NASA Astrophysics Data System (ADS)
Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.
2016-06-01
Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.
The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L
NASA Astrophysics Data System (ADS)
Suman, T. Y.; Radhika Rajasree, S. R.; Ramkumar, R.; Rajthilak, C.; Perumal, P.
2014-01-01
In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size.
The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L.
Suman, T Y; Rajasree, S R Radhika; Ramkumar, R; Rajthilak, C; Perumal, P
2014-01-24
In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size. Copyright © 2013 Elsevier B.V. All rights reserved.
Habibi, Neda
2014-10-15
The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr
Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com
2013-02-15
Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less
NASA Astrophysics Data System (ADS)
Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.
2015-03-01
CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.
Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications
NASA Astrophysics Data System (ADS)
Hansora, D. P.; Shimpi, N. G.; Mishra, S.
2015-12-01
This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.
Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab
2014-12-01
Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmanian, Omid; Maleki, Mohammad Hassan; Dinari, Mohammad
2017-11-01
A novel adsorbent of nickel aluminum layered double hydroxide (Ni/Al-LDH) was prepared through the precipitation of metal nitrates by ultrasonically assisted solvothermal method. The surface morphology, chemical structure and thermal properties of this compound were examined by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The XRD, TEM and FE-SEM results established that the synthesized LDH have a well-ordered layer structure with good crystalline nature. Then it was applied to remove excessive Cd(II) ions from water and the effects of contact time, pH and adsorbent dose were examined at initial Cd(II) concentration of 10 mg/L. Results show that the time required to reach equilibrium was fast (40 min) and working pH solution was neutral (pH 7). Langmuir and Freundlich model of adsorption isotherms were explored; the results show that the Freundlich model was better fitted than that Langmuir model. This results predicting a multilayer adsorption of Cd(II) on LDH. The equilibrium kinetic adsorption data were fixed to the pseudo-second order kinetic equation.
Synthesis and characterization of silver nanoparticle composite with poly(p-Br-phenylsilane).
Kim, Myoung-Hee; Lee, Jun; Mo, Soo-Yong; Woo, Hee-Gweon; Yang, Kap Seung; Kim, Bo-Hye; Lee, Byeong-Gweon; Sohn, Honglae
2012-05-01
The one-pot synthesis and characterization of silver nanoparticle-poly(p-Br-phenylsilane) composites have been carried out. The conversion of silver(+1) salt to stable silver(0) nanoparticles is promoted by poly(p-Br-phenylsilane), Br-PPS possessing both possible reactive Si-H bonds in the polymer backbone and C-Br bonds in the substituents. The composites were characterized using XRD, TEM, FE-SEM, and solid-state UV-vis analytical techniques. TEM and FE-SEM data show the formation of the composites where large number of silver nanoparticles (less than 30 nm of size) are well dispersed throughout the Br-PPS matrix. XRD patterns are consistent with that for fcc-typed silver. The elemental analysis for Br atom and the polymer solubility confirm that the cleavage of C-Br bond and the Si-Br dative bonding were not occurred appreciably at ambient temperature. Nonetheless, TGA data suggest that some sort of cross-linking was occurred at high temperature. The size and processability of such nanoparticles depend on the ratio of metal to Br-PPS. In the absence of Br-PPS, most of the silver particles undergo macroscopic aggregation, which indicates that the polysilane is necessary for stabilizing the silver nanoparticles.
NASA Astrophysics Data System (ADS)
Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.
2018-03-01
Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.
Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K
2017-08-29
In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.
Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications
NASA Astrophysics Data System (ADS)
Singh, Jyoti; Manam, J.; Singh, Fouran
2018-05-01
Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.
NASA Astrophysics Data System (ADS)
Usman, Muhammad Sani; Hussein, Mohd Zobir; Kura, Aminu Umar; Fakurazi, Sharida; Masarudin, Mas Jaffri; Saad, Fathinul Fikri Ahmad
2018-03-01
A theranostic nanocomposite was developed using anticancer agent, protocatechuic acid (PA) and magnetic resonance imaging (MRI) contrast agent gadolinium nitrate (Gd) for simultaneous delivery using layered double hydroxide (LDH) as the delivery agent. Gold nanoparticles (AuNPs) were adsorbed on the surface of the LDH, which served as a complementary contrast agent. Based on the concept of supramolecular chemistry (SPC) and multimodal delivery system (MDS), the PA and Gd guests were first intercalated into the LDH host and subsequently AuNPs were surface adsorbed as the third guest. The nanohybrid developed was named MAPGAu. The MAPGAu was exposed to various characterizations at different stages of synthesis, starting with XRD analysis, which was used to confirm the intercalation episode and surface adsorption of the guest molecules. Consequently, FESEM, Hi-TEM, XRD, ICP-OES, CHNS, FTIR and UV-Vis analyses were done on the nanohybrids. The result of XRD analysis indicated successful intercalation of the Gd and PA as well the adsorption of AuNPs. The UV-Vis release study showed 90% of the intercalated drug was released at pH 4.8, which is the pH of the cancer cells. The FESEM and TEM micrographs obtained equally confirmed the formation of MAGPAu nanocomposite, with AuNPs conspicuously deposited on the LDH surface. The cytotoxicity study of the nanohybrid also showed insignificant toxicity to normal cell lines and significant toxicity to cancer cell lines. The developed MAGPAu nanocomposite has shown prospects for future theranostic cancer treatment.
Influences of Co doping on the structural and optical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.
2010-07-01
Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.
Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Karim, Zoheb
2018-07-15
Roselle fiber is a renewable and sustainable agricultural waste enriched with cellulose polysaccharides. The isolation of Nanocrystalline cellulose (NCC) from roselle-derived microcrystalline cellulose (MCC) is an alternative approach to recover the agricultural roselle plant residue. In the present study, acid hydrolysis with different reaction time was carried out to degrade the roselle-derived MCC to form NCC. The characterizations of isolated NCC were conducted through Fourier Transform Infrared Ray (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). As evaluated from the performed morphological investigations, the needle-like shape NCC nanostructures were observed under TEM and AFM microscopy studies, while irregular rod-like shape of NCC was observed under FESEM analysis. With 60min hydrolysis time, XRD analysis demonstrated the highest NCC crystallinity degree with 79.5%. In thermal analysis by TGA and DSC, the shorter hydrolysis time tended to produce NCC with higher thermal stability. Thus, the isolated NCC from roselle-derived MCC has high potential to be used in application of pharmaceutical and biomedical fields for nanocomposite fabrication. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.
2018-05-01
Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.
Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.
Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola
2017-12-30
Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir
Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Qingtao; Huang Kai; Ni Shibing
Well-crystalline flower- and rod-like NiS nanostructures have been synthesized by an organic-free hydrothermal process at a low temperature of 200 deg. C. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to characterize the as-synthesized NiS nanostructures. The effects of temperature and reaction time on the morphology have been also investigated. The two-step flake-cracking mechanism for the formation of flower- and rod-like NiS nanostructures was discussed. The products were also investigated by photoluminescence (PL) spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raul, Prasanta Kumar, E-mail: prasanta.drdo@gmail.com; Devi, Rashmi Rekha; Umlong, Iohborlang M.
Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The materialmore » can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. Study on adsorption kinetics shows that adsorption of arsenic onto iron oxide hydroxide nanoflower follows pseudo-second order kinetic. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes.« less
Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar
2015-02-25
A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.
Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications
Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola
2017-01-01
Ruthenium active species containing Ruthenium Sulphide (RuS2) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS2 on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s−1 is 238 F g−1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications. PMID:29301192
Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei
2010-11-01
In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).
NASA Astrophysics Data System (ADS)
Bharathi, Devaraj; Vasantharaj, Seerangaraj; Bhuvaneshwari, V.
2018-05-01
The present study describes the antibacterial, anti-biofilm and photo catalytic activity of silver nanoparticles synthesized using Cordia dichotoma fruits (Cd-AgNPs) for the first time. The phyto-synthesized Cd-AgNPs were characterized by UV-Visible spectroscopy, Field emission-scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Energy dispersive x-ray spectrometer (EDX), Fourier transform infrared spectroscopy (FT-IR), and x-ray diffraction (XRD). FE-SEM and TEM observation showed that the average size of 2–60 nm with spherical shape of Cd-AgNPs and the presence of phyto-compounds which are responsible for capping and reduction were studied by FT-IR. XRD studies revealed the face-centered cubic structure of Cd-AgNPs. The synthesized Cd-AgNPs showed significant antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, assayed using agar well diffusion method. Phyto-synthesized Cd-AgNPs exhibited more than 90% inhibition of biofilm activity formed by S. aureus and E. coli. Furthermore, photocatalytic degradation of crystal violet (CV) under UV light irradiation using Cd-AgNPs was performed. Synthesized Cd-AgNPs exhibited ∼85% degradation activity for CV. Collectively, our findings suggest that C.dichotoma is a green source for the eco-friendly synthesis of Cd-AgNPs, which further can be used as a novel biocidal agent against bacterial pathogens and a potent photo catalytic agent.
Transparent Al+3 doped MgO thin films for functional applications
NASA Astrophysics Data System (ADS)
Maiti, Payel; Sekhar Das, Pradip; Bhattacharya, Manjima; Mukherjee, Smita; Saha, Biswajit; Mullick, Awadesh Kumar; Mukhopadhyay, Anoop Kumar
2017-08-01
The present work reports the utilization of a relatively simple, cost effective sol-gel technique based route to synthesize highly transparent, spin coated 4.1 at% Al+3 doped MgO thin films on quartz substrates. The films were characterized by XRD, XPS, Raman spectroscopy, and SIMS techniques. The microstructures were characterized by FESEM and TEM while the nanomechanical properties were assessed by the nanoindentation technique. Finally the optical transmittance was measured by UV-vis technique. The x-ray diffraction (XRD) study suggests the crystal facet (2 0 0) of MgO lattice to be distorted after incorporation of Al+3 into MgO lattice. From FESEM the doped films were found to have a dense microstructure with a crystallite size of about 20 nm as revealed by the TEM studies. Nanoindentation measurements indicated drastic increase of elastic modulus for the Al+3 doped MgO thin films by ~73% compared to that of the pristine MgO thin films along with retaining the nanohardness at ~8 GPa. The transmittance of Al+3 doped MgO thin films in the visible range was significantly higher (~99%) than that of pristine MgO (~90%) thin films. The films also had a relatively higher refractive index of about 1.45 as evaluated from the optical properties. The enhanced transmittance as well as the improved elastic modulus of Al+3 doped MgO thin films suggest its promising candidature in magnetic memory devices and as buffer layers of solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes
Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less
NASA Astrophysics Data System (ADS)
Ahmad, Tausif; Bustam, Mohamad Azmi; Irfan, Muhammad; Moniruzzaman, Muhammad; Anwaar Asghar, Hafiz Muhammad; Bhattacharjee, Sekhar
2018-05-01
In the last decade, development of bioinspired protocols to synthesize gold nanoparticles (AuNPs) using plants and their extracts have been dealt by researchers due to their low cost, renewability and non-toxic features. A simple, cheap and ecofriendly method is reported to synthesize stabilized AuNPs of size 35-75 nm at room temperature using aqueous Elaeis guineensis (oil palm) leaves extract without addition of any external agent. Oil palm leaves mediated AuNPs were characterized using FTIR, UV-vis spectrophotometer, EDAX, XPS, FESEM, TEM, DLS and TGA. FTIR spectra results revealed contribution of phenolic, carboxylic, amines and amides in reduction of trivalent gold ions and stabilization of formed gold atoms. Reaction solution color change and UV-vis spectra confirmed reduction of gold ions to generate gold atoms. Reaction mechanism explained the role of phenolic compounds in reduction reaction using FTIR and UV-vis spectra results. EDAX and XPS results further validated the formation of metallic gold particles through bioreduction of gold ions. Crystal structure of metallic gold particles was confirmed through XRD peaks indexing to (111), (200), (220) and (311) planes. TEM and FESEM particles size measurements exhibited the formation of nanostructured AuNPs. Synthesis of well scattered and spherical shaped AuNPs was revealed through FESEM and TEM images. The excellent stability of AuNPs was shown through high negative zeta potential value (-14.7 ± 4.68 mV) and uniform dispersion in aqueous media. Our results disclosed the excellent potential of Elaeis guineensis (oil palm) leaves as reducing and stabilizing agents in green synthesis of well scattered spherical shaped AuNPs, which can be employed as strong candidates in medical drug delivery and industrial applications.
NASA Astrophysics Data System (ADS)
Santhi, Kalavathy; Revathy, T. A.; Narayanan, V.; Stephen, A.
2014-10-01
Synthesis of dendrite shaped Ag-Fe alloy nanomaterial by pulsed electrodeposition route was investigated. The alloy samples were deposited at different current densities from electrolytes of different compositions to study the influence of current density and bath composition on metal contents in the alloy, which was determined by ICP-OES analysis. The XRD studies were carried out to determine the structure of these samples. Magnetic characterization at room temperature and during heating was carried out to understand their magnetic behaviour and to confirm the inferences drawn from the XRD results. The XPS spectra proved the presence of Fe and Ag in the metallic form in the alloy samples. The FESEM and TEM micrographs were taken to view the surface morphology of the nanosized particles.
MnMoO4 nanolayers : Synthesis characterizations and electrochemical detection of QA
NASA Astrophysics Data System (ADS)
Muthamizh, S.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.
2018-04-01
MnMoO4 nanolayers were prepared by precipitation method. The MnMoO4 nanolayers were synthesized by using commercially available (CH3COO)2Mn.4H2O and Na2WO4.2H2O. The XRD pattern reveals that the synthesized MnMoO4 has monoclinic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MnMoO4 nanolayers. DRS-UV analysis shows that MnMoO4 has a band gap of 2.59 eV. FE-SEM and HR-TEM analysis along with EDAX confirms the material morphology in stacked layers like structure in nano scale. Synthesized nanolayers were utilized for the detection of biomolecule quercetin (QA).
NASA Astrophysics Data System (ADS)
Chowdhury, Ipsita Hazra; Kundu, Sukanya; Naskar, Milan Kanti
2018-01-01
MgO-TiO2 microcubes were synthesized by a facile template-free hydrothermal method followed by calcination. Different analytical tools such as XRD, DTA/TG, FTIR, N2 adsorption-desorption study, FESEM, TEM and UV-DRS were used to characterize the sample. The FESEM images exhibited cube shaped particles of size 2-4 μm. The MgO-TiO2 microcubes exhibit a high potential removal of toxic Pb (II) ions and photocatalytic degradation of organic dye methyl orange from water. The absorption capacity was determined by changing different experimental conditions. The spontaneity of the reaction was confirmed by thermodynamic study. The prepared MgO-TiO2 microcubes showed superior adsorption capacity up to 2900 mg g-1 for Pb (II) ions, and about 95% of photodegradation of methyl orange (MO), the water pollutants.
Paper-based transparent flexible thin film supercapacitors
NASA Astrophysics Data System (ADS)
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-05-01
Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c
Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa
2016-11-01
Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. Copyright © 2016 Elsevier B.V. All rights reserved.
Baláž, Peter; Baláž, Matej; Caplovičová, Mária; Zorkovská, Anna; Caplovič, Lubomír; Psotka, Miroslav
2014-01-01
PbS@cystine nanocrystals were synthesized mechanochemically, with lead acetate and L-cystine being used as the lead and sulfur precursors, respectively. The resulting nanocrystals are 22-34 nm in size, well-faceted and octahedral in shape. Characterization by XRD, FT-IR, NMR, FE-SEM, EDS, TEM (HRTEM) and surface area measurement methods showed that the particles are single, defect-free crystals with a high crystallinity. Furthermore, the crystals were prepared using a solvent-free procedure that was performed under ambient temperature and atmospheric pressure.
A novel ultrasound assisted method in synthesis of NZVI particles.
Jamei, Mir Roozbeh; Khosravi, Mohamad Reza; Anvaripour, Bagher
2014-01-01
This research is about a novel ultrasound assisted method for synthesis of nano zero valent iron particles (NZVI). The materials were characterized using TEM, FESEM, XRD, BET and acoustic PSA. The effect of ultrasonic power, precursor/reductant concentration (NaBH4, FeSO4·7H2O) and delivery rate of NaBH4 on NZVI characteristics were investigated. Under high ultrasonic power the morphology of nano particles changed from spherical type to plate and needle type. Also, when high precursor/reductant and high ultrasonic power was used the particle size of NZVI decreased. The surface area of NZVI particles synthesized by ultrasonic method was increased when compared by the other method. From the XRD patterns it was found also the crystallinity of particles was poor. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Payan, A.; Fattahi, M.; Jorfi, S.; Roozbehani, B.; Payan, S.
2018-03-01
The titanate nanotube/single-wall carbon nanotube (TNT/SWCNT) nanocomposites from different titania precursors were prepared by a two-step hydrothermal process. These nanocomposites were characterized by XRD, BET, Raman, FESEM, TEM, EDX, EDS, EIS, UV-vis DRS and FTIR techniques. The FESEM and TEM images showed the high porous nanocomposites with two types of tubular structure relating to TNTs and SWCNTs which were interwoven together uniformly. The XRD and Raman analysis further corroborated the chemical interaction between the SWCNT and the TNT in the nanocomposites. The photocatalytic performance of the as-synthesized composites were examined by the photodegradation of 4-CP under solar and UV illumination. The results revealed an impressive enhancement in photocatalytic activity of the nanocomposites under both irradiation conditions comparison to bare TNPs and TNTs. Amongst the TNT/SWCNT nanocomposites, 10% loading of SWCNT under UV irradiation and 5% loading of SWCNT under solar irradiation exhibited the maximum photocatalytic performance while the photocatalytic degradation efficiency of nanocomposites were not affected considerably by the type of precursor. Moreover, the mechanism and role of SWCNT were investigated and the plausible degradation pathways of 4-CP was suggested. TOC analyses was performed for determination of 4-CP mineralization rate and results showed complete mineralization after 240 and 390 min under UV and solar irradiation, respectively. The trapping experiments corroborated the O2- and OH radicals as the main reactive species in 4-CP degradation process. Langmuir-Hinshelwood kinetic model was fittingly matched with the experimental data (R2: 0.9218 and 0.9703 for UV and solar irradiation). Additionally, the stability of the nanocomposites were investigated and revealed 8% decrease in degradation efficiency after four cycles.
Hatami, Mehdi
2018-06-01
Poly(amic acid), the precursor of polyimide (PI), was used for the preparation of PI/CeO 2 nanocomposites (NC)s by ultrasonic assisted technique via insertion of the surface modified CeO 2 nanoparticles (NP)s into PI matrix. In the preparation stages, in the first, the modifications of CeO 2 NPs by using hexadecyltrimethoxysilane (HDTMS) as a binder were targeted using ultrasonic waves. In the second step, newly designed PI structure was formed from the sonochemical imidization process as a molecular hook. In this step two different reactions were occurred. The acetic acid elimination reaction in the main chain of macromolecule, and the acetylation reaction in the side chains of poly(amic acid) were accomplished. By acetylation process the hook structure was created for trapping of the modified nanoparticles. In the final step the preparation of PI NCs were achieved by sonochemical process. The structural and thermal properties of pure PI and PI/CeO 2 NCs were studied by several techniques such as fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal analyses. FT-IR and 1 H NMR spectra confirmed the success in preparation of PI matrix. The FE-SEM, TEM, and AFM analyses showed the uniform distribution of CeO 2 NPs in PI matrix. The XRD patterns of NCs show the presence of crystalline CeO 2 NPs in amorphous PI matrix. The thermal analysis results reveal that, with increases in the content of CeO 2 NPs in PI matrix, the thermally stability factors of samples were improved. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup
2018-06-01
We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.
Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex
NASA Astrophysics Data System (ADS)
Xu, Wei; Zhao, Weijia; Hao, Lifen; Wang, Sha; Pei, Mengmeng; Wang, Xuechuan
2018-04-01
Waterborne polyurethane (PU) emulsions are widely used in various fields and the demand for them is ever-increasing over the years. However, the hydrophilic chain extender inevitably bonded into the PU backbone can affect the water tolerance of PU. Thus, it is of great importance to improve PU water resistance effectively. Herein, novel fluoroalkyl-terminated hyperbranched polyurethane (HBPUF) latex was accordingly synthesized by graft reaction of perfluorohexyl ethyl alcohol and hyperbranched polyurethane (HBPU), which was previously obtained from interaction between hydroxyl-terminated hyperbranched polymer and PU prepolymer manufactured via the acetone process, as well as using neutralization, adding water, and high-speed stirring operations. We characterized the resultants and investigated its surface properties by IR, NMR, TEM, XRD, TGA, DSC, FE-SEM, AFM, XPS, and contact angle measurements, etc. IR and NMR tests confirmed that the fluorinated fragments had been grafted onto the tail end of HBPU. TEM, XRD, DSC, and FE-SEM results all accounted for the fact that there were multi-crystals in PU, HBPU and HBPUF. TGA results showed that thermal stabilities of the PU, HBPU, and HBPUF latex films were enhanced in turn. XPS and AFM analyses demonstrated that the fluorine-containing segments from the HBPUF terminals were prone to migrate and enrich on the film-air surface of the HBPUF latex film, which made water contact angle and water absorption of the HBPUF film be as 113.9° and 11.1%, respectively, compared to those of the PU film (77.8° and 136.2%). This research indicates that water resistance of the PU film can be efficiently enhanced by fluorinated polyurethane with novel fluoroalkyl-terminated hyperbranched structure.
Synthesis of SiO(x) powder using DC arc plasma.
Jung, Chan-Ok; Park, Dong-Wha
2013-02-01
SiO(x) was prepared by DC arc plasma and applied to the anode material of lithium ion batteries. A pellet of a mixture of Si and SiO2 was used as the raw material. The ratios of the silicon and silicon dioxide (SiO2) mixtures were varied by controlling the Si-SiO2 molar ratio (Si-SiO2 = 1-4). Hydrogen gas was used as the reduction atmosphere in the chamber. The prepared SiO(x) was collected on the chamber wall. The obtained SiO(x) was characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that the phase composition of the prepared particles was composed of amorphous SiO(x) and crystalline Si. The prepared SiO(x) showed wire and spherical morphology. XPS indicated the bonding state and 'x' value of the prepared SiO(x), which was close to one. The result of prepared SiO(x) is discussed from thermodynamic equilibrium calculations. The electrochemical behavior of the silicon monoxide anode was investigated.
Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yao; He Xiaoyan; Cao Minhua
2008-11-03
ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand
2018-06-01
Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.
CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property
NASA Astrophysics Data System (ADS)
Guo, Jixi; Guo, Mingxi; Jia, Dianzeng; Song, Xianli; Tong, Fenglian
2016-08-01
The coal based activated carbon nanofibers (CBACFs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and acid treated coal. Cadmium sulfide (CdS) nanoparticles loaded on CBACFs were fabricated by solvothermal method. The obtained samples were characterized by FESEM, TEM, and XRD. The results reveal that the CdS nanoparticles are homogeneously dispersed on the surfaces of CBACFs. The CdS/CBACFs nanocomposites exhibited higher photoactivity for photodegradation of methyl blue (MB) under visible light irradiation than pure CdS nanoparticles. CBACFs can be used as low cost support materials for the preparation of nanocomposites with high photocatalytic activity.
Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome
2018-08-01
Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.
Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.
Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua
2006-03-28
Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B
2012-04-01
Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.
Kaviya, S; Santhanalakshmi, J; Viswanathan, B; Muthumary, J; Srinivasan, K
2011-08-01
Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent. Copyright © 2011 Elsevier B.V. All rights reserved.
One step synthesis of porous graphene by laser ablation: A new and facile approach
NASA Astrophysics Data System (ADS)
Kazemizadeh, Fatemeh; Malekfar, Rasoul
2018-02-01
Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.
NASA Astrophysics Data System (ADS)
Mardani, Reza
2017-05-01
In this work, Bi1-x Ba x FeO3 nanoparticles were synthesized by a hydrothermal method in the presence of various surface activators, and different amounts of barium were inserted in a bismuth ferrite (x = 0.1, 0.15, 0.2) structure instead of bismuth. The structural and magnetic properties, morphology, and size of the synthesized nanoparticles were investigated by XRD, FT-IR, FE-SEM, TEM, DLS and VSM. The XRD analysis results reveal that the synthetic nanoparticles have a single phase. A phase shift from a rhombohedral structure to a tetragonal structure occurs due to the enhanced barium amount in the bismuth ferrite structure. The SEM analysis exhibits a uniform shape of the Bi0.85Ba0.15FeO3 particles and the image observed by TEM clarifies the size of the particles as 11 nm. Furthermore, the effect of the diverse surfaces of activators in the synthesis of Bi0.85Ba0.15FeO3 nanoparticles was studied, revealing that when sugar was used as a surfactant, the particle size reduced and the magnetic properties increased notably.
Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.
Baniasad, Arezou; Ghorbani, Mohsen
2016-05-01
In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.
The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.
2012-11-01
Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.
Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Singh, Arun
2018-03-01
We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.
Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.
Chen, You Wei; Lee, Hwei Voon; Juan, Joon Ching; Phang, Siew-Moi
2016-10-20
Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong
2011-05-01
Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.
NASA Astrophysics Data System (ADS)
Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.
2018-03-01
Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.
NASA Astrophysics Data System (ADS)
Thi Mai Oanh, Le; Xuan Huy, Nguyen; Thi Thuy Phuong, Doan; Danh Bich, Do; Van Minh, Nguyen
2018-03-01
(1-x)SrTiO3-xTiO2 granular composites with x=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were synthesized by sol-gel process. Structure, morphology, optical properties, and photocatalytic activity were investigated in detail using x-ray diffraction (XRD) analysis, Raman scattering, field-emission scanning electron microscopy (FE-SEM), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, and photoluminescence (PL). XRD analysis showed the formation of single phase for parent phases and the present of two component phases in all composites without any impurity. A tight cohesion between TiO2 and SrTiO3 (STO) at grain boundary region was inferred from lattice parameter change of STO. Moreover, FE-SEM images revealed a granular structure of composite in which SrTiO3 particles were surrounded by smaller TiO2 nanoparticles. As TiO2 concentration increased, absorption edge firstly shifted to the left for composite with x=0.3 and then shifted gradually to the right with further increasing of TiO2 content from 30 mol% to 80 mol%. Composites exhibited a stronger photocatalytic activity than parent phases, with the highest efficiency at 50 mol% of TiO2. PL analysis result showed that the recombination rate of photogenerated electron-hole pairs decreased in composite sample, which partly explained the enhanced photocatalytic property.
Self-assembled spongy-like MnO2 electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Dong, Meng; Zhang, Yu Xin; Song, Hong Fang; Qiu, Xin; Hao, Xiao Dong; Liu, Chuan Pu; Yuan, Yuan; Li, Xin Lu; Huang, Jia Mu
2012-08-01
Mesoporous spongy-like MnO2 has been synthesized via a facile and biphasic wet method, accompanied with tetraoctylammonium bromide (TOAB) as a soft template under ambient condition. A well-defined spongy morphology of MnO2 with uniform filament diameters 10-20 nm have been observed by FESEM, TEM, HRTEM, XRD, FT-IR,TGA-DSC studies. Further physical characterizations revealed that MnO2 sponges owned a large surface area of 155 m2 g-1 with typical mesoporous appearance. A specific capacitance value as high as 336 F g-1 was obtained. This improved capacitive behavior was attributed to the large surface area, morphology nature of nano-MnO2, and its broad pore size distribution.
Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.
Park, Ju-Young; Lee, In-Hwa
2010-05-01
Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.
Preparation, characterization and gas sensing performance of BaTiO3 nanostructured thin films
NASA Astrophysics Data System (ADS)
Suryawanshi, Dinesh N.; Pathan, Idris G.; Bari, Anil. R.; Patil, Lalchand A.
2018-05-01
Spray pyrolysis techniques was employed to prepare BaTiO3 thin films. AR grade solutions of Barium chloride (0.05 M) and Titanium chloride (0.05 M) were mixed in the proportion of 30:70, 50:50 and 70:30. The solutions were sprayed on quartz substrate heated at 350°C temperature to obtain the films. These thin films were annealed for a two hours at 600°C in air medium respectively. The prepared thin films were characterized using XRD, FESEM, EDAX, TEM. The electrical and gas sensing properties of these films were investigated. 50:50 film showed better response to Liquid Petroleum Gas (LPG) as compare 30:70 and 70:30 films.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity
NASA Astrophysics Data System (ADS)
T, T. T., Vi; Lue, S. J.
2016-11-01
A simple, facile method to fabricate successfully silver nanoparticle (AgNPs) decorated on graphene oxide (GO) layers via grafted thiol groups. Samples were prepared with different concentrations of AgNO3. Resulting AgNPs were quasi-spherical in shape and attached on the layers of GO. Physical properties were confirmed by X-ray diffraction (XRD), zeta potential, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectra, thermogravimetric analyzer (TGA), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Antimicrobial test was effectively showed using MRSA (Staphylococcus areus). The GO-Ag NPs with appropriate Ag NPs content of 0.2 M AgNO3 exhibited the strongest antibacterial activity at 48.77% inhibition after 4 hours incubation.
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad
2016-02-15
We describe a method for supporting palladium nanoparticles on magnetic nanoparticles using Euphorbia stracheyi Boiss root extract as the natural source of reducing and stabilizing agent. The progress of the reaction was monitored using UV-visible spectroscopy. The nanocatalyst was characterized by FE-SEM, TEM, XRD, EDS, FT-IR spectroscopy and ICP. The nanocatalyst was applied as an efficient, magnetically recoverable, highly reusable and heterogeneous catalyst for one-pot reductive amination of aldehydes at room temperature. The nanocatalyst was easily recovered by applying an external magnet and reused several times without considerable loss of activity. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar
2013-08-01
Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.
Liposomes self-assembled from electrosprayed composite microparticles
NASA Astrophysics Data System (ADS)
Yu, Deng-Guang; Yang, Jun-He; Wang, Xia; Tian, Feng
2012-03-01
Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way.
NASA Astrophysics Data System (ADS)
Niaz Akhtar, Majid; Azhar Khan, Muhammad; Ahmad, Mukhtar; Murtaza, G.; Raza, Rizwan; Shaukat, S. F.; Asif, M. H.; Nasir, Nadeem; Abbas, Ghazanfar; Nazir, M. S.; Raza, M. R.
2014-11-01
The effects of synthesis methods such as sol-gel (SG), self combustion (SC) and modified conventional mixed oxide (MCMO) on the structure, morphology and magnetic properties of the (Y3Fe5O12) garnet ferrites have been studied in the present work. The samples of Y3Fe5O12 were sintered at 950 °C and 1150 °C (by SG and SC methods). For MCMO route the sintering was done at 1350 °C for 6 h. Synthesized samples prepared by various routes were investigated using X-ray diffraction (XRD) analysis, Field emission scanning electron microscopy (FESEM), Impedance network analyzer and transmission electron microscopy (TEM). The structural analysis reveals that the samples are of single phase structure and shows variations in the particle sizes and cells volumes, prepared by various routes. FESEM and TEM images depict that grain size increases with the increase of sintering temperature from 40 nm to 100 nm.Magnetic measurements reveal that garnet ferrite synthesized by sol gel method has high initial permeability (60.22) and low magnetic loss (0.0004) as compared to other garnet ferrite samples, which were synthesized by self combustion and MCMO methods. The M-H loops exhibit very low coercivity which enables the use of these materials in relays and switching devices fabrications. Thus, the garnet nanoferrites with low magnetic loss prepared by different methods may open new horizon for electronic industry for their use in high frequency applications.
Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.
2015-01-01
Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652
NASA Astrophysics Data System (ADS)
Ram, Jasa; Ghosal, Partha
2015-08-01
Randomly distributed nanotubes, nanorods and nanoplates of Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 ternary compounds have been synthesized via a high yield solvo-thermal process. Prior to solvo-thermal heating at 230 °C for crystallization, we ensured molecular legation in room temperature reaction by complete reduction of precursor materials, dissolved in ethylene glycol and confirmed it by replicating Raman spectra of amorphous and crystalline materials. These nanomaterials have also been characterized using XRD, FE-SEM, EDS and TEM. Possible formation mechanism is also discussed. This single process will enable development of thermoelectric modules and random distribution of diverse morphology will be beneficial in retaining nano-crystallite sizes.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saadati-Moshtaghin, Hamid Reza; Zonoz, Farrokhzad Mohammadi; Amini, Mostafa M.
2018-04-01
A novel magnetically recoverable nanocomposite consisting of the NiFe2O4 core and KIT-6 mesoporous silica shell incorporated with ZnO nanoparticles was constructed. This nanocomposite was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (XRD), Brunauer Emmett Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). This new nanocomposite demonstrated a catalytic performance in the synthesis of symmetrical N,N‧-alkylidene bisamides at the condensation reaction under solvent-free conditions. The nanocatalyst could simply be recovered from the reaction environment by using an exterior magnet and reused five times without a remarkable losing in the catalytic property.
Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting
NASA Astrophysics Data System (ADS)
Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.
2017-04-01
NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.
NASA Astrophysics Data System (ADS)
Taimur, Shaista; Yasin, Tariq
2017-11-01
Novel polyacrylonitrile (PAN) grafted sepiolite nanocomposites were synthesized via emulsion polymerization. The influence of synthesis parameters on the degree of grafting was studied by varying the concentrations of monomer, initiator and surfactant. The nitrile groups of PAN were chemically modified into amidoxime. Both the grafting and amidoxime percentages were determined gravimetrically and maximum grafting of 373% was achieved at 5% acrylonitrile, 1% surfactant and 0.1% initiator concentrations. The presence of vibration at 2242 cm-1 in Fourier transform infrared (FT-IR) spectrum and x-ray diffraction (XRD) reflection at 2θ = 16.9° (010) confirmed the grafting of PAN chains onto modified sepiolite. XRD patterns also indicated a decrease in crystallinity of sepiolite and appearance of new amorphous region in grafted nanocomposites. The morphological changes of sepiolite during silanization and grafting of PAN is also confirmed by field emission scanning electron microscope (FESEM). Transmission electron microscope (TEM) images clearly showed the shortening of fibers after silanization of sepiolite and the same were involved in heterogeneous nucleation in micelles. These developed amidoxime grafted sepiolite nanocomposites can be used as adsorbent for the metal recovery.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein
2018-04-01
An electrochemical route has been employed to prepare pure SnS and indium-doped SnS thin films. Six samples including undoped SnS and In-doped SnS thin films deposited on the fluorine-doped tin oxide (FTO) glass substrates. An aqueous solution having SnCl2 and Na2S2O3 used as the primary electrolyte. Different In-doped SnS samples were prepared by adding a different amount of 1 mM InCl3 solution into the first electrolyte. The applied potential (E), time of deposition (t), pH and bath temperature (T) were kept at ‑1 V, 30 min, 2.1 and 60 °C, respectively. For all samples, except the In-dopant concentration, all the deposition parameters are the same. After preparation, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with an energy dispersive X-ray analyzer (EDX) attachment, atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to determine structural properties of as-deposited films. XRD patterns revealed that the synthesized undoped- and In-doped SnS thin films were crystallized in the orthorhombic structure. The shape of SnS crystals was spherical in the TEM image. X-ray peak broadening studies was done by applying Scherrer’s method, Williamson-Hall (W–H) models (including uniform deformation model (UDM), uniform strain deformation model (UDSM), and uniform deformation energy density model (UDEDM)), and size-strain plot (SSP) method. Using these techniques, the crystallite size and the lattice strains have been predicted. There was a good agreement in the particle size achieved by W–H- and SSP methods with TEM image.
NASA Astrophysics Data System (ADS)
Chen, Xia; Zhao, Bote; Cai, Yong; Tadé, Moses O.; Shao, Zongping
2013-11-01
Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m2 g-1 was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m2 g-1). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g-1 at 1 A g-1. V10 was also able to retain a specific capacitance of 380 F g-1, even at a current density of 10 A g-1. Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g-1 at 5 A g-1 after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications.Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m2 g-1 was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m2 g-1). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g-1 at 1 A g-1. V10 was also able to retain a specific capacitance of 380 F g-1, even at a current density of 10 A g-1. Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g-1 at 5 A g-1 after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications. Electronic supplementary information (ESI) available: FE-SEM image. See DOI: 10.1039/c3nr04484j
Sharma, Rakesh Kumar; Gaur, Rashmi; Yadav, Manavi; Goswami, Anandarup; Zbořil, Radek; Gawande, Manoj B
2018-01-30
In the last few decades, the emission of carbon dioxide (CO 2 ) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO 2 is the cycloaddition reaction between epoxides and CO 2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO 2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.
NASA Astrophysics Data System (ADS)
Arulmozhi, K. T.; Mythili, N.
2013-12-01
Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.
NASA Astrophysics Data System (ADS)
Purty, B.; Choudhary, R. B.
2018-04-01
Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.
Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres
NASA Astrophysics Data System (ADS)
Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui
2017-05-01
Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.
A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis
NASA Astrophysics Data System (ADS)
Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.
2018-04-01
Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.
Structural morphology of zinc oxide structures with antibacterial application of calamine lotion
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2015-04-01
In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. The energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.
Rajisha, K R; Maria, H J; Pothan, L A; Ahmad, Zakiah; Thomas, S
2014-06-01
Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Habibi, Mohammad Hossein; Parhizkar, Janan
2015-11-05
Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging
NASA Astrophysics Data System (ADS)
Maalej, Nabil M.; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A.
2015-05-01
We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu3+ nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.
Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging.
Maalej, Nabil M; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A
2015-01-01
We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.
Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon
2014-07-23
This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.
NASA Astrophysics Data System (ADS)
Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo
2017-07-01
In this study, molybdenum (Mo)-doped nickel titanate (NiTiO3) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO3 structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO3 lattice was doped with Mo. On the other hand, Mo doping of NiTiO3 materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.
Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms
NASA Astrophysics Data System (ADS)
Xing, Ruimin; Liu, Shanhu; Tian, Shufang
2011-10-01
In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.
Synthesis and characterization of nanocomposite GO@α-Fe2O3:Efficient material for dye removal
NASA Astrophysics Data System (ADS)
Mandal, B.; Panda, J.; Tudu, B.
2018-05-01
In this work a composite of Graphene Oxide (GO) supported α-Fe2O3 nanoparticles (GF) has been synthesized via a simple co-precipitation method. Structural, and morphological study of nanocomposite (GF) are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). The XRD study indicates that Graphene oxide is implanted with well crystalline α-Fe2O3 which has pure rhombohedral phase. Surface morphological study of SEM depicts sphere-like shaped α-Fe2O3 particles with formation of clusters have been embedded on Graphene oxide nano sheet. TEM image reveals that GO sheet acts as a good supporting material for anchoring nano sized α -Fe2O3 particles. Efficiency of dye removal of the prepared GF composite has been measured by the degradation of methylene blue (MB) in an aqueous solution under visible light irradiation. The degradation of the dye has been evaluated by a UV-visible spectroscopy, by decrease in the intensity of absorbance and concentration. The degradation efficiency of GF is found to be 90% towards MB.
NASA Astrophysics Data System (ADS)
Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel
2016-12-01
In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.
Low Temperature Synthesis of Cobalt-Chromium Carbide Nanoparticles-Doped Carbon Nanofibers.
Yousef, Ayman; Brooks, Robert M; Abutaleb, Ahmed; Al-Deyab, Salem S; El-Newehy, Mohamed H
2018-04-01
Electrospinning has been used to synthesize cobalt-chromium carbide nanoparticles (NPs)-doped carbon nanofibers (CNFs) (Composite). Electrospun mat comprising of cobalt acetate, chromium acetate and poly(vinyl alcohol) (PVA) has been carbonized at low temperature (850 °C) for 3 h under argon atmosphere to produce the introduced composite. The process was achieved at low temperature due to the presence of cobalt as an activator. Field emission scanning electron microscope (FE-SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) equipped with EDX techniques were used to determine the products characteristics. The results indicated the formation of pure cobalt (Co), Cr7C3 NPs and crystalline CNFs. The Co and Cr7C3 NPs were covered with CNFs. Overall, the proposed NFs open new avenue to prepare different metals-metal carbides-carbon NFs at low temperature and short reaction time.
NASA Astrophysics Data System (ADS)
Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)
2018-05-01
Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.
Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.
Wang, Jun; Zhang, Kai; Zhu, Yuejin
2005-05-01
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.
NASA Astrophysics Data System (ADS)
Hu, Chaohao; Zhuang, Jing; Zhong, Liansheng; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying
2017-12-01
Heterostructured AgBr/Bi2Sn2O7 photocatalysts were synthesized successfully via the ultrasonic-assisted chemical precipitation method. XRD, FT-IR, FE-SEM, TEM, XPS, UV-vis-DRS and PL spectroscopy were used to characterize the phase structure, morphology, chemical composition, oxidation state, and optical properties of AgBr/Bi2Sn2O7 heterojunction. The photocatalytic activity of as-prepared catalysts was evaluated by the degradation of RhB under visible light irradiation. The obtained AgBr/Bi2Sn2O7 composite with the 1:1 molar ratio exhibited significantly enhanced photocatalytic performance. Further first-principles calculations indicated that the hybridization interaction between Ag and O atoms at AgBr/Bi2Sn2O7 interface is expected to be beneficial for enhancing the charge transfer and improving the photocatalytic activity of heterostructured composites.
NASA Astrophysics Data System (ADS)
Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin
2015-12-01
CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.
NASA Astrophysics Data System (ADS)
Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj
2017-11-01
UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.
NASA Astrophysics Data System (ADS)
Saberi, Maliheh; Ashkarran, Ali Akbar
Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.
Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant
NASA Astrophysics Data System (ADS)
Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.
2018-05-01
Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.
NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
NASA Astrophysics Data System (ADS)
Tan, De-Xin; Wang, Yan-Li
2018-03-01
Sea anemone-like palladium (Pd)/polyaniline (PANI) nanocomposites were synthesized via visible-light-assisted swollen liquid crystals (SLCs) template method. The resulting samples were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV–vis) absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, respectively. The electrocatalytic properties of Pd/PANI nanocomposites modified glass carbon electrode (GCE) for methane oxidation were investigated by cycle voltammetry (CV) and chronoamperometry. Those dispersed sea anemone-like Pd/PANI nanocomposites had an average diameter of 320 nm. The obtained Pd nanoparticles with an average diameter of about 45 nm were uniformly distributed in PANI matrix. Sea anemone-like Pd/PANI nanocomposites exhibited excellent electrocatalytic activity and stability for oxidation of methane (CH4).
Strong Flux Pinning of Nano-Sized Ysz Particles in Ybco Films Prepared by Mod Method
NASA Astrophysics Data System (ADS)
Ye, S.; Suo, H. L.; Liu, M.; Tang, X.; Wu, Z. P.; Zhao, Y.; Zhou, M. L.
The YBCO films with doped YSZ nanoparticles have been prepared successfully by metal organic doepositon method using trifluoroacetates (TFA-MOD) through dissolving Zr organic salt into the YBCO precursor solution. The doped films have well in-plane and out-plane textures detected by both XRD Φ-scan and ω-scan. The YSZ nanoparticles with the size of about 5 ~ 15 nm were observed on the surface of the YBCO films using both FE-SEM and TEM. By comparing the superconducting properties, it was found that the doped YBCO films had lower Tc than that of undoped YBCO films. However, as increasing the applied magnetic field, Jc of the doped YBCO films were much better than that of undoped one. The Jc was as higher as 2.5 times than that of undoped YBCO film at 77 K and 1 T applied field.
NASA Astrophysics Data System (ADS)
Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi
2010-10-01
A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.
NASA Astrophysics Data System (ADS)
Hajian, Robabeh; Ehsanikhah, Amin
2018-01-01
This study describes the immobilization of tetraphenylporphyrinatomanganese(III) chloride, (MnPor), onto imidazole functionalized MCM-41 with magnetite nanoparticle core (Fe3O4@MCM-41-Im). The resultant material (Fe3O4@MCM-41-Im@MnPor) was characterized by X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), diffuse reflectance UV-Vis spectrophotometry (DR UV-Vis), field emission scanning electron microscopy (FESEM), Inductively coupled plasma (ICP), analyzer transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. This new heterogenized catalyst was applied as an efficient catalyst for the epoxidation of a variety of cyclic and linear olefins with NaIO4 under mild conditions. The prepared catalyst can be easily recovered through the application of an external magnet, and reused several times without any significant decrease in activity and magnetic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Changle; Qiao Xueliang; Luo Langli
Flower-like ZnO nano/microstructures have been synthesized by thermal treatment of Zn(NH{sub 3}){sub 4}{sup 2+} precursor in aqueous solvent, using ammonia as the structure directing agent. A number of techniques, including X-ray diffraction (XRD), field emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), thermal analysis, and photoluminescence (PL) were used to characterize the obtained ZnO structures. The photoluminescence (PL) measurements indicated that the as-synthesized ZnO structures showed UV ({approx}375 nm), blue ({approx}465 nm), and yellow ({approx}585 nm) emission bands when they were excited by a He-Gd laser using 320 nm as the excitation source. Furthermore, it has been interestingly foundmore » that the intensity of light emission at {approx}585 nm remarkably decreased when the obtained ZnO nanocrystals were annealed at 600 deg. C for 3 h in air. The reason might be the possible oxygen vacancies and interstitials in the sample decreased at high temperature.« less
Behera, Arjun; Kandi, Debasmita; Majhi, Sanjit Manohar
2018-01-01
ZnFe2O4 was fabricated by a simple solution-combustion method. The structural, optical and electronic properties are investigated by XRD, TEM, FESEM, UV–vis DRS, PL, FTIR and photocurrent measurements. The photocatalytic activity of the prepared material is studied with regard to the degradation of rhodamine B (Rh B) and Congo red under solar irradiation. The kinetic study showed that the material exhibits zeroth and first order reaction kinetics for the degradation of Rh B and Congo red, respectively. The photocatalytic behaviour of ZnFe2O4 was systematically studied as a function of the activation temperature. ZnFe2O4 prepared at 500 °C showed the highest activity in degrading Rh B and Congo red. The highest activity of ZnFe2O4-500 °C correlates well with the lowest PL intensity, highest photocurrent and lowest particle size. PMID:29515956
High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane
Al-Doghachi, Faris A. J.; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin
2016-01-01
A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50–80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions. PMID:26745623
Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries
NASA Astrophysics Data System (ADS)
Elizabeth, Indu; Singh, Bhanu Pratap; Trikha, Sunil; Gopukumar, Sukumaran
2016-10-01
Nitrogen doped hierarchically porous carbon derived from prawn shells have been efficiently synthesized through a simple, economically viable and environmentally benign approach. The prawn shell derived carbon (PSC) has high inherent nitrogen content (5.3%) and possesses a unique porous structure with the co-existence of macro, meso and micropores which can afford facile storage and transport channels for both Li and Na ions. PSC is well characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron Microscopy (TEM), High resolution TEM (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Electron Paramagnetic Resonance (EPR) and Solid state-Nuclear Magnetic Resonance (NMR) studies have been conducted on pristine PSC and Li/Na interacted PSC. PSC as anode for Lithium ion batteries (LIBs) delivers superior electrochemical reversible specific capacity (740 mAh g-1 at 0.1 Ag-1 current density for 150 cycles) and high rate capability. When used as anode material for Sodium ion batteries (SIBs), PSC exhibits excellent reversible specific capacity of 325 mAh g-1 at 0.1 Ag-1 for 200 cycles and rate capability of 107 mAh g-1 at 2 Ag-1. Furthermore, this study demonstrates the employment of natural waste material as a potential anode for both LIB and SIB, which will definitively make a strike in the energy storage field.
NASA Astrophysics Data System (ADS)
Murali, N.; Margarette, S. J.; Madhuri Sailaja, J.; Kondala Rao, V.; Himakar, P.; Kishore Babu, B.; Veeraiah, V.
2018-02-01
Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of α-NaFeO2 layered structure with R\\bar 3m space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 µm. These materials show some changes in the local ion environment, as examined by FT-IR studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600; Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn
2014-12-15
Graphical abstract: Rice-shaped BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF{sub 5}:Eu{sup 2+} are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu{sup 2+} was observed. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The strong ultraviolet emission of Eu{sup 2+} ions in BaAlF{sub 5}:Eu{sup 2+} nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via amore » mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu{sup 2+}-doped BaAlF{sub 5} nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF{sub 5}:Eu{sup 2+} nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF{sub 5}:Eu{sup 2+} nanophosphors exhibit the sharp line emissions of Eu{sup 2+} at room temperature. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu{sup 2+} can be deduced to be a dominant for quenching fluorescence in BaAlF{sub 5}:Eu{sup 2+} nanophosphors. The strong ultraviolet emission of Eu{sup 2+} in BaAlF{sub 5}:Eu{sup 2+} nanophosphors suggests that these nanoparticles may have potential applications for sensing, spectrometer calibration and solid-state lasers.« less
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B
2017-11-01
The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural morphology of zinc oxide structures with antibacterial application of calamine lotion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd
In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. Themore » energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.« less
Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan
2017-02-10
This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yahyaei, Behrooz; Manafi, Sahebali; Fahimi, Bijan; Arabzadeh, Sepideh; Pourali, Parastoo
2018-03-01
Fungating wounds usually develop in patients with advanced cancer, which responds poorly to treatments. Such wounds can be treated using suitable dressings. For this purpose, a recent research produced a new type of wound dressing with antibacterial and anticancer properties. The culture supernatant of Fusarium oxysporum was challenged with silver nitrate and heated for 5 min. Production of silver nanoparticles (SNPs) was confirmed using spectrophotometer, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analysis. A solution of 10% (w/w) poly vinyl alcohol (PVA) and different volumes of SNP solutions were provided, where each solution was separately used for electrospinning. The obtained PVA/SNPs film evaluated under morphological characterization using field emission scanning electron microscope (FE-SEM) and its antibacterial and anticancer activities were measured. Results confirmed the presence of SNPs in the reaction mixture with sizes less than 50 nm, spherical and oval in shapes. FE-SEM results confirmed that SNPs were seen inside and entrapped between PVA in the PVA/SNPs membrane, composed of 50% of each material. This film had acceptable antibacterial properties against four different bacterial strains and a good anticancer activity against the human melanoma cell line (COLO 792) in contrast to the control one. A recent research introduced a new and fast biological method for the synthesis of SNPs, having acceptable antibacterial and anticancer activities. Further studies are needed to support the obtained results.
Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R
2014-12-01
When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kanel, Sushil Raj; Greneche, Jean-Mark; Choi, Heechul
2006-03-15
The removal of As(V), one of the most poisonous groundwater pollutants, by synthetic nanoscale zero-valent iron (NZVI) was studied. Batch experiments were performed to investigate the influence of pH, adsorption kinetics, sorption mechanism, and anionic effects. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy were used to characterize the particle size, surface morphology, and corrosion layer formation on pristine NZVI and As(V)-treated NZVI. The HR-TEM study of pristine NZVI showed a core-shell-like structure, where more than 90% of the nanoparticles were under 30 nm in diameter. Mössbauer spectroscopy further confirmed its structure in which 19% were in zero-valent state with a coat of 81% iron oxides. The XRD results showed that As(V)-treated NZVI was gradually converted into magnetite/maghemite corrosion products over 90 days. The XPS study confirmed that 25% As(V) was reduced to As(III) by NZVI after 90 days. As(V) adsorption kinetics were rapid and occurred within minutes following a pseudo-first-order rate expression with observed reaction rate constants (Kobs) of 0.02-0.71 min(-1) at various NZVI concentrations. Laser light scattering analysis confirmed that NZVI-As(V) forms an inner-sphere surface complexation. The effects of competing anions revealed that HCO3-, H4SiO4(0), and H2PO4(2-) are potential interfering agents in the As(V) adsorption reaction. Our results suggest that NZVI is a suitable candidate for As(V) remediation.
Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method
NASA Astrophysics Data System (ADS)
Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.
2016-10-01
Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.
Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui
2017-01-01
Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.
NASA Astrophysics Data System (ADS)
Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.
2017-01-01
The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.
NASA Astrophysics Data System (ADS)
Xiao, Jinchong; Yin, Zongyou; Yang, Bo; Liu, Yi; Ji, Li; Guo, Jun; Huang, Ling; Liu, Xuewei; Yan, Qingyu; Zhang, Hua; Zhang, Qichun
2011-11-01
Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO.Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO. Electronic supplementary information (ESI) available: XRD patterns and simulations, and FT-IR spectra. CCDC reference numbers 840471. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1nr10655d
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties
NASA Astrophysics Data System (ADS)
Wang, Xinjuan; Zhang, Qinglin; Zou, Bingsuo; Lei, Aihua; Ren, Pinyun
2011-10-01
Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.
Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application
NASA Astrophysics Data System (ADS)
Dubal, D. P.; Kim, W. B.; Lokhande, C. D.
2012-01-01
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g-1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g-1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge-discharge property between -0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.
Yao, Qiufang; Wang, Chao; Fan, Bitao; Wang, Hanwei; Sun, Qingfeng; Jin, Chunde; Zhang, Hong
2016-01-01
In the present paper, uniformly large-scale wurtzite-structured ZnO nanorod arrays (ZNAs) were deposited onto a wood surface through a one-step solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential thermal analysis (DTA). ZNAs with a diameter of approximately 85 nm and a length of approximately 1.5 μm were chemically bonded onto the wood surface through hydrogen bonds. The superamphiphobic performance and ultraviolet resistance were measured and evaluated by water or oil contact angles (WCA or OCA) and roll-off angles, sand abrasion tests and an artificially accelerated ageing test. The results show that the ZNA-treated wood demonstrates a robust superamphiphobic performance under mechanical impact, corrosive liquids, intermittent and transpositional temperatures, and water spray. Additionally, the as-prepared wood sample shows superior ultraviolet resistance. PMID:27775091
Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets
NASA Astrophysics Data System (ADS)
Shelke, Nitin T.; Karche, B. R.
2017-10-01
Reduced graphene oxide (RGO), a two-dimensional (2D) system, has attracted much interest in photonic applications owing to its ability to absorb light over a broad wavelength. This leads to several studies on RGO-based photosensors. In this paper, chemical oxidation of graphite was carried out at room temperature for the preparation of large area reduced graphene oxide using a modified Hummer's method. The as-prepared reduced graphene oxide was characterized by XRD, Raman spectroscopy, FESEM, and TEM to confirm the absence of impurities and to ascertain their morphology. In addition, the as-prepared reduced graphene oxide for its possible application as UV photosensor is reported. The electric and optoelectronic properties of RGO based UV photosensor shows a fast response and recovery time of 1 s and 3 s; high photoresponsitivity (3.74 AW-1) and quantum efficiency (1274%) indicating that the graphene oxide is an important material for high performance photosensor. This work demonstrates the ultrafast photoresponse with high photoresponsivity, proving its potential as a promising material for optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, S.; Mondal, A.; Dey, K.
Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorptionmore » reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.« less
Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena
2013-06-01
Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, R.; Kumar, M.; Khajuria, H.; Sharma, S.; Sheikh, H. Nawaz
2018-02-01
FeMoO4 nanorods and their rare earth (Eu3+ and Tb3+) doped composites with nitrogen doped graphene (NG) were synthesized by facile hydrothermal method in aqueous medium. X-ray diffraction (XRD) analysis of the as-synthesized samples was done to study the phase purity and crystalline nature. FTIR and Raman Spectroscopy have been studied for investigating the bonding in nanostructures. The surface morphology of the samples was investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The photolumniscent nature of the samples was investigated by the using the fluorescence spectrophotometer. The photocatalytic degradation efficiency of the prepared pure FeMoO4 and its rare earth doped composites with nitrogen doped graphene was evaluated as function of visible light irradiation versus concentration of methylene blue (MB dye). The prepared nanocomposites show enhanced photocatalytic efficiency as compared to the bare FeMoO4 nanorods.
Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M
2014-06-01
Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.
Fe-polyaniline composite nanofiber catalyst for chemoselective hydrolysis of oxime.
Mahato, Sanjit Kumar; Bhaumik, Madhumita; Maji, Arun; Dutta, Abhijit; Maiti, Debabrata; Maity, Arjun
2018-03-01
A facile chemoselective one-pot strategy for the deprotection of oxime has been developed using Fe 0 -polyaniline composite nanofiber (Fe 0 -PANI), as a catalyst. Nano material based Fe 0 -PANI catalyst has been synthesized via in-situ polymerization of ANI monomer and followed by reductive deposition of Fe 0 onto PANI matrix. The catalyst was characterized by FE-SEM, HR-TEM, BET, XRD, ATR-FTIR, XPS and VSM techniques. The scope of the transformation was studied for aryl, alkyl and heteroarylketoxime with excellent chemoselectivity (>99%). Mechanistic investigations suggested the involvement of a cationic intermediate with Fe 3+ active catalytic species. Substituent effect showed a linear free energy relationship. The activation energy (E a ) was calculated to be 17.46 kJ mol -1 for acetophenone oxime to acetophenone conversion. The recyclability of the catalyst demonstrated up to 10 cycles without any significant loss of efficiency. Based on the preliminary experiments a plausible mechanism has been proposed involving a carbocationic intermediate. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pourmasoud, Saeid; Sobhani-Nasab, Ali; Behpour, Mohsen; Rahimi-Nasrabadi, Mehdi; Ahmadi, Farhad
2018-04-01
YbVO4 nanoparticles YbVO4/NiWO4 nanocomposites were synthesized by simple and new method. The effect of various polymeric capping agents such as Tween 80, Tween 20 and PEG on the shape and size of YbVO4/NiWO4 nanocomposites were investigated. YbVO4/NiWO4 nanocomposites were analyzed through some techniques including, X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), thermogravimetry differential thermal analysis (TG-DTA), transmission electron microscopy (TEM), field emission electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis), and energy-dispersive X-ray spectroscopy (EDX). This attempt is the first study on the photocatalytic performance of the YbVO4/NiWO4 nanocomposites in various conditions such as size of particles and kind of dyes (rhodamine B (Rh B), methylene blue (MB), methyl orange (MO), and phenol red (Ph R)), under visible light.
Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange
NASA Astrophysics Data System (ADS)
Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan
2018-05-01
In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.
Roh, Sung-Hee; Cheong, Hyeonsook; Kim, Do-Heyoung; Woo, Hee-Gweon; Lee, Byeong-Gweon; Yang, Kap-Seung; Kim, Bo-Hye; Sohn, Honglae
2013-01-01
The generation of silver nanoparticle/bis(o-phenolpropyl)silicone composites have been facilitated by the addition of sodium tetrachloroaurate or gold(Ill) chloride (< 1 wt% of NaAuCl4 or AuCl3) to the reaction of silver nitrate (AgNO3) with bis(o-phenolpropyl)silicone [BPPS, (o-phenolpropyl)2(SiMe2O)n, n = 2,3,8,236]. TEM and FE-SEM data showed that the silver nanoparticles having the size of < 20 nm are well dispersed throughout the BPPS silicone matrix in the composites. XRD patterns are consistent with those for polycrystalline silver. The size of silver nanoparticles augmented with increasing the relative molar concentration of AgNO3 added with respect to BPPS. The addition of gold complexes (1-3 wt%) did not affect the size distribution of silver nanoparticles appreciably. In the absence of BPPS, the macroscopic precipitation of silver by agglomeration, indicating that BPPS is necessary to stabilize the silver nanoparticles surrounded by coordination.
Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity
NASA Astrophysics Data System (ADS)
Cui, Haojie; Zhou, Yawen; Mei, Jinfeng; Li, Zhongyu; Xu, Song; Yao, Chao
2018-01-01
The efficient charge separation action and visible-light responding could enhance the photocatalytic property of photocatalysts. In the present study, novel CdS/BiOBr nanosheets composites were synthesized by a three-step process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), diffuse reflection spectroscopy (DRS), Raman spectroscopy and photoluminescence (PL). Under visible-light irradiation, the as-prepared CdS nanoparticles decorated BiOBr nanosheets exhibited the excellent photocatalytic activity and high stability for malachite green (MG) degradation. The photodegradation achieved maximum degradation efficiency (99%) using CdS/BiOBr-3 composites as photocatalyst. Furthermore, the possible photocatalytic mechanism upon CdS/BiOBr composites was also discussed through radical and holes trapping experiments. The heterostructure between CdS and BiOBr improved photocatalytic activity dramatically, which greatly promoted migration rate of the photoinduced electrons besides limiting the recombination of photogenerated electron-hole pairs.
Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian
2009-04-09
Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.
Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yunling, E-mail: zouyunling1999@126.com; Li, Yan; Guo, Ying
Highlights: ► Flower-like and corn-like CuO nanostructures were synthesized by a simple method. ► Cotton fibers purchased from commercially are used as template. ► The concentration of Cu(NO{sub 3}){sub 2} solution is an important parameter. -- Abstract: Flower-like and corn-like CuO nanostructures composed of CuO nanoparticles were successfully synthesized via ultrasound-assisted template method, respectively, by controlling the initial concentration of Cu(NO{sub 3}){sub 2} solution. Here, cotton fibers were used as template agent. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The results demonstrated that the initialmore » concentration of Cu(NO{sub 3}){sub 2} solution was an important parameter for determining whether CuO nanoparticles assembled into flower-like structures or corn-like structures. The mechanism of forming different nanostructures of CuO was discussed.« less
Process dependent thermoelectric properties of EDTA assisted bismuth telluride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com; Kargupta, Kajari
2016-04-13
Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodepositedmore » film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.« less
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Alizadeh, Mohammad; Bagherzadeh, Mojtaba
2016-03-15
Through this manuscript the green synthesis of palladium nanoparticles supported on reduced graphene oxide (Pd NPs/RGO) under the mild conditions through reduction of the graphene oxide and Pd(2+) ions using barberry fruit extract as reducing and stabilizing agent is reported. The as-prepared Pd NPs/RGO was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd NPs/RGO could be used as an efficient and heterogeneous catalyst for reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.
Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin
2004-06-22
CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.
NASA Astrophysics Data System (ADS)
Yao, Qiufang; Wang, Chao; Fan, Bitao; Wang, Hanwei; Sun, Qingfeng; Jin, Chunde; Zhang, Hong
2016-10-01
In the present paper, uniformly large-scale wurtzite-structured ZnO nanorod arrays (ZNAs) were deposited onto a wood surface through a one-step solvothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential thermal analysis (DTA). ZNAs with a diameter of approximately 85 nm and a length of approximately 1.5 μm were chemically bonded onto the wood surface through hydrogen bonds. The superamphiphobic performance and ultraviolet resistance were measured and evaluated by water or oil contact angles (WCA or OCA) and roll-off angles, sand abrasion tests and an artificially accelerated ageing test. The results show that the ZNA-treated wood demonstrates a robust superamphiphobic performance under mechanical impact, corrosive liquids, intermittent and transpositional temperatures, and water spray. Additionally, the as-prepared wood sample shows superior ultraviolet resistance.
Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid
NASA Astrophysics Data System (ADS)
Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim
Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.
NASA Astrophysics Data System (ADS)
Anushree; Kumar, S.; Sharma, C.
2017-11-01
Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.
Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud
2017-05-01
In this paper, silver nanoparticles (Ag NPs) are synthesized using Achillea millefolium L. extract as reducing and stabilizing agents and peach kernel shell as an environmentally benign support. FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermo gravimetric-differential thermal analysis (TG-DTA) and Transmission Electron Microscopy (TEM) were used to characterize peach kernel shell, Ag NPs, and Ag NPs/peach kernel shell. The catalytic activity of the Ag NPs/peach kernel shell was investigated for the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), and Methylene Blue (MB) at room temperature. Ag NPs/peach kernel shell was found to be a highly active catalyst. In addition, Ag NPs/peach kernel shell can be recovered and reused several times with no significant loss of its catalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.
Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin
2017-11-01
Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.
Humidity sensing behavior of tin-loaded 3-D cubic mesoporous silica
NASA Astrophysics Data System (ADS)
Poonia, Ekta; Dahiya, Manjeet S.; Tomer, Vijay K.; Kumar, Krishan; Kumar, Sunil; Duhan, Surender
2018-07-01
The present scientific investigation deals with template synthesis of 3D-cubic mesoporous KIT-6 with in-situ loading of SnO2 to obtain a material with enhanced number of surface active sites. The structural insights have been reported through analysis of XRD, TEM, FESEM, N2 sorption and mid-IR absorption data. X-ray diffraction confirmed 3D-cubic mesoporous structure of silica with Ia 3 bar d symmetry and existence of anatase SnO2 species. A decrease in surface area on loading of SnO2 nanoparticles is revealed via analysis of N2 adsorption-desorption isotherms. Rapid response time of 15 s and super rapid recovery time of 2 s (with response > 100) have been exhibited by sensor based on sample containing 1 wt% of SnO2. Further investigation on sensing performance of nanocomposite with 1 wt% of SnO2 confirmed its ohmic behavior (with negligible V-I hysteresis), excellent cycle stability, outstanding long term stability and very low hysteresis (1.4% at 53% RH).
Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan
2010-06-15
In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.
NASA Astrophysics Data System (ADS)
Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi
2018-04-01
The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mandeep; Thanh, Dong Nguyen, E-mail: Dong.Nguyen.Thanh@vscht.c; Ulbrich, Pavel
2010-12-15
Single-phase {alpha}-MnO{sub 2} nanorods and {delta}-MnO{sub 2} nano-fiber clumps were synthesized using manganese pentahydrate in an aqueous solution. These nanomaterials were characterized using the Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FE-SEM), Powder X-ray diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N{sub 2} adsorption). The structural analysis shows that {alpha}-MnO{sub 2} (2x2 tunnel structure) has the form of needle-shaped nanorods and {delta}-MnO{sub 2} (2D-layered structure) consists of fine needle-like fibers arranged in ball-like aggregates. Batch adsorption experiments were carried out to determine the effect of pH on adsorption kinetics and adsorption capacity for the removal of As(V)more » from aqueous solution onto these two types of nanoadsorbents. The adsorption capacity of As(V) was found to be highly pH dependent. The adsorption of As(V) onto {alpha}-MnO{sub 2} reached equilibrium more rapidly with higher adsorption capacity compared to {delta}-MnO{sub 2}. -- Graphical abstract: {alpha}-MnO{sub 2} (2x2 tunnel structure) nanorods and {delta}-MnO{sub 2} (2-D layered structure) nano-fiber clumps were synthesized in a facile way in an aqueous solution and characterized by TEM, FE-SEM, XRD and BET-N{sub 2} adsorption techniques. The structural analysis shows that {alpha}-MnO{sub 2} is needle shaped nanorods and {delta}-MnO{sub 2} consists of 2-D platelets of fine needle-like fibers arranged in ball-like aggregates. Further batch experiments confirmed that both nanoadsorbents are potential candidates for the adsorption of As(V) with a capacity of 19.41 and 15.33 mg g{sup -1} for {alpha}-MnO{sub 2} and {delta}-MnO{sub 2}, respectively. The presence of As3d peak in XPS study indicates that arsenic on the surface of nanoadsorbents is in the stable form of As(V) with a percentage of arsenate onto {alpha}-MnO{sub 2} is 0.099% as compared to 0.021% onto {delta}-MnO{sub 2}, clearly indicating the higher adsorption of As(V) in case of {alpha}-MnO{sub 2} as compared to {delta}-MnO{sub 2}, which is in good agreement with the adsorption studies results. Display Omitted« less
Synthesis and characterization of flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Jiasong; Xiang, Weidong, E-mail: xiangweidong001@126.com; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035
Graphical abstract: In this paper, flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres were prepared via biomolecule-assisted solvothermal rate with CuCl{sub 2}{center_dot}2H{sub 2}O, GaCl{sub 3}, InCl{sub 3} and L-cystine as raw materials. UV-vis absorption spectrum showed that the band gap of CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} microspheres was about 2.427 eV. Highlights: Black-Right-Pointing-Pointer We reported a small biomolecule-assisted route to synthesis CuIn{sub 0.3}Ga{sub 0.7}S{sub 2}. Black-Right-Pointing-Pointer The possible mechanisms of flower-like CuIn{sub 0.3}Ga{sub 0.7}S{sub 2} microspheres were proposed. Black-Right-Pointing-Pointer The as-prepared CuIn{sub 0.3}Ga{sub 0.7}S{sub 2} products were investigated by XRD, XPS, FESEM and TEM. Black-Right-Pointing-Pointer The optical properties were investigatedmore » by UV-vis spectroscopy and Raman spectrum. -- Abstract: We report the formation and characterization of the flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres using CuCl{sub 2}{center_dot}2H{sub 2}O, GaCl{sub 3}, InCl{sub 3} and L-cystine in the mixed solvent of ethylene glycol and distilled water (1:2, v/v) at 200 Degree-Sign C for 24 h. XRD results indicated that the CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} nanostructures have a (1 1 2) preferred orientation. The EDS and XPS analyses of the sample revealed that Cu, In, Ga and S were present in an atomic ratio of approximately 1:0.7:0.3:2. FESEM and TEM images showed that the product was microspheres, consisting of nanoplates with the thickness of about 20 nm. The optical properties were investigated by ultraviolet-visible (UV-vis) absorption spectroscopy and Raman spectroscopy. UV-vis absorption spectrum indicated that the band gap of as-synthesized flower-like CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} microspheres was about 2.427 eV. Raman spectrum of the obtained CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} exhibited a high-intensity peak at 302 cm{sup -1} could be assigned as A1-mode.« less
NASA Astrophysics Data System (ADS)
Tarafder, Anal; Molla, Atiar Rahaman; Karmakar, Basudeb
2010-10-01
Nd 3+-doped precursor glass in the K 2O-SiO 2-Y 2O 3-Al 2O 3 (KSYA) system was prepared by the melt-quench technique. The transparent Y 3Al 5O 12 (YAG) glass-ceramics were derived from this glass by a controlled crystallization process at 750 °C for 5-100 h. The formation of YAG crystal phase, size and morphology with progress of heat-treatment was examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transformed infrared reflectance spectroscopy (FT-IRRS). The crystallite sizes obtained from XRD are found to increase with heat-treatment time and vary in the range 25-40 nm. The measured photoluminescence spectra have exhibited emission transitions of 4F 3/2 → 4I J ( J = 9/2, 11/2 and 13/2) from Nd 3+ ions upon excitation at 829 nm. It is observed that the photoluminescence intensity and excited state lifetime of Nd 3+ ions decrease with increase in heat-treatment time. The present study indicates that the incorporation of Nd 3+ ions into YAG crystal lattice enhance the fluorescence performance of the glass-ceramic nanocomposites.
Li, G Z; Liu, F H; Chu, Z S; Wu, D M; Yang, L B; Li, J L; Wang, M N; Wang, Z L
2016-04-01
SiO2@Y2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core-shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eul+ shows a strong PL emission (dominated by 5D0-7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
NASA Astrophysics Data System (ADS)
Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.
2017-05-01
Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.
A Potential Waste to be Selected as Media for Metal and Nutrient Removal
NASA Astrophysics Data System (ADS)
Zayadi, N.; Othman, N.; Hamdan, R.
2016-07-01
This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.
In-vitro antibacterial study of zinc oxide nanostructures on Streptococcus sobrinus
NASA Astrophysics Data System (ADS)
Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Sirelkhatim, Amna; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Rahman, Rosliza Abd
2014-10-01
Zinc oxide nanostructures were prepared using a pilot plant of zinc oxide boiling furnace. Generally, it produced two types of nanostructures different in morphology; one is rod-like shaped (ZnO-1) and a plate-like shape (ZnO-2). The properties of ZnO were studied by structural, optical and morphological using XRD, PL and FESEM respectively. The XRD patterns confirmed the wurtzite structures of ZnO with the calculated crystallite size of 41 nm (ZnO-1) and 42 nm (ZnO-2) using Scherrer formula. The NBE peaks were determined by photoluminescence spectra which reveal peak at 3.25 eV and 3.23 eV for ZnO-1 and ZnO-2 respectively. Prior to that, the morphologies for both ZnO-1 and ZnO-2 were demonstrated from FESEM micrographs. Subsequently the antibacterial study was conducted using in-vitro broth dilution technique towards a gram positive bacterium Streptococcus sobrinus (ATCC 33478) to investigate the level of antibacterial effect of zinc oxide nanostructures as antibacterial agent. Gradual increment of ZnO concentrations from 10-20 mM affected the inhibition level after twenty four hours of incubation. In conjunction with concentration increment of ZnO, the percentage inhibition towards Streptococcus sobrinus was also increased accordingly. The highest inhibition occurred at 20 mM of ZnO-1 and ZnO-2 for 98% and 77% respectively. It showed that ZnO has good properties as antibacterial agent and relevancy with data presented by XRD, PL and FESEM were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Aniket; Rout, Lipeeka; Achary, L. Satish Kumar
2016-04-13
Semiconductor mediated photocatalysis has got enormous consideration as it has shown immense potential in addressing the overall energy and environmental issues. To overcome the earlier drawbacks concerning quick charge recombination and limited visible-light absorption of semiconductor photocatalysts, numerous methods have been produced in the past couple of decades and the most broadly utilized one is to develop the photocatalytic heterojunctions. In our work, a series of SnO{sub 2}-CuO nanocomposites of different compositions were synthesized by a combustion method and have been investigated in detail by various characterization techniques, such as wide angle X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopymore » (TEM), and field emission scanning electron microscopy (FE-SEM). The results revealed that the crystal structure and optical properties of the nanocomposites were almost same for all the compositions. FE-SEM images showed that the shape of SnO{sub 2}-CuO was spherical in nature and the 1: 1 Sn/Cu sample had a well-proportioned morphology. The malachite green dye was used for the photocatalytic studies in a photoreactor and monitored with a UV-visible spectrometer for different composition ratio of metal (Sn: Cu) such as 1:1, 1:2, 2:1, 1:0.5 and 0.5:1. The 1:1 ratio nanocomposite showed excellent photocatalytic degradation of 96 % compared to pure SnO{sub 2} and CuO. The mechanism of degradation and charge separation ability of the nanocomposite are also explored using photocurrent measurement study.« less
Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb
2010-01-01
Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.
AlOmar, Mohamed Khalid; Alsaadi, Mohammed Abdulhakim; Hayyan, Maan; Akib, Shatirah; Ibrahim, Muhammad; Hashim, Mohd Ali
2017-01-01
Recently, deep eutectic solvents (DESs) have shown their new and interesting ability for chemistry through their involvement in variety of applications. This study introduces carbon nanotubes (CNTs) functionalized with DES as a novel adsorbent for Hg 2+ from water. Allyl triphenyl phosphonium bromide (ATPB) was combined with glycerol as the hydrogen bond donor (HBD) to form DES, which can act as a novel CNTs functionalization agent. The novel adsorbent was characterized using Raman, FTIR, XRD, FESEM, EDX, BET surface area, TGA, TEM and Zeta potential. Response surface methodology was used to optimize the removal conditions for Hg 2+ . The optimum removal conditions were found to be pH 5.5, contact time 28 min, and an adsorbent dosage of 5 mg. Freundlich isotherm model described the adsorption isotherm of the novel adsorbent, and the maximum adsorption capacity obtained from the experimental data was 186.97 mg g -1 . Pseudo-second order kinetics describes the adsorption rate order. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hajibeygi, Mohsen; Shabanian, Meisam; Omidi-Ghallemohamadi, Mehrdad; Khonakdar, Hossein Ali
2017-09-01
New self-colored aromatic-polyamide (PA) nanocomposites containing azo and naphthalene chromophores were prepared with azo-dye surface-modified ZnO nanoparticles (SMZnO) using solution method in dimethylformamide. The X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results showed the uniform distribution for ZnO nanoparticles in the PA matrix. The UV-vis spectra of PA/ZnO nanocomposites (PANC) showed a blue shift as well as reduction in absorbance intensities and the photoluminescence studies revealed that the increasing intensities of the violet emission in SMZnO loading. From thermo gravimetric analysis (TGA), the temperature at 10% mass loss (T10) increased from 291.8 °C to 387.6 °C for PANC containing 8 mass% of SMZnO, as well as the char yield enhanced significantly, which was about 23.5% higher than the neat PA. The peak heat release rate resulted from microscale combustion calorimeter (MCC), by 8 mass% loading of SMZnO, decreased about 56.9% lower than the neat PA.
Molla, Rostam Ali; Iqubal, Md Asif; Ghosh, Kajari; Kamaluddin; Islam, Sk Manirul
2015-04-14
A new copper-grafted mesoporous poly-melamine-formaldehyde (Cu-mPMF) has been synthesized from melamine and paraformaldehyde in DMSO medium, followed by grafting of Cu(ii) at its surface. Cu-mPMF has been characterized by elemental analysis, powder XRD, HR TEM, FE-SEM, N2 adsorption study, FT-IR, UV-vis DRS, TGA-DTA, EPR spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The Cu-grafted mesoporous material showed very good catalytic activity in methyl esterification of benzylic alcohols and amidation of nitriles. Moreover, the catalyst is easily recoverable and can be reused seven times without appreciable loss of catalytic activity in the above reactions. The highly dispersed and strongly bound Cu(ii) sites in the Cu-grafted mesoporous polymer could be responsible for the observed high activities of the Cu-mPMF catalyst. Due to strong binding with the functional groups of the polymer, no evidence of leached copper from the catalyst during the course of reaction emerged, suggesting true heterogeneity in the catalytic process.
NASA Astrophysics Data System (ADS)
Kaur, Simranjeet; Kaur, Harpreet
2018-05-01
The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.
NASA Astrophysics Data System (ADS)
Roohollahi, Hossein; Halladj, Rouein; Askari, Sima; Yaripour, Fereydoon
2018-06-01
SAPO-34/AlMCM-41, as a new hierarchical nanocomposite was successfully synthesized via hydrothermal and dry-gel conversion. In an experimental and statistical study, effect of five input parameters including synthesis period, drying temperature, NaOH/Si, water/dried-gel and SAPO% were investigated on range-order degree of mesochannels and the relative crystallinity. X-ray diffraction (XRD) patterns were recorded to characterize the ordered AlMCM-41 and crystalline SAPO-34 structures. Nitrogen adsorption-desorption technique, scanning electron microscopy (SEM), field-emission SEM (FESEM) equipped with an energy-dispersive X-ray spectroscopy (EDS-Map) and transmission electron microscopy (TEM) were used to study the textural properties, morphology and surface elemental composition. Two reduced polynomials were fitted to the responses with good precision. Further, based on analysis of variances, SAPO% and time duration of dry-gel conversion were observed as the most effective parameters on the composite structure. The hierarchical porosity, narrow pore size distribution, high external surface area and large specific pore volume were of interesting characteristics for this novel nanocomposite.
NASA Astrophysics Data System (ADS)
Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying
2018-06-01
AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.
NASA Astrophysics Data System (ADS)
Yao, Wei; Zhou, Hui; Lu, Yun
2013-11-01
Novel MnO2@polypyrrole (PPy) coaxial nanotubes have been prepared via a simple and green approach without any surfactant and additional oxidant. Under the acidic condition, MnO2 nanotubes act as both template and oxidant to initiate the polymerization of pyrrole monomers on its fresh-activated surface. Fourier transform infrared spectra (FT-IR), X-ray diffraction patterns (XRD), thermo-gravimetric analysis data (TG) and X-ray photoelectron spectra (XPS) suggest the formation of composite structure of MnO2@PPy. Also, FESEM and TEM images intuitively confirm that the PPy shell is coated uniformly on the surface of MnO2 nanotubes. Adjusting the concentrations of sulfuric acid or adding oxidant can modulate the morphology of the products accordingly. Due to the synergic effect between MnO2 core and PPy shell, the MnO2@PPy coaxial nanotubes possess better rate capability, larger specific capacitance of 380 F g-1, doubling the specific capacitance of MnO2 nanotubes, and good capacitance retention of 90% for its initial capacitance after 1000 cycles.
Song, Yanhua; Li, Yi; Zhao, Tianqi; Wang, Yuexin; Cui, Tingting; Sheng, Ye; Zheng, Keyan; Zhou, Xiuqing; You, Hongpeng; Zou, Haifeng
2017-02-01
BaLuF 5 :Ce,Tb,Eu(Sm) submicrospheres were synthesized via an ILs/ethylene glycol(EG) two-phase system. The crystalline phase, size, morphology, and luminescence properties were characterized using powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra. The results show that 1-methyl-3-octylimidazolium hexafluorophosphate ([Omim]PF 6 ) was used as fluoride source and capping agent to tune morphology and size of the crystals. The formation mechanism has been supposed. Under the excitation of ultraviolet, the BaLuF 5 :5%Ce 3+ ,5%Tb 3+ , BaLuF 5 :Eu 3+ , and BaLuF 5 :5%Ce 3+ ,5%Sm 3+ exhibit green and red emission, which was derived from Tb 3+ , Eu 3+ , and Sm 3+ emission. When codoping Ce 3+ , Tb 3+ , Sm 3+ or Eu 3+ together, multi-color emission can be realized. Furthermore, this synthetic route may have potential applications for fabricating other lanthanide fluorides. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Chao; Gu, Haiteng; Dong, Li
2016-01-01
We introduce a facile method to construct new ternary hierarchical nanocomposites by combining MnO2 coated one dimensional (1D) conducting polyaniline (PANI) nanowires with 2D graphene sheets (GNs). The hierarchical nanocomposite structures of PANI@MnO2/GNs (PMGNs) are further proved by X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the electrodes made of the hierarchical structured PMGNs materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the nanostructured PMGNs exhibit an improved reversible capacitance of 695 F g-1 after 1000 cycles at a high current density of 4 A g-1. The ternary composites possess higher electrochemical capacitance than each individual component as supercapacitor electrode materials. Such intriguing electrochemical performance is mainly attributed to the synergistic effects of MnO2, PANI and graphene. The hierarchical ternary nanocomposites show excellent electrochemical properties for energy storage applications, which evidence their potential application as supercapacitors.
NASA Astrophysics Data System (ADS)
Hosseini, Farnaz; Safaei, Elham; Mohebbi, Sajjad
2017-07-01
This study has focused on catalytic and photocatalytic oxidation of aromatic alcohols using WO3 nanorod and a series of Pt/WO3 nanocomposite Pt nanoparticles was loaded on WO3 nanorod with several mass ratios 0.1, 0.2, and 0.3 via a photoreduction process (PRP) and characterized by TEM, FE-SEM imaging, EDAX, XRD, DRS, ICP, and XPS. WO3 nanorods were obtained monodispersed with average 40-nm diameter and square cross section without significant size change by the loading of platinum nanoparticles on it. Progress of oxidation reaction was monitored by GC and the yield of aerobic photocatalytic oxidation of alcohols reached up to 98% for Pt/WO3 and 69% for WO3 while, no oxidation was detected in the absence of light. The highest photocatalytic performance was obtained for mass ratio 0.2 with the selectivity >99%. So, this nanocomposite has potentials to be used as high-performance heterogeneous catalyst and photocatalyst under visible light irradiation with advantages of high activity, high selectivity, and reusability.
NASA Astrophysics Data System (ADS)
Abdullah, N.; Kamarudin, S. K.; Shyuan, L. K.; Karim, N. A.
2017-12-01
Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1 PtRu, respectively, compared with the other samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn; Department of Chemistry, University of Science and Technology of China, Heifei, Anhui 230026; Du, Jin
Microspheres assembled from carbon nanotubes (MCNTs), with the diameters ranging from 5.5 to 7.5 {mu}m, were synthesized by means of pyrolysis of polypropylene and maleated polypropylene in an autoclave. The characterization of structure and morphology was carried out by X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), (high resolution) transmission electron microscope [(HR)TEM)], selected-area electron diffraction (SAED) and Raman spectrum. As a typical morphology, the possible growth process of MCNTs was also investigated and discussed. The results of nitrogen adsorption-desorption indicate that the Brunauer-Emett-Teller (BET) surface area (140.6 m{sup 2}/g) of the MCNTs obtained at 600 {sup o}C is aboutmore » twice as that (74.5 m{sup 2}/g) of carbon nanotubes obtained at 700 {sup o}C. The results of catalytic experiment show that MCNTs based catalyst has higher catalytic activity than the carbon nanotubes based catalyst for the preparation of methanol and dimethoxy-ethane by oxidation of dimethyl ether.« less
NASA Astrophysics Data System (ADS)
Allafchian, Ali R.; Jalali, S. A. H.; Amiri, R.; Shahabadi, Sh.
2016-11-01
In this study, the NiFe2O4 was embedded in (3-mercaptopropyl) trimethoxysilane (TPS) and tetraethyl orthosilicate (TEOS) using the sol-gel method. These compounds were used as the support of Ag nanoparticles (Ag NPs). The NiFe2O4@TEOS-TPS@Ag nanocomposites were obtained with the development of bonding between the silver atoms of Ag NPs and the sulfur atoms of TPS molecule. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of the Ag nanocomposites. Also, the magnetic properties of these nanocomposites were studied by using a vibrating sample magnetometer (VSM) technique. The disk diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentrations (MBC) tests were used for the investigation of the antibacterial effect of this nanocomposite against bacterial strains. The synthesized nanocomposite presented high reusability and good antibacterial activity against gram-positive and gram-negative bacteria. Remarkably, this nanocomposite could be easily removed from the disinfected media by magnetic decantation.
Zinatloo-Ajabshir, Sahar; Mortazavi-Derazkola, Sobhan; Salavati-Niasari, Masoud
2018-04-01
Nd 2 O 3 -SiO 2 nanocomposites with enhanced photocatalytic activity have been obtained through simple and rapid sonochemical route in presence of putrescine as a new basic agent, for the first time. The influence of the mole ratio of Si:Nd, basic agent and ultrasonic power have been optimized to obtain the best Nd 2 O 3 -SiO 2 nanocomposites on shape, size and photocatalytic activity. The produced Nd 2 O 3 -SiO 2 nanocomposites have been characterized utilizing XRD, EDX, TEM, FT-IR, DRS and FESEM. Application of the as-formed Nd 2 O 3 -SiO 2 nano and bulk structures as photocatalyst with photodegradation of methyl violet contaminant under ultraviolet illumination was compared. Results demonstrated that SiO 2 has remarkable effect on catalytic performance of Nd 2 O 3 photocatalyst for decomposition. By introducing of SiO 2 to Nd 2 O 3 , decomposition efficiency of Nd 2 O 3 toward methyl violet contaminant under ultraviolet illumination was increased. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
How, Ho Kuok; Wan Zuhairi W., Y.
2015-09-01
In this study, synthesized montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI) are compared physically and chemically. The samples were prepared using chemical reduction method that includes sodium borohydride and ethanol. Due to the tendency of nZVI to aggregate, montmorillonite is used as a supporting material. TEM and FESEM images show that the M-nZVI has decreased the aggregation by dispersing the particles on the surface of montmorillonite whereas images of nZVI show chain-like particle due to aggregation. Both images also show particles synthesized are nanoparticles. With less aggregation, the surface area of the M-nZVI is greater than nZVI which is 45.46 m2/g and 10.49 m2/g respectively. XRD patterns have shown Fe0 are synthesized and small amount of iron oxides are produced. M-nZVI has the capability in reducing aggregation which might lead to the increase in reactivity of the particles thus enhancing the performance of nZVI.
NASA Astrophysics Data System (ADS)
Kiran Kumar, A. B. V.; Jayasimhadri, M.; Cha, Hyeongrae; Chen, Kuangcai; Lim, Jae-Min; Lee, Yong-Ill
2011-07-01
In the present work, the cinnamide based organic-inorganic hybrid luminescent materials were prepared by using sol-gel technique, in which both the components are covalently linked via Si-C bonds. The organic precursor N-(3-(triethoxysilyl)propyl)cinnamide (Cn-Si) was synthesized by (3-aminopropyl) triethoxysilane being reacted with cinnamoyal chloride. Finally, novel hybrid materials were prepared successfully through hydrolysis and polycondensation processes between the alkoxide groups of precursors Cn-Si and tetraethylorthosilane (TEOS) in the presence of europium nitrate. We have characterized thoroughly the prepared samples using FT-IR, thermal analysis (TGA/DTA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and photoluminescence (PL) spectroscopy. The results indicate that these materials exhibit the excellent thermal stability up to 350 °C. The X-ray diffraction patterns confirmed the amorphous nature of the developed materials. The rare-earth doped hybrid materials have exhibited an intense green emission at 530 nm with CIE chromaticity coordinates (0.4801, 0.4669). Whereas, the un-doped one gives some remarkable blue emission properties under UV excitation.
Photocatalytic ability of Bi6Ti3WO18 nanoparticles with a mix-layered Aurivillius structure
NASA Astrophysics Data System (ADS)
Mi, Longqing; Feng, Yongyi; Cao, Lei; Xue, Mingqiang; Qin, Chuanxiang; Huang, Yanlin; Qin, Lin; Seo, Hyo Jin
2018-01-01
Aurivillius phase layered perovskites Bi6Ti3WO18 was prepared by the sol-gel citrate-complexation synthesis. The sample developed into the plate-like nanoparticles with the exposed (001) facets. The phase formation and structure have been verified via X-ray polycrystalline powder diffraction (XRD) Rietveld refinements. The nanoparticles were investigated via the measurements such as FE-SEM, TEM, EDS, and the surface analyses. UV-Vis absorption data revealed that the Aurivillius compound has a direct band characteristic with the band energy of 2.214 eV. The band structure of Bi6Ti3WO18 nanoparticles was discussed on the base of the experiments and theoretical calculation. Bi3+-containing Aurivillius Bi6Ti3WO18 shows efficient photocatalytic degradation for rhodamine B dye (RhB) with the visible light irradiation ( λ > 420 nm). Dynamic characteristic of the light-created excitons was measured by the luminescence and decay lifetime. The multivalent properties of W and Ti ions in the Aurivillius-like lattices of Bi6Ti3WO18 photocatalyst were discussed.
Peng, Weijun; Li, Hongqiang; Song, Shaoxian
2017-02-15
CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong
2014-07-01
Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.
Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila
2015-12-01
A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90s at an accumulation potential of 0.75V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05-80 μM and a detection limit (S/N=3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Liu, Xiaodi; Liu, Guangyin; Chen, Hao; Ma, Jianmin; Zhang, Ruixue
2017-12-01
Hierarchical 1D Nb2O5 nanobelts are successfully synthesized via a facile solvothermal method and following thermal treatment. The as-formed Nb2O5 nanobelts are characterized by XRD, FESEM, TEM, and BET, and the results indicate that they possess pseudohexagonal structure and are composed of ultranarrow nanorods with an average diameter of ca. 15 nm. When used as anodic materials for lithium ion batteries, the obtained Nb2O5 nanobelts can deliver initial discharge capacities of 209.3 mAh g-1 at the current density of 0.5 C. In addition, the Nb2O5 nanobelts exhibit a reversible capacity of 95.8 mAh g-1 after 200 cycles at relatively high current density of 5 C. The good electrochemical performance of the Nb2O5 nanobelts may be ascribed to their good monodispersity, high specific surface areas, and narrow rod-like building blocks. The Nb2O5 nanobelts can be developed as promising anodes for high-rate 2 V LIBs with good safety.
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, J., E-mail: j_moradi@yahoo.com; Ghazi, M.E.; Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com
2014-07-01
Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) with different particle sizes are synthesized by a very fast, inexpensive, reproducible, and environmentally friendly method: the microwave irradiation of the corresponding mixture of nitrates. The structural and magnetic properties of the samples are investigated by the X-Ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and magnetic (DC magnetization and AC susceptibility) measurements. The XRD study coupled with the Rietveld refinement show that all samples crystallize in a rhombohedral structure with the space group of R−3C. The FT-IR spectroscopy and FE-SEM images indicate formationmore » of the perovskite structure of LSMO. The DC magnetization measurements confirm the decrease in the particle size effects on the magnetic properties, e.g. reduction in the ferromagnetic (FM) moment and increase in the surface spin disorder. Magnetic dynamics of the samples studied by AC magnetic susceptibility shows that the magnetic behavior of the nanometer-sized samples is well-described by the Vogel-Fulcher and critical slowing down laws. Strong interaction between magnetic nanoparticles of LSMO was detected by fitting the experimental data with the mentioned models. - Graphical abstract: Temperature dependence of the magnetization M(T) was measured in the zero-field-cooling (ZFC) and field-cooling (FC) modes at the applied magnetic field of 100 Oe for the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} with different size prepared via a facile microwave-assisted method. - Highlights: • Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} were synthesized by the microwave irradiation process. • The structural studies show that all samples crystallize in a rhombohedral structure with space group of R−3C. • The DC magnetic studies confirm tuning of the magnetic properties due to the particle size effects. • Magnetic dynamic studied by AC magnetic susceptibility indicate strong interaction between magnetic nanoparticles.« less
Roy, Priyanka; Das, Nandini
2017-05-01
Li containing Bikitaite zeolite has been synthesized by an ultrasound-assisted method and used as a potential material for hydrogen storage application. The Sonication energy was varied from 150W to 250W and irradiation time from 3h to 6h. The Bikitaite nanoparticles were characterized by X-ray diffraction (XRD), infrared (IR) spectral analysis, and field-emission scanning electron microscopy (FESEM) thermo-gravimetrical analysis and differential thermal analysis (TGA, DTA). XRD and IR results showed that phase pure, nano crystalline Bikitaite zeolites were started forming after 3h irradiation and 72h of aging with a sonication energy of 150W and nano crystalline Bikitaite zeolite with prominent peaks were obtained after 6h irradiation of 250W sonic energy. The Brunauer-Emmett-Teller (BET) surface area of the powder by N 2 adsorption-desorption measurements was found to be 209m 2 /g. The TEM micrograph and elemental analysis showed that desired atomic ratio of the zeolite was obtained after 6h irradiation. For comparison, sonochemical method, followed by the hydrothermal method, with same initial sol composition was studied. The effect of ultrasonic energy and irradiation time showed that with increasing sonication energy, and sonication time phase formation was almost completed. The FESEM images revealed that 50nm zeolite crystals were formed at room temperature. However, agglomerated particles having woollen ball like structure was obtained by sonochemical method followed by hydrothermal treatment at 100°C for 24h. The hydrogen adsorption capacity of Bikitaite zeolite with different Li content, has been investigated. Experimental results indicated that the hydrogen adsorption capacities were dominantly related to their surface areas as well as total pore volume of the zeolite. The hydrogen adsorption capacity of 143.2c.c/g was obtained at 77K and ambient pressure of (0.11MPa) for the Bikitaite zeolite with 100% Li, which was higher than the reported values for other zeolites. To the best of our knowledge, there is no report on the synthesis of a Bikitaite zeolite by sonochemical method for H 2 storage. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Reddy, M. Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A. M.
2015-12-01
With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes. Electronic supplementary information (ESI) available: XPS, FE-SEM, FE-TEM, TGA FT-IR, EIS, CV of and charge discharge profiles of RGO-SnO2 composites. See DOI: 10.1039/c5nr06680h
Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa
2016-02-01
Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
Luminescent properties of YVO4:Eu/SiO2 core-shell composite particles
NASA Astrophysics Data System (ADS)
Bao, Amurisana; Lai, Hua; Yang, Yuming; Liu, Zhilong; Tao, Chunyan; Yang, Hua
2010-02-01
We report an efficient process for preparing monodisperse SiO2@Y0.95Eu0.05VO4 core-shell phosphors using a simple citrate sol-gel method and without the use of surface-coupling silane agents or large stabilizers. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the resulting SiO2@Y0.95Eu0.05VO4 core-shell phosphors. The XRD results demonstrate that the Y0.95Eu0.05VO4 particles crystallization on the surface of SiO2 annealing at 800 °C is perfectly and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 500 nm and an average thickness of 50 nm), are not agglomerated, and have a smooth surface. The thickness of the YVO4:Eu3+ shells on the SiO2 cores could be easily tailored by changing the mass ratio of shell to core ( W = [YVO4]/[SiO2]) ( 50 nm for W = 30%). The Eu3+ shows a strong PL luminescence (dominated by 5D0 - 7F2 red emission at 618 nm) under the excitation of 320 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the values of W.
NASA Astrophysics Data System (ADS)
Nasseri, Simin; Omidvar Borna, Mohammad; Esrafili, Ali; Rezaei Kalantary, Roshanak; Kakavandi, Babak; Sillanpää, Mika; Asadi, Anvar
2018-02-01
A Zn2+-doped TiO2 is successfully synthesized by a facile photodeposition method and used in the catalytic photo-degradation of organophosphorus pesticide, malathion. The obtained photocatalysts are characterized in detail by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD results confirm the formation of the anatase and rutile phases for the Zn2+-doped TiO2 nanoparticles, with crystallite sizes of 12.9 nm. Zn2+-doped TiO2 that was synthesized by 3.0%wt Zn doping at 200 °C exhibited the best photocatalytic activity. 60 sets of experiments were conducted using response surface methodology (RSM) by adjusting five operating parameters, i.e. initial malathion concentration, catalyst dose, pH, reaction time at five levels and presence or absence of UV light. The analysis revealed that all considered parameters are significant in the degradation process in their linear terms. The optimum values of the variables were found to be 177.59 mg/L, 0.99 g/L, 10.99 and 81.04 min for initial malathion concentration, catalyst dose, pH and reaction time, respectively, under UV irradiation (UV ON). Under the optimized conditions, the experimental values of degradation and mineralization were 98 and 74%, respectively. Moreover, the effects of competing anions and H2O2 on photocatalyst process were also investigated.
Alijani, Hassan; Shariatinia, Zahra
2017-03-01
This research presents an efficient system for removing aqua's arsenic based on in situ zero valent iron doping onto multiwall carbon nanotube (MWCNT) through MWCNT growth onto the natural α-Fe 2 O 3 surface in chemical vapor deposition (CVD) reactor. The as-synthesized magnetic nanohybrid was characterized by XRD, VSM, FE-SEM and TEM techniques. The result of XRD analysis revealed that MWCNT has been successfully generated on the surface of zero valent iron. Moreover, the material showed good superparamagnetic characteristic to be employed as a magnetic adsorbent. The hematite, nanohybrid and its air oxidized form were used for removing aqueous arsenite and arsenate; however, non oxidized material exhibited greater efficiency for the analytes uptake. Equilibrium times were 60 and 90 min for arsenate and arsenite adsorption using nanohybrid and oxidized sorbent but the equilibrium time was 1320 min using hematite. The adsorption efficiencies of hematite and oxidized sorbent were 18, 74% and 26, 77% for arsenite and arsenate, respectively, at initial concentration of 10 mg L -1 . At this situation, the removal efficiencies were 96 and 98.5% for arsenite and arsenate adsorption using raw nanohybrid. Thermodynamic study was also performed and results indicated that arsenic adsorption onto nanohybrid and oxidized sorbent was spontaneous however hematite followed a nonspontaneous path for the arsenic removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures
Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew
2014-01-01
An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903
Facile synthesis of one dimensional ZnO nanostructures for DSSC applications
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2016-05-01
Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.
Ghosh, Tapas Kumar; Gope, Shirshendu; Mondal, Dibyendu; Bhowmik, Biplab; Mollick, Md Masud Rahaman; Maity, Dipanwita; Roy, Indranil; Sarkar, Gunjan; Sadhukhan, Sourav; Rana, Dipak; Chakraborty, Mukut; Chattopadhyay, Dipankar
2014-05-01
Graphene oxide (GO) was synthesized by Hummer's method and characterized by using Fourier transform infrared spectroscopy and Raman spectroscopy. The as synthesized GO was used to make GO/hydroxypropylmethylcellulose (HPMC) nanocomposite films by the solution mixing method using different concentrations of GO. The nanocomposite films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermo-gravimetric analysis. Mechanical properties, water absorption property and water vapor transmission rate were also measured. XRD analysis showed the formation of exfoliated HPMC/GO nanocomposites films. The FESEM results revealed high interfacial adhesion between the GO and HPMC matrix. The tensile strength and Young's modulus of the nanocomposite films containing the highest weight percentage of GO increased sharply. The thermal stability of HPMC/GO nanocomposites was slightly better than pure HPMC. The water absorption and water vapor transmission rate of HPMC film was reduced with the addition of up to 1 wt% GO. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Durairajan, A.; Thangaraju, D.; Balaji, D.; Moorthy Babu, S.
2013-02-01
NaGd(WO4)2 powders were synthesized at different pH (3.5, 4.5, 5.5, 6.5 and 7.5) values by conventional Pechini method. Sodium and gadolinium nitrate salts and ammonium paratungstate are used as starting precursors. Metal cations were chelated by citric acid and individual citrates were bound together with ethylene glycol. Synthesized gel was analyzed using differential thermal analysis (DTA), thermo gravimetric (TG) and FT-IR spectroscopy to understand the degradation of gel and formation of metal citrates. Calcined powders (250, 600, 700 and 800 °C) were characterized by powder XRD, FT-IR, Raman and FE-SEM analysis. The temperature dependent phase formation was examined by powder XRD. The morphological changes at different pH derived powders were observed with FE-SEM micrographs. Stepwise organic liberation with respect to temperature and presence of carbon content in the pre-fired powder were analyzed using FT-IR analysis. Raman spectrum reveals disordered tungstate vibrations in the NGW matrix.
Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications
NASA Astrophysics Data System (ADS)
Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia
2013-10-01
Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.
Electrical properties of Mg doped ZnO nanostructure annealed at different temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com
In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less
NASA Astrophysics Data System (ADS)
Das, M.; Nath, P.; Sarkar, D.
2016-02-01
In this article effect of etching current density (J) on the microstructural, optical and electrical properties of photoelectrochemically prepared heterostructure is reported. Prepared samples are characterized by FESEM, XRD, UV-Visible, Raman and photoluminescence (PL) spectra and current-voltage (I-V) characteristics. FESEM shows presence of mixture of randomly distributed meso- and micro-pores. Porous layer thickness determined by cross section view of SEM is proportional to J. XRD shows crystalline nature but gradually extent of crystallinity decreases with increasing J. Raman spectra show large red-shift and asymmetric broadening with respect to crystalline silicon (c-Si). UV-visible reflectance and PL show blue shift in peaks with increasing J. The I-V characteristics are analyzed by the conventional thermionic emission (TE) model and Cheung's model to estimate the barrier height (φb), ideality factor (n) and series resistance (Rs) for comparison between the two models. The latter model is found to fit better.
The indium oxide micro and nanopyramids: Morphology materializing and H2S sensing properties
NASA Astrophysics Data System (ADS)
Shariati, Mohsen
2015-07-01
Indium oxide (In2O3) pyramidal nano and microstructures were prepared by a thermal evaporation and condensation method. The preannealing step affected the nanostructures morphologies and their sensing capability. The nanosize structures have been fabricated in nucleated preorganized situation. By changing from prepared sites to undesired sites, the morphology was deteriorated. The synthesized In2O3 structures were characterized by field emission scanning electron microscopy (FESEM) and the X-ray diffraction (XRD) measurements. The FESEM images showed that nanostructures with 100-250 nm in size were fabricated. The XRD patterns indicated that most of the samples are crystalline. Then, the fabricated structures were investigated for H2S gas sensing. The nanocrystal pyramids were found to be sensitive to as low as 100 ppb of H2S gas at room temperature and microcrystal ones to 300 ppb. The nanopyramids demonstrated that they were very sensitive to gas presence and their response and recovery time were in a few seconds.
Metal copper films deposited on cenosphere particles by magnetron sputtering method
NASA Astrophysics Data System (ADS)
Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang
2007-05-01
Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.
NASA Astrophysics Data System (ADS)
Kunjiappan, Selvaraj; Chowdhury, Ranjana; Bhattacharjee, Chiranjib
2014-06-01
This article reports the environmentally benign synthesis of gold nanoparticles (GNPs) using methanol extract of Azolla microphylla as the stabilizing and reducing agent. The GNPs were characterized by UV-vis spectrophotometry and FTIR, and the morphological characteristics were analyzed by XRD, FESEM-EDX and HRTEM. The GNPs could be formed in very short time, even in less than 30 min. The nanoparticles measured by UV-spectrophotometer demonstrated a peak at 540 nm corresponding to surface plasmon resonance spectra, and the peaks showed by FTIR suggested the presence of organic biomolecules on the surface of the GNPs. XRD results confirmed the crystalline nature of the GNPs, and FESEM-EDX and HRTEM analyses had been performed in the size ranges of 17-40 nm and 1.25-17.5 nm respectively. The synthesized GNPs showed excellent antioxidant activity. This study shows the feasibility of using plant sources for the biosynthesis of GNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuling, E-mail: liusl8888@yahoo.com.cn; Li, Honglin; Yan, Lu
Graphical abstract: - Highlights: • 3D urchin-like ZnS/CdS composites were synthesized via a two-step method. • The CdS nanoparticles were assembled on the thorns of 3D ZnS urchins. • The ZnS/CdS composites show excellent photocatalytic degradation activities. • The modification of CdS on ZnS is responsible for the enhanced property. - Abstract: Urchin-like ZnS/CdS semiconductor composites were successfully synthesized by combining solvothermal route with homogeneous precipitation process. The as-obtained samples were characterized by means of XRD, EDX, TEM, HR-TEM, ED and FE-SEM techniques. The results show that the as-obtained composites were comprised of the hexagonal structure ZnS and CdS, andmore » CdS nanoparticles were assembled on the surfaces of the thorns of urchin-like ZnS. In addition, the optical properties and photocatalytic activities of the as-prepared ZnS/CdS composites toward some organic dyes (such as Methyl Orange, Pyronine B, Rhodamine B and Methylene Blue) were separately investigated. It is found that the ZnS/CdS composites exhibit excellent photocatalytic degradation activity for these dyes under UV irradiation, as compared to corresponding pure ZnS urchins and commercial anatase TiO{sub 2} (P-25). This enhanced activity may be related to the modification of CdS nanoparticles on the surfaces of thorns of ZnS urchins and a tentative mechanism for the enhanced photocatalytic degradation activities of the ZnS/CdS composite catalyst was proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahami, Abbas, E-mail: fahami@txstate.edu; Beall, Gary W., E-mail: gb11@txstate.edu; Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589
2016-01-15
Chlorine intercalated Mg–Al layered double hydroxides (Mg–Al–Cl–LDH) with a chemical formula Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} were successfully produced by the one-step mechanochemistry method and subsequent water washing followed by drying in oven for 1 h at 80 °C. The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), elemental mapping analysis, transmission electron microscopy (TEM), X-ray fluorescence (XRF), and the differential thermogravimetric analysis (DTGA). Results revealed that the structural characteristics of Mg–Al–Cl–LDH were affected strongly by milling time. At the beginning of milling (up to 1more » h), Hydrotalcite (HT) and Brucite were the dominant phases, while the progressive mechanical activation was completed as milling time increased, which resulted in the formation of nanostructured Mg–Al–Cl–LDH. Based on XRD and FTIR data, Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} with high purity was obtained at 5 h milling. The interlayer spacing of LDH is also strongly influenced by milling time so that it escalated from 7.737±0.001 to 8.005±0.002 (1–15 h) and then decreased to 7.937±0.001 for 20 h milled sample. Electron microscopic observation displayed that the final product had hexagonal platelet structure with lateral dimension of 20–100 nm. Therefore, the synthesis of Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} via mechanochemistry owing to simplicity and versatility can be a promising candidate for use in catalyst carriers, drug delivery, and gene delivery. - Graphical Abstract: TEM image of milled sample (Mg–Al–Cl–LDH). - Highlights: • Chlorine intercalated LDH was synthesized by a facile solid-state process. • Structural features of products were influenced strongly by the milling time. • XRD and FTIR spectra suggested predominant Mg–Al–Cl–LDH after 5 h milling. • Products showed hexagonal platelet structure with lateral dimension of 20–100 nm.« less
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications
NASA Astrophysics Data System (ADS)
Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang
2013-11-01
In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.
Synthesis and characterization of nano-hydroxyapatite using Sapindus Mukorossi extract
NASA Astrophysics Data System (ADS)
Subha, B.; Prasath, P. Varun; Abinaya, R.; Kavitha, R. J.; Ravichandran, K.
2015-06-01
Nano-Hydroxyapatite (HAP) powders were successfully synthesised by hydrothermal method using Sapindus Mukorossi extract as an additive. The structural and morphological analyses of thus synthesised powders were carried out using FT-IR, XRD and FESEM/EDX. The FT-IR spectra confirm the presence of phosphate and hydroxyl groups corresponding to HAP. The XRD analysis reveals the formation of HAP phase and found to reduce the crystallite size with addition of Sapindus Mukorossi extract. The morphology changes from sphere to flake shape by the influence of extract.
Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires
NASA Astrophysics Data System (ADS)
Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.
Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.
Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; da Boit, Kátia; Teixeira, Elba C; Sampaio, Carlos H; Madariaga, Juan Manuel; Silva, Luis F O
2017-02-01
Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Z.; Abubakar, D.; Bououdina, M.
2016-06-01
This paper deals with the investigation of annealing effects on the structural, morphological and optical properties of V2O5 nanorods (NRs) grown on the glass substrates by using chemical spray pyrolysis technique. The as-prepared samples were annealed at 500∘ for 40, 60 and 120 min in a quartz tube furnace. The high resolution X-ray diffraction (XRD) analysis revealed V2O5 NRs with preferred orientation along (001) plane. The crystallite size of the V2O5 NRs was increased by increasing the annealing duration. The morphological observations using field emission scanning electron microscope (FESEM) displayed NRs structures whose diameter and length were found to increase with increase of the annealing duration. The transmission electron microscopy (TEM) analysis confirmed the orthorhombic structures of the NRs. The AFM measurements indicated an increase of the average surface roughness by increasing the annealing time. The Raman spectroscopy revealed V-O-V phonon mode in the NRs annealed for 120 min. The optical bandgap was found in the range 2.6-2.58eV and observed to decrease with various duration annealed.
NASA Astrophysics Data System (ADS)
Hu, Xiaoxia; Li, Rong; Zhao, Shuyu; Xing, Yanjun
2017-02-01
A novel flower-like 3D hierarchical cobalt phosphate Co3(PO4)2·8H2O (fCoP), and a plate-like cobalt phosphate (pCoP) were successfully synthesized via a microwave-assisted method at low temperature under atmospheric pressure using hexamethylene tetramine (HMTA) or urea as a template. All CoPs were characterized using XRD, FESEM, TEM, DRS and surface photovoltage spectra (SPS). The performance of the photocatalytic degradation of Rhodamine B (RhB) via a Fenton-like process on CoPs was evaluated both in the dark and under illumination. The results showed that the morphology and composition of the CoPs affected the RhB degradation. The flower-like hierarchical fCoP favored the photo degradation of RhB. fCoP was also confirmed to have the merits of easy recycling and good stability based on successive degradation experiments. The active species trapping experiments showed that the superoxide radical (rad O2-) was the dominant active species in the Fenton-like process. The catalytic activation was confirmed to be related to both the Co(II) on the surface and the fCoP framework.
Abdullah, N; Kamarudin, S K; Shyuan, L K; Karim, N A
2017-12-06
Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO 2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr -1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg -1 and 226.75m 2 g -1 PtRu , respectively, compared with the other samples.
Ponnaiah, Sathish Kumar; Prakash, Periakaruppan; Vellaichamy, Balakumar
2018-06-01
The novel N-CeO 2 nanoparticles decorated on reduced graphene oxide (N-CeO 2 @rGO) composite has been synthesized by sonochemical method. The characterization of as prepared nanocomposite was intensely performed by UV-Vis, FT-IR, EDX, FE-SEM, HR-TEM, XRD, and TGA analysis. The synthesized nanomaterial was further investigated for its selective and sensitive sensing of paracetamol (PM) based on a N-CeO 2 @rGO modified glassy carbon electrode. A distinct and improved reversible redox peak of PM is obtained at N-CeO 2 @rGO nanocomposite compared to the electrodes modified with N-CeO 2 and rGO. It displays a very good performance with a wide linear range of 0.05-0.600 μM, a very low detection limit of 0.0098 μM (S/N = 3), a high sensitivity of 268 μA µM -1 cm -2 and short response time (<3 s). Also, the fabricated sensor shows a good sensibleness for the detection of PM in various tablet samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Construction of NiO/MnO2/CeO2 hybrid nanoflake arrays as platform for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Cui, Lihua; Cui, Jiewu; Zheng, Hongmei; Wang, Yan; Qin, Yongqiang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng
2017-09-01
Rational design and fabrication of novel electrode materials are of great importance for developing supercapacitors with remarkable capacitance and enhanced cycling stability. In this paper, we present a simple one-pot hydrothermal deposition followed by calcinations process for the in situ construction of homogeneous NiO/MnO2/CeO2 (NMC) nanoflake arrays on Ni foam substrate, which could be directly adopted as the binder-free electrode materials for high performance supercapacitors. The field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) are carried out to investigate the morphology, microstructure and composition of NMC nanoflake arrays. As-prepared hierarchical NMC nanoflake arrays exhibit the specific capacitance of 1027.8 F g-1 at a current density of 3.1 A g-1 and excellent cycling stability of 97.8% after 5000 charge/discharge cycles. This facile, cost-effective and controllable fabrication route and the robust supercapacitive activity suggest that the ordered NMC nanoflake arrays could be promising candidate electrode materials for high performance electrochemical energy storage devices.
Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli
2015-01-01
Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709
Optical properties of pure and PbSe doped TiS2 nanodiscs
NASA Astrophysics Data System (ADS)
Parvaz, M.; Islamuddin; Khan, Zishan H.
2018-06-01
Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.
NASA Astrophysics Data System (ADS)
Abrari, Masoud; Ghanaatshoar, Majid; Hosseiny Davarani, Saied Saeed; Moazami, Hamid Reza; Kazeminezhad, Iraj
2017-05-01
A facile synthetic route has been employed to prepare tin oxide nanoparticles. The route comprises anodic dissolution of metallic tin in the presence of tetramethylammonium chloride called electrooxidation. The effect of experimental parameters was investigated with special focus on solution pH. The obtained nanostructures have been characterized by XRD, EDS, TEM, FESEM, FTIR and UV-visible studies. The results show that the solution pH has a critical influence on the nanoparticles properties. The hydrophilic feature of nanoparticles decreases with pH growth, whereas their mean size increases. On the other hand, the size distribution is much uniform for the samples prepared at low pH. Having achieved the nanoparticles by electrooxidation, the dye-sensitized solar cells based on the produced SnO_2 nanoparticles were fabricated and the influence of nanoparticles on their performance was investigated. By variation in solution pH, we prepared nanoparticles with different particle sizes and photoanodes with various dye-loading abilities. The dye absorption and consequently current density of cells increased in acidic case, and therefore, power conversion efficiency grew up by 33% in acidic synthetic environment.
NASA Astrophysics Data System (ADS)
Ansari, Mohammad; Bigham, Ashkan; Hassanzadeh-Tabrizi, S. A.; Abbastabar Ahangar, H.
2017-10-01
Mixed spinel ferrite nanoparticles are being applied in biomedical applications due to their biocompatibility, antibacterial activity, particular magnetic and electronic properties with chemical and thermal stabilities. The Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles are synthesized through the thermal treatment method. Polyvinyl alcohol (PVA) is used as the capping agent to stabilize the particles and prevent their agglomeration. The synthesized nanoparticles are characterized through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM), and transmission electron microscope (TEM). The magnetic characterization is made on a vibrating sample magnetometer (VSM), which displayed super-paramagnetic behavior of the synthesized sample. Potential application of the Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a drug delivery agent is assessed in vitro by estimating their release properties. The obtained results indicate that the amount of ibuprofen (IBU) adsorbed into the nanocarrier of Cu0.3Zn0.5Mg0.2Fe2O4 is 104 mg/g and the drug release is sustained up to 72 h.
NASA Astrophysics Data System (ADS)
Li, Gang; Bai, Weiyang
2018-04-01
Hierarchical flower-like cobalt tetroxide (Co3O4) was successfully synthesized via a facile precipitation method in combination with heat treatment of the cobalt oxalate precursor. The samples were systematically characterized by thermo gravimetric analysis and derivative thermo gravimetric analysis (TGA-DTG), X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and N2 adsorption-desorption measurements. The results indicate that the as-fabricated Co3O4 exhibits uniform flower-like morphologies with diameters of 8-12 μm, which are constructed by one-dimensional nanowires. Furthermore, catalytic effect of this hierarchical porous Co3O4 on ammonium perchlorate (AP) pyrolysis was investigated using differential scanning calorimetry (DSC) techniques. It is found that the pyrolysis temperature of AP shifts 142 °C downward with a 2 wt% addition content of Co3O4. Meanwhile, the addition of Co3O4 results in a dramatic reduction of the apparent activation energy of AP pyrolysis from 216 kJ mol-1 to 152 kJ mol-1, determined by the Kissinger correlation. The results endorse this material as a potential catalyst in AP decomposition.
Effect of heavy tempering on microstructure and yield strength of 28CrMo48VTiB martensitic steel
NASA Astrophysics Data System (ADS)
Sun, Yu; Gu, Shunjie; Wang, Qian; Wang, Huibin; Wang, Qingfeng; Zhang, Fucheng
2018-02-01
The 28CrMo48VTiB martensitic steel for sulfide stress cracking (SSC) resistance oil country tubular goods (OCTG) of C110 grade was thermally processed through quenching at 890 °C and tempering at 600 °C-720 °C for 30-90 min. The microstructures of all samples were characterized using field emission scanning electron microscopy (FESEM), electron backscattering diffraction (EBSD), transmission electron microscopy (TEM) and x-ray diffractometry (XRD). Also, the tensile properties were measured. The results indicated that the yield strength (YS) decreased as both the tempering temperature and duration increased, due to the coarsening of martensitic packet/block/lath structures, the reduction of dislocation density, as well as the increase of both the volume fraction and average diameter of the precipitates. The martensitic lath width was the key microstructural parameter controlling the YS of this heavily-tempered martensitic steel, whereas the corresponding relationship was in accordance with the Langford-Cohen model. Furthermore, the martensitic structure boundary and the solid solution strengthening were the two most significant factors dominating the YS, in comparison with the dislocation and precipitation strengthening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Mingxuan, E-mail: mingxuansun@sues.edu.cn; Li, Weibin; Sun, Shanfu
2015-01-15
Chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO{sub 2} (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N{sub 2} adsorption, and UV–vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO{sub 2} nanorodmore » hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO{sub 2} nanorods. This work demonstrated that the synthesis of TiO{sub 2} nanorods and simultaneous conversion of GO to graphene “without using reducing agents” had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic performance.« less
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook
2015-01-01
In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.
NASA Astrophysics Data System (ADS)
Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan
2018-03-01
Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of Fe3O4 NPs. In this study, Fe3O4 NPs were in situ anchored onto MWCNTs by a moderate co-precipitation method and the as-prepared Fe3O4/MWCNTs nanocomposites were employed as the highly efficient Fenton-like catalysts. The analyses of XRD, FTIR, Raman, FESEM, TEM and HRTEM results indicated the formation of Fe3O4 crystals in Fe3O4/MWCNTs nanocomposites prepared at different conditions and the interaction between Fe3O4 NPs and MWCNTs. Over a wide pH range, the surface of modified MWCNTs possessed negative charges. Based on these results, the possible combination mechanism between Fe3O4 NPs and MWCNTs was discussed and proposed. Moreover, the effects of preparation and catalytic conditions on the Fenton-like catalytic efficiency were investigated in order to gain further insight into the heterogeneous Fenton-like reaction catalyzed by Fe3O4/MWCNTs nanocomposites.
Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.
Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin
2010-05-01
Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.
Wang, H; Yu, M; Lin, C K; Lin, J
2006-08-01
Spherical SiO(2) particles have been coated with YVO(4):Dy(3+)/Sm(3+) phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO(2)@YVO(4):Dy(3+)/Sm(3+) particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO(2)@YVO(4):Dy(3+)/Sm(3+) core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy(3+) for SiO(2)@YVO(4):Dy(3+) and from Sm(3+) for SiO(2)@YVO(4):Sm(3+) due to an efficient energy transfer from YVO(4) host to them. The PL intensity of Dy(3+) and Sm(3+) increases with raising the annealing temperature and the number of coating cycles.
NASA Astrophysics Data System (ADS)
Abu-Zied, Bahaa M.; Bawaked, Salem M.; Kosa, Samia A.; Ali, Tarek T.; Schwieger, Wilhelm; Aqlan, Faisal M.
2017-10-01
Recently, nickel oxide, NiO, promoted with various dopants showed an interesting activity behavior in N2O direct decomposition. In this paper, the activity of a series of rare earth (Nd, Pr, Tb and Y) doped NiO catalysts was investigated for this reaction. These catalysts have been prepared by the calcination of their corresponding oxalate mixtures, which have been synthesized via the microwave-assisted precipitation route using oxalic acid as precipitant. Characterization of the obtained catalysts was carried out by using various physico-chemical techniques including TGA, FT-IR, XRD, FE-SEM, TEM, TPR, XPS and electrical conductivity. The results obtained revealed the nanocrystalline nature of the prepared catalysts. Moreover, the presence of the various dopants has led to a noticeable decrease of the NiO crystallites size, mesoporosity development and an increase of its surface area and pore volume. There is a substantial activity increase upon doping NiO with the various rare earth oxides. Such activity increase is associated with the structural modifications as well as the electrical conductivity increase of these catalysts.
A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.
Mukai, Masaru; Minamikawa, Hiroyuki; Aoyagi, Masaru; Asakawa, Masumi; Shimizu, Toshimi; Kogiso, Masaki
2013-04-01
This work presents a novel bola-type peptide lipid which can gelate water, organic solvents, and water/organic-solvent mixtures. In its molecular structure, an amphiphilic dipeptide aspartame (L-α-aspartyl-L-phenylalanine methyl ester) is connected at both ends of an alkylene linker. The different morphologies in the hydrogel (helical nanotapes) and the organogel (tape-like nanostructures) were visualized by energy-filtering transmission electron microscopy (EF-TEM) and energy-filtering scanning electron microscopy (FE-SEM), and the molecular arrangement was examined using X-ray diffraction (XRD), infrared (IR) spectroscopy, and circular dichroism (CD) spectroscopy. Possessing a hydrophilic aspartic acid group and a (relatively) hydrophobic phenylalanine methyl ester group, the dipeptide head group can turn about in response to solvent polarity. As a consequence, the solvent condition changed the molecular packing of the gelator and affected the overall supramolecular structure of the gel. It is noted that the peptide lipid gelated mixed solvents of water and organic solvents such as dichloromethane, liquid-paraffin, olive-oil, silicone-oils, and so on. The present hybrid gel can simultaneously hold hydrophilic and hydrophobic functional materials. Copyright © 2013 Elsevier Inc. All rights reserved.
Vyas, Gaurav; Kumar, Anshu; Bhatt, Madhuri; Bhatt, Shreya; Paul, Parimal
2018-06-01
A simple new route for synthesis of fluorescent SnO2 and its application as an efficient sensing material for Fe3+ in aqueous media is reported. The fluorescent SnO2 nanoparticles were obtained by oxidation of SnCl2, which when used as reducing agent for the reduction of organic nitro compounds to corresponding amino compounds in ethanol. The SnO2 nanoparticles have been characterized on the basis of powder-XRD, IR, UV-Vis, TEM, FESEM and EDX analysis and found that this material is highly fluorescent in aqueous media. Detail study revealed that this material functions as a selective probe for Fe3+ out of a large number of metal ions used. The oxygen vacancies (defects) generated on the surface of the SnO2 during synthesis, are the source of emission due to recombination of electrons with the photo-excited hole in the valance bond. The quenching of emission intensity in presence of Fe3+ is due to the nonradiative recombination of electrons and holes at the surface. This material is used for estimation of Fe3+ in real samples such as drinking water, tap water and soil.
Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei
2015-12-14
In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Hui; He Xiaoyan; Cao Minhua
2009-03-05
Novel rose-like three-dimensional Sn(HPO{sub 4}){sub 2}.H{sub 2}O nanostructures self-assembled by tightly stacked nanopetals were successfully synthesized by a simple cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion system under solvothermal conditions for the first time. A series of compared experiments were carried out to investigate the factors that influence the morphology and size of the products. It was found that the molar ratio of water to CTAB and the concentration of SnCl{sub 4} aqueous solution play important roles in the formation of the rose-like nanostructures. A possible formation mechanism of rose-like nanostructures was proposed, which may be related to the crystal structure of Sn(HPO{submore » 4}){sub 2}.H{sub 2}O and the spherical micelles formed by the microemulsion. The electrochemical properties of Sn(HPO{sub 4}){sub 2}.H{sub 2}O were investigated through cyclic voltammetry (CV) measurements. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.« less
Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template.
Liu, Zhaoting; Fan, Tongxiang; Zhou, Han; Zhang, Di; Gong, Xiaolu; Guo, Qixin; Ogawa, Hiroshi
2007-03-01
A novel porous ZnFe2O4/SiO2 composite product has been generated with a template-directed assembly method from porous diatomite under different synthesis conditions, such as precursor concentrations (metallic nitrates), calcination temperature and diatomite type. The phase composition and morphology of all the materials were examined by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results indicated that an inherited hierarchical porous structure from the diatomite template can be obtained, and the synthesis conditions were found to have clear effects on the formation of the ZnFe2O4/SiO2 composite. The ideal composite of ZnFe2O4/SiO2 can be obtained through optimization of diatomite template type, precursor solution and calcination temperature. Furthermore, the adsorption abilities of two types of diatomites were analyzed in detail using FTIR spectra and nitrogen adsorption measurements etc, which proved that A-diatomite (Shengzhou-diatomite) is better than B-diatomite (Changbai-diatomite) on the aspect of adsorbing Zn and Fe ions, and of forming the ZnFe2O4.
NASA Astrophysics Data System (ADS)
Gordani, Gholam Reza; Ghasemi, Ali; saidi, Ali
2015-10-01
In this study, the electromagnetic properties of a novel nanocomposite material made of substituted Sr-hexaferrite nanoparticles and different percentage of single walled carbon nanotube have been studied. The structural, magnetic and electromagnetic properties of samples were studied as a function of volume percentage of SWCNTs by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and vector network analysis. Well suitable crystallinity of hexaferrite nanoparticles was confirmed by XRD patterns. TEM and FESEM micrographs were shown the good homogenity and high level of dispersivity of SWCNTs and Sr-hexaferrite nanoparticles in nanocomposite samples. The VSM results shown that with increasing in amount of CNTs (0-6 vol%), the saturation of magnetization decreased up to 11 emu/g for nanocomposite sample contains of 6 vol% of SWCNTs. The vector network analysis results show that the maximum value of reflection loss was -36.4 dB at the frequency of 11 GHz with an absorption bandwidth of more than 4 GHz (<-20 dB). The results indicate that, this nanocomposite material with appropriate amount of SWCNTs hold great promise for microwave device applications.
Imtiaz, Ayesha; Khaleeq-ur-rahman, Muhammad; Adnan, Rohana
2013-01-01
Calcium oxide (CaO) nanoparticles are known to exhibit unique property due to their high adsorption capacity and good catalytic activity. In this work the CaO nanocatalysts were prepared by hydrothermal method using anionic surfactant, sodium dodecyl sulphate (SDS), as a templating agent. The as-synthesized nanocatalysts were further used as substrate for the synthesis of alumina doped calcium oxide (Al2O3 ·CaO) nanocatalysts via deposition-precipitation method at the isoelectric point of CaO. The Al2O3 ·CaO nanocatalysts were characterized by FTIR, XRD, TGA, TEM, and FESEM techniques. The catalytic efficiencies of these nanocatalysts were studied for the photodegradation of 2,4,6-trinitrophenol (2,4,6-TNP), which is an industrial pollutant, spectrophotometrically. The effect of surfactant and temperature on size of nanocatalysts was also studied. The smallest particle size and highest percentage of degradation were observed at critical micelle concentration of the surfactant. The direct optical band gap of the Al2O3 ·CaO nanocatalyst was found as 3.3 eV. PMID:24311980
NASA Astrophysics Data System (ADS)
Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin
2015-02-01
Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.
From the iron boring scraps to superparamagnetic nanoparticles through an aerobic biological route.
Daneshvar, Majid; Hosseini, Mohammad Raouf
2018-06-15
A straightforward, highly efficient, and low-cost biological route was introduced for the synthesis of magnetic nanoparticles. Three urease-positive bacteria namely, Bacillus subtilis, B. pasteurii, and B. licheniformis were used to biosynthesize ammonia and biosurfactants required for the nanoparticle production. Also, the features of the applied biological approach was compared with a chemical co-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating-sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR) were applied to characterize the synthesized nanoparticles. Results indicated that the biologically fabricated powders had a single domain structure, and their mean particle size was in the range of 37 to 97 nm. The production capacity of the biological processes was double the chemical method, and the biosynthesized superparamagnetic nanoparticles had higher saturation magnetization up to 132 emu/g. Finally, the removal of Cr(VI) from a synthetic solution was investigated using the four products. The maximum elimination of chromium (over 99%) was achieved by the particles synthesized by B. pasteurii, with the adsorption capacity of 190 mg/g. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Fatemeh, E-mail: F.Ebrahimi@ma.iut.ac.ir; Bakhshi, Saeed Reza; Ashrafizadeh, Fakhreddin
Highlights: • Dip coating method was used to synthesize strontium ferrite nanowires in template. • Size of nanowires was controlled via anodization parameters. • Fe/Sr ratio was optimized in precursor. • Magnetic properties of nanowires and nanopowders were compared. - Abstract: High aspect ratio strontium hexaferrite nanowires were fabricated by dip coating in alumina template. Fe/Sr ratio was changed from 10 to 12 in precursor, and the samples were annealed at a range of temperatures 500–900 °C in order to optimize the magnetic properties of strontium ferrite in the form of nanowires. Field emission scanning electron microscope (FESEM) proved themore » formation of nanowires in the templates, while TEM images revealed a high degree of crystallinity. The ferrites were further characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDS). Magnetic properties of the specimens were studied by a SQUID at 10–300 K. The results showed that the coercivity of packed density nanowires in the template was much less than that of the nanopowders. On the other hand, the coercivity of nanowires at ambient temperature was less than low temperature coercivity.« less
NASA Astrophysics Data System (ADS)
Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng
2017-01-01
In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.
Cost-effective single-step carbon nanotube synthesis using microwave oven
NASA Astrophysics Data System (ADS)
Algadri, Natheer A.; Ibrahim, K.; Hassan, Z.; Bououdina, M.
2017-08-01
This paper reports the characterization of carbon nanotubes (CNTs) synthesised using a conventional microwave oven method, offering several advantages including fast, simple, low cost, and solvent free growth process. The procedure involves flattening of graphite/ferrocene mixture catalyst inside the microwave oven under ambient conditions for a very short duration of 5 s, which inhibits the loss factor of graphite and ferrocene. The effect of graphite/ferrocene mixture ratio for the synthesis of CNTs is investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), Raman spectroscopy and UV-NIR-Vis measurements. The samples produced using the different ratios contain nanotubes with an average diameter in the range 44-79 nm. The highest yield of CNTs is attained with graphite/ferrocene mixture ratio of 70:30. The lowest I D/I G ratio intensity as identified by Raman spectroscopy for 70:30 ratio indicates the improved crystallinity of CNTs. Due to the capillary effect of CNTs, Fe nanoparticles are found to be encapsulated inside the tubes at different positions along the tube length. The obtained results showed that the smaller the diameter of graphite and ferrocene favors the synthesis of graphene oxide upon microwave radiation.
Field emission and photoluminescence of ZnO nanocombs
NASA Astrophysics Data System (ADS)
Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H.
2013-11-01
Three kinds of new comb-shape nanostructures of ZnO have been grown on single silicon substrates without catalyst-assisted thermal evaporation of Zn and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The growth mechanism of the ZnO nanocombs can be explained on the basis of the vapor-solid (VS) processes. In nanocombs 1 and nanocombs 2, the comb teeth grow along [0001] and the comb stem grows along [], while in nanocombs 3, nanoteeth grow along [] and stem grows along [0001]. The photoluminescence and field-emission properties of ZnO nanocombs 1-3 have been investigated. The turn-on electric field of ZnO nanocombs 1-3, which is defined as the field required to producing a current density of 10 μA/cm2, is 9, 7.7 and 7.1 V/μm, respectively. The field-emission performance relies not only on the tip’s radius of curvature and field enhancement factor, but also on the factor evaluating the degree of the screening effect.
Ye, Xiaoli; Feng, Jin; Zhang, Jingxian; Yang, Xiujiang; Liao, Xiaoyan; Shi, Qingshan; Tan, Shaozao
2017-01-01
In order to control the long-term antibacterial property of quaternary ammonium salts, dodecyl dimethyl benzyl ammonium chloride (rGO-1227) and rGO-bromohexadecyl pyridine (rGO-CPB) were self-assembled on surfaces of reduced graphene oxide (rGO) via π-π interactions. The obtained rGO-1227 and rGO-CPB nanocompounds were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM).The antibacterial activities were evaluated on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both rGO-CPB and rGO-1227 reduced the cytotoxicity of the pure antimicrobial agents and presented strong antimicrobial properties. Especially, CPB could be loaded efficiently on the surface of rGO via π-π conjugate effect, which resulted in a nanocomposite presenting a long-term antibacterial capability due to the more important quantity of free π electrons compared to that of 1227. When comparing the advantages of both prepared nanocomposites, rGO-CPB displayed a better specific-targeting capability and a longer-term antibacterial property. Copyright © 2016 Elsevier B.V. All rights reserved.
Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di
2015-06-03
In this work, Au-Bi(2)Te(3) nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi(2)Te(3) nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi(2)Te(3) nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.
NASA Astrophysics Data System (ADS)
Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.
2016-08-01
In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.
Habiba, Umma; Siddique, Tawsif A; Talebian, Sepehr; Lee, Jacky Jia Li; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M
2017-12-01
In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (q m ) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment
NASA Astrophysics Data System (ADS)
Saxena, Swati; Saxena, Umesh
2016-08-01
Bimetal oxide doped polymer nanocomposite was developed using Alumina and Iron (III) Oxide as nanoparticles with Nylon 6, 6 and Poly (sodium-4-styrenesulphonate) as polymer matrix for removal of pollutants from water. The blend sample of polymers was prepared by well established solution blending technique and their nanocomposite samples were prepared through dispersion technique during the solution casting of blend sample. The fabricated composites were characterized adopting FTIR, XRD, FESEM and EDX techniques. XRD and FESEM were used for morphological characterization of nano phase, while FTIR and EDX analysis were adopted for characterization of chemical moieties in composites. In the study of pollutant removal capacities of prepared composites, 6 % nanocomposite provided the best results. It exhibited the maximum removal of all parameters. The removal of total alkalinity was 66.67 %, total hardness 42.85 %, calcium 66.67 %, magnesium 25 %, chloride 58.66 %, nitrate 34.78 %, fluoride 63.85 %, TDS 41.27 % and EC was up to the level of 41.37 % by this composite. The study is a step towards developing multifunctional, cost-effective polymer nanocomposites for water remediation applications.
Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application
NASA Astrophysics Data System (ADS)
Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.
2017-09-01
Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.
NASA Astrophysics Data System (ADS)
Sabri, Siti Noorzidah Mohd; Othman, Rohaya; Othman, Anuar
2017-12-01
Precipitated calcium carbonate (PCC) is also known as synthetic calcium carbonate. In this paper, PCC was synthesized from carbide lime, which is the by-product from acetylene gas industry. The method used to produce PCC from carbide lime waste was ionic sucrose precipitation technique. The experiments were performed by varying the stirring rate. In this technique, carbide lime was first dissolved in ionic sucrose solution and then chilled at 10 °C for 24 hours before carbon dioxide gasses was introduced into the solution. The carbonation and precipitation process was took place and PCC was formed. The PCC was further filtered to obtain the solid PCC. The sample was then further characterised by using FESEM and XRD to determine the morphology and to identify the phase that exists in the synthesized compound respectively. The XRD and FESEM results clearly shown that the PCC obtained has mixed phases of calcite and vaterite, with mixtures of spherical and irregular shape morphologies formed. The irregular shapes corresponded to vaterite formation, meanwhile spherical shapes corresponded to calcite formation.
Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Zahid, R.; Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Butt, A. R.; Hussain, S. G.; Ali, S.
2018-05-01
In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol-gel method. A variety of characterization techniques as ultra-violet visible (UV-Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV-Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10-2 emu/g was observed.
Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my
The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.
NASA Astrophysics Data System (ADS)
Shoushtari, Morteza Zargar; Emami, Akram; Ghahfarokhi, Seyed Ebrahim Mosavi
2016-12-01
In this study, we examine the bismuth doping effect on the structural, magnetic and microstructural properties of zinc-ferrite nanoparticles (ZnFe2-xBixO4 with x=0.0, 0.02, 0.04, 0.06, 0.1, 0.15) which have been prepared by a microwave combustion method. The structural, morphological and electromagnetic properties and also Curie temperature of the samples were examined by x-ray powder diffraction (XRD), field emission scanning electron microscope (FESEM), vibrating sample magnetometer (VSM), and LCR meter, respectively. In order to measure the energy band gap, the FTIR spectra of the samples were also considered. The XRD patterns of the samples revealed that all of them are ZnFe2O4 structure and no additional peak was observed in their patterns. This implied that the samples were single-phase up to bismuth solubility of 0.15 in Zinc-Ferrite. The results of XRD patterns also showed that the value lattice parameter increases with increasing the bismuth doping. The FESEM results revealed an ascending trend in the size of the nanoparticles. Also considering the VSM results characterized that an increasing the bismuth doping leads to lower the saturation magnetization. The Curie temperatures of the samples were reduced as a result of increasing the amount of bismuth.
Chen, Xia; Zhao, Bote; Cai, Yong; Tadé, Moses O; Shao, Zongping
2013-12-21
Flexible V-O-C composite nanofibers were fabricated from solution precursors via electrospinning and were investigated as free-standing and additive-free film electrodes for supercapacitors. Specifically, composite nanofibers (V0, V5, V10 and V20) with different vanadyl acetylacetonate (VO(acac)2) contents of 0, 5, 10 and 20 wt% with respect to polyacrylonitrile (PAN) were prepared. The composite nanofibers were comparatively studied using XRD, Raman spectroscopy, XPS, N2 adsorption-desorption, FE-SEM, TEM and S-TEM. The vanadium element was found to be well-dispersed in the carbon nanofibers, free from the formation of an aggregated crystalline phase, even in the case of V20. A specific surface area of 587.9 m(2) g(-1) was reached for V10 after calcination, which is approximately twice that of the vanadium-free carbon nanofibers (V0, 300.9 m(2) g(-1)). To perform as an electrode for supercapacitors in an aqueous electrolyte, the V10 film delivered a specific capacitance of 463 F g(-1) at 1 A g(-1). V10 was also able to retain a specific capacitance of 380 F g(-1), even at a current density of 10 A g(-1). Additionally, very stable cycling stability was achieved, maintaining an outstanding specific capacitance of 400 F g(-1) at 5 A g(-1) after charge-discharge cycling 5000 times. Thus, V-O-C composite nanofibers are highly attractive electrode materials for flexible, high-power, thin film energy storage devices and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Youcun, E-mail: chenyc@aqtc.edu.cn; Hu, Lin
2016-07-15
Co{sub 3}O{sub 4} polyhedrons with porous structure have been synthesized simply by annealing Prussian blue analogue (PBA) Co{sub 3}[Co(CN){sub 6}]{sub 2} polyhedrons at 400 °C in air. The product was characterized by a series of techniques, such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), High-resolution TEM (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) gas adsorption. Interestingly, when evaluated as an anode material for lithium-ion batteries (LIBs), the Co{sub 3}O{sub 4} porous polyhedrons manifested high reversible capacity (about 1200 mAh g{sup −1} at 50 mA g{sup −1}) and excellent cycling performance. Moreover, theymore » also exhibited a high specific capacitance of 110 Fg{sup −1} when used as an electrode in the supercapacitor. It is suggested that the special morphology and porous nanostructure lead to the promising electrochemical properties. - Graphical abstract: Novel and complicated mesoporous architectures of Co{sub 3}O{sub 4} have been fabricated by thermal decomposition of Prussian Blue Analog (PBA) Co{sub 3}[Co(CN){sub 6}]{sub 2} polyhedrons which obtained at the room temperature. When Co{sub 3}O{sub 4} product was evaluated for Li-ion batteries (LIBs), they exhibited high reversible capacity of 1000 mAh g{sup −1} with excellent cycle life because of the hollow/porous structure. Display Omitted.« less
Hosseini, Mir Ghasem; Mahmoodi, Raana
2017-08-15
The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH 4 - oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92Ag Pt -1 ) in comparison with a catalyst prepared in the presence of SDS (17766.15Ag Pt -1 ) in NaBH 4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH 4 and 2M H 2 O 2 (133.38mWcm -2 ). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, Debasis; Giri, Soumen; Das, Chapal Kumar
2013-10-01
One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability.One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability. Electronic supplementary information (ESI) available: Materials used, characterization techniques and preparation of electrode, tables containing specific capacitance, coulombic efficiency, energy density and power density values at different current densities of NiMoO4.nH2O and Gr-NiMoO4.nH2O. See DOI: 10.1039/c3nr02444j
NASA Astrophysics Data System (ADS)
Ghavidel, Elham; Sari, Amir Hossein; Dorranian, Davoud
2018-07-01
In this work, the effects of liquid environments on the characteristics and optical properties of carbon nanostructures - in particular, Graphene Oxide (GO) - prepared by pulsed laser ablation were studied experimentally. The second harmonic beam of a Q-switched Nd:YAG laser of 532 nm wavelength at 6 ns pulse width and 0.7 J/cm2 fluence was employed to irradiate the graphite target in liquid nitrogen, deionized water, and 0.01 M CTAB solution under the same initial experimental conditions. Produced nanostructures were characterized by Raman scattering spectrum, FE-SEM and TEM images, Photoluminescence, and UV-Vis-NIR spectrum. TEM and FE-SEM images show sheet-like morphology with few square micrometer area graphenes in all samples. Raman and UV-Vis-NIR analyses show that graphene is oxidized due to the presence of oxygen molecules in ablation environment. Results demonstrate that the graphene nanosheets produced in deionized water are multilayer, contains the largest sp2 domain size, the least defects and the lowest possibility of aggregation.
Evolution of the substructure of a novel 12% Cr steel under creep conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk
2016-05-15
In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less
Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.
Cianconi, L; Palopoli, P; Campanella, V; Mancini, M
2016-12-01
The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.
Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig
2012-01-01
The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721
NASA Astrophysics Data System (ADS)
Kong, Junhua; Wei, Yuefan; Zhao, Chenyang; Toh, Meng Yew; Yee, Wu Aik; Zhou, Dan; Phua, Si Lei; Dong, Yuliang; Lu, Xuehong
2014-03-01
In this work, bundles of rutile TiO2 nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO2-on-CNFs). Morphologies and structures of the TiO2-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO2 nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO2 bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO2 nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO2 nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO2-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO2-130-2 are also superior to those of other rutile TiO2-based LIB electrodes.In this work, bundles of rutile TiO2 nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO2-on-CNFs). Morphologies and structures of the TiO2-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO2 nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO2 bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO2 nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO2 nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO2-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO2-130-2 are also superior to those of other rutile TiO2-based LIB electrodes. Electronic supplementary information (ESI) available: FESEM image of carbonized electrospinning-derived carbon nanofibers. FESEM images of TiO2 nanostructures grown on carbon nanofibers using titanium(iv) isopropoxide and titanium(iv) butoxide as precursors. TGA curves of the samples from 24 h hydrothermal growth at 90 °C, 130 °C and 180 °C. The cycling capacity of pure carbon nanofibers at a current rate of 50 mA g-1 and a voltage range of 1.0-2.8 V. The cycling capacity of the samples from 24 h hydrothermal growth at 90 °C, 130 °C and 180 °C. See DOI: 10.1039/c3nr04308h
NASA Astrophysics Data System (ADS)
Kaboli, S.; Burnley, P. C.
2017-12-01
Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.
Dopant concentration dependent growth of Fe:ZnO nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com
2016-05-23
Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less
NASA Astrophysics Data System (ADS)
Verma, Akta; Sharma, S. K.
2018-05-01
In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal
2011-01-15
We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less
Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor
NASA Astrophysics Data System (ADS)
Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar
Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi
2012-09-15
Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less
NASA Astrophysics Data System (ADS)
Rahmani Afje, F.; Ehsani, M. H.
2018-04-01
Synthesize of La0.8Sr0.2MnO3 (LSMO) manganite were carried out in different particle sizes by hydrothermal method. Structural and optical properties of the prepared specimens were studied by x-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and UV–vis spectroscopy. The XRD study, coupled with the Rietveld refinement, exhibited rhombohedral structure with R-3C space group. Using the FT-IR and FESEM analyses, the perovskite structure of the samples with Nano-rod-like morphologies were inferred. Furthermore, the average sizes of 48.11, 70.99 and 111.45 nm were obtained for the ones sintered at 800, 900, and 1000 °C temperatures, respectively. The optical research showed that band gap energy is about 2.13 eV, being suitable in visible-light photocatalytic activity for water purification from dyes and toxic organic materials. The photo-degradation efficiency for decolorizing methyl orange solution (10 ppm) for various samples (100 ppm) were systematically probed and a strong relation is concluded between particle size and photocatalytic activity.
Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders
NASA Astrophysics Data System (ADS)
Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.
2018-04-01
Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2015-03-01
We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com; Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo; Department of Physics, University of Yangon, 11041 Kamayut, Yangon
Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used tomore » investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.« less
Kumar Basumatary, Ashim; Kumar Ghoshal, Aloke; Pugazhenthi, G
2016-12-01
Three dimensional ordered mesoporous MCM-48 membrane was fabricated on a circular shaped ceramic support by in-situ hydrothermal method. The synthesized MCM-48 powder and MCM-48 ceramic composite membrane were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM). The porosity and pore size of the composite membrane are reduced considerably by the deposition of MCM-48 on the support. The formation of MCM-48 is verified by the XRD analysis. Three stepwise mechanisms for surfactant removal are observed by TGA analysis. FESEM images clearly signify the deposition of MCM-48 on the ceramic support. The pure water flux of the support and MCM-48 composite membrane is found to be 3.63×10 -6 and 4.18×10 -8 m 3 /m 2 skPa, respectively. The above prepared MCM-48 ceramic composite membrane is employed for the removal of AlCl 3 from aqueous solution and the highest rejection of 81% is obtained at an applied pressure of 276kPa with salt concentration of 250ppm. Copyright © 2015 Elsevier Inc. All rights reserved.
MoTe2, A novel anode material for sodium ion battery
NASA Astrophysics Data System (ADS)
Panda, Manas Ranjan; Anish Raj, K.; Bao, Qiaoliang; Mitra, Sagar
2018-04-01
2D layered transition metal dichalcogenides are considered as a potential anode for sodium-ion batteries due to their high specific capacity, structural stability and its well-developed two-dimensional layers. 2D layered structure Molybdenum ditelluride (MoTe2) provides a superior Na-ion storage properties in sodium ion battery due to its comparative more interlayer spacing (0.699 nm). In the current study MoTe2 polycrystalline powder sample has been prepared by solid state reaction process, the structural and morphological studies have been carried out by XRD, FE-SEM and EDS etc. XRD study revealsthe well crystalline structure of the material having hexagonal structure. FE-SEM and EDS studies depict the uniformflakes like structure of the material. When it is tested as sodium-ion battery anode by applying a potential window 0.1-2.5 V, the material demonstrates a high capacity and high power performances. The as prepared MoTe2 shows an initial discharge capacity of 376 mA h g-1 and a corresponding discharge capacity of 303 mA h g-1 after the 50th cycle at a current density of 500 mA g-1.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
Sb:SnO2 thin films-synthesis and characterization
NASA Astrophysics Data System (ADS)
Bhadrapriya B., C.; Varghese, Anitta Rose; Amarendra, G.; Hussain, Shamima
2018-04-01
Transparent thin films of antimony doped SnO2 have been synthesized and characterized using optical spectroscopy, XRD, RAMAN and FESEM. The band gap of Sb doped tin oxide thin film samples were found to vary from 3.26 eV to 3.7 eV. The XRD peaks showed prominent rutile SnO2 peaks with diminished intensity due to antimony doping. A wide band in the range 550-580 cm-1 was observed in raman spectra and is a feature of nano-sized SnO2. SEM images showed flower-like structures on thin film surface, a characteristic feature of antimony.
NASA Astrophysics Data System (ADS)
Farhadi, Saeed; Siadatnasab, Firouzeh
2016-11-01
Cadmium sulfide-cobalt ferrite (CdS/CFO) nanocomposite was easily synthesized by one-step hydrothermal decomposition of cadmium diethyldithiocarbamate complex on the CoFe2O4 nanoparticles at 200 °C. Spectroscopic techniques of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and magnetic measurements were applied for characterizing the structure and morphology of the product. The results of FT-IR, XRD and EDX indicated that the CdS/CFO was highly pure. SEM and TEM results revealed that the CdS/CFO nanocomposite was formed from nearly uniform and sphere-like nanoparticles with the size of approximately 20 nm. The UV-vis absorption spectrum of the CdS/CFO nanocomposite showed the band gap of 2.21 eV, which made it suitable for sono-/photo catalytic purposes. By using the obtained CdS/CFO nanocomposite, an ultrasound-assisted advanced oxidation process (AOP) has been developed for catalytic degradation of methylene blue (MB), Rhodamine B (RhB), and methyl orange (MO)) in the presence of H2O2 as a green oxidant. CdS/CFO nanocomposite exhibited excellent sonocatalytic activity, so that, dyes were completely degraded in less than 10 min. The influences of crucial factors such as the H2O2 amount and catalyst dosage on the degradation efficiency were evaluated. The as-prepared CdS/CFO nanocomposite exhibited higher catalytic activity than pure CdS nanoparticles. Moreover, the magnetic property of CoFe2O4 made the nanocomposite recyclable.
Kiro, Anamika; Bajpai, Jaya; Bajpai, A K
2017-01-01
Bionanocomposites of sericin and polyvinyl alcohol (PVA) were prepared by solution casting method and zinc oxide nanoparticles were impregnated within the polymer blend matrix through homogenous phase reaction between zinc chloride and sodium hydroxide at high temperature following an ex-situ co-precipitation method. The prepared bionanocomposites were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and Atomic Force Microscopy techniques. The presence of characteristic groups of sericin and ZnO nanoparticles was ascertained by the FTIR spectra. XRD analysis confirmed the impregnation of ZnO nanoparticles and sericin within the PVA matrix. XRD and FESEM of the bionanocomposites provided information about their semicrystalline nature, crystallite size of the particles, and irregular rough surfaces. The TEM confirmed the size of ZnO particles to be in the nanometer range. AFM confirmed the platykurtic nature of the surface while the negative surface skewness shows the predominance of valleys over peaks suggesting for the planar nature of the surface of the bionanocomposites. UV absorption properties of bionanocomposite films were determined by UV absorption spectroscopy. UV absorption increased with increasing amount of ZnO nanoparticles in the nanocomposites. Sericin was found to absorb UV-C radiations between 200-290nm which is mainly due to aromatic amino acids like tryptophan, tyrosine and phenylalanine. The ZnO nanoparticles and sericin protein showed antimicrobial properties as evident from the inhibition zones obtained against Staphylococcus aureus and Escherichia coli. The bionanocomposite was found to be noncytotoxic which was proved by in vitro cytotoxicity test. Microhardness of bionanocomposite films increased with increase in the amount of ZnO nanoparticles in the sericin and PVA matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com
2014-12-15
Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Örnek, Ahmet, E-mail: ahmetornek@kafkas.edu.tr; Can, Mustafa; Yeşildağ, Ali
Nanostructured LiCo{sub 1−x}Mn{sub x}PO{sub 4}/C (x = 0 and 0.05) materials were successfully produced as superior quality cathodes by combined sol-gel and carbothermal reduction methods. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), cyclic voltammetry (CV) and galvanostatic measurements were applied to determine the phase purity, morphology and electrochemical qualifications. HR-TEM analysis reveals that the thickness of the surface carbon layer of 5 to 10 nm range with the uniform distribution. LiCo{sub 0·95}Mn{sub 0·05}PO{sub 4}/C particles were betweenmore » 40 and 80 nm and the same material exhibits a higher and stable reversible capacity (140 mA h g{sup −1}) with the long voltage plateau (4.76 V). Substitution of Co{sup 2+} with Mn{sup 2+} in LiCoPO{sub 4}/C has an influence on the initial discharge capacity and excellent cycling behaviour. The obtained results have attributed that production dynamics in nano-synthesis, the coating process with proper carbon source and an effective doping represent three parameters to prepare favorable cathode materials. - Highlights: • Structural, morphological and electrochemical effects of Mn doped LiCo{sub 1−x}Mn{sub x}PO{sub 4}–C electrodes are investigated. • Cheap, effective and simple sol-gel assisted carbothermal reduction approach is used. • After 60th cycle, capacity retention is almost 92% for LiCo{sub 0·95}Mn{sub 0.05}PO{sub 4}–C electrode. • Mn-doped sample exhibits distinctive oxidation (4.76 V and 4.12 V) peaks.« less
Facile synthesis of GO@SnO2/TiO2 nanofibers and their behavior in photovoltaics.
Mohamed, Ibrahim M A; Dao, Van-Duong; Yasin, Ahmed S; Choi, Ho-Suk; Khalil, KhalilAbdelrazek; Barakat, Nasser A M
2017-03-15
Chemical doping is a widely-used strategy to improve the performance of TiO 2 for the dye-sensitized solar cells (DSCs). However, the effect of two efficient dopants has been rarely investigated. We present the synthesis of GO@SnO 2 /TiO 2 nanofibers (NFs) by a facile method using electrospinning and hydrothermal processes. The synthesized NFs are described in terms of morphology, crystallinity and chemistry through FESEM, TEM, HR-TEM, XRD, EDX, XPS, FT-IR and Raman spectra. As the results, the axial ratio and the average diameter of NFs decreased after the hydrothermal treatment and calcination process, respectively. The prepared Titania-based nanofibers have 81.82% anatase and 18.18% rutile-structure. The developed materials are applied as working electrodes of DSCs. The photovoltaic performances showed that the efficiency of the device employed GO@SnO 2 /TiO 2 photoanode gave 5.41%, which was higher than those of cells fabricated with SnO 2 /TiO 2 NFs (3.41%) and GO@TiO 2 NFs (4.52%) photoanodes. The photovoltaic parameters such as J sc , V oc , FF and R ct are calculated and found to be 11.19mAcm -2 , 0.72V, 0.67 and 9.26Ω, respectively. The high photovoltaic response of DSC based of GO@SnO 2 /TiO 2 NFs may be attributed to the large surface area of the NFs, and the low electron recombination. Furthermore, the start-stop switches of the cell devices with the developed photoanode affirmed the stability and photovoltaic performance of the cell. Copyright © 2016 Elsevier Inc. All rights reserved.
Koli, Sunil H; Mohite, Bhavana V; Suryawanshi, Rahul K; Borase, Hemant P; Patil, Satish V
2018-05-01
The development of a safe and eco-friendly method for metal nanoparticle synthesis has an increasing demand, due to emerging environmental and biological harms of hazardous chemicals used in existing nanosynthesis methods. The present investigation reports a rapid one-step, eco-friendly and green approach for the formation of nanosized silver particles (AgNPs) using extracellular non-toxic-colored fungal metabolites (Monascus pigments-MPs). The formation of nanosized silver particles utilizing Monascus pigments was confirmed after exposure of reaction mixture to sunlight, by visually color change and further established by spectrophotometric analysis. The size, shape, and topography of synthesized MPs-AgNPs were well-defined using different microscopic and spectroscopic techniques, i.e., FE-SEM, HR-TEM, and DLS. The average size of MPs-AgNPs was found to be 10-40 nm with a spherical shape which was highly stable and dispersed in the solution. HR-TEM and XRD confirmed crystalline nature of MPs-AgNPs. The biocidal potential of MPs-AgNPs was evaluated against three bacterial pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus and it was observed that the MPs-AgNPs significantly inhibited the growth of all three bacterial pathogens. The anti-biofilm activity of MPs-AgNPs was recorded against antibiotic-resistant P. aeruginosa. Besides, the colorimetric metal sensing using MPs-AgNPs was studied. Among the metals tested, the selective Hg 2+ -sensing potential at micromolar concentration was observed. In conclusion, this is the rapid one-step (within 12-15 min), environment-friendly method for synthesis of AgNPs and synthesized MPs-AgNPs could be used as a potential antibacterial agent against antibiotic-resistant bacterial pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad
Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present inmore » the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO{sub 4}{sup 2−}) into hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6−x}(SO{sub 4}){sub x}(OH){sub 2−x}) lattice via ion exchange process with phosphate group. Concentration of SO{sub 4}{sup 2−} ions was varied between X = 0.05–0.5, using (Ca (NO{sub 3}){sub 2}·4H{sub 2}O), ((NH{sub 4}){sub 2}HPO{sub 4}) and (Na{sub 2}SO{sub 4}) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO{sub 4}{sup 2−} ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure.« less
NASA Astrophysics Data System (ADS)
Hosseini, M. G.; Mahmoodi, R.
2017-12-01
In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.
A selective ultrahigh responding high temperature ethanol sensor using TiO2 nanoparticles.
Arafat, M M; Haseeb, A S M A; Akbar, Sheikh A
2014-07-28
In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjith, K. S.; Kumar, D. Ranjith; Kumar, R. T. Rajendra, E-mail: rtrkumar@buc.edu.in
2015-06-24
We demonstrated the development of coupled semiconductor in the form of hybrid heterostructures for significant advancement in catalytic functional materials. In this article, we report the preparation of vertically aligned core shell ZnO-EuS nanorod photocatalyst arrays by a simple chemical solution process followed by sulfudation process. The XRD pattern confirmed formation of the hexagonal wurtzite structure of ZnO and cubic nature of the EuS. Cross sectional FESEM images show vertical rod array structure, and the size of the nanorods ranges from 80 to 120 nm. UV-Vis DRS spectra showed that the optical absorption of ZnO was significantly enhanced to the visiblemore » region by modification with EuS surfaces. TEM study confirmed that the surface of ZnO was drastically improved by the modification with EuS nanoparticle. The catalytic activity of EuS−ZnO core shell nanorod arrays were evaluated by the photodegradation of Methylene Blue (MB) dye under visible irradiation. The results revealed that the photocatalytic activity of EuS−ZnO was much higher than that of ZnO under natural sunlight. EuS−ZnO was found to be stable and reusable without appreciable loss of catalytic activity up to four consecutive cycles.« less
Kumar, Anil; Singhal, Aditi
2009-07-22
Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.
Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors
El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.
2017-01-01
A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV−vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization. PMID:28216668
NASA Astrophysics Data System (ADS)
Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa
2017-08-01
SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.
Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite
NASA Astrophysics Data System (ADS)
Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein
2016-04-01
We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.
NASA Astrophysics Data System (ADS)
Yuan, Lin; Hu, Ming; Wei, Yulong; Ma, Wenfeng
2016-12-01
The thorn-sphere-like tungsten oxide (WO3) made up by 1D nanorods has been successfully synthesized through hydrothermal method on the Au-modified porous silicon (PS) substrates with seed-layer induction. By using XRD, EDS, FESEM and TEM techniques, we tested and verified that the crystal structure and morphology evolution of WO3 hierarchical nanostructure on the Au-modified PS strongly depend on the Au-sputtering time and hydrothermal reaction time. In addition, by comparing the NO2-sensing properties of the prepared products, we found that the 10 s-Au decorated PS/WO3-3 h (sputtering Au for 10 s and hydrothermal reaction for 3 h) composites sensor behaving as a typical p-type semiconductor and operating at room temperature (RT) exhibits high sensitivity and response characteristics even to ppb-level NO2, which makes this kind of sensor a competitive candidate for NO2-sensing applications. Moreover, the enhanced response may not only due to the high specific surface area but the Au nanoparticles acting as promoters for the spillover effect and forming metal-semiconductor heterojunctions with the PS and WO3. The transmission of electrons and holes in the heterogeneous interface generated among PS, WO3 and Au is proposed to illustrate the p-type response mechanism.
A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites.
Quoc Dung, Nguyen; Patil, Dewyani; Jung, Hyuck; Kim, Dojin
2013-04-15
Nanocomposites of CuO and single-wall carbon nanotubes (SWCNTs) were synthesized using an arc-discharging graphite rod that contained copper wires. Simultaneous arc discharges produced a CuO-SWCNT composite network. The crystalline structure and morphology of the CuO-SWCNT composite films were investigated using XRD, Raman spectroscopy, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammogram and amperometric measurements in a 0.1 M NaOH solution. The CuO content in the CuO-SWCNT nanocomposites was optimized for nonenzymatic glucose detection. The glucose sensing properties of the optimized CuO-SWCNT electrode showed good stability, selectivity, and linear glucose detection that ranged from 0.05 to 1800 μM with a higher sensitivity of 1610 μA cm⁻² mM⁻¹, a quick response time of 1-2 s, and the lowest limit of detection at 50 nM. The sensing performance was better than the pure CuO and SWCNT sensors, and the synergetic effect of the composite sensor was attributed to the high conductivity network of highly porous nanowires. The sensor also showed a good response in a human serum sample, which proves its high potential towards a commercial nonenzymatic glucose sensor. Copyright © 2012 Elsevier B.V. All rights reserved.
Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic
Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D
2011-01-01
Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473
Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys
NASA Astrophysics Data System (ADS)
Das, Sujit; Robi, P. S.
2018-04-01
Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.
Zinatloo-Ajabshir, Sahar; Mortazavi-Derazkola, Sobhan; Salavati-Niasari, Masoud
2017-11-01
In this work, highly photocatalytically active Ho 2 O 3 -SiO 2 nanocomposites have been designed and applied for decomposition of methylene blue pollutant. Ho 2 O 3 -SiO 2 nanocomposites have been produced by new, quick and facile sonochemical process with the aid of tetramethylethylenediamine as a novel basic agent for the first time. The effect of the kind of basic agent, ultrasonic time and dosage of Ho source on the grain size, photocatalytic behavior and shape of the Ho 2 O 3 -SiO 2 nanocomposites have been evaluated for optimization the production condition. FESEM, EDX, FT-IR, DRS, XRD and TEM have been applied to characterize the as-produced Ho 2 O 3 -SiO 2 nanocomposites. Use of the as-produced Ho 2 O 3 -SiO 2 nanocomposites as photocatalyst via destruction of methylene blue pollutant under UV illumination has been compared. It was observed that SiO 2 has notable impact on catalytic activity of holmium oxide photocatalyst for destruction. Introducing of SiO 2 to holmium oxide can enhance destruction efficiency of holmium oxide to methylene blue pollutant under ultraviolet light. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tarasi, Roghayeh; Khoobi, Mehdi; Niknejad, Hassan; Ramazani, Ali; Ma'mani, Leila; Bahadorikhalili, Saeed; Shafiee, Abbas
2016-11-01
Thiol-lactam initiated radical polymerization (TLIRP) was successfully employed to prepare poly-N-5-acrylamidoisophthalicacid grafted onto Fe3O4 magnetic nanoparticles (MNPs@PAIP). β-Cyclodextrin (CD) was then conjugated to the carboxylic groups of the prepared MNPs via carbodiimide activation. Subsequently, tumor-targeting folic acid (FA) was attached to the hydroxyl groups of CD on the surface of the latter MNPs to increase the site-specific intracellular delivery. The prepared MNPs were fully characterized by FTIR, VSM, TGA, XRD, FE-SEM and TEM. Docetaxel (DTX) as hydrophobic anticancer drug was loaded via host-guest inclusion complexation with CD and the release profile of the system was studied at different pH. The effect of MNPs on the cell viability was evaluated for the human embryonic kidney normal cell line (HEK293) as well as HeLa and MDA-MB-231 cancerous cell lines and the results did not show any apparent cytotoxic effect. In comparison, DTX loaded MNPs reduced the growth of HeLa and MDA-MB-231 cells more than free DTX. Intracellular uptake ability of DTX loaded MNPs was also studied using fluorescent microscopy and showed cellular uptake about 90% after 4 h treatment.
Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo
2014-09-14
Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.
Photoluminescent properties of spider silk coated with Eu-doped nanoceria
NASA Astrophysics Data System (ADS)
Dmitrović, Svetlana; Nikolić, Marko G.; Jelenković, Branislav; Prekajski, Marija; Rabasović, Mihailo; Zarubica, Aleksandra; Branković, Goran; Matović, Branko
2017-02-01
Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO3)3) and ammonium hydroxide (NH4OH). Depending on the relationship between Ce3+ ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.
Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl
2018-06-01
This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xiaoyu; Zhao, Yuan; Jiang, Xiaoxue; Liu, Lijun; Li, Xue; Li, Huixian; Liang, Wenyan
2018-05-15
Plant polyphenol (PP), a natural polymer from the Larix gmelinii, was selected as the surfactant to synthesize Fe 3 O 4 . The Fe 3 O 4 -PP composite was prepared by in-situ self-assembly in solvothermal synthesis, and characterized using FE-SEM, TEM, XRD, FTIR, XPS, TGA, and VSM. The harvesting efficiency of Chlorella vulgaris was investigated under different parameters, including algal organic matter, dosage, and pH. The results showed that the core-shell sphere of Fe 3 O 4 -PP (∼150 nm) was coated by ∼50 nm PP with a saturated magnetization of 40.0 emu/g. The Fe 3 O 4 -PP could be directly applied to the culture broth (1.5 g dry cell weight/L, pH = 9.03), achieving 93.0% of harvesting efficiency at 20 g/L. Cells were detached from the harvested aggregates by adjusting pH value to 9.80 and with ultrasonication, which achieved 95.6% of recovery efficiency. The recycled Fe 3 O 4 -PP showed high stabilities in surface properties, maintaining more than 87.5% of harvesting efficiency after five recycles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com
2016-02-15
Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less
A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles
Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.
2014-01-01
In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346
NASA Astrophysics Data System (ADS)
Huang, Wenyuan; Liu, Ning; Zhang, Xiaodong; Wu, Minghong; Tang, Liang
2017-12-01
In this study, hybrid nanocomposites based on Fe-based MOF and graphitic carbon nitride (g-C3N4) were developed by a facile solvothermal method. The as-prepared materials were characterized by XRD, FESEM, TEM, XPS and PL analysis. It was showed that the introduction of a certain amount of g-C3N4 on the surface of MIL-53(Fe) would improve the separation and migration rate of photo-induced charges, consequently resulting in the boost of photocatalytic efficiency. Compared with g-C3N4 and MIL-53(Fe), the CMFe composites displayed more excellent visible light-resposive photocatalytic activity for the reduction of Cr(VI). The optimal doping content of g-C3N4 in g-C3N4/MIL-53(Fe) composite was determined to be 3.0 wt%, and it showed about 2.1 and 2.0 times as high photocatalytic efficiency for the reduction of Cr(VI) as that of pure g-C3N4 and MIL-53(Fe), respectively. Meanwhile, the composite exhibited good reusability and stability in the process of cyclic experiments. A possible photocatalytic reaction mechanism was also investigated in detail by the related electrochemical analysis.
NASA Astrophysics Data System (ADS)
Wang, Xin; Ye, Ke; Gao, Yinyi; Zhang, Hongyu; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue
2016-01-01
Nanoporous palladium supported on the carbon coated titanium carbide (C@TiC) nanowire arrays (Pd NP/C@TiC) are successfully prepared by a facile chemical vapor deposition of three-dimensional (3D) C@TiC substrate, followed by electrochemical codeposition of Pd-Ni and removal of Ni via dealloying. The structure and morphology of the obtained Pd NP/C@TiC electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) are used to examine the catalytic performances of the electrodes for H2O2 electroreduction in H2SO4 solution. The Pd NP/C@TiC electrode exhibits a largely effective specific surface area owing to its open nanoporous structure allowing the full utilization of Pd surface active sites. At the potential of 0.2 V in 2.0 mol L-1 H2O2 and 2 mol L-1 H2SO4 solutions, the reduction current density reaches 3.47 A mg-1, which is significantly higher than the catalytic activity of H2O2 electroreduction achieved previously with precious metals as catalysts.
Wen, Zhenliang; Wang, Zihao; Chen, Jingdi; Zhong, Shengnan; Hu, Yimin; Wang, Jianhua; Zhang, Qiqing
2016-06-01
The application of hydroxyapatite (HAP) in different fields depends greatly on its morphology, composition and structure. Besides, the main inorganic building blocks of human bones and teeth are also HAP. Therefore, accurate shape and aggregation control and of hydroxyapatite particles will be of great interest. Herein, oriented bundles of flowerlike HAP nanorods were successfully prepared through hydrothermal treatment without acid-base regulation, with the mono-alkyl phosphate (MAP) and sodium citrate as surfactant and chelating agent, respectively. The prepared samples were characterized by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and zeta potential, the pH value and conductivity value of suspension were characterized by pH meter and conductivity measurement. The results showed that the MAP and citrate play an important role in assembly of HAP nanorods without acid-base regulation. Citrate calcium complex could decompose slowly and release citrate ions at hydrothermal conditions. Besides, the further decomposition of citrate ions could release aconitic acid as the reaction time prolongs. Moreover, the possible scheme for the formation process was discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance
NASA Astrophysics Data System (ADS)
Yang, Haibin; Liu, Shikai; Li, Jixue; Li, Minghui; Peng, Gang; Zou, Guangtian
2006-03-01
A facile, large-scale and low-cost route was used to synthesize inorganic fullerene-like (IF) WS2 nanoparticles by the reaction of sulfur powder (S) and as-prepared WO3 nanoparticles in a hydrogen atmosphere at a heating temperature of 500-650 °C. The as-synthesized IF-WS2 nanoparticles are of a closed hollow cage structure with an average size of about 50 nm. The composition, morphology and structure of the products were characterized by XRD, TEM, FE-SEM, and HRTEM. The influences of the main reaction conditions were investigated and the possible growth mechanism are proposed. It is worth noting that through changing the amount of as-prepared composite powder (WO3 and S) and the content of hydrogen, yields of IF-WS2 in larger scales can accordingly be easily obtained, and such a synthetic route may also be used in the synthesis of other transition IF metal dichalcogenides. Furthermore, tribological experiments emphasized the important role played by these as-synthesized IF-WS2 nanoparticles in providing excellent lubricating performance, which may bring a much brighter future for their applications in the lubricating field, or even arouse great interest of both scientists and industrialists for their many other important applications.
NASA Astrophysics Data System (ADS)
Rahemi, Nader; Haghighi, Mohammad; Akbar Babaluo, Ali; Fallah Jafari, Mahdi; Khorram, Sirous
2013-09-01
Ni/Al2O3 catalyst promoted by Co and ZrO2 was prepared by co-impregnation method and treated with glow discharge plasma. The catalytic activity of the synthesized nanocatalysts has been tested toward conversion of CH4/CO2 to syngas. The physicochemical characterizations like XRD, EDX, FESEM, TEM, BET, FTIR, and XPS show that plasma treatment results in smaller particle size, more surface concentration, and uniform morphology. The dispersion of nickel in plasma-treated nanocatalyst was also significantly improved, which was helpful for controlling the ensemble size of active phase atoms on the support surface. Improved physicochemical properties caused 20%-30% enhancement in activity of plasma-treated nanocatalyst that means to achieve the same H2 or CO yield, the plasma-treated nanocatalyst needed about 100 °C lower reaction temperature. The H2/CO ratio got closer to 1 at higher temperatures and finally at 850 °C H2/CO = 1 is attained for plasma-treated nanocatalyst. Plasma-treated nanocatalyst due to smaller Ni particles and strong interaction between active phase and support has lower tendency to keep carbon species on its structure and hence excellent stability can be observed for this catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Lixia; Graduate School of Chinese Academy of Sciences; Zhu Yingjie
Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH{sub 3}COO){sub 2}.4H{sub 2}O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different time. The phase and morphology of the obtained products can be controlled by adjusting the experimental parameters, including the hydrothermal time and the volume ratio of water to EG or ethanol. The possible reaction mechanism and growth of the nanosheets and nanoflowers are discussed based on the experimental results. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C. The productsmore » were characterized by using various methods including X-ray diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), field emission scanning electron microscopy (FESEM). The electrochemical property of {beta}-Ni(OH){sub 2} nanosheets was investigated through the cyclic voltammogram (CV) measurement. - Graphical abstract: Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH{sub 3}COO){sub 2}.4H{sub 2}O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different reaction time. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C.« less
NASA Astrophysics Data System (ADS)
Mohamed, Ibrahim M. A.; Yasin, Ahmed S.; Barakat, Nasser A. M.; Song, Seung A.; Lee, Ha Eun; Kim, Seong Su
2018-03-01
A nanocomposite of Ni/Pd supported by carbonized poly-vinyl alcohol (PVA) nanofibers (NFs) was synthesized via electrospinning followed by calcination under an argon atmosphere. The as-synthesized NFs were studied using physicochemical analyses, such as field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTsbnd IR) and X-ray photoelectron spectroscopy (XPS), to investigate the morphology, crystallinity, effect of carbonization and surface chemistry of the NFs, respectively. Cyclic voltammetry (CV) and chronoamperometry (CA) were utilized to study the performance of the NFs towards electrooxidation reactions. The designed NFs present superior electrocatalytic behavior in an acid medium towards formic acid oxidation, as well as urea and ethanol oxidation in an alkaline medium. The electrocatalytic performance of the bimetallic NFs appears to arise from the assembly of bimetallic Ni/Pd@NFs based on PVA, which has hydroxyl groups. These hydroxyl groups can decrease the negative processes that occur as a result of metal-metal interactions, such as the aggregation process. This study introduces a novel non-precious electrocatalyst to facilitate the commercialization of fuel cells based on formic acid, urea and ethanol.
Abdullah, M; Kamarudin, S K; Shyuan, L K
2016-12-01
In this study, TiO 2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm 2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.
Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites
NASA Astrophysics Data System (ADS)
Noinville, S.; Garnier, A.; Courty, A.
2017-05-01
The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.
Surface morphology and electrochemical studies on polyaniline/CuO nano composites
NASA Astrophysics Data System (ADS)
Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.
2018-05-01
An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).
Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul
2017-04-15
Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamohammadi, Sogand; Reactor and Catalysis Research Center; Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir
2014-02-01
Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion.more » - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion.« less
Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro
Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less
Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2014-09-01
Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3 with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO matrix covered with silver oxide shell, resulting in high quality nanocomposite thin films. The embedment of polyvinylpyrrolidone inhibited the growth of silver nanoparticles and ITO annealed at 350 °C. Delafossite structure of tin-doped AgInO2 was found at higher annealing temperatures. XRD analysis and FESEM micrographs showed that the optimum temperature to prevent the formation of AgInO2 is 350 °C. The embedment of silver particles (5-10 nm) from reduction of silver ion in ITO thin films improved the electrical conductivity and optical transmittance of ITO nanolayers. The lowest stable sheet resistance of 1,952 Ω/Sq for a 321 nm thick and an average optical transmittance of 91.8 % in the visible region with a band gap of 3.43 eV were achieved for silver-doping content of 0.04 M.
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke
2012-01-01
The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...
Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance
NASA Astrophysics Data System (ADS)
Wang, Dagui; Yan, Bing; Song, Caixiong; Ye, Ting; Wang, Yongqian
2018-01-01
Hierarchical self-assembled CuO hollow microspheres with superior photocatalytic performance are synthesized via a simple hydrothermal process in the presence of cationic surfactants (cetyltrimethylammonium bromide, CTAB). The structure, morphology, and optical absorption performance of CuO samples prepared with different surfactants including CTAB, nonionic surfactant (polyvinylpyrrolidone, PVP) and anionic surfactant (sodium dodecyl sulfate, SDS) are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) absorption spectra. Moreover, the photocatalytic performances of the CuO samples are evaluated by the photo-degradation of a simulative contaminant methylene blue. The XRD patterns and FESEM images demonstrate that the category of surfactants have effects on the phase structure and morphology of CuO. Compared with bulk CuO (1.20 eV at room temperature), the band gap of CuO microspheres prepared with different surfactants including CTAB, PVP and SDS are measured at 2.16 eV, 2.29 eV, 2.44 eV, respectively, which exhibits a blue shift in the UV-vis spectra. The synthesized hierarchical self-assembled CuO hollow microspheres reveal commendable photocatalytic activity, in which the photo-degradation rate could rise to 94.1%. Additionally, a reasonable growth mechanism of CuO microspheres synthesized with different surfactants is discussed in detail.
Kuriakose, Sini; Avasthi, D K
2015-01-01
Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Akash; Sahoo, Pooja; Thangavel, R.
2018-05-01
In this work, ZnO nanorods (NRs) were fabricated, on cleaned ITO substrates by using sol-gel spin coating followed by hydrothermal technique. In order to coat zinc sulphide (ZnS) layers on the earlier prepared NRs a facile ion-exchange approach was adopted. The ZnO@ZnS nanostructures so prepared were characterised by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible spectroscopy and photoelectrochemical study. XRD spectra confirmed the hexagonal wurtzite structure of all the samples along with preferential c-axis orientation. Further it was also observed from the FESEM images that sulfidation process doesn't affect the structure of ZnO NRs arrays. From the absorption spectra it can be clearly observed that the light absorbing property has increased in within the visible range due to the formation of ZnS layer on the ZnO nanostructures, which is not possible for either of the material individually. The cyclic voltammetry results indicates the enhancement in photocurrent density after illumination for the synthesized nanostructures. The electrocatalytic behaviour of ZnO@ZnS electrodes have been studied using a 3-electrode system in presence of 0.1M NaOH electrolyte solution with respect to an Ag/AgCl reference electrode.
Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2016-01-01
We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.
Effect of annealing temperature on physical properties of solution processed nickel oxide thin films
NASA Astrophysics Data System (ADS)
Sahoo, Pooja; Thangavel, R.
2018-05-01
In this report, NiO thin films were prepared at different annealing temperatures from nickel acetate precursor by sol-gel spin coating method. These films were characterized by different analytical techniques to obtain their structural, optical morphological and electrical properties using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis NIR double beam spectrophotometer and Keithley 2450 source meter respectively. FESEM images clearly indicates the formation of a homogenous and porous films. Due to their porosity, they can be used in sensing applications. The optical absorption spectra elucidated that the films are highly transparent and have a suitable band gap which are in similar agreement with earlier reports. The current enhancement under illumination shows the suitability of nanostructured NiO thin films in its application in photovoltaics.
Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.
Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon
2007-11-01
Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.
Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation
NASA Astrophysics Data System (ADS)
Zhou, Ruimin; Wu, Xinfeng; Hao, Xufeng; Zhou, Fei; Li, Hongbin; Rao, Weihong
2008-02-01
Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.
Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id
Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.
Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra
2018-05-01
Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.
NASA Astrophysics Data System (ADS)
Singh, Jarnail; Verma, Vikram; Kumar, Ravi
2018-04-01
We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).
Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw
2016-10-26
Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.
Nanoparticles of ZrPO4 for green catalytic applications
NASA Astrophysics Data System (ADS)
Sreenivasulu, Peta; Pendem, Chandrasekhar; Viswanadham, Nagabhatla
2014-11-01
Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure). Electronic supplementary information (ESI) available: Experimental details, wide angle XRD, EDX, IR spectra, GC data etc. See DOI: 10.1039/c4nr03209h
NASA Astrophysics Data System (ADS)
Shokuhi Rad, A.; Ebrahimi, D.
2017-07-01
The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.
NASA Astrophysics Data System (ADS)
Parekh, K.; Upadhyay, R. V.; Mehta, R. V.; Aswal, V. K.
2008-03-01
The experimental investigations of a nearly monodispersed magnetic fluid, containing a ternary Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} (MZ5) magnetic fluid, are carried out using XRD, TEM, Small Angle Neutron Scattering (SANS) and a SQUID magnetometer. The XRD and TEM measurements give the particle size to be 7.5 and 8.4 nm respectively, and confirms the single phase cubic spinel structure. The size distribution retrieved from TEM is found to be very narrow (<10{%}). Room temperature magnetic measurement fits with the Langevin's function modified for the particle size distribution as well as for the particle-particle interaction parameter. M(H)-measurements as a function of field for different temperatures show that the system is superparamagnetic at room temperature and develops coercivity at 5 K. Figs 4, Refs 12.
Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O
2017-10-01
There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.
Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.
2016-05-01
Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.
NASA Astrophysics Data System (ADS)
Bhagwan, Jai; Rani, Stuti; Sivasankaran, V.; Yadav, K. L.; Sharma, Yogesh
2017-12-01
Spinel-NiMn2O4 (NMO) nanofibers of high aspect ratio, high surface area (50 m2 g-1) and homogeneous pore size distribution are fabricated by electrospinning process and characterized by XRD, FTIR, XPS, BET, FESEM, TEM techniques. Further, multifunctional properties (energy storage properties, magnetic and electrical properties) of NMO nanofibers are also examined. High specific capacitance (Cs) of 410 (±5) F g-1 at 1 A g-1, good rate capability and high cycling stability (up to 5000 cycles) are demonstrated by NMO nanofibers. Furthermore, NMO-based solid-state symmetric supercapacitor (SSSC) shows a high Cs of 170 (±5) F g-1 at 0.5 A g-1 in potential range of 0.0V-2.0 V and exhibits excellent energy density of ∼95 W h kg-1 and power density of 1030 W Kg-1. The above storage properties i.e. high energy density and output voltage of 2.0 V are further supplemented by lighting up a red colored LED (1.8 V @ current 20 mA) at least for 5 min. The ionic diffusion coefficient of NMO based electrode is found to be ∼4.84 × 10-11 cm2 s-1. Magnetic and dielectric properties of NMO nanofibers are also examined and results are discussed.
NASA Astrophysics Data System (ADS)
Li, Qiang; Liu, Jianhua; Zou, Jianhua; Chunder, Anindarupa; Chen, Yiqing; Zhai, Lei
Multi-walled carbon nanotube (MWCNT)/polyaniline (PANI)/MnO 2 (MPM) ternary coaxial structures are fabricated as supercapacitor electrodes via a simple wet chemical method. The electrostatic interaction between negative poly(4-styrenesulfonic acid) (PSS) molecules and positive Mn 2+ ions causes the generation of MnO 2 nanostructures on MWCNT surfaces while the introduction of PANI layers with appropriate thickness on MWCNT surfaces facilitates the formation of MWCNT/PANI/MnO 2 ternary coaxial structures. The thickness of PANI coatings is controlled by tuning the aniline/MWCNT ratio. The effect of PANI thickness on the subsequent MnO 2 nanoflakes attachment onto MWCNTs, and the MPM structures is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FESEM). The results suggest that appropriate thickness of PANI layers is important for building MPM ternary coaxial structures without the agglomeration of MnO 2 nanoflakes. The MPM ternary coaxial structures provide large interaction area between the MnO 2 nanoflakes and electrolyte, and improve the electrochemical utilization of the hydrous MnO 2, and decrease the contact resistance between MnO 2 and PANI layer coated MWCNTs, leading to intriguing electrochemical properties for the applications in supercapacitors such as a specific capacitance of 330 Fg -1 and good cycle stability.
NASA Astrophysics Data System (ADS)
Manjunatha, S.; Dharmaprakash, M. S.
2018-03-01
Nanocrystalline ZrO2 based material is an impressive candidate for the various functional applications owing to their ease of preparation and high thermal stability. This paper reports the synthesis, structural and optical characterization of thermally stable monodispersed CexZr1‑xO2 (x = 0.05) nanoparticles. This method is based on the fact that, microwave irradiation allows the formation of size controlled and single phase cubic ZrO2 nanoparticles containing Ce+4 as a dopant. The XRD and Rietveld analysis revealed the formation of the crystalline cubic fluorite phase. The formation of nanoparticles was confirmed by FTIR. The morphology of the nanophosphors was characterised by FESEM and TEM. The optical band gap was calculated from the UV–visible absorption spectra and was found to vary from 3.93 to 4.25 eV with calcination temperature. It shows the decrease in the optical band gap from the pristine ZrO2. The particle size was measured by using HRTEM, and the average particle size was found to be 22 nm. Under the 268 nm Ultra Violet irradiation excitation a blue emission at 443 nm was observed at room temperature. The possible luminescence mechanism of CexZr1‑xO2 nanophosphor under UV excitation is discussed.
A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors
NASA Astrophysics Data System (ADS)
Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong
2014-09-01
By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.
Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K
2015-05-19
In this study, nanocomposite of graphene oxide and silane modified magnetic nanoparticles (silane@Fe3O4) were synthesized in a form of dendritic structure. For this, silane@Fe3O4 nanoparticle gets sandwiched between two layers of graphene oxide by chemical synthesis route. The synthesized dendritic structure was used as a monomer for synthesis of europium ion imprinted polymer. The synthesis of imprinted polymer was contemplated onto the surface of the vinyl group modified silica fiber by activated generated free radical atom-transfer radical polymerization, that is, AGET-ATRP technique. The synthesized dendritic monomer was characterized by XRD, FT-IR, VSM, FE-SEM, and TEM analyses. The imprinted polymer modified silica fiber was first validated in the aqueous and blood samples for successful extraction and detection of europium ion with limit of detection = 0.050 pg mL(-1) (signal/noise = 3). The imprinted polymer modified silica fiber was also used for preconcentration and separation of europium metal ion from various soil samples of coal mine areas. However, the same silica fiber was also used for wastewater treatment and shows 100% performance for europium removal. The findings herein suggested that dendritic nanocomposite could be potentially used as a highly effective material for the enrichment and preconcentration of europium or other trivalent lanthanides/actinides in nuclear waste management.
NASA Astrophysics Data System (ADS)
Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Kamari, Halimah Mohamed; Saion, Elias; Chyi, Josephine Liew Ying; Abdullah, Che Azurahanim Che
2018-06-01
A binary (CuO)0.6 (CeO2)0.4 nanoparticles were prepared via thermal treatment method, using copper nitrate, cerium nitrate as precursors, PVP as capping agent and de-ionized water as a solvent. The structures, morphology, composition of the element and optical properties of these nanoparticles have been studied under different temperatures using various techniques. The XRD spectrum of the samples at 500 °C and above confirmed the existence of both monoclinic (CuO) and cubic fluorite (CeO2) structures. The findings of FESEM and TEM exhibited the average practical size and agglomeration increment with an elevation in the calcination temperature. The synthesized nanoparticles were also characterized by FTIR, which indicated the formation of binary Cu-O and Ce-O bonds. The EDX analysis was performed to indicate the chemical composition of the sample. The double energy band gaps of (CuO)0.6(CeO2)0.4 reduction with rising calcination temperature, can be referred to the enhancement of the crystallinity of the samples. PL intensity of (CuO)0.6(CeO2)0.4 nanoparticles peaks, which increased with the elevation of the calcination temperature to 800 °C was observed from the PL spectrum; this was due to the increment of the particle size that occurred.
Sayed, Murtaza; Fu, Pingfeng; Shah, Luqman Ali; Khan, Hasan M; Nisar, Jan; Ismail, M; Zhang, Pengyi
2016-01-14
In the present study, a novel TiO2/Ti film with enhanced {001} facets was synthesized by the hydrothermal technique followed by calcination for studying the removal of bezafibrate (BZF), from an aqueous environment. The synthesized photocatalyst was characterized by FE-SEM, XRD, HR-TEM, and PL-technique. The second-order rate constant of (•)OH with BZF was found to be 5.66 × 10(9) M(-1) s(-1). The steady state [(•)OH] was measured as 1.16 × 10(-11) M, on the basis of oxidation of terephthalic acid. The photocatalytic degradation of BZF followed pseudo-first-order kinetics according to the Langmuir-Hinshelwood model (k1 = 2.617 mg L(-1) min(-1) and k2 = 0.0796 (mg L(-1))(-1)). The effects of concentration and the nature of various additives including inorganic anions (NO3(-), NO2(-), HCO3(-), CO3(2-), Cl(-)) and organic species (fulvic acid) and initial solution pHs (2, 4, 6, 9) on photocatalytic degradation of BZF were investigated. It was found that the nature and concentration of studied additives significantly affected the photocatalytic degradation of BZF. The efficiency of the photocatalytic degradation process in terms of electrical energy per order was estimated. Degradation schemes were proposed on the basis of the identified degradation byproducts by ultraperformance liquid chromatography.
Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water
Min, Ling-Li; Zhong, Lu-Bin; Zheng, Yu-Ming; Liu, Qing; Yuan, Zhi-Huan; Yang, Li-Ming
2016-01-01
An environment-friendly iron functionalized chitosan elctrospun nanofiber (ICS-ENF) was synthesized for trace arsenate removal from water. The ICS-ENF was fabricated by electrospinning a mixture of chitosan, PEO and Fe3+ followed by crosslinking with ammonia vapor. The physicochemical properties of ICS-ENF were characterized by FESEM, TEM-EDX and XRD. The ICS-ENF was found to be highly effective for As(V) adsorption at neutral pH. The As(V) adsorption occurred rapidly and achieved equilibrium within 100 min, which was well fitted by pseudo-second-order kinetics model. The As(V) adsorption decreased with increased ionic strength, suggesting an outer-sphere complexation of As(V) on ICS-ENF. Freundlich model well described the adsorption isotherm, and the maximum adsorption capacity was up to 11.2 mg/g at pH 7.2. Coexisting anions of chloride and sulfate showed negligible influence on As(V) removal, but phosphate and silicate significantly reduced As(V) adsorption by competing for adsorption sites. FTIR and XPS analysis demonstrated –NH, –OH and C–O were responsible for As(V) uptake. ICS-ENF was easily regenerated using 0.003 M NaOH, and the removal rate remained above 98% after ten successively adsorption-desorption recycles. This study extends the potential applicability of electrospun nanofibers for water purification and provides a promising approach for As(V) removal from water. PMID:27572634
Zhang, Han; Xin, Xia; Sun, Jichao; Zhao, Liupeng; Shen, Jinglin; Song, Zhaohua; Yuan, Shiling
2016-12-15
The discovery of a class of self-assembling peptides that spontaneously undergo self-organization into well-ordered structures opened a new avenue for molecular fabrication of biological materials. In this paper, the structure controlled helical nanofibers were prepared by two artificial β-sheet dipeptides with long alkyl chains derived from l- and d-threonine (Thr) and sodium hydroxide (NaOH). These helical nanofibers have been characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD). It was demonstrated that the helicity of the nanofibers could be easily controlled by changing the chirality of the constituent amino acids in the peptide species (d- or l-threonine). Moreover, the hydrogen bonding interactions between the amide groups as well as the hydrophobic interactions among the alkyl chains play important roles in the self-assembly process. It also can be observed that with the passage of time, the hydrogen bonding interactions between the individual nanofiber induced the conversion from nanofibers to nanobelts. Particularly, gold and silver nanoparticles performed good catalytic ability were synthesized using the assembled nanofibers as template. Copyright © 2016 Elsevier Inc. All rights reserved.
Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.
Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong
2017-04-01
In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.
NASA Astrophysics Data System (ADS)
Bhattacharya, S.; Gupta, K.; Ghosh, U. C.
2017-04-01
Arsenic contamination in the ground water has serious health consequences in many parts of the world. The surface sorption method for arsenic mitigation has been widely investigated due to its simple method, inexpensive operation, highly efficient and low content of by-products. In the present study, nanostructured hydrated cerium aluminum oxide (NHCAO) was synthesized and characterized and its arsenic (III) sorption behavior from the aqueous solution was studied. The material was characterized in SEM, FE-SEM, TEM, AFM, XRD, and FT-IR. Batch method was used for the kinetics of As (III) sorption on nanoparticles at 303 (± 1.6) K and at pH 7.0 (± 0.2). The experiments on isotherm subject were performed individually at 288K, 303K, 318K temperatures at pH 7.0 (± 0.2) using the batch sorption method. In the kinetics study of arsenic (III) sorption, the sorption percentage was observed to remain nearly unchanged up to pH 9.0, thereafter only slight reduction in sorption percentage. The equilibrium sorption results were tested using the models of Langmuir and the Freundlich isotherm. The Langmuir model is the most fitted model for the sorption reaction. NHCAO was highly efficient in As(III) removal out of the water in the extensive range of pH and could be used for arsenic removal from contaminated water.
Alsharaeh, Edreese; Ahmed, Faheem; Aldawsari, Yazeed; Khasawneh, Majdi; Abuhimd, Hatem; Alshahrani, Mohammad
2016-01-01
In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), and Raman spectroscopy. These novel HRGO exhibited high rate capability with excellent cycling stability as an anode material for lithium-ion batteries. The results have shown an excellent electrochemical response in terms of charge/discharge capacity (423 mAh/g at 100 mA/g). The cyclic performance was also exceptional as a high reversible capacity (400 mAh/g at 100 mA/g) was retained for 100 charge/discharge cycles. This fascinating electrochemical performance can be ascribed to their specific porous structure (2–5 nm pores) and high surface area (457 m2/g), providing numerous active sites for Li+ insertion, high electrical conductivity, low charge-transfer resistance across the electrolyte–electrode interface, and improved structural stability against the local volume change during Li+ insertion–extraction. Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization. PMID:27457356
NASA Astrophysics Data System (ADS)
Sree Satya Bharati, Moram; Byram, Chandu; Soma, Venugopal R.
2018-03-01
Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5 mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2, 4, 6-trinitrophenol (PA), 2, 4-dinitrotoluene (DNT) and a common dye methylene blue (MB) using the surface enhanced Raman spectroscopy (SERS) technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT) and few picograms in the case of a common dye molecule (MB). Typical enhancement factors achieved were estimated to be 104, 105 and 107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.
Selective removal of uranium ions from contaminated waters using modified-X nanozeolite.
Shakur, H R; Rezaee Ebrahim Saraee, Kh; Abdi, M R; Azimi, G
2016-12-01
In order to efficiently remove of uranium anionic species (which are the most dominant species of uranium in natural water at neutral pH) from contaminated waters, nano-NaX zeolite was synthesized and then modified using various divalent cations (Mg 2+ , Ca 2+ , Mn 2+ ) and ZnO nanoparticles (from 1.7 to 10.3wt%). Different characterization techniques of XRF, XRD, FE-SEM, TEM, FT-IR, and AAS were used to characterize the final synthesized absorbents. Sorption experiments by batch technique were done to study the effect of solid-liquid ratio, initial uranium concentration, contact time and temperature under neutral condition of pH and presence of all anions and cations which are available in the waters. Results showed that although nano-NaX zeolite due to its negative framework charge had a low sorption capacity for adsorption of uranium anionic species, but modification of parent nano-NaX zeolite with ZnO nanoparticles and various cations effectively improved its uranium adsorption capacity. Also, results showed that under optimum condition of pH=7.56, contact time of 60min at 27°C with solid-liquid ratio of 20g/L a maximum uranium removal efficiency of 99.7% can be obtained in the presence of all anions and cations which are available in the drinking waters by NaX/ZnO nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad
2018-02-01
Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083
Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less
Kim, Jun-Hyun; Bryan, William W; Lee, T Randall
2008-10-07
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.
Synthesis of ZnO particles using water molecules generated in esterification reaction
NASA Astrophysics Data System (ADS)
Šarić, Ankica; Gotić, Marijan; Štefanić, Goran; Dražić, Goran
2017-07-01
Zinc oxide particles were synthesized without the addition of water by autoclaving (anhydrous) zinc acetate/alcohol and zinc acetate/acetic acid/alcohol solutions at 160 °C. The solvothermal synthesis was performed in ethanol or octanol. The structural, optical and morphological characteristics of ZnO particles were investigated by X-ray diffraction (XRD), UV-Vis spectroscopy, FE-SEM and TEM/STEM microscopy. 13C NMR spectroscopy revealed the presence of ester (ethyl- or octyl-acetate) in the supernatants which directly indicate the reaction mechanism. The formation of ester in this esterification reaction generated water molecule in situ, which hydrolyzed anhydrous zinc acetate and initiated nucleation and formation of ZnO. It was found that the size and shape of ZnO particles depend on the type of alcohol used as a solvent and on the presence of acetic acid in solution. The presence of ethanol in the ;pure; system without acetic acid favoured the formation of fine and uniform spherical ZnO nanoparticles (∼20 nm). With the addition of small amount of acetic acid the size of these small nanoparticles increased significantly up to a few hundred nanometers. The addition of small amount of acetic acid in the presence of octanol caused even more radical changes in the shape of ZnO particles, favouring the growth of huge rod-like particles (∼3 μm).
Qin, Cong; Zhang, Bo; Sun, Guang; Zhang, Zhanying
2017-01-01
Flower-like SnO2/g-C3N4 nanocomposites were synthesized via a facile hydrothermal method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized samples were characterized by using the X-ray powder diffraction (XRD), electron microscopy (FESEM and TEM), and Fourier transform infrared spectrometer (FT-IR) techniques. SnO2 displays the unique 3D flower-like microstructure assembled with many uniform nanorods with the lengths and diameters of about 400–600 nm and 50–100 nm, respectively. For the SnO2/g-C3N4 composites, SnO2 flower-like nanorods were coupled by a lamellar structure 2D g-C3N4. Gas sensing performance test results indicated that the response of the sensor based on 7 wt. % 2D g-C3N4-decorated SnO2 composite to 500 ppm ethanol vapor was 150 at 340 °C, which was 3.5 times higher than that of the pure flower-like SnO2 nanorods-based sensor. The gas sensing mechanism of the g-C3N4nanosheets-decorated SnO2 flower-like nanorods was discussed in relation to the heterojunction structure between g-C3N4 and SnO2. PMID:28937649
Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.
Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek
2016-07-01
Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. Copyright © 2016 Elsevier B.V. All rights reserved.
Investigation on the structural characterization of pulsed p-type porous silicon
NASA Astrophysics Data System (ADS)
Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.
2017-08-01
P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.
Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs
NASA Astrophysics Data System (ADS)
Çakar, Soner; Özacar, Mahmut
2016-06-01
In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.
Study of structural and optical properties of ZnS zigzag nanostructured thin films
NASA Astrophysics Data System (ADS)
Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein
2015-11-01
Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.
NASA Astrophysics Data System (ADS)
Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy
2017-01-01
In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.
Superstructure and physical properties of skutterudite-related phase CoGe1.5Se1.5
NASA Astrophysics Data System (ADS)
Liang, Y.; Fang, B.; Zhu, X. M.; Liang, M. M.
2017-03-01
CoGe1.5Se1.5 skutterudite-related phase with a homogeneity range has been synthesized by solid-state reaction. The phase purity, homogeneity range, crystal structure, thermal stability and electrical resistivity were studied. XRD data indicates that CoGe1.5Se1.5 crystallized in a modification of the skutterudite CoAs3 type structure with space group R\\bar{3} (a = b = 11.751(1) Å, c = 14.36(1) Å). HRTEM-SAED shows more information about the superstructure to confirm the rhombohedral symmetry with space group R\\bar{3}. The lattice parameter of this skutterudite-related phase was found to be dependent on the concentration of Ge and Se. CoGe1.5Se1.5 decomposed between 1073 K and 1173 K under argon atmosphere investigated by in-situ XRD, suggesting a good thermal stability. CoGe1.49Se1.42, CoGe1.43Se1.34 and CoGe1.50Se1.15 dense bulk samples were obtained by hot-press technique. The chemical composition detected by FESEM/EDS suggests the homogeneity range and the existence of voids at framework positions. The electrical resistivity of the compounds decreases with increasing temperature, acting as a semiconductor. The chemical composition has a big influence on the value of electrical resistivity and energy gap.
Choo, Kaiwen; Ching, Yern Chee; Chuah, Cheng Hock; Julai, Sabariah; Liou, Nai-Shang
2016-01-01
In this study microcrystalline cellulose (MCC) was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The treated cellulose slurry was mechanically homogenized to form a transparent dispersion which consisted of individual cellulose nanofibers with uniform widths of 3–4 nm. Bio-nanocomposite films were then prepared from a polyvinyl alcohol (PVA)-chitosan (CS) polymeric blend with different TEMPO-oxidized cellulose nanofiber (TOCN) contents (0, 0.5, 1.0 and 1.5 wt %) via the solution casting method. The characterizations of pure PVA/CS and PVA/CS/TOCN films were performed in terms of field emission scanning electron microscopy (FESEM), tensile tests, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results from FESEM analysis justified that low loading levels of TOCNs were dispersed uniformly and homogeneously in the PVA-CS blend matrix. The tensile strength and thermal stability of the films were increased with the increased loading levels of TOCNs to a maximum level. The thermal study indicated a slight improvement of the thermal stability upon the reinforcement of TOCNs. As evidenced by the FTIR and XRD, PVA and CS were considered miscible and compatible owing to hydrogen bonding interaction. These analyses also revealed the good dispersion of TOCNs within the PVA/CS polymer matrix. The improved properties due to the reinforcement of TOCNs can be highly beneficial in numerous applications. PMID:28773763
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.
2016-07-01
Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.
NASA Astrophysics Data System (ADS)
Haq, Khizar-ul; Irfan, M.; Masood, Muhammad; Saleem, Murtaza; Iqbal, Tahir; Ahmad, Ishaq; Khan, M. A.; Zaffar, M.; Irfan, Muhammad
2018-04-01
Zn1‑x Cr x O (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) nanoparticles were synthesized, by an auto-combustion method. Structural, optical, and magnetic characteristics of Cr-doped ZnO samples calcined at 600 °C have been analyzed by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV–Vis spectroscopy and vibrating sample magnetometer (VSM). The XRD data confirmed the hexagonal wurtzite structure of pure and Cr-doped ZnO nanoparticles. The calculated values of grain size using Scherrer's formula are in the range of 30.7–9.2 nm. The morphology of nanopowders has been observed by FESEM, and EDS results confirmed a systematic increase of Cr content in the samples and clearly indicate with no impurity element. The band gaps, computed by UV–Vis spectroscopy, are in the range of 2.83–2.35 eV for different doping concentrations. By analyzing VSM data, significantly enhanced room temperature ferromagnetism is identified in Cr-doped ZnO samples. The value of magnetization is a 12 times increased of the value reported by Daunet al. (2010). Room temperature ferromagnetism of the nanoparticles is of vital prominence for spintronics applications. Project supported by the Office of Research, Innovation, and Commercialization (ORIC), MUST Mirpur (AJK).
NASA Astrophysics Data System (ADS)
Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd
The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.
NASA Astrophysics Data System (ADS)
Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.
2018-05-01
Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.
Upender, G; Babu, J Chinna; Mouli, V Chandra
2012-04-01
X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), infrared (IR), Raman, electron paramagnetic resonance (EPR) and optical absorption studies on 10Li2O-xP2O5-(89-x)TeO2-1CuO glasses (where x=5, 10, 15, 20 and 25 mol%) have been carried out. The amorphous nature of the glasses was confirmed using XRD and FESEM measurements. The glass transition temperature (Tg) of glass samples have been estimated from DSC traces and found that the Tg increases with increasing P2O5 content. Both the IR and Raman studies have been showed that the present glass system consists of [TeO3], [TeO4], [PO3] and [PO4] units. The spin-Hamiltonian parameters such as g∥, g⊥, and A∥ have been determined from EPR spectra and it was found that the Cu2+ ion is present in tetragonal distorted octahedral site with [Formula: see text] as the ground state. Bonding parameters and bonding symmetry of Cu2+ ions have been calculated by correlating EPR and optical data and were found to be composition dependent. Copyright © 2012 Elsevier B.V. All rights reserved.
Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques
NASA Astrophysics Data System (ADS)
Bhatia, Sonik; Verma, Neha; Bedi, R. K.
Nowadays, applications of nanosized materials have been an important issue in basic and applied sciences. In this investigation, Zinc Oxide (ZnO) nanoparticles were prepared by two different techniques (simple heat treatment, thermal evaporation-two zone furnaces). In order to control shape and size - ZnO nanoparticles prepared from heat treatment were used as a source for thermal evaporation method by using two zone split furnace by varying zone temperature (Zone 1-800 °C and Zone 2-400 °C). For both techniques 0.17 M of Zn acetate dihydrate is used as main precursor and film is deposited on glass substrate. Synthesized ZnO were characterized for XRD, FESEM, FTIR and UV-Vis spectrophotometer and LCR meter. XRD revealed hexagonal wurtzite structure with preferential orientation along (1 0 1) plane. FESEM observed that grain size in the range of range of ∼50 ± 5 nm. FTIR spectra showed that the peaks between 400 and 500 cm-1 for ZnO stretching modes. Optical properties has been studied and found that the observed band gap lies in the range of 3.32-3.36 eV. The higher value of capacitance is observed at lower frequency. Gas sensing properties showed the higher response in case of thermal evaporation as compared to simple heat treatment at an operating temperature of 250 °C.
Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.
2003-01-01
Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).
Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay
2018-04-01
The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.
Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L
2013-10-15
An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.
Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio
2016-04-01
Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik
2016-01-01
This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique. PMID:28787838
Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik
2016-01-11
This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight ( M w ), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.
Manivasagan, Panchanathan; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon
2013-01-01
The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine. PMID:23936787
Manivasagan, Panchanathan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon
2013-01-01
The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine.
Synthesis of TiS2 nanodiscs for supercapacitor application
NASA Astrophysics Data System (ADS)
Parvaz, M.; Ahmed, Sultan; Khan, Mohd Bilal; Rahul, Ahmad, Sultan; Khan, Zishan H.
2018-05-01
Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows great properties. TiS2 nanodiscs have been synthesized by solid state reaction (SSR) method. FESEM images confirm the synthesis of TiS2 nanodiscs. XRD spectra suggest the crystalline structure of as-prepared TiS2 nanodiscs. Electrochemical properties of the synthesized nanodiscs were studied in 6 M KOH aqueous solution. The observed results indicates the promisibilty of TiS2 as electrode material in energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skariah, Benoy, E-mail: skariahbenoy@yahoo.co.in, E-mail: dr.boben1@gmail.com; Thomas, Boben, E-mail: skariahbenoy@yahoo.co.in, E-mail: dr.boben1@gmail.com
For LPG sensing, boron doped (0.2 to 0.8 wt. %) polycrystalline tin oxide thin films are deposited by spray pyrolysis in the temperature range 325 - 430 °C. Sensor response of 56 % is achieved for 1000 ppm of LPG, at an operating temperature of 350 °C. The effects of ageing under ambient conditions on the sensor response are investigated for a storage period of six years. Ageing increases the film resistance but the gas response is lowered. XRD, SEM, FESEM, FTIR and XPS are utilized for structural, morphological and compositional charaterisations.
NASA Astrophysics Data System (ADS)
Sheikh, Faheem A.; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung Ho; Lee, Ok Joo; Park, Chan Hum
2013-07-01
Electrospinning technique is commonly used to produce micro- and/or nanofibers, which utilizes electrical forces to produce polymeric fibers with diameters ranging from several micrometers down to few nanometers. Desirably, electrospun materials provide highly porous structure and appropriate pore size for initial cell attachment and proliferation and thereby enable the exchange of nutrients. Composite nanofibers consisting of silk and hydroxyapatite nanoparticles (HAp) (NPs) had been considered as an excellent choice due to their efficient biocompatibility and bone-mimicking properties. To prepare these nanofiber composites, it requires the use of acidic solutions which have serious consequences on the nature of both silk and HAp NPs. It is ideal to create these nanofibers using aqueous solutions in which the physicochemical nature of both materials can be retained. However, to create those nanofibers is often difficult to obtain because of the fact that aqueous solutions of silk and HAp NPs can precipitate before they can be ejected into fibers during the electrospinning process. In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields. Different blend ratios consisting HAp NPs had been electrospun into nanofibers. The physicochemical aspects of fabricated nanofiber had been characterized by different state of techniques like that of FE-SEM, EDS, TEM, TEM-EDS, TGA, FT-IR, and XRD. These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs. Moreover, nanofibers obtained by this strategy were tested for cell toxicity and cell attachment studies using NIH 3 T3 fibroblasts which indicated non-toxic behavior and good attachment of cells upon incubation in the presence of nanofibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawbake, Amit; Tata Institute of Fundamental Research, Colaba, Mumbai 400 005; Mayabadi, Azam
Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gasmore » mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.« less
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.
2017-11-01
So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.
NASA Astrophysics Data System (ADS)
Hincapie Palacio, Beatriz Omaira
Mordenite is a zeolite that has been used as a selective adsorbent and as a catalyst. In reactions where the diffusion of reagents into the pore system is the rate-determining step, nanoparticles of the catalyst improve the reaction rate. Mordenite with a crystal diameter smaller than 100 nm has been prepared by the modification of different synthetic parameters such as the source of aluminum, the presence of seeds, the use of low temperatures (150°C vs. 170°C), longer crystallization times (24 h vs. 96 h), and different silica to alumina ratios (10--30). The decrease in the crystal diameter of the prepared mordenite was monitored by the application of the Scherrer equation that relates the broadness of the X-ray diffraction peaks to crystal sizes. Zeolite RHO with an initial silica to alumina ratio (SAR) higher than 20 has been prepared. EDTA, citric acid, and tartaric acid have been used as complexing agents in the synthesis of zeolite RHO. Crystallization time increases (from 48 h to 900 h) with increasing the silica to alumina ratios (SAR) of the initial gel (SAR: 10.8 to 30) and by adding complexing agents. Complexing agents favor the formation of small crystals (0.8 mum) with increased silica to alumina ratio (final SAR: 4.5 vs. 4.0 without complexing agents). The products were characterized by XRD, FESEM, EDX, FTIR, and in-situ XRD. Copper containing faujasite has been successfully prepared for the first time using a direct synthesis method. Ammonium hydroxide was used to form a copper complex that was later mixed with the reacting gel. Crystallization took place at 85°C for 11 days. The copper containing faujasite obtained was characterized by XRD, FESEM, EDX, EPR, FTIR, TPR, and BET. According to the XRD pattern only FAU type zeolite was obtained. According to TPR experiments, the reduction temperature for Cu2+ ions present in Cu-FAU prepared by direct synthesis was 70 K higher than for Cu-FAU prepared by ion-exchange. This difference can be due to the different location of the copper ions in the supercages or in the sodalite cages of the faujasite.
Laser additive manufacturing bulk graphene-copper nanocomposites.
Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J
2017-11-03
The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.
Laser additive manufacturing bulk graphene-copper nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J.
2017-11-01
The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.
X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo
2017-12-01
Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.
Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael
2018-06-01
The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.
2015-06-24
Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less
Synthesis and characterization of Ni doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.
2018-05-01
In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.
TEM Study of SAFARI-2000 Aerosols
NASA Technical Reports Server (NTRS)
Buseck, Peter R.
2004-01-01
The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from biomass smoke plume s in southern Africa and from air masses in the region that are affec ted by the smoke. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and ele ctron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to study aerosol particles from several smoke and haz e samples and from a set of cloud samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.
Rice husk was thermally decomposed to yield powder composed of silica (SiO{sub 2}). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO{sub 2}) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO{sub 2}) and Amorphous Rice Husk Silica (A-RHSiO{sub 2}). Moreover, it was found that SS-SiO{sub 2} was ofmore » Quartz phase, C-RHSiO{sub 2} was of Trydimite and Cristobalite. Through XRF detection, the highest SiO{sub 2} purity was detected in SS-SiO{sub 2} followed by C-RHSiO{sub 2} and A-RHSiO{sub 2} with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO{sub 2}) bonding 1056, 1064, 1047, 777, 790 and 798 cm{sup −1}) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO{sub 2} at the wavelength of 620 cm{sup −1}. Morphological features as observed by FESEM analyses confirmed that, SS-SiO{sub 2} and C-RH SiO{sub 2} showed prominent coarse granular morphology.« less
Structural and optical investigation in Er3+ doped Y2MoO6 phosphors
NASA Astrophysics Data System (ADS)
Mondal, Manisha; Rai, Vineet Kumar
2018-05-01
The Er3+ doped Y2MoO6 phosphors have been structurally and optically characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis absorption spectroscopy and frequency upconversion (UC) emission studies. The crystal and the particles size are found to be ˜ 85 nm and ˜ 200 nm from XRD and FESEM analysis. The intense peak at ˜ 206 nm in the UV-Vis absorption spectroscopy is attributed due to the charge transfer transition between the Mo6+ and the O2- ions in the MoO4 group in the host molybdate. The frequency UC emission studies of the prepared phosphors under 980 nm diode laser excitation shows the intense UC emission in the 0.3 mol% concentrations for the Er3+ ions. In the UC emission spectra, the emission peaks at green (˜ 525 nm and ˜ 546 nm) and red (˜ 656 nm) bands are corresponding to the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions. The mechanisms involved in the UC process have been explored with the help of energy level diagram. Moreover, the CIE point (0.31, 0.60) lie in the green colour region which indicates that the developed phosphor have suitable applications in NIR to visible upconverter and in making green light display devices.
Synthesis and electrical characterization of BaZr0.9Ho0.1O3-δ electrolyte ceramic for IT - SOFCs
NASA Astrophysics Data System (ADS)
Saini, Deepash S.; Singh, Lalit K.; Bhattacharya, D.
2018-04-01
A cost-effective modified combustion method using citric acid and glycine has recently been developed to synthesize high quality, and nanosized BaZr0.9Ho0.1O3 ceramic powder. BaZr0.9Ho0.1O3-δ ceramic powder was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). XRD pattern of BaZr0.9Ho0.1O3-δ ceramic sintered at 1600 °C has shown that pure phase of BaZr0.9Ho0.1O3-δ with cubic Pm3¯m space group symmetry. The transmission electron microscopic investigation has shown that the particle size of the powder calcined at 1100 °C was in the range 30-80 nm. The FESEM image of sintered pellet at 1600 °C for 4 h reveals porous nature of BaZr0.9Ho0.1O3-δ with 83.7 relative density. Impedance analysis reveal three type relaxations in the temperature range 250 °C to 500 °C as studied at different frequencies over 100 Hz to 1 MHz in air. The grain boundary conductivity of BaZr0.9Ho0.1O3-δ ceramic is found lower then grain (bulk) conductivity due to core-space charge layer behavior in grain boundary.
Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein
2015-02-25
Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation. Copyright © 2014 Elsevier B.V. All rights reserved.
Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O
2013-01-30
We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites. Copyright © 2012 Elsevier B.V. All rights reserved.
Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate
NASA Astrophysics Data System (ADS)
Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin
2015-06-01
The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.
Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy
NASA Astrophysics Data System (ADS)
Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet
2018-05-01
The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.
NASA Astrophysics Data System (ADS)
Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya
2018-03-01
The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.
Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO
NASA Astrophysics Data System (ADS)
Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho
2015-06-01
Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.
2018-01-01
The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.
Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites
Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi
2014-01-01
We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar. PMID:24574878
Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid
NASA Astrophysics Data System (ADS)
Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.
2018-03-01
Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.
Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.
Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less
NASA Astrophysics Data System (ADS)
Hosseini Largani, Sekineh; Akbarzadeh Pasha, Mohammad
2017-12-01
In this research, MWCNT-ZnO hybrid nanomaterials were synthesized by a simple sol-gel process using Zn(CH3COO)2·2H2O and functionalized MWCNT with carboxyl(COOH) and hydroxyl(OH) groups. Three different mass ratios of MWCNT:ZnO = 3:1, 1:1 and 1:3 were examined. The prepared nanomaterials were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). Successful growth of MWCNT-ZnO hybrids for both COOH and OH functional groups and all the three mass ratios were obtained. The ZnO nanoparticles attached on the surfaces of CNTs have rather spherical shapes and hexagonal crystal structure. By increasing the concentration of ZnO, the number and average size of ZnO nanoparticles decorated the body of CNTs in hybrid structures increase. By increasing the ZnO precursor, the distribution of ZnO nanoparticles that appeared on the surface of CNTs becomes more uniform. The SEM observation beside EDX analysis revealed that at the same concentration ratio the amount of ZnO loading on the surface of MWCNT-COOH is more than MWCNT-OH. Moreover, the average size of ZnO nanoparticles attached on the surface of COOH functionalized CNTs is relatively smaller than that of OH functionalized ones.
NASA Astrophysics Data System (ADS)
Bafaqeer, Abdullah; Tahir, Muhammad; Amin, Nor Aishah Saidina
2018-03-01
Hierarchical nanostructures have lately garnered enormous attention because of their remarkable performances in energy storage and catalysis applications. In this study, novel hierarchical ZnV2O6 nanosheets, formulated by one-step solvothermal method, for enhanced photocatalytic CO2 reduction with H2O to solar fuels has been investigated. The structure and properties of the catalysts were characterized by XRD, FESEM, TEM, BET, UV-vis, Raman and PL spectroscopy. The hierarchical ZnV2O6 nanosheets show excellent performance towards photoreduction of CO2 with H2O to CH3OH, CH3COOH and HCOOH under visible light. The main product yield, CH3OH of 3253.84 μmol g-cat-1 was obtained over ZnV2O6, 3.4 times the amount of CH3OH produced over the ZnO/V2O5 composite (945.28 μmol g-cat-1). In addition, CH3OH selectivity of 39.96% achieved over ZnO/V2O5, increased to 48.78% in ZnV2O6 nanosheets. This significant improvement in photo-activity over ZnV2O6 structure was due to hierarchical structure with enhanced charge separation by V2O5. The obtained ZnV2O6 hierarchical nanosheets exhibited excellent photocatalytic stability for selective CH3OH production.
The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films
Hsieh, Janghsing; Hung, Shunyang
2016-01-01
Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD), atomic force microscopy (AFM), FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag. PMID:28774033
Tan, Linghua; Xu, Jianhua; Li, Shiying; Li, Dongnan; Dai, Yuming; Kou, Bo; Chen, Yu
2017-05-02
Novel graphitic carbon nitride/CuO (g-C₃N₄/CuO) nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C₃N₄, CuO nanorods (length 200-300 nm, diameter 5-10 nm) were directly grown on g-C₃N₄, forming a g-C₃N₄/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition of ammonium perchlorate (AP) in the absence and presence of the prepared g-C₃N₄/CuO nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric analysis (TGA). The g-C₃N₄/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C₃N₄/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C₃N₄ by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C₃N₄-based nanocomposite.
El-Naggar, Mehrez E; Radwan, Emad K; El-Wakeel, Shaimaa T; Kafafy, Hany; Gad-Allah, Tarek A; El-Kalliny, Amer S; Shaheen, Tharwat I
2018-07-01
Recently, naturally occurring biopolymers have attracted the attention as potential adsorbents for the removal of water contaminants. In this work, we present the development of microcrystalline cellulose (MCC)-based nanogel grafted with acrylamide and acrylic acid in the presence of methylene bisacrylamide and potassium persulphate as a crosslinking agent and initiator, respectively. World-class facilities such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), surface analysis, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and zeta sizer were used to characterize the synthesized MCC based nanogel. The prepared nanogel was applied to remove reactive red 195 (RR195) dye and Cd (II) from aqueous medium at different operational conditions. The adsorption experiments showed that the feed concentration of monomers has a significant effect on the removal of RR195 which peaked (93% removal) after 10min of contact time at pH2 and a dose of 1.5g/L. On contrary, the feed concentration has insignificant effect on the removal of Cd (II) which peaked (97% removal) after 30min of contact time at pH6 and a dose of 0.5g/L. The adsorption equilibrium data of RR195 and Cd (II) was best described by Freundlich and Langmuir, respectively. Conclusively, the prepared MCC based nanogels were proved as promising adsorbents for the removal of organic pollutants as well as heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haider, Adnan; Gupta, Kailash Chandra; Kang, Inn-Kyu
2014-06-01
The development of tissue engineering in the field of orthopedic surgery is booming. Two fields of research in particular have emerged: approaches for tailoring the surface properties of implantable materials with osteoinductive factors as well as evaluation of the response of osteogenic cells to these fabricated implanted materials (hybrid material). In the present study, we chemically grafted insulin onto the surface of hydroxyapatite nanorods (nHA). The insulin-grafted nHAs (nHA-I) were dispersed into poly(lactide-co-glycolide) (PLGA) polymer solution, which was electrospun to prepare PLGA/nHA-I composite nanofiber scaffolds. The morphology of the electrospun nanofiber scaffolds was assessed by field emission scanning electron microscopy (FESEM). After extensive characterization of the PLGA/nHA-I and PLGA/nHA composite nanofiber scaffolds by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS), and transmission electron microscopy (TEM), the PLGA/nHA-I and PLGA/nHA (used as control) composite nanofiber scaffolds were subjected to cell studies. The results obtained from cell adhesion, alizarin red staining, and Von Kossa assay suggested that the PLGA/nHA-I composite nanofiber scaffold has enhanced osteoblastic cell growth, as more cells were proliferated and differentiated. The fact that insulin enhanced osteoblastic cell proliferation will open new possibilities for the development of artificial scaffolds for bone tissue regeneration.
NASA Astrophysics Data System (ADS)
Bhagwan, Jai; Sivasankaran, V.; Yadav, K. L.; Sharma, Yogesh
2016-09-01
Porous nanofibric network of spinel CoMn2O4 (CMO) are fabricated by facile electrospinning process and characterized by XRD, BET, TGA, FTIR, FESEM, TEM, XPS techniques. CMO nanofibers are employed as supercapacitor electrode for first time which exhibits high specific capacitance (Cs) of 320(±5) F g-1 and 270(±5) F g-1 at 1 A g-1 and 5 A g-1, respectively in 1 M H2SO4. CMO nanofibers exhibit excellent cyclability (till 10,000 cycles @ 5 A g-1). To examine practical performance, solid-state symmetric supercapacitor (SSSC) is also fabricated using PVA-H2SO4 as gel electrolyte. The SSSC evinces high energy density of 75 W h kg-1 (comparable to Pb-acid and Ni-MH battery) along with high power density of 2 kW kg-1. Furthermore, a red colored LED (1.8 V @ current 20 mA) was lit for 5 min using single SSSC device supporting its output voltage of 2 V. This high performance of CMO in both aqueous and SSSC is attributed to one dimensional nanofibers consisting of voids/gaps with minimum inter-particle resistance that facilitates smoother transportation of electrons/ions. These voids/gaps in CMO (structural as well as morphological) act as intercalation/de-intercalation sites for extra storage performance, and also works as buffering space to accommodate stress/strain produced while long term cyclings.
pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation.
Guha, Arijit; Biswas, Nikhil; Bhattacharjee, Kaustav; Sahoo, Nityananda; Kuotsu, Ketousetuo
2016-11-01
The objective of the present study was to develop novel PMV [poly (methacrylic acid-co-vinyl triethoxylsilane)]-coated mesoporous silica nanoparticles (MSN) with improved hypoglycemic effect for oral insulin (INS) delivery. MSN was synthesized under acidic condition using Pluronic® P 123 and Tetra ethoxy orthosilane. Surfactant was removed by calcination. Calcined MSN was coated with pH sensitive polymer PMV. Cytotoxicity of this coated MSN was evaluated by MTT assay using CHO-K1 cell line. Different MSN samples were characterized with BET surface area analyzer, FESEM, TEM, FT-IR, XRD, TG-DTA. In vivo study was performed using male rats. Pharmacokinetic study was conducted using HPLC. Highest surface area (304.3921 m 2 /g) was observed in case of calcined sample. Adsorption pore width of final coated sample was highest (64.7844 nm) compared with others. No noticeable cytotoxicity was observed for this coated support. The entrapment efficiency of insulin was found to be 39.39%. In vitro studies were done at different pH using Franz-diffusion cell. Results showed significant release at pH 7.4. Cumulative drug release over a period of 6 h was more than 48% at this systemic pH. Effect of this MSN-PMV-INS on blood glucose level was retained for 16 h. This novel formulation has shown 73.10% relative bioavailability of insulin. A novel-coated mesoporous silica support was successfully developed for delivery of insulin through oral route.
NASA Astrophysics Data System (ADS)
Samdani, Jitendra; Samdani, Kunda; Kim, Nam Hoon; Lee, Joong Hee
2017-03-01
Herein, reduced graphene oxide (rGO)/MnO2 hybrid materials were prepared via a direct redox reaction between MnCl2 and KMnO4 on reduced graphene oxide (rGO). A systematic study was carried out to understand the role of KMnO4. The morphology and microstructure of the as-prepared composite was characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman Spectroscopy. Results indicate that the concentrations of KMnO4 have a detrimental effect on the distribution of MnO2 nanoparticles on rGO sheets and hence on electrochemical properties. The electrochemical capacitive behavior of the as-prepared composite was investigated using cyclic voltammetry (CV), galvanostatic charge discharge, and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 aqueous electrolyte solution. At the optimum concentration of KMnO4, the as-prepared rGM-1 composite shows a high specific capacitance of 366 F/g at a scan rate of 10 mV/s. The composite also exhibits good electrocatalytic activity towards the oxidation of dopamine (DA), exhibiting a low detection limit of 2.3 × 10-7 M with a wide linear range between 2.5 × 10-7 M and 2.30 × 10-4 M. Hence, the use of rGO/MnO2 at an optimized concentration of KMnO4 is a potential competitive candidate in supercapacitor and biosensor applications.
NASA Astrophysics Data System (ADS)
Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.
2015-11-01
The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.
NASA Astrophysics Data System (ADS)
Wang, Ding; Zhang, Minglu; Zhuang, Huaijuan; Chen, Xu; Wang, Xianying; Zheng, Xuejun; Yang, Junhe
2017-02-01
(GaN)1-x(ZnO)x composite nanofibers with hollow structure were prepared by initial electrospinning, and the subsequent calcination and nitridation. The structure and morphology characteristics of samples were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The characterization results showed the phase transition from ZnGa2O4 to (GaN)1-x(ZnO)x solid-solution under ammonia atmosphere. The preparation conditions were explored and the optimum nitridation temperature and holding time are 750 °C and 2 h, respectively. The photocatalytic properties of (GaN)1-x(ZnO)x with different Ga:Zn atomic ratios were investigated by degrading Rhodamine B under the visible light irradiation. The photocatalytic activity sequence is (GaN)1-x(ZnO)x (Ga:Zn = 1:2) > (GaN)1-x(ZnO)x (Ga:Zn = 1:3) > ZnO nanofibers > (GaN)1-x(ZnO)x (Ga:Zn = 1:4) > (GaN)1-x(ZnO)x (Ga:Zn = 1:1). The photocatalytic mechanism of the (GaN)1-x(ZnO)x hollow nanofibers was further studied by UV-vis diffuse reflectance spectra. The excellent photocatalytic performance of (GaN)1-x(ZnO)x hollow nanofibers was attributed to the narrow band gap and high surface area of porous nanofibers with hollow structure.
Ojha, Gunendra Prasad; Pant, Bishweshwar; Park, Soo-Jin; Park, Mira; Kim, Hak-Yong
2017-05-15
A novel and efficient CeO 2 -doped MnO 2 nanorods decorated reduced graphene oxide (CeO 2 -MnO 2 /RGO) nanocomposite was successfully synthesized via hydrothermal method. The growth of the CeO 2 doped MnO 2 nanorods over GO sheets and reduction of GO were simultaneously carried out under hydrothermal treatment. The morphology and structure of as-synthesized nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which revealed the formation of CeO 2 -MnO 2 decorated RGO nanocomposites. The electrochemical performance of as-prepared CeO 2 -MnO 2 /RGO nanocomposites as an active electrode material for supercapacitor was evaluated by cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) methods in 2M alkaline medium. The obtained results revealed that as-synthesized CeO 2 -MnO 2 /RGO nanocomposite exhibited higher specific capacitance (648F/g) as compared to other formulations (MnO 2 /RGO nanocomposites: 315.13 F/g and MnO 2 nanorods: 228.5 F/g) at the scan rate of 5mV/s. After 1000 cycles, it retained ∼90.4%, exhibiting a good stability. The high surface area, enhanced electrical conductivity, and good stability possess by the nanocomposite make this material a promising candidate to be applied as a supercapacitor electrode. Copyright © 2017 Elsevier Inc. All rights reserved.
S, Gowri; K, Gopinath; A, Arumugam
2018-03-01
The present study reports the biogenic synthesis of Cadmium Oxide Nanoparticles (CdO NPs) using plant pathogenic fungus Nigrospora oryzae culture filtrate. Further, the effect of the NPs on the cancer cell line (HeLa) is explored. The sample was characterized using Thermogravimetric/Differential Thermal (TG/DTA), Powder X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Field Emission Transmission Electron Microscopy (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED) analysis. Antibacterial activity was evaluated against both Gram positive and Gram negative bacterial strains and it showed maximum activity against Proteus vulgaris. The larvicidal activity was performed to evaluate the maximum ability of synthesized CdO NPs against Anopheles stephensi. Subsequently, MTT assay also depicted the dose-dependent anticancer activity of CdO NPs against cancer cell line (HeLa). Additionally, the inhibitory effect of CdO NPs was analyzed through extensive docking with cancerous protein agent. Results enlighten that Transketolase protein exhibited high docking score of -4.8 k/mol with H-bond interactions found with Lys75 and Asn185 amino acid residues. DFT study was performed on CdO to understand the charge transfer reaction for the inhibitory mechanism. Convincingly, this study explores the understanding of CdO NPs against HeLa cells. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar
2016-02-01
Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.
NASA Astrophysics Data System (ADS)
Sehati, S.; Entezari, M. H.
2017-03-01
In this work, for the first time, CuO/Ti6O13 mesoporous nanocomposite was synthesized by direct intercalation of CuO nanoparticles into hexatitanate layers in the presence of ultrasound. In fact mesoporous potassium hexatitanate with high pore size (44.94 nm) was used as a support. CuO nanoparticles were grown into the titanate pores which caused formation of ultra small CuO with uniform size and high surface area. In fact, titanate is considered as a substrate for better dispersion and nucleation of the CuO nanoparticles which prevented the agglomeration and overgrowth of guest molecules. The prepared sample was characterized by XRD, FE-SEM, TEM, UV-vis spectra, N2 adsorption-desorption, Raman spectra and FT-IR techniques. The product was used as a heterogeneous Fenton-like catalyst for the degradation of Orang G (OG). The effect of important parameters, including pH, H2O2 addition rate and catalyst loading on the decolorization of OG were investigated. Based on the results, CuO/Ti6O13 catalyst exhibited high catalytic activity for OG degradation in aqueous solution at neutral pH of the dye. Moreover, breaking of H2O2 during the catalytic reaction was monitored by spectroscopic method. The results confirmed the decomposition of H2O2 to produce rad OH which is the main active species for the degradation of OG.
Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, A., E-mail: debnathanimesh@gmail.com; Bera, A.; Saha, B.
Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneousmore » powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.« less
Xiao, Wei; Zhou, Wenjie; Feng, Tong; Zhang, Yanhua; Liu, Hongdong; Tian, Liangliang
2016-09-20
MoS₂/RGO composite hollow microspheres were hydrothermally synthesized by using SiO₂/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO₂ microspheres. The structure, morphology, phase, and chemical composition of MoS₂/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS₂/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m²·g -1 . When used as supercapacitor electrode material, MoS₂/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g -1 at the current density of 1 A·g -1 , which was much higher than that of contrastive bare MoS₂ microspheres developed in the present work and most of other reported MoS₂-based materials. The enhancement of supercapacitive behaviors of MoS₂/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS₂/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g -1 , showing excellent application potential.
NASA Astrophysics Data System (ADS)
Motayed, A.; Davydov, A. V.; Boettinger, W. J.; Josell, D.; Shapiro, A. J.; Levin, I.; Zheleva, T.; Harris, G. L.
2005-05-01
Tungsten metal layer was used for the first time as an effective diffusion barrier for the standard Ti/Al/Ti/Au ohmic metallization scheme to obtain thermally stable ohmic contact suitable for high temperature applications. Comparative studies were performed on three distinct metallization schemes: 1) standard GaN/Ti/Al/Ti/Au, 2) GaN/Ti/Al/W/Au, and 3) GaN/Ti/Al/Ti/W/Au. For the GaN with doping level of 5 × 1017 cm-3, the lowest specific contact resistance for the Ti/Al/Ti/W/Au metallization scheme annealed in argon at 750 °C for 30 sec was 5 × 10-6 .cm2, which is comparable to the standard Ti/Al/Ti/Au scheme. X-ray diffractions (XRD), auger electron spectroscopy (AES) depth profiling, field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) revealed that the Ti/Al/Ti/W/Au metallization has superior morphology and microstructural properties compared to standard Ti/Al/Ti/Au metallizations. Remarkably, this metallization was able to withstand thermal aging at 500 °C for 50 hrs with only marginal morphological and electrical deterioration. These studies revealed that the utilization of a compound diffusion barrier stack, as in the Ti/Al/Ti/W/Au metallization, yields electrically, structurally, and morphologically superior metallizations with exceptional thermal stability.
Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting
NASA Astrophysics Data System (ADS)
Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S. M.; Sadrnezhaad, S. K.; Mohammadi, M. R.; Moghadam, H. Asgari; Forouzandeh, M.; Amin, M. H.
2018-05-01
Highly porous nanocomposites of graphitic-carbon nitride and tin oxide (g-C3N4/SnO2) were prepared through simple pyrolysis of urea molecules under microwave irradiation. The initial amount of tin was varied in order to investigate the effect of SnO2 content on preparation and properties of the composites. The synthesized nanocomposites were well-characterized by XRD, FE-SEM, HR-TEM, BET, FTIR, XPS, DRS, and PL. A homogeneous distribution of SnO2 nanoparticles with the size of less than 10 nm on the porous C3N4 sheets could be obtained, suggesting that in-situ synthesis of SnO2 nanoparticles was responsible for the formation of g-C3N4. The process likely occurred by the aid of the large amounts of OH groups formed on the surfaces of SnO2 nanoparticles during the polycondensation reactions of tin derivatives which could facilitate the pyrolysis of urea to carbon nitride. The porous nanocomposite prepared with initial tin amount of 0.175 g had high specific surface area of 195 m2 g-1 which showed high efficiency photoelectrochemical water-splitting ability. A maximum photocurrent density of 33 μA cm-2 was achieved at an applied potential of 0.5 V when testing this nanocomposite as photo-anode in water-splitting reactions under simulated visible light irradiation, introducing it as a promising visible light photoactive material.
Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui
2018-04-19
In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm 2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.
NASA Astrophysics Data System (ADS)
Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui
2018-04-01
In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.
Poddar, Maneesh Kumar; Sharma, Sachin; Pattipaka, Srinivas; Pamu, D; Moholkar, Vijayanand S
2017-11-01
The present study reports synthesis and characterization of poly(MMA-co-BA)/ZnO nanocomposites using ultrasound-assisted in-situ emulsion polymerization. Methyl methacrylate (MMA) was copolymerized with butyl acrylate (BA), for enhanced ductility of copolymer matrix, in presence of nanoscale ZnO particles. Ultrasound generated strong micro-turbulence in reaction mixture, which resulted in higher encapsulation and uniform dispersion of ZnO (in native form - without surface modification) in polymer matrix, as compared to mechanical stirring. The nanocomposites were characterized for physical properties and structural morphology using standard techniques such as XRD, FTIR, particle size analysis, UV-Visible spectroscopy, electrical conductivity, TGA, DSC, FE-SEM and TEM. Copolymerization of MMA and BA (in presence of ZnO) followed second order kinetics. Thermal stability (T 10% =324.9°C) and glass transition temperature (T g =67.8°C) of poly(MMA-co-BA)/ZnO nanocomposites showed significant enhancement (35.1°C for 1wt% ZnO and 15.7°C for 4wt% ZnO, respectively), as compared to pristine poly(MMA-co-BA). poly(MMA-co-BA)/ZnO (5wt%) nanocomposites possessed the highest electrical conductivity of 0.192μS/cm and peak UV absorptivity of 0.55 at 372nm. Solution rheological study of nanocomposites revealed enhancement in viscosity with increasing ZnO loading. Maximum viscosity of 0.01Pa-s was obtained for 5wt% ZnO loading. Copyright © 2017 Elsevier B.V. All rights reserved.
Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud
2017-03-15
For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd 2+ ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd 2+ ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Interaction of Metal Oxides with Biomolecules: Implication in Astrobiology
NASA Astrophysics Data System (ADS)
Kamaluddin; Iqubal, Md. Asif
2014-08-01
Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Polymerization of biomonomers could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.
Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh
2017-05-10
In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.
Nickel nanofibers synthesized by the electrospinning method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Yi; Zhang, Xuebin, E-mail: zzhhxxbb@126.com; Zhu, Yajun
2013-07-15
Highlights: ► The nickel nanofibers have been obtained by electrospinning method. ► The nickel nanofibers had rough surface which was consisted of mass nanoparticles. ► The average diameter of nickel nanofibers is about 135 nm and high degree of crystallization. ► The Hc, Ms, and Mr were estimated to be 185 Oe, 51.9 and 16.9 emu/g respectively. - Abstract: In this paper, nickel nanofibers were prepared by electrospinning polyvinyl alcohol/nickel nitrate precursor solution followed by high temperature calcination in air and deoxidation in hydrogen atmosphere. The thermal stability of the as-electrospun PVA/Ni(NO{sub 3}){sub 2} composite nanofibers were characterized by TG–DSC.more » The morphologies and structures of the as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electronmicroscope (FE-SEM) and field-emission transmission electron microscopy (FE-TEM). The hysteresis loops (M–H loops) were measured by Physical Property Measurement System (PPMS). The results indicate that: the PVA and the nickel nitrate were almost completely decomposed at 460 °C and the products were pure nickel nanofibers with face-centered cubic (fcc) structure. Furthermore, the as-prepared nickel nanofibers had a continuous structure with rough surface and high degree of crystallization. The average diameter of nickel nanofibers was about 135 nm. The nanofibers showed a stronger coercivity of 185 Oe than value of bulk nickel.« less
Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo
2016-01-01
In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.
NASA Astrophysics Data System (ADS)
Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia
2018-05-01
Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani
The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less
Structural studies of ZnO nanostructures by varying the deposition parameters
NASA Astrophysics Data System (ADS)
Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.
2017-01-01
The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.
Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method
NASA Astrophysics Data System (ADS)
Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza
2017-08-01
In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, I.R. Iran; Zadehnazari, Amin
Multi-walled carbon nanotubes (MWCNTs) were functionalized by ascorbic acid by a fast strategy under microwave irradiation to improve interfacial interactions and dispersion of CNTs in a poly(amide–imide) (PAI) matrix. This technique provides a rapid and economically viable route to produce covalently functionalized CNTs. The as-prepared, new type of functionalized CNTs were analyzed by several techniques. The thermal stabilities and mechanical interfacial properties of CNT/PAI composites were investigated using several techniques. The dispersion state of CNTs in the PAI matrix was observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The mechanical interfacial property of the compositesmore » was significantly increased by the addition of ascorbic acid treated CNTs. The FE-SEM and TEM results showed that the separation and uniform dispersion of CNTs in the PAI matrix. The overview of these recent results is presented. -- Graphical abstract: Presentation of possible interactions of hydrogen bonding between the MWCNT-AS and the PAI chains. Highlights: • Surface functionalization of MWCNTs with ascorbic acid under microwave irradiation. • The MWCNT-AS/PAI composite films were fabricated by solution blending process. • Microstructure and MWCNT states in the composites were studied. • Thermal and mechanical properties of the composite films were evaluated. • Films of different contents of the MWCNTs-AS showed a superior tensile behavior.« less
NASA Astrophysics Data System (ADS)
Mohamed, Ibrahim M. A.; Dao, Van-Duong; Yasin, Ahmed S.; Barakat, Nasser A. M.; Choi, Ho-Suk
2017-04-01
This study presents the combination of N, graphene oxide (GO) and SnO2 as efficient dopants into TiO2 nanofibers (NFs) photoanode substrate for highly efficient dye-sensitized solar cells (DSCs). The developed NFs are synthesized by electrospinning and hydrothermal processes and characterized by FESEM, TEM, XPS, FT-IR, Raman and EDX-studies. The formation of short NFs is confirmed through FESEM and TEM measurements. As the results, the major crystal structure of TiO2 in the prepared NFs has anatase (85.23%) and rutile-structure (14.67%). XPS and EDX studies affirm that the material has Ti, O, Sn, N and C elements. In addition, FT-IR and Raman spectra give an indication about the GO-content. Typically, the DSC based on the novel NFs shows 6.18% efficiency. The Jsc, Voc, FF and Rct are estimated and found to be 10.32 mA cm-2, 0.825 V, 0.73 and 21.66 Ω, respectively. The high-power efficiency is contributed by three reasons. The first one is the high dye-loading (2.16 × 10-7 mol cm-2). The second reason is the enhanced charge transfer and decreasing of the electrons/holes recombination through formation of wide band-gap oxide (3.246 eV). Finally, the third one is GO-doping which may create new routes for the electron transfer in working electrode layer.
NASA Technical Reports Server (NTRS)
Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo
2012-01-01
The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates.
Silva, Chinthaka M; Rosseel, Thomas M; Kirkegaard, Marie C
2018-03-19
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18 , 4 × 10 19 , and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2 , with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.
Quantitative XRD analysis of {110} twin density in biotic aragonites.
Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro
2012-12-01
{110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Liange; Du Fanglin
2007-08-07
Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.
Structural and dielectric properties of Zn1-xAlxO nanoparticles
NASA Astrophysics Data System (ADS)
Giri, N.; Mondal, A.; Sarkar, S.; Ray, R.
2018-05-01
Aluminium doped ZnO (AZO) nano-crystalline sample has been synthesized using chemical precipitation method with different doping concentrations. Detailed structural and morphological investigations of Zn1-xAlxO have been carried out using X-ray diffraction (XRD) and FE-SEM, respectively. Dependence of grain size of AZO with dopant concentration has been studied. Ac conductivity, dielectric constant and dielectric loss of Zn1-xAlxO (0 ≤ x ≤ 0.1) are investigated as a function of frequency (ω) and doping concentration (x) at room temperature.
NASA Astrophysics Data System (ADS)
Bharathkumar, S.; Sakar, M.; Balakumar, S.
2018-04-01
We made an attempt to construct a photocatalytic and biosensor platform by using bismuth ferrite (BiFeO3/BFO) particulates and fibers nanostructures towards the degradation of dye and electrochemical sensing of ascorbic acid. The crystal phase and morphology of the BFO nanostructures were confirmed using XRD and FESEM respectively. Further, their photocatalytic activity was tested under sunlight. The BFO fibers showed relatively an enhanced degradation property and an efficient electrochemical sensing property compared to the Particulates.
NiCo2S4 nanorod embedded rGO sheets as electrodes for supercapacitor
NASA Astrophysics Data System (ADS)
Sarkar, Aatreyee; Bera, Supriya; Chakraborty, Amit Kumar
2018-04-01
We report the synthesis of a hybrid nanostructure based on NiCo2S4 and reduced graphene oxide (rGO) following a facile hydrothermal method. X-ray diffraction (XRD), and electron microscopy (FESEM and HRTEM) analyses showed rod-like NiCo2S4 nanostructures embedded in rGO sheets. The electrochemical analysis of the synthesized nanohybrid using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) revealed specific capacitance of 410 F/gm indicating its suitability as a good electrode material for supercapacitor.
Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.
Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A
2015-03-05
Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines
NASA Astrophysics Data System (ADS)
Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel
2012-03-01
The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.
Flower-like morphology of blue and greenish-gray ZnCoxAl2-xO4 nanopigments
NASA Astrophysics Data System (ADS)
Wahba, Adel Maher; Imam, N. G.; Mohamed, Mohamed Bakr
2016-02-01
In the present work, ZnCoxAl2 - xO4 (x = 0.00-1.50) nanosized pigments were synthesized for the first time by citrate-precursor autocombustion method and heat treatment at 900 °C. In this new nanopigment system the vacancies participate in the spinel structure since the divalent cobalt ions substitute the trivalent Al ions. Structural, microstructural and optical properties were investigated using XRD, FTIR, TEM, HRSEM, XRF, and PL techniques. XRD and FTIR spectra proved the formation of a pure cubic spinel phase. Size of the synthesized nano-crystals ranges from 15 to 60 nm, which is further confirmed with TEM micrographs. HRSEM confirms the microporous nature with flower-like morphology of the prepared nanopigments. Cation distribution has been suggested for the whole samples that matches quite well with XRD and IR experimental data. PL results show that the ZnCoxAl2 - xO4 pigments have good potential for use as a yellow-orange phosphor for displays and/or white light-emitting diodes.
Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika
2005-06-01
It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.
Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.
NASA Astrophysics Data System (ADS)
Du, Liangwei; Xian, Liang; Feng, Jia-Xun
2011-03-01
In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.
Meher, Niranjan; Iyer, Parameswar Krishnan
2017-06-08
Strategically, a series of five angular "V" shaped naphthalimide AIEEgens with varying pendant chains (butyl, hexyl, octyl, cyclohexyl and methylcyclohexyl) have been synthesized to fine-tune their nanomorphological and photophysical properties. With similar aromatic cores and electronic states, unexpected tuning of the condensed state emission colors and nanomorphologies (reproducible on any kind of surface) of naphthalimides has been achieved for the first time simply by varying their side chains. Conclusive analysis by various spectroscopic techniques (SC-XRD, powder-XRD, DLS, FESEM) and DFT computational studies confirmed the full control of the pendant chain (in terms of bulkiness around the naphthalimide core, which restricts the ease of intermolecular π-π interactions) over the nanoaggregate morphology and solid state emissive properties of the AIEEgens; this can be rationalized to all aggregation-prone systems. These comprehensive studies establish a conceptually unique yet simple and effective method to precisely tune the nanomorphologies and the emission colors of aggregation-prone small organic molecules by judicious choice of the non-conjugated pendant chain. Thus, considering the prime role of the active layer nanomorphology in all organic optoelectronic devices, this methodology may emerge as a promising tool to improve device performance. Among all the congeners, the hexyl chain-containing congener (HNQ) forms well-defined nanoribbons with smaller diameters (as confirmed from DLS: 166 nm and FESEM: 150 nm) and provides a larger surface area. Consequently, the HNQ-nanoribbons were employed as a fluorescent sensor for the discriminative detection of trinitrophenol (TNP) in pure aqueous media. FE-SEM images revealed that, upon gradual addition of TNP (10 nM to 100 μM), these nanoribbons undergo an aggregation/disaggregation process, forming non-fluorescent co-aggregates with TNP, and provide highly enhanced sensitivity compared to existing state-of-the-art on aggregation-prone systems. Fluorescence titration studies confirmed that HNQ can detect the presence of TNP as low as 16.8 ppb and can serve as a cost-effective portable device incorporated with UV-light for on-site visual detection of TNP, even in the presence of potentially competing nitroaromatic compounds.
Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application
NASA Astrophysics Data System (ADS)
Rajwar, Birendra Kumar; Sharma, Shailendra Kumar
2018-05-01
In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.
NASA Astrophysics Data System (ADS)
Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.
2016-07-01
In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.
Salari, M; Rezaee, M; Chidembo, A T; Konstantinov, K; Liu, H K
2012-06-01
The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.
Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval
2015-03-05
ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of Hydroxyapatite through Ultrasound and Calcination Techniques
NASA Astrophysics Data System (ADS)
Akindoyo, John O.; Beg, M. D. H.; Ghazali, Suriati; Akindoyo, Edward O.; Jeyaratnam, Nitthiyah
2017-05-01
There is a growing demand for hydroxyapatite (HA) especially in medical applications, production of HA which is totally green is however a challenge. In this research, HA was produced from biowaste through ultrasound followed by calcination techniques. Pre-treatment of the biowaste was effectively achieved through the help of ultrasound. After calcination at 950°C, the obtained HA was characterized through Thermogravimetric (TGA) analysis, X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Spectrum of the produced HA was compared with standard HA index. The spectrum is in agreement with the standard HA as confirmed through FTIR, XRD and TGA result. Furthermore, morphological study of the HA through Field emission scanning electron microscope (FESEM) shows almost uniform spherical shape for the HA as expected. Based on the results obtained herein, combining ultrasound with calcination can help to produce pure HA with potential medical applications without the use of any organic solvent.
Structural and optical studies of CuO nanostructures
NASA Astrophysics Data System (ADS)
Chand, Prakash; Gaur, Anurag; Kumar, Ashavani
2014-04-01
In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.
Allochthonous Addition of Meteoritic Organics to the Lunar Regolith
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Clemett, S.; Ross, D. K.; Le, L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.
2013-01-01
Preparation of lunar samples 74220,861 was discussed in detail in [3, 4]. Our analysis sequence was as follows: optical microscopy, UV fluorescence imaging, -Raman, FESEM-EDX imaging and mapping, FETEMEDX imaging and mapping of a Focused Ion Beam (FIB) extracted section, and NanoSIMs analysis. We observed fluffytextured C-rich regions of interest (ROI) on three different volcanic glass beads. Each ROI was several m2 in size and fluoresced when exposed to UV. Using FESEM/EDX, the largest ROI measured 36 m and was located on an edge of a plateau located on the uppermost surface of the bead. The ROI was covered on one edge by a siliceous filament emanating from the plateau surface indicating it was attached to the bead while on the Moon. EDX mapping of the ROI shows it is composed primarily of heterogeneously distributed C. Embedded with the carbonaceous phase are localized concentrations of Si, Fe, Al and Ti indicating the presence of glass and/or minerals grains. -Raman showed strong D- and G-bands and their associated second order bands; intensity and location of these bands indicates the carbonaceous matter is structurally disorganized. A TEM thin section was extracted from the surface of a glass bead using FIB microscopy. High resolution TEM imaging and selected area electron diffraction demonstrate the carbonaceous layer to be amorphous; it lacked any long or short range order characteristic of micro- or nanocrystalline graphite. Additionally TEM imaging also revealed the presence of submicron mineral grains, typically < 50 nm in size, dispersed within the carbonaceous layer. NanoSIMs data will be presented and discussed at the meeting. Given the noted similarities between the carbonaceous matter present on 74220 glass beads and meteoritic kerogen, we suggest the allochthonous addition of meteoritic organics as the most probable source for the C-rich ROIs.
Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles
NASA Astrophysics Data System (ADS)
Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.
2017-05-01
In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).
NASA Astrophysics Data System (ADS)
Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel
2015-12-01
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.
Catalytic activity of Ru-Sn/Al2O3 in reduction reaction of pollutant 4-Nitrophenol
NASA Astrophysics Data System (ADS)
Rini, A. S.; Radiman, S.; Yarmo, M. A.
2018-03-01
Ru-Sn/Al2O3 bimetallic nanocatalysts have been synthesized by using conventional and microwave impregnation methods. Structure and morphology of the samples were characterized using XRD, XPS, and TEM. XRD and XPS measurement have confirmed the presence of Ru and Sn in the samples. According to TEM results, the morphology of the catalyst strongly depends on the preparation route and stabilizing agent (i.e. PVP). The sample with PVP (polyvinylpyrrolidone) has better nanoparticles distribution over the support. A sample prepared by conventional method has an agglomeration of nanoparticles on the support. Catalytic activities of both samples were examined in the reduction reaction of pollutant, i.e. 4-nitrophenol. Catalytic examination showed that reaction rate of 4-nitrophenol reduction by using microwave-assisted sample has improved 3.5 times faster than conventional impregnation sample.
NASA Astrophysics Data System (ADS)
Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi
2018-01-01
The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Nida; Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my; Nik Malek, Nik Ahmad Nazim
Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W formore » 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.« less
Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films
NASA Astrophysics Data System (ADS)
Hussin, Rosniza; Husin, M. Asri
2017-12-01
Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.
NASA Astrophysics Data System (ADS)
Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Enev, Vojtěch; Hajdúchová, Miroslava
2017-08-01
In this study, NiFe2O4 nanoparticles were synthesized using a honey-mediated sol-gel combustion method. The synthesized nanoparticles and samples annealed at 800 °C and 1100 °C were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). XRD and Raman spectroscopy confirmed the formation of a cubic spinel ferrite structure. FE-SEM demonstrated the octahedral morphology of the NiFe2O4 spinel ferrite nanoparticles with sizes ranging from 10 to 70 nm. Quantitative analysis based on XPS suggested a mixed spinel structure comprising NiFe2O4 nanoparticles. XPS analysis determined occupation formulae of (Ni0.212+ Fe0.443+)[Ni0.792+ Fe1.563+]O4 and (Ni0.232+ Fe0.503+)[Ni0.772+ Fe1.503+]O4, for the as-prepared NiFe2O4 nanoparticles and those annealed at 1100 °C, respectively. Magnetic measurements showed that the saturation magnetization increased with the crystallite size from 32.3 emu/g (20 nm) to 49.9 emu/g (163 nm), whereas the coercivity decreased with the crystallite size from 162 Oe (20 nm) to 47 Oe (163 nm). Furthermore, the dielectric constant, dielectric loss tangent, and AC conductivity of the NiFe2O4 nanoparticles were dependent on the frequency (1-107 Hz) and grain size. The influence of the grain size was also observed by modulus spectroscopy based on the Cole-Cole plot.
Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.
2011-05-15
Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less
NASA Astrophysics Data System (ADS)
Kokila, T.; Ramesh, P. S.; Geetha, D.
2015-12-01
Biosynthesis of metallic silver nanoparticles has now become an alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized from Cavendish banana peel extract (CBPE) and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Atomic force microscopy (AFM), Field emission scanning electronic microscope (FESEM), Dynamic light scattering (DLS) and zeta potential (ZP). The AgNPs formation was confirmed by UV-visible spectroscopy through color conversion due to surface plasma resonance band at 430 nm. The effect of pH on nanoparticle synthesis was determined by adjusting the various pH of the reaction mixtures. The crystalline nature of nanoparticles was confirmed from the XRD pattern, and the grain size was found to be around 34 nm. To identify the compounds responsible for the bioreduction of Ag+ ion and the stabilization of AgNPs produced, the functional group present in Cavendish banana peel extract was investigated using FTIR. AFM has proved to be very helpful in determining morphological features and the diameter of AgNPs in the range of 23-30 nm was confirmed by FESEM. DLS studies revealed that the average size of AgNPs was found to be around 297 nm. Zeta potential value for AgNPs obtained was -11 mV indicating the moderate stability of synthesized nanoparticles. The antibacterial activity of the nanoparticles was studied against Gram-positive and Gram-negative bacteria. Biosynthesized AgNPs showed a strong DPPH radical and ABTS scavengers compared to the aqueous peel extract of Cavendish banana.
Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A
2015-12-01
Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.
Structural analysis of HyFlex EDM instruments.
Iacono, F; Pirani, C; Generali, L; Bolelli, G; Sassatelli, P; Lusvarghi, L; Gandolfi, M G; Giorgini, L; Prati, C
2017-03-01
To compare the phase transformation behaviour, the microstructure, the nano-hardness and the surface chemistry of electro-discharge machined HyFlex EDM instruments with conventionally manufactured HyFlex CM. New and laboratory used HyFlex EDM were examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nano-hardness and modulus of elasticity were also investigated using a maximum load of 20 mN with a minimum of 40 significant indentations for each sample. Raman spectroscopy and field emission-scanning electron microscope (FE-SEM) were used to assess the surface chemistry of HyFlex EDM. HyFlex CM were subjected to the same investigations and used as a comparison. Nano-indentation data were statistically analysed using the Student's t-test. XRD analysis on HyFlex EDM revealed the presence of martensite and rhombohedral R-phase, while a mixture of martensite and austenite structure was identified in HyFlex CM. DSC analysis also disclosed higher austenite finish (Af) temperatures for electro-discharge machining (EDM) instruments. Significant differences in nano-hardness and modulus of elasticity were found between EDM and CM files (P < 0.05). FE-SEM and EDS analyses confirmed that both new EDM and CM files were covered by an oxide layer. Micro-Raman spectroscopy assessed the presence of rutile-TiO 2 . HyFlex EDM revealed peculiar structural properties, such as increased phase transformation temperatures and hardness. Present results corroborated previous findings and shed light on the enhanced mechanical behaviour of these instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites
NASA Astrophysics Data System (ADS)
Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga
2016-06-01
Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.
Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics
2015-08-13
sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates
Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.
2018-03-07
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Formation of helical organic-inorganic hybrid silica nanotubes using a chiral anionic gelator.
Wang, Liwen; Wang, Hairui; Li, Yi; Zhuang, Wei; Zhu, Zhaoyong; Chen, Yuanli; Li, Baozong; Yang, Yonggang
2011-03-01
Right-handed helical organic-inorganic hybrid silica nanotubes were prepared using a chiral anionic gelator with 3-aminopropyltrimethoxysilane as a co-structure-directing agent and 1,4-bis(triethoxysilyl)benzene, 4,4'-bis(triethoxysilyl)-1,1'-biphenyl, bis(triethoxysilyl)methane, 1,2-bis(triethoxysilyl)ethane, and 1,2-bis(triethoxysilyl)ethene as the precursors. The sol-gel reactions were carried out in a mixture of water and ethanol at the volume ratio of 2.2:1.8. The nanostructures were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). For 4,4'-biphenylene-silica nanotube, the circular dichroism spectrum indicates at least some of the biphenyl rings within the walls stack in chiral form. The TEM images taken after different reaction time reveal a cooperative mechanism. The growth of the organic self-assemblies and the adsorption of the hybrid silica oligomers occurred at the same time.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul
2016-04-01
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.
NASA Astrophysics Data System (ADS)
Cartas, Andrew R.
The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Manisha, E-mail: guptamanisha69@yahoo.co.in; Sharma, Prashant K., E-mail: prashantnac@gmail.com
Multifunctional magnetic Nanoparticles (MFMNPs) are potentially applicable in both drug delivery systems (DDS) and hyperthermia treatment. Structural, surface morphology and optical property were investigated by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) measurement. Uniform Eu{sup 3+}:Gd{sub 2}O{sub 3} hollow microspheres of 1.8-2.0 μm diameters were synthesized by template based approach. We found that synthesized Hollow spheres are 100 nm in thickness. FE-SEM images revealed that the synthesized material are hollow in structure with good porous structure and these pores work as pathway for releasing drugs from the hollow particle inside. Luminescent properties of material were studiedmore » by room temperature photoluminescence emission spectra under the excitation of 275 nm. Material exhibit bright red emission corresponding to the {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of the activator ions under ultraviolet light excitation, which might find potential applications in fields such as drug delivery or biological labeling because of their excellent luminescence properties.« less
Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R; Zhuang, Meng-Xin
2016-09-20
The effects of plasticization and cross-linking on the performance of chitosan as promising proton exchange membranes (PEMs) for bioelectricity generation in microbial fuel cells (MFCs) were investigated. The physico-chemical properties of chitosan (CS), sorbitol-chitosan (S-CS), phosphorylated-chitosan (CS-P) and phosphorylated-sorbitol-chitosan (S-CS-P) membranes were investigated by FESEM-EDS, FTIR-ATR, XRD, TGA, tensile strength and sorption studies. The performance of the fabricated PEMs was assessed by power density and cation exchange capacity (CEC). Maximum power densities achieved were 130.03, 20.76, 94.59 and 7.42mW/m(2) for CS-P, S-CS-P, S-CS and CS membranes respectively. Phosphorylation of the CS membranes increased CEC and tensile strength, attributed to an increase in bonded amide and phosphate ionic surface groups. Further, 49.07% COD removal from municipal wastewater was achieved with CS-P membranes. Thus, through chemical modifications, the physico-chemical and mechanical properties of natural abundant biopolymer chitosan can be enhanced for its use as an environmentally sustainable PEM in MFC technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz; Wei, Shanghai; Han, Jie
In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientationmore » has been studied in detail.« less
Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.
2018-04-01
The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.
NASA Astrophysics Data System (ADS)
Labhane, P. K.; Patle, L. B.; Huse, V. R.; Sonawane, G. H.
2018-05-01
Ce doped ZnO nanoparticles coupled with graphene oxide (Ce-ZnO/GO) photocatalyst was prepared by co-precipitation and wet impregnation method. The effect of Ce doping on ZnO and ZnO-GO composite has been evaluated by using XRD, Williamson-Hall Plot, FESEM and EDX data. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of methylene blue (MB). Ce doped ZnO coupled with GO shows excellent catalytic efficiency compared to other samples, degrading MB completely within 120 min under day light.
Cr:SnO2 thin films-synthesis and characterization
NASA Astrophysics Data System (ADS)
Varghese, Anitta Rose; B. Bhadrapriya, C.; Amarendra, G.; Hussain, Shamima
2018-04-01
Thin films of pure and Chromium doped SnO2 were synthesized using sol-gel method by spin coating technique. XRD studies confirmed the formation of tetragonal structure for SnO2 thin films. Variations in peak width and position were identified with doping. The optical band gap of the undoped films was found to be 3.8eV and varied with doping. Raman spectrum gave signature peaks of Sn-O and Cr-O bonds for undoped and doped films. The uniformity of the samples and formation of aggregates were observed from FESEM analysis.
Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications
NASA Astrophysics Data System (ADS)
Chandran, Ramkumar; Mallik, Archana
2018-03-01
This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.
Synthesis of BiFeO3 thin films by chemical solution deposition - Structural and magnetic studies
NASA Astrophysics Data System (ADS)
Angappane, S.; Kambhala, Nagaiah
2012-06-01
BiFeO3 thin films were deposited on Si (100) substrates by chemical solution deposition. A precursor solution of bismuth acetate and iron acetylacetonate dissolved in distilled water and acetic acid was spin coated on to silicon substrates at ambient conditions, followed by drying and annealing at 650 °C. The films were characterized by XRD and FESEM to study structural properties and morphology. The magnetic properties studied by SQUID magnetometer shows the ferromagnetic nature of the chemical solution deposited BiFeO3 films which are crucial for low cost device applications.
Zinc oxide nano-rods based glucose biosensor devices fabrication
NASA Astrophysics Data System (ADS)
Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.
2018-06-01
ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.
A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead
NASA Astrophysics Data System (ADS)
Hussin, F.; Aroua, M. K.
2017-06-01
In this work, perforated zinc is proposed as a new anode for lead removal by hybrid solar electrocoagulation. The characteristics of the sludge were investigated to understand the behaviour of lead removal during electrocoagulation. Sludge products formed were characterised using X-ray diffraction (XRD), X-ray fluorescence (XRF) and Field Emission Scanning Electron Microscopy (FESEM). In addition, the pH variation during electrocoagulation and effects on the sludge products were examined. At optimum conditions showed that the perforated zinc electrode produced better performance with high removal efficiency, low sludge volume index and less energy consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana
The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less
Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd
2018-03-01
We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.
NASA Astrophysics Data System (ADS)
Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.
2017-05-01
In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.
NASA Astrophysics Data System (ADS)
Osuntokun, Jejenija; Ajibade, Peter A.
2015-07-01
[Cd(diptu)2(ced)], [Cd(diptu)2(ced)(bpy)], [Cd(diptu)2(ced)(phen)], (where diptu = diisopropyl thiourea; ced = 1-cyano-1-carboethoxylethylene-2,2‧-dithiolate; bpy = 2,2‧-bipyridine and phen = 1,10-phenanthroline) have been prepared and used as single source precursors for the preparation of hexadecylamine capped CdS nanoparticles. The precursor complexes were characterized by elemental analysis, FTIR and TGA. The structural properties of the nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy techniques (SEM). The optical properties of the nanoparticles were studied using UV-Visible and photoluminescence spectroscopy. The XRD analysis showed that the nanoparticles were indexed to the hexagonal phase of CdS and the TEM results showed CdS nanoparticles with average crystallite sizes of 4.00-8.80 nm.
NASA Astrophysics Data System (ADS)
Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed
2018-01-01
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.
Novel perovskite coating of strontium zirconate in Inconel substrate
NASA Astrophysics Data System (ADS)
Venkatesh, G.; Blessto, B.; Rao, C. Santhosh Kumar; Subramanian, R.; Berchmans, L. John
2018-02-01
Thermal Barrier Coatings (TBC) provides a low thermal conductivity barrier to heat transfer from the hot gas in the engine to the surface of the coated alloy component. SrZrO3 powder are prepared by Sol Gel synthesis method. The synthesized powder sample is characterized by X Ray Diffraction Technique (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the results are interpreted. The Polycrystalline nature of SrZrO3 is confirmed and lattice spacing are determined in XRD. SEM shows sub-micron sized particles and a fringed pattern is observed in TEM. The IN718 specimen is Wire Cut and Sand Blasted. A SrZrO3 double layer is coated over the Inconel specimen through a Bond Coat made of NiCoCrAlY by Plasma spraying Process and also characterized. SEM analysis of the Coating shows diffusion of Fe, Sr into the substrate.
Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3
Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun; ...
2018-01-17
Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less
Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun
Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less
NASA Astrophysics Data System (ADS)
Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail
2015-11-01
CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.
Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles
NASA Astrophysics Data System (ADS)
Swapna, P.; Venkatramana Reddy, S.
2018-02-01
We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.
Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications
NASA Astrophysics Data System (ADS)
Anilkumar, K. M.; Jinisha, B.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S.
2018-06-01
Lithium-Sulfur (Li-S) cells are emerging as the next generation energy storage devices owing to their impressive electrochemical properties with high theoretical specific capacity of 1675 mAh/g. Lack of electronic conductivity of sulfur, its volume expansion during high lithium intake and the shuttling effect due to the formation of soluble polysulfides are the main limitations, delaying the commercialization of this technology. To address these challenges, in the present work, the conducting polymer PEDOT:PSS is used as the covering matrix over the sulfur particles to improve their Li storage properties. The sulfur/PEDOT:PSS nanocomposite is synthesised using the hydrothermal process and its formation with the polymer coating over sulfur nanoparticles is established from the XRD, Raman spectroscopy, FE-SEM and TEM studies. The electrochemical studies show that the cells assembled using the sulfur/PEDOT:PSS nanocomposite as the cathode, with the components taken in the weight ratio of 9:1, offer a reversible capacity of 1191 mAh g-1 at 0.1C rate. These cells display stable electrochemical capacities over 200 cycles at gradually increasing current rates. The polymer layer facilitates electronic conduction and suppresses the polysulfide formation and the volume expansion of sulfur. A reversible capacity of 664 mAh g-1 is observed after 200 cycles at 1C rate with the capacity retention of 75 % of the initial stable capacity. The highlight of the present work is the possibility to achieve high discharge capacities at high C rates and the retention of a good percentage of the initial capacity over 200 cycles, for these Li-S cells.
Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii
2016-01-01
The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.
NASA Astrophysics Data System (ADS)
Nasrollahzadeh, Mahmoud; Sajjadi, Mohaddeseh; Khonakdar, Hossein Ali
2018-06-01
In this study, a convenient method for the synthesis of arylaminotetrazoles has been developed using a copper (II)-aminotetrazole complex immobilized on silica-coated Fe3O4 (Fe3O4@SiO2) nanoparticles (Fe3O4@SiO2-aminotet-Cu(II)) as a novel and efficient magnetically catalyst. The constructed superparamagnetic core-shell nanoparticles were successfully prepared, as proven using different spectroscopic techniques such as fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetry and differential thermogravimetry (TG-DTG) and vibrating sample magnetometer (VSM) analysis. The applicability of Fe3O4@SiO2-aminotet-Cu(II) magnetic catalyst allows the efficient synthesis of a variety of arylaminotetrazoles from the reaction between various arylcyanamides with sodium azide in high yields. The effect of catalyst loading was investigated. In addition, the reaction mechanism for the synthesis of arylaminotetrazoles was reasonably proposed. Results show that the 1-aryl-5-amino-1H-tetrazole (B isomer) and 5-arylamino-1H-tetrazole (A isomer) can be obtained from the arylcyanamides carrying electron-donating and electron-withdrawing substituents, respectively. This procedure offers a simple methodology, relatively short reaction times, easy work-up, high yields of the products and a cleaner reaction with elimination of hydrazoic acid (HN3). Moreover, catalyst can be conveniently recovered through the use of external magnet and reused for at least 6 times without any significant loss of its activity.
Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok
2016-09-01
Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Siqi; Wang, Jing; Zhang, Yang; Yu, Zhiming; Qi, Chusheng
2016-06-17
A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs) was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC) as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR) and ¹H nuclear magnetic resonance (NMR). The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM) analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag) were also explored. The results revealed that (1) QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC) chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH₂ sites on C2 position of the pyranoid ring; (2) uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3) Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17-31 nm without aggregation; and (4) due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC.
Lin, Liangwu; Sun, Xinyuan; Jiang, Yao; He, Yuehui
2013-12-21
Novel near-UV and blue excited Eu(3+), Tb(3+)-codoped one dimensional strontium germanate full-color nano-phosphors have been successfully synthesized by a simple sol-hydrothermal method. The morphologies, internal structures, chemical constitution and optical properties of the resulting samples were characterized using FE-SEM, TEM, HRTEM, EDS, XRD, FTIR, XPS, PL and PLE spectroscopy and luminescence decay curves. The results suggested that the obtained Eu(3+), Tb(3+)-codoped strontium germanate nanowires are single crystal nanowires with a diameter ranging from 10 to 80 nm, average diameter of around 30 nm and the length ranging from tens to hundreds micrometers. The results of PL and PLE spectra indicated that the Eu(3+), Tb(3+)-codoped single crystal strontium germanate nanowires showed an intensive blue, blue-green, green, orange and red or green, orange and red light emission under excitation at 350-380 nm and 485 nm, respectively, which may attributed to the coexistent Eu(3+), Eu(2+) and Tb(3+) ions, and the defects located in the strontium germanate nanowires. A possible mechanism of energy transfer among the host, Eu(3+) and Tb(3+) ions was proposed. White-emission can be realized in a single-phase strontium germanate nanowire host by codoping with Tb(3+) and Eu(3+) ions. The Eu(3+), Tb(3+)-codoped one-dimensional strontium germanate full-color nano-phosphors have superior stability under electron bombardment. Because of their strong PL intensity, good CIE chromaticity and stability, the novel 1D strontium germanate full-color nano-phosphors have potential applications in W-LEDs.
NASA Technical Reports Server (NTRS)
Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.;
2017-01-01
Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.
Lee, Gooyong; Ibrahim, Shaliza; Kittappa, Shanmuga; Park, Heekyung; Park, Chang Min
2018-06-01
Novel heterostructured β-Bi 2 O 3 /Bi 2 O 2 CO 3 nanoplates (hBN) were synthesized to observe the sonocatalytic degradation of bisphenol A (BPA) (widely used as a model pollutant) under ultrasonic (US) irradiation. Prior to obtaining the hBN, the Bi 2 O 2 CO 3 micropowder precursor was prepared under hydrothermal conditions and then converted to hBN by increasing the calcination temperature to 300 °C. The synthesized hBN samples were characterized by field emission scanning electron microscope with energy dispersive X-ray analysis (FESEM/EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer diffuse reflection spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The hBN/US system exhibited greater sonocatalytic activity for the degradation of BPA than the US treatment with the single element bismuth oxide, β-Bi 2 O 3 prepared by annealing the Bi 2 O 2 CO 3 precursor at 400 °C for 1 h. The US frequency and US power intensity in the hBN/US system were the key operating parameters, which were responsible for the complete degradation of BPA during 6 h of reactions. The degradation efficiency of BPA under the US irradiation was positively correlated with the dose of hBN. Our findings indicate that heterostructured hBN can be used as an efficient sonocatalyst for the catalytic degradation of BPA in water and wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Qing; Zhong, Lu-Bin; Zhao, Quan-Bao; Frear, Craig; Zheng, Yu-Ming
2015-07-15
Novel Fe3O4/polyacrylonitrile (PAN) composite nanofibers (NFs) were prepared by a simple two-step process, an electrospinning and solvothermal method. Characterization by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) demonstrated formation of a uniform nanoparticles coating (about 20 nm in thickness) on the PAN nanofiber backbone. The coating was constructed by well-crystallized cubic phase Fe3O4 nanoparticles as examined by X-ray diffraction spectroscopy (XRD). The coating doubled the specific surface area of NFs, from 8.4 to 17.8 m2 g(-1), as confirmed by nitrogen sorption isotherm analysis. To evaluate the feasibility of Fe3O4/PAN composite NFs as a potential adsorbent for antibiotic removal, batch adsorption experiments were conducted using tetracycline (TC) as the model antibiotic molecule. The results showed that Fe3O4/PAN composite NFs were effective in removing TC with no impactful loss of Fe in the pH regime of environmental interest (5-8). The adsorption of TC onto Fe3O4/PAN composite NFs better fitted the pseudo-second-order kinetics model, and the maximum adsorption capacity calculated from Langmuir isotherm model was 257.07 mg g(-1) at pH 6. The composite NFs also exhibited good regenerability over repeated adsorption/desorption cycles. Surface complexation between TC and the composite NFs contributed most to the adsorption as elucidated by X-ray photoelectron spectroscopy (XPS). This highly effective and novel adsorbent can be easily modularized and separated, promising its huge potential in drinking and wastewater treatment for antibiotic removal.
Synthesis and characterization of copper zinc oxide nanoparticles obtained via metathesis process
NASA Astrophysics Data System (ADS)
Phoohinkong, Weerachon; Foophow, Tita; Pecharapa, Wisanu
2017-09-01
Copper-doped zinc oxide nanoparticles were successfully synthesized by grinding copper acetate and zinc acetate powder with different starting molar ratios in combined with sodium hydroxide. The effect of initial copper and zinc molar ratios on the product samples was investigated and discussed. Relevant ligand coordination type of reactant acetate salt precursors and product samples were investigated by Fourier transform infrared spectroscopy (FTIR). The particle shapes and surface morphologies were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Phase structures of prepared samples were studied by x-ray powder diffraction (XRD) and x-ray absorption near-edge spectroscopy (XANES) was applied to investigate the local structure of Cu and Zn environment atoms. The results demonstrate that the, particle size of as-synthesized products affected by copper concentration in the precursor trend to gradually decreases from nanorod shape with diameter around 50-100 nm to irregular particle structure around 5 nm associated with an increase in the concentration of copper in precursor. Moreover, it is noticed that shape and morphology of the products are strongly dependent on Cu:Zn ratios during the synthesis. Nanocrystallines Cu-doped ZnO by the substitution in Zn site with a high crystallization degree of hexagonal wurtzite structure were obtained. This synthesis technique is suggested as a potential effective technique for preparing copper zinc oxide nanoparticles with various atomic ratio in wide range of applications. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.
Samanta, Aniruddha; Podder, Soumik; Ghosh, Chandan Kumar; Bhattacharya, Manjima; Ghosh, Jiten; Mallik, Awadesh Kumar; Dey, Arjun; Mukhopadhyay, Anoop Kumar
2017-08-01
The present work provides the first ever report on extraordinarily high antibacterial efficacy of phase pure micro-layered calcium hydroxide nanoparticles (LCHNPs) even under dark condition. The LCHNPs synthesized especially in aqueous medium by a simple, inexpensive method show adequate mechanical properties along with the presence of a unique strain tolerant behaviour. The LCHNPs are characterized by FTIR, Raman spectroscopy, XRD, Rietveld analysis, FE-SEM, TEM, TG-DTA, surface area, particle size distribution, zeta potential analysis and nanoindentation techniques. The LCHNPs have 98.1% phase pure hexagonal Ca(OH) 2 as the major phase having micro-layered architecture made up of about ~100-200nm thick individual nano-layers. The nanomechanical properties e.g., nanohardness (H) and Young's modulus (E) of the LCHNPs are found to have a unique load independent behavior. The dielectric responses (e.g., dielectric constant and dielectric loss) and antibacterial properties are evaluated for such LCHNPs. Further, the LCHNPs show much better antibacterial potency against both gram-positive e.g., Staphylococcus aureus (S. aureus) and gram-negative e.g., Pseudomonas putida (P. putida) bacteria even in dark especially, with the lowest ever reported MIC value (e.g., 1 μg ml -1 ) against the P. putida bacterial strain and exhibit ROS mediated antibacterial proficiency. Finally, such LCHNPs has almost ~8-16% inhibition efficacy towards the development of biofilm of these microorganisms quantified by colorimetric detection process. So, such LCHNPs may find potential applications in the areas of healthcare industry and environmental engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiang, Jun; Chu, Yanqiu; Shen, Xiangqian; Zhou, Guangzhen; Guo, Yintao
2012-06-15
Uniform Co(1-)(x)Ni(x)Fe(2)O(4) (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanofibers with average diameter of 110 nm and length up to several millimeters were prepared by calcination of electrospun precursor nanofibers containing polymer and inorganic salts. The as-spun and calcined nanofibers were characterized in detail by TG-DTA, XRD, FE-SEM, TEM, SAED and VSM, respectively. The effect of composition of the nanofibers on the structure and magnetic properties were investigated. The nanofibers are formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) as the structure-directing template. The structural characteristics and magnetic properties of the resultant nanofibers vary with chemical composition and can be tuned by adjusting the Co/Ni ratio. Both lattice parameter and particle size decrease gradually with increasing nickel concentration. The saturation magnetization and coercivity lie in the range 29.3-56.4 emu/g and 210-1255 Oe, respectively, and both show a monotonously decreasing behavior with the increase in nickel concentration. Such changes in magnetic properties can mainly be attributed to the lower magnetocrystalline anisotropy and the smaller magnetic moment of Ni(2+) ions compared to Co(2+) ions. Furthermore, the coercivity of Co-Ni ferrite nanofibers is found to be superior to that of the corresponding nanoparticle counterparts, presumably due to their large shape anisotropy. These novel one-dimensional Co-Ni ferrite magnetic nanofibers can potentially be used in micro-/nanoelectronic devices, microwave absorbers and sensing devices. Copyright © 2012 Elsevier Inc. All rights reserved.
Nosheen, Erum; Shah, Syed Mujtaba; Hussain, Hazrat; Murtaza, Ghulam
2016-09-01
This article presents a comprehensive relative report on the grafting of ZnS with renowned ruthenium ((Ru) dyes i.e. N3, N719 and Z907) and gives insight into their charge transfer interaction and sensitization mechanism for boosting solar cell efficiency. Influence of dye concentration on cell performance is also reported here. ZnS nanoparticles synthesized by a simple coprecipitation method with an average particle size of 15±2nm were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Elemental dispersive X-ray analysis (EDAX), tunneling electron microscopy (TEM) and UV-Visible (UV-Vis) spectroscopy. UV-Vis, photoluminescence (PL) and Fourier transform infra-red (FT-IR) spectroscopy confirms the successful grafting of these dyes over ZnS nanoparticles surface. Low-energy metal-to-ligand charge-transfer transition (MLCT) bands of dyes are mainly affected on grafting over the nanoparticle surface. Moreover their current voltage (I-V) results confirm the efficiency enhancement in ZnS solid state dye sensitized solar cells (SSDSSCs) owing to effective sensitization of this material with Ru dyes and helps in finding the optimum dye concentration for nanoparticles sensitization. Highest rise in overall solar cell efficiency i.e. 64% of the reference device has been observed for 0.3mM N719-ZnS sample owing to increased open circuit voltage (Voc) and fill factor (FF). Experimental and proposed results were found in good agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.
Gas Sensing Properties of ZnO-SnO2 Nanostructures.
Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen
2015-02-01
One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.