertilizer with flowering plants treatment than in chemical fertilizers treatment. Finally, we expect that Thysanoptera and Collembola were important alternative prey for linyphiid and lycosid spiders and the use of organic fertilizer and flowering plants enhanced the density of these spiders, and may increase their effectiveness in suppressing the populations of H. vigintioctopunctata (F.). © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
India's needs and priorities in fertility regulation research.
Puri, C P
1999-02-01
This article evaluates the needs and priorities of India in fertility regulation research. There are multivariate factors that affect the perceptions of people about fertility regulation in India. The socioeconomic status, level of education and religious beliefs have strong influences on their decision on the family size, spacing between children and also the sex of the children. Moreover, a large number of people are either quite ignorant of or cannot afford to avail with the technologies and services for controlling their fertility. These factors generally perpetuate high fertility, which strongly affect the infant and maternal mortality, and eventually the quality of life both for the present and the future generation. The International Conference on Population and Development Program of Action has provided India with an alternative to develop newer methods of fertility regulation so as to widen contraceptive choices. The objective of research in fertility regulation should ensure the fertility control of couples and ability to plan the number and spacing of children. Research in fertility regulation should be aimed at expanding contraceptive choices by improving the accessibility and acceptability of good quality contraceptive products and services. It would necessitate: improving the quality of care; increasing awareness about sexuality and fertility regulation; empowering women; and increasing male-female partnership in sharing responsibilities for family planning and parenthood.
Europe the continent with the lowest fertility.
2010-01-01
Although fertility rates are falling in many countries, Europe is the continent with the lowest total fertility rate (TFR). This review assesses trends in fertility rates, explores possible health and social factors and reviews the impact of health and social interventions designed to increase fertility rates. Searches were done in medical and social science databases for the most recent evidence on relevant subject headings such as TFR, contraception, migration, employment policy and family benefits. Priorities, omissions and disagreements were resolved by discussion. The average TFR in Europe is down to 1.5 children per woman and the perceived ideal family size is also declining. This low fertility rate does not seem directly caused by contraception since in Northern and Western Europe the fertility decline started in the second half of the 1960s. Factors impacting on lower fertility include the instability of modern partnerships and value changes. Government support of assisted human reproduction is beneficial for families, but the effect on TFR is extremely small. Government policies that transfer cash to families for pregnancy and child support also have small effects on the TFR. Societal support for families and for couples trying to conceive improves the lives of families but makes no substantial contribution to increased fertility rates.
Dou, Xiaolin; He, Ping; Zhu, Ping; Zhou, Wei
2016-01-01
Effects of different fertilizers on organic carbon (C) storage and turnover of soil fractions remains unclear. We combined soil fractionation with isotope analyses to examine soil organic carbon (SOC) dynamics after 25 years of fertilization. Five types of soil samples including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, N; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into four aggregate sizes (>2000 μm, 2000–250 μm, 250–53 μm, and <53 μm), and three density fractions: free light fraction (LF), intra-aggregate particulate organic matter (iPOM), and mineral-associated organic matter (mSOM). Physical fractionation showed the iPOM fraction of aggregates dominated C storage, averaging 76.87% of SOC storage. Overall, application of N and NPK fertilizers cannot significantly increase the SOC storage but enhanced C in mSOM of aggregates, whereas MNPK fertilizer resulted in the greatest amount of SOC storage (about 5221.5 g C m2) because of the enhanced SOC in LF, iPOM and mSOM of each aggregate. The SNPK fertilizer increased SOC storage in >250 μm aggregates but reduced SOC storage in <250 μm aggregates due to SOC changes in LF and iPOM. PMID:26898121
Dou, Xiaolin; He, Ping; Zhu, Ping; Zhou, Wei
2016-02-22
Effects of different fertilizers on organic carbon (C) storage and turnover of soil fractions remains unclear. We combined soil fractionation with isotope analyses to examine soil organic carbon (SOC) dynamics after 25 years of fertilization. Five types of soil samples including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, N; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into four aggregate sizes (>2000 μm, 2000-250 μm, 250-53 μm, and <53 μm), and three density fractions: free light fraction (LF), intra-aggregate particulate organic matter (iPOM), and mineral-associated organic matter (mSOM). Physical fractionation showed the iPOM fraction of aggregates dominated C storage, averaging 76.87% of SOC storage. Overall, application of N and NPK fertilizers cannot significantly increase the SOC storage but enhanced C in mSOM of aggregates, whereas MNPK fertilizer resulted in the greatest amount of SOC storage (about 5221.5 g C m(2)) because of the enhanced SOC in LF, iPOM and mSOM of each aggregate. The SNPK fertilizer increased SOC storage in >250 μm aggregates but reduced SOC storage in <250 μm aggregates due to SOC changes in LF and iPOM.
Cely, Martha V T; de Oliveira, Admilton G; de Freitas, Vanessa F; de Luca, Marcelo B; Barazetti, André R; Dos Santos, Igor M O; Gionco, Barbara; Garcia, Guilherme V; Prete, Cássio E C; Andrade, Galdino
2016-01-01
Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.
Emamgholipour Sefiddashti, Sara; Homaie Rad, Enayatollah; Arab, Mohamad; Bordbar, Shima
2016-02-01
Female labor supply has been changed dramatically in the recent yr. In this study, we examined the effects of development on the relationship between fertility and female labor supply. We used data of population and housing census of Iran and estimated three separate models. To do this we employed Logistic Regressions (BLR). The estimation results of our study showed that there was a negative relationship between fertility rate and female labor supply and there are some differences for this relationship in three models. When fertility rate increases, FLS would decreases. In addition, for higher fertility rates, the woman might be forced to work more because of the economic conditions of her family; and negative coefficients of the fertility rate effects on FLS would increase with a diminishing rate.
Takeo, Toru; Nakagata, Naomi
2011-11-01
Sperm cryopreservation is useful for the effective storage of genomic resources derived from genetically engineered mice. However, freezing the sperm of C57BL/6 mice, the most commonly used genetic background for genetically engineered mice, considerably reduces its fertility. We previously reported that methyl-beta-cyclodextrin dramatically improved the fertility of frozen/thawed C57BL/6 mouse sperm. Recently, it was reported that exposing sperm to reduced glutathione may alleviate oxidative stress in frozen/thawed mouse sperm, thereby enhancing in vitro fertilization (IVF); however, the mechanism underlying this effect is poorly understood. In the present study, we examined the combined effects of methyl-beta-cyclodextrin and reduced glutathione on the fertilization rate of IVF with frozen/thawed C57BL/6 mouse sperm and the characteristic changes in the zona pellucida induced by reduced glutathione. Adding reduced glutathione to the fertilization medium increased the fertilization rate. Methyl-beta-cyclodextrin and reduced glutathione independently increased fertilization rates, and their combination produced the strongest effect. We found that reduced glutathione increased the amount of free thiols in the zona pellucida and promoted zona pellucida enlargement. Finally, 2-cell embryos produced by IVF with the addition of reduced glutathione developed normally and produced live offspring. In summary, we have established a novel IVF method using methyl-beta-cyclodextrin during sperm preincubation and reduced glutathione during the IVF procedure to enhance fertility of frozen/thawed C57BL/6 mouse sperm.
[Effect of long-term fertilizing regime on soil microbial diversity and soil property].
Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan
2014-03-04
To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.
Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.
2013-01-01
Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773
Urea fertilizer increases growth of 20-year-old, thinned Douglas-fir on poor quality site
Richard E. Miller; Donald L. Reukema
1977-01-01
In 20-year-old, site V Douglas-fir in southwest Washington, fertilizing with nitrogen increased average 5-year diameter and height growth of concurrently released dominant trees by about 85 percent. There was no additional response when phosphorus, potassium, and sulfur were added with the nitrogen fertilizer. Thinning with no other treatment in this moderately stocked...
Cottonwood Response to Nitrogen Related To Plantation Age and Site
B.G. Blackmon
1977-01-01
When applied at plantation age 4,336 kg N/ha increased diameter growth of cottonwood on Sharkey clay by 33 percent over unfertilized controls. Fertilizing at ages 2 and 3 resulted in no response, nor was there any benefit from applying nitrogen fertilizer to cottonwood on Commerce silt loam. On both sites, foliar N levels were increased by fertilization regardless of...
Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands
NASA Technical Reports Server (NTRS)
Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.
1991-01-01
Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.
Influence of fertilizer on seed production in Allegheny hardwood stands
John C. Bjorkbom; L.R. Auchmoody; Donald E. Dorn
1979-01-01
Fertilizers applied in spring can stimulate production of black cherry and red maple seeds in Allegheny hardwood stands. Increased seed production begins in the year after application, but lasts only about 2 years. However, fertilizers do not increase seed production of individual black cherry trees that have a history of poor production, and they do not eliminate seed...
USDA-ARS?s Scientific Manuscript database
Agricultural N fertilization is the dominant driver of increasing atmospheric nitrous oxide (N2O) concentrations over the past half century, yet there is considerable uncertainty in estimates of N2O emissions from agriculture. Such estimates are typically based on the amount of N applied and a ferti...
Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands
NASA Astrophysics Data System (ADS)
Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.
1991-03-01
Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.
Dry period management and optimization of post-partum reproductive management in dairy cattle.
Gumen, A; Keskin, A; Yilmazbas-Mecitoglu, G; Karakaya, E; Wiltbank, Mc
2011-09-01
Dry period and early post-partum management are decisive factors for fertility in lactating dairy cows. Previous studies have shown that decreased dry matter intake (DMI) and increased non-esterified fatty acids (NEFA) negatively affect fertility and subsequent milk production. The traditional dry period decreases DMI prior to parturition, resulting in a decrease in energy intake. A negative energy balance increases NEFA concentration, and increased NEFA may impair the immune system, especially by decreasing neutrophil function prior to parturition. Earlier studies have shown that post-partum health disorders, including retained placenta and metritis, were correlated with periparturient neutrophil function. In addition, decreased DMI is also linked to a reduced body condition score (BCS) in dairy cows. These events in the periparturient period negatively affect fertility. Some manipulation, such as shortening the dry period, may be a solution to increased DMI in the periparturient period, preventing post-partum disorders and subsequent fertility issues. This article aims to explain the effects of shortening the dry period on reproduction and early post-partum treatments to improve fertility. In addition, timed artificial insemination protocols will be discussed for use during the post-partum period to improve fertility in dairy cows. © 2011 Blackwell Verlag GmbH.
Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer.
Aqueel, Muhammad A; Raza, Abu-bakar M; Balal, Rashad M; Shahid, Muhammad A; Mustafa, Irfan; Javaid, Muhammad M; Leather, Simon R
2015-12-01
Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (F.) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence of parasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan
2015-01-01
The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions. © 2014 John Wiley & Sons Ltd.
Horváth, Akos; Miskolczi, Edit; Mihálffy, Szilvia; Osz, Katalin; Szabó, Krisztián; Urbányi, Béla
2007-06-01
Experiments were carried out on the cryopreservation of common carp (Cyprinus carpio) sperm in order to test the suitability of using 1.2 and 5 ml straws and to investigate the ploidy of malformed larvae found among the hatched progeny. In the first set of experiments, the effect of freezing time was investigated on the hatch rate of embryos. The highest hatch rate for 1.2 ml straws was 69+/-16% at the freezing time of 4 min, and 39+/-27% for 5 ml straws at 5 min. In the second set, the effect different egg volumes fertilized with one straw of sperm on the hatch rate and the rate of malformed larvae was investigated. The highest hatch rate with 1.2 ml straws (86+/-12%) was observed when 10 g of eggs were fertilized with one straw, whereas with 5 ml straws the hatch rate was highest (65+/-18%) when 40 g of eggs were fertilized. The highest rate of malformed larvae (15+/-9%) was found in the control, whereas the highest rate of malformed larvae among the groups fertilized with cryopreserved sperm (13+/-7%) was found in the 1x dose group fertilized with 5 ml straw. The chromosome numbers of malformed larvae were investigated and haploids were found among those hatched from eggs fertilized with cryopreserved sperm whereas only diploids were found in the controls.
Qasim, Bashar; Motelica-Heino, Mikael; Bourgerie, Sylvain; Gauthier, Arnaud; Morabito, Domenico
2015-12-01
This study aimed at assessing the effect of nitrogen addition under two forms, nitrate and ammonium, on the stabilization of Zn, Pb, and Cd by Populus euramericana Dorskamp grown in contaminated soils for 35 days under controlled conditions. Temporal changes in the soil pore water (SPW) were monitored for pH, dissolved organic carbon (DOC), and total dissolved concentrations of metals in the soils rhizosphere. Rhizospheric SPW pH decreased gradually with NH4(+) addition and increased with NO3(-) addition up to one unit, while it slightly decreased initially then increased for the untreated control soil DOC increased with time up to six times, the highest increase occurring with NH4(+) fertilization. An increase in the metal concentrations in the rhizospheric SPW was observed for NH4(+) addition associated with the lowest rhizospheric SPW pH, whereas the opposite was observed for the control soil and NO3(-) fertilization. Fertilization did not affect plant shoots or roots biomass development compared to the untreated control (without N addition). Metals were mostly accumulated in the rhizosphere and N fertilization increased the accumulation for Zn and Pb while Cd accumulation was enhanced for NH4(+) addition. Collectively, our results suggest metal stabilization by P. euramericana Dorskamp rhizosphere with nitrogen fertilization and are potential for phytostabilization of contaminated technosol.
Effect of windrow management on ammonia and nitrous oxide emissions from swine manure composting
USDA-ARS?s Scientific Manuscript database
Utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal ...
Agricultural Supplies and Services. Program Planning Guide: Volume 2.
ERIC Educational Resources Information Center
Welton, Richard; Marks, Michael
The program planning guide for agricultural supplies and services was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of agricultural chemicals, feeds, seeds, fertilizers, and…
1980-12-01
medicinal chemicals, botanical products and pharmaceutical pre- parat ions) -3- 2841 Soap, detergents, and cleaning preparation; perfumes , cos- metics...dcecylbenzene Higher alkylbenzenes, nec. Cyclohexane Toluene DII socyanates Phthalic acid and anhydrides Dimethyl terephthalate Ethylbenzene Tetrahydrofuran
TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST/ZVI PRB
A pilot permeable reactive barrier (PRB) consisting of a mixture of 30% yard waste compost, 20% zero-valent iron (ZVI), 5% limestone and 45% pea gravel by volume was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The pilo...
Economic development and family size.
Rios, R J
1991-01-01
The demographic transition in Latin America has resulted in increased family size rather than the Western European model of reduced family size. In 1905, both fertility and mortality were high in Latin America, but mortality declined more rapidly in Latin America than in Europe. In 1905, the crude birth rate for 15 selected countries averaged 44/1000 population. Western fertility at a comparable transition point was much lower at 30/1000. Between 1905 and 1960, fertility declines were evident in Uruguay, Argentina, Cuba, and Chile. Between 1960 and 1985, fertility declines appeared in Costa Rica, Panama, Brazil, and Colombia. Fertility declines were smaller in the other Latin American countries. Crude birth rates declined markedly by 1985 but may overestimate fertility decline, which is more accurately measured by standardized birth rates. Fertility decline was evident in Argentina, Chile, and Costa Rica for standardized birth rates, survivorship ratio, and births surviving past the age of 15 years. Theoretically, families are expected to reduce family size when survivorship is assured; when mortality is 25%, only four children need be planned instead of six when mortality is 50%. A result of falling mortality is a cheaper cost of producing children, which may stimulate parents to raise bigger families. Western fertility decline has been attributed to mortality decline, urbanization, increased female labor force participation, rising wages, and more efficient contraception. Comparable economic development in Latin America has not resulted in large enough changes to encourage family size limitation. A table of fertility and economic indicators for selected countries in Latin America and Europe reflects the inverse relationship between income growth, urban growth, and growth in female educational status and fertility. The regression equation explains 60% of the variation in fertility rates among Latin American countries. Explanatory power increases to 75% when female high school enrollment is added to per capita gross national product. Fertility declines in Latin America in the future will be dependent on economic development, educational advancement for women, and a reduction in rural population.
Sakatani, Miki; Yamanaka, Kenichi; Balboula, Ahmed Z; Takenouchi, Naoki; Takahashi, Masashi
2015-01-01
Low pregnancy rates during the summer are due, in part, to reduced fertilization. Given that elevated temperature is associated with this season, we investigated the effect of heat stress during fertilization using an in vitro model. Three experiments were performed to determine the mechanism by which exposure to elevated temperature disrupts fertilization. Oocytes were fertilized for 6 hr at 38.5°C or 41.0°C or 40.0°C with non-pre-incubated sperm, or for 6 hr at 38.5°C with sperm that had been pre-incubated at 38.5°C or 41.0°C for 4 hr. In each experiment, zygotes were cultured at 38.5°C in 5% CO(2) and 5% O(2). Rates of cleavage and blasocyst formation were reduced when fertilization occurs at elevated temperatures. The percent of sperm classified as alive, using fluorescein diacetate labeling, was decreased by pre-incubation and fertilization at 40.0°C. Although no difference was observed in sperm penetration rate, polyspermy tended to be increased by heat stress during fertilization. The zona pellucidae of zygotes formed following fertilization at 40.0°C for 6 hr were more sensitive to digestion with pronase. Furthermore, these zygotes exhibited higher hydrogen peroxide levels, measured by 2,7-dihydrodichlorofluorescein diacetate staining, and showed increased transcript abundance for HSPA1A, a gene involved in the heat-shock response, but decreased transcript abundance for UCHL1, a gene involved in preventing polyspermy. Results indicate that heat stress during fertilization is lethal to sperm, and causes oxidative stress, altered transcript abundance, and a defective block to polyspermy in the zygote. Thus, an increase in polyspermy is likely one cause of the reduced competency of zygotes fertilized under elevated temperatures to develop to the blastocyst stage. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tian, H.; Lu, C.
2016-12-01
In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. In this study, we therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (p< 0.05) during 1961-2013, which may have important global implication of human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.
NASA Astrophysics Data System (ADS)
Lu, Chaoqun; Tian, Hanqin
2017-03-01
In addition to enhancing agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically alters global nutrient budget, water quality, greenhouse gas balance, and their feedback to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system and land surface modeling studies have to ignore or use oversimplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long periods. In this study, we therefore develop global time series gridded data of annual synthetic N and P fertilizer use rate in agricultural lands, matched with HYDE 3.2 historical land use maps, at a resolution of 0.5° × 0.5° latitude-longitude during 1961-2013. Our data indicate N and P fertilizer use rates on per unit cropland area increased by approximately 8 times and 3 times, respectively, since the year 1961 when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) surveys of country-level fertilizer input became available. Considering cropland expansion, the increase in total fertilizer consumption is even larger. Hotspots of agricultural N fertilizer application shifted from the US and western Europe in the 1960s to eastern Asia in the early 21st century. P fertilizer input shows a similar pattern with an additional current hotspot in Brazil. We found a global increase in fertilizer N / P ratio by 0.8 g N g-1 P per decade (p < 0.05) during 1961-2013, which may have an important global implication for human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global models to assess the impacts of nutrient enrichment on climate system, water resources, food security, etc. Datasets available at doi:10.1594/PANGAEA.863323.
[Phosphorus use efficiency of wheat on three typical farmland soils under long-term fertilization].
Gao, Jing; Zhang, Shu-xiang; Xu, Ming-gang; Huang, Shao-min; Yang, Xue-yun
2009-09-01
Field experiments were conducted on three typical farmland soils (loess soil, fluvo-aquic soil, and cinnamon fluvo-aquic soil) in Northern China to study the grain yield, phosphorus agronomic efficiency (PAE), and phosphorus use efficiency (PUE) of wheat under effects of long-term fertilizations. Seven treatments were installed, i.e., non-fertilization (CK), nitrogen fertilization (N), nitrogen-potassium fertilization (NK), nitrogen-phosphorus fertilization (NP), nitrogen-phosphorus-potassium fertilization (NPK), NPK plus straw returning (NPKS), and NPK plus manure application (NPKM). The averaged wheat grain yields under long-term P fertilizations (treatments NP, NPK, NPKS, and NPKM) ranged from 2914 kg x hm(-2) to 6219 kg x hm(-2), being 200%-400% higher than those under no P fertilizations (treatments CK, N, and NK), and no significant differences were observed between the P fertilizations. In the early years of the experiment, the PAE in treatment NPK on the loess soil, fluvo-aquic soil, and cinnamon fluvo-aquic soil was 17.0 kg x kg(-1), 20.3 kg x kg(-1), and 13.3 kg x kg(-1), and the PUE was 15.3%, 31.2%, and 23.8%, respectively. After 15-year fertilization, the PAE and PUE in treatment NPK increased annually by 3.9 kg x kg(-1) and 1.3% on loess soil, 2.5 kg x kg(-1) and 0.9% on fluvo-aquic soil, and 2.8 kg x kg(-1) and 1.0% on cinnamon fluvo-aquic soil, respectively. There were no significant differences in the PAE and PUE among the P treatments for the same soils. In Northern China, long-term P fertilization could increase the wheat grain yield and PUE significantly, and the mean annual increase of PAE and PUE in treatment NPKM was higher on loess soil than on fluvo-aquic soil and cinnamon fluvo-aquic soil.
Liu, Xiaowei; Wang, Huoyan; Zhou, Jianmin; Hu, Fengqin; Zhu, Dejin; Chen, Zhaoming; Liu, Yongzhe
2016-01-01
High N loss and low N use efficiency (NUE), caused by high N fertilizer inputs and inappropriate fertilization patterns, have become important issues in the rice (Oryza sativa L.) growing regions of southern China. Changing current farmer fertilizer practice (FFP, 225 kg ha–1 N as three applications, 40% as basal fertilizer, 30% as tillering fertilizer and 30% as jointing fertilizer) to one—time root—zone fertilization (RZF, 225 kg ha–1 N applied once into 10 cm deep holes positioned 5 cm from the rice root as basal fertilizer) will address this problem. A two—year field experiment covering two rice growing regions was conducted to investigate the effect of urea one—time RZF on rice growth, nutrient uptake, and NUE. The highest NH4+–N content for RZF at fertilizer point at 30 d and 60 d after fertilization were 861.8 and 369.9 mg kg–1 higher than FFP, respectively. Rice yield and total N accumulation of RZF increased by 4.3–44.9% and 12.7–111.2% compared to FFP, respectively. RZF reduced fertilizer—N loss by 56.3–81.9% compared to FFP. The NUEs following RZF (mean of 65.8% for the difference method and 43.7% for the labelled method) were significantly higher than FFP (mean of 35.7% for the difference method and 14.4% for the labelled method). In conclusion, RZF maintained substantial levels of fertilizer—N in the root—zone, which led to enhanced rice biomass and N uptake during the early growth stages, increased fertilizer—N residual levels and reduced fertilizer—N loss at harvest. RZF produced a higher yield increment and showed an increased capacity to resist environmental threats than FFP in sandy soils. Therefore, adopting suitable fertilizer patterns plays a key role in enhancing agricultural benefits. PMID:27861491
Recent trends in fertility in Botswana.
Diamond, I; Rutenberg, N
1995-01-01
The argument is made that fertility decline in rural Botswana during the 1980s could be a response to the extremely harsh economic conditions resulting from the sustained drought. The drought may have contributed to greater separation of spouses and increased the openness of the population to integrated maternal and child health (MCH) and family planning programs. Migration to urban areas was accompanied by housing shortages, which occurred because of a moratorium on construction to conserve water and crowding that could have reduced urban fertility. Supplementary feeding programs for children aged under five years were only available at MCH centers. The impact of the drought on men's resources may have reduced available resources for paying "bogadi" and thus delayed childbearing and marriage. Agricultural relief programs may have contributed to men's longer stays on arable land and thus delayed marriage. Women in female headed households, which are large in number in Botswana, and unmarried women may have chosen to adopt contraception due to limited resources for supporting children. Period declines in fertility are described. The total fertility rate is 4.9 children per woman, and cumulative fertility among women aged 45-49 is only 5.8, which suggests the presence of a fertility decline in Botswana. Knowledge and awareness of modern methods of contraception is high (95%), as is unmet need for contraception. 45% of women in union desired a delay or a stop to childbearing. Trends suggest a further decline in births to 4.5 within five years. High rates of teenage pregnancy and discontinued schooling are trends which suggest higher or sustained high fertility. Family life education in schools has not yet had an impact on fertility. High fertility may be maintained by the high proportion of visiting unions and a high ideal family size. Contraceptive use has increased, but discontinuation rates are also high. Reduced migration to South Africa could increase fertility due to the reuniting of couples. Future declines in fertility are considered to be dependent upon the success of the family planning program.
Female employment reduces fertility in rural Senegal.
Van den Broeck, Goedele; Maertens, Miet
2015-01-01
Economic growth and modernization of society are generally associated with fertility rate decreases but which forces trigger this is unclear. In this paper we assess how fertility changes with increased labor market participation of women in rural Senegal. Evidence from high-income countries suggests that higher female employment rates lead to reduced fertility rates but evidence from developing countries at an early stage of demographic transition is largely absent. We concentrate on a rural area in northern Senegal where a recent boom in horticultural exports has been associated with a sudden increase in female off-farm employment. Using survey data we show that employed women have a significantly higher age at marriage and at first childbirth, and significantly fewer children. As causal identification strategy we use instrumental variable and difference-in-differences estimations, combined with propensity score matching. We find that female employment reduces the number of children per woman by 25%, and that this fertility-reducing effect is as large for poor as for non-poor women and larger for illiterate than for literate women. Results imply that female employment is a strong instrument for empowering rural women, reducing fertility rates and accelerating the demographic transition in poor countries. The effectiveness of family planning programs can increase if targeted to areas where female employment is increasing or to female employees directly because of a higher likelihood to reach women with low-fertility preferences. Our results show that changes in fertility preferences not necessarily result from a cultural evolution but can also be driven by sudden and individual changes in economic opportunities.
Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan
2016-03-23
Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.
Female Employment Reduces Fertility in Rural Senegal
2015-01-01
Economic growth and modernization of society are generally associated with fertility rate decreases but which forces trigger this is unclear. In this paper we assess how fertility changes with increased labor market participation of women in rural Senegal. Evidence from high-income countries suggests that higher female employment rates lead to reduced fertility rates but evidence from developing countries at an early stage of demographic transition is largely absent. We concentrate on a rural area in northern Senegal where a recent boom in horticultural exports has been associated with a sudden increase in female off-farm employment. Using survey data we show that employed women have a significantly higher age at marriage and at first childbirth, and significantly fewer children. As causal identification strategy we use instrumental variable and difference-in-differences estimations, combined with propensity score matching. We find that female employment reduces the number of children per woman by 25%, and that this fertility-reducing effect is as large for poor as for non-poor women and larger for illiterate than for literate women. Results imply that female employment is a strong instrument for empowering rural women, reducing fertility rates and accelerating the demographic transition in poor countries. The effectiveness of family planning programs can increase if targeted to areas where female employment is increasing or to female employees directly because of a higher likelihood to reach women with low-fertility preferences. Our results show that changes in fertility preferences not necessarily result from a cultural evolution but can also be driven by sudden and individual changes in economic opportunities. PMID:25816301
Effects of nutrient loading on the carbon balance of coastal wetland sediments
Morris, J.T.; Bradley, P.M.
1999-01-01
Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.
Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops
NASA Astrophysics Data System (ADS)
Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.
2010-12-01
Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at moderate levels (67 kg N ha-1). Increasing fertilizer application beyond the point of diminishing returns for grain (67 kg N ha-1) to double the regionally-recommended amount (202 kg N ha-1) resulted in only marginal increases (25%) in crop residue carbohydrate yield, while increasing lignin yields 41%. In the case of at least this ecosystem, high fertilization rates did not result in large carbohydrate yield increases in the crop residue, and instead produced a lower quality feedstock for cellulosic ethanol production.
Simple and Effective Methods of Freezing Capercaillie (Tetrao urogallus L.) Semen
Kowalczyk, Artur; Łukaszewicz, Ewa
2015-01-01
A continuous decline in the number and range of capercaillie (Tetrao urogallus L.) in many European countries can be observed, mostly due to habitat destruction by human activity, unecological forestry management, and increased density of natural predators. Ex situ in vitro gene banks provide a unique opportunity to preserve the genetic material for future generations. Simple and effective cryopreservation methods for capercaillie semen are discussed. Semen was collected from seven males kept in the Capercaillie Breeding Centre at Forestry Wisła in Poland. Within five minutes after collection, ejaculates were diluted with EK diluent, then divided into two parts, and subjected to two freezing procedures: in pellets and in straws. In fresh semen, ejaculate clearness, viscosity, color and volume, as well as sperm concentration, motility and morphology, were evaluated, while in frozen-thawed semen only motility and morphology of sperm were determined. Fertilizing ability of thawed semen was examined for samples frozen in straws. Significant (P<0.05) differences between individual males were found in relation to the majority of fresh semen traits: ejaculate volume averaged 102.1 µL (varying from 49.0 to 205.0); average sperm concentration was 632.5 x106 mL-1 (178.8–1257.1); percentage of live normal cells varied from 39.2 to 70.3% (58.7% on an average); percentage of motile cells ranged from 76.0 to 85.7%) and motility parameters were male dependent, as well. Both cryopreservation methods had a negative effect on morphology and motility of frozen-thawed semen; however, the straw method yielded 60.7% and the pellet method 42.5% of live cells in total in thawed semen (P<0.05), while the number of live normal (intact) cells was similar (22.4 and 22.2%, respectively). Egg fertility varied between 77.8 and 91.7% (average 84.4%). Both freezing procedures seem to be effective in obtaining acceptable viability and high fertilizing potency of thawed sperm and can be used to create a gene bank of capercaillie semen. PMID:25615640
NASA Astrophysics Data System (ADS)
Chen, B.; Black, T. A.; Jassal, R.; Nesic, Z.; Bruemmer, C.
2008-05-01
Nitrogen (N) additions to forest have shown variable effects on both respiration and photosynthesis. With increasing rates of anthropogenic N deposition, there is a strong need to understand the ecosystem response to N inputs. We investigated how N fertilization affects the ecosystem carbon (C) balance of a 57-year-old coast Douglas-fir stand in British Columbia, Canada, based on eddy-covariance (EC) and soil-chamber (fertilized and control plots) measurements and process-based modeling. The stand was fertilized by helicopter with urea at 200 kg N ha-1 in January 2007. A land surface model (Ecosystem Atmosphere Simulation Scheme, EASS) was combined with an ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS) and a coupled C and N subroutine was incorporated into the integrated EASS-BEPS model in this study. This half-hourly time step model was run continuously for the period from 2001 to 2007 in two scenarios: with and without fertilization. Modeled C fluxes without fertilization [net ecosystem productivity (NEP), gross primary productivity (GPP), ecosystem respiration (Re) and belowground respiration (Rs)] agreed well with EC and soil chamber measurements over diurnal, seasonal and annual time scales for 2001 to 2006; while simulated NEP, GPP, Re and Rs with fertilization reasonably followed EC and chamber measurements in 2007 (545 vs. 520, 2163 vs. 2155, 1618 vs. 1635, and 920 vs. 906 g C m-2 yr-1, respectively). Comparison of EC-determined C fluxes in 2007 with model simulations without fertilization suggests that annual Re decreased by 6.7% (1635 vs. 1752 g C m-2), gross primary productivity (GPP) increased by 6.8% (2155 vs. 2017 g C m-2), and annual NEP increased by 96.2% (520 vs. 265 g C m-2) due to fertilization. The modeled reduction in Rs (9.6%, comparing modeled values without and with fertilization: 1008 vs. 920 g C m-2 yr-1) is consistent with that measured using the soil chambers (~11.5%, comparing CO2 effluxes from control and fertilized plots measured from late summer to fall). The model also indicated that the effect of fertilization on aboveground (leaf and stem) respiration was very small. These experimental and modeling results suggest N fertilization significantly increased NEP mainly as a result of strongly reduced Rs (~10-12%) and moderately enhanced GPP (~6.8%) in the first year after fertilization.
Fertilization of black spruce or poor site peatland in Minnesota.
David H. Alban; Richard F. Watt
1981-01-01
Fertilization of poor site black spruce on organic soil with various rates of nitrogen and phosphorus increased height and diameter growth from 2 to 4 times. The growth response declined with time but was still apparent 16 years after fertilization. Shrub biomass and coverage, and nutrient levels of spruce foliage were strongly affected by fertilization.
Stream Chemistry After An Operational Fertilizer Application in the Ouachita Mountains
Hal O. Liechty; Jami Nettles; Daniel A. Marion; Donald J. Turton
1999-01-01
The amount of forested land annually fertilized in the southern United States has increased rapidly in the past 10 years. Although forest growth responses to fertilizer are fairly well understood, knowledge concerning the effects of fertilization on stream chemistry and health in this region is limited. To better understand the potential changes in stream chemistry...
Spatial distribution of ammonium and calcium in optimally fertilized pine plantation soils
Ivan Edwards; Andrew Gillespie; Jennifer Chen; Kurt Johnsen; Ronald Turco
2005-01-01
Commercial timber production is increasingly reliant on long-term fertilization to maximize stand productivity, yet we do not understand the extent to which this practice homogenizes soil properties. The effects of 16 yr of optimal fertilization and optimal fertilization with irrigation (fertigation) on forest floor depth, pH, total organic carbon (TOC) and total...
The Prevalence and Correlates of Multipartnered Fertility among Urban U.S. Parents
ERIC Educational Resources Information Center
Carlson, Marcia J.; Furstenberg, Frank F., Jr.
2006-01-01
Recent trends in marriage and fertility have increased the number of adults having children by more than 1 partner, a phenomenon that we refer to as multipartnered fertility. This article uses data from the Fragile Families and Child Wellbeing Study to examine the prevalence and correlates of multipartnered fertility among urban parents of a…
NASA Astrophysics Data System (ADS)
Liang, F.; Li, J.; Xu, M.; Huang, S.
2017-12-01
Soil organic carbon (SOC) storages are altered under long-term fertilization in croplands, it however remains unclear how fast- to slow-cycling SOC fractions each respond to fertilization practices. Based on five two-decade Chinese long-term fertilization experiments (GZL: Gongzhuling; ZZ: Zhengzhou; CQ: Chongqing; JX: Jinxian; QY: Qiyang) under three fertilization treatments (CK: cropping with no fertilizer input; NPK: chemical nitrogen, phosphorus and potassium fertilizers; and NPKM: NPK with manure input), we quantified very labile, labile, non-labile and total SOC stocks at 0-20cm soil depth. Results showed that SOC stocks varied among sites (GZL, JX, CQ > ZZ, QY) and generally increased with fertilizations (CK-1 at ZZ, GZL, QY, CQ and JX, respectively. The corresponding changes of the sum of very labile and labile SOC fractions were 2.6, 2.0, 1.8, 0.8 and -0.5 Mg ha-1 at ZZ, QY, GZL, CQ and JX, respectively. Also, NPKM increased total SOC stock by 18.3, 16.2, 14.4, 10.5, and 6.5 Mg ha-1 at QY, GZL, ZZ, CQ and JX, respectively. The corresponding changes of the sum of very labile and labile SOC fractions were 8.6, 6.8, 6.6, 3.2 and -1.6 Mg ha-1 at QY, GZL, ZZ, CQ and JX, respectively. These results suggested that about half or more than half SOC stock accretions under fertilization were induced by increase in non-labile SOC fractions. It thus informs the importance of non-labile SOC fractions in contributing to soil C sequestration under long-term fertilizations in Chinese croplands. Future research should improve our mechanistic understanding of biogeochemical transformation of non-labile organic C in soils.
Is leaf dry matter content a better predictor of soil fertility than specific leaf area?
Hodgson, J. G.; Montserrat-Martí, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B. E. L.; Cornelissen, J. H. C.; Band, S. R.; Bogard, A.; Castro-Díez, P.; Guerrero-Campo, J.; Palmer, C.; Pérez-Rontomé, M. C.; Carter, G.; Hynd, A.; Romo-Díez, A.; de Torres Espuny, L.; Royo Pla, F.
2011-01-01
Background and Aims Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? Methods SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Key Results Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Conclusions Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended. PMID:21948627
LaHue, Gabriel T; van Kessel, Chris; Linquist, Bruce A; Adviento-Borbe, Maria Arlene; Fonte, Steven J
2016-09-01
Agricultural N fertilization is the dominant driver of increasing atmospheric nitrous oxide (NO) concentrations over the past half-century, yet there is considerable uncertainty in estimates of NO emissions from agriculture. Such estimates are typically based on the amount of N applied and a fertilizer-induced emission factor (EF), which is calculated as the difference in emissions between a fertilized plot and a zero-N control plot divided by the amount of N applied. A fertilizer-induced EF of 1% is currently recognized by the Intergovernmental Panel on Climate Change (IPCC) based on several studies analyzing published field measurements of NO emissions. Although many zero-N control plots used in these measurements received historical N applications, the potential for a residual impact of these inputs on NO emissions has been largely ignored and remains poorly understood. To address this issue, we compared NO emissions under laboratory conditions from soils sampled within zero-N control plots that had historically received N inputs versus soils from plots that had no N inputs for 20 yr. Historical N fertilization of zero-N control plots increased initial NO emissions by roughly one order of magnitude on average relative to historically unfertilized control plots. Higher NO emissions were positively correlated with extractable N and potentially mineralizable N. This finding suggests that accounting for fertilization history may help reduce the uncertainty associated with the IPCC fertilizer-induced EF and more accurately estimate the contribution of fertilizer N to agricultural NO emissions, although further research to demonstrate this relationship in the field is needed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ma, Mingchao; Jiang, Xin; Wang, Qingfeng; Ongena, Marc; Wei, Dan; Ding, Jianli; Guan, Dawei; Cao, Fengming; Zhao, Baisuo; Li, Jun
2018-03-23
How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Is leaf dry matter content a better predictor of soil fertility than specific leaf area?
Hodgson, J G; Montserrat-Martí, G; Charles, M; Jones, G; Wilson, P; Shipley, B; Sharafi, M; Cerabolini, B E L; Cornelissen, J H C; Band, S R; Bogard, A; Castro-Díez, P; Guerrero-Campo, J; Palmer, C; Pérez-Rontomé, M C; Carter, G; Hynd, A; Romo-Díez, A; de Torres Espuny, L; Royo Pla, F
2011-11-01
Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.
Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu
2016-06-01
Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Schaap, Bryan D.
1999-01-01
Nitrogen fertilizer sales in Iowa have been higher in recent years than during the mid- 1970’s. This suggests that nitrate concentrations in water from well 9 may persist at present levels or could increase in future years if fertilizer use increases and if higher nitrate concentrations are directly related to higher nitrogen fertilizer use.
Ryosuke Fujinuma; Nick J. Balster; Hyung-Kyung. Lee
2011-01-01
Controlled-release fertilizer (CRF) typically increases nitrogen (N) fertilizer uptake and lowers N lost from the rooting zone via leaching. However, questions remain as to whether lower rates of CRF could further increase this efficiency, especially in sandy bare-root nurseries in Wisconsin. We hypothesized that: 1) a reduced CRF application at 60 percent of the...
NASA Astrophysics Data System (ADS)
Dogaru, Diana
2016-04-01
Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies/institutes, providing the data at fine resolutions. The increased irrigated area was accounted according to the reported increased percentages of the irrigated area out of the total area equipped for irrigation, as an expected outcome of public irrigation systems rehabilitation schemes (MADR, 2011), while the optimum Nitrogen fertilizer rates for wheat and maize were established according to several field experiments made on irrigated and rain-fed wheat and maize plots in south Romania (Hera and Borlan, 1980). The effects of such farming measures on yields were compared to a baseline condition given by actual irrigated area and fertilization rates. The preliminary results show that potential gains in CWP could be obtained through improved fertilizer management and water allocation in winter wheat cropping systems, particularly in the dry periods, while in maize cropping systems CWP is more sensitive to water than to optimum fertilization rates. Irrigation water supply increases the stability of yields in both cropping systems, although regional differences can be observed across the study area, thus augmenting the relevance and the need for investigations on sustainable use of irrigation water in Romania. As such, this study could represent an information base for further analyses on yield potential under current and future climatic conditions, on impacts of land use patterns and farming practices on crop production in Romania, etc. Keywords: agricultural water use, crop water productivity, irrigation water, GEPIC, Romania References: Molden, D.J., Sakthivadivel, R., Perry, C.J., de Fraiture, C., Kloezen, W.H. (1998). Indicators for comparing performance of irrigated agricultural systems, Research Report 20, IWMI: Colombo, Sri Lanka. Sandu, I., Mateescu E. (2014). Current and prospective climate changes in Romania (in Romanian), in vol. Climate change: a major challenge for research in agriculture (ed. Saulescu, N.), Romanian Academy Publishing House, 17-36. Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A. (1989). The EPIC crop growth model. Trans. ASAE 32 (2), 497-511. Liu, J. (2009). A GIS-based tool for modelling large-scale crop-water relations, Environmental Modelling & Software, 24, 411-422. MADR (Ministry of Agriculture and Rural Development), (2011). Rehabilitation and reform in the irrigation sector. Strategy of investment in the irrigation sector (in Romanian), Fidman Merk at., Bucharest, http://old.madr.ro/pages/strategie/strategie-investitii-irigatii.pdf. Hera, C., Borlan, Z. (1980). Guide for fertilization planning (in Romanian), 2nd edition, CERES Publishing House, Bucharest, Romania, 341p.
Bukovsky, Antonin
2015-02-25
In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation of tissue stem cells. If needed, small blood volume replacement from distinct young healthy individuals could be utilized in six month intervals for repair of young altered or aged reproductive and other tissue functions. Systemic and local use of honey bee propolis tincture is an alternative option for functional rejuvenation of some tissues.
Meier, Elizabeth A; Thorburn, Peter J
2016-01-01
The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha(-1) per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level.
Mahdavi-Arab, Nafiseh; Meyer, Sebastian T.; Mehrparvar, Mohsen; Weisser, Wolfgang W.
2014-01-01
Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant’s growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both perspectives in plant herbivore interactions and characterize the effects of growth conditions on plant and herbivore performance and their respective feedbacks. PMID:25078980
Zhang, Peng Peng; Liu, Yan Jie; Pu, Xiao Zhen; Zhang, Guo Juan; Wang, Jin; Zhang, Wang Feng
2016-11-18
To reveal the regulation mechanisms of agricultural management practices on soil organic carbon (SOC) pools and provide scientific basis for improving soil productivity and formulating agricultural fixed carbon and reducing discharge measures, we monitored the changes of SOC pools and organic carbon fractions in an oasis cotton field under different residue management and fertilizer application modes. A split-plot experimental design was used with differing residue management including residue incorporation (S) and residue removing (NS) in the main plots and differing fertilizer application modes including no fertilizer (CK), NPK fertilizer (NPK), organic manure (OM) and NPK fertilizer plus organic manure (NPK+OM) in the subplot. The results showed that fertilization and residue incorporation significantly increased SOC pool, soil organic carbon (C T ), labile carbon (C L ), microbial biomass carbon (C MB ), water-soluble organic carbon (C WS ), hot-water-soluble organic carbon (C HWS ), accumulative amount of soil organic carbon mineralization (C TM ) and carbon management index (CMI). The SOC pool was increased by 20.6% by residue incorporation compared to residue removing. SOC pools were increased by 7.8%, 29.5% and 37.7% in NPK, OM and NPK+OM treatments compared to CK, respectively. The contents of C T , C L , C MB , C WS and C HWS under different fertilization treatments were shown as NPK+OM>OM>NPK>CK. C TM was increased by 5.9% by residue incorporation compared to residue removing and C TM was increased by 32.7%, 59.5% and 97.3% in NPK, OM and NPK+OM treatments compared to CK, respectively. There was a significant correlation between CMI and C T , C MB , C L , C WS , C HWS , C TM , C pool and C sequestration. Therefore, we concluded that CMI is an important index for evaluating the effect of agricultural management practices on soil quality. In order to construct high-standard oasis farmland in arid region and develop cotton production, we should consider adopting reasonable agricultural management practices (i.e. combining residue incorporation with NPK fertilizer plus organic manure), which could increase the content of SOC, organic carbon fractions and soil fertility, promote soil carbon sequestration, and help the efficient use of agricultural resources and sustainable deve-lopment.
Development of the gravity-sensing organs in the Japanese red-bellied newt, Cynops pyrrhogaster
NASA Technical Reports Server (NTRS)
Wiederhold, Michael L.; Yamashita, Masamichi; Asashima, Makoto
1992-01-01
Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, schedule for 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoliths). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development would be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which the otoliths and their associated sensory epithelium appear and increase in size. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 40 demonstrate the first appearance, relative position and growth of the otoliths. In adult newts, the otoconia in the utricle appear similar to mammalian otoconia, which are composed of calcite. The newt saccular otoconia are at least 99% aragonite, as is found in most aquatic species. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least the utricular weight might be regulated.
Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease.
Dooley, Mary Anne; Nair, Raj
2008-05-01
Cyclophosphamide remains a necessary treatment for severe rheumatic diseases, despite the continued search for alternative therapies with less gonadal toxicity. The risk of premature gonadal failure and sterility might lead young patients to delay treatment with cyclophosphamide. The patient's age at treatment and the cumulative dose received remain important risk factors for cyclophosphamide-induced gonadal failure in both males and females. Estrogen-containing oral contraceptives for females and testosterone for males are suggested to reduce the gonadal toxicity of cyclophosphamide, although few studies support these interventions. Owing to increased side effects, hormonal therapy is often avoided in patients with edema, hypertension, nephrotic syndrome or antiphospholipid antibodies. Agonists and antagonists of gonadotropin receptors are under study. Gonadotropin-receptor agonists might have beneficial effects in addition to suppression of sex-hormone production. The outcome of attempted cryopreservation of eggs, embryos or ovaries remains uncertain for women seeking to preserve their reproductive potential. Storing male gametes before chemotherapy is widely practiced and technically successful. As recovery of menses or production of testosterone does not predict individual fertility, identification of biomarkers of gonadal function and reserve, including serum levels of several hormones, ultrasonographic measurements of ovarian volume and antral follicle count, are necessary.
Formation of otoconia in the Japanese red-bellied newt, Cynops pyrrhogaster
NASA Technical Reports Server (NTRS)
Wiederhold, M. L.; Yamashita, M.; Larsen, K.; Asashima, M.
1994-01-01
Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, in 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoconia). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development might be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which both the otoliths and their associated sensory epithelium and the semicircular canals appear and develop. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 58 demonstrate the first appearance, relative position and growth of the otoliths. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least in the utricle, the weight of the otolith might be regulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, E.
1994-12-01
The global distribution of nitrogen input via application of chemical nitrogenous fertilizers to agricultural ecosystems is presented. The suite of 1{degrees} (latitude/longitude) resolution data bases includes primary data on fertilizer consumption, as well as supporting data sets defining the distribution and intensity of agriculture associated with fertilizer use. The data were developed from a variety of sources and reflect conditions for the mid-1980s. East Asia, where fertilizer use is increasing at {approximately}10%/year, accounted for {approximately}37% of the total, while North America and western Europe, where fertilizer use is leveling off, accounted for 40% of the world`s total in the mid-1980s.more » While almost every country consumes urea, {approximately}75% of the large East Asian fertilizer use is supplied by this one fertilizer. Ammonium nitrate, used primarily in the former centrally planned economies of Europe, in West Asia, and in Africa, accounted for about one quarter of global consumption. These data were used to estimate distributions of the annual emission of nitrous oxide (N{sub 2}O) and ammonia (NH{sub 3}) associated with the use of fertilizers. Applying published ranges of emission coefficients for fertilizer types in the data base yields a median emission of 0.1 Tg N{sub 2}O-N, with lower and upper values of 0.03 and 2.0 Tg N{sub 2}O-N in 1984. This equals <1% to {approximately}3% of the total nitrogen applied via commercial fertilizers and represents ,=<1% to 15% of the annual emission of N{sub 2}O from terrestrial sources. Assuming that the {approximately}4% annual increase in consumption of nitrogenous fertilizers during the 1980s corresponds to a {approximately}4% rise in the release of N{sub 2}O-N, yearly increases in emissions from fertilizer use are <0.01 to 0.08 Tg N{sub 2}O-N equal to <1% to 3% of the current growth of atmospheric nitrous oxide. 98 refs., 3 figs., 5 tabs.« less
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff
Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684
Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D
2007-05-01
Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.
Chenniappan, Kuppusamy; Murugan, Kadarkari
2017-12-01
Ionidium suffruticosum (L.) Ging (Violaceae) is an important medicinal plant widely used as a herbal traditional medicine in Ayurveda for the treatment of infertility. Currently, little pharmacological information is available on its male fertility properties following prolonged use. To investigate I. suffruticosum leaf extracts for male fertility parameters. The ethanol lyophilized fraction was administered orally on carbendazim-induced sub-fertility rats (250 mg/kg body weight for 28 days). The effects of fractions on rat's fertility parameters i.e., body and testes weight, sperm motility, sperm vitality, epididymal sperm counts, its morphology, enzyme and antioxidant stress and histopathology were studied and compared with clomiphene citrate. The sub-fertile male rats treated with I. suffruticosum leaf extract increased the body weight of 7 g, testis weight of 97 mg, increased cauda epididymal sperm counts of 34.2 × 10 6 sperm/mL, motility of sperm 46% and vitality 28% also increased and normal sperm morphology also improved up to 32%. The carbendazim-treated group showed loss in body weight of 33 g, testis weight of 851 mg, decreased epididymal sperm counts of 15 × 10 6 sperm/mL, with sluggish motility and a highly significant fall in the live sperms of about 57%. The leaf fraction of I. suffructicosum increased the testicular weight, spermatogenesis, sperm counts, lessened sperm agglutination, and increased testicular oxidative biomarkers, SOD, and CAT. This study therefore supports the usage of I. suffructicosum in traditional medicine for infertility.
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.
Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.
Bhuyan, K C
1996-01-01
This study examines differential fertility in 16 contiguous villages of both Savar and Dhamrai upazila in Dhaka district, Bangladesh. The sample includes 890 couples. Levels of female education were positively correlated with family planning use. 50.6% of housewives with a secondary or higher education used contraception. 59.8% of employed women with a secondary or higher education used contraception. 21.6% of illiterate women used contraception. Fertility declined with an increase in educational level. Child mortality increased fertility regardless of educational level or contraceptive usage. The average number of children ever born differed significantly between contraceptive and noncontraceptive users who did not work. Fertility between working and nonworking women did not differ significantly. Fertility was higher throughout the life cycle among adopters and nonadopters who had husbands that were laborers. Multivariate analysis reveals that fertility was highly significantly affected by duration of marriage and desired number of children. Differences in fertility between working and nonworking individuals was insignificantly related to differences in socioeconomic factors. The impact of socioeconomic factors on the fertility of adopter and nonadopter women was significantly different. Regression findings show that duration of marriage, desired number of children, and spouse's occupation had the strongest impact on fertility. Significant changes in impacts were due to changes in female education and contraceptive usage. Duration of marriage and desired number of children did not have the same level of impact among educated women and illiterate women. Income had a negative effect on the fertility of contraceptive users.
Yin, Chang; Fan, Fenliang; Song, Alin; Cui, Peiyuan; Li, Tingqiang; Liang, Yongchao
2015-07-01
Preferable inorganic fertilization over the last decades has led to fertility degradation of black soil in Northeast China. However, how fertilization regimes impact denitrification and its related bacterial community in this soil type is still unclear. Here, taking advantage of a suit of molecular ecological tools in combination of assaying the potential denitrification (DP), we explored the variation of activity, community structure, and abundance of nirS and nirK denitrifiers under four different fertilization regimes, namely no fertilization control (N0M0), organic pig manure (N0M1), inorganic fertilization (N1M0), and combination of inorganic fertilizer and pig manure (N1M1). The results indicated that organic fertilization increased DP, but inorganic fertilization had no impacts. The increase of DP was mirrored by the shift of nirS denitrifiers' community structure but not by that of nirK denitrifiers'. Furthermore, the change of DP coincided with the variation of abundances of both denitrifiers. Shifts of community structure and abundance of nirS and nirK denitrifiers were correlated with the change of soil pH, total nitrogen (TN), organic matter (OM), C:P, total phosphorus (TP), and available phosphorus (Olsen P). Our results suggest that the change of DP under these four fertilization regimes was closely related to the shift of denitrifying bacteria communities resulting from the variation of properties in the black soil tested.
Faustino, Laura I; Moretti, Ana P; Graciano, Corina
2015-10-01
Urea fertilization decreases Pinus taeda L. growth in clay soils of subtropical areas. The negative effect of urea is related to changes in some hydraulic traits, similar to those observed in plants growing under drought. The aims of this work were (i) to determine whether different sources of nitrogen applied as fertilizers produce similar changes in growth and hydraulic traits to those observed by urea fertilization and (ii) to analyze the impact of those changes in plant drought tolerance. Plants fertilized with urea, nitrate [Formula: see text] or ammonium [Formula: see text] were grown well watered or with reduced water supply. Urea and [Formula: see text] fertilization reduced plant growth and increased root hydraulic conductance scaled by root dry weight (DW). [Formula: see text] fertilization did not reduce plant growth and increased shoot hydraulic conductance and stem hydraulic conductivity. We conclude that [Formula: see text] is the ion involved in the changes linked to the negative effect of urea fertilization on P. taeda growth. [Formula: see text] fertilization does not change drought susceptibility and it produces changes in shoot hydraulic traits, therefore plants avoid the depressive effect of fertilization. Urea and [Formula: see text] fertilizers induce changes in DW and root hydraulic conductance and consequently plants are less affected by drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is Low Fertility a Twenty-First-Century Demographic Crisis?*
Morgan, S. Philip
2010-01-01
Nearly half of the world's population in 2000 lived in countries with fertility rates at or below replacement level, and nearly all countries will reach low fertility levels in the next two decades. Concerns about low fertility, fertility that is well below replacement, are widespread. But there are both persistent rationales for having children and institutional adjustments that can make the widespread intentions for two children attainable, even in increasingly individualistic and egalitarian societies. PMID:14686132
Endogenous fertility, Ricardian equivalence, and debt management policy.
Lapan, H E; Enders, W
1990-03-01
This paper develops a model in which dynastic families optimally determine fertility. Government debt represents a tax on future generations and on childbearing; the Ricardian Equivalence Hypothesis does not hold. Debt is welfare reducing in that it distorts the fertility decision. An increase in government debt induces a decline in fertility and an increase in the steady state capital/labor ratio. If a government inherits an existing stock of debt, the 1st-best policy is to eliminate the debt immediately. In other situations the optimal debt management policy will not, in general, entail a total elimination of the debt.
Lawrenz, B; Neunhoeffer, E; Henes, M; Lessmann-Bechle, S; Krämer, B; Fehm, Tanja
2010-11-01
The increase of breast cancer in young women under 40 years and the increasing age of women at the time of the birth of their first child underlines the importance to implement counselling for fertility-preserving strategies in the management of breast cancer care. We present the fertility-preserving procedures performed after routine counselling for primary breast cancer patients in a large certified breast cancer centre. Since November 2006, patients aged below 40 years with histologically confirmed breast cancer are routinely counselled on fertility-preserving possibilities before breast surgery and chemotherapy in the fertility centre of the University Women's Hospital in Tuebingen. The recommendations are based on the treatment recommendations of the network FertiPROTEKT. During the last 40 months, 56 primary breast cancer patients were counselled. Forty-one of these patients were hormone receptor positive. Thirty-four patients (63%) underwent fertility-preserving strategies. The majority of the patients (n = 22) decided on ovarian tissue cryopreservation. GnRH protection was performed in 14 patients. In 12 patients an ovarian stimulation protocol was initiated to cryopreserve fertilized or unfertilized oocytes. A combination of different fertility-preserving methods was performed in 12 patients. The preservation of ovarian function and fertility are of great importance to young breast cancer patients. Counselling on fertility-preserving strategies is therefore critical in these patients and should be routinely performed.
Florio, Alessandro; Felici, Barbara; Migliore, Melania; Dell'Abate, Maria Teresa; Benedetti, Anna
2016-05-01
A laboratory incubation experiment and greenhouse studies investigated the impact of organo-mineral (OM) fertilization as an alternative practice to conventional mineral (M) fertilization on nitrogen (N) uptake and losses in perennial ryegrass (Lolium perenne) as well as on soil microbial biomass and ammonia oxidizers. While no significant difference in plant productivity and ammonia emissions between treatments could be detected, an increase in soil total N content and an average 17.9% decrease in nitrates leached were observed in OM fertilization compared with M fertilization. The microbial community responded differentially to treatments, suggesting that the organic matter fraction of the OM fertilizer might have influenced N immobilization in the microbial biomass in the short-medium term. Furthermore, nitrate contents in fertilized soils were significantly related to bacterial but not archaeal amoA gene copies, whereas in non-fertilized soils a significant relationship between soil nitrates and archaeal but not bacterial amoA copies was found. The application of OM fertilizer to soil maintained sufficient productivity and in turn increased N use efficiency and noticeably reduced N losses. Furthermore, in this experiment, ammonia-oxidizing bacteria drove nitrification when an N source was added to the soil, whereas ammonia-oxidizing archaea were responsible for ammonia oxidation in non-fertilized soil. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Ma, Mingchao; Zhou, Jing; Ongena, Marc; Liu, Wenzheng; Wei, Dan; Zhao, Baisuo; Guan, Dawei; Jiang, Xin; Li, Jun
2018-02-13
Bacteria play vital roles in soil biological fertility; however, it remains poorly understood about their response to long-term fertilization in Chinese Mollisols, especially when organic manure is substituted for inorganic nitrogen (N) fertilizer. To broaden our knowledge, high-throughput pyrosequencing and quantitative PCR were used to explore the impacts of inorganic fertilizer and manure on bacterial community composition in a 35-year field experiment of Chinese Mollisols. Soils were collected from four treatments: no fertilizer (CK), inorganic phosphorus (P) and potassium (K) fertilizer (PK), inorganic P, K, and N fertilizer (NPK), and inorganic P and K fertilizer plus manure (MPK). All fertilization differently changed soil properties. Compared with CK, the PK and NPK treatments acidified soil by significantly decreasing soil pH from 6.48 to 5.53 and 6.16, respectively, while MPK application showed no significant differences of soil pH, indicating alleviation of soil acidification. Moreover, all fertilization significantly increased soil organic matter (OM) and soybean yields, with the highest observed under MPK regime. In addition, the community composition at each taxonomic level varied considerably among the fertilization strategies. Bacterial taxa, associated with plant growth promotion, OM accumulation, disease suppression, and increased soil enzyme activity, were overrepresented in the MPK regime, while they were present at low abundant levels under NPK treatment, i.e. phyla Proteobacteria and Bacteroidetes, class Alphaproteobacteria, and genera Variovorax, Chthoniobacter, Massilia, Lysobacter, Catelliglobosispora and Steroidobacter. The application of MPK shifted soil bacterial community composition towards a better status, and such shifts were primarily derived from changes in soil pH and OM.
Zhao, Lijuan; Whan, Xiaozeng; Wang, Shouyu; Liu, Hongxiang; Li, Haibo; Miao, Shujie; Ang, Feng
2006-05-01
A long-term experiment was conducted on a black soil of Northeast China to study the effects of applying chemical fertilizers and recycled organic manure (ROM) on the changes of soil organic carbon and its fractions. The results showed that from 1985 to 2004, soil total organic carbon (TOC) decreased by 7.83% in control,4.56% in N application, 1.61% in N + P application, and 5.56% in ROM application, but increased by 0.33% in N + P + K application. Comparing with single application of ROM, its application with chemical fertilizers, i. e., N + ROM, N + P + ROM, and N + P + K + ROM, increased the TOC concentration by 0.35%, 1.05% and 0.64%, respectively. The readily oxidized carbon (ROC) in fertilization treatments was increased by 8.64% to approximately 28.4%, and the increment was higher in treatments of chemical fertilizers plus ROM than in treatments of chemical fertilizers. The ROC was significantly correlated with soil TOC (Y = 14.192X + 23.9, R2 = 0.802) and stalk yields (Y = 19032X - 7950.6, R2 = 0.759). Light fraction organic carbon (LF-C) had the same trends with ROC. After 20 years fertilization, the organic carbon in soil humic acid and fulvic acid was decreased by 1.64% to approximately 26.23% and 2.33% to approximately 28.68%, respectively, but in treatments of chemical fertilizers plus ROM, the decreasing trend was slowed down.
The life-history trade-off between fertility and child survival
Lawson, David W.; Alvergne, Alexandra; Gibson, Mhairi A.
2012-01-01
Evolutionary models of human reproduction argue that variation in fertility can be understood as the local optimization of a life-history trade-off between offspring quantity and ‘quality’. Child survival is a fundamental dimension of quality in these models as early-life mortality represents a crucial selective bottleneck in human evolution. This perspective is well-rehearsed, but current literature presents mixed evidence for a trade-off between fertility and child survival, and little empirical ground to evaluate how socioecological and individual characteristics influence the benefits of fertility limitation. By compiling demographic survey data, we demonstrate robust negative relationships between fertility and child survival across 27 sub-Saharan African countries. Our analyses suggest this relationship is primarily accounted for by offspring competition for parental investment, rather than by reverse causal mechanisms. We also find that the trade-off increases in relative magnitude as national mortality declines and maternal somatic (height) and extrasomatic (education) capital increase. This supports the idea that socioeconomic development, and associated reductions in extrinsic child mortality, favour reduced fertility by increasing the relative returns to parental investment. Observed fertility, however, falls considerably short of predicted optima for maximizing total offspring survivorship, strongly suggesting that additional unmeasured costs of reproduction ultimately constrain the evolution of human family size. PMID:23034700
Ayieko, James; Ti, Angeline; Hagey, Jill; Akama, Eliud; Bukusi, Elizabeth A; Cohen, Craig R; Patel, Rena C
2017-08-08
Factors influencing fertility desires among HIV-infected individuals remain poorly understood. With new recommendations for universal HIV treatment and increasing antiretroviral therapy (ART) access, we sought to evaluate how access to early ART influences fertility desires among HIV-infected ART-naïve women. Semi-structured in-depth interviews were conducted with a select subgroup of 20 HIV-infected ART-naïve women attending one of 13 HIV facilities in western Kenya between July and August 2014 who would soon newly become eligible to initiate ART based on the latest national policy recommendations. The interviews covered four major themes: 1) definitions of family and children's role in community; 2) personal, interpersonal, institutional, and societal factors influencing fertility desires; 3) influence of HIV-positive status on fertility desires; and 4) influence of future ART initiation on fertility desires. An iterative process of reading transcripts, applying inductive codes, and comparing and contrasting codes was used to identify convergent and divergent themes. The women indicated their HIV-positive status did influence-largely negatively-their fertility desires. Furthermore, initiating ART and anticipating improved health status did not necessarily translate to increased fertility desires. Instead, individual factors, such as age, parity, current health status, financial resources and number of surviving or HIV-infected children, played a crucial role in decisions about future fertility. In addition, societal influences, such as community norms and health providers' expectations of their fertility desires, played an equally important role in determining fertility desires. Initiating ART may not be the leading factor influencing fertility desires among previously ART-naïve HIV-infected women. Instead, individual and societal factors appear to be the major determinants of fertility desires among these women.
Fertilizer consumption and energy input for 16 crops in the United States
Amenumey, Sheila E.; Capel, Paul D.
2014-01-01
Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.
Krashin, Jamie W; Haddad, Lisa B; Tweya, Hannock; Chiwoko, Jane; Ng'ambi, Wingston; Samala, Bernadette; Chaweza, Thomas; Tang, Jennifer H; Hosseinipour, Mina C; Phiri, Sam
2018-01-01
As access to antiretroviral therapy increases, more HIV-infected patients in sub-Saharan Africa may desire fertility. We conducted a cross-sectional study of reproductive health knowledge, attitudes and practices to identify factors associated with desired fertility among women and men receiving care at two large public HIV clinics in Lilongwe, Malawi. Research assistants administered questionnaires to participants. We performed descriptive, bivariable and multivariable analysis of factors related to desired fertility and of factors related to contraceptive non-use among participants who did not desire fertility. One-third of participants desired future children. Having a partner who desired fertility and having lower parity were associated with desiring children among both genders. For women, believing that pregnancy was unhealthy was associated with decreased fertility desire. Fifty-five percent of women and 69% of men who did not want children in the future reported using contraception at last intercourse. Increasing age, lower parity, and making the decision to use contraception herself were associated with contraceptive non-use among women who did not desire fertility. Having discussed family planning with his partner was associated with contraceptive use among men who did not desire fertility. Knowledge of these factors can guide reproductive health counseling and service provision.
Krapf, Darío; Visconti, Pablo E; Arranz, Silvia E; Cabada, Marcelo O
2007-06-15
Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a "capacitating" activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (egg water) for 90-180 s is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO(3) and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.
Krapf, Darío; Visconti, Pablo E.; Arranz, Silvia E; Cabada, Marcelo O
2007-01-01
Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a “capacitating” activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (Egg Water) for 90–180 sec is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO3, and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction. PMID:17459363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Susan E.
2005-05-01
Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.
Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan
2017-07-01
Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ahmad, Ayaz; Hadi, Fazal; Ali, Nasir
2015-01-01
The comparative effect of fertilizers (NPK), plant growth regulators (GA3, IAA, Zeatin) and sodium chloride (NaCl) on Cd phytoaccumulation, proline and phenolics production in Cannabis sativa was evaluated. Proline and phenolices were correlated with Cd contents in plant. Cd significantly reduced the plant growth. Fertilizers application (in combination) most significantly increased the growth (19 cm root and 47 cm shoot) on Cd contaminated soil. All treatments increased the Cd contents in plant tissues. This increase was highly significant in fertilizers treated plants (1101, 121 and 544 ppm in roots, stem and leaves respectively). Significantly positive correlation was found between Cd concentration and dry biomass of root (R2=0.7511) and leaves (R2=0.5524). All treatments significantly increased the proline and total phenolics and maximum was recorded in NaCl treated plants followed by fertilizers. Proline was higher in roots while phenolics in leaves. The correlation between proline and phenolics was positive in leaf (R2=0.8439) and root (R2=0.5191). Proline and phenolics showed positive correlation with Cd concentration in plant. Conclusively, fertilizers in combination seem to be the better option for Cd phytoextraction. Further investigation is suggested to study the role of phenolics and proline in Cd phytoextraction.
Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino
2016-01-01
Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.
Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino
2016-01-01
Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781
Qin, Wei; Wang, Daozhong; Guo, Xisheng; Yang, Taiming; Oenema, Oene
2015-01-01
A quantitative understanding of yield response to water and nutrients is key to improving the productivity and sustainability of rainfed cropping systems. Here, we quantified the effects of rainfall, fertilization (NPK) and soil organic amendments (with straw and manure) on yields of a rainfed wheat-soybean system in the North China Plain (NCP), using 30-years’ field experimental data (1982–2012) and the simulation model-AquaCrop. On average, wheat and soybean yields were 5 and 2.5 times higher in the fertilized treatments than in the unfertilized control (CK), respectively. Yields of fertilized treatments increased and yields of CK decreased over time. NPK + manure increased yields more than NPK alone or NPK + straw. The additional effect of manure is likely due to increased availability of K and micronutrients. Wheat yields were limited by rainfall and can be increased through soil mulching (15%) or irrigation (35%). In conclusion, combined applications of fertilizer NPK and manure were more effective in sustaining high crop yields than recommended fertilizer NPK applications. Manure applications led to strong accumulation of NPK and relatively low NPK use efficiencies. Water deficiency in wheat increased over time due to the steady increase in yields, suggesting that the need for soil mulching increases. PMID:26627707
The effect of health programs on breastfeeding and child mortality in Peninsular Malaysia.
Anderson, K H
1984-01-01
Examining household behavior in Peninsular Malaysia, this study attempts to determine if the availability of certain government health programs significantly alters breastfeeding and if these changes in input prices significantly affect mortality rates and fertility decisions. To explain the interrelationships, an economic model of the demand for infant survival and fertility and the derived demand for breastfeeding is developed. Using household and community level data, the demand equations are then estimated and the results discussed in relation to the predictions of the model and the prospect of additional government inputs. The theoretical model predicts that, if income effects are small: a decline in the price of children (hospital distance) will increase fertility, decrease survival and reduce breastfeeding; a decline in the price of health goods inputs (hospital distance and sanitation) will reduce fertility and increase survival; and a decline in the price of contraceptives (family planning distance) will reduce fertility but increase survival and breastfeeding. The empirical results support some of the model's predictions. In communities with modern sanitation, breastfeeding was shorter on average, as predicted, but differences in mortality were not detected and fertility was actually higher. The latter effect can result from an income effect in the price decline that exceeds the cross substitution effect. Distance to a hospital was positively associated with breastfeeding length. This is expected if the effect of distance on the price of children exceeds the effect of distance on the price of survival. Hospital distance had no impact on either survival or fertility. Distance to a family planning clinic had no effect on breastfeeding or fertility but had a slight positive association with mortality. This positive relationship is expected if fertility and survival are substitutes. Parental schooling and race also are important in determining demand. As economic development proceeds and educational attainment increases, breastfeeding and fertility declined and survival increased. The Chinese, the wealthiest racial group, had lower fertility and mortality and breastfed less than Malays or Indians. The empirical results failed to support the prediction of differences in male and female survival. The results suggest some interesting implications. If breastfeeding has been declining in low income countries such as Malaysia as they develop, the culprit may be the economic development process itself, which increases the value of a woman's time and raises family income. The decline in breastfeeding does not necessarily imply a significant increase in infant mortality if good substitutes for breastfeeding exist. In addition, breastfeeding is highly substitutable with many government programs designed to reduce mortality. In designing policies which will bring about a decline in infant mortality rates, both cross substitution and joint production must be considered. Programs that can be most successful in reducing mortality will be the programs that are the least substitutable with breastfeeding.
Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-wei; Wang, Wen-ming; Zhang, Zhen-hua; Yang, Yong; Song, Hai-xing; Guan, Chun-yun
2016-01-01
Background: Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm2), SF2/CRF2 (3000 kg/hm2), SF3/CRF3 (2250 kg/hm2), SF4/CRF4 (1500 kg/hm2), SF5/CRF5 (750 kg/hm2), and also using no fertilizer (CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm2, respectively), followed by CRF3 (1929.97 kg/hm2) and SF4 (1839.40 kg/hm2). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency. PMID:27704747
Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-Wei; Wang, Wen-Ming; Zhang, Zhen-Hua; Yang, Yong; Song, Hai-Xing; Guan, Chun-Yun
Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011-2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm 2 ), SF2/CRF2 (3000 kg/hm 2 ), SF3/CRF3 (2250 kg/hm 2 ), SF4/CRF4 (1500 kg/hm 2 ), SF5/CRF5 (750 kg/hm 2 ), and also using no fertilizer (CK). CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm 2 , respectively), followed by CRF3 (1929.97 kg/hm 2 ) and SF4 (1839.40 kg/hm 2 ). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm 2 ) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency.
Cleveland, Cory C; Townsend, Alan R
2006-07-05
Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.
2016-01-01
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment. PMID:27560826
Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong
2017-02-01
Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter and Rhodospirillaceae, were found to be the significantly increased by the BOF addition and the genus Lysobacter may identify members of this group effective in biological control-based plant disease management and the members of family Rhodospirillaceae had an important role in fixing molecular nitrogen. These results strengthen the understanding of responses to the BOF and possible interactions within bacterial communities in soil that can be associated with disease suppression and the accumulation of carbon and nitrogen. The increase of apple yields after the application of BOF might be attributed to the fact that the application of BOF increased SOM, and soil total nitrogen, and changed the bacterial community by enriching Rhodospirillaceae, Alphaprotreobateria, and Proteobacteria.
Wang, Xiukang; Xing, Yingying
2016-01-01
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment.
Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.
Withers, P J; Clay, S D; Breeze, V G
2001-01-01
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.
Peter H Anderson; Kurt H. Johnsen
2009-01-01
Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...
The influence of the Chinese zodiac on fertility in Hong Kong SAR.
Yip, Paul S F; Lee, Joseph; Cheung, Y B
2002-11-01
The annual total of births in Hong Kong SAR fell substantially in the past 20 years; hence the total fertility rate (TFR) followed the downward trend and dropped to a low of 0.9 below replacement level in 2000. Despite the long-term downward trend, short-run increases in the annual total of births and the TFR were exhibited. Such temporary fertility increases are identified in the Dragon Years of 1988 and 2000. The phenomenon of fertility changes associated with zodiacal animal years is examined in this paper with a view to gaining some insight into whether Chinese cultural preferences and folklore beliefs might have influenced prospective parents' reproductive behaviour. The paper explains the underlying philosophy of the Chinese astrological tradition and discusses how zodiacal preferences affect fertility between 1976 and 2000. The paper also explores why zodiacal influences on Chinese fertility before 1976 did not exist. It is unquestionable that the Dragon Year preference exerts an influence on fertility of modern Chinese populations through zodiacal birth-timing motivations. Birth rate rise in the Dragon Year is due to changes in timing of births that will have little effect on cumulative fertility.
The impact of legal abortion on marital and nonmarital fertility in upstate New York.
Tu, E J; Herzfeld, P M
1982-01-01
Nonmarital fertility rates declined rapidly immediately after the legalization of abortion in upstate New York, but began to rise again in the mid-1970s concomitant with an increase in nonmarital abortion rates. The downward pressure exerted by abortion on nonmarital fertility is thus more than offset by other factors, among which are possible increases in sexual activity and less use of effective contraception.
Liu, Qiu Mei; Chen, Xing; Meng, Xiao Hui; Ye, Qi; Li, Tuo; Liu, Dong Yang; Shen, Qi Rong
2017-10-01
The objective of this study was to improve the ability of sporulation production of Trichoderma guizhouense NJAU4742 under solid state fermentation by using rice straw and amino acids as resources, and the fermentation products were used as inoculants of the organic fertilizers adding with different ratios of amino acids solution to develop a new type of biological organic fertilizer. The results indicated that the optimal condition for sporulation by T. guizhouense NJAU4742 was soaking in 30 times diluted amino acid solution for one whole night, with initial pH 3.5, 75% of moisture content and 30% of corn powder, under which the sporulation reached to 2.40×10 10 CFU·g -1 . The fermentation products were inoculated at 2% into the mature organic fertilizer containing 20% of amino acids solution, and the sporulation and IAA content were 6.40×10 9 CFU·g -1 and 38.66 mg·kg -1 , which were 1142.30 and 1.42 times higher than that of CK after 7 days, respectively. Pot experiment showed that biological organic fertilizer could significantly promote the growth of tomato, and the height of the tomato increased by 98.8% and 23.8%, respectively, compared with CK. The stem diameters of AT (amino acids + mature organic fertilizer + T. guizhouense NJAU4742) and AA (amino acids + mature organic fertilizer) were increased by 58.9% and 10.3%, respectively, compared with CK. As for the chlorophyll, leaf length and leaf width, the values also increased significantly. The highest spore content was obtained by using amino acids and rice straw as substrates under solid state fermentation (SSF), which overcame the difficulties of producing new type of biological organic fertilizer during the large scale industrial production. Biological organic fertilizer and amino acids organic fertilizer could significantly promote the growth of tomato compared with the chemical fertilizer, and had a good application prospect in intensive agriculture.
Morton, John M; Auldist, Martin J; Douglas, Meaghan L; Macmillan, Keith L
2017-07-01
Milk protein concentration in dairy cows has been positively associated with a range of measures of reproductive performance, and genetic factors affecting both milk protein concentration and reproductive performance may contribute to the observed phenotypic associations. It was of interest to assess whether these beneficial phenotypic associations are accounted for or interact with the effects of estimated breeding values for fertility. The effects of a multitrait estimated breeding value for fertility [the Australian breeding value for daughter fertility (ABV fertility)] on reproductive performance were also of interest. Interactions of milk protein concentration and ABV fertility with the interval from calving date to the start of the herd's seasonally concentrated breeding period were also assessed. A retrospective single cohort study was conducted using data collected from 74 Australian seasonally and split calving dairy herds. Associations between milk protein concentration, ABV fertility, and reproductive performance in Holstein cows were assessed using random effects logistic regression. Between 52,438 and 61,939 lactations were used for analyses of 4 reproductive performance measures. Milk protein concentration was strongly and positively associated with reproductive performance in dairy cows, and this effect was not accounted for by the effects of ABV fertility. Increases in ABV fertility had important additional beneficial effects on the probability of pregnancy by wk 6 and 21 of the herd's breeding period. For cows calved before the start of the breeding period, the effects of increases in both milk protein concentration and ABV fertility were beneficial regardless of their interval from calving to the start of the breeding period. These findings demonstrate the potential for increasing reproductive performance through identifying the causes of the association between milk protein concentration and reproductive performance and then devising management strategies to capitalize on them. Research should be conducted to understand the component of the relationship not captured by ABV fertility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain
Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin
2013-01-01
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204
Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin
2013-01-01
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.
Häring, Volker; Manka'abusi, Delphine; Akoto-Danso, Edmund K; Werner, Steffen; Atiah, Kofi; Steiner, Christoph; Lompo, Désiré J P; Adiku, Samuel; Buerkert, Andreas; Marschner, Bernd
2017-09-06
In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m -2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.
Conceição, Carla; Pedro, Juliana; Martins, Mariana V
2017-04-01
Recent evidence has shown that young adults have poor knowledge about reproductive health and fertility, and that interventions are needed to increase fertility awareness. The aim of this study was to assess the effectiveness of a brief video in increasing knowledge about fertility and infertility in young adults. We carried out a two-arm, parallel-group, randomised controlled trial with a pre-test/post-test design (NCT02607761, ClinicalTrials.gov). The sample was composed of 173 undergraduates who completed a self-report questionnaire. Participants were randomly assigned to exposure or no exposure to an educational video about reproductive health and infertility (intervention group, n = 89; control group, n = 84). At baseline, participants revealed poor knowledge of infertility risk factors and fertility issues, and average knowledge of the definition of infertility. Interaction effects between group and time were found for all variables targeted in the video. Participants in the intervention group significantly increased their knowledge of fertility issues, infertility risk factors and the definition of infertility. No significant differences in post-test knowledge were observed in the control group, except for the age at which there is a marked decrease in female fertility. A short video intervention is effective in increasing short-term knowledge about reproductive health and infertility. If future research using longer intervals corroborates our findings, video intervention could be a useful tool in public health prevention campaigns.
Xu, Yilan; Tang, Haiming; Liu, Tangxing; Li, Yifeng; Huang, Xinjie; Pi, Jun
2018-05-08
Fertilizer regime is playing an important role in heavy metal cadmium (Cd) accumulation in paddy soils and crop plant. It is necessary to assess the Cd accumulation in soils and rice (Oryza sativa L.) plants under long-term fertilization managements, and the results which help to assess the environmental and food risk in Southern China. However, the effects of different organic manure and chemical fertilizers on Cd accumulation in soils and rice plant remain unclear under intensively cultivated rice conditions. Therefore, the objective was to explore Cd accumulation in paddy soils and rice plant at mature stage under different long-term fertilization managements in the double-cropping rice system. Cd accumulation in the surface soils (0-20 cm) and rice plant with chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic matter and 70% chemical fertilizer (LOM), 60% organic matter and 40% chemical fertilizer (HOM), and without fertilizer input (CK) basis on 32 years long-term fertilization experiment were analyzed. The results showed that the soil total Cd content was increased by 0.296 and 0.351 mg kg -1 and 0.261 and 0.340 mg kg -1 under LOM and HOM treatments at early and late rice mature stages, respectively, compared with the CK treatment. And the soil available Cd content was increased by 0.073 and 0.137 mg kg -1 and 0.102 and 0.160 mg kg -1 under LOM and HOM treatments at early and late rice mature stages, respectively, compared with the CK treatment. The bioconcentration factor of Cd across different parts of rice plant was the highest in root, followed by stem and grain, and the lowest in leaves. At early and late rice mature stages, the root Cd concentration of rice plant was increased by 0.689 and 0.608 mg kg -1 with HOM treatment, the stem Cd concentration of rice plant was increased by 0.666 and 0.758 mg kg -1 with RF treatment, and the leaf and grain Cd concentration of rice plant was increased 0.094 and 0.082 mg kg -1 and 0.086 and 0.083 mg kg -1 with LOM treatment, respectively, compared with the CK treatment. The soil Cd single-factor contaminant index (P Cd ) under different fertilization treatments was as the following HOM > LOM > RF > MF > CK. Meanwhile, the P Cd with LOM and HOM treatments was higher than that of the MF, RF, and CK treatments, but there is no significant difference between that of MF and RF treatments. Therefore, long-term application of rice straw residue and chemical fertilizer had no obvious effect on the accumulation of Cd in paddy soils and grain, and soil Cd accumulation was increased as application of organic fertilizer.
Those ubiquitous fertility trends: United States, 1945-1979.
Sweet, J A; Rindfuss, R R
1983-01-01
1970-79 US fertility trends among differnet racial, regional, age, educational, parity, and socioeconomic subgroups in the population were examined, using own children data from the 1976 Survey of Income and Education (SIE) and the March Current Population Surveys (CPS) from 1968-80. In addition, cross-sectional differences in fertility for the subgroups were compared for 1970 and 1976, using multiple regression analysis. 1st, the appropriateness of using fertility rates obtained from own children data was assessed by comparing fertility rates obtained from the SIE data with those derived from vital statistic and census data. The comparative analysis confirmed that the SIE data yielded an accurate estimate of period fertility rates for currently married women, provided the subgroup samples were sufficiently large. CPS fertility estimates were also judged to be accurate if data from 3 adjacent survey years was pooled to increase sample size. Fertility trends for 5 educational groups were assessed separately for 1967-73. During this periold, there was a marked decline in fertility for all 5 groups; for the group with 5-8 years of education the decline was only 14%, but for the other 4 groups, which included women with 9-16 or more years of education, the decline in fertility ranged from 26-29%. In assessing the 1970-76 trends, the sample was restricted to own children, aged 3 years or less, of currently married women, under 40 years of age. Among whites, there was an overall 20% decline in fertility between 1970-76 and an overall fertility increase of about 2% between 1976-79. These trends were observed in all 28 white subgroups. A similar pattern was observed for blacks. There was an overall fertility decline of 24% between 1970-76, and this decline was apparent for all subgroups except women with college degrees. Betwen 1976-79, black fertility rates, unlike white rates, continued to decline, but the rate of decline was only 3%. Furthermore, the decline in almost all the black subgroups was markedly less than in the 1970-76 periold, and for many of the subgroups the trend was reversed and fertility increased. In summary, the fertility trends noted for 1970-79 were pervasive for almost all the subgroups for both blacks and whites; i.e., there was a marked decline in fertility between 1970-76 and than a reversal or slowing down of the decline during the 1976-79 for all black and white subgroups. Cross-sectional fertility differences in the subgroups in 1970 and in 1979 were quite similar, and fertility rates differed markedly for the separate subgroups. These differences do not, of course, explain the pervasive trends observed in the analysis of the fertility rates over time. A similar study assessing fertility trends among subgroups for the early 1940's through the late 1960s also revealed the pervasive nature of period fertility trends. Demographers have not as yet been able to explain these shifts in fertility that cut across all subgroups in the US and which also characterize the period fertility rates in other developed countries. Tables provided information on 1) total fertility rates by educational level and by geographical region for 1945-1975; 2) % change in number of own children less than 3 years of age among women under age 40 by maternal age, maternal education, initial parity, geographical region, and husband's income; and 3) mean number of own children less than 3 years of age among women under age 40 by maternal age, education, parity, region, and husband's income.
Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M
2013-01-01
Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models. PMID:24455147
Effects of phosphorus fertilizer and lime on the As, Cr, Pb, and V content of soils and plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodroad, L.L.; Caldwell, A.C.
1979-10-01
The occurrence in fertilizer material of small quantities of chemical elements not essential to plants suggests that the soil may become contaminated with these elements due to the use of fertilizers. Two experimental sites: a Nicollet clay loam fertilized with 0, 1111, 2222, 4444, and 8888 kg/ha of concentrated superphosphate (CSP) and 20.2 metric tons of lime, and a Port Byron silt loam fertilized for 19 years with 99, 73, 82, and 352 kg/ha annually of CSP, calcium metaphosphate, phosphoric acid, and southern rock phosphate, respectively, were sampled to determine if significant amounts of arsenic (As), chromium (Cr), lead (Pb),more » or vanadium (V) had been added from the use of these fertilizer materials. There was no indication of increased As, Cr, Pb, or V from the addition of P fertilizers to either the Nicollet or Port Byron soils. The addition of lime increased the Cr content of the Nicollet soil by approximately 3 ppM, but there was no increase in As, Pb, or V. There was no increase in As, Cr, Pb, or V from addition of CSP in soil samples from below the Ap horizon to a depth of 47.5 cm. Soil samples from a representative Nicollet soil suggest that higher As, Cr, Pb, and V concentrations in the A and B horizons are due to leaching of CaCO/sub 3/ into the C horizon. Corn (Zea mays L.) plant growth and grain yields were similar for all CSP and lime treatments. The results of this study indicate that the use of P fertilizers at the rates presently applied would not add substantially to the natural levels of As, Cr, Pb, and V in the soil.« less
Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield
NASA Astrophysics Data System (ADS)
Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori
2017-05-01
Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; ...
2016-06-01
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less
Amponsah, Isaac G; Lieffers, Victor J; Comeau, Philip G; Brockley, Robert P
2004-10-01
We examined how tree growth and hydraulic properties of branches and boles are influenced by periodic (about 6 years) and annual fertilization in two juvenile lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) stands in the interior of British Columbia, Canada. Mean basal area (BA), diameter at breast height (DBH) and height increments and percent earlywood and sapwood hydraulic parameters of branches and boles were measured 7 or 8 years after the initial treatments at Sheridan Creek and Kenneth Creek. At Sheridan Creek, fertilization significantly increased BA and DBH increments, but had no effect on height increment. At Kenneth Creek, fertilization increased BA, but fertilized trees had significantly lower height increments than control trees. Sapwood permeability was greater in lower branches of repeatedly fertilized trees than in those of control trees. Sapwood permeabilities of the lower branches of trees in the control, periodic and annual treatments were 0.24 x 10(-12), 0.35 x 10(-12) and 0.45 x 10(-12) m2 at Kenneth Creek; and 0.41 x 10(-12), 0.54 x 10(-12) and 0.65 x 10(-12) m2 at Sheridan Creek, respectively. Annual fertilization tended to increase leaf specific conductivities and Huber values of the lower branches of trees at both study sites. We conclude that, in trees fertilized annually, the higher flow capacity of lower branches may reduce the availability of water to support annual growth of the leader and upper branches.
Cohort fertility in Western Europe: comparing fertility trends in recent birth cohorts.
Hopflinger, F
1984-01-01
A comparative study of fertility levels among cohorts of women born in 1940, 1945, 1950, 1955, and 1960 in 16 European countries was undertaken using vital statistics data. The average number of live birth/woman for each of the 5 cohorts by age 20, 25, 30, and 35 was computed by cumulating age-specific fertility rates of women born in specific years. Median age at childbirth and completed fertility were estimated for the 3 oldest cohorts (1940, 1945, and 1950). 2 estimations of completed fertility were made. 1 was based on the assumption of a constant age-specific fertility rate, and the other was based on a relational Gompertz model. Where possible cohort fertility was disaggregated by birth order. Since the data for the countries was not fully comparable, it was not possible to use sophisticated analytical techniques. Other limits of the study were that fertility, especially for the more recent cohorts was incomplete, parity specific data was not available for all the countries, and open cohorts rather than closed cohorts were used. The analysis indicated that completed cohort fertility was lower for the 1950 cohort than for the 1940 cohort in all 16 countries. For the 1940 cohort, only Germany's estimated completed fertility was less than 2.00. For the other 15 countries, estimated completed fertility ranged from 2.04 (Finland) to 3.36 (Ireland). For the 1950 cohort, estimated completed fertility was less than 2.00 in 8 of the countries. Estimated completed fertility was lowest in Finland and Switzerland (1.82) and highest in Ireland (3.33). No marked increase in childlessness was observed, and for the 1940 and 1950 cohorts, childlessness did not exceed 20% in any of the countries and was considerably less than 20% in most of the countries. There was a trend toward delayed childbearing in most of the countries. An examination of available parity data for the 1940 and 1950 cohorts lead to the conclusion that the major factor contributing toward the decline in fertility was a decline in 3rd and higher order births. Most countries showed a decline in higher order births, and in some countries the decline was marked. The proportion of 1-child families increased in many countries and was especially high in Germany. The fertility decline may be leveling off in some of the countries. Fertility will probably stablize at a low level in most of the countries. The decline in fertility is due not only to increased contraceptive use but to the growing trend toward secular individualism in European society. The similarities in the fertility declines in all the countries indicates that identical cross national causes are influencing fertility behavior. The 16 countries included iln the study were Austria, Belgium, Denmark, England and Wales, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and Switzerland.
India's population in transition.
Visaria, L; Visaria, P
1995-10-01
This demographic profile of India addresses fertility, family planning, and economic issues. India is described as a country shifting from economic policies of self-reliance to active involvement in international trade. Wealth has increased, particularly at higher educational levels, yet 25% still live below the official poverty line and almost 66% of Indian women are illiterate. The government program in family planning, which was instituted during the early 1950s, did not change the rate of natural increase, which remained stable at 2.2% over the past 30 years. 1993 marked the first time the growth rate decline to under 2%. The growth rate in 1995 was 1.9%. The total population is expected double in 36 years. Only Nigeria, Pakistan, and Bangladesh had a higher growth rate and higher fertility in 1995. India is geographically diverse (with the northern Himalayan mountain zone, the central alluvial plains, the western desert region, and the southern peninsula with forest, mountains, and plains). There are regional differences in the fertility rates, which range from replacement level in Kerala and Goa to 5.5 children in Uttar Pradesh. Fertility is expected to decline throughout India due to the slower pace of childbearing among women over the age of 35 years, the increase in contraceptive use, and increases in marriage age. Increased educational levels in India and its state variations are related to lower fertility. Literacy campaigns are considered to be effective means of increasing the educational levels of women. Urbanization is not expected to markedly affect fertility levels. Urban population, which is concentrated in a few large cities, remains a small proportion of total population. Greater shifts are evident in the transition from agriculture to other wage labor. Fertility is expected to decline as women's share of labor force activity increases. The major determinant of fertility decline in India is use of family planning, which has improved in access and use during the 1980s. If India is to keep a stable population under 1.6 billion in the future, Indians may have to accept only one child per family.
Modern sanitary practices result in large volumes of human waste, as well as domestic and industrial sewage, being collected and treated at common collection points, wastewater treatment plants (WWTP). In recognition of the growing use of sewage sludges as a fertilizers and as so...
Recovery of ammonia in raw and co-digested swine manure using gas-permeable membrane technology
USDA-ARS?s Scientific Manuscript database
Anaerobic digestion of agro-industrial and livestock waste generates considerable digestate volumes that are important sources of nitrogen (N). However, on some occasions, the high concentrations of N present in the digestates may represent an obstacle to its use locally as fertilizer, since it can ...
Bhowal, Sujit K; Lala, Sanchita; Hazra, Abhijit; Paira, Priyankar; Banerjee, Sukdeb; Mondal, Nirup B; Chakraborty, Smritinath
2008-03-01
The purpose of this study was to investigate the fertility-regulating potential of the compound 2-(2''-chloroacetamidobenzyl)-3-(3'-indolyl) quinoline in male rats. Rats of proven fertility were treated with the compound by oral gavage for 1 to 8 consecutive weeks. Functional fertility, testicular, epididymal and seminal vesicular weight, epididymal sperm count and spermatogenesis were quantitated. Reproductive hormones and some biochemical parameters were measured. Functional fertility was reduced significantly as revealed by a fall in fertility and pregnancy rate. The weight of the reproductive organs was reduced significantly. A reduction of sperm count and number of different types of testicular cells was observed. The treatment with the compound resulted in decline of testosterone and an increase of FSH hormone levels. The compound effectively reduced testicular protein, glycogen and epididymal glyceryl phosphorylcholine. Increase in testicular alkaline phosphatase and cholesterol was also observed. Fertility and other effects were regained gradually after cessation of treatment. The results revealed from the study indicate that the compound has reversible antifertility activity and can be explored as male contraceptive agent.
Zhang, Pan-pan; Zhou, Yu; Song, Hui; Qiao, Zhi-jun; Wang, Hai-gang; Zheng, Dian-feng; Feng, Bai-li
2015-02-01
A field experiment with two broomcorn millet varieties Longmi 8 (strong drought-resistant variety) and Jinmi 4 (drought-sensitive variety) was conducted to compare their differences in growth, field microclimate and photosynthetic capacity from anthesis to maturity under different fertility conditions. The results showed that, fertilization decreased canopy temperature, air temperature, soil temperature, illumination, but improved the relative humidity among broomcorn millet plants compared with the non-fertilization treatment. With an increase of the fertilizer level, the plant height, SPAD, LAI, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration in broomcorn millet showed an increasing trend, which of the high fertilization treatment were 9.2%, 15.1%, 56.6%, 17.8%, 24.6%, 14.2%, 29.7% higher than those of non-fertilization treatment, respectively. Compared with Jinmi 4, Longmi 8 showed a cold wet characteristic, with lower canopy temperature, air temperature, soil temperature; illumination, and higher plant height, LAI, SPAD and relative humidity during grain filling. Moreover, each photosynthetic index of Longmi 8 slowly decreased and extended the period of leaf photosynthetic function so as to accumulate more photosynthetic products.
Perchlorate in Turfgrass Systems, Suffolk County, Long Island, NY
NASA Astrophysics Data System (ADS)
Munster, J. E.; Hanson, G. N.; Jackson, W. A.
2007-12-01
Perchlorate concentrations in precipitation, grass clippings, and soil water were analyzed at nine turfgrass sites in Suffolk County, NY. The samples were collected monthly between June, 2006 and January, 2007. The soil water was collected from suction lysimeters at 100 cm depth. Four of these sites were treated with chemical fertilizer, three with organic fertilizer and two were not fertilized. Concentrations of ClO4 in grass clippings and soil water, at the sites treated with chemical fertilizer or not treated with fertilizer, are found to increase when spikes of ClO4 concentrations in precipitation are observed. We believe that the spikes in perchlorate in precipitation collected shortly after the Fourth of July are due to firework displays. The concentration of ClO4 in soil water are 1 to 3 times higher than the maximum perchlorate concentrations in precipitation, with maximum soil water concentrations ranging from 0.5 to 3.0 ppb. At the sites treated with organic fertilizer, grass clippings and soil water ClO4 concentrations increase after the fertilizer application in May. The organic fertilizer that was applied has nine mg ClO4 per kg (9,000 ppb). Soil water concentrations at the sites treated with organic fertilizer increase 100 to 300 times the maximum ClO4 concentration observed in precipitation, with maximum soil water concentrations ranging from 120 to 625 ppb. The increase in ClO4 concentrations in the soil water cannot be explained by evaporation alone since the Cl to ClO4 ratios decrease in the soil water relative to precipitation. This decrease in the Cl to ClO4 ratio suggests another source of perchlorate besides precipitation. We postulate that this additional source is associated with the decomposition of mulched grass left after mowing. Grass takes only a few weeks to decompose after mulching, thus providing a continuous source of perchlorate throughout the mowing season. The Cl to ClO4 ratio of the grass is unknown.
Tully, Katherine L; Hickman, Jonathan; McKenna, Madeline; Neill, Christopher; Palm, Cheryl A
2016-09-01
Fertilizer applications are poised to increase across sub-Saharan Africa (SSA), but the fate of added nitrogen (N) is largely unknown. We measured vertical distributions and temporal variations of soil inorganic N following fertilizer application in two maize (Zea mays L.)-growing regions of contrasting soil type. Fertilizer trials were established on a clayey soil in Yala, Kenya, and on a sandy soil in Tumbi, Tanzania, with application rates of 0-200 kg N/ha/yr. Soil profiles were collected (0-400 cm) annually (for three years in Yala and two years in Tumbi) to examine changes in inorganic N pools. Topsoils (0-15 cm) were collected every 3-6 weeks to determine how precipitation and fertilizer management influenced plant-available soil N. Fertilizer management altered soil inorganic N, and there were large differences between sites that were consistent with differences in soil texture. Initial soil N pools were larger in Yala than Tumbi (240 vs. 79 kg/ha). Inorganic N pools did not change in Yala (277 kg/ha), but increased fourfold after cultivation and fertilization in Tumbi (371 kg/ha). Intra-annual variability in NO - 3 -N concentrations (3-33 μg/g) in Tumbi topsoils strongly suggested that the sandier soils were prone to high leaching losses. Information on soil inorganic N pools and movement through soil profiles can h vulnerability of SSA croplands to N losses and determine best fertilizer management practices as N application rates increase. A better understanding of the vertical and temporal patterns of soil N pools improves our ability to predict the potential environmental effects of a dramatic increase in fertilizer application rates that will accompany the intensification of African croplands. © 2016 by the Ecological Society of America.
Modification of the 137Cs, 90Sr, and 60Co transfer to wheat plantlets by NH4+ fertilizers.
Guillén, J; Muñoz-Muñoz, G; Baeza, A; Salas, A; Mocanu, N
2017-03-01
Inorganic fertilizers are used as agricultural countermeasures intended to inhibit the soil to plant transfer of radionuclides after a radioactive fallout. Two NH 4 + fertilizers, diammonium phosphate (DAP) and NPK, were applied to soil contaminated with a mixture of radionuclides to analyze whether they modify the transfer of 137 Cs, 90 Sr, and 60 Co and stable elements (K, Na, Ca, and Mg) to wheat plantlets grown under controlled laboratory conditions. DAP introduced NH 4 + in the soil, which can increase 137 Cs transfer, while NPK also introduced K + , which can decrease it. The application of DAP increased the accumulation of 137 Cs in wheat plantlets with increasing application rate, so did the 137 Cs/K in plantlets. Regarding the NPK application, the 137 Cs increased in all treatments, but at maximum rate, the available K introduced by the fertilizer was probably able to partially satisfy the nutritional requirements of the wheat plantlet and the 137 Cs decreased relative to the recommended rate. The 137 Cs/K ratio in plantlet decreased with increasing NPK rates. The transfer of 90 Sr increased with increasing DAP rate and only at the maximum NPK rate. The 60 Co transfer only increased at the maximum application rates for DAP and NPK. These modifications should be considered when using these fertilizers as agricultural countermeasures.
Potential effects of earthworm activity on C and N dynamics in tropical paddy soil
NASA Astrophysics Data System (ADS)
John, Katharina; Zaitsev, Andrey S.; Wolters, Volkmar
2016-04-01
Earthworms are involved in key ecosystem processes and are generally considered important for sustainable crop production. However, their provision of essential ecosystem services and contribution to tropical soil carbon and nitrogen balance in rice-based agroecosystems are not yet completely understood. We carried out two microcosm experiments to quantify the impact of a tropical earthworm Pheretima sp. from the Philippines on C and N turnover in rice paddy soils. First one was conducted to understand the modulation impact of soil water saturation level and nitrogen fertilizer input intensity on C and N cycles. The second one focused on the importance of additional organic matter (rice straw) amendment on the earthworm modulation of mineralization in non-flooded conditions. We measured CO2, CH4 (Experiments 1 and 2) and N2O evolution (Experiment 2) from rice paddy soil collected at the fields of the International Rice Research Institute (Philippines). Further we analysed changes in soil C and N content as well as nutrient loss via leaching induced by earthworms (Experiment 2). Addition of earthworms resulted in the strong increase of CH4 release under flooded conditions as well as after rice straw amendment. Compared to flooded conditions, earthworms suppressed the distinct CO2 respiration maximum at intermediate soil water saturation levels. In the first few days after the experiment establishment (Experiment 1) intensive nitrogen application resulted in the suppression of CO2 emission by earthworms at non-flooded soil conditions. However, at the longer term perspective addressed in the second experiment (30 days) earthworm activity rather increased average soil respiration under intensive fertilization or rice straw amendment. The lowest N2O release rates were revealed in the microcosms with earthworm and straw treatments. The combined effect of N fertilizer and straw addition to microcosms resulted in the increased leachate volume due to earthworm bioturbation activity. The mean relative C loss with leaching was increased by earthworms under intensive fertilization and consequently resulting soil C content in the end of Experiment 2 decreased. N concentration in the leachate remained unaffected by earthworms although the remaining N content in soil with straw application and earthworm treatment was significantly higher than in the control. Our results showed that the potential role of earthworms in C-stabilization is confined to moderately irrigated soils that allow high earthworm activity. Earthworm effects on C and N release under non-flooded conditions were largely modulated by the application of N fertilizer (urea) and by the amendment of rice straw. Our findings suggest that the presence of earthworms significantly affect C and N budgets in rice paddy soil, especially in the intensively managed non-flooded fields. In the short term perspective they sequester C and N loss from soil. However, in the longer term (ca. 30 days) this sequestration effect remains significant only for nitrogen under the straw application treatment. The study was supported by ICON project within the DFG-Research Unit FOR 1701.
[The concept of nutritional self-sufficiency and the demographic equilibrium of Rwanda].
Habimana Nyirasafari, G
1987-12-01
Achieving food self-sufficiency is the basic strategy of Rwanda's 4th 5-year plan covering 1987-91. The population growth rate has increased from 3% in 1970 to 3.7% in 1983, with the population doubling between 1964 and 1985. Food production grew by about 4%/year between 1966-83, creating a slight increase in per capita food availability, but the 2171 calories available per capita is dangerously close to the theoretical minimum requirement of 2100 per day. The theoretical protein requirement is almost covered, but there is a serious shortage of oils. The increase in production since 1966 has been due almost exclusively to the extension of cultivated land. But the land supply is limited, and future production increases will need to be based on increased yields per unit cultivated. The National Office of Population has developed a simulation model that analyzes the parallel evolution of population and production so as to identify demographic and development policies that will assure food self-sufficiency and an improvement in living conditions. The population subsystem subjects the population divided by age and sex to the effects of fertility, migration, and mortality. Births are the result of 36 different fertility rates applied to the population of women aged 14-49 years. The agricultural subsystem is tied to the population subsystem by comparison of the volume of population to that of production, by estimation of the proportion of the population living exclusively by subsistence agriculture, by calculation of the potential emigration resulting from overpopulation of the countryside, and by estimation of the links between nutritional level, mortality, and duration of breastfeeding. 5 annexes contain subsystems showing effects of demographic growth on education, employment, and health. The model has various limitations including those of the reliability of its data, but it is sufficiently precise for its main function of clarifying the choices facing policymakers. 6 scenarios of hypothetical future development of the Rwandan population were introduced into the model, ranging from no change to an increase in life expectancy from 48.6 years in 1984 to 68.5 in 2000 coupled with a decline in fertility from 8.6 to 3 children per woman. The model demonstrates that the only solutions which will have a significant impact on improving the nutritional status of the population are those which combine various actions affecting agriculture as well as population.
D.L. Graney; P.E. Pope
1978-01-01
Thinning and fertilization tests with pole-sized red oaks (northern red oak Quercus rubra L. and black oak Q. velutina Lam.) and white oak (Q. alba L.) were begun in the Boston Mountains of Arkansas in the spring of 1975. Fertilizer treatments of either (1) no fertilization, (2) 200 Ibs N + 45 Ibs P per acre, or...
Zielinski, R.A.; Asher-Bolinder, S.; Meier, A.L.; Johnson, C.A.; Szabo, B. J.
1997-01-01
Drainage from heavily cultivated soils may be contaminated with U that is leached from the soil or added as a trace constituent of PO4-based commercial fertilizer. The effect of decades-long application of U-rich fertilizer on the U concentration of irrigation drainage was investigated in a small (14.2 km2) drainage basin in southeastern Colorado. The basin was chosen because previous reports indicated locally anomalous concentrations of dissolved NO3(6-36 mg l-1) and dissolved U (61 ??g l-1) at the mouth of the only stream. Results of this study indicated minimal impact of fertilizer-U compared to natural U leached from the local soils. Detailed sampling of the stream along a 6 mile (9.7 km) reach through heavily cultivated lands indicated marked decoupling of the buildup of dissolved NO3 and U. Dissolved U increased markedly in the upstream half of the reach and correlated positively with increases in Na, Mg, SO4, B and Li derived from leaching of surrounding shaley soils. In contrast, major increases in dissolved NO3 occurred farther downstream where stream water was heavily impacted by ground water return from extensively fertilized fields. Nitrogen isotopic measurements confirmed that dissolved NO3 originated from fertilizer and soil organic N (crop waste). Uranium isotopic measurements of variably uraniferous waters showed little evidence of contamination with fertilizer-derived U of isotopically distinct 234U/238U alpha activity ratio (A.R. = 1.0). Leaching experiments using local alkaline soil, irrigation water and U-rich fertilizer confirmed the ready leachability of soil-bound U and the comparative immobility of U added with liquid fertilizer. Relatively insoluble precipitates containing Ca-P-U were formed by mixing liquid fertilizer with water containing abundant dissolved Ca. In the local soils soluble Ca is provided by dissolution of abundant gypsum. Similar studies are needed elsewhere because the mobility of fertilizer-derived U is dependent on fertilizer type, porewater chemistry and soil properties (pH, moisture, mineralogy, texture).
[Variations of soil fertility level in red soil region under long-term fertilization].
Yu, Han-qing; Xu, Ming-gang; Lü, Jia-long; Bao, Yao-xian; Sun, Nan; Gao, Ju-sheng
2010-07-01
Based on the long-term (1982-2007) field experiment of "anthropogenic mellowing of raw soil" at the Qiyang red soil experimental station under Chinese Academy of Agricultural Sciences, and by using numerical theory, this paper studied the variations of the fertility level of granite red soil, quaternary red soil, and purple sandy shale soil under six fertilization patterns. The fertilization patterns included non-fertilization (CK), straw-returning without fertilizers (CKR), chemical fertilization (NPK), NPK plus straw-return (NPKR), rice straw application (M), and M plus straw-return (MR). The soil integrated fertility index (IFI) was significantly positively correlated with relative crop yield, and could better indicate soil fertility level. The IFI values of the three soils all were in the order of NPK, NPKR > M, MR > CK, CKR, with the highest value in treatment NPKR (0.77, 0.71, and 0.71 for granite red soil, quaternary red soil, and purple sandy shale soil, respectively). Comparing with that in the treatments of no straw-return, the IFI value in the treatments of straw return was increased by 6.72%-18.83%. A turning point of the IFI for all the three soils was observed at about 7 years of anthropogenic mellowing, and the annual increasing rate of the IFI was in the sequence of purple sandy shale soil (0.016 a(-1)) > quaternary red clay soil (0.011 a(-1)) > granite red soil (0.006 a(-1)). It was suggested that a combined application of organic and chemical fertilizers and/or straw return could be an effective and fast measure to enhance the soil fertility level in red soil region.
Ho, M A; Price, C; King, C K; Virtue, P; Byrne, M
2013-09-01
The gametes of marine invertebrates are being spawned into an ocean that is simultaneously warming and decreasing in pH. Predicting the potential for interactive effects of these stressors on fertilization is difficult, especially for stenothermal polar invertebrates adapted to fertilization in cold, viscous water and, when decreased sperm availability may be an additional stressor. The impact of increased temperature (2-4 °C above ambient) and decreased pH (0.2-0.4 pH units below ambient) on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations was investigated in cross-factorial experiments in context with near future ocean change projections. The high temperature treatment (+4 °C) was also used to assess thermal tolerance. Gametes from multiple males and females in replicate experiments were used to reflect the multiple spawner scenario in nature. For fertilization at low sperm density we tested three hypotheses, 1) increased temperature enhances fertilization success, 2) low pH reduces fertilization and, 3) due to the cold stenothermal physiology of S. neumayeri, temperature would be the more significant stressor. Temperature and sperm levels had a significant effect on fertilization, but decreased pH did not affect fertilization. Warming enhanced fertilization at the lowest sperm concentration tested likely through stimulation of sperm motility and reduced water viscosity. Our results indicate that fertilization in S. neumayeri, even at low sperm levels potentially found in nature, is resilient to near-future ocean warming and acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fertility Drugs Associated with Thyroid Cancer Risk: A Systematic Review and Meta-Analysis.
Yu, QingAn; Lv, XiaoYing; Liu, KunPeng; Ma, DaKun; Wu, YaoHua; Dai, WenJie; Jiang, HongChi
2018-01-01
Associations have been demonstrated between fertility drugs and a variety of hormone-sensitive carcinomas. The purpose of this study was to determine the relationship between fertility drugs used in the treatment of female infertility and the risk of thyroid cancer. To investigate the clinical significance of fertility drugs used for the treatment of female infertility and the risk associated with thyroid cancer, we performed a literature search using PubMed, MEDLINE, the Cochrane Library, the Web of Science, and EBSCOHOST for comparative studies published any time prior to July 21, 2017. The studies included women who were treated for infertility with fertility drugs, such as clomiphene citrate, gonadotropins, or other unspecified fertility agents, which reported the incidence of thyroid cancer as the main outcome. Eight studies were included in the meta-analyses. Among women with infertility, there was a significant positive association between thyroid cancer risk and the use of fertility drugs (relative risk [RR] = 1.35; 95% confidence interval [CI] 1.12-1.64; P = 0.002). Additionally, among women with infertility, the use of clomiphene citrate was associated with an increased risk of thyroid cancer compared to women who did not use fertility drugs (RR = 1.45; 95% CI 1.12-1.88; P = 0.005). After pooling results, we found that the parity status of infertile women using fertility drugs was not associated with thyroid cancer risk (RR = 0.99; 95% CI 0.61-1.58, P = 0.95). In summary, clomiphene citrate (the most commonly used fertility drug) and other fertility drugs are associated with an increased risk of thyroid cancer.
Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue
2018-02-01
Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.
Impaired fertility in T-stock female mice after superovulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrobek, A J; Bishop, J B; Marchetti, F
2003-12-05
Superovulation of female mice with exogenous gonadotrophins is routinely used for increasing the number of eggs ovulated by each female in reproductive and developmental studies. We report an unusual effect of superovulation on fertilization in mice. In vivo matings of superovulated T-stock females with B6C3F1 males resulted in a 2-fold reduction (P<0.001) in the frequencies of fertilized eggs compared to control B6C3F1 matings. In addition, {approx}22 hr after mating only 15% of fertilized eggs recovered in T-stock females had reached the metaphase stage of the first cleavage division versus 87% in B6C3F1 females (P < 0.0001). Matings with T-stock malesmore » did not improve the reproductive performance of T-stock females. To investigate the possible cause(s) for the impaired fertilization and zygotic development, the experiments were repeated using in vitro fertilization. Under these conditions, the frequencies of fertilized eggs were not different in superovulated T-stock and B6C3F1 females (51.7% {+-} 6.0 and 64.5% {+-}3.8, P=0.10). There was a 7-fold increase in the frequencies of fertilized T-stock eggs that completed the first cell cycle of development after in vitro versus in vivo fertilization. These results rule out an intrinsic deficiency of the T-stock oocyte as the main reason for the impaired fertility after in vivo matings and suggest that superovulation of T-stock females induces a hostile oviductal and uterine environment with dramatic effects on fertilization and zygotic development.« less
Emerging and established technologies to increase nitrogen use efficiency of cereals
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) fertilizers are expensive inputs; additionally, loss of N increases costs, contributes to soil acidification, and causes off-site pollution of air, groundwater and waterways. This study reviews current knowledge about technologies for N fertilization with potential to increase N use eff...
Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang
2014-06-01
Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.
Sheldon, Richard Porter; Davidson, D.F.; Riggs, S.R.; Burnett, W.C.
1985-01-01
The countries of the world's humid tropical regions lack the soil fertility necessary for high agricultural productivity. A recently developed agricultural technology that increases soil fertility can make tropical agriculture highly productive, but the technique requires large inputs into the soil of phosphorus and other fertilizers and soil amendments. Use of fertilizers derived from phosphate rock is increasing greatly throughout the world, and fertilizer raw materials are being produced more and more frequently from phosphate rock deposits close to the areas of use. An increased understanding of the origin of phosphate rock in ancient oceans has enabled exploration geologists to target areas of potential mineral resource value and to search directly for deposits. However, because of the difficulty of prospecting for mineral deposits in forested tropical regions, phosphate rock deposits are not being explored for in the countries of the humid tropics, including most countries of the Caribbean region. As a result, the countries of the Caribbean must import phosphate rock or phosphorus fertilizer products. In the present trade market, imports of phosphate are too low for the initiation of new agricultural technology in the Caribbean and Central American region. A newly proposed program of discovery and development of undiscovered phosphate rock deposits revolves around reconnaissance studies, prospecting by core drilling, and analysis of bulk samples. The program should increase the chance of discovering economic phosphate rock deposits. The search for and evaluation of phosphate rock resources in the countries of the Caribbean region would take about 5 years and cost an average of $15 million per country. The program is designed to begin with high risk-low cost steps and end with low risk-high cost steps. A successful program could improve the foreign exchange positions of countries in the Caribbean region by adding earnings from agricultural product exports and by substituting domestically produced phosphate rock and fertilizer products for imported phosphate fertilizers. A successful program also could provide enough domestically produced phosphorus fertilizer products to allow initiation of new agricultural technology in the region and thus increase domestic food production. Finally, a new phosphorus fertilizer industry would create new jobs in the mining, chemical, and transportation industries of the Caribbean region.
Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger
2015-07-01
Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. Copyright © 2015. Published by Elsevier Inc.
Effect of Feeding Selenium-Fertilized Alfalfa Hay on Performance of Weaned Beef Calves
Hall, Jean A.; Bobe, Gerd; Hunter, Janice K.; Vorachek, William R.; Stewart, Whitney C.; Vanegas, Jorge A.; Estill, Charles T.; Mosher, Wayne D.; Pirelli, Gene J.
2013-01-01
Selenium (Se) is an essential micronutrient in cattle, and Se-deficiency can affect morbidity and mortality. Calves may have greater Se requirements during periods of stress, such as during the transitional period between weaning and movement to a feedlot. Previously, we showed that feeding Se-fertilized forage increases whole-blood (WB) Se concentrations in mature beef cows. Our current objective was to test whether feeding Se-fertilized forage increases WB-Se concentrations and performance in weaned beef calves. Recently weaned beef calves (n = 60) were blocked by body weight, randomly assigned to 4 groups, and fed an alfalfa hay based diet for 7 wk, which was harvested from fields fertilized with sodium-selenate at a rate of 0, 22.5, 45.0, or 89.9 g Se/ha. Blood samples were collected weekly and analyzed for WB-Se concentrations. Body weight and health status of calves were monitored during the 7-wk feeding trial. Increasing application rates of Se fertilizer resulted in increased alfalfa hay Se content for that cutting of alfalfa (0.07, 0.95, 1.55, 3.26 mg Se/kg dry matter for Se application rates of 0, 22.5, 45.0, or 89.9 g Se/ha, respectively). Feeding Se-fertilized alfalfa hay during the 7-wk preconditioning period increased WB-Se concentrations (P Linear<0.001) and body weights (P Linear = 0.002) depending upon the Se-application rate. Based upon our results we suggest that soil-Se fertilization is a potential management tool to improve Se-status and performance in weaned calves in areas with low soil-Se concentrations. PMID:23536788
Latin America: how a region surprised the experts.
De Sherbinin, A
1993-02-01
In 1960-1970, family planning specialists and demographers worried that poverty, limited education, Latin machismo, and strong catholic ideals would obstruct family planning efforts to reduce high fertility in Latin America. It had the highest annual population growth rate in the world (2.8%), which would increase the population 2-fold in 25 years. Yet, the UN's 1992 population projection for Latin America and the Caribbean in the year 2000 was about 20% lower than its 1963 projection (just over 500 vs. 638 million). Since life expectancy increased simultaneously from 57 to 68 years, this reduced projection was caused directly by a large decline in fertility from 5.9 to 3. A regression analysis of 11 Latin American and Caribbean countries revealed that differences in the contraceptive prevalence rates accounted for 90% of the variation in the total fertility rate between countries. Thus, contraception played a key role in the fertility decline. The second most significant determinant of fertility decline was an increase in the average age at first marriage from about 20 to 23 years. Induced abortion and breast feeding did not contribute significantly to fertility decline. The major socioeconomic factors responsible for the decline included economic development and urbanization, resulting in improvements in health care, reduced infant and child mortality, and increases in female literacy, education, and labor force participation. Public and private family planning programs also contributed significantly to the decline. They expanded from cities to remote rural areas, thereby increasing access to contraception. By the early 1990s, Brazil, Mexico, and Colombia had among the lowest levels of unmet need (13-24%) in developing countries. Other key factors of fertility decline were political commitment, strong communication efforts, and stress on quality services. Latin America provides hope to other regions where religion and culture promote a large family size.
Wang, Xiaobin; Cai, Dianxiong; Hoogmoed, Willem B; Oenema, Oene
2011-08-30
An apparently large disparity still exists between developed and developing countries in historical trends of the amounts of nitrogen (N) fertilizers consumed, and the same situation holds true in China. The situation of either N overuse or underuse has become one of the major limiting factors in agricultural production and economic development in China. The issue of food security in N-poor regions has been given the greatest attention internationally. Balanced and appropriate use of N fertilizer for enriching soil fertility is an effective step in preventing soil degradation, ensuring food security, and further contributing to poverty alleviation and rural economic development in the N-poor regions. Based on the China Statistical Yearbook (2007), there could be scope for improvement of N use efficiency (NUE) in N-rich regions by reducing N fertilizer input to an optimal level (≤180 kg N ha(-1)), and also potential for increasing yield in the N-poor regions by further increasing N fertilizer supply (up to 116 kg N ha(-1)). For the N-rich regions, the average estimated potential of N saving and NUE increase could be about 15% and 23%, respectively, while for the N-poor regions the average estimated potential for yield increase could be 21% on a regional scale, when N input is increased by 13%. The study suggests that to achieve the goals of regional yield improvement, it is necessary to readjust and optimize regional distribution of N fertilizer use between the N-poor and N-rich regions in China, in combination with other nutrient management practices. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk
2014-09-01
Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.
NASA Astrophysics Data System (ADS)
Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum
2018-02-01
The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.
Yi, Young-Joo; Manandhar, Gaurishankar; Sutovsky, Miriam; Jonáková, Vera; Park, Chang-Sik; Sutovsky, Peter
2010-03-01
The 26S proteoasome is a multi-subunit protease specific to ubiquitinated substrate proteins. It is composed of a 20S proteasomal core with substrate degradation activity, and a 19S regulatory complex that acts in substrate recognition, deubiquitination, priming and transport to the 20S core. Inhibition of proteolytic activities associated with the sperm acrosome-borne 20S core prevents fertilization in mammals, ascidians and echinoderms. Less is known about the function of the proteasomal 19S complex during fertilization. The present study examined the role of PSMD8, an essential non-ATPase subunit of the 19S complex, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Immunofluorescence localized PSMD8 to the outer acrosomal membrane, acrosomal matrix and the inner acrosomal membrane. Colloidal gold transmission electron microscopy detected PSMD8 on the surface of vesicles in the acrosomal shroud, formed as a result of zona pellucida-induced acrosomal exocytosis. Contrary to the inhibition of fertilization by blocking of the 20S core activities, fertilization and polyspermy rates were increased by adding anti-PSMD8 antibody to fertilization medium. This observation is consistent with a possible role of PSMD8 in substrate deubiquitination, a process which when blocked, may actually accelerate substrate proteolysis by the 26S proteasome. Subunit PSMD8 co-immunoprecipitated with acrosomal surface-associated spermadhesin AQN1. This association indicates that the sperm acrosome-borne proteasomes become exposed onto the sperm surface following the acrosomal exocytosis. Since immunological blocking of subunit PSMD8 increases the rate of polyspermy during porcine fertilization, the activity of the 19S complex may be a rate-limiting factor contributing to anti-polyspermy defense during porcine fertilization. Copyright 2009. Published by Elsevier Ireland Ltd.
Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian
2016-06-30
Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.
Xiang, Xingjia; Gibbons, Sean M; He, Jin-Sheng; Wang, Chao; He, Dan; Li, Qian; Ni, Yingying; Chu, Haiyan
2016-01-01
The Qinghai-Tibet Plateau (QTP) is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF) communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300). Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3 (-) were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity.
Aqueous and gaseous nitrogen losses induced by fertilizer application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, C.; Maggi, F.; Riley, W.J.
2009-01-15
In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions andmore » nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.« less
Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian
2016-01-01
Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311
NASA Astrophysics Data System (ADS)
Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana
2016-04-01
The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). In semiarid scenarios with low water quality, where the irrigation is necessary to maintain production, green WF is zero because the effective rainfall is negligible. As well as blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. The major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study is focused in assessment mineral and organic fertilization on grey WF in a fertirrigated melon crop under semiarid conditions, which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands.
Galimov, Sh N; Akhmetov, R M; Galimova, E F; Bairamgulov, F M; Bikkulova, L R
2017-06-01
To characterize the effect of the Speroton complex on the free radical homeostasis in the ejaculate of males of infertile couples and the likelihood of pregnancy in partners. The study group comprised 30 men aged between 26 and 43 years (mean 33 +/- 4.8 years) with idiopathic infertility. All patients received Speroton one sachet once daily during meals for 3 months. The comparison group consisted of 29 men of fertile age having 1 to 3 healthy children. In infertile men, standard semen parameters including the ejaculate volume, sperm concentration, total count and proportion of abnormal forms were within the normal range. Markers of oxidative damage to ejaculate macromolecules were determined using standard diagnostic testing systems. The patients with idiopathic infertility were found to have statistically significant changes in the degree of chemical modification of ejaculate biopolymers. The level of lipid hydroperoxides in infertile men was significantly higher than in fertile participants. Taking Speroton resulted in the decrease of lipid hydroperoxides to the level that did not differ from that in the control group. Using Speroton was also accompanied by a decrease in the level of the oxidative damage DNA biomarker 8-oxodGu and a tendency toward normalization of the carbonyl modification of the ejaculate proteins. Five married couples in the treatment group reported achieving pregnancy. Taking Speroton was associated with the normalization of the balance of pro- and antioxidant processes in the ejaculate, as indicated by a decrease in the oxidative destruction of sperm biopolymers. The revealed molecular mechanism of the drug action is the basis for restoring the fertilizing ability and increasing the likelihood of pregnancy. The treatment effectiveness was 16.7%. Speroton is a promising drug that improves the functional sperm characteristics and contributes to achieving pregnancy in couples with a male infertility factor.
Fertilizing Nature: A Tragedy of Excess in the Commons
Good, Allen G.; Beatty, Perrin H.
2011-01-01
Globally, we are applying excessive nitrogen (N) fertilizers to our agricultural crops, which ultimately causes nitrogen pollution to our ecosphere. The atmosphere is polluted by N2O and NOx gases that directly and indirectly increase atmospheric warming and climate change. Nitrogen is also leached from agricultural lands as the water-soluble form NO3 −, which increases nutrient overload in rivers, lakes, and oceans, causing “dead zones”, reducing property values and the diversity of aquatic life, and damaging our drinking water and aquatic-associated industries such as fishing and tourism. Why do some countries show reductions in fertilizer use while others show increasing use? What N fertilizer application reductions could occur, without compromising crop yields? And what are the economic and environmental benefits of using directed nutrient management strategies? PMID:21857803
Women's Fertility Status Alters Other Women's Jealousy and Mate Guarding.
Hurst, Ashalee C; Alquist, Jessica L; Puts, David A
2017-02-01
Across three studies, we tested the hypothesis that women exhibit greater jealousy and mate guarding toward women who are in the high (vs. low) fertility phase of their cycle. Women who imagined their partner with a woman pictured at high fertility reported more jealousy than women who imagined their partner with a woman pictured at low fertility (Studies 1 and 2). A meta-analysis across studies manipulating fertility status of the pictured woman found a significant effect of fertility status on both jealousy and mate guarding. Women with attractive partners viewed fertile-phase women as less trustworthy, which led to increased mate guarding (Study 2). In Study 3, the closer women were to peak fertility, the more instances they reported of other women acting jealously and mate guarding toward them. These studies provide evidence that women selectively exhibit jealousy and mate guarding toward women who are near peak fertility.
Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat
2012-06-28
The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.
NASA Astrophysics Data System (ADS)
Marlina, Neni; Rompas, Joni Phillep; Marlina, Musbik
2017-09-01
Rice planting in tidal land has two main problems: iron (Fe) which has the potential to poison rice and low nutrient availability. Azospirillum enriched chicken manure and phosphate solvent bacteria (Biological Organic Fertilizer = BOF) is an option to overcome iron toxicity and as a source of nutrition. The objective of the study was to obtain a combination of biological organic fertilizers and balanced inorganic fertilizers in reducing doses of inorganic fertilizers, increasing NPK nutrient uptake and yield of several rice varieties in tidal land. This research used Factorial RAK with 25 treatment combinations that were repeated three times. Factor I is a combination of BOF and anorganic fertilizer with 5 levels of treatment (no inorganic fertilizers, BOF 400 kg / ha with inorganic fertilizer 25% NPK, BOF 400 kg / ha with inorganic fertilizer 50% NPK and BOF 400 kg / ha with fertilizer Inorganic 75% NPK). Factor II is several rice varieties (IPB 4S, Martapura, Margasari, Inpara 5, Inpara 7). The results showed that organic fertilizer 400 kg / ha can reduce the use of inorganic fertilizer by 75% of NPK fertilizer. The highest NPK nutrient absorption is in the treatment of organic fertilizer 400 kg / ha and inorganic fertilizer 25% of NPK fertilizer. Production of biological organic fertilizer 400 kg / ha with inorganic fertilizer 25% NPK and 4B IPB varieties 727.77% higher when compared with without the provision of organic fertilizer with Inpara 5 varieties.
Glahn, David; Nuccitelli, Richard
2003-04-01
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.
-induced fertilization impairment in Strongylocentrotus droebachiensis collected in the Arctic
NASA Astrophysics Data System (ADS)
Bögner, D.; Bickmeyer, U.; Köhler, A.
2014-06-01
Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180-425 µatm) and future acidification scenarios (~550-800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 μatm or higher.
High estradiol and low progesterone are associated with high assertiveness in women.
Blake, Khandis R; Bastian, Brock; O'Dean, Siobhan M; Denson, Thomas F
2017-01-01
Sexual selection theory posits that women are more selective than men are when choosing a mate. This evolutionary theory suggests that "choosiness" increases during the fertile window because the costs and benefits of mate selection are highest when women are likely to conceive. Little research has directly investigated reproductive correlates of choice assertion. To address this gap, in the present research we investigated whether fertility, estradiol, and progesterone influenced general assertiveness in women. We recruited 98 naturally cycling, ethnically diverse women. Using a within-subjects design and ovarian hormone concentrations at fertile and non-fertile menstrual cycle phases, we measured implicit assertiveness and self-reported assertive behavior. To see if fertility-induced high assertiveness was related to increased sexual motivation, we also measured women's implicit sexual availability and interest in buying sexy clothes. Results showed that high estradiol and low progesterone predicted higher assertiveness. Sexual availability increased during periods of high fertility. Low progesterone combined with high estradiol predicted greater interest in buying sexy clothes. Results held when controlling for individual differences in mate value and sociosexual orientation. Our findings support the role of fluctuating ovarian hormones in the expression and magnitude of women's assertiveness. High assertiveness during the fertile window may be a psychological adaptation that promotes mate selectivity and safeguards against indiscriminate mate choice when conception risk is highest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shen, Fei; Zhu, Tong-bin; Teng, Ming-jiao; Chen, Yue; Liu, Man-qiang; Hu, Feng; Li, Hui-xin
2016-02-01
In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.
Liu, Qingfang; Wang, Rui; Li, Rujian; Hu, Yaxian; Guo, Shengli
2016-01-01
Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 μmol m−2s−1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons. PMID:27992576
NASA Astrophysics Data System (ADS)
Kaufmann, Manuela Sarah; von Hebel, Christian; Brogi, Cosimo; Baumecker, Michael; Döring, Thomas; Amelung, Wulf; Vereecken, Harry; van der Kruk, Jan
2017-04-01
Electromagnetic induction (EMI) data are often being used to investigate large scale soil properties including clay content, soil water content, and salinity changes for a wide range of applications. For agricultural sites, different management practices such as organic/mineral fertilization, tillage, and/or irrigation are important when interpreting the measured apparent electrical conductivity (ECa). Here, we present EMI data recorded at two long term field experiment (LTFE) agricultural test sites in Thyrow near Berlin (Germany), where different long term fertilizer and irrigation management practices were applied. We used two fixed-boom multi-coil EMI instruments that simultaneously measure over nine different depths of investigation (DOI), recording information ranging between the very shallow (0-0.25 m) ploughing zone including the organic matter and the surface soil (A-Horizon) down to the relatively deep (0-2.7 m) subsoil (B-Horizon) or even substratum (C-Horizon). At both test sites, the prevailing sandy to silty sand in the A- and B-Horizon is underlain by a glacial till C-Horizon resulting in generally low ECa values between 0.5 and 5 mS/m. At one test site, a "static nutrient deficiency experiment" is performed since 1937, where organic fertilizer (farm yard manure) and mineral fertilizers (nitrogen-phosphate-potassium (NPK) and liming) are applied at specific grids. Comparing the fertilizer application grid to the measured EMI data, the lowest ECa values coincide to unfertilized grids whereas the ECa values increase with liming, farm yard manure, and NPK. The visually observed correlation between ECa and the liming treatment was possibly due to the increased pH of the soil, because the fertilizer application increases ion contents that increase the soil electrical conductivity. At the second test site, a "Static Irrigation and Fertilizer Experiment" is conducted, where next to the fertilizer treatment (farm yard manure and nitrogen) part of the field is irrigated with a yearly average of 78 mm. Preliminary results show that for the irrigated area, the ECa values increased up to 80% compared to the non-irrigated zones for the deepest sensing coils, whereas farm yard manure increased ECa up to 10% for coils with intermediate DOI. These results obtained at the two LTFE sites strongly indicate that irrigation and fertilizer treatments influence the ion contents of soils from A- to B-Horizons as reflected by the higher apparent electrical conductivities measured with EMI and should be considered when interpreting ECa measurements to obtain soil properties of interest.
Fertility Adaptation of Child Migrants to Canada
Adsera, Alicia; Ferrer, Ana
2013-01-01
This study analyzes the fertility behavior of immigrant women arriving to Canada before age 19 using the 20 per cent sample of the Canadian Census from 1991 through 2006. Findings show that fertility increases with age at immigration, and is particularly high for those immigrating in their late teens. This pattern prevails regardless of the country of origin or whether the mother tongue of the migrant is an official language in Canada or not. We do not find a ‘critical age’ at which the behavior of migrants with and without official mother tongue start to diverge by more, even though the fertility of migrants without official mother tongue is always higher on average. Formal education matters as the fertility of immigrants who arrived to Canada before adulthood and graduated from college is similar to that of their native peers regardless of their age of arrival. However, the fertility of those with less than tertiary education increasingly diverges with age at migration from similarly educated Canadians. PMID:23800074
Correlation between fertility drugs use and malignant melanoma incidence: the state of the art.
Tomao, Federica; Papa, Anselmo; Lo Russo, Giuseppe; Zuber, Sara; Spinelli, Gian Paolo; Rossi, Luigi; Caruso, Davide; Prinzi, Natalie; Stati, Valeria; Benedetti Panici, Pierluigi; Tomao, Silverio
2014-09-01
The relationship between fertility, reproductive hormones, and risk of malignant melanoma has acquired much interest in recent years. Melanocytes are hormonally responsive cells, and some in vitro studies demonstrated that estrogen hormones stimulate the growth of melanocytes. Moreover, estrogen receptors have been identified in melanoma cells, as well as in melanocytic nevi and in normal skin. Some evidences suggest a possible link between fertility treatments and the increased risk of malignant melanoma. This article addresses this association through a scrupulous search of the literature published thus far. The aim of this review is to determine the incidence of malignant melanoma in women treated with fertility drugs and to examine if the exposure to fertility treatments really increases the risk of malignant melanoma. In particular, our analysis focused on the different types of drugs and different treatment schedules used. Finally, this study provides additional insights regarding the long-term relationships between fertility drugs and the risk of malignant melanoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-08-01
This report presents the results of a brief study of industral, mining, and agricultural sector energy demands in Peru. The study establishes current energy demands and sectoral activities, and projects future energy needs through the year 2000. With respect to energy demands, the subsectors covered are: mining and non-ferrous metals, iron and steel, cement, oil refining, petrochemicals, fertilizers, and agriculture (major crops). Total energy demands for these subsectors are developed for 1976, 1985, and 2000, assuming full-capacity operation for the majority of the plants. Potential options developed for reducing energy use in these sectors are: increased coal use, improved energymore » efficiency in the manufacturing sector, use of agricultural wastes as fuel, possible displacement of oil by hydroelectricity, use of geothermal energy, increased use of water materials for the cement and construction industries, and possible promotion of cogeneration systems (electricity/steam). (MCW)« less
Projected near-future levels of temperature and pCO2 reduce coral fertilization success.
Albright, Rebecca; Mason, Benjamin
2013-01-01
Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.
Projected Near-Future Levels of Temperature and pCO2 Reduce Coral Fertilization Success
Albright, Rebecca; Mason, Benjamin
2013-01-01
Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1–6.4°C rise in global average surface temperatures and a 0.14–0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential. PMID:23457572
Effects of supplementation of fertilizers on human selenium status in Finland.
Aro, A; Alfthan, G; Varo, P
1995-03-01
The Se concentration of foods can be increased by supplementing fertilizers with soluble Se compounds. In Finland the availability of soil Se for plants is poor owing to the relatively low Se concentration, low pH and high iron content of the soil. Since 1984 multimineral fertilizers have been supplemented with Se (16 mg kg-1 to fertilizers for grain production and 6 mg kg-1 to those for fodder production) in the form of sodium selenate. Within two years a three-fold increase of mean Se intake was observed. The supplementation affected the Se content of all major food groups with the exception of fish. The concomitant human serum Se concentration increased by 70%. In 1990 the amount of Se that was supplemented was reduced to 6 mg kg-1 for all fertilizers. This reduced the mean Se intake by 30% and the serum Se concentration decreased by 25% from the highest levels observed in 1989. Plants take up part of the supplemented selenate and transform it into organic Se compounds, mainly selenomethionine. This affects human nutrition by increasing the Se content of foods of both animal and vegetable origin. According to data obtained in Finland, supplementation of fertilizers with Se is a safe and effective means of increasing the Se intake of both animals and humans that is feasible in countries with relatively uniform geochemical conditions. This kind of intervention requires careful monitoring of the effects on both animal and human nutrition and the environment.
Meier, Elizabeth A.; Thorburn, Peter J.
2016-01-01
The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha–1 per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level. PMID:27462340
Phosphorus content in three physical fractions of typical Chernozem
NASA Astrophysics Data System (ADS)
Kotelnikova, Anna; Egorova, Zoya; Sushkov, Nikolai; Matveeva, Natalia; Fastovets, Ilya; Rogova, Olga; Volkov, Dmitriy
2017-04-01
The widespread use of fertilizers makes it necessary to study not only the content but also the forms of occurrence of nutrients in soil, as well as the phase in which nutrients are transferred. These characteristics determine the availability of chemical elements for plants, but remain insufficiently studied. In this work we attempted to gain insight into the distribution of organo-mineral fractions in agriculturally used Chernozem from Voronezh (Russia) and the distribution of phosphorus - one of the most important nutrient elements - in this type of soil. We compared the distributions of phosphorus in physical fractions of the soil in 3 experimental groups: the control group (without fertilizers), the group fertilized with 1 dose of NPK, and the group fertilized with 2 doses of NPK. The soil was sampled during the period of treatment with fertilizers and during the period of aftereffect (4 years after the last application of fertilizers). In order to analyze organo-mineral fractions, we used size-density fractionation to separate the soil samples into three physical fractions: clay-associated fraction with particle size < 1μm (CF), light fraction with particle density < 2.0 g cm-3 (LF), and residual fraction > 2.0 g cm-3 (RF). Total phosphorus content (TPC) in the fractions was determined with Agilent 5100 ICP-AES spectrometer. To compare groups, simultaneous confidence intervals were computed from pooled variance estimators in ANOVA, and Fisher's LSD test was used. We showed that during the period of treatment with fertilizers LF increased proportionally to the dose of fertilizers, and a simultaneous reduction in RF was observed. During the period of aftereffect, the content of these fractions tended to the control value. The increase of LF may indicate increasing availability of nutrients, since this fraction is likely to participate in biological cycles. The analysis of TPC in fractions suggested that during the period of treatment with fertilizers most of phosphorus accumulates in CF. In the group with double dose of fertilizers TPC in CF was more than 1.5 times higher than in the control, while for LF the increase in TPC was not significant, and RF TPC was practically the same as in the control. Association of phosphorus predominantly with CF suggests that phosphorus was mainly adsorbed to the surface of clay particles rather than to organic components. Therefore, despite the increase in CF TPC as a consequence of treatment with fertilizers, the increase in availability of phosphorus is questionable. In the aftereffect period no significant differences in TPC were found. In conclusion, we showed that availability of fertilizers may be dependent on fractional composition of soil. Under our experimental conditions, phosphorus tended to bind predominantly to clay particles. However, in the aftereffect period, fractionation of TPC was similar to the control, indicating the need to further investigate the fate of phosphorus in soils.
Jia, Qianmin; Kamran, Muhammad; Ali, Shahzad; Sun, Lefeng; Zhang, Peng; Ren, Xiaolong; Jia, Zhikuan
2018-01-01
In the arid and semi-arid areas of northern China, overexploitation of fertilizers and extensive irrigation with brackish groundwater have led to soil degradation and large areas of farmland have been abandoned. In order to improve the soil quality of abandoned farmland and make reasonable use of brackish groundwater, we conducted field trials in 2013 and 2014. In our study, we used three fertilization modes (CF, chemical fertilizer; OM, organic manure and chemical fertilizer; NF, no fertilizer) and three deficit irrigation levels (I 0 : 0 mm; I 75 : 75 mm; I 150 : 150 mm). The results showed that the activities of soil urease, alkaline phosphatase, invertase, catalase, and dehydrogenase in the OM treatment were significantly improved compared with those in the CF and NF treatments under the three deficit irrigation levels. Compared with NF, the OM treatment significantly increased soil organic carbon (SOC), water-soluble carbon (WSC), total nitrogen, microbial biomass carbon and nitrogen (MBC and MBN), and soil respiration rate, and significantly decreased soil C:N and MBC:MBN ratios and the metabolic quotient, thus improving the soil quality of abandoned farmland. Furthermore, the OM treatment increased alfalfa plant height, leaf area index, leaf chlorophyll content, and biomass yield. Under the CF and OM fertilization modes, the activities of urease and catalase in I 150 were significantly higher than those in I 0 , whereas irrigating without fertilizer did not significantly increase the activity of these two enzymes. Regardless of fertilization, alkaline phosphatase activity increased with an increase in irrigation amount, whereas invertase activity decreased. The results showed that deficit irrigation with brackish groundwater under the OM treatment can improve soil quality. Over the two years of the study, maximum SOC, total nitrogen, WSC, MBC, and MBN were observed under the OM-I 150 treatment, and the alfalfa biomass yield of this treatment was also significantly higher than that of the OM-I 0 treatment. Therefore, the OM-I 150 treatment could be used as a suitable measure not only to improve the quality of abandoned farmland soil but also to increase the alfalfa biomass yield in arid and semi-arid areas of northern China.
Moyin-Jesu, Emmanuel Ibukunoluwa
2007-08-01
The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost of buying synthetic inorganic fertilizers and maintain the long term productivity of soils for sustainable cultivation of okra.
History of nutrient inputs to the northeastern United States, 1930-2000
NASA Astrophysics Data System (ADS)
Hale, Rebecca L.; Hoover, Joseph H.; Wollheim, Wilfred M.; Vörösmarty, Charles J.
2013-04-01
Humans have dramatically altered nutrient cycles at local to global scales. We examined changes in anthropogenic nutrient inputs to the northeastern United States (NE) from 1930 to 2000. We created a comprehensive time series of anthropogenic N and P inputs to 437 counties in the NE at 5 year intervals. Inputs included atmospheric N deposition, biological N2 fixation, fertilizer, detergent P, livestock feed, and human food. Exports included exports of feed and food and volatilization of ammonia. N inputs to the NE increased throughout the study period, primarily due to increases in atmospheric deposition and fertilizer. P inputs increased until 1970 and then declined due to decreased fertilizer and detergent inputs. Livestock consistently consumed the majority of nutrient inputs over time and space. The area of crop agriculture declined during the study period but consumed more nutrients as fertilizer. We found that stoichiometry (N:P) of inputs and absolute amounts of N matched nutritional needs (livestock, humans, crops) when atmospheric components (N deposition, N2 fixation) were not included. Differences between N and P led to major changes in N:P stoichiometry over time, consistent with global trends. N:P decreased from 1930 to 1970 due to increased inputs of P, and increased from 1970 to 2000 due to increased N deposition and fertilizer and decreases in P fertilizer and detergent use. We found that nutrient use is a dynamic product of social, economic, political, and environmental interactions. Therefore, future nutrient management must take into account these factors to design successful and effective nutrient reduction measures.
How does variance in fertility change over the demographic transition?
Hruschka, Daniel J.; Burger, Oskar
2016-01-01
Most work on the human fertility transition has focused on declines in mean fertility. However, understanding changes in the variance of reproductive outcomes can be equally important for evolutionary questions about the heritability of fertility, individual determinants of fertility and changing patterns of reproductive skew. Here, we document how variance in completed fertility among women (45–49 years) differs across 200 surveys in 72 low- to middle-income countries where fertility transitions are currently in progress at various stages. Nearly all (91%) of samples exhibit variance consistent with a Poisson process of fertility, which places systematic, and often severe, theoretical upper bounds on the proportion of variance that can be attributed to individual differences. In contrast to the pattern of total variance, these upper bounds increase from high- to mid-fertility samples, then decline again as samples move from mid to low fertility. Notably, the lowest fertility samples often deviate from a Poisson process. This suggests that as populations move to low fertility their reproduction shifts from a rate-based process to a focus on an ideal number of children. We discuss the implications of these findings for predicting completed fertility from individual-level variables. PMID:27022082
NASA Astrophysics Data System (ADS)
Li, Yue; Li, Na; Luo, Peiyu; Wang, Yue; Dai, Jian; Yang, Jinfeng
2017-12-01
In response to the Ministry of agriculture’s action plan for chemical fertilizer reductions and organic fertilizers instead of fertilizersand discuss the optimum consumption and proportion of peanut biochar-based fertilization.Six different fertilization treatments were set up:C40, C50(standard consumption), C60, C40+M, C30+M and C20+M. Seelding height, chlorophyll content and total biomass were also measured on 6th, 2017. The results showed that C20+M treatment had the highest plant height and the highest biomass in Peanut Seedlings, while the content of chlorophyll increased with the amount of biochar applied.
The impact of cross-border reproductive care or 'fertility tourism' on NHS maternity services.
McKelvey, A; David, A L; Shenfield, F; Jauniaux, E R
2009-10-01
High order multiple pregnancies have substantial morbidity and mortality. Fertility treatment is commonly responsible for their conception and is available globally with variable regulation. We investigated cross-border fertility treatment in these pregnancies in a UK fetal medicine unit, recording mode of conception, country of fertility treatment, reason for non-UK treatment and fetal reduction. Over an 11-year period, 109 women had a high order multiple pregnancy. Ninety-four women (86%) conceived with fertility treatment of whom 24 (26%) had this performed overseas. Cross-border fertility treatment poses an increasing challenge to obstetricians. National data on its occurrence is urgently needed.
Farming with rocks and minerals: challenges and opportunities.
Van Straaten, Peter
2006-12-01
In many parts of the world food security is at risk. One of the biophysical root causes of falling per-capita food production is the declining quality and quantity of soils. To reverse this trend and increase soil fertility soil and plant nutrients have to be replenished. This review provides a literature survey of experiences of using multi-nutrient rock fertilizers for soil fertility enhancement from temperate and tropical environments. Advantages and limitations of the application of rock fertilizers are discussed. Examples are provided from two successful nutrient replenishment projects in Africa where locally available rock fertilizers are used on highly leached acid soils. The potential of combining organic materials alongside rock fertilizers in soil fertility replenishment strategies is stressed.
NASA Astrophysics Data System (ADS)
Mulyadiana, A. T.; Marwanti, S.; Rahayu, W.
2018-03-01
The research aims to know the factors which affecting rice production, and to know the effectiveness of fertilizer subsidy policy on rice production in Karanganyar Regency. The fertilizer subsidy policy was based on four indicators of fertilizer subsidy namely exact price, exact place, exact time, and exact quantity. Data was analyzed using descriptive quantitative and qualitative and multiple linear regression. The result of research showed that fertilizer subsidy policy in Karanganyar Regency evaluated from four indicators was not effective because the distribution of fertilizer subsidy to farmers still experience some mistakes. The result of regression analysis showed that production factors such as land area, use of urea fertilizer, use of NPK fertilizer, and effectiveness of fertilizer subsidy policy had positive correlation and significant influence on rice production, while labor utilization and use of seeds factors had no significant effect on rice production in Karanganyar Regency. This means that if the fertilizer subsidy policy is more effective, rice production is also increased.
[To be better informed: the population problem in Rwanda and the scope of its solution].
Gakwaya, D
1993-12-01
As part of its IEC program, Rwanda's National Office of Population (ONAPO) produced a 4-volume work entitled "The Demographic problem in Rwanda and the framework of its solution". The work places Rwanda's population problem in historical context by noting the progressive acceleration of the growth rate beginning in 1940. The population increased from 1,913,000 in 1940 to 3,735,000 in 1970 and 7,149,215 in 1991. The strategies initially proposed for maintaining balance between population and production included resettlement schemes to reduce population pressure in crowded zones and increase production. ONAPO was created to address the problem more directly. The first and most important of the volumes analyzes the relationship between population problems and national development. The problems discussed in relation to population include agriculture and food supply, nutrition, health and health care, education and school attendance, employment, migration and urbanization, environment, integration of women into development, changing attitudes and customs, and family planning. The second volume discusses food production and food self-sufficiency at a time when population is increasing rapidly but food production is declining. A model produced by ONAPO attempts to analyze the interrelationships between population and food production. Population factors included in the model are fertility, mortality, and migration. Twelve vegetable crops and 7 animal products evolve in the model according to area devoted to them, yield, soil quality, fallow, deforestation, and erosion. Agricultural products are transformed in the model to calories, protein, and fats. Different scenarios result from the combination of different factors, and their effect is to reduce or increase the volume of population and consequently the number f calories available per person and per day. Volume 3, on costs and benefits of family planning in Rwanda, compares 3 situations; no family planning, realistic family planning, and optimistic family planning. It demonstrates the savings in health, education, agriculture, and elsewhere that would result from a lower rate of population growth. Volume 4, on Rwanda's population policy and plan of action, summarizes the population policy and its components of family planning, reduction of early childhood mortality, promotion of family welfare, training and research, and migration. Specific objectives include increasing contraceptive prevalence from 12% in 1990 to 48.4% in 2000, reducing the growth rate from 3.6% in 1990 to 2% in 2000, and increasing life expectancy at birth from 49 years in 1985 to 53.5 in 2000.
[Effects of enhanced CO2 fertilization on phytoremediation of DEHP-polluted soil].
Diao, Xiao-Jun; Wang, Shu-Guang; Mu, Nan
2013-03-01
Low efficiency of remediation is one of the key issues to be solved in phytoremediation technology. Based on the necessity of reducing CO2 emission in China and the significance of CO2 in plant photosynthesis, this paper studied the effects of enhanced CO2 fertilization on the phytoremediation of polluted soil, selecting the C3 plant mung bean (Vigna radiate) and the C4 plant maize (Zea mays) as test plants for phytoremediation and the DEHP as the target pollutant. DEHP pollution had negative effects on the growth and rhizosphere micro-environment of the two plants. After enhanced CO2 fertilization, the aboveground dry mass of the two plants and the alkaline phosphatase activity in the rhizosphere soils of the two plants increased, the COD activity in the leaves of the two plants decreased, the microbial community in the rhizosphere soils shifted, and the numbers of the microbes with DEHP-tolerance in the rhizosphere soils increased. These changes indicated that enhanced CO2 fertilization could promote the plant growth and the plant tolerance to DEHP stress, and improve the rhizosphere micro-environment. Enhanced CO2 fertilization also increased the DEHP uptake by the two plants, especially their underground parts. All these effects induced the residual DEHP concentration in the rhizospheres of the two plants, especially that of mung bean, decreased obviously, and the phytoremediation efficiency increased. Overall, enhanced CO2 fertilization produced greater effects on C3 plant than on C4 plant. It was suggested that enhanced CO2 fertilization could be a useful measure to enhance the efficiency of phytoremediation.
Barunawati, Nunun; Giehl, Ricardo F Hettwer; Bauer, Bernhard; von Wirén, Nicolaus
2013-01-01
The fortification of cereal grains with metal micronutrients is a major target to combat human malnutrition of Fe and Zn. Based on recent studies showing that N fertilization can promote Fe and Zn accumulation in cereal grains, we investigated here the influence of nitrate- or ammonium-based N fertilization on the accumulation of Fe, Zn, and Cu as well as metal chelator pools in flag leaves and grains of winter wheat. Fertilization with either N form increased the concentrations of N and of the metal chelator nicotianamine (NA) in green leaves, while 2'-deoxymugineic acid (DMA) remained unaffected. Despite the differential response to N fertilization of NA and DMA levels in flag leaves, N fertilization remained without any significant effect on the net export of these metals during flag leaf senescence, which accounted for approximately one third of the total Fe, Zn, or Cu content in leaves. The significant increase in the accumulation of Fe, Zn, and Cu found in the grains of primarily ammonium-fertilized plants was unrelated to the extent of metal retranslocation from flag leaves. These results indicate that an increased N nutritional status of flag leaves promotes the accumulation of Fe, Zn, and Cu in flag leaves, which is accompanied by an increased pool of NA but not of DMA. With regard to the far higher concentrations of DMA relative to NA in leaves and leaf exudates, DMA may be more relevant for the mobilization and retranslocation of these metals in high-yielding wheat production.
Soviet fertility, labor-force participation, and marital stability.
Kuniansky, A
1983-06-01
A simultaneous-equations model of Soviet fertility and labor-force participation is estimated from a cross section of 72 oblast's of the Russian Republic (RSFSR) reported in the 1970 census. The construction of the model is based on the neoclassical theory of household behavior. Simulated changes capture effects of policy changes in the exogenous variables on Soviet fertility and the female labor supply. The exogenous variables investigated are child care facilities (CC), urbanization ratio (URB), male education (MALED), and female education (FEMED). It was found that an increase in FEMED affects labor force participation (LFP) directly and indirectly through impact on birth rate (BR). Increase in CC raise both LFP and BR; increases in FEMED causes womens withdrawal from the labor force and one would expect this to raise BR; however, FEMED raises the opportunity costs of fertility sufficiently to neutralize this effect. Increasing urbanization does not affect participation in a significant way, but it does retard fertility. This effect works through LFP's impact on BR and the indirect effect working through marital stability. A final set of simulations captured the impact of upward shocks of LFP, BR, and the ratio of divorces to marriages (DIV/MAR) on the endogenous variables. Such changes could occur through changes in abortion laws, tightening of divorce laws, or changes in labor legislation. Participation is reduced by the fertility shock, just as fertility is retarded by the LPF and marital stability shocks. Evidence of a backward-bending labor-supply curve was also found. The model is illustrated by tables and charts.
Bradley W. Miller; Thomas R. Fox
2010-01-01
While phosphorus (P) fertilization increases plant available or âlabileâ P immediately after fertilization, it is uncertain how it influences P pools over the long term in forest soils. Phosphorus pools from a 22-year-old loblolly pine (Pinus taeda L.) fertilization study were quantified using the Hedley sequential fractionation procedure, Mehlich-1...
The offspring quantity–quality trade-off and human fertility variation
Lawson, David W.; Borgerhoff Mulder, Monique
2016-01-01
The idea that trade-offs between offspring quantity and quality shape reproductive behaviour has long been central to economic perspectives on fertility. It also has a parallel and richer theoretical foundation in evolutionary ecology. We review the application of the quantity–quality trade-off concept to human reproduction, emphasizing distinctions between clutch size and lifetime fertility, and the wider set of forces contributing to fertility variation in iteroparous and sexually reproducing species like our own. We then argue that in settings approximating human evolutionary history, several factors limit costly sibling competition. Consequently, while the optimization of quantity–quality trade-offs undoubtedly shaped the evolution of human physiology setting the upper limits of reproduction, we argue it plays a modest role in accounting for socio-ecological and individual variation in fertility. Only upon entering the demographic transition can fertility limitation be clearly interpreted as strategically orientated to advancing offspring quality via increased parental investment per child, with low fertility increasing descendant socio-economic success, although not reproductive success. We conclude that existing economic and evolutionary literature has often overemphasized the centrality of quantity–quality trade-offs to human fertility variation and advocate for the development of more holistic frameworks encompassing alternative life-history trade-offs and the evolved mechanisms guiding their resolution. PMID:27022072
Barreto, Matheus Sampaio Carneiro; Mattiello, Edson Marcio; Santos, Wedisson Oliveira; Melo, Leônidas Carrijo Azevedo; Vergütz, Leonardus; Novais, Roberto Ferreira
2018-02-15
The production of fertilizers with industrial wastes reduces the environmental impacts of waste disposal and improves environmental sustainability by generating added-value products. Our objective with this study was to evaluate the agronomic performance and potential soil/plant contamination with heavy metals of alternative phosphate (P) fertilizers, obtained from the acidulation of phosphate rocks (PR) by a metallurgical acidic waste. Seven P fertilizers were evaluated: three PR (Araxá, Patos, and Bayóvar), their respective acidulated products (PAPR), and triple superphosphate fertilizer (TSP). A greenhouse trial was carried out to test the agronomic performances of fertilizers in a sequentially cultivated maize-soybean-white oat. The reaction of PR with acid waste was effective to increase their solubility and improve plant yield and P uptake compared to their natural PR. There was a cumulative recovery by plants of 1.4 and 8.1% of added P via PR and PAPR, respectively. No increase in heavy metal (Cd, Pb, Cr, and Ni) availability in soil or accumulation in shoots was observed, indicating that the PAPR were environmentally safe. The usage of acid waste to produce P fertilizers therefore represents a strategic way to employ marginal products for the production of fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adverse childhood event experiences, fertility difficulties and menstrual cycle characteristics.
Jacobs, Marni B; Boynton-Jarrett, Renee D; Harville, Emily W
2015-01-01
Increased childhood adversity may be affect adult fertility, however, the mechanism through which this occurs is unclear. Menstrual cycle abnormalities are predictive of fertility difficulties, and stress influences menstrual cycle characteristics. Here, we assess whether adverse childhood experiences (ACEs) are associated with fertility difficulties and menstrual cycle dysregulation, offering a plausible mechanism for the link between lifetime stress and fertility. From April 2012 to February 2014, 742 pregnant and non-pregnant women aged 18-45 years residing in southeastern Louisiana provided information on childhood adversity and reproductive history. Associations between ACEs and fertility difficulties and menstrual cycle patterns were evaluated. As the number of ACEs increased, risk of fertility difficulties and amenorrhea increased (RR = 1.09, 95% CI 1.05-1.13 and RR = 1.07, 95% CI 1.04-1.10, respectively), while fecundability decreased [fecundability ratio (FR) = 0.97, 95% CI 0.95-1.00]. Compared to women with no adversity, women in the high adversity group were more likely to experience both infertility and amenorrhea (RR = 2.75, 95% CI 1.45-5.21 and RR = 2.54, 95% CI 1.52-4.25, respectively), and reduced fecundability (FR = 0.75, 95% CI 0.56-1.00). Although similar patterns were seen for menstrual cycle irregularity, associations were diminished. Associations did not materially change following adjustment for age, body mass index, race, education, smoking and income. Results are constrained by the self-report nature of the study and the limited generalizability of the study population. To our knowledge, this is the first study to present evidence of a link between childhood stressors, menstrual cycle disruption and fertility difficulties. The effect of childhood stress on fertility may be mediated through altered functioning of the HPA axis, acting to suppress fertility in response to less than optimal reproductive circumstances.
NASA Astrophysics Data System (ADS)
Bhattarai, Hem Raj; Virkajärvi, Perttu; -Yli Pirilä, Pasi; Maljanen, Marja
2017-04-01
There is no doubt that nitrogen (N) fertilization has crucial role in increasing food production. However, in parallel it can cause severe impact in environment such as eutrophication, surface/groundwater pollution via nitrate (NO3-) leaching and emissions of N trace gases. Fertilization increases the emissions of nitrous oxide (N2O) which is 260 stronger greenhouse gas than carbon dioxide (CO2). It also enhances the emissions of nitric oxide (NO); an oxidized and very reactive form of nitrogen which can fluctuate the ozone (O3) concentration in atmosphere and cause acidification. The effects of N- fertilization on the emission of N2O and NO from agricultural soil are well known. However, the effects of N fertilization on nitrous acid (HONO) emissions are unknown. Few studies have shown that HONO is emitted from soil but they lack to interlink fertilization and HONO emission. HONO accounts for 17-34 % of hydroxyl (OH-) radical production? in the atmosphere, OH- radicals have vital role in atmospheric chemistry; they can cause photochemical smog, form O3, oxidize volatile organic compounds and also atmospheric methane (CH4). We formulated hypothesis that N fertilization will increase the HONO emissions as it does for N2O and NO. To study this, we took soil samples from agricultural soil receiving different amount of N-fertilizer (0, 250 and 450 kg ha-1) in eastern Finland. HONO emissions were measured by dynamic chamber technique connected with LOPAP (Quma Elektronik & Analytik GmbH), NO by NOx analyzer (Thermo scientific) and static chamber technique and gas chromatograph was used for N2O gas sampling and analysis. Several soil parameters were also measured to establish the relationship between the soil properties, fertilization rate and HONO emission. This study is important because eventually it will open up more questions regarding the forms of N loss from soils and impact of fertilization on atmospheric chemistry.
Effect of famine on fertility in a rural area of Bangladesh.
Razzaque, A
1988-07-01
Data on household socioeconomic status collected in the 1974 census and registration data on births, deaths, and migrations for the 1974-77 period from the Demographic Surveillance System of the International Centre for Diarrheal Disease Research, Bangladesh, were used to investigate the effects of the 1974-75 famine on differential fertility in a rural population of Bangladesh. Occupation of household head was used as a measure of socioeconomic status. Overall, fertility declined by 34% over the 1975-76 period and increased by 17% in 1976-77 from the 1974-75 figure. Significantly lower fertility was observed in 1975-76, irrespective of socioeconomic status, but the lower socioeconomic groups were affected more than the higher groups. Post-famine fertility was significantly higher only in the 2 middle occupation categories. The age-specific fertility rates suggest that the famine affected all age groups. The post-famine fertility was higher than that of 1974-75 in all but those aged below 20. At age 40 and over the recovery was slight. Husband-wife separation showed an increase during the famine and particularly among the lower socioeconomic groups. The males of the lower socioeconomic households migrated to other regions to obtain food for the family, thus affecting frequency of coitus. The decline in fertility may be due to several factors: deferred marriage; increase in divorces and husband-wife separations; high fetal wastage; voluntary fertility control through contraception, abstention, or induced abortion; and infecundability. An indirect measure of marriage rate indicated that fewer couples entered into marriage in 1974-75, particularly in the lower socioeconomic groups. Both the higher and lower socioeconomic groups were affected by the famine but the precise mechanisms were not the same. At this stage, it is not feasible to estimate the contribution of each factor to the fertility decline. The lower socioeconomic groups were more affected by husband-wife separations and deferred marriages; the higher socioeconomic groups were affected by mental stress and anxiety.
NASA Astrophysics Data System (ADS)
Liimatainen, Maarit; Maljanen, Marja; Hytönen, Jyrki
2017-04-01
Out of Finland's original 10 million hectares of peatlands over half has been drained for forestry. Natural peatlands act as a sink for carbon but when peatland is drained, increased oxygen concentration in the peat accelerates the aerobic decomposition of the old organic matter of the peat leading to carbon dioxide (CO2) emissions to atmosphere. Increasing use of bioenergy increases also the amount of ash produced as a byproduct in power plants. Wood ash contains all essential nutrients for trees to grow except nitrogen. Therefore, wood ash is ideal fertilizer for nitrogen rich peatland forests where lack of phosphorus or potassium may restrict tree growth. At the moment, wood ash is the only available PK-fertilizer for peatland forests in Finland and areas of peatland forests fertilized with ash are increasing annually. The effects of wood ash on vegetation, soil properties and tree growth are rather well known although most of the studies have been made using fine ash whereas nowadays mostly stabilized ash (e.g. granulated) is used. Transporting and spreading of stabilized ash is easier than that of dusty fine ash. Also, slower leaching rate of nutrients is environmentally beneficial and prolongs the fertilizer effect. The knowledge on the impact of granulated wood ash on greenhouse gas emissions is still very limited. The aim of this study was to examine the effects of granulated wood ash on CO2 emissions from peat and tree stand growth. Field measurements were done in two boreal peatland forests in 2011 and 2012. One of the sites is more nutrient rich with soil carbon to nitrogen ratio (C/N) of 18 whereas the other site is nutrient poor with C/N ratio of 82. Both sites were fertilized with granulated wood ash in 2003 (5000 kg ha-1). The effect of fertilization was followed with tree stand measurements conducted 0, 5 and 10 years after the fertilization. The CO2 emissions of the decomposing peat (heterotrophic respiration) were measured from study plots where vegetation and litter were removed to eliminate respiration by vegetation (autotrophic respiration). Roots were cut by installing aluminum tubes into the depth of 30 cm. Emissions were measured with chamber method using portable CO2 analyzer. Soil temperature was measured simultaneously with gas measurements manually from the depth of 5 cm as well as continuously with data loggers embedded into the peat. Annual soil respiration was modelled assuming that emissions change as a function of temperature. According to preliminary results, fertilization with granulated wood ash increased CO2 emissions of the peat significantly, especially in nutrient poor site. Ash fertilization increased also strongly the accumulation of carbon into the trees. Nonetheless, in both sites CO2emissions from decomposing peat where higher than carbon that was stored in biomass. This was the case especially in the nutrient poor site where trees are growing poorly and due to low peat nitrogen content the area is not considered suitable for ash fertilization. However, at the more fertile site both stand C sequestration and soil C efflux increased similarly.
Subchorionic hematomas are increased in early pregnancy in women taking low-dose aspirin.
Truong, Ashley; Sayago, M Mercedes; Kutteh, William H; Ke, Raymond W
2016-05-01
To determine the frequency of subchorionic hematomas (SCH) in first-trimester ultrasound examinations of patients with infertility and recurrent pregnancy loss (RPL) and in patients from a general obstetric population. To determine if the method of assisted reproduction utilized or the use of anticoagulants, such as heparin and aspirin (ASA), influenced frequency of SCH. Prospective, cohort study. Fertility clinic and general obstetrics clinic. Five hundred and thirty-three women who were pregnant in the first-trimester. Not applicable. Frequencies of subchorionic hematomas in women based on diagnosis, use of anticoagulants, and fertility treatment. SCH were identified in 129/321 (40.2%) in the study group compared to 23/212 (10.9%) in the control group. Fertility diagnosis and the use of heparin did not appear to affect the frequency of SCH in the first trimester; however, SCH occurred at an almost four-fold increase in patients taking ASA compared to those not taking ASA, regardless of fertility diagnosis or method of fertility treatment. The use of ASA may be associated with an increased risk of developing a SCH during the first trimester. The increased frequencies of SCH in pregnancies of patients attending a fertility clinic compared to women from a general obstetrical practice was highly correlated with the use of ASA. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Yang, Xiuyi; Geng, Jibiao; Li, Chengliang; Zhang, Min; Tian, Xiaofei
2016-01-01
To investigate the interacting effects of polymer coated urea (PCU) and polymer coated potassium chloride (PCPC) on cotton growth, an experiment was conducted with containerized plants in 2014 and 2015. There were two kinds of nitrogen fertilizer, PCU and urea, which were combined with PCPC at three application rates (40, 80 and 120 kg ha−1). The kinds of nitrogen fertilizer formed the main plot, while individual rates of PCPC were the subplots. The results suggested N and K release patterns for PCU and PCPC in the soil were closely matched to the N and K requirements by cotton. Soil inorganic nitrogen contents significantly increased by using PCU instead of urea, and the same trend was observed with soil available potassium contents, which also had increased rates. Meanwhile, the number of bolls and lint yields of cotton in the PCU treatments were 4.9–35.3% and 2.9–40.7% higher than from urea treatments. Lint yields also increased by 9.1–12.7% with PCPC80 and PCPC120 treatments compared with PCPC40 treatment at the same nitrogen type. Hence, application of PCU combined with 80 kg ha−1 of PCPC fertilizer on cotton increased the yields and fertilizer use efficiencies in addition to improving fiber quality and delaying leaf senescence. PMID:27966638
The impact of monetary incentives on general fertility rates in Western Australia.
Langridge, Amanda T; Nassar, Natasha; Li, Jianghong; Jacoby, Peter; Stanley, Fiona J
2012-04-01
There has been widespread international concern about declining fertility rates and the long-term negative consequences particularly for industrialised countries with ageing populations. In an attempt to boost fertility rates, the Australian Government introduced a maternity payment known as the Baby Bonus. However, major concerns have been raised that such monetary incentives would attract teenagers and socially disadvantaged groups. Population-level data and generalised linear models were used to examine general fertility rates between 1995 and 2006 by socioeconomic group, maternal age group, Aboriginality and location in Western Australia prior to and following the introduction of the Baby Bonus in July 2004. After a steady decline in general fertility rates between 1995 and 2004, rates increased significantly from 52.2 births per 1000 women, aged between 15 and 49 years, in 2004 to 58.6 births per 1000 women in 2006. While there was an overall increase in general fertility rates after adjusting for maternal socio-demographic characteristics, there were no significant differences among maternal age groups (p=0.98), between Aboriginal and non-Aboriginal women(p=0.80), maternal residential locations (p=0.98) or socioeconomic groups (p=0.68). The greatest increase in births were among women residing in the highest socioeconomic areas who had the lowest general fertility rate in 2004 (21.5 births per 1000 women) but the highest in 2006 (38.1 births per 1000 women). Findings suggest that for countries with similar social, economic and political climates to Australia, a monetary incentive may provide a satisfactory solution to declining general fertility rates.
Corn grain yield and nutrient uptake from application of enhanced-efficiency nitrogen fertilizers
USDA-ARS?s Scientific Manuscript database
Increasing demand for food and agricultural products directly impact the use of chemical fertilizers particularly nitrogen (N). This study examined corn grain yield and nutrient uptake resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitr...
Response of Penstemon Fruticosus to fertilization
G. O. Klock
1976-01-01
Bush penstemon (Penstemon fruticosus (Pursh) Greene), an attractive ground cover on east Cascade slopes, appears to survive under low fertility, xeric conditions. These plant characteristics are desirable for revegetating severely disturbed areas. Seedling response to fertilization was tested to find if growth rates could be increased to provide...
Residual confounding explains the association between high parity and child mortality.
Kozuki, Naoko; Sonneveldt, Emily; Walker, Neff
2013-01-01
This study used data from recent Demographic and Health Surveys (DHS) to examine the impact of high parity on under-five and neonatal mortality. The analyses used various techniques to attempt eliminating selection issues, including stratification of analyses by mothers' completed fertility. We analyzed DHS datasets from 47 low- and middle-income countries. We only used data from women who were age 35 or older at the time of survey to have a measure of their completed fertility. We ran log-binominal regression by country to calculate relative risk between parity and both under-five and neonatal mortality, controlled for wealth quintile, maternal education, urban versus rural residence, maternal age at first birth, calendar year (to control for possible time trends), and birth interval. We then controlled for maternal background characteristics even further by using mothers' completed fertility as a proxy measure. We found a statistically significant association between high parity and child mortality. However, this association is most likely not physiological, and can be largely attributed to the difference in background characteristics of mothers who complete reproduction with high fertility versus low fertility. Children of high completed fertility mothers have statistically significantly increased risk of death compared to children of low completed fertility mothers at every birth order, even after controlling for available confounders (i.e. among children of birth order 1, adjusted RR of under-five mortality 1.58, 95% CI: 1.42, 1.76). There appears to be residual confounders that put children of high completed fertility mothers at higher risk, regardless of birth order. When we examined the association between parity and under-five mortality among mothers with high completed fertility, it remained statistically significant, but negligible in magnitude (i.e. adjusted RR of under-five mortality 1.03, 95% CI: 1.02-1.05). Our analyses strongly suggest that the observed increased risk of mortality associated with high parity births is not driven by a physiological link between parity and mortality. We found that at each birth order, children born to women who have high fertility at the end of their reproductive period are at significantly higher mortality risk than children of mothers who have low fertility, even after adjusting for available confounders. With each unit increase in birth order, a larger proportion of births at the population level belongs to mothers with these adverse characteristics correlated with high fertility. Hence it appears as if mortality rates go up with increasing parity, but not for physiological reasons.
Wang, Fei; Yuan, Ting; Gu, Shou-kuan; Wang, Zheng-yin
2015-04-01
As a new style fertilizer, slow-control release fertilizer had been an important subject in recent years, but few researches were about soil microbial community structure diversity. Phospholipid fatty acid method was used to determined the microbial community structure diversity of acid soil and slight alkaline soil applied with slow-release compound fertilizer (SRF), chemical fertilizer (CF) and common compound fertilizer (CCF) at the 10th, 30th, 60th and 90th day under the constant temperature incubation condition. Results indicated that various bacteria (i. e 13:0, i14:0,14:0, i15:0, a15:0, i16:0, 16:12OH, 16:1w5c,16:0, i17:0, a17:0, cy17:0, 17:02OH, i18:0, 18:0 and cy19:0w8c), two actinomycetes (10Me17:0 and 10Me18:0) and only one fungus (18:1 w9c) were detected in two soils after applying slow-release compound fertilizer and other fertilizers during the whole incubation period. SRF could significantly increase the fungi PLFA content by 8.3% and 6.8% at the early stage (the 10th day and 30th day) compared with CF, as well as significantly increase by 22.7% and 17.1% at the late stage (the 60th day and 90th day) compared with CCF in acid soil. SRF significantly increased bacteria, fungi and gram positive bacteria compared with CF and CCF in incubation period (except at the 30th day) in slight alkaline soil. SRF could significantly improve the ratio of normal saturated fatty acid and monounsaturated fatty acid at the 30th day and 90th days in acid soil compared with no fertilizer (CK), CF and CCF, while as to slight alkaline soil, SRF was significantly greater than that of CK, CF and CCF only at the 60th day. SRF could significantly decrease the ratio of iso PLFA and anteiso PLFA in acid soil (in 30-90 days) and slight alkaline soil (in 10-60 days). For two soils PLFA varieties, contents and ratios of microbial community, slow-release compound fertilizer increased soil microbial PLFA varieties and contents, and decreased the influence to microbial survival environment, especially for the acid soil. Through the research of slow-release compound fertilizer on soil microbial community structure diversity, it could provide a scientific basis for widely application of slow-release compound fertilizer in agricultural production.
Diffusion Performance of Fertilizer Nutrient through Polymer Latex Film.
An, Di; Yang, Ling; Liu, Boyang; Wang, Ting-Jie; Kan, Chengyou
2017-12-20
Matching the nutrient release rate of coated fertilizer with the nutrient uptake rate of the crop is the best way to increase the utilization efficiency of nutrients and reduce environmental pollution from the fertilizer. The diffusion property and mechanism of nutrients through the film are the theoretical basis for the product pattern design of coated fertilizers. For the coated fertilizer with a single-component nutrient, an extended solution-diffusion model was used to describe the difference of nutrient release rate, and the release rate is proportional to the permeation coefficient and the solubility of the nutrient. For the double- and triple-component fertilizer of N-K, N-P, and N-P-K, because of the interaction among nutrient molecules and ions, the release rates of different nutrients were significantly affected by the components in the composite fertilizer. Coating the single-component fertilizer (i.e., nitrogen fertilizer, phosphate fertilizer, and potash fertilizer) first and subsequently bulk blending is expected to be a promising way to adjust flexibly the nutrient release rate to meet the nutrient uptake rate of the crop.
Globalization and Contemporary Fertility Convergence.
Hendi, Arun S
2017-09-01
The rise of the global network of nation-states has precipitated social transformations throughout the world. This article examines the role of political and economic globalization in driving fertility convergence across countries between 1965 and 2009. While past research has typically conceptualized fertility change as a country-level process, this study instead employs a theoretical and methodological framework that examines differences in fertility between pairs of countries over time. Convergence in fertility between pairs of countries is hypothesized to result from increased cross-country connectedness and cross-national transmission of fertility-related schemas. I investigate the impact of various cross-country ties, including ties through bilateral trade, intergovernmental organizations, and regional trade blocs, on fertility convergence. I find that globalization acts as a form of social interaction to produce fertility convergence. There is significant heterogeneity in the effects of different cross-country ties. In particular, trade with rich model countries, joint participation in the UN and UNESCO, and joining a free trade agreement all contribute to fertility convergence between countries. Whereas the prevailing focus in fertility research has been on factors producing fertility declines, this analysis highlights specific mechanisms-trade and connectedness through organizations-leading to greater similarity in fertility across countries. Globalization is a process that propels the spread of culturally laden goods and schemas impinging on fertility, which in turn produces fertility convergence.
Bjørnholt, Sarah Marie; Kjaer, Susanne Krüger; Nielsen, Thor Schütt Svane; Jensen, Allan
2015-01-01
Do fertility drugs increase the risk for borderline ovarian tumours, overall and according to histological subtype? The use of any fertility drug did not increase the overall risk for borderline ovarian tumours, but an increased risk for serous borderline ovarian tumours was observed after the use of progesterone. Many epidemiological studies have addressed the connection between fertility drugs use and risk for ovarian cancer; most have found no strong association. Fewer studies have assessed the association between use of fertility drugs and risk for borderline ovarian tumours, and the results are inconsistent. A retrospective case-cohort study was designed with data from a cohort of 96 545 Danish women with fertility problems referred to all Danish fertility clinics in the period 1963-2006. All women were followed for first occurrence of a borderline ovarian tumour from the initial date of infertility evaluation until a date of migration, date of death or 31 December 2006, whichever occurred first. The median length of follow-up was 11.3 years. Included in the analyses were 142 women with borderline ovarian tumours (cases) and 1328 randomly selected sub-cohort members identified in the cohort during the follow-up through 2006. Cases were identified by linkage to the Danish Cancer Register and the Danish Register of Pathology by use of personal identification numbers. To obtain information on use of fertility drugs, hospital files and medical records of infertility-associated visits to all Danish fertility clinics were collected and supplemented with information from the Danish IVF register. We used case-cohort techniques to calculate rate ratios (RRs) and corresponding 95% confidence intervals (CIs) for borderline ovarian tumours, overall and according to histological subtype, associated with the use of any fertility drug or five specific groups of fertility drugs: clomiphene citrate, gonadotrophins (human menopausal gonadotrophins and follicle-stimulating hormone), gonadotrophin-releasing hormone analogues, human chorionic gonadotrophins and progesterone. Analyses within the cohort showed that the overall risk for borderline ovarian tumours was not associated with the use of any fertility drug (RR 1.00; 95% CI 0.67-1.51) or of gonadotrophins (RR 1.32; 95% CI 0.81-2.14), clomiphene citrate (RR 0.96; 95% CI 0.64-1.44), human chorionic gonadotrophins (RR 0.91; 95% CI 0.61-1.36) or gonadotrophin-releasing hormone analogues (RR 1.10; 95% CI 0.66-1.81). Furthermore, no associations were observed between the risk for borderline ovarian tumours and these groups of fertility drugs according to the number of cycles of use, length of follow-up or parity. In contrast, use of progesterone increased the risk for borderline ovarian tumours, particularly serous tumours, for which statistically significantly increased risks were observed with any use of progesterone (RR 1.82; 95% CI 1.03-3.24), among women treated with ≥4 cycles of progesterone (RR 2.63; 95% CI 1.04-6.64) and for all women followed up for ≥4 years after their first treatment with progesterone. Although we tried to minimize the effects of the underlying infertility, the severity of infertility might have affected our risk estimates, as women with more severe fertility problems may receive more treatment. The results from the subgroup analyses, e.g. the findings of an elevated risk for borderline ovarian tumours associated with increased time since first use of progesterone and with increased number of treatment cycles, should be interpreted with caution as these analyses are based on a limited number of women with borderline ovarian tumours. Although this study, which is the largest to date, provides reassuring evidence that there is no strong link between the use of fertility drugs and risk for borderline ovarian tumours, the novel observation of an increased risk for serous tumours after use of progesterone should be investigated in large epidemiological studies. The results of the present study provide valuable knowledge for clinicians and other health care personnel involved in the diagnosis and treatment of fertility problems. No conflict of interest was reported. S.M.B. was supported by a research scholarship from the Danish Cancer Society. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rice, Pamela J; Horgan, Brian P
2011-11-01
The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.
Commercial fertilizers: Total US fertilizer consumption 44.9 million tons in 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargett, N.L.; Berry, J.T.; McKinney, S.L.
1989-12-31
US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P{sub 2}O{sub 5}, and K{sub 2}O. Total nitrogen consumption increased one percent to 10.63 million tons, while P{sub 2}O{sub 5} use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K{sub 2}O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P{sub 2}O{sub 5} content were offset by a decline in K{sub 2}O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less
Commercial fertilizers: Total US fertilizer consumption 44. 9 million tons in 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargett, N.L.; Berry, J.T.; McKinney, S.L.
1989-01-01
US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P[sub 2]O[sub 5], and K[sub 2]O. Total nitrogen consumption increased one percent to 10.63 million tons, while P[sub 2]O[sub 5] use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K[sub 2]O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P[sub 2]O[sub 5] content were offset by a decline in K[sub 2]O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... silty clay loam. Due to the relatively low fertility of these soils, applications of lime and fertilizer... increased breakdown of organic material in the soil. The increased precipitation does not negatively affect...
Thinning and fertilizing red pine to increase growth and cone production.
John H. Cooley
1970-01-01
Cone production and growth were increased more by heavy thinning than by fertilizing in 53- and 55-year-old natural red pine stands growing on medium sites, and in a 20-year-old plantation on a good site.
Kayla R. Herriman; Anthony S. Davis; Kent G. Apostol; Olga. A. Kildisheva; Amy L. Ross-Davis; Kas Dumroese
2016-01-01
Land management practices, invasive species expansion, and changes in the fire regime greatly impact the distribution of native plants in natural areas. Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), a keystone species in the Great Basin, has seen a 50% reduction in its distribution. For many dryland species, reestablishment efforts have...
da Silva, Ronivaldo Rodrigues
2018-02-28
Overpopulation is already a reality, and the need for alternative technologies to meet a continuously increasing food demand has been much discussed around the world. In addition, soil decreasing fertility and desertification are obstacles that we will need to be overcome to increase crop productivity with a much-reduced dependence upon inorganic fertilizers. In this context, protein hydrolysates has emerged as an important strategy to reduce the use of inorganic fertilizers, whose applications as biostimulants for plant growth have shown very promising results.
Consumer preference of fertilizer in West Java using multi-dimensional scaling approach
NASA Astrophysics Data System (ADS)
Utami, Hesty Nurul; Sadeli, Agriani Hermita; Perdana, Tomy; Renaldy, Eddy; Mahra Arari, H.; Ajeng Sesy N., P.; Fernianda Rahayu, H.; Ginanjar, Tetep; Sanjaya, Sonny
2018-02-01
There are various fertilizer products in the markets for farmers to be used for farming activities. Fertilizers are a supplements supply to soil nutrients, build up soil fertility in order to support plant nutrients and increase plants productivity. Fertilizers consists of nitrogen, phosphorous, potassium, micro vitamins and other complex nutrient in farming systems that commonly used in agricultural activities to improve quantity and quality of harvest. Recently, market demand for fertilizer has been increased dramatically; furthermore, fertilizer companies are required to develop strategies to know about consumer preferences towards several issues. Consumer preference depends on consumer needs selected by subject (individual) that is measured by utilization from several things that market offered and as final decision on purchase process. West Java is one of province as the main producer of agricultural products and automatically is one of the potential consumer's fertilizers on farming activities. This research is a case study in nine districts in West Java province, i.e., Bandung, West Bandung, Bogor, Depok, Garut, Indramayu, Majalengka, Cirebon and Cianjur. The purpose of this research is to describe the attributes on consumer preference for fertilizers. The multi-dimensional scaling method is used as quantitative method to help visualize the level of similarity of individual cases on a dataset, to describe and mapping the information system and to accept the goal. The attributes in this research are availability, nutrients content, price, form of fertilizer, decomposition speed, easy to use, label, packaging type, color, design and size of packaging, hardening process and promotion. There are tendency towards two fertilizer brand have similarity on availability of products, price, speed of decomposition and hardening process.
Hypogonadism and fertility issues following primary treatment for testicular cancer.
Oldenburg, Jan
2015-09-01
The majority of testicular cancer (TC) patients are cured and expected to live for decades after treatment, such that knowledge about hypogonadism and fertility issues is particularly important for the group of testicular cancer survivors (TCSs). Hypogonadism and fertility issues are related to treatment intensity. In order to give an overview about hypogonadism in testicular cancer survivors (TCSs) the literature was reviewed. Testicular dysfunction was defined as inadequate spermatogenesis, as reflected by increased levels of Follicle Stimulating Hormone (FSH) and reduced fertility and/with or without insufficient testosterone (T) production with or without compensatory increased Luteinizing Hormone (LH) levels. Hypogonadism may lead to reduced sexual functioning and well-being, fertility problems, muscle weakness, loss of energy, and depression. Furthermore, hypogonadism also increases the risk of osteoporosis and is associated with the metabolic syndrome and cardiovascular disease (CVD). The hypothesized "Testicular Dysgenesis Syndrome" comprising low sperm counts, hypospadias, cryptorchidism, and finally TC, probably contributes to hypogonadism independent of applied TC treatment. Recently, an increased risk of accelerated hormonal ageing has been reported in TCSs in the very long term, i.e. 20 years after TC treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Wei, Ze-Xiu; Liang, Yin-Li; Inoue, Mitsuhiro; Zhou, Mao-Juan; Huang, Mao-Lin; Gu, Jian-Feng; Wu, Yan
2009-07-01
With cucumber (Cucumis sativus L.) variety Jinyou 1 as test material, a greenhouse experiment was conducted to study the effects of different water and fertilizer supply on the cucumber soil nutrient content, enzyme activity, and microbial diversity. Three water regimes (50%-60%, 70%-80%, and 90%-100% soil relative moisture content) and two fertilization practices (600 kg N x hm(-2) + 420 kg P2O5 x hm(-2) and 420 kg N x hm(-2) + 294 kg P2O5 x hm(-2)) were designed. The increase of water and fertilizer supply benefited the increase of soil available P content and sucrase activity. Increasing fertilization rate increased soil NH(4+)-N content but decreased soil protease activity, and increasing soil relative moisture content decreased the soil NH(4+)-N content and urease activity. Soil microbial diversity had no significant correlations with soil nutrient contents, but significantly positively correlated with soil urease activity and negatively correlated with soil sucrase activity. Among the treatments, the treatment 70%-80% soil relative moisture content + 600 kg N x hm(-2) and 420 kg P2O5 x hm(-2) had the highest soil nutrient contents, soil urease, sucrase, and phosphatase activities, and soil microbial diversity and evenness, being the best in soil potential productivity.
The Soviet Union: population trends and dilemmas.
Feshbach, M
1982-08-01
Focus in this discussion of population trends and dilemmas in the Soviet Union is on demographic problems, data limitations, early population growth, geography and resources, the 15 republics of the Soviet Union and nationalities, agriculture and the economy, population growth over the 1950-1980 period (national trend, regional differences); age and sex composition of the population, fertility trends, nationality differentials in fertility, the reasons for fertility differentials (child care, divorce, abortion and contraception, illegitimacy), labor shortages and military personnel, mortality (mortality trends, life expectancy), reasons for mortality increases, urbanization and emigration, and future population prospects and projections. For mid-1982 the population of the Soviet Union was estimated at 270 million. The country's current rate of natural increase (births minus deaths) is about 0.8% a year, higher than current rates of natural increase in the U.S. (0.7%) and in developed countries as a whole (0.6%). Net immigration plays no part in Soviet population growth, but emigration was noticeable in some years during the 1970s, while remaining insignificant relative to total population size. National population growth has dropped by more than half in the last 2 decades, from 1.8% a year in the 1950s to 0.8% in 1980-1981, due mostly to declining fertility. The national fertility decline masks sharp differences among the 15 republics and even more so among the some 125 nationalities. In 1980, the Russian Republic had an estimated fertility rate of 1.9 births/woman, and the rate was just 2.0 in the other 2 Slavic republics, the Ukraine and Belorussia. In the Central Asian republics the rates ranged up to 5.8. Although the Russians will no doubt continue to be the dominant nationality, low fertility and a relatively higher death rate will reduce their share of the total population by less than half by the end of the century. Soviet leaders have launched a pronatalist policy which they hope will lead to an increase in fertility, at least among the dominant Slavic groups of the multinational country. More than 9 billion rubles (U.S. $12.2 billion) is to be spent over the next 5 years to implement measures aimed at increasing state aid to families with children, to be carried out step by step in different regions of the country. It is this writer's opinion that overall fertility is not likely to increase markedly despite the recent efforts of the central authorities, and the Russian share of the total population will probably continue to drop while that of Central Asian Muslim peoples increases.
Huang, Dong-feng; Wang, Guo; Li, Wei-hua; Qiu, Xiao-xuan
2009-03-01
A field experiment with Chinese cabbage, water spinach, and three-colored amaranth cropped three times in one year was conducted to study the effects of seven fertilization modes, i.e., none fertilization, basal application of chemical fertilizers, 1/2 basal application and 1/2 top-dressing of chemical fertilizers, basal application of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure, and basal application of organic manure, on the plant height, yield, nitrogen accumulation, and fertilizer nitrogen utilization of the vegetables, and the loss of NO3- -N and NH4+ -N from vegetable field under natural rainfall condition. The results showed that comparing with none fertilization, the fertilization modes '1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure' and 'basal application of chemical fertilizers and dicyandiamide' improved the agronomic properties of test vegetables, increased their yields by 103%-219% and 93%-226%, and nitrogen accumulation by 153% -216% and 231%-320%, respectively, and enhanced fertilizer nitrogen utilization rate. They also decreased the surface runoff loss of NO3- -N and NH4+ -N by 48.1% and 46.5%, respectively, compared with the mode 'basal application of chemical fertilizers', and hence, reduced the risk of agricultural non-point pollution. Therefore, these two fertilization modes could be popularized in vegetable production.
The Effects of Mortality on Fertility: Population Dynamics After a Natural Disaster
Nobles, Jenna; Frankenberg, Elizabeth; Thomas, Duncan
2015-01-01
Understanding how mortality and fertility are linked is essential to the study of population dynamics. We investigate the fertility response to an unanticipated mortality shock that resulted from the 2004 Indian Ocean tsunami, which killed large shares of the residents of some Indonesian communities but caused no deaths in neighboring communities. Using population-representative multilevel longitudinal data, we identify a behavioral fertility response to mortality exposure, both at the level of a couple and in the broader community. We observe a sustained fertility increase at the aggregate level following the tsunami, which was driven by two behavioral responses to mortality exposure. First, mothers who lost one or more children in the disaster were significantly more likely to bear additional children after the tsunami. This response explains about 13 % of the aggregate increase in fertility. Second, women without children before the tsunami initiated family-building earlier in communities where tsunami-related mortality rates were higher, indicating that the fertility of these women is an important route to rebuilding the population in the aftermath of a mortality shock. Such community-level effects have received little attention in demographic scholarship. PMID:25585644
Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua
2008-10-01
With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer could not be taken as a feasible measure for the carbon sequestration of cropland soil in China. Since synthetic fertilizer application is the basic guarantee of China's crop production, it was suggested to increase the efficiency of synthetic nitrogen fertilizer, and at the same time, to cut down the synthetic nitrogen fertilizer production and its application on the premise that the crop yield should be ensured.
R. Kasten Dumroese; Deborah S. Page-Dumroese; K. Francis Salifu; Douglass F. Jacobs
2005-01-01
We evaluated nutrient uptake efficiency and subsequent leaching fractions for western white pine (Pinus monticola Dougl. ex D. Don) seedlings grown with exponentially increasing or conventional (constant) fertilization in a greenhouse. Conventional fertilization was associated with higher leachate electrical conductivity and greater nutrient losses,...
Effects of Fertilization on Tomato Growth and Soil Enzyme Activity
NASA Astrophysics Data System (ADS)
Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing
2015-04-01
To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum 66 days after base fertilizer application, but maintained the high level for a long time. In short, the application of organic manure, especially the fermenting manure, is more beneficial to maintain high levels of soil enzyme activities and biodiversity. (2) The tomato yield treated with the CF, CM, FM and CK was 50055 kg/ha, 37814 kg/ha, 36965 kg/ha and 29937 kg/ha, respectively. The yield increasing rates of the CF, CM and FM were 67.2%, 26.3% and 23.5%, respectively. The application of chemical fertilizer could raise the tomato yield more effectively. The use of organic manure, especially the fermenting manure, however, could improve the fruit quality more effectively, especially increase soluble sugar and vitamin C contents and reduce nitrate content in tomato fruit significantly. The application of biological fermenting manure is beneficial to promote the recycling agriculture in China. It could also be used in the organic farming promisingly.
NASA Astrophysics Data System (ADS)
Greenberg, Isabel; Kaiser, Michael; Polifka, Steven; Wiedner, Katja; Glaser, Bruno; Ludwig, Bernard
2017-04-01
Biochar and biochar/organic fertilizer combinations have been recommended as soil amendments to improve plant productivity and soil properties, as well as to increase soil organic C (OC) storage. However, these claims have been largely unverified by field experiments lasting several years. To address these issues, a field experiment was established in 2012 to analyze the effects of organic fertilizers and biochar/organic fertilizer combinations (five field replicates, fully randomized block design) on the fertility and organic matter dynamics of a sandy Cambisol. In 2016, samples were taken from the 0-10 cm and 10-30 cm soil depths of the following treatments: mineral fertilizer and maize digestate that were applied both individually and in combination with 1 t/ha or 40 t/ha biochar. Further treatments were compost and 10 t/ha composted biochar. The treatments were analyzed for the plant yield and the bulk soil samples were analyzed for the pH, cation exchange capacity (CEC), OC content, microbial biomass C and the distribution of aggregate-size fractions (i.e. >2 mm, 2 mm - 250 µm, 250 - 53 µm, <53 µm). The latter were also analyzed for OC content and by FTIR. In 2012, the combination of 40 t/ha biochar+digestate accounted for about 42% higher maize (Zea mays) yields (7.9 t/ha) than the mineral fertilization treatment. For winter rye (Secale cereale) in 2013, we detected the highest yield (10.4 t/ha) for the 10 t/ha composted biochar treatment. In 2014, the highest yield for blue lupine (Lupinus angustifolius) (1.84 t/ha) was detected for the 40 t/ha biochar+digestate treatment. The first data for the soil samples indicate that the 10 t/ha composted biochar and the compost treatment are most effective in increasing the CEC, and the microbial biomass C content of the soil, while pH was not significantly affected by any of the treatments. The bulk soil OC content of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted biochar, and compost has been significantly increased by 43 to 88% in the 10-30 cm depth compared to the individual application of mineral fertilizer. The OC content of the water-stable macro- (2 mm - 250 µm) and micro-aggregates (250 - 53 µm) of the treatments receiving 40 t/ha biochar+fertilizer (digestate or mineral), 10 t/ha composted biochar, and compost was increased by 12 to 120% compared to the mineral fertilizer treatment. The magnitude of the demonstrated positive effect of biochar application on crop yield depends on the type and amount of the biochar+organic fertilizer mixture and the cultivated plant species. Besides benefiting biomass production, applications of 10 to 40 t/ha of biochar+fertilizer mixtures seem to result in increased bulk soil and aggregate protected OC contents, indicating a longer lasting positive effect on the OC storage and the structural stability of this sandy soil. Cost/benefit wise, the 10 t/ha composted biochar treatment seems to be most promising for improving soil properties and crop yield, while the compost treatment seems to be the best alternative for sandy soils where biochar is either unavailable or prohibitively expensive.
Luke, Barbara
2017-09-01
Infertility, defined as the inability to conceive within 1 year of unprotected intercourse, affects an estimated 80 million individuals worldwide, or 10-15% of couples of reproductive age. Assisted reproductive technology includes all infertility treatments to achieve conception; in vitro fertilization is the process by which an oocyte is fertilized by semen outside the body; non-in vitro fertilization assisted reproductive technology treatments include ovulation induction, artificial insemination, and intrauterine insemination. Use of assisted reproductive technology has risen steadily in the United States during the past 2 decades due to several reasons, including childbearing at older maternal ages and increasing insurance coverage. The number of in vitro fertilization cycles in the United States has nearly doubled from 2000 through 2013 and currently 1.7% of all live births in the United States are the result of this technology. Since the birth of the first child from in vitro fertilization >35 years ago, >5 million babies have been born from in vitro fertilization, half within the past 6 years. It is estimated that 1% of singletons, 19% of twins, and 25% of triplet or higher multiples are due to in vitro fertilization, and 4%, 21%, and 52%, respectively, are due to non-in vitro fertilization assisted reproductive technology. Higher plurality at birth results in a >10-fold increase in the risks for prematurity and low birthweight in twins vs singletons (adjusted odds ratio, 11.84; 95% confidence interval, 10.56-13.27 and adjusted odds ratio, 10.68; 95% confidence interval, 9.45-12.08, respectively). The use of donor oocytes is associated with increased risks for pregnancy-induced hypertension (adjusted odds ratio, 1.43; 95% confidence interval, 1.14-1.78) and prematurity (adjusted odds ratio, 1.43; 95% confidence interval, 1.11-1.83). The use of thawed embryos is associated with higher risks for pregnancy-induced hypertension (adjusted odds ratio, 1.30; 95% confidence interval, 1.08-1.57) and large-for-gestation birthweight (adjusted odds ratio, 1.74; 95% confidence interval, 1.45-2.08). Among singletons, in vitro fertilization is associated with increased risk of severe maternal morbidity compared with fertile deliveries (vaginal: adjusted odds ratio, 2.27; 95% confidence interval, 1.78-2.88; cesarean: adjusted odds ratio, 1.67; 95% confidence interval, 1.40-1.98, respectively) and subfertile deliveries (vaginal: adjusted odds ratio, 1.97; 95% confidence interval, 1.30-3.00; cesarean: adjusted odds ratio, 1.75; 95% confidence interval, 1.30-2.35, respectively). Among twins, cesarean in vitro fertilization deliveries have significantly greater severe maternal morbidity compared to cesarean fertile deliveries (adjusted odds ratio, 1.48; 95% confidence interval, 1.14-1.93). Subfertility, with or without in vitro fertilization or non-in vitro fertilization infertility treatments to achieve a pregnancy, is associated with increased risks of adverse maternal and perinatal outcomes. The major risk from in vitro fertilization treatments of multiple births (and the associated excess of perinatal morbidity) has been reduced over time, with fewer and better-quality embryos being transferred. Copyright © 2017. Published by Elsevier Inc.
Xiang, Xingjia; Gibbons, Sean M.; He, Jin-Sheng; Wang, Chao; He, Dan; Li, Qian; Ni, Yingying
2016-01-01
Background: The Qinghai-Tibet Plateau (QTP) is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF) communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. Methods: We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300). Results: Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3− were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Discussion: Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity. PMID:27478711
Failure of fertility therapy and subsequent adverse cardiovascular events
Udell, Jacob A.; Lu, Hong; Redelmeier, Donald A.
2017-01-01
BACKGROUND: Infertility may indicate an underlying predisposition toward premature cardiovascular disease, yet little is known about potential long-term cardiovascular events following fertility therapy. We investigated whether failure of fertility therapy is associated with subsequent adverse cardiovascular events. METHODS: We performed a population-based cohort analysis of women who received gonadotropin-based fertility therapy between Apr. 1, 1993, and Mar. 31, 2011, distinguishing those who subsequently gave birth and those who did not. Using multivariable Poisson regression models, we estimated the relative rate ratio of adverse cardiovascular events associated with fertility therapy failure, accounting for age, year, baseline risk factors, health care history and number of fertility cycles. The primary outcome was subsequent treatment for nonfatal coronary ischemia, stroke, transient ischemic attack, heart failure or thromboembolism. RESULTS: Of 28 442 women who received fertility therapy, 9349 (32.9%) subsequently gave birth and 19 093 (67.1%) did not. The median number of fertility treatments was 3 (interquartile range 1–5). We identified 2686 cardiovascular events over a median 8.4 years of follow-up. The annual rate of cardiovascular events was 19% higher among women who did not give birth after fertility therapy than among those who did (1.08 v. 0.91 per 100 patient-years, p < 0.001), equivalent to a 21% relative increase in the annual rate (95% confidence interval 13%–30%). We observed no association between event rates and number of treatment cycles. INTERPRETATION: Fertility therapy failure was associated with an increased risk of long-term adverse cardiovascular events. These women merit surveillance for subsequent cardiovascular events. PMID:28385819
NASA Astrophysics Data System (ADS)
Jian, S.; Li, J.; Guo, C.; Hui, D.; Deng, Q.; Yu, C. L.; Dzantor, K. E.; Lane, C.
2017-12-01
Nitrogen (N) fertilizers are widely used to increase bioenergy crop yield but intensive fertilizations on spatial distributions of soil microbial processes in bioenergy croplands remains unknown. To quantify N fertilization effect on spatial heterogeneity of soil microbial biomass carbon (MBC) and N (MBN), we sampled top mineral horizon soils (0-15cm) using a spatially explicit design within two 15-m2 plots under three fertilization treatments in two bioenergy croplands in a three-year long fertilization experiment in Middle Tennessee, USA. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha-1 in urea) and high N input (HN: 168 kg N ha-1 in urea). The two crops were switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.). Results showed that N fertilizations little altered central tendencies of microbial variables but relative to LN, HN significantly increased MBC and MBC:MBN (GG only). HN possessed the greatest within-plot variances except for MBN (GG only). Spatial patterns were generally evident under HN and LN plots and much less so under NN plots. Substantially contrasting spatial variations were also identified between croplands (GG>SG) and among variables (MBN, MBC:MBN > MBC). No significant correlations were identified between soil pH and microbial variables. This study demonstrated that spatial heterogeneity is elevated in microbial biomass of fertilized soils likely by uneven fertilizer application, the nature of soil microbial communities and bioenergy crops. Future researchers should better match sample sizes with the heterogeneity of soil microbial property (i.e. MBN) in bioenergy croplands.
Liu, Peng; Jia, Shuyu; He, Xiwei; Zhang, Xuxiang; Ye, Lin
2017-12-01
Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.
The dynamics of plasma membrane PtdIns(4,5)P(2) at fertilization of mouse eggs.
Halet, Guillaume; Tunwell, Richard; Balla, Tamas; Swann, Karl; Carroll, John
2002-05-15
A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Using confocal imaging to simultaneously monitor Ca2+ and plasma membrane PtdIns(4,5)P(2) in single living mouse eggs we have sought to establish the relationship between the kinetics of PtdIns(4,5)P(2) metabolism and the Ca2+ oscillations at fertilization. We report that there is no detectable net loss of plasma membrane PtdIns(4,5)P(2) either during the latent period or during the subsequent Ca2+ oscillations. When phosphatidylinositol 4-kinase is inhibited with micromolar wortmannin a limited decrease in plasma membrane PtdIns(4,5)P(2) is detected in half the eggs studied. Although we were unable to detect a widespread loss of PtdIns(4,5)P(2), we found that fertilization triggers a net increase in plasma membrane PtdIns(4,5)P(2) that is localized to the vegetal cortex. The fertilization-induced increase in PtdIns(4,5)P(2) follows the increase in Ca2+, is blocked by Ca2+ buffers and can be mimicked, albeit with slower kinetics, by photoreleasing Ins(1,4,5)P(3). Inhibition of Ca2+-dependent exocytosis of cortical granules, without interfering with Ca2+ transients, inhibits the PtdIns(4,5)P(2) increase. The increase appears to be due to de novo synthesis since it is inhibited by micromolar wortmannin. Finally, there is no increase in PtdIns(4,5)P(2) in immature oocytes that are not competent to extrude cortical granules. These studies suggest that fertilization does not deplete plasma membrane PtdIns(4,5)P(2) and that one of the pathways for increasing PtdIns(4,5)P(2) at fertilization is invoked by exocytosis of cortical granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, S. E.
2005-05-01
Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.
The epididymis, cytoplasmic droplets and male fertility.
Cooper, Trevor G
2011-01-01
The potential of spermatozoa to become motile during post-testicular maturation, and the relationship between the cytoplasmic droplet and fertilizing capacity are reviewed. Post-testicular maturation of spermatozoa involves the autonomous induction of motility, which can occur in vivo in testes with occluded excurrent ducts and in vitro in testicular explants, and artefactual changes in morphology that appear to occur in the testis in vitro. Both modifications may reflect time-dependent oxidation of disulphide bonds of head and tail proteins. Regulatory volume decrease (RVD), which counters sperm swelling at ejaculation, is discussed in relation to loss of cytoplasmic droplets and consequences for fertility. It is postulated that: (i) fertile males possess spermatozoa with sufficient osmolytes to drive RVD at ejaculation, permitting the droplet to round up and pinch off without membrane rupture; and (ii) infertile males possess spermatozoa with insufficient osmolytes so that RVD is inadequate, the droplet swells and the resulting flagellar angulation prevents droplet loss. Droplet retention at ejaculation is a harbinger of infertility caused by failure of the spermatozoon to negotiate the uterotubal junction or mucous and reach the egg. In this hypothesis, the epididymis regulates fertility indirectly by the extent of osmolyte provision to spermatozoa, which influences RVD and therefore droplet loss. Man is an exception, because ejaculated human spermatozoa retain their droplets. This may reflect their short midpiece, approximating head length, permitting a swollen droplet to extend along the entire midpiece; this not only obviates droplet migration and flagellar angulation but also hampers droplet loss.
Location or Hukou: What Most Limits Fertility of Urban Women in China?
Liang, Yun
2017-01-01
Abstract China's fertility rate is below replacement level. The government is attempting to increase this rate by relaxing the one‐child policy. China faces a possible tradeoff because further urbanization is needed to raise incomes but may reduce future fertility. We decompose China's rural–urban fertility gaps using both de facto and de jure criteria for defining the urban population. The fertility‐depressing effects of holding urban hukou are more than three times larger than effects of urban residence. Less of the rural–urban fertility gap by hukou status is due to differences in characteristics than is the case for the fertility gap by place of residence. PMID:29081975
Bishop, C V; Stouffer, R L; Takahashi, D L; Mishler, E C; Wilcox, M C; Slayden, O D; True, C A
2018-04-01
What are the impacts of elevated testosterone (T) and an obesogenic western-style diet (WSD), either independently or together, on fertility and metabolic adaptations of pregnancy in primates? Testosterone increases the time to achieve pregnancy, while a WSD reduces overall fertility, and the combination of testosterone and WSD additionally impairs glucose tolerance and causes pregnancy loss. Both hyperandrogenemia and obesity are hallmarks of polycystic ovary syndrome, which is a leading cause of infertility among women worldwide. Female macaques receiving T and WSD beginning at puberty show increased metabolic, ovarian and uterine dysfunction in the non-pregnant state by 3 years of treatment. The same cohort of female rhesus macaques continued treatments from the time of puberty (2.5 years) to 4 years, including this fertility trial. There were four groups (n = 9-10/group): controls (C), T-treated (T; average total serum level 1.35 ng/ml), WSD-treated, and combined T and WSD-treated (T + WSD) females. Females, which were typically having menstrual cycles, were paired for 4 days with a proven male breeder following the late follicular rise in circulating estradiol (≥100 pg/ml). The presence of sperm in the reproductive tract was used to confirm mating. Animals went through up to three successive rounds of mating until they became pregnant, as confirmed by a rise in circulating mCG during the late luteal phase and ultrasound evidence of a gestational sac at Day 30 post-mating (GD30). Placental vascular parameters were also measured at GD30. Metabolic measurements consisted of fasting levels of blood glucose and insulin at approximately GD30, 60, 90 and 115, as well as an intravenous (iv) glucose tolerance test (GTT) at GD115. While all animals in the C and T groups eventually became pregnant, T-treated females on average had a greater interval to achieve pregnancy (P < 0.05). However, only ~70% of animals in the WSD and T + WSD groups became pregnant (P < 0.004). One pregnancy in T + WSD group resulted in an anembryonic pregnancy which miscarried around GD60, while another T + WSD female conceived with a rare identical twin pregnancy which required cessation due to impending fetal loss at GD106. Thus, the number of viable fetuses was less in the T + WSD group, compared to C, T or WSD. Placental blood volume at GD30 was reduced in all treatments compared to the C group (P < 0.05). Maternal P4 levels were elevated in the WSD (P < 0.03) group and E2 levels were elevated in T + WSD animals (P < 0.05). An increase in serum A4 levels throughout gestation was observed in all groups (P < 0.03) except WSD (P = 0.3). All groups displayed increased insulin resistance with pregnancy, as measured from the ivGTT during pregnancy. However, only the T + WSD group had a significant increase in fasting glucose levels and glucose clearance during the GTT indicating a worsened glucose tolerance. WSD treatment decreased female fetuses third trimester weights, but there was an interaction between WSD and T to increase female fetal weight when normalized to maternal weight. N/A. The small number of pregnancies in the WSD and T + WSD groups hampers the ability to make definitive conclusions on effects during gestation. Also, the high fertility rate in the controls indicates the cohort was at their breeding prime age, which may impair the ability to observe subtle fertility defects. The low number of fetuses used for male and female analysis requires additional studies. The current findings strongly suggest that both hyperandrogenemia and obesity have detrimental effects on fertility and gestation in primates, which may be directly relevant to women with polycystic ovary syndrome. All ONPRC Cores and Units were supported by NIH Grant P51 OD011092 awarded to ONPRC. Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) of the National Institutes of Health (NIH) under Award Number P50HD071836 (to R.L.S.). The authors have no competing conflict of interests to disclose.