The structural properties of flower-like ZnO nanostructures on porous silicon
NASA Astrophysics Data System (ADS)
Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah
2018-05-01
The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
NASA Astrophysics Data System (ADS)
Liu, Haibo; Chen, Tianhu; Xie, Qiaoqin; Zou, Xuehua; Chen, Chen; Frost, Ray L.
2015-09-01
Nano zero valent iron (NZVI) was prepared by reducing natural limonite using hydrogen. X-ray fluorescence, thermogravimetry, X-ray diffraction, transmission electron microscope, temperature programmed reduction (TPR), field emission scanning electron microscope/energy disperse spectroscopy (FESEM/EDS) were utilized to characterize the natural limonite and reduced limonite. The ratios of Fe:O before and after reducing was determined using EDS. The reactivity of the NZVI was assessed by decomposition of p-nitrophenol ( p-NP) and was compared with commercial iron powder. In this study, the results of TPR and FESEM/EDS indicated that NZVI can be prepared by reducing natural limonite using hydrogen. Most importantly, this NZVI was proved to have a good performance on decomposition of p-NP and the process of p-NP decomposition agreed well with the pseudo-first-order kinetic model. The reactivity of this NZVI for decomposition of p-NP was greatly superior to that of commercial iron powder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH{sub 4}. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10{sup −3} S{sup −1} by NaBH{sub 4} using Spectrophotometer.
A Potential Waste to be Selected as Media for Metal and Nutrient Removal
NASA Astrophysics Data System (ADS)
Zayadi, N.; Othman, N.; Hamdan, R.
2016-07-01
This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.
NASA Astrophysics Data System (ADS)
Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya
2018-03-01
The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.
NASA Astrophysics Data System (ADS)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.
2016-05-01
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.
NASA Astrophysics Data System (ADS)
Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan
2018-04-01
Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.
Investigation of magnetic and structural properties of Ni-Zr co-doped M-type Sr-La hexaferrites
NASA Astrophysics Data System (ADS)
Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Huang, Duohui; Tang, Jin; Rehman, Khalid Mehmood Ur
2018-02-01
In this research, Ni2+ and Zr4+ co-doped Sr-La hexaferrites Sr0.7La0.3Fe12.0-2 x (NiZr) x O19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters ( c and a) increased with increasing NiZr content ( x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization ( M s), remanent magnetization ( M r) and coercivity ( H c) were calculated from magnetic hysteresis ( M- H) loops. M s and H c decreased with increasing NiZr content ( x) from 0.0 to 0.5. M r and M r/ M s ratio first increased with increasing NiZr content ( x) from 0.0 to 0.1, and then decreased when NiZr content ( x) ≥ 0.1.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul
2016-04-01
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.
Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires
NASA Astrophysics Data System (ADS)
Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.
Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.
Structural and dielectric properties of Zn1-xAlxO nanoparticles
NASA Astrophysics Data System (ADS)
Giri, N.; Mondal, A.; Sarkar, S.; Ray, R.
2018-05-01
Aluminium doped ZnO (AZO) nano-crystalline sample has been synthesized using chemical precipitation method with different doping concentrations. Detailed structural and morphological investigations of Zn1-xAlxO have been carried out using X-ray diffraction (XRD) and FE-SEM, respectively. Dependence of grain size of AZO with dopant concentration has been studied. Ac conductivity, dielectric constant and dielectric loss of Zn1-xAlxO (0 ≤ x ≤ 0.1) are investigated as a function of frequency (ω) and doping concentration (x) at room temperature.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha
ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less
Hesabi, Zohreh R; Allam, Nageh K; Dahmen, Klaus; Garmestani, Hamid; A El-Sayed, Mostafa
2011-04-01
In the present study, we report for the first time synthesis of TiO(2) nanotubes/CNTs heterojunction membrane. Chemical vapor deposition (CVD) of CNTs at 650 °C in a mixture of H(2)/He atmosphere led to in situ detachment of the anodically fabricated TiO(2) nanotube layers from the Ti substrate underneath. Morphological and structural evolution of TiO(2) nanotubes after CNTs deposition were investigated by field- emission scanning electron microscopy (FESEM), glancing angle X-ray diffraction (GAXRD), and X-ray photoelectron spectroscopy (XPS) analyses. © 2011 American Chemical Society
A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead
NASA Astrophysics Data System (ADS)
Hussin, F.; Aroua, M. K.
2017-06-01
In this work, perforated zinc is proposed as a new anode for lead removal by hybrid solar electrocoagulation. The characteristics of the sludge were investigated to understand the behaviour of lead removal during electrocoagulation. Sludge products formed were characterised using X-ray diffraction (XRD), X-ray fluorescence (XRF) and Field Emission Scanning Electron Microscopy (FESEM). In addition, the pH variation during electrocoagulation and effects on the sludge products were examined. At optimum conditions showed that the perforated zinc electrode produced better performance with high removal efficiency, low sludge volume index and less energy consumption.
Surface morphology and electrochemical studies on polyaniline/CuO nano composites
NASA Astrophysics Data System (ADS)
Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.
2018-05-01
An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).
Metal copper films deposited on cenosphere particles by magnetron sputtering method
NASA Astrophysics Data System (ADS)
Yu, Xiaozheng; Xu, Zheng; Shen, Zhigang
2007-05-01
Metal copper films with thicknesses from several nanometres to several micrometres were deposited on the surface of cenosphere particles by the magnetron sputtering method under different working conditions. An ultrasonic vibrating generator equipped with a conventional magnetron sputtering apparatus was used to prevent the cenosphere substrates from accumulating during film growth. The surface morphology, the chemical composition, the average grain size and the crystallization of cenosphere particles were characterized by field emission scanning electron microscopy (FE-SEM), inductively coupled plasma-atom emission spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction (XRD) analysis, respectively, before and after the plating process. The results indicate that the copper films were successfully deposited on cenosphere particles. It was found from the FE-SEM results that the films were well compacted and highly uniform in thickness. The XRD results show that the copper film coated on cenospheres has a face centred cubic structure and the crystallization of the film sample increases with increasing sputtering power.
Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites
NASA Astrophysics Data System (ADS)
Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.
2018-05-01
The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.
Synthesis & characterization of Bi7.38Ce0.62O12.3 and its optical and electrocatalytic property
NASA Astrophysics Data System (ADS)
Padmanaban, A.; Dhanasekaran, T.; Kumar, S. Praveen; Gnanamoorthy, G.; Stephen, A.; Narayanan, V.
2017-05-01
Bismuth cerium oxide was synthesized by thermal decomposition method. The material was characterized by X-ray diffraction technique, DRS UV-Vis, Raman spectral methods and FE-SEM. The electrocatalytic sensing activity of bismuth cerium oxide modified GCE toward 4-nitrophenol exhibits better activity than the bare GCE. The modified electrode shows higher anodic current response with lower potential.
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
NASA Astrophysics Data System (ADS)
Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.
2018-05-01
The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.
Novel anode catalyst for direct methanol fuel cells.
Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H
2014-01-01
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
Novel Anode Catalyst for Direct Methanol Fuel Cells
Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.
2014-01-01
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406
NASA Astrophysics Data System (ADS)
Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi
2017-10-01
Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.
Upender, G; Babu, J Chinna; Mouli, V Chandra
2012-04-01
X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), infrared (IR), Raman, electron paramagnetic resonance (EPR) and optical absorption studies on 10Li2O-xP2O5-(89-x)TeO2-1CuO glasses (where x=5, 10, 15, 20 and 25 mol%) have been carried out. The amorphous nature of the glasses was confirmed using XRD and FESEM measurements. The glass transition temperature (Tg) of glass samples have been estimated from DSC traces and found that the Tg increases with increasing P2O5 content. Both the IR and Raman studies have been showed that the present glass system consists of [TeO3], [TeO4], [PO3] and [PO4] units. The spin-Hamiltonian parameters such as g∥, g⊥, and A∥ have been determined from EPR spectra and it was found that the Cu2+ ion is present in tetragonal distorted octahedral site with [Formula: see text] as the ground state. Bonding parameters and bonding symmetry of Cu2+ ions have been calculated by correlating EPR and optical data and were found to be composition dependent. Copyright © 2012 Elsevier B.V. All rights reserved.
Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yao; He Xiaoyan; Cao Minhua
2008-11-03
ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.
Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Al-Ghamdi, Ahmed A.; Al-Hazmi, Faten; Al-Tuwirqi, R. M.; Alnowaiser, F.; Al-Hartomy, Omar A.; El-Tantawy, Farid; Yakuphanoglu, F.
2013-05-01
The superparamagnetic magnetite (Fe3O4) nanoparticles with an average size of 7 nm were synthesized using a rapid and facile microwave hydrothermal technique. The structure of the magnetite nanoparticles was characterized by X-ray diffraction (X-ray), field effect scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The prepared Fe3O4 was shown to have a cubic phase of pure magnetite. Magnetization hysteresis loop shows that the synthesized magnetite exhibits no hysteretic features with a superparamagnetic behavior. The ethanol gas sensing properties of the synthesized magnetite were investigated, and it was found that the responsibility time is less than 10 s with good reproducibility for ethanol sensor. Accordingly, it is evaluated that the magnetite nanoparticles can be effectively used as a solid state ethanol sensor in industrial commercial product applications.
NASA Astrophysics Data System (ADS)
Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi
2010-10-01
A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.
Effect of bismuth substitution in strontium hexaferrite
NASA Astrophysics Data System (ADS)
Sahoo, M. R.; Kuila, S.; Sweta, K.; Barik, A.; Vishwakarma, P. N.
2018-05-01
Bismuth (Bi) substituted M-type strontium hexaferrite (Sr1-xBix Fe12O19, x=0 and 0.02) are synthesized by sol-gel auto combustion method. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) shows increase in lattice parameter and particle size (500 nm to 3 micron) respectively, for Bi substituted sample. Magnetization via M-H shows decrease in magnetic hardness for Bi substituted samples. M-T data for parent (x=0) sample shows an antiferromagnetic transition in the ZFC plot at 495 °C. This antiferromagnetic transition is replaced by a ferromagnetic transition for FCW measurement. Similar behavior is displayed by the Bi substituted sample with transition temperature reduced to 455 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Qingtao; Huang Kai; Ni Shibing
Well-crystalline flower- and rod-like NiS nanostructures have been synthesized by an organic-free hydrothermal process at a low temperature of 200 deg. C. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to characterize the as-synthesized NiS nanostructures. The effects of temperature and reaction time on the morphology have been also investigated. The two-step flake-cracking mechanism for the formation of flower- and rod-like NiS nanostructures was discussed. The products were also investigated by photoluminescence (PL) spectroscopy.
Physical properties of nanostructured CeO2 thin films grown by SILAR method
NASA Astrophysics Data System (ADS)
Khan, Ishaque Ahmed; Belkhedkar, M. R.; Salodkar, R. V.; Ubale, A. U.
2018-05-01
Nanostructured CeO2 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrate using (CeNO3)3 6H2O and NaOH as cationic and anionic precursors respectively. The structural and morphological characterizations were carried out by means of X-ray diffraction, FTIR, FESEM and EDX studies. The highly resistive (1010 Ω cm) semiconducting CeO2 film exhibits 2.95 eV optical band gap.
Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab
2014-12-01
Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong
Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less
Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr
Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less
Synthesis and spectroscopic study of CdS nanoparticles using hydrothermal method
NASA Astrophysics Data System (ADS)
AL-Mamoori, Mohammed H. K.; Mahdi, Dunia K.; Al-Shrefi, Saif M.
2018-05-01
In this work, cadmium sulfide nanoparticles (powder) with diameter 50.8 nm was prepared using hydrothermal method. The structural and optical properties of CdS nanoparticles was studied by X-ray diffraction, FESEM, EDS, FTIR, UV-Diffuse Reflectance spectroscopy and Photoluminance spectrum. X-ray diffraction reveal the formation the purity of prepared phase of CdS particles with hexagonal wurtzite structure with particle size 31.8nm by using sheerer equation. The energy dispersion scattering (EDS) examination explains that the sample is composed of a large amount of Cd and S which are exactly CdS nanoparticles and there is a very small trace of (Zn) and (O) element observed because of there is a small pollutions in the measurement place of samples. FESEM shows the spherical shape of nanoparticles with around 50.8 nm diameter. The optical absorption spectral study identified the red shift of the sample in comparison to bulk ZnO in three dimensions. Photoluminance spectrum (PL) at room temperature showed that there are two luminescence peaks at 433.14 nm and 518.21nm. Samples demonstrate a sharp emission band at around 433.18 nm, which is attributed to the typical exciton luminescence. The broad band at 518.21nm which were attributed to the trapped luminescence. The green emission band at 518.21 nm was associated with the emission due to electronic transition from the conduction band to an accepter level due to interstitial sulphur ion.
Studies of silicon quantum dots prepared at different substrate temperatures
NASA Astrophysics Data System (ADS)
Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.
2017-03-01
In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.
Magnetic properties of Zn1-xNixO
NASA Astrophysics Data System (ADS)
Mondal, A.; Giri, N.; Sarkar, S.; Ray, Ruma
2018-05-01
Ni doped ZnO (Zn1-xNixO for 0.01 ≤ x ≤ 0.11) have been prepared by chemical precipitation method. X-ray diffraction corroborates a hexagonal wurzite structure without any impurity phases upto 11% Ni doping. Morphology of the particles is investigated by FE-SEM which exhibits either rod or tube like structure depending on the dopant concentration. Magnetization of Zn1-xNixO for 0.03 ≤ x ≤ 0.11 measured at room temperature infers the paramagnetic behavior. Zero field cooled and field cooled magnetization for x = 0.11 follows Curie-Weiss behavior above 122 K with effective paramagnetic moment 3.9μB. The non-linear magnetic hysteresis loop at 2 K with a small coercivity (300 Oe) indicates signature of ferromagnetic ordering.
One step synthesis of porous graphene by laser ablation: A new and facile approach
NASA Astrophysics Data System (ADS)
Kazemizadeh, Fatemeh; Malekfar, Rasoul
2018-02-01
Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.
NASA Astrophysics Data System (ADS)
Asghari, Elnaz; Gholizadeh-Khajeh, Maryam; Ashassi-Sorkhabi, Habib
2016-10-01
Because of the major limitations in drinking water resources, the industries need to use unprocessed water sources for their cooling systems; these water resources contain major amount of hardening cations. So, mineral scales are formed in cooling water systems during the time and cause major problems. The use of green anti-scaling materials such as carboxylic acids is considered due to their low risks of environmental pollution. In the present work, the scale inhibition performance of tartaric acid as a green organic material was evaluated. Chemical screening tests, cathodic and anodic voltammetry measurements and electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FESEM), energy-dispersive x-ray and x-ray diffraction, were used for the evaluation of the scale inhibition performance. The results showed that tartaric acid can prevent calcium carbonate precipitation significantly. The hard water solution with 2.0 mM of tartaric acid indicated the highest scale inhibition efficiency (ca. 68%). The voltammetry, EIS and FESEM results verified that tartaric acid can form smooth and homogeneous film on steel surface through formation of Fe(III)-tartrate complexes and retard the local precipitation of calcium carbonate deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi
2012-09-15
Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less
NASA Astrophysics Data System (ADS)
Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.
2018-03-01
Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.
Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers.
Qian, Lei; Yang, Xiurong
2006-08-24
Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers. EDS and XPS indicated that the content of Au element was higher than that of Pt element in the nanoflowers. The bimetallic nanoflowers-modified electrode had electrochemical properties similar to those of bare gold and platinum electrodes. It also exhibited significant electrocatalytic activities toward oxygen reduction.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2015-03-01
We report on the preparation and characterization of high-purity chromium (0.5-2.5 at.%)-doped indium tin oxide (ITO, In:Sn = 90:10) films deposited by sol-gel-mediated dip coating. The effects of different Cr-doping contents on structural, morphological, optical and electrical properties of the films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and four-point probe methods. XRD showed high phase purity cubic In2O3 and indicated a contraction of the lattice with Cr doping. FESEM micrographs show that grain size decreased with increasing the Cr-doping content. A method to determine chromium species in the sample was developed through the decomposition of the Cr 2 p XPS spectrum in Cr6+ and Cr3+ standard spectra. Optical and electrical studies revealed that optimum opto-electronic properties, including minimum sheet resistance of 4,300 Ω/Sq and an average optical transmittance of 85 % in the visible region with a band gap of 3.421 eV, were achieved for the films doped with Cr-doping content of 2 at.%.
Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K
2017-08-29
In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.
NASA Astrophysics Data System (ADS)
Majumder, S.; Kumar, S.; Banerjee, S.
2017-05-01
In this paper, we have synthesized nanocrystalline MgFe2O4 (S1) by auto-combustion assisted sol-gel method. The structure and morphology and elemental study of S1 are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FESEM) and energy dispersive X-ray spectroscopic (EDS) techniques. The FESEM images reveal that the morphology of the sample is rough and average particle size is 50 nm. The PXRD study indicates that the samples are well crystalline and single phase in nature. Moreover, we have performed supercapacitor study by electrochemical galvanostatic charge-discharge (GCD) measurement, which shows pseudo capacitive behavior. S1 contains a high specific capacitance of 428.9 Fg-1 at the current density 0.0625 Ag-1 and can deliver high energy and power density of 18.01 Wh kg-1 and 21468 Wkg-1 respectively. Moreover, uric acid (UA) sensing study has also been performed by cyclic voltmetry (CV) and electrochemical impedance spectroscopy measurement (EIS) of S1. We can use nanocrystalline MgFe2O4 as supercapacitor and UA sensor applications purpose.
Flake like V{sub 2}O{sub 5} nanoparticles for ethanol sensing at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitra, M.; Uthayarani, K.; Rajasekaran, N.
2016-05-23
The versatile redox property of vanadium oxide explores it in various applications like catalysis, electrochromism, electrochemistry, energy storage, sensors, microelectronics, batteries etc., In this present work, vanadium oxide was prepared via hydrothermal route followed by calcination. The structural and lattice parameters were analysed from the powder X-ray diffraction (XRD) pattern. The morphology and the composition of the sample were obtained from Field emission Scanning electron microscopic (FeSEM) and Energy Dispersive X-ray (EDAX) Spectrometric analysis respectively. The sensitivity, response – recovery time of the sample towards ethanol (0 ppm – 300 ppm) sensing at room temperature was measured and the present investigation onmore » vanadium oxide nanoparticles over the flakes shows better sensitivity (30%) at room temperature.« less
Preparation of Ag-loaded octahedral Bi2WO6 photocatalyst and its photocatalytic activity
NASA Astrophysics Data System (ADS)
An, Liang; Wang, Guanghui; Zhou, Xuan; Wang, Yi; Gao, Fang; Cheng, Yang
2014-12-01
In this work, an Ag-loaded octahedral Bi2WO6 photocatalyst has been successfully prepared by the hydrothermal method and photo deposition method. X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDX), field-emission scanning electron microscopy (FE-SEM) and ultra-violet adsorption spectrum (UV-Vis) were employed for characterization of the composite photocatalyst. Furthermore, two different photocatalysts including the obtained Ag-loaded octahedral Bi2WO6 were employed here for photodegradation of model contaminated water of Orange II (OII). Results show that Ag-loaded Bi2WO6 photocatalyst exhibits superior photocatalytic properties compared to the undoped Bi2WO6. The reasons for improvement in photocatalytic activity of the Ag-loaded octahedral Bi2WO6 were also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahuja, Poonam, E-mail: poonampahuja123@gmail.com; Tandon, R. P., E-mail: ram-tandon@hotmail.com
2015-05-15
Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Liange; Du Fanglin
2007-08-07
Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.
NiCo2S4 nanorod embedded rGO sheets as electrodes for supercapacitor
NASA Astrophysics Data System (ADS)
Sarkar, Aatreyee; Bera, Supriya; Chakraborty, Amit Kumar
2018-04-01
We report the synthesis of a hybrid nanostructure based on NiCo2S4 and reduced graphene oxide (rGO) following a facile hydrothermal method. X-ray diffraction (XRD), and electron microscopy (FESEM and HRTEM) analyses showed rod-like NiCo2S4 nanostructures embedded in rGO sheets. The electrochemical analysis of the synthesized nanohybrid using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) revealed specific capacitance of 410 F/gm indicating its suitability as a good electrode material for supercapacitor.
X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy
NASA Astrophysics Data System (ADS)
McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette
2012-08-01
Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.
The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.
2012-11-01
Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.
Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.
Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz
2017-01-01
Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.
Influences of Co doping on the structural and optical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.
2010-07-01
Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.
NASA Astrophysics Data System (ADS)
Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.
2018-05-01
Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.
Kumar, R Rakesh; Rao, K Narasimha; Rajanna, K; Phani, A R
2014-07-01
Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.
Maleki, Ali; Movahed, Hamed; Ravaghi, Parisa
2017-01-20
In this work, design, preparation and performance of magnetic cellulose/Ag nanobiocomposite as a recyclable and highly efficient heterogeneous nanocatalyst is described. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) pattern, vibrating sample magnetometer (VSM) curve, field-emission scanning electron microscopy (FE-SEM) image, energy dispersive X-ray (EDX) analysis and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used for the characterization. Then, its activity was investigated in the synthesis of 2-amino-6-(2-oxo-2H-chromen-3-yl)-4-phenylnicotinonitrile derivatives. The main advantages of the reaction are high yields and short reaction times. The remarkable magnetic property of the nanobiocomposite catalyst provides easy separation from the reaction mixture by an external magnet without considerable loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo
2018-09-01
This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.
MnO2-Graphene Oxide-PEDOT:PSS Nanocomposite for an Electrochemical Supercapacitor
NASA Astrophysics Data System (ADS)
Patil, Dipali S.; Pawar, Sachin A.; Shin, Jae Cheol; Kim, Hyo Jin
2018-04-01
A ternary nanocomposite with poly (3,4 ethylene dioxythiophene:poly(styrene sulfonate) (PEDOT:PSS)-MnO2 nanowires-graphene oxide (PMn-GO) was synthesized by using simple chemical route. The formation of the nanocomposite was analyzed by using X-ray diffraction and X-ray photoelectron spectroscopy. Field-emission scanning microscopy (FESEM) revealed the formation of MnO2 nanowires and graphene oxide nanosheets. The highest specific capacitance (areal capacitance) of 841 Fg -1 (177 mFcm -2) at 10 mVs -1 and energy density of 0.593 kWhkg -1 at 0.5 mA were observed for PMn-GO, indicating a constructive synergistic effect of PEDOT:PSS, MnO2 nanowires and graphene oxide. The achieved promising electrochemical characteristics showed that this ternary nanocomposite is a good alternative as an electrode material for supercapacitor.
NASA Astrophysics Data System (ADS)
Dey, Chaitali; Chaudhuri, Arka; Goswami, Madhuri Mandal
2018-04-01
Herein, we report the synthesis of manganese ferrite (MnFe2O4) magnetic nano hollow sphere (NHS) by a solvothermal route. Crystalline phase was confirmed by X-ray diffraction (XRD), energy dispersive x-ray (EDX). Magnetic measurements were done in vibrating sample magnetometer (VSM) and morphological structure was analyzed by field emission high resolution scanning electron microscope (FESEM) and structural characterization was confirmed by Fourier transform infrared spectroscopy (FTIR), thermal analysis was performed by thermo-gravimetric analysis-differential thermal analysis (TGA-DTA). The size of the NHS was around 470 nm, this large size may show a potential applicability in industrial application, like dye adsorption, catalysis etc. In addition, because of its ferromagnetic character at room temperature, it can be easily separated by external magnetic field after the application is done.
Nanostructured ZnO Films for Room Temperature Ammonia Sensing
NASA Astrophysics Data System (ADS)
Dhivya Ponnusamy; Sridharan Madanagurusamy
2014-09-01
Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.
NASA Astrophysics Data System (ADS)
Kiran Kumar, A. B. V.; Jayasimhadri, M.; Cha, Hyeongrae; Chen, Kuangcai; Lim, Jae-Min; Lee, Yong-Ill
2011-07-01
In the present work, the cinnamide based organic-inorganic hybrid luminescent materials were prepared by using sol-gel technique, in which both the components are covalently linked via Si-C bonds. The organic precursor N-(3-(triethoxysilyl)propyl)cinnamide (Cn-Si) was synthesized by (3-aminopropyl) triethoxysilane being reacted with cinnamoyal chloride. Finally, novel hybrid materials were prepared successfully through hydrolysis and polycondensation processes between the alkoxide groups of precursors Cn-Si and tetraethylorthosilane (TEOS) in the presence of europium nitrate. We have characterized thoroughly the prepared samples using FT-IR, thermal analysis (TGA/DTA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and photoluminescence (PL) spectroscopy. The results indicate that these materials exhibit the excellent thermal stability up to 350 °C. The X-ray diffraction patterns confirmed the amorphous nature of the developed materials. The rare-earth doped hybrid materials have exhibited an intense green emission at 530 nm with CIE chromaticity coordinates (0.4801, 0.4669). Whereas, the un-doped one gives some remarkable blue emission properties under UV excitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.
In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less
Habibi, Neda
2015-02-05
The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.
Impedance spectroscopy studies in cobalt ferrite-reduced graphene oxide nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriya, Sweety, E-mail: sweety@iitp.ac.in; Kumar, Sunil, E-mail: sunil.pph13@iitp.ac.in; Kar, Manoranjan, E-mail: mano@iitp.ac.in
2016-05-06
(1-x)Cobalt ferrite-(x)reduced graphene oxidenanocomposites with x=0, 0.1, 0.2 and 0.3 were prepared by the ultrasonic method. The crystal symmetry modification due to reduced graphene oxide and cobalt ferrite interaction has been studied by employing the X-ray diffraction technique. Morphology of the samples was studied by the Field emission scanning electron microscopy (FE-SEM). Study on electrical properties of the cobalt ferrite-reduced graphene oxide nanocomposites explores the possible application of these composites as anode material. Impedance decreases with an increase in frequency as well as temperature, which supports an increase in ac electrical conductivity. The modified Debye relaxation model can explain themore » behavior of impedance in cobalt ferrite-reduced graphene oxide nanocomposites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr
2016-03-25
This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less
X-ray shielding behaviour of kaolin derived mullite-barites ceramic
NASA Astrophysics Data System (ADS)
Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.
2018-03-01
Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.
Physical properties of agave cellulose graft polymethyl methacrylate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim
2013-11-27
The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity indexmore » upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.« less
Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs
NASA Astrophysics Data System (ADS)
Çakar, Soner; Özacar, Mahmut
2016-06-01
In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.
Study of structural and optical properties of ZnS zigzag nanostructured thin films
NASA Astrophysics Data System (ADS)
Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein
2015-11-01
Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.
NASA Astrophysics Data System (ADS)
Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy
2017-01-01
In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.
NASA Astrophysics Data System (ADS)
Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.
2016-06-01
Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.
Structural morphology of zinc oxide structures with antibacterial application of calamine lotion
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2015-04-01
In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. The energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.
Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.
2018-04-01
The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.
Influence of La-Mn substitutions on magnetic properties of M-type strontium hexaferrites
NASA Astrophysics Data System (ADS)
Zi, Z. F.; Ma, X. H.; Wei, Y. Y.; Liu, Q. C.; Zhang, M.; Zhu, X. B.; Sun, Y. P.
2018-05-01
M-type strontium hexaferrites of Sr1-xLaxFe12-xMnxO19 (0.0≤x≤0.4) were synthesized by the chemical coprecipitation method. X-ray diffraction (XRD) studies indicate that the samples are single-phase with the space group of P63/mmc. The results of field-emission scanning electronic microscopy (FE-SEM) show that the grains are regular hexagonal platelets with sizes from 0.7 to 1.4 μm. It is observed that the value of Hc increases at low substitution (x ≤ 0.1), reaches a maximum at x = 0.1 and then decreases at x ≥ 0.1, while the value of Ms decreases monotonously with increasing x. The variations of magnetic properties can be tentatively attributed to the effects of La-Mn substitutions. The results above indicate that our samples might be promising candidates for permanent magnets in the future.
NASA Astrophysics Data System (ADS)
Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz
2016-03-01
Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66-NH2 metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl2. The prepared catalyst was characterized by FT-IR, UV-vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66-NH2-TC-Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzene or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency.
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang
2015-07-01
In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.
NASA Astrophysics Data System (ADS)
Santoshkumar, B.; Biswas, Amrita; Kalyanaraman, S.; Thangavel, R.; Udayabhanu, G.; Annadurai, G.; Velumani, S.
2017-06-01
Magnesium doped zinc oxide nanorod arrays on zinc oxide seed layers were grown by hydrothermal method. X-ray diffraction (XRD) patterns revealed the growth orientation along the preferential (002) direction. The hexagonal morphology was revealed from the field emission scanning electron microscope (FESEM) images. The elemental composition of the samples was confirmed by energy dispersive x-ray analysis spectra (EDS) and mapping dots. Carrier concentration, resistivity and mobility of the samples were obtained by Hall measurements. I-V characteristic curve confirmed the increase in resistivity upon doping. Photoluminescence (PL) spectra exposed the characteristic of UV emission along with defect mediated visible emission in the samples. Electrochemical impedance spectroscopy and cyclic voltammetry were undertaken to study the charge transport property. Owing to the change in the structural parameters and defect concentration the electrical properties of the doped samples were altered.
Electrical transport properties of LiNiV O ceramics
NASA Astrophysics Data System (ADS)
Ram, Moti
2009-08-01
The LiNiV O 4 fine powder has been synthesized by chemical "pyrophoric reaction process". The formation of LiNiV O 4 is confirmed by X-ray diffraction analysis. X-ray analysis shows that the compound has cubic crystal structure with lattice constant ( a=8.2243(2) Å). Microstructure of the sintered pellet is identified by taking the field emission scanning electron microscopy (FE-SEM) pictures, which reveals the grain size as ˜0.2-2 μm. Electrical properties are measured using complex impedance spectroscopy technique. Bulk contribution to electrical response is identified by the analysis of complex plane diagrams. The activation energy calculated from σ vs 10 3/T graph is ˜0.06 eV (25-225 ∘C) and ˜0.55 eV (225-375 ∘C). Complex modulus study shows non-Debye type (polydispersive) conductivity relaxation in the compound.
Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties
NASA Astrophysics Data System (ADS)
Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.
2016-05-01
The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.
Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor
NASA Astrophysics Data System (ADS)
Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar
Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.
Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders
NASA Astrophysics Data System (ADS)
Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.
2018-04-01
Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.
Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting
NASA Astrophysics Data System (ADS)
Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.
2017-04-01
NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.
Du, Haiying; Yao, PengJun; Sun, Yanhui; Wang, Jing; Wang, Huisheng; Yu, Naisen
2017-01-01
In2O3/SnO2 composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In2O3/SnO2 hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). Gas sensing properties of In2O3/SnO2 composite hetero-nanofibers were measured with six kinds of indoor volatile organic gases in concentration range of 0.5~50 ppm at the operating temperature of 275 °C. The In2O3/SnO2 composite hetero-nanofibers sensor exhibited good formaldehyde sensing properties, which would be attributed to the formation of n-n homotype heterojunction in the In2O3/SnO2 composite hetero-nanofibers. Finally, the sensing mechanism of the In2O3/SnO2 composite hetero-nanofibers was analyzed based on the energy-band principle. PMID:28792433
Peng, Weijun; Li, Hongqiang; Song, Shaoxian
2017-02-15
CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.
Synthesis of SiO(x) powder using DC arc plasma.
Jung, Chan-Ok; Park, Dong-Wha
2013-02-01
SiO(x) was prepared by DC arc plasma and applied to the anode material of lithium ion batteries. A pellet of a mixture of Si and SiO2 was used as the raw material. The ratios of the silicon and silicon dioxide (SiO2) mixtures were varied by controlling the Si-SiO2 molar ratio (Si-SiO2 = 1-4). Hydrogen gas was used as the reduction atmosphere in the chamber. The prepared SiO(x) was collected on the chamber wall. The obtained SiO(x) was characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that the phase composition of the prepared particles was composed of amorphous SiO(x) and crystalline Si. The prepared SiO(x) showed wire and spherical morphology. XPS indicated the bonding state and 'x' value of the prepared SiO(x), which was close to one. The result of prepared SiO(x) is discussed from thermodynamic equilibrium calculations. The electrochemical behavior of the silicon monoxide anode was investigated.
Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian
2009-04-09
Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basak, Sushovan, E-mail: sushovanbasak@gmail.com; Das, Hrishikesh, E-mail: hrishichem@gmail.com; Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com
In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effectmore » of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is worth considering or not. • HRTEM-EDS, SAD pattern identifies the morphologies and size of intermetallics. • A compromise concerning formation of IMC is necessary.« less
Habibi, Mohammad Hossein; Parhizkar, Janan
2015-11-05
Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com
2013-02-15
Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less
NASA Astrophysics Data System (ADS)
Zia-ul-Mustafa, M.; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad
2015-07-01
In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.
Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms
NASA Astrophysics Data System (ADS)
Xing, Ruimin; Liu, Shanhu; Tian, Shufang
2011-10-01
In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.
Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A
2015-12-01
Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.
Structural morphology of zinc oxide structures with antibacterial application of calamine lotion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd
In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. Themore » energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.« less
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.
2016-07-01
Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Das, Amrita; Kumar, Vinay
2016-01-01
In this work, europium and dysprosium doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) nanophosphor is synthesized and its novel application for the detection of latent fingerprints on various contact surfaces is reported. The SrAl2O4:Eu2+,Dy3+ is synthesized using a combustion method and shows long-lasting afterglow luminescence. The powder particles are characterized using field emission scanning electron microscopy (FE-SEM), SEM-energy dispersive x-ray analysis, x-ray diffraction and photoluminescence spectrophotometry. The FE-SEM image analysis reveals that the nanoparticles are mostly 8-15 nm in size with an irregular spherical shape. This nano-structured powder was applied to fresh and aged fingerprints deposited on porous, semi-porous and non-porous contact surfaces, such as ordinary colored paper, glossy paper, glass, aluminum foil, a yellow foil chocolate wrapper, a soft drink can, a PET bottle, a compact disc and a computer mouse. The results are reproducible and show great sensitivity and high contrast in the developed fingermark regions on these surfaces. These nanophosphor particles also show a strong and long-lasting afterglow property, making them a suitable candidate for use as a fingerprint developing agent on luminescent and highly patterned surfaces. These kinds of powders have shown that they can remove the interference from background luminescence, which is not possible using ordinary luminescent fingerprinting powders.
NASA Astrophysics Data System (ADS)
Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd
The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.
Gankhuyag, Sukhbayar; Lee, Kyoung; Bae, Dong Sik
2018-09-01
We have suggested that a facile synthesis of CoFe2O4/Ag composite material as an antibacterial agent for substitution of a chlorination agent for microbial infected wastewater treatment. The CoFe2O4/Ag was synthesized by an impregnation method in assistance with trisodium citrate as a reducing agent. The as-prepared uncalcined CoFe2O4 (CFG), calcined CoFe2O4 (CFG600), and calcined CoFe2O4/Ag (CFG600/Ag) composites were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray (EDX) techniques. Antibacterial activities were also determined in liquid culture by measuring the minimum inhibitory concentrations (MIC) against Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) bacteria in vitro. Results showed that CFG600/Ag composites had an excellent antibacterial activity in comparison with CFG and CFG600 composites. The CFG600/Ag composites have completely inhibited the growth of both E. coli and B. subtilis bacteria from concentrations of more than 0.25 mg/ml. Furthermore, the FE-SEM study demonstrated the physical damage of bacteria when treated with CFG600/Ag composite material at a concentration of 0.10 mg/ml.
Tribological characterization of TiN coatings prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Hazeem, Nabeel Z., E-mail: nabeelnano333@gmail.com; Ministry of Education, the General Directorate for Educational Anbar; Ahmed, Naser M.
In this work, we fabricated nanorods by applying an electric potential on poly (ethylene oxide) (PEO) and polyaniline (PANI) as a polymeric solution by electrospinning method. Testing was conducted on the samples by field emission scanning Electron microscope (FE-SEM), X-ray diffraction (XRD) and Photoluminescence. And the results showed the emergence of nanorods in the sample within glass substrate. Diameters of nanorods have ranged between (52.78-122.40)nm And a length of between (1.15 – 1.32)μm. The emergence of so the results are for the first time, never before was the fabrication of nanorods for polymers using the same method used in thismore » research.« less
Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism
NASA Astrophysics Data System (ADS)
Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.
2016-01-01
Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.
2016-05-06
La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polycrystalline samples have been prepared using different synthesis routes. X-ray Diffraction (XRD) confirms that the samples are of single phase with R-3c space group. The surface morphology and particle size has been observed using Field Emission Scanning Electron Microscopy (FESEM). Magnetic measurement shows that the magnetization in the materials are affected by low crystallite size which destroys the spin ordering due to strain at grain boundaries and this also leads to reduction in magnetization as well as high coercivity in the material.
Synthesis of nanocrystalline ZnO thin films by electron beam evaporation
NASA Astrophysics Data System (ADS)
Kondkar, V.; Rukade, D.; Bhattacharyya, V.
2018-05-01
Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.
Relation between textured surface and diffuse reflectance of Cu films
NASA Astrophysics Data System (ADS)
Shukla, Gaurav; Angappane, S.
2018-04-01
Cu nanostructures namely chevron, slanted and vertical posts deposited on Si substrate by glancing angle deposition (GLAD) technique using DC magnetron sputtering are studied to understand the optical reflectance properties of various textures. The X-ray diffraction analysis confirmed the crystalline nature of the different structures of deposited Cu films. The FESEM images confirmed the formation of chevron, slanted and vertical posts. From the optical reflectance spectra, we found that the reflectance is more for chevron than vertical and slanted posts which have almost the same reflectance over the entire wavelength. The films with chevron texture would find various applications, like, light detector, light trapping, sensors etc.
Zirconium diselenite microstructures, formation and mechanism
NASA Astrophysics Data System (ADS)
Naik, Chandan C.; Salker, A. V.
2018-04-01
In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzez, Shrook A., E-mail: shurouq44@yahoo.com; Hassan, Z.; Alimanesh, M.
Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.
NASA Astrophysics Data System (ADS)
Mammo, Tulu Wegayehu; Murali, N.; Sileshi, Yonatan Mulushoa; Arunamani, T.
2017-10-01
In this work,a nonmagnetic Mg partially substituted in CoFe2O4 was considered and has been shown to have an impact on structural, electrical and magnetic properties of ferrite materials with Co1-xMgxFe2O4 (x = 0, 0.25, 0.45, and 0.75) forms. Sol-gel synthesis route has been followed to synthesize these materials using citric acid as a fuel. Structural parameters were calculated from powder X-ray diffraction data. X-ray diffraction revealed that all the samples synthesized are pure cubic spinel structured materials with space group of Fd 3 ̅m and the lattice constant varying with Mg concentration. From the field emission scanning electron microscopy (FESEM) microstructure characterizations it has been shown that the synthesized materials are well defined crystalline structured with inhomogeneous grain sizes. Besides, the grain sizes were shown to decrease with increase of Mg-content. Fourier transform Infrared (FT-IR) characterization showed the cation vibrations and stretching of other groups in the wave number range of 400-4000 cm-1. The DC resistivity measurements showed an enhanced resistivity of the samples, in the order of 107 Ω cm, at the highest concentration of Mg. VSM magnetic properties analysis revealed that the Coercive force decreases with increase of Mg concentration whereas the saturation magnetization varies with Mg content.
NASA Astrophysics Data System (ADS)
Farid, Ghulam; Murtaza, Ghulam; Umair, Muhammad; Shahab Arif, Hafiz; Saad Ali, Hafiz; Muhammad, Nawaz; Ahmad, Mukhtar
2018-05-01
Sol-Gel auto combustion technique was used to synthesis La3+substituted LiCoO2 lithium-rich cathode materials to improve the cycling performance and rate capability. Samples with different concentration of La containing LiCo1‑xLaxO2 (with 0 ≤ x ≤ 0.20) were chemically prepared and calcined the obtained powders at 850 °C for 6 h. Various techniques for the investigation of lanthanum behaviour in LiCoO2 have been utilised, such as x-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Near Edge x-ray absorption spectroscopy (NEXAS), Galvanostatic charge-discharge tests and cyclic voltammetry (CV). The formation of a hexagonal lattice of the α-NaFeO2 structure of LiCoO2, having space group R-3m is confirmed by x-ray diffraction analysis. FESEM results reveal that by increasing La contents the grain growth becomes distinct, well defined and smaller grains obtained. ATR-FTIR confirms the functional bonding in the prepared samples, as well XANES spectra reveals the electronic configuration valence state, chemical bonding character and local coordination of a specific atom. Maximum discharging capacities were observed in the La-doped material which is 182.38 mAhg‑1 and 56.2 mAhg‑1 at 0.1C and 5 C respectively and on average, this is more than 5% higher as compared to the pure LiCoO2. After 5C, the discharge capacity of the doped material at 0.1C can again reach 163.83 mAhg‑1, about 89% of the discharge capacity obtained in the first cycle. When 2032 type coin cells were cycled at a constant rate, an excellent cycling performance with capacity retention by a factor of ∼2 in comparison to the pristine LiCoO2 was observed for the composite cathode containing 4.0 mol% La. This reveals the structural stability induced by La doping. Remarkable improvement in reversibility and stability of the La-doped electrodes shown by cyclic voltammetry (CV). These composite cathodes might be very useful for high rate power applications.
NASA Astrophysics Data System (ADS)
Mohammed, J.; Sharma, Jyoti; Kumar, Sachin; Trudel, T. T. Carol; Srivastava, A. K.
2017-07-01
M-type hexagonal ferrites have found wide application in electronics industry due to the possibility of tuning properties such as dielectric properties. An improved dielectric property is useful in high frequency application. In this paper, we studied the effect of calcination temperature on structural and dielectric properties of Al-Mn substituted M-type strontium hexagonal ferrites with chemical composition Sr1-xAlxFe12-yMnyO19 (x=0.3 and y=0.6) synthesized by sol-gel auto-combustion method. The prepared sample was sintered at four different temperatures (T=750°C, 850°C, 950°C and 1050°C) for 5 hours. Characterisations of the synthesized samples were carried out using X-ray diffraction (XRD), impedance analyser, field emission electron microscope (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy. The dielectric properties were explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory. The sample calcinated at 750°C shows the highest value of dielectric constant and AC conductivity whereas that calcinated at 1050°C exhibit the lowest dielectric losses.
Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.
Cianconi, L; Palopoli, P; Campanella, V; Mancini, M
2016-12-01
The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.
Combined use of FE-SEM+EDS, ToF-SIMS, XPS, XRD and OM for the study of ancient gilded artefacts
NASA Astrophysics Data System (ADS)
Ingo, G. M.; Riccucci, C.; Pascucci, M.; Messina, E.; Giuliani, C.; Biocca, P.; Tortora, L.; Fierro, G.; Di Carlo, G.
2018-07-01
Gilded brooches dating back to 16th-17th centuries CE were investigated by means of integrated and complementary analytical techniques such as high spatial resolution field emission scanning electron microscopy coupled with energy dispersive X-ray spectrometry (FE-SEM+EDS), time of flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and optical microscopy (OM). The results reveal in detail the surface and subsurface morphology and the chemical features of the micrometric decorative Au layer that has been deposited by means of the so-called fire-gilding technique based on the use of an amalgam. Moreover, the results allow to recognise chlorine, sulphur and phosphorous species as the main degradation agents and to identify the corrosion products naturally formed during the long-term interaction with the burial soil constituents. The findings show also that the galvanic coupling between the two dissimilar metals, i.e. Cu and Au, lead to enhancement of corrosion phenomena causing the spalling of the gold thin film and the disfigurement of the object. From a conservation point of view, the results suggest a targeted use of low-toxic inhibitors to hinder the detrimental role of chlorine as possible responsible of future further severe degradation phenomena. In conclusions, the micro and nano-chemical, structural and morphological investigations in a depth range from a few nanometers to micrometers have revealed the complex nature of corroded surface of ancient gold coated artefacts, highlighting some specific aspects related to their peculiar degradation mechanisms thus extending the scientific relevance of the tailored use of complementary and integrated surface and subsurface analytical techniques for the investigation of ancient coated artefacts.
Facile synthesis of one dimensional ZnO nanostructures for DSSC applications
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2016-05-01
Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.
Ghosh, Tapas Kumar; Gope, Shirshendu; Mondal, Dibyendu; Bhowmik, Biplab; Mollick, Md Masud Rahaman; Maity, Dipanwita; Roy, Indranil; Sarkar, Gunjan; Sadhukhan, Sourav; Rana, Dipak; Chakraborty, Mukut; Chattopadhyay, Dipankar
2014-05-01
Graphene oxide (GO) was synthesized by Hummer's method and characterized by using Fourier transform infrared spectroscopy and Raman spectroscopy. The as synthesized GO was used to make GO/hydroxypropylmethylcellulose (HPMC) nanocomposite films by the solution mixing method using different concentrations of GO. The nanocomposite films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermo-gravimetric analysis. Mechanical properties, water absorption property and water vapor transmission rate were also measured. XRD analysis showed the formation of exfoliated HPMC/GO nanocomposites films. The FESEM results revealed high interfacial adhesion between the GO and HPMC matrix. The tensile strength and Young's modulus of the nanocomposite films containing the highest weight percentage of GO increased sharply. The thermal stability of HPMC/GO nanocomposites was slightly better than pure HPMC. The water absorption and water vapor transmission rate of HPMC film was reduced with the addition of up to 1 wt% GO. Copyright © 2014 Elsevier B.V. All rights reserved.
Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications
NASA Astrophysics Data System (ADS)
Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia
2013-10-01
Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.
Electrical properties of Mg doped ZnO nanostructure annealed at different temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com
In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less
NASA Astrophysics Data System (ADS)
Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.
2018-05-01
Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.
NASA Astrophysics Data System (ADS)
Mahanthesha, P.; Mohankumar, G. C.
2018-04-01
Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.
The indium oxide micro and nanopyramids: Morphology materializing and H2S sensing properties
NASA Astrophysics Data System (ADS)
Shariati, Mohsen
2015-07-01
Indium oxide (In2O3) pyramidal nano and microstructures were prepared by a thermal evaporation and condensation method. The preannealing step affected the nanostructures morphologies and their sensing capability. The nanosize structures have been fabricated in nucleated preorganized situation. By changing from prepared sites to undesired sites, the morphology was deteriorated. The synthesized In2O3 structures were characterized by field emission scanning electron microscopy (FESEM) and the X-ray diffraction (XRD) measurements. The FESEM images showed that nanostructures with 100-250 nm in size were fabricated. The XRD patterns indicated that most of the samples are crystalline. Then, the fabricated structures were investigated for H2S gas sensing. The nanocrystal pyramids were found to be sensitive to as low as 100 ppb of H2S gas at room temperature and microcrystal ones to 300 ppb. The nanopyramids demonstrated that they were very sensitive to gas presence and their response and recovery time were in a few seconds.
Habibi, Neda
2014-10-15
The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.
S, Gowri; K, Gopinath; A, Arumugam
2018-03-01
The present study reports the biogenic synthesis of Cadmium Oxide Nanoparticles (CdO NPs) using plant pathogenic fungus Nigrospora oryzae culture filtrate. Further, the effect of the NPs on the cancer cell line (HeLa) is explored. The sample was characterized using Thermogravimetric/Differential Thermal (TG/DTA), Powder X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Field Emission Transmission Electron Microscopy (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED) analysis. Antibacterial activity was evaluated against both Gram positive and Gram negative bacterial strains and it showed maximum activity against Proteus vulgaris. The larvicidal activity was performed to evaluate the maximum ability of synthesized CdO NPs against Anopheles stephensi. Subsequently, MTT assay also depicted the dose-dependent anticancer activity of CdO NPs against cancer cell line (HeLa). Additionally, the inhibitory effect of CdO NPs was analyzed through extensive docking with cancerous protein agent. Results enlighten that Transketolase protein exhibited high docking score of -4.8 k/mol with H-bond interactions found with Lys75 and Asn185 amino acid residues. DFT study was performed on CdO to understand the charge transfer reaction for the inhibitory mechanism. Convincingly, this study explores the understanding of CdO NPs against HeLa cells. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Haq, Khizar-ul; Irfan, M.; Masood, Muhammad; Saleem, Murtaza; Iqbal, Tahir; Ahmad, Ishaq; Khan, M. A.; Zaffar, M.; Irfan, Muhammad
2018-04-01
Zn1‑x Cr x O (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) nanoparticles were synthesized, by an auto-combustion method. Structural, optical, and magnetic characteristics of Cr-doped ZnO samples calcined at 600 °C have been analyzed by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV–Vis spectroscopy and vibrating sample magnetometer (VSM). The XRD data confirmed the hexagonal wurtzite structure of pure and Cr-doped ZnO nanoparticles. The calculated values of grain size using Scherrer's formula are in the range of 30.7–9.2 nm. The morphology of nanopowders has been observed by FESEM, and EDS results confirmed a systematic increase of Cr content in the samples and clearly indicate with no impurity element. The band gaps, computed by UV–Vis spectroscopy, are in the range of 2.83–2.35 eV for different doping concentrations. By analyzing VSM data, significantly enhanced room temperature ferromagnetism is identified in Cr-doped ZnO samples. The value of magnetization is a 12 times increased of the value reported by Daunet al. (2010). Room temperature ferromagnetism of the nanoparticles is of vital prominence for spintronics applications. Project supported by the Office of Research, Innovation, and Commercialization (ORIC), MUST Mirpur (AJK).
Functional Nanoarchitectures For Enhanced Drug Eluting Stents
NASA Astrophysics Data System (ADS)
Saleh, Yomna E.; Gepreel, Mohamed A.; Allam, Nageh K.
2017-01-01
Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.
Construction of NiO/MnO2/CeO2 hybrid nanoflake arrays as platform for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Cui, Lihua; Cui, Jiewu; Zheng, Hongmei; Wang, Yan; Qin, Yongqiang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng
2017-09-01
Rational design and fabrication of novel electrode materials are of great importance for developing supercapacitors with remarkable capacitance and enhanced cycling stability. In this paper, we present a simple one-pot hydrothermal deposition followed by calcinations process for the in situ construction of homogeneous NiO/MnO2/CeO2 (NMC) nanoflake arrays on Ni foam substrate, which could be directly adopted as the binder-free electrode materials for high performance supercapacitors. The field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) are carried out to investigate the morphology, microstructure and composition of NMC nanoflake arrays. As-prepared hierarchical NMC nanoflake arrays exhibit the specific capacitance of 1027.8 F g-1 at a current density of 3.1 A g-1 and excellent cycling stability of 97.8% after 5000 charge/discharge cycles. This facile, cost-effective and controllable fabrication route and the robust supercapacitive activity suggest that the ordered NMC nanoflake arrays could be promising candidate electrode materials for high performance electrochemical energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri
2012-09-26
The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} mixed oxides with varying loading of CeO{sub 2} (5, 10, 15, 20 wt% with respect to {gamma}-Al{sub 2}O{sub 3}) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO{submore » 2} into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.« less
3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.
Ramadan, Mohamed; Abdellah, Ahmed M; Mohamed, Saad G; Allam, Nageh K
2018-05-22
Rational design of binder-free materials with high cyclic stability and high conductivity is a great need for high performance supercapacitors. We demonstrate a facile one-step synthesis method of binder-free MnO@C nanofibers as electrodes for supercapacitor applications. The topology of the fabricated nanofibers was investigated using FESEM and HRTEM. The X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) analyses confirm the formation of the MnO structure. The electrospun MnO@C electrodes achieve high specific capacitance of 578 F/g at 1 A/g with an outstanding cycling performance. The electrodes also show 127% capacity increasing after 3000 cycles. An asymmetric supercapacitor composed of activated carbon as the negative electrode and MnO@C as the positive electrode shows an ultrahigh energy density of 35.5 Wh/kg with a power density of 1000 W/kg. The device shows a superior columbic efficiency, cycle life, and capacity retention.
Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application
NASA Astrophysics Data System (ADS)
Dubal, D. P.; Kim, W. B.; Lokhande, C. D.
2012-01-01
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g-1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g-1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge-discharge property between -0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, S.; Mondal, A.; Dey, K.
Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorptionmore » reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.« less
Structural and optical properties of Cu2ZnSnS4 synthesized by ultrasonic assisted sol-gel method
NASA Astrophysics Data System (ADS)
Rajwar, Birendra Kumar; Sharma, Shailendra Kumar
2018-05-01
Cu2ZnSnS4 (CZTS) nanocrystals were synthesized by a simple ultrasonic assisted sol-gel method using two different solvents. Structure and purity of the phase formed were investigated using X-ray diffraction (XRD) and Raman measurements. The average crystallite size were estimated by using Scherrer's formula and found to be 2.09 and 7.15 nm. Raman study reveals the kesterite-phase of prepared samples. The influence of solvent in the morphologies of prepared samples was investigated by field emission scanning electron microscopy (FESEM). Ultraviolet-visible-near-infrared absorption measurement was carried out to calculate the optical band gap of samples. Oxidation state of the constitute elements of as-prepared samples were investigated by X-ray photoelectron spectroscopy (XPS) analysis and the results are in good agreement with the literature. The surface area and pore volume were estimated after analysis of nitrogen adsorption-desorption isotherm curves and found to be 16.5 m2/gm and 0.01 cm3/gm respectively.
NASA Astrophysics Data System (ADS)
Pourmasoud, Saeid; Sobhani-Nasab, Ali; Behpour, Mohsen; Rahimi-Nasrabadi, Mehdi; Ahmadi, Farhad
2018-04-01
YbVO4 nanoparticles YbVO4/NiWO4 nanocomposites were synthesized by simple and new method. The effect of various polymeric capping agents such as Tween 80, Tween 20 and PEG on the shape and size of YbVO4/NiWO4 nanocomposites were investigated. YbVO4/NiWO4 nanocomposites were analyzed through some techniques including, X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), thermogravimetry differential thermal analysis (TG-DTA), transmission electron microscopy (TEM), field emission electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis), and energy-dispersive X-ray spectroscopy (EDX). This attempt is the first study on the photocatalytic performance of the YbVO4/NiWO4 nanocomposites in various conditions such as size of particles and kind of dyes (rhodamine B (Rh B), methylene blue (MB), methyl orange (MO), and phenol red (Ph R)), under visible light.
NASA Astrophysics Data System (ADS)
Fan, Yaming; Zhuo, Yuqun; Li, Liangliang
2017-10-01
SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.
Radha, G; Balakumar, S; Venkatesan, Balaji; Vellaichamy, Elangovan
2015-05-01
This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)-alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.
2012-01-01
High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.
Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor
NASA Astrophysics Data System (ADS)
Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra
2016-12-01
ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.
NASA Astrophysics Data System (ADS)
Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong
2011-05-01
Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Alizadeh, Mohammad; Bagherzadeh, Mojtaba
2016-03-15
Through this manuscript the green synthesis of palladium nanoparticles supported on reduced graphene oxide (Pd NPs/RGO) under the mild conditions through reduction of the graphene oxide and Pd(2+) ions using barberry fruit extract as reducing and stabilizing agent is reported. The as-prepared Pd NPs/RGO was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd NPs/RGO could be used as an efficient and heterogeneous catalyst for reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei
2010-11-01
In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).
NASA Astrophysics Data System (ADS)
Zulkifli, Zulfa Aiza; Razak, Khairunisak Abdul; Rahman, Wan Nordiana Wan Abdul
2018-05-01
Bismuth oxide (Bi2O3) nanoparticles have been synthesized at different temperatures from 70 to 120˚C without any subsequent heat treatment using hydrothermal method. The particle size, and crystal structure of as-synthesized particles were investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform Infra-Red (FTIR). The nanoparticles are of a pure moniclinic Bi2O3 phase with rods shape. The average size of nanoparticles increases with the increase of reaction temperature. It was clear that longer reaction temperature allows precipitation completely occured and form larger nanoparticles (NPs). The crystallinity of Bi2O3 also are of high purity even at lower reaction temperature. The FTIR spectrum showed the absorption band at 845 cm-1 which is attributed to Bi-O-Bi bond, and the strong absorption band recorded at 424 cm-1 that is due to the stretching mode of Bi-O.
Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud
2017-05-01
In this paper, silver nanoparticles (Ag NPs) are synthesized using Achillea millefolium L. extract as reducing and stabilizing agents and peach kernel shell as an environmentally benign support. FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermo gravimetric-differential thermal analysis (TG-DTA) and Transmission Electron Microscopy (TEM) were used to characterize peach kernel shell, Ag NPs, and Ag NPs/peach kernel shell. The catalytic activity of the Ag NPs/peach kernel shell was investigated for the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), and Methylene Blue (MB) at room temperature. Ag NPs/peach kernel shell was found to be a highly active catalyst. In addition, Ag NPs/peach kernel shell can be recovered and reused several times with no significant loss of its catalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zadehahmadi, Farnaz; Tangestaninejad, Shahram; Moghadam, Majid; Mirkhani, Valiollah; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad R.; Kardanpour, Reihaneh
2014-10-01
In the present work, chloromethylated MIL-101(Cr) modified with imidazole, Im-MIL-101, was applied as a support for immobilizing of tetraphenylporphyrinatomangenese(III) chloride. The imidazole-bound MIL-101, Im-MIL-101, not only used as support for immobilization of manganese porphyrin but also applied as a heterogeneous axial base. The Mn(TPP)Cl@Im-MIL-101 catalyst was characterized by UV-vis, FT-IR, X-ray diffraction (XRD), N2 adsorption, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), elemental analysis and inductively coupled plasma (ICP) methods. The catalytic activity of this new catalytic system was investigated in the alkene epoxidation and alkane hydroxylation using NaIO4 as an oxidant in CH3CN/H2O at room temperature. This heterogeneous catalyst is highly efficient, stable and reusable in the oxidation of hydrocarbons.
Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.
Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin
2017-11-01
Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.
Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan
2010-06-15
In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.
Removal of heavy metals using bentonite supported nano-zero valent iron particles
NASA Astrophysics Data System (ADS)
Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah
2018-04-01
This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.
NASA Astrophysics Data System (ADS)
Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)
2018-05-01
Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Mansour, S. F.; Ismael, H.
2015-03-01
M-type hexaferrite (MFe12O19), M=Ba or Sr nanoparticles with hexagonal crystal structure have been successfully synthesized by a citrate auto-combustion method. BiFeO3 (BFO) was prepared by the flash auto-combustion technique. Different nanocomposites were prepared according to the formula [(1-X) MFe12O19+XBiFeO3; M=Ba or Sr, X=0.3, 0.4, 0.5 and 0.6]. The structure and morphology of the obtained nanocomposites have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). From the results, it is observed that the value of saturation magnetization decreases with increasing BFO content, which was mainly due to the contribution of the volume of the weak-magnetic BFO to the total sample volume.
Anodic Aluminum Oxide Membrane-Assisted Fabrication of beta-In(2)S(3) Nanowires.
Shi, Jen-Bin; Chen, Chih-Jung; Lin, Ya-Ting; Hsu, Wen-Chia; Chen, Yu-Cheng; Wu, Po-Feng
2009-06-06
In this study, beta-In(2)S(3) nanowires were first synthesized by sulfurizing the pure Indium (In) nanowires in an AAO membrane. As FE-SEM results, beta-In(2)S(3) nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the beta-In(2)S(3) nanowires is about 60 nm with the length of about 6-8 mum. Moreover, the aspect ratio of beta-In(2)S(3) nanowires is up to 117. An EDS analysis revealed the beta-In(2)S(3) nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the beta-In(2)S(3) nanowire is tetragonal polycrystalline. The direct band gap energy (E(g)) is 2.40 eV from the optical measurement, and it is reasonable with literature.
NASA Astrophysics Data System (ADS)
Tan, De-Xin; Wang, Yan-Li
2018-03-01
Sea anemone-like palladium (Pd)/polyaniline (PANI) nanocomposites were synthesized via visible-light-assisted swollen liquid crystals (SLCs) template method. The resulting samples were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV–vis) absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, respectively. The electrocatalytic properties of Pd/PANI nanocomposites modified glass carbon electrode (GCE) for methane oxidation were investigated by cycle voltammetry (CV) and chronoamperometry. Those dispersed sea anemone-like Pd/PANI nanocomposites had an average diameter of 320 nm. The obtained Pd nanoparticles with an average diameter of about 45 nm were uniformly distributed in PANI matrix. Sea anemone-like Pd/PANI nanocomposites exhibited excellent electrocatalytic activity and stability for oxidation of methane (CH4).
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
Synthesis and Photoluminescence Characteristics of Eu(3+)-Doped Molybdates Nanocrystals.
Li, Fuhai; Yu, Lixin; Wei, Shuilin; Sun, Jiaju; Chen, Weiqing; Sun, Wei
2015-12-01
In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.
0.8 V nanogenerator for mechanical energy harvesting using bismuth titanate-PDMS nanocomposite
NASA Astrophysics Data System (ADS)
Abinnas, N.; Baskaran, P.; Harish, S.; Ganesh, R. Sankar; Navaneethan, M.; Nisha, K. D.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y.
2017-10-01
We present a novel, low-cost approach to fabricate piezoelectric nanogenerators using Bismuth titanate (BiT)/Polydimethylsiloxane (PDMS) nanocomposite. The nanogenerator has the advantage of the simple process of fabrication and is eco-friendly. This simple device was fabricated to harvest the energy released from finger tapping. This device generated an output of 0.8 V. The BiT samples were synthesized by wet chemical method. The structural, dielectric and ferroelectric properties of the samples were analyzed. Phase analysis using X-ray diffraction indicated that the phase structure was orthorhombic. The FESEM images of the sample calcined at 700 °C exhibited sheet-like morphology. Further characterizations like XPS, Raman studies, TEM were done.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan
Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics
Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore
2016-08-09
A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.
NASA Astrophysics Data System (ADS)
Bharathi, Devaraj; Vasantharaj, Seerangaraj; Bhuvaneshwari, V.
2018-05-01
The present study describes the antibacterial, anti-biofilm and photo catalytic activity of silver nanoparticles synthesized using Cordia dichotoma fruits (Cd-AgNPs) for the first time. The phyto-synthesized Cd-AgNPs were characterized by UV-Visible spectroscopy, Field emission-scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Energy dispersive x-ray spectrometer (EDX), Fourier transform infrared spectroscopy (FT-IR), and x-ray diffraction (XRD). FE-SEM and TEM observation showed that the average size of 2–60 nm with spherical shape of Cd-AgNPs and the presence of phyto-compounds which are responsible for capping and reduction were studied by FT-IR. XRD studies revealed the face-centered cubic structure of Cd-AgNPs. The synthesized Cd-AgNPs showed significant antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, assayed using agar well diffusion method. Phyto-synthesized Cd-AgNPs exhibited more than 90% inhibition of biofilm activity formed by S. aureus and E. coli. Furthermore, photocatalytic degradation of crystal violet (CV) under UV light irradiation using Cd-AgNPs was performed. Synthesized Cd-AgNPs exhibited ∼85% degradation activity for CV. Collectively, our findings suggest that C.dichotoma is a green source for the eco-friendly synthesis of Cd-AgNPs, which further can be used as a novel biocidal agent against bacterial pathogens and a potent photo catalytic agent.
NASA Astrophysics Data System (ADS)
Lim, Y. C.; Siti, A. S.; Nur Amiera, P.; Devagi, K.; Lim, Y. P.
2017-09-01
Coupling of titania with narrow band gap materials has been a promising strategy in preparing visible light responsive photocatalyst. In this work, self-organized copper decorated TiO2 nanotube (Cu/TNT) was prepared via electrodeposition of Cu onto highly ordered titania nanotube arrays (TNT). The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The DRS studies clearly show the extended absorption of Cu/TNT into the visible region and present a red shift of band gap to 2.1 eV. FESEM analysis has shown the dispersion of cubic-like Cu particles upon electrodeposition and EDX analysis supports the presence of copper species on the nanotubes surface. The photocatalytic ability of Cu/TNT was evaluated by the degradation of methyl orange from aqueous solution under low power visible light illumination. Compared to TNT, an appreciable improvement in methyl orange removal was observed for Cu/TNT and the highest removal efficiency of 80% was achieved. The effects of catalyst loading and samples repeatability were investigated and under optimum conditions, the removal efficiency of methyl orange over Cu/TNT had further increased to 93.4%. This work has demonstrated a feasible and simple way to introduce narrow band gap transition metal into nanotube arrays, which could create novel properties for functionalized nanotube arrays as well as promise a wide range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.
Rice husk was thermally decomposed to yield powder composed of silica (SiO{sub 2}). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO{sub 2}) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO{sub 2}) and Amorphous Rice Husk Silica (A-RHSiO{sub 2}). Moreover, it was found that SS-SiO{sub 2} was ofmore » Quartz phase, C-RHSiO{sub 2} was of Trydimite and Cristobalite. Through XRF detection, the highest SiO{sub 2} purity was detected in SS-SiO{sub 2} followed by C-RHSiO{sub 2} and A-RHSiO{sub 2} with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO{sub 2}) bonding 1056, 1064, 1047, 777, 790 and 798 cm{sup −1}) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO{sub 2} at the wavelength of 620 cm{sup −1}. Morphological features as observed by FESEM analyses confirmed that, SS-SiO{sub 2} and C-RH SiO{sub 2} showed prominent coarse granular morphology.« less
Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O
2013-01-30
We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.
2018-01-01
The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.
NASA Astrophysics Data System (ADS)
Thi Mai Oanh, Le; Xuan Huy, Nguyen; Thi Thuy Phuong, Doan; Danh Bich, Do; Van Minh, Nguyen
2018-03-01
(1-x)SrTiO3-xTiO2 granular composites with x=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were synthesized by sol-gel process. Structure, morphology, optical properties, and photocatalytic activity were investigated in detail using x-ray diffraction (XRD) analysis, Raman scattering, field-emission scanning electron microscopy (FE-SEM), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, and photoluminescence (PL). XRD analysis showed the formation of single phase for parent phases and the present of two component phases in all composites without any impurity. A tight cohesion between TiO2 and SrTiO3 (STO) at grain boundary region was inferred from lattice parameter change of STO. Moreover, FE-SEM images revealed a granular structure of composite in which SrTiO3 particles were surrounded by smaller TiO2 nanoparticles. As TiO2 concentration increased, absorption edge firstly shifted to the left for composite with x=0.3 and then shifted gradually to the right with further increasing of TiO2 content from 30 mol% to 80 mol%. Composites exhibited a stronger photocatalytic activity than parent phases, with the highest efficiency at 50 mol% of TiO2. PL analysis result showed that the recombination rate of photogenerated electron-hole pairs decreased in composite sample, which partly explained the enhanced photocatalytic property.
NASA Astrophysics Data System (ADS)
Lin, Shaoxiong; Zhang, Xin; Shi, Xuezhao; Wei, Jinping; Lu, Daban; Zhang, Yuzhen; Kou, Huanhuan; Wang, Chunming
2011-04-01
In this paper the fabrication and characterization of IV-VI semiconductor Pb1-xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1-xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.
Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Karim, Zoheb
2018-07-15
Roselle fiber is a renewable and sustainable agricultural waste enriched with cellulose polysaccharides. The isolation of Nanocrystalline cellulose (NCC) from roselle-derived microcrystalline cellulose (MCC) is an alternative approach to recover the agricultural roselle plant residue. In the present study, acid hydrolysis with different reaction time was carried out to degrade the roselle-derived MCC to form NCC. The characterizations of isolated NCC were conducted through Fourier Transform Infrared Ray (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). As evaluated from the performed morphological investigations, the needle-like shape NCC nanostructures were observed under TEM and AFM microscopy studies, while irregular rod-like shape of NCC was observed under FESEM analysis. With 60min hydrolysis time, XRD analysis demonstrated the highest NCC crystallinity degree with 79.5%. In thermal analysis by TGA and DSC, the shorter hydrolysis time tended to produce NCC with higher thermal stability. Thus, the isolated NCC from roselle-derived MCC has high potential to be used in application of pharmaceutical and biomedical fields for nanocomposite fabrication. Copyright © 2018 Elsevier B.V. All rights reserved.
Ultrafast Carrier dynamics of InxGa1-xN nanostructures grown directly on Si(111)
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Devi, Pooja; Rodriguez, P. E. D. S.; Kumar, Manish; Shivling, V. D.; Noetzel, Richard; Sharma, Chhavi; Sinha, R. K.; Kumar, Mahesh
2018-05-01
We show a flux dependence changes in structural, optical and electronic properties of InxGa1-xN nanostructures (NSs) namely nanocolumns (NCs), nanoflakes (NFs) and nanowall network (NWN) grown directly on Si(111) surface. Field emission scanning electron microscopy (FESEM) images were recorded to see morphological changes from NFs to NCs and NWNc etc, while high-resolution X-ray diffraction (HRXRD) ω-2θ scans were used to determine In incorporation. The maximum In incorporation was observed to be 20, 33 and 38% for the sharp transition from NFs to NCs and NWNs, respectively. The charge carrier dynamics of these grown NSs were probed using Ultrafast Femtosecond Transient Absorption Spectroscopy (UFTAS) with excitation at 350 nm pump wavelength. The UFTAS studies show the comparative charge carriers dynamics of the NWS, NCs and NFs. The charge carrier studies show a higher lifetime in NWNs as compare to NCs and NFs. Further, to examine electronic structure and level of degeneracy of these NSs, core-level and valence band spectra were analyzed by X-ray photoelectron spectroscopy (XPS), which manifest the upward band bending ranging from 0.2 eV to 0.4 eV.
NASA Astrophysics Data System (ADS)
Prabhu, S.; Pudukudy, M.; Sohila, S.; Harish, S.; Navaneethan, M.; Navaneethan, D.; Ramesh, R.; Hayakawa, Y.
2018-05-01
In the present work, spindle-shaped ZnO and reduced graphene oxide sheets were successfully synthesized by a hydrothermal method and then ZnO/r-GO composite was prepared by a direct solution mixing method. Various characterization results confirmed the interior and surface decoration of spindle-shaped ZnO on the reduced graphene oxide sheets. The phase formation, crystalline structure, morphology, surface states and optical properties were characterized using Powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The X-ray diffraction analysis showed the formation of the hexagonal wurtzite crystalline structure of ZnO with high crystalline quality. The band gap of the ZnO/r-GO composite was found to be low (3.03eV) compared to the band gap of spindle shaped ZnO (3.13 eV), as calculated from optical studies. The spindle-like morphology of the single crystalline ZnO was clearly shown in the electron microscopic images. The chemical bonding and surface states of the samples were studied using XPS measurement. Moreover, a possible growth mechanism for the ZnO spindle was proposed. The catalytic activity of the as-synthesized samples was evaluated for the photodegradation of methylene blue under visible light irradiation. Among the synthesized samples, the ZnO/r-GO composite showed higher degradation efficiency of 93% and successfully reused for four consecutive run without any activity loss.
NASA Astrophysics Data System (ADS)
Shoushtari, Morteza Zargar; Emami, Akram; Ghahfarokhi, Seyed Ebrahim Mosavi
2016-12-01
In this study, we examine the bismuth doping effect on the structural, magnetic and microstructural properties of zinc-ferrite nanoparticles (ZnFe2-xBixO4 with x=0.0, 0.02, 0.04, 0.06, 0.1, 0.15) which have been prepared by a microwave combustion method. The structural, morphological and electromagnetic properties and also Curie temperature of the samples were examined by x-ray powder diffraction (XRD), field emission scanning electron microscope (FESEM), vibrating sample magnetometer (VSM), and LCR meter, respectively. In order to measure the energy band gap, the FTIR spectra of the samples were also considered. The XRD patterns of the samples revealed that all of them are ZnFe2O4 structure and no additional peak was observed in their patterns. This implied that the samples were single-phase up to bismuth solubility of 0.15 in Zinc-Ferrite. The results of XRD patterns also showed that the value lattice parameter increases with increasing the bismuth doping. The FESEM results revealed an ascending trend in the size of the nanoparticles. Also considering the VSM results characterized that an increasing the bismuth doping leads to lower the saturation magnetization. The Curie temperatures of the samples were reduced as a result of increasing the amount of bismuth.
Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa
2016-02-01
Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
NASA Astrophysics Data System (ADS)
Yang, Yujie; Wang, Fanhou; Huang, Duohui; Shao, Juxiang; Tang, Jin; Ur Rehman, Khalid Mehmood; Wu, Zhen
2018-04-01
Sn-Mg co-substituted M-type SrCaLa hexaferrites Sr0.5Ca0.2La0.3Fe12.0-2x(SnMg)xO19 (0.0 ≤ x ≤ 0.5) have been synthesized by ball milling and calcining. The results of X-ray diffraction show that a single magnetoplumbite phase is exhibited in all the samples and no impurity phase is observed in the structure. Lattice constants (c and a) increase with increasing Sn-Mg content (x) from 0.0 to 0.5. Platelet like structure exhibited by FE-SEM micrographs confirms the hexagonal structure of the synthesized samples. The saturation magnetization (Ms) first increases with increasing SnMg content (x) from 0.0 to 0.1, and then decreases when Sn-Mg content (x) ≥ 0.1. The remanent magnetization (Mr), Mr/Ms ratio, coercivity (Hc), magnetic anisotropy field (Ha) and first anisotropy constant (K1) decrease with increasing Sn-Mg content (x) from 0.0 to 0.5.
Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun
2018-05-15
A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.
Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application
NASA Astrophysics Data System (ADS)
Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.
2017-09-01
Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.
NASA Astrophysics Data System (ADS)
Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.
2015-03-01
CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.
NASA Astrophysics Data System (ADS)
Cartas, Andrew R.
The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Manisha, E-mail: guptamanisha69@yahoo.co.in; Sharma, Prashant K., E-mail: prashantnac@gmail.com
Multifunctional magnetic Nanoparticles (MFMNPs) are potentially applicable in both drug delivery systems (DDS) and hyperthermia treatment. Structural, surface morphology and optical property were investigated by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) measurement. Uniform Eu{sup 3+}:Gd{sub 2}O{sub 3} hollow microspheres of 1.8-2.0 μm diameters were synthesized by template based approach. We found that synthesized Hollow spheres are 100 nm in thickness. FE-SEM images revealed that the synthesized material are hollow in structure with good porous structure and these pores work as pathway for releasing drugs from the hollow particle inside. Luminescent properties of material were studiedmore » by room temperature photoluminescence emission spectra under the excitation of 275 nm. Material exhibit bright red emission corresponding to the {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of the activator ions under ultraviolet light excitation, which might find potential applications in fields such as drug delivery or biological labeling because of their excellent luminescence properties.« less
Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.
Baniasad, Arezou; Ghorbani, Mohsen
2016-05-01
In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.
Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications
NASA Astrophysics Data System (ADS)
Hansora, D. P.; Shimpi, N. G.; Mishra, S.
2015-12-01
This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.
A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.
Nandi, Nibedita; Baral, Abhishek; Basu, Kingshuk; Roy, Subhasish; Banerjee, Arindam
2017-01-01
A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis. It has been observed from FE-SEM images that entangled nanofiber network is responsible for gelation. Rheological investigation demonstrates that the self-assembly of this synthetic dipeptide results in the formation of mechanically strong hydrogel with storage modulus (G') around 10 4 Pa. This gel has been used for removing both cationic and anionic toxic organic dyes (Brilliant Blue, Congo red, Malachite Green, Rhodamine B) and metal ions (Co 2+ and Ni 2+ ) from waste water. Moreover, only a small amount of the gelator is required (less than 1 mg/mL) for preparation of this superhydrogel and even this hydrogel can be reused three times for dye/metal ion absorption. This signifies the importance of the hydrogel towards waste water management. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Taimur, Shaista; Hassan, Muhammad Inaam ul; Yasin, Tariq; Ali, Syed Wasim
2018-07-01
In this study, polystyrene (PS) grafted sepiolite nanohybrid (MS-g-PS) was synthesized by using simultaneous radiation grafting technique in the presence of dichloromethane (DCM) as solvent. The radiation grafting process was carried out under inert atmosphere at room temperature using gamma rays from a Co-60 irradiator. The degree of grafting was affected by absorbed dose and monomer concentration in the mixture. Sulfonation of synthesized nanohybrid was carried out with sulfuric acid. Both the grafting of styrene and its sulfonate derivative were verified by Fourier transform infrared spectroscopy (FT-IR). The structural and morphological investigations of these nanohybrids have been investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The gravimetric investigations showed that grafting yield increases with the absorbed dose. Results showed that the system allows the controlled grafting of styrene onto sepiolite (Sep) in DCM.
NASA Astrophysics Data System (ADS)
Wang, Ding; Zhang, Minglu; Zhuang, Huaijuan; Chen, Xu; Wang, Xianying; Zheng, Xuejun; Yang, Junhe
2017-02-01
(GaN)1-x(ZnO)x composite nanofibers with hollow structure were prepared by initial electrospinning, and the subsequent calcination and nitridation. The structure and morphology characteristics of samples were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The characterization results showed the phase transition from ZnGa2O4 to (GaN)1-x(ZnO)x solid-solution under ammonia atmosphere. The preparation conditions were explored and the optimum nitridation temperature and holding time are 750 °C and 2 h, respectively. The photocatalytic properties of (GaN)1-x(ZnO)x with different Ga:Zn atomic ratios were investigated by degrading Rhodamine B under the visible light irradiation. The photocatalytic activity sequence is (GaN)1-x(ZnO)x (Ga:Zn = 1:2) > (GaN)1-x(ZnO)x (Ga:Zn = 1:3) > ZnO nanofibers > (GaN)1-x(ZnO)x (Ga:Zn = 1:4) > (GaN)1-x(ZnO)x (Ga:Zn = 1:1). The photocatalytic mechanism of the (GaN)1-x(ZnO)x hollow nanofibers was further studied by UV-vis diffuse reflectance spectra. The excellent photocatalytic performance of (GaN)1-x(ZnO)x hollow nanofibers was attributed to the narrow band gap and high surface area of porous nanofibers with hollow structure.
Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
Effect of processing route for preparation of mullite from kaolinite and alumina
NASA Astrophysics Data System (ADS)
Behera, Pallavi Suhasinee; Bhattacharyya, Sunipa
2018-05-01
In current work, two different types of mullite ceramic powder were prepared using kaolinite and alumina by solid state and chemical precipitation route. The phases, bond types and microstructural evolution of the mullite powders were investigated by X-ray diffraction, infrared analysis, and field emission scanning electron microscopy to study the mullitisation behavior. The solid state method evident a pure mullite phase formation at 1550 °C. In case of chemical precipitation route small amount of alumina peak was noticed along with major phase of mullite which was also clearly apprehended from FESEM micrographs and IR spectra. Densification was more for the samples prepared by solid state process which may be correlated to the delayed mullitization process in chemical precipitation route.
Structure and properties of semi-interpenetrating network hydrogel based on starch.
Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang
2015-11-20
Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects for rapid conversion from abalone shell to hydroxyapaptite nanosheets by ionic surfactants.
Zhong, Shengnan; Wen, Zhenliang; Chen, Jingdi; Li, Qian; Shi, Xuetao; Ding, Shinnjyh; Zhang, Qiqing
2017-08-01
Hydroxyapatite (HAP) has been widely used for repairing or substituting human hard tissues. In this paper, two typical ionic surfactants, cation hexadecyltrimethylammonium bromide (CTAB) and anion sodium dodecyl sulfate (SDS), were used for rapid conversion of HAP from abalone shell. From field emission scanning electron microscopy (FESEM), the prepared HAP is flake-like structure. From X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal analysis, these samples contain a small amount of calcium carbonate whose content gradually increases by increasing the surfactants. The results showed that the HAP formed fast on the layer of abalone shell powder with the assistance of CTAB and SDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method
NASA Astrophysics Data System (ADS)
Sathisha, D.; Naik, K. Gopalakrishna
2018-05-01
Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.
Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution
NASA Astrophysics Data System (ADS)
Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.
2012-07-01
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Palanivelu, R.; Ruban Kumar, A.
2014-06-01
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.
NASA Astrophysics Data System (ADS)
Singh, Jarnail; Verma, Vikram; Kumar, Ravi
2018-04-01
We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).
Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity
NASA Astrophysics Data System (ADS)
T, T. T., Vi; Lue, S. J.
2016-11-01
A simple, facile method to fabricate successfully silver nanoparticle (AgNPs) decorated on graphene oxide (GO) layers via grafted thiol groups. Samples were prepared with different concentrations of AgNO3. Resulting AgNPs were quasi-spherical in shape and attached on the layers of GO. Physical properties were confirmed by X-ray diffraction (XRD), zeta potential, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectra, thermogravimetric analyzer (TGA), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Antimicrobial test was effectively showed using MRSA (Staphylococcus areus). The GO-Ag NPs with appropriate Ag NPs content of 0.2 M AgNO3 exhibited the strongest antibacterial activity at 48.77% inhibition after 4 hours incubation.
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Ramakrishnan, V.
2015-06-01
Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).
Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.
Xiao, F; Xue, Y N; Zhang, Q Y
2009-10-15
This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.
Supramolecular structure of 5-aminosalycilic acid/halloysite composites.
Viseras, Maria-Teresa; Aguzzi, Carola; Cerezo, Pilar; Cultrone, Giuseppe; Viseras, Cesar
2009-05-01
This paper assesses the supramolecular structure of nanocomposites prepared by including the anti-inflammatory drug 5-aminosalycilic acid in halloysite nanotubes. Halloysite tubes have sub-micron individual lengths with outer diameters ∼0.1 µm, as observed by FESEM. The mercury intrusion plots showed bimodal profiles with pore dimensions ∼10 and 0.06 µm. X-ray diffraction and thermogravimetric results revealed changes in the hydration form of the clay after the interaction. The groups associated to the interaction were studied by FTIR. The location of the drug in the composites was determined after uranium staining of its amino groups by X-EDS microanalysis coupled with HREM. The drug was located both inside and on the surface of the halloysite nanotubes. These results confirm the occurrence of two concomitant interaction mechanisms: rapid adsorption of 5-ASA at the external halloysite surface followed by slow adsorption of the drug inside the tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Nida; Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my; Nik Malek, Nik Ahmad Nazim
Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W formore » 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.« less
NASA Astrophysics Data System (ADS)
Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Enev, Vojtěch; Hajdúchová, Miroslava
2017-08-01
In this study, NiFe2O4 nanoparticles were synthesized using a honey-mediated sol-gel combustion method. The synthesized nanoparticles and samples annealed at 800 °C and 1100 °C were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). XRD and Raman spectroscopy confirmed the formation of a cubic spinel ferrite structure. FE-SEM demonstrated the octahedral morphology of the NiFe2O4 spinel ferrite nanoparticles with sizes ranging from 10 to 70 nm. Quantitative analysis based on XPS suggested a mixed spinel structure comprising NiFe2O4 nanoparticles. XPS analysis determined occupation formulae of (Ni0.212+ Fe0.443+)[Ni0.792+ Fe1.563+]O4 and (Ni0.232+ Fe0.503+)[Ni0.772+ Fe1.503+]O4, for the as-prepared NiFe2O4 nanoparticles and those annealed at 1100 °C, respectively. Magnetic measurements showed that the saturation magnetization increased with the crystallite size from 32.3 emu/g (20 nm) to 49.9 emu/g (163 nm), whereas the coercivity decreased with the crystallite size from 162 Oe (20 nm) to 47 Oe (163 nm). Furthermore, the dielectric constant, dielectric loss tangent, and AC conductivity of the NiFe2O4 nanoparticles were dependent on the frequency (1-107 Hz) and grain size. The influence of the grain size was also observed by modulus spectroscopy based on the Cole-Cole plot.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2014-09-01
Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3 with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO matrix covered with silver oxide shell, resulting in high quality nanocomposite thin films. The embedment of polyvinylpyrrolidone inhibited the growth of silver nanoparticles and ITO annealed at 350 °C. Delafossite structure of tin-doped AgInO2 was found at higher annealing temperatures. XRD analysis and FESEM micrographs showed that the optimum temperature to prevent the formation of AgInO2 is 350 °C. The embedment of silver particles (5-10 nm) from reduction of silver ion in ITO thin films improved the electrical conductivity and optical transmittance of ITO nanolayers. The lowest stable sheet resistance of 1,952 Ω/Sq for a 321 nm thick and an average optical transmittance of 91.8 % in the visible region with a band gap of 3.43 eV were achieved for silver-doping content of 0.04 M.
NASA Astrophysics Data System (ADS)
Saravanakkumar, D.; Sivaranjani, S.; Kaviyarasu, K.; Ayeshamariam, A.; Ravikumar, B.; Pandiarajan, S.; Veeralakshmi, C.; Jayachandran, M.; Maaza, M.
2018-03-01
Pure ZnO, ZnO–CuO nanocomposites can be synthesized by using a modified perfume spray pyrolysis method (MSP). The crystallite size of the nanoparticles (NPs) has been observed by X-ray diffraction pattern and is nearly 36 nm. Morphological studies have been analyzed by using Field Emission Scanning Electron Microscopy (FESEM) and its elemental analysis was reported by Elemental X-ray Analysis (EDX); these studies confirmed that ZnO and CuO have hexagonal structure and monoclinic structure respectively. Fourier Transform Infrared (FTIR) spectra revealed that the presence of functional frequencies of ZnO and CuO were observed at 443 and 616 cm‑1. The average bandgap value at 3.25 eV using UV–vis spectra for the entitled composite has described a blue shift that has been observed here. The antibacterial study against both gram positive and negative bacteria has been studied by the disc diffusion method. To the best of our knowledge, it is the first report on ZnO–CuO nanocomposite synthesized by a modified perfume spray pyrolysis method.
NASA Astrophysics Data System (ADS)
Roohollahi, Hossein; Halladj, Rouein; Askari, Sima; Yaripour, Fereydoon
2018-06-01
SAPO-34/AlMCM-41, as a new hierarchical nanocomposite was successfully synthesized via hydrothermal and dry-gel conversion. In an experimental and statistical study, effect of five input parameters including synthesis period, drying temperature, NaOH/Si, water/dried-gel and SAPO% were investigated on range-order degree of mesochannels and the relative crystallinity. X-ray diffraction (XRD) patterns were recorded to characterize the ordered AlMCM-41 and crystalline SAPO-34 structures. Nitrogen adsorption-desorption technique, scanning electron microscopy (SEM), field-emission SEM (FESEM) equipped with an energy-dispersive X-ray spectroscopy (EDS-Map) and transmission electron microscopy (TEM) were used to study the textural properties, morphology and surface elemental composition. Two reduced polynomials were fitted to the responses with good precision. Further, based on analysis of variances, SAPO% and time duration of dry-gel conversion were observed as the most effective parameters on the composite structure. The hierarchical porosity, narrow pore size distribution, high external surface area and large specific pore volume were of interesting characteristics for this novel nanocomposite.
NASA Astrophysics Data System (ADS)
Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying
2018-06-01
AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.
NASA Astrophysics Data System (ADS)
Yao, Wei; Zhou, Hui; Lu, Yun
2013-11-01
Novel MnO2@polypyrrole (PPy) coaxial nanotubes have been prepared via a simple and green approach without any surfactant and additional oxidant. Under the acidic condition, MnO2 nanotubes act as both template and oxidant to initiate the polymerization of pyrrole monomers on its fresh-activated surface. Fourier transform infrared spectra (FT-IR), X-ray diffraction patterns (XRD), thermo-gravimetric analysis data (TG) and X-ray photoelectron spectra (XPS) suggest the formation of composite structure of MnO2@PPy. Also, FESEM and TEM images intuitively confirm that the PPy shell is coated uniformly on the surface of MnO2 nanotubes. Adjusting the concentrations of sulfuric acid or adding oxidant can modulate the morphology of the products accordingly. Due to the synergic effect between MnO2 core and PPy shell, the MnO2@PPy coaxial nanotubes possess better rate capability, larger specific capacitance of 380 F g-1, doubling the specific capacitance of MnO2 nanotubes, and good capacitance retention of 90% for its initial capacitance after 1000 cycles.
Ultrasonically assisted synthesis of lead oxide nanoflowers using ball milling
NASA Astrophysics Data System (ADS)
Bangi, Uzma K. H.; Park, Hyung-Ho; Han, Wooje; Prakshale, Vipul M.; Deshmukh, Lalasaheb P.
2017-05-01
The experimental results on the ultrasonically assisted synthesis of lead oxide nanoflowers using ball milling have been reported in the present work. Lead oxide nanoflowers were prepared employing mixed ligands by subjecting the formed precipitate to ultrasonication and grinding/ball milling. The effect of ball milling as well as fine grinding in agate mortar on the microstructure and surface morphology of the lead oxide was studied. The characteristics of synthesized PbO were studied using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and field emission scanning electron microscopy techniques. XRD results demonstrated the tetragonal phase of PbO with crystallite size of around 25 nm and strain of 3.6 × 10-3 calculated from Williamson-Hall plot. FESEM images manifested the formation of nanodiscs and nanoflowers with a diameter of around 300 nm and thickness of 50 nm. XPS spectra revealed the formation of PbO with photoelectron peak of Pb 4f and O 1 s lied at 137.68 and 529.96 eV. Moreover, FTIR spectrum exhibited Pb-O bond peak in the range of 400-530 cm-1.
NASA Astrophysics Data System (ADS)
Caglar, Mujdat; Atar, Kadir Cemil
2012-10-01
Using indium chloride as an In source, In-doped SnO2 films were fabricated by sol-gel method through dip-coating on borofloat glass substrates. The undoped SnO2 films were deposited in air between 400 and 600 °C to get optimum deposition temperature in terms of crystal quality and hence In-doped SnO2 films were deposited in air at 600 °C. The effect of both deposition temperature and In content on structural, morphological, optical and electrical properties was investigated. The crystalline structure and orientation of the films were investigated by X-ray diffraction (XRD) and surface morphology was studied by a field emission scanning electron microscope (FESEM). The compositional analysis of the films was confirmed by energy dispersive X-ray spectrometer (EDS). The absorption band edge of the SnO2 films shifted from 3.88 to 3.66 eV with In content. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by deposition temperature and In content.
NASA Astrophysics Data System (ADS)
Pan, Chao; Gu, Haiteng; Dong, Li
2016-01-01
We introduce a facile method to construct new ternary hierarchical nanocomposites by combining MnO2 coated one dimensional (1D) conducting polyaniline (PANI) nanowires with 2D graphene sheets (GNs). The hierarchical nanocomposite structures of PANI@MnO2/GNs (PMGNs) are further proved by X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the electrodes made of the hierarchical structured PMGNs materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the nanostructured PMGNs exhibit an improved reversible capacitance of 695 F g-1 after 1000 cycles at a high current density of 4 A g-1. The ternary composites possess higher electrochemical capacitance than each individual component as supercapacitor electrode materials. Such intriguing electrochemical performance is mainly attributed to the synergistic effects of MnO2, PANI and graphene. The hierarchical ternary nanocomposites show excellent electrochemical properties for energy storage applications, which evidence their potential application as supercapacitors.
Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian
2012-07-01
The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.
Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng
2017-10-24
A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.
Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films
NASA Astrophysics Data System (ADS)
Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang
2018-04-01
In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.
Time-dependent gel to gel transformation of a peptide based supramolecular gelator.
Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam
2015-06-28
A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.
Agarwal, Shilpi; Tyagi, Inderjeet; Gupta, Vinod Kumar; Sohrabi, Maryam; Mohammadi, Sanaz; Golikand, Ahmad Nozad; Fakhri, Ali
2017-01-01
Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO 2 /Co 3 O 4 nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV-Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15min, pH6 and 0.1g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO 2 /Co 3 O 4 nanocomposites Fe doped SnO 2 /Co 3 O 4 nanocomposites possess greater photocatalytic efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of template post-annealing on Y(Dy)BaCuO nucleation on CeO2 buffered metallic tapes
NASA Astrophysics Data System (ADS)
Hu, Xuefeng; Zhong, Yun; Zhong, Huaxiao; Fan, Feng; Sang, Lina; Li, Mengyao; Fang, Qiang; Zheng, Jiahui; Song, Haoyu; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing
2017-08-01
Substrate engineering is very significant in the synthesis of the high-temperature superconductor (HTS) coated conductor. Here we design and synthesize several distinct and stable Cerium oxide (CeO2) surface reconstructions which are used to grow epitaxial films of the HTS YBa2Cu3O7-δ (YBCO). To identify the influence of annealing and post-annealing surroundings on the nature of nucleation centers, including Ar/5%H2, humid Ar/5%H2 and O2 in high temperature annealing process, we study the well-controlled structure, surface morphology, crystal constants and surface redox processes of the ceria buffers by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FE-SEM), respectively. The ceria film post-annealed under humid Ar/5%H2 gas shows the best buffer layer properties. Furthermore, the film absorbs more oxygen ions, which appears to contribute to oxygenation of superconductor film. The film is well-suited for ceria model studies as well as a perfect substitute for CeO2 bulk material.
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.
2016-05-01
Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.
X-ray diffraction from shock-loaded polycrystals.
Swift, Damian C
2008-01-01
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.
NASA Astrophysics Data System (ADS)
Torabi, Z.; Arab, A.; Ghanbari, F.
2018-02-01
Gd, Mn and Co substituted barium hexagonal ferrite nanoparticles, according to the formula Ba1- x Gd x Fe12-2 y (MnCo) y O19 and the proportion of y = x/2 (and x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1), have been prepared by hydrothermal method. Structural, magnetic and absorption microwave properties of the compositions were evaluated by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), vibrating sample magnetometry, and vector network analysis. Studying the XRDs data showed the single-phase structure of all samples without any impurities at 900°C calcination temperature. FE-SEM micrographs demonstrated that the morphology of the nanoparticles has planar and nearly hexagonal morphology. The nanoparticles size calculated within the range of 62-85 nm. Study of the room temperature hysteresis loops of calcined samples indicated that maximum magnetizations and coercivities decreased compared to undoped composite with respect to x. The alterations of magnetizations and coercivities are related to the site occupation of substituted ions, change in grain growth inhibition and the effect of spin canting. Moreover, the results of microwave absorption measurements demonstrated that the maximum reflection loss of substituted Ba-hexaferrite equivalent to - 47 dB in sample x = 0.5 with thickness 5.6 mm at a frequency about 17.2 GHz and a bandwidth of 2 GHz greater than - 10 dB. The results showed that Gd has good potential for use as a rare-earth substitution in permanent magnet hexaferrites and these composites can be employed as absorbers in the gigahertz frequency range.
Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue
2018-07-01
Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
Pradhan, D; Wren, A W; Misture, S T; Mellott, N P
2016-01-01
Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuvel, K., E-mail: kssamuvel@gmail.com; Ramachandran, K., E-mail: ramach76@yahoo.com
2016-05-06
BaTi{sub 0.5}CO{sub 0.5}O{sub 3} (BTCO) nanoparticles were prepared by the solid state reaction technique using different starting materials and the microstructure examined by XRD, FESEM, BDS and VSM. X-ray diffraction and electron diffraction patterns showed that the nanoparticles were the tetragonal BTCO phase. The BTCO nanoparticles prepared from the starting materials of as prepared titanium-oxide, Cobalt -oxide and barium carbonate have spherical grain morphology, an average size of 65 nm and a fairly narrow size distribution. The nano-scale presence and the formation of the tetragonal perovskite phase as well as the crystallinity were detected using the mentioned techniques. Dielectric properties ofmore » the samples were measured at different frequencies. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. The doped BTCO samples exhibited low loss factor at 1 kHz and 1 MHz frequencies respectively.« less
Synthesis and characterization of single-crystalline zinc tin oxide nanowires
NASA Astrophysics Data System (ADS)
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-05-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Synthesis and characterization of single-crystalline zinc tin oxide nanowires.
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-01-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
NASA Technical Reports Server (NTRS)
Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)
1996-01-01
An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.
Real-time X-ray Diffraction: Applications to Materials Characterization
NASA Technical Reports Server (NTRS)
Rosemeier, R. G.
1984-01-01
With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.
3,4-Diaminotoluene sensor development based on hydrothermally prepared MnCoxOy nanoparticles.
Rahman, Mohammed M; Alam, M M; Asiri, Abdullah M; Islam, M A
2018-01-01
A facile hydrothermal process was used to prepare MnCo x O y nanoparticles (NPs) in alkaline medium (pH~10.5) at room temperature. The NPs were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV/vis), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD). A thin layer of NPs film as a chemical sensor was fabricated on a glassy carbon electrode (GCE) with the help of a conducting binder. The sensor was implemented successfully for the detection 3,4-DAT with reliable I-V approach at low potential. The sensor-features include good sensitivity (0.37 mAµmolL -1 cm -2 ), low detection limit (LOD=0.26±0.01 pmolL -1 at a signal to noise ratio of 3), low limit of quantification (LOQ=7.80±0.01 pmolL -1 ), good reliability, good reproducibility, ease of integration, and long-term stability were investigated. The sensor response towards 3,4-DAT is linear in logarithmic scale over a large concentration range (1.0 pmolL -1 to 1.0 µmolL -1 ). This work is introduced a route for future sensitive sensor development based on MnCo x O y NPs by reliable I-V method for the detection of hazardous and carcinogenic toxins in environmental and health care fields. Copyright © 2017 Elsevier B.V. All rights reserved.
Pseudocapacitance of Co doped NiO nanoparticles and its room temperature ferromagnetic behavior
NASA Astrophysics Data System (ADS)
Bharathy, G.; Raji, P.
2018-02-01
Co doped NiO nanoparticles CoxNi1-xO (x = 0.0, 0.1, 0.2, 0.3, 0.4) were synthesized by the Sol-gel technique. The impact of Co doping concentration on structural, functional and magnetic properties of NiO nanoparticles was analyzed by X-ray diffraction (XRD), FESEM with EDAX, FTIR and VSM. The average crystallite size was measured to be 34 nm and 11 nm for NiO and Co doped NiO nanoparticles respectively. FESEM reveals that particles are spherical in shape with average size around 30 nm. The elemental composition was analyzed by EDAX. FTIR spectra reveal the existence of NiO peaks in the prepared samples, room temperature ferromagnetism was observed for pure and Co doped NiO nanoparticles by VSM. Pure NiO particles shows ferromagnetic behavior with low coercivity and it increases gradually when doping ratio increases. Higher saturation magnetization was obtained for the sample 0.1 M of Co doped NiO nanoparticle as 22.09 emu/gm. An attempt has been made to study the pseudocapacitance behavior of pure and Co doped NiO nano particles in various scan rates. Electrochemical studies show that 0.4 M Co doped sample gives better charge storage capacity with maximum specific capacitance of 379 Fg-1 at a scan rate of 20 mVs-1. It reveals that it is a promising electrode material for super capacitor applications.
Radiation damage free ghost diffraction with atomic resolution
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...
2017-12-21
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Radiation damage free ghost diffraction with atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
Iwamoto, Hiroyuki
2018-06-13
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
NASA Astrophysics Data System (ADS)
Loghman-Estarki, M. R.; Torkian, S.; Rastabi, R. Amini; Ghasemi, A.
2017-11-01
In this study, magnesium copper zinc ferrite (MCZ) nanoparticles were synthesized by the modified Pechini method. In this approach, the magnesium nitrate, copper nitrate, zinc nitrate, iron nitrate, citric acid and diethylene glycol (instead of ethylene glycol in conventional Pechini method) were used as a source of Mg2+, Cu2+, Zn2+, complex and stabilizer and solvent agent, respectively. The effect of annealing temperature and copper mole ratio on the morphology, structural and magnetic properties of Mg0.5xCuxZn0.5Fe2O4 (x = 0-0.5) nanoparticles were investigated. Various characterization methods, including X-ray diffraction (XRD), field emission scanning electron microscope (FeSEM), energy-dispersive spectroscopy (EDS), X-ray mapping, Fourier transforms infrared spectroscopy (FTIR), adsorption-desorption isotherm and vibrating sample magnetometer (VSM) were used to study the phase, microstructure, particle size, elemental distribution, functional group determination, porosity and magnetic properties of nanoparticles, respectively. The results showed that cubic spinel phase with various morphologies such as semi-spherical, sheet-like shapes was obtained by the modified Pechini method. Furthermore, the nanoparticles with the x value of 0.2, annealed at 700 °C have the highest saturation magnetization (Ms = 56.5 emu/g) among the other synthesized MCZ ferrite nanoparticles.
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2016-07-06
Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.
A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less
NASA Astrophysics Data System (ADS)
Panda, Jnanranjan; Tudu, Bharati
2018-05-01
Herein, a flower like MoS2 (M1) microsphere assembled by layered porous nanosheet was successfully prepared by facile hydrothermal synthesis procedure. The structural, chemical and morphological characterizations for the as synthesized sample (M1) were carried out by powder x-ray diffraction (PXRD), Fourier-transform infrared (FTIR) and Field Emission Scanning Electron microscope (FESEM) respectively and spectroscopic characterization was performed by UV-Vis absorption and photoluminescence emission spectroscopy. The photocatalytic activity of the product was evaluated through photocatalytic degradation of Methylene Blue under visible light irradiation. The results indicate that layered MoS2structures possess significant adsorption ability, which may be useful for further research and practical applications of the layered MoS2 adsorbent in wastewater treatment.
Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer
NASA Astrophysics Data System (ADS)
Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar
2018-05-01
In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahata, S.; Mahato, S. S.; Nandi, M. M.
2012-07-23
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less
Polythiophene-carbon nanotubes composites as energy storage materials for supercapacitor application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, A. K., E-mail: anukulphyism@gmail.com; Choudhary, R. B.; Sartale, S. D.
Polythiophene incorporated carbon materials have sought huge attention due to various improved electrochemical properties including enhanced electrical conductivity. Our work includes the synthesis of polythiophene (PTP)-multi-wallcarbon nanotubes (MWCNTs) via in-situ polymerization method. The homogeneous distribution of MWCNT in PTP was confirmed by Field Emission Scanning Electron Microscope (FESEM). Examination of the specimen using X-Ray diffraction (XRD), Fourier Transform-Infrared (FTIR) and Raman spectroscopy confirmed the composite formation. Other electrochemical characterizations like electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV)of the PTP-MWCNT composite affirmed that incorporation of MWCNT improves the electrochemical properties of neat PTP including a significant increase in the capacitance.more » Hence making PTP-MWCNT isa better material for supercapacitor application than neat PTP.« less
Nanotubular polyaniline electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Athira, A. R.; Vimuna, V. M.; Vidya, K.; Xavier, T. S.
2018-05-01
Polyaniline(PANI) nanotubes have been successfully synthesised at room temperature by the chemical oxidative polymerization of aniline with Ammoniumpersulphate(APS) in aqueous acetic acid. Chemically synthesised PANI nanotubes were characterized using Field emission scanning electron microscopy(FESEM), Brunauer - Emmett-Teller (BET) analysis, X ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The super capacitive performance of the synthesised PANI nanotubes was tested using cyclic voltammetry (CV) technique in H2SO4 electrolyte with in potential range of -0.2 to 0.8V. The effect of scan rates on specific capacitance of PANI electrode was studied. The highest specific capacitance of 232.2Fg-1 was obtained for the scan rate of 5mVs-1. This study suggests that the synthesized PANI nanotubes are excellent candidate for developing electrode materials for supercapacitors.
Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.
Palanivelu, R; Ruban Kumar, A
2014-06-05
Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saadati-Moshtaghin, Hamid Reza; Zonoz, Farrokhzad Mohammadi; Amini, Mostafa M.
2018-04-01
A novel magnetically recoverable nanocomposite consisting of the NiFe2O4 core and KIT-6 mesoporous silica shell incorporated with ZnO nanoparticles was constructed. This nanocomposite was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (XRD), Brunauer Emmett Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). This new nanocomposite demonstrated a catalytic performance in the synthesis of symmetrical N,N‧-alkylidene bisamides at the condensation reaction under solvent-free conditions. The nanocatalyst could simply be recovered from the reaction environment by using an exterior magnet and reused five times without a remarkable losing in the catalytic property.
NASA Astrophysics Data System (ADS)
Chandrasekaran, P.; Murugu thiruvalluvan, T. M. V.; Arivanandhan, M.; Jayakumari, T.; Anandan, P.
2017-07-01
The effect of sintering temperature and Ti:Zn ratio of precursor solutions on the structural, morphological and thermoelectric properties of Zinc titanate (TZO) nanocrystals have been investigated. TZO nanocrystals were synthesized by changing the molar ratio of precursors of Zn and Ti sources by sol-gel method. The synthesized materials were sintered at different temperatures and the formation of multi phases of TZO were analysed by x-ray diffraction studies. The morphological properties and composition of TZO samples were studied by FESEM, TEM and XPS analysis. The thermoelectric properties of the TZO have been studied by measuring the Seebeck coefficient of the materials at various temperature. It was observed that the Seebeck coefficient of TZO sample increases with increasing Zn content in the sample especially at high temperature.
NASA Astrophysics Data System (ADS)
Ranjbar, M.; Ghazi, M. E.; Izadifard, M.
2018-06-01
In this paper we have investigated the annealing temperature effect on the structure, morphology, dielectric and magnetic properties of sol-gel synthesized multiferroic BiFeO3 nanoparticles. X-ray diffraction spectroscopy revealed that all the samples have rhombohedrally distorted perovskite structure and the most pure BFO phase is obtained on the sample annealed at 800 °C. Field emission scanning electron microscopy (FESEM) revealed that increasing annealing temperature would increase the particle size. Decrease in dielectric constant was also observed by increasing annealing temperature. Vibrating sample method (VSM) analysis confirmed that samples annealed at 500-700 °C with particle size below the BFO's spiral spin structure length, have well saturated M-H curve and show ferromagnetic behavior.
Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein
2015-02-25
Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation. Copyright © 2014 Elsevier B.V. All rights reserved.
Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO
NASA Astrophysics Data System (ADS)
Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho
2015-06-01
Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Pérez-Arantegui, Josefina; Colombini, Maria Perla
2014-10-01
An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions. FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis. FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.
Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction
NASA Astrophysics Data System (ADS)
Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.
2018-06-01
Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.
Coherent x-ray diffraction imaging with nanofocused illumination.
Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C
2008-08-29
Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.
NASA Astrophysics Data System (ADS)
Rahmanian, Omid; Maleki, Mohammad Hassan; Dinari, Mohammad
2017-11-01
A novel adsorbent of nickel aluminum layered double hydroxide (Ni/Al-LDH) was prepared through the precipitation of metal nitrates by ultrasonically assisted solvothermal method. The surface morphology, chemical structure and thermal properties of this compound were examined by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The XRD, TEM and FE-SEM results established that the synthesized LDH have a well-ordered layer structure with good crystalline nature. Then it was applied to remove excessive Cd(II) ions from water and the effects of contact time, pH and adsorbent dose were examined at initial Cd(II) concentration of 10 mg/L. Results show that the time required to reach equilibrium was fast (40 min) and working pH solution was neutral (pH 7). Langmuir and Freundlich model of adsorption isotherms were explored; the results show that the Freundlich model was better fitted than that Langmuir model. This results predicting a multilayer adsorption of Cd(II) on LDH. The equilibrium kinetic adsorption data were fixed to the pseudo-second order kinetic equation.
Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.
NASA Astrophysics Data System (ADS)
Verma, Akta; Sharma, S. K.
2018-05-01
In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal
2011-01-15
We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less
NASA Astrophysics Data System (ADS)
Rahmani Afje, F.; Ehsani, M. H.
2018-04-01
Synthesize of La0.8Sr0.2MnO3 (LSMO) manganite were carried out in different particle sizes by hydrothermal method. Structural and optical properties of the prepared specimens were studied by x-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and UV–vis spectroscopy. The XRD study, coupled with the Rietveld refinement, exhibited rhombohedral structure with R-3C space group. Using the FT-IR and FESEM analyses, the perovskite structure of the samples with Nano-rod-like morphologies were inferred. Furthermore, the average sizes of 48.11, 70.99 and 111.45 nm were obtained for the ones sintered at 800, 900, and 1000 °C temperatures, respectively. The optical research showed that band gap energy is about 2.13 eV, being suitable in visible-light photocatalytic activity for water purification from dyes and toxic organic materials. The photo-degradation efficiency for decolorizing methyl orange solution (10 ppm) for various samples (100 ppm) were systematically probed and a strong relation is concluded between particle size and photocatalytic activity.
NASA Astrophysics Data System (ADS)
Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash
2017-06-01
The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com; Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo; Department of Physics, University of Yangon, 11041 Kamayut, Yangon
Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used tomore » investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.« less
Kumar Basumatary, Ashim; Kumar Ghoshal, Aloke; Pugazhenthi, G
2016-12-01
Three dimensional ordered mesoporous MCM-48 membrane was fabricated on a circular shaped ceramic support by in-situ hydrothermal method. The synthesized MCM-48 powder and MCM-48 ceramic composite membrane were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM). The porosity and pore size of the composite membrane are reduced considerably by the deposition of MCM-48 on the support. The formation of MCM-48 is verified by the XRD analysis. Three stepwise mechanisms for surfactant removal are observed by TGA analysis. FESEM images clearly signify the deposition of MCM-48 on the ceramic support. The pure water flux of the support and MCM-48 composite membrane is found to be 3.63×10 -6 and 4.18×10 -8 m 3 /m 2 skPa, respectively. The above prepared MCM-48 ceramic composite membrane is employed for the removal of AlCl 3 from aqueous solution and the highest rejection of 81% is obtained at an applied pressure of 276kPa with salt concentration of 250ppm. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.
2012-03-01
X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.
Optical properties of (AlxGa1-x)2O3 on sapphire
NASA Astrophysics Data System (ADS)
Hu, Zhuangzhuang; Feng, Qian; Zhang, Jincheng; Li, Fuguo; Li, Xiang; Feng, Zhaoqing; Zhang, Chunfu; Hao, Yue
2018-02-01
The (AlxGa1-x)2O3 and Ga2O3 films are epitaxially grown on sapphire by pulsed laser deposition (PLD). From X-ray photoelectron spectroscopy (XPS) and X-ray diffraction measurements, the (AlxGa1-x)2O3 films with Al compositions of 0.39, 0.49 and up to 0.53 are all single crystal and there is an out-of-plane tensile strain in (AlxGa1-x)2O3 films within the range from 0.164% to 0.345%. The optical properties are investigated by Spectral Ellipsometry (SE) together with the optical transmission method. The spectral dependence of the refractive index (n) by SE is in accordance with the reported experiment results. The thicknesses of the Ga2O3 and (AlxGa1-x)2O3 films obtained by SE fitting are 201, 116.8, 40 and 84.61 nm, respectively, which is consistent with the field emission scanning electron microscopy (FESEM) measurement results. In addition, with the Al composition increasing, the bandgaps of the (AlxGa1-x)2O3 films determined from the SE are both increase from 4.95 to 5.49, 5.7 and 5.75 eV, almost identical to the values determined by the transmittance spectra, which is larger than some extent compared to reference [13] for the compressive strain in the (AlxGa1-x)2O3 films.
NASA Astrophysics Data System (ADS)
Akbari, Alireza; Khammar, Mansoureh; Taherzadeh, Danial; Rajabian, Arezoo; Khorsand Zak, Ali; Darroudi, Majid
2017-12-01
Zinc-doped cerium oxide nanoparticles (Zn-doped CeO2-NPs) with Ce1-xZnxO2 composition, where x equals to 0.0, 0.01, 0.03, and 0.05 are synthesized through a green based sol-gel method from nitrate precursors and gelatin at the fixed calcination temperature of 600 °C maintained for 2 h. The powder X-ray diffraction (PXRD) patterns displayed the single-crystalline structure of these particular samples, which seemed to be completely indexed with the cubic fluorite phase. The evolution of crystalline phases in Ce1-xZnxO2 are assured by the observed broadening in PXRD peaks, while the field emission scanning electron microscopy (FE-SEM) images revealed that the spherical-shaped single-crystalline NPs do exist and confirmed the size estimations that were obtained from the Scherrer's equation. A dose dependent toxicity with non-toxic effects of concentrations up to 31.25 μg/ml is illustrated through the In vitro cytotoxicity studies regarding Neuro2A cells.
NASA Astrophysics Data System (ADS)
Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.
2012-11-01
Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.
Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.
Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young
2014-11-17
We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors
NASA Astrophysics Data System (ADS)
Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong
2014-09-01
By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.
Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R
2015-09-05
Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.
Iqbal, Naseer; Khan, Ibrahim; Yamani, Zain H; Qurashi, Ahsanullhaq
2016-08-26
Gallium oxynitride (GaON) nanosheets for photoelectrochemical (PEC) analysis are synthesized via direct solvothermal approach. Their FE-SEM revealed nanosheets morphology of GaON prepared at a reaction time of 24 hours at 180 °C. The elemental composition and mapping of Ga, O and N are carried out through electron dispersive X-ray spectroscopy (EDX). The cubic structure of GaON nanosheets is elucidated by X-ray diffraction (XRD)analysis. The X-ray Photoelectron Spectroscopy (XPS) further confirms Ga, O and N in their respective ratios and states. The optical properties of GaON nanosheets are evaluated via UV-Visible, Photoluminescence (PL) and Raman spectroscopy's. The band gap energy of ~1.9 eV is calculated from both absorption and diffused reflectance spectroscopy's which showed stronger p-d repulsions in the Ga (3d) and N (2p) orbitals. This effect and chemical nitridation caused upward shift of valence band and band gap reduction. The GaON nanosheets are investigated for PEC studies in a standard three electrode system under 1 Sun irradiation in 0.5 M Na2SO4. The photocurrent generation, oxidation and reduction reactions during the measurements are observed by Chronoampereometry, linear sweep Voltametry (LSV) and Cyclic Voltametry (CV) respectively. Henceforward, these GaON nanosheets can be used as potential photocatalyts for solar water splitting.
Iqbal, Naseer; Khan, Ibrahim; Yamani, Zain H.; Qurashi, Ahsanullhaq
2016-01-01
Gallium oxynitride (GaON) nanosheets for photoelectrochemical (PEC) analysis are synthesized via direct solvothermal approach. Their FE-SEM revealed nanosheets morphology of GaON prepared at a reaction time of 24 hours at 180 °C. The elemental composition and mapping of Ga, O and N are carried out through electron dispersive X-ray spectroscopy (EDX). The cubic structure of GaON nanosheets is elucidated by X-ray diffraction (XRD)analysis. The X-ray Photoelectron Spectroscopy (XPS) further confirms Ga, O and N in their respective ratios and states. The optical properties of GaON nanosheets are evaluated via UV-Visible, Photoluminescence (PL) and Raman spectroscopy’s. The band gap energy of ~1.9 eV is calculated from both absorption and diffused reflectance spectroscopy’s which showed stronger p-d repulsions in the Ga (3d) and N (2p) orbitals. This effect and chemical nitridation caused upward shift of valence band and band gap reduction. The GaON nanosheets are investigated for PEC studies in a standard three electrode system under 1 Sun irradiation in 0.5 M Na2SO4. The photocurrent generation, oxidation and reduction reactions during the measurements are observed by Chronoampereometry, linear sweep Voltametry (LSV) and Cyclic Voltametry (CV) respectively. Henceforward, these GaON nanosheets can be used as potential photocatalyts for solar water splitting. PMID:27561646
CoO doping effects on the ZnO films through EBPDV technique
NASA Astrophysics Data System (ADS)
Inês Basso Bernardi, Maria; Queiroz Maia, Lauro June; Antonelli, Eduardo; Mesquita, Alexandre; Li, Maximo Siu; Gama, Lucianna
2014-03-01
Nanometric Zn1-xCo xO (x = 0.020, 0.025 and 0.030 in mol.%) nanopowders were obtained from low temperature calcination of a resin prepared using the Pechini's method. Firing the Zn1-xCoxO resin at 400 °C/2 h a powder with hexagonal structure was obtained as measured by X-ray diffraction (XRD). The powder presented average particle size of 40 nm observed by field emission scanning electronic microscopy (FE-SEM) micrographs and average crystallite size of 10 nm calculated from the XRD using Scherrer's equation. Nanocrystalline Zn1-xCo xO films with good homogeneity and optical quality were obtained with 280-980 nm thicknesses by electron beam physical vapour deposition (EBPVD) under vacuum onto silica substrate at 25 °C. Scanning electron microscopy with field emission gun showed that the film microstructure is composed by spherical grains and some needles. In these conditions of deposition the films presented only hexagonal phase observed by XRD. The UV-visible-NIR and diffuse reflectance properties of the films were measured and the electric properties were calculated using the reflectance and transmittance spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
Local terahertz field enhancement for time-resolved x-ray diffraction
Kozina, M.; Pancaldi, M.; Bernhard, C.; ...
2017-02-20
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Local terahertz field enhancement for time-resolved x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; Pancaldi, M.; Bernhard, C.
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
NASA Astrophysics Data System (ADS)
R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare
2016-04-01
In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).
Thermal x-ray diffraction and near-field phase contrast imaging
NASA Astrophysics Data System (ADS)
Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua
2017-10-01
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Thermal x-ray diffraction and near-field phase contrast imaging
Li, Zheng; Classen, Anton; Peng, Tao; ...
2017-12-27
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica
2014-07-01
The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.
NASA Astrophysics Data System (ADS)
Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup
2018-06-01
We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.
In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffold.
Revati, R; Majid, M S Abdul; Ridzuan, M J M; Basaruddin, K S; Rahman Y, M N; Cheng, E M; Gibson, A G
2017-10-01
The in vitro degradation and mechanical properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA)-based scaffold were investigated. In this study, composite scaffolds with PP to PLA ratios of 0%, 10%, 20%, and 30% were immersed in a PBS solution at 37°C for 40 days. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32MPa, while the compressive modulus increased from 1.73 to 5.25MPa as the fillers' content increased from 0wt% to 30wt%. Moreover, field emission scanning electron microscopy (FESEM) and X-ray diffraction were employed to observe and analyse the microstructure and fibre-matrix interface. Interestingly, the degradation rate was reduced for the PLA/PP 20 scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibre-matrix interface was formed in the PLA/PP 20 scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. The results suggest that the P. purpureum/PLA scaffold degradation rate can be altered and controlled to meet requirements imposed by a given tissue engineering application. Copyright © 2017 Elsevier Ltd. All rights reserved.
An image focusing means by using an opaque object to diffract x-rays
Sommargren, Gary E.; Weaver, H. Joseph
1991-01-01
The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.
Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell
Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...
2009-11-01
We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
NASA Astrophysics Data System (ADS)
Thein, Myo Thuya; Pung, Swee-Yong; Aziz, Azizan; Lockman, Zainovia; Itoh, Mitsuru
2017-07-01
ZnO based composite is an attractive UV light driven semiconductor photocatalyst to degrade organic compounds attributed to its wide bandgap (3.37 eV). In this study, Ni/ZnO composites were synthesized via solution precipitation method. The composites were calcinated at various temperature, i.e. from 250 °C to 700 °C and subsequently annealed at 500°C in reductive environment (hydrogen atmosphere). The diffraction peaks of all samples could be indexed to the hexagonal wurtzite ZnO. No diffraction peaks from Ni could be observed in all samples, suggesting that the amount of Ni in the composites were below the detection limit of X-ray diffraction (XRD). The field emission scanning electron microscope (FESEM) images confirm that all samples were rod-like structure with hexagonal tips. In addition, small Ni particles were homogeneously deposited on the surface of ZnO rods. This observation is supported by energy dispersive X-ray spectroscopy (EDX) analysis, showing present of Zn, O and Ni elements. It is noted that ZnO rods coupled with Ni experienced quenching of visible emission and enhancing of UV emission in room temperature photoluminescence (RTPL) analysis. The photodegradation efficiency of Ni/ZnO rods was improved when a higher calcination temperature was used. The removal of RhB dye under UV light (352 nm) by these photocatalysts followed pseudo first-order kinetic reaction. The Ni/ZnO composites synthesized at calcination temperature of 500 °C demonstrated the highest photodegradation efficiency of 37 % and the largest rate constant of 0.0053 min-1 after 75 min UV irradiation.
NASA Astrophysics Data System (ADS)
Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo
2018-03-01
A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.
Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, A., E-mail: debnathanimesh@gmail.com; Bera, A.; Saha, B.
Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneousmore » powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.« less
NASA Astrophysics Data System (ADS)
Su, Xiaogang; Wang, Jun; Zhang, Bin; Chen, Wei; Wu, Qilei; Dai, Wei; Zou, Yi
2018-05-01
Recently, owing to the radiation and interference from electromagnetic wave (EMW), the requirements of EMW absorbing materials have been increasing. Herein, a novel absorber composed of graphite nanosheets@Fe3O4 composites decorated comb-like MnO2 (GNFM) has been successfully synthesized via a facile two steps, characterized using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, vibrating sample magnetometry (VSM) and vector network analyzer (VNA). The ternary composites with enhanced microwave absorption performance are due to the complementary effects of electroconductive material (graphite nanosheets), dielectric materials (MnO2) and magnetic material (Fe3O4 nanospheres). Hence, the maximum reflection loss of GNFM/epoxy composites is up to ‑31.7 dB at 5.85 GHz with absorbing thickness of 4.5 mm, and the efficient frequency bandwidth below ‑10 dB can reach up to 4.47 GHz (11.87–16.34 GHz) at matching thickness of 2 mm. The results demonstrate that GNFM could be regarded as a novel type of microwave absorbing material.
Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan; Alatiah, Khalid A
2017-02-01
Nanographene- and graphene-based nanohybrids have garnered attention in the biomedical community owing to their biocompatibility, excellent aqueous processability, ease of cellular uptake, facile surface functionalization, and thermal and electrical conductivities. NiO nanoparticle-graphene nanohybrid (G-NiO) was synthesized by first depositing Ni(OH) 2 onto the surface of graphene oxide (GO) sheets. The Ni(OH) 2 -GO hybrids were then reduced to G-NiO using date palm syrup at 85 °C. The prepared G-NiO nanohybrids were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The NiO nanoparticles, with a diameter of approximately 20-30 nm, were uniformly dispersed over the surface of the graphene sheets. The G-NiO hybrids exhibit biocompatibility in human mesenchymal stem cells (hMSCs) up to 100 μg/mL. The nanohybrids do not cause any significant changes in cellular and nuclear morphologies in hMSCs. The as-synthesized nanohybrids show excellent biocompatibility and could be a promising material for biomedical applications.
Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng
2015-10-28
A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.
NASA Astrophysics Data System (ADS)
Rajendran, Ranjith; Varadharajan, Krishnakumar; Jayaraman, Venkatesan; Singaram, Boobas; Jeyaram, Jayaprakash
2018-02-01
The enhanced photocatalytic performance of nanocomposite is synthesized via the hydrothermal method and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). Under visible light irradiation, PVA assisted Bi2WO6-CdS nanocomposite film displayed enhanced photocatalytic efficiency and inhibition of photocorrosion as compared with pure CdS, pure Bi2WO6 and Bi2WO6-CdS composite. The PVA assisted Bi2WO6-CdS composite film catalyst showed stable catalytic performance until seven successive runs with 92% of methylene blue(MB) degradation, and easy to recover after degradation of organic pollutant. PVA assisted Bi2WO6-CdS nanocomposite film has optimal band edge position for superior photocatalytic degradation. Furthermore, the trapping experiment was carried out using different scavenger for active species. Among the active species, OH· are the most responsive species which play a vital role in the degradation of metronidazole and MB.
Rafique, Amjid; Massa, Andrea; Fontana, Marco; Bianco, Stefano; Chiodoni, Angelica; Pirri, Candido F; Hernández, Simelys; Lamberti, Andrea
2017-08-30
A highly uniform porous film of MnO 2 was deposited on carbon fiber by anodic electrodeposition for the fabrication of high-performance electrodes in wearable supercapacitors (SCs) application. The effects of potentiostatic and galvanostatic electrodeposition and the deposition time were investigated. The morphology, crystalline structure, and chemical composition of the obtained fiber-shaped samples were analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The charge storage performance of the carbon fibers@MnO 2 composite electrode coupled to a gel-like polymeric electrolyte was investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The specific capacitance of the optimized carbon fiber@MnO 2 composite electrodes could reach up to 62 F g -1 corresponding to 23 mF cm -1 in PVA/NaCl gel-polymer electrolyte, i.e., the highest capacitance value ever reported for fiber-shaped SCs. Finally, the stability and the flexibility of the device were studied, and the results indicate exceptional capacitance retention and superior stability of the device subjected to bending even at high angles up to 150°.
Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli
2015-01-01
Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709
NASA Astrophysics Data System (ADS)
Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook
2015-01-01
In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.
Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.
Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin
2010-05-01
Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-06-01
A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.
NASA Astrophysics Data System (ADS)
Yi, Zao; Tan, Xiulan; Niu, Gao; Xu, Xibin; Li, Xibo; Ye, Xin; Luo, Jiangshan; Luo, Binchi; Wu, Weidong; Tang, Yongjian; Yi, Yougen
2012-05-01
Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na2PdCl4 solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.
Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi
2018-05-01
Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.
An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, Nur Fahana Mohd; Ng, Sha Shiong
2017-12-01
In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.
Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Fatemeh, E-mail: F.Ebrahimi@ma.iut.ac.ir; Bakhshi, Saeed Reza; Ashrafizadeh, Fakhreddin
Highlights: • Dip coating method was used to synthesize strontium ferrite nanowires in template. • Size of nanowires was controlled via anodization parameters. • Fe/Sr ratio was optimized in precursor. • Magnetic properties of nanowires and nanopowders were compared. - Abstract: High aspect ratio strontium hexaferrite nanowires were fabricated by dip coating in alumina template. Fe/Sr ratio was changed from 10 to 12 in precursor, and the samples were annealed at a range of temperatures 500–900 °C in order to optimize the magnetic properties of strontium ferrite in the form of nanowires. Field emission scanning electron microscope (FESEM) proved themore » formation of nanowires in the templates, while TEM images revealed a high degree of crystallinity. The ferrites were further characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDS). Magnetic properties of the specimens were studied by a SQUID at 10–300 K. The results showed that the coercivity of packed density nanowires in the template was much less than that of the nanopowders. On the other hand, the coercivity of nanowires at ambient temperature was less than low temperature coercivity.« less
One for two: conversion of waste chicken feathers to carbon microspheres and (NH4)HCO3.
Gao, Lei; Hu, Haibo; Sui, Xuelin; Chen, Changle; Chen, Qianwang
2014-06-03
Pyrolysis of 1 g of waste chicken feathers (quills and barbs) in supercritical carbon dioxide (sc-CO2) system at 600 °C for 3 h leads to the formation of 0.25 g well-shaped carbon microspheres with diameters of 1-5 μm and 0.26 g ammonium bicarbonate ((NH4)HCO3). The products were characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopic, FT-IR spectrum, X-ray electron spectroscopy (XPS), and N2 adsorption/desorption measurements. The obtained carbon microspheres displayed great superhydrophobicity as fabric coatings materials, with the water contact angle of up to 165.2±2.5°. The strategy is simple, efficient, does not require any toxic chemicals or catalysts, and generates two valuable materials at the same time. Moreover, other nitrogen-containing materials (such as nylon and amino acids) can also be converted to carbon microspheres and (NH4)HCO3 in the sc-CO2 system. This provides a simple strategy to extract the nitrogen content from natural and man-made waste materials and generate (NH4)HCO3 as fertilizer.
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
Caglar, Mujdat; Atar, Kadir Cemil
2012-10-01
Using indium chloride as an In source, In-doped SnO(2) films were fabricated by sol-gel method through dip-coating on borofloat glass substrates. The undoped SnO(2) films were deposited in air between 400 and 600 °C to get optimum deposition temperature in terms of crystal quality and hence In-doped SnO(2) films were deposited in air at 600 °C. The effect of both deposition temperature and In content on structural, morphological, optical and electrical properties was investigated. The crystalline structure and orientation of the films were investigated by X-ray diffraction (XRD) and surface morphology was studied by a field emission scanning electron microscope (FESEM). The compositional analysis of the films was confirmed by energy dispersive X-ray spectrometer (EDS). The absorption band edge of the SnO(2) films shifted from 3.88 to 3.66 eV with In content. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by deposition temperature and In content. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
NASA Astrophysics Data System (ADS)
Miller, Ana Z.; Garcia-Sanchez, Angela M.; Pereira, Manuel F. C.; Gazquez, Fernando; Calaforra, José M.; Forti, Paolo; Toulkeridis, Theofilos; Martínez-Frías, Jesús; Saiz-Jimenez, Cesareo
2016-04-01
Lava tubes have traditionally been considered of little interest from a mineralogical point of view. Recently, this type of volcanic caves has received particular attention because lava tubes have been described on Mars. Speleothems, or secondary mineral deposits in lava tubes are mainly composed of siliceous minerals. Coralloid-type speleothems are found either on basaltic cave walls or on the surface of other speleothems. Several authors attribute a microbially mediated origin to their formation. This type of speleothems was recorded within Royal Palm Cave of Santa Cruz Island in Galapagos Archipelago (Ecuador), a lava tube 600 m long, 5 to 15 m height and 2 to 10 m width. The Galapagos Islands are an archipelago of 19 volcanic islands located some 1500 km west of Ecuador, in the Pacific Ocean. These islands host one of the most biodiverse settings on Earth, studied by Charles Darwin. Beige and greyish small coralloids were collected in Royal Palm Cave and analysed by field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDS), X-ray micro-computed tomography (micro-CT) and mineralogical analyses for morphological, 3D microstructural and compositional characterization, as well as for assessing microbe-mineral interactions and biogenicity. In addition, 16S rRNA gene analyses were performed to identify microbial communities associated with the coralloid-type speleothems. The coralloids showed internal compositional zonation along the growth direction of the speleothems, according to micro-CT data. Internal layering was clearly discernable by the differences in opacity of the distinct mineralogical phases to X-rays, being dominated by alteration products of siliceous composition, whereas more opaque phases, usually Ca-rich minerals, were dominant in the outermost part of the speleothems. X-ray diffraction and infrared spectroscopy reinforced that the first stage of deposition is mainly composed of opal A and clay minerals, whereas the final stage mainly consists of low crystalline calcite. FESEM-EDS analysis revealed mineralized bacterial filaments rich in Si on the coralloid samples, as well as minerals precipitation associated with extracellular polymeric substances (EPS), which serve as nuclei for preferential precipitation on the extracellular sheaths. This suggests that biological activity played a major role in the development of these speleothems. In addition, imprints of filamentous cells and microboring readily preserved on siliceous minerals were observed on the coralloid speleothems. These features are recognized as biosignatures valuable for astrobiology and may represent modern analogs of the fossil record of prokaryotes. DNA-based analyses showed that bacteria belonging to Actinobacteria (31%) Gemmatimonadetes (25%) and Proteobacteria (24%) phyla dominated in this cave ecosystem, followed by Acidobacteria, Firmicutes and Nitrospirae. Most of the identified phylotypes were affiliated to chemoautotrophs, including thermophilic bacteria such as Ferrithrix thermotolerans, and other mineral utilizing microorganisms like Aciditerrimonas ferrireducens, Desulfuromonas sp. and Desulfovibrio sp., indicating that Galapagos lava tubes host highly specialized subsurface biosphere dominated by microorganisms able to interact with minerals and promote biomineralization. Acknowledgments: This work has been supported by the project PC-65-14 from the Ministry of Environment of Ecuador. AZM acknowledges the support from the Marie Curie Fellowship of the 7th EC Framework Programme (PIEF-GA-2012-328689-DECAVE). The authors acknowledge the Spanish Ministry of Economy and Competitiveness (project CGL2013-41674-P) and FEDER funds for financial support.
NASA Technical Reports Server (NTRS)
Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)
2010-01-01
An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.
atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence
Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method
NASA Astrophysics Data System (ADS)
Radha, R.; Sakthivelu, A.; Pradhabhan, D.
2016-08-01
Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.
NASA Astrophysics Data System (ADS)
Belkhedkar, M. R.; Ubale, A. U.
2018-05-01
Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.
Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Sharma, Bhumika K.; Patel, Kinjal; Roy, Debesh R.
2018-05-01
Nanoparticles exhibit very interesting and useful physicochemical properties when they interact with substrates and goes through some physicochemical and/or biological processes. ZnO is known to be a highly demanding nanomaterial due to its discreet properties, shapes and sizes. A detail experimental study on the synthesis, characterization and antibacterial activity of ZnO nanoparticles (NPs) is performed. ZnO NPs are synthesized using chemical precipitation method. The understanding of crystal structure, morphology and elemental compositions are explained using Powder X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) respectively. Fourier transform infrared spectroscopy (FTIR) is performed to achieve the information on the presence of various functional groups. The antibacterial activity of these ZnO NPs is investigated in terms of Zone of Inhibition (ZOI) against Escherichia coli (Gram negative) microorganisms.
NASA Astrophysics Data System (ADS)
Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.
2018-05-01
Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.
Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching
2016-06-30
Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current-voltage (I-V) measurements. Nonlinear and rectifying I-V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.
Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru
2016-04-01
A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.
Dash, Satyabrata; Swain, Sarat K
2013-09-12
Starch/silicon carbide (starch/SiC) bionanocomposites were synthesized by solution method using different wt% of silicon carbide with starch matrix. The interaction between starch and silicon carbide was studied by Fourier transform infrared (FTIR) spectroscopy. The structure of the bionanocomposites was investigated by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). Thermal property of starch/SiC bionanocomposites was measured and a significant enhancement of thermal resistance was noticed. The oxygen barrier property of the composites was studied and a substantial reduction in permeability was observed as compared to the virgin starch. The reduction of oxygen permeability with enhancement of thermal stability of prepared bionanocomposites may enable the materials suitable for thermal resistant packaging and adhesive applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection
Afify, Ahmed S.; Ataalla, Mohamed
2017-01-01
In this study, a glass ceramic with a nominal composition 58ZnO:4Bi2O3:4WO3:33.3B2O3 was synthesized by melt quenching technique. A gas sensor was then manufactured using a ZnO sol-gel phase as a permanent binder of the glass–ceramic to an alumina substrate having interdigitated electrodes. The film sensitivity towards humidity, NH3, H2 and NO2 was studied at different temperatures. X-ray diffraction technique (XRD), field emission- scanning electron microscopy (FE-SEM) and differential thermal analysis (DTA) were used to characterize the prepared material. Though the response in the sub-ppm NO2 concentration range was not explored, the observed results are comparable with the latest found in the literature. PMID:29099781
NASA Astrophysics Data System (ADS)
Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali
2015-09-01
Nanoporous amorphous-MnO2 was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH3COO)2.4H2O) in 0.1 M KMnO4. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO2 bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO2. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO2 showed 99 - 100% decolorization.
NASA Astrophysics Data System (ADS)
Arulmozhi, K. T.; Mythili, N.
2013-12-01
Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.
Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres
NASA Astrophysics Data System (ADS)
Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui
2017-05-01
Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
Coherent X-ray diffraction imaging of nanoengineered polymeric capsules
NASA Astrophysics Data System (ADS)
Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.
2017-10-01
For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.
Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites
NASA Astrophysics Data System (ADS)
Mansour, S. F.; Hemeda, O. M.; Abdo, M. A.; Nada, W. A.
2018-01-01
Nanocomposites from M-type hexaferrite BaFe11.7Al0.15Zn0.15O19 and spinel ferrite Mn0.8Mg0.2Fe2O4 nanoparticles according to the formula [(x)(Ba Fe11.7Al0.15 Zn0.15O19) + (1 - x)(Mn0.8 Mg0.2Fe2O4); x = 0.3, 0.4 and 0.5] have been manufactured by the citrate combustion method. The structure and morphology of the nanocomposites were appointed by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The remanent magnetization and coercivity of the nanocomposites became 2 and 2.5 times higher, respectively by adding BaFe11.7Al0.15 Zn0.15O19 phase. The Cole-Cole plots of the nanocomposite x = 0.4 at the selected temperatures shows two successive semicircles at all the selected temperatures. The first low frequencies semicircle elucidates the contribution of the grain boundary and the second one, at high frequencies, gives the contribution of grain to conduction process. Multilateral applications for exchange spring magnets can be manufactured using those nanocomposites.
NASA Astrophysics Data System (ADS)
Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh
2017-10-01
In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.
A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals
Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.
2017-01-01
Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong
2014-07-01
Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
Anti-contamination device for cryogenic soft X-ray diffraction microscopy
Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...
2011-05-01
Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.
Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro
2009-06-01
Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy
NASA Technical Reports Server (NTRS)
Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.
2010-01-01
A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.
Girardin, E; Millet, P; Lodini, A
2000-02-01
To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.
X-ray Diffraction Gratings for Astrophysics
NASA Astrophysics Data System (ADS)
Paerels, Frits
2010-12-01
Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
NASA Astrophysics Data System (ADS)
Haider, Adnan; Gupta, Kailash Chandra; Kang, Inn-Kyu
2014-06-01
The development of tissue engineering in the field of orthopedic surgery is booming. Two fields of research in particular have emerged: approaches for tailoring the surface properties of implantable materials with osteoinductive factors as well as evaluation of the response of osteogenic cells to these fabricated implanted materials (hybrid material). In the present study, we chemically grafted insulin onto the surface of hydroxyapatite nanorods (nHA). The insulin-grafted nHAs (nHA-I) were dispersed into poly(lactide-co-glycolide) (PLGA) polymer solution, which was electrospun to prepare PLGA/nHA-I composite nanofiber scaffolds. The morphology of the electrospun nanofiber scaffolds was assessed by field emission scanning electron microscopy (FESEM). After extensive characterization of the PLGA/nHA-I and PLGA/nHA composite nanofiber scaffolds by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS), and transmission electron microscopy (TEM), the PLGA/nHA-I and PLGA/nHA (used as control) composite nanofiber scaffolds were subjected to cell studies. The results obtained from cell adhesion, alizarin red staining, and Von Kossa assay suggested that the PLGA/nHA-I composite nanofiber scaffold has enhanced osteoblastic cell growth, as more cells were proliferated and differentiated. The fact that insulin enhanced osteoblastic cell proliferation will open new possibilities for the development of artificial scaffolds for bone tissue regeneration.
Synthesis of NiS-Graphene Nanocomposites and its Electrochemical Performance for Supercapacitors
NASA Astrophysics Data System (ADS)
Pandey, Chandan Abhishek; Ravuri, Syamsai; Ramachandran, R.; Santhosh, R.; Ghosh, Sourav; Sitaraman, S. R.; Grace, Andrews Nirmala
The aim of this work is to synthesize nickel sulfide-graphene (NiS/G) nanocomposites with different compositions and to analyze the structural and electrochemical capacity and compatibility for their application as supercapacitor material with enhanced charge storage capacity and reduced impedance. NiS nanoparticles (NPs) loaded on graphene were synthesized at various concentrations of graphene by a simple hydrothermal route from nickel sulphate and graphene oxide as precursors in the presence of PVP as surfactant and thioacetamide (TAA) as sulfur source. The composites structural, morphological and physical properties were analyzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier Transform-infrared (FT-IR) analysis. SEM measurements showed the presence of surface attachment of the NiS NPs onto the graphene sheets. To assess the properties of the nanocomposites for their applicability in supercapacitors, electrochemical analysis was carried out in 6M KOH electrolyte. Three different samples with different graphene contents — GNiS-10 with 10 wt.%, GNiS-20 with 20 wt.% and GNiS-40 with 40 wt.% were prepared. The specific capacitances obtained for the nanocomposites were calculated to be 84.33F/g, 129.66F/g, 187.53F/g at 10mV/s scan rate, respectively. The EIS data showed that the loading of NiS NPs on graphene caused the reduction in impedance at high frequency and has a long cycle life (over 1000 cycles).
Rahman, Mohammed M; Balkhoyor, Hasan B; Asiri, Abdullah M
2017-03-01
A nanocomposite (NC) composed of chromium(III)oxide nanomaterials decorated carbon nanotubes (Cr 2 O 3 -CNT NC) was prepared via a simple solution method with reducing agents in an alkaline medium. The Cr 2 O 3 -CNT NC was characterized using ultraviolet-visible (UV/Vs.) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (XEDS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). The Cr 2 O 3 -CNT composite was deposited on a flat glassy carbon electrode (GCE) with conducting nafion (5%) binders to produce a sensor that exhibited fast response and high selectivity toward 4-methoxyphenol (4MP) in phosphate buffer phase at pH 7. Furthermore, the sensor performance parameters, including the sensitivity, lower detection range, reliability, and reproducibility, ease of integration, long-term stability, and selectivity were investigated in detail. The calibration plot was found to be linear in the concentration range of 0.01 nM-0.1 μM. The sensitivity and detection limit were calculated as 1.4768 μA cm -2 μM -1 and 0.06428 ± 0.0002 nM (at a signal-to-noise ratio of 3), respectively. Thus, it was concluded that the proposed selective and efficient sensor represents a promising approach to effectively detect toxic phenolic compounds in the environment with acceptable and reliable results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
NASA Astrophysics Data System (ADS)
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
1985-05-30
Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and
X-Ray Diffraction and the Discovery of the Structure of DNA
ERIC Educational Resources Information Center
Crouse, David T.
2007-01-01
A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
Logan, Jonathan; Harder, Ross; Li, Luxi; ...
2016-01-01
Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less
Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance
NASA Astrophysics Data System (ADS)
Wang, Dagui; Yan, Bing; Song, Caixiong; Ye, Ting; Wang, Yongqian
2018-01-01
Hierarchical self-assembled CuO hollow microspheres with superior photocatalytic performance are synthesized via a simple hydrothermal process in the presence of cationic surfactants (cetyltrimethylammonium bromide, CTAB). The structure, morphology, and optical absorption performance of CuO samples prepared with different surfactants including CTAB, nonionic surfactant (polyvinylpyrrolidone, PVP) and anionic surfactant (sodium dodecyl sulfate, SDS) are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) absorption spectra. Moreover, the photocatalytic performances of the CuO samples are evaluated by the photo-degradation of a simulative contaminant methylene blue. The XRD patterns and FESEM images demonstrate that the category of surfactants have effects on the phase structure and morphology of CuO. Compared with bulk CuO (1.20 eV at room temperature), the band gap of CuO microspheres prepared with different surfactants including CTAB, PVP and SDS are measured at 2.16 eV, 2.29 eV, 2.44 eV, respectively, which exhibits a blue shift in the UV-vis spectra. The synthesized hierarchical self-assembled CuO hollow microspheres reveal commendable photocatalytic activity, in which the photo-degradation rate could rise to 94.1%. Additionally, a reasonable growth mechanism of CuO microspheres synthesized with different surfactants is discussed in detail.
NASA Astrophysics Data System (ADS)
Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.
2018-06-01
Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.
NASA Astrophysics Data System (ADS)
Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.
2018-03-01
Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.
Sol gel synthesis and characterization studies of Cupromanganite CaCu3Mn4O12
NASA Astrophysics Data System (ADS)
Nurulhuda, A.; Warikh, A. R. M.; Hafizzal, Y.
2017-08-01
A single-phase CaCu3Mn4O12 electroceramic had been prepared via sol gel method and fairly well densified at relative low temperature under atmospheric condition where the crystallization of CaCu3Mn4O12 occurred due to amorphous polymeric mixture. The precursor was prepared by mixing the solutions with 0.6 M citric acid (C6H8O7) as a chelating reagent with the mol ratio 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800°C by varying dwell time. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD). The results show that the formation of CaCu3Mn4O12 started at 500 ° C and was formed completely at 700 ° C for 18 hours. The microstructure of all CaCu3Mn4O12 was analysed using field emission scanning electron microscopy (FESEM). A smaller particle size with higher grain boundary was obtained at sintering 700°C to 800°C. FESEM results show the significant influence of calcinations and sintering parameter on the microstructure behaviour of CaCu2Mn4O12.
Ultrasound-assisted fabrication of nanoporous CdS films.
Singh, R S; Sanagapalli, S; Jayaraman, V; Singh, V P
2004-01-01
A new method for fabricating nanoporous CdS films is reported. It involves exposing the CdS solution with ultrasound waves during the process of dip coating. Indium tin oxide (ITO)-coated glass and plastic (commercial transparency) were used as substrates. In each case three different precursors were used for dip coating. The precursors used were CdCl2 and thiourea in one case and CdS nanoparticles prepared by sonochemical and microwave-assisted methods in the other two cases. X-ray diffraction studies performed on these powders show a phase corresponding to cubic CdS. The Field Emission Scanning Electron Microscopy (FE-SEM) images of the films on plastic showed uniform pores with a diameter of 80 nm for all three methods. Optical absorption measurements indicated a blue shift and multiple peaks in the absorption curve. The FE-SEM observations of the films on an ITO/glass substrate indicated a crystalline film with voids. The UV-vis absorption results indicated a blue shift in the absorption with an absorption edge at 435, 380, and 365 nm for CdS films made by solution growth, sonochemical, and microwave routes, respectively. The magnitude of the absorption is dependent on film thickness, and the observed blue shift in the absorption can be explained on the basis of quantum confinement effects.
Kuriakose, Sini; Avasthi, D K
2015-01-01
Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Akash; Sahoo, Pooja; Thangavel, R.
2018-05-01
In this work, ZnO nanorods (NRs) were fabricated, on cleaned ITO substrates by using sol-gel spin coating followed by hydrothermal technique. In order to coat zinc sulphide (ZnS) layers on the earlier prepared NRs a facile ion-exchange approach was adopted. The ZnO@ZnS nanostructures so prepared were characterised by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible spectroscopy and photoelectrochemical study. XRD spectra confirmed the hexagonal wurtzite structure of all the samples along with preferential c-axis orientation. Further it was also observed from the FESEM images that sulfidation process doesn't affect the structure of ZnO NRs arrays. From the absorption spectra it can be clearly observed that the light absorbing property has increased in within the visible range due to the formation of ZnS layer on the ZnO nanostructures, which is not possible for either of the material individually. The cyclic voltammetry results indicates the enhancement in photocurrent density after illumination for the synthesized nanostructures. The electrocatalytic behaviour of ZnO@ZnS electrodes have been studied using a 3-electrode system in presence of 0.1M NaOH electrolyte solution with respect to an Ag/AgCl reference electrode.
Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2016-01-01
We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
Cha, W.; Ulvestad, A.; Allain, M.; ...
2016-11-23
Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
NASA Astrophysics Data System (ADS)
Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.
2016-11-01
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.
Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O
2016-11-25
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
In-situ X-ray diffraction system using sources and detectors at fixed angular positions
Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY
2007-06-26
An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.
Sahoo, Banalata; Devi, K Sanjana P; Banerjee, Rakesh; Maiti, Tapas K; Pramanik, Panchanan; Dhara, Dibakar
2013-05-01
Targeted and efficient delivery of therapeutics to tumor cells is one of the key issues in cancer therapy. In the present work, we report a temperature and pH dual responsive core-shell nanoparticles comprising smart polymer shell coated on magnetic nanoparticles as an anticancer drug carrier and cancer cell-specific targeting agent. Magnetite nanoparticles (MNPs), prepared by a simple coprecipitation method, was surface modified by introducing amine groups using 3-aminopropyltriethoxysilane. Dual-responsive poly(N-isopropylacrylamide)-block-poly(acrylic acid) copolymer, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, was then attached to the amine-functionalized MNPs via EDC/NHS method. Further, to accomplish cancer-specific targeting properties, folic acid was tethered to the surface of the nanoparticles. Thereafter, rhodamine B isothiocyanate was conjugated to endow fluorescent property to the MNPs required for cellular imaging applications. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), zeta potential, vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) measurements, and FTIR, UV-vis spectral analysis. Doxorubicin (DOX), an anticancer drug used for the present study, was loaded into the nanoparticles and its release behavior was subsequently studied. Result showed a sustained release of DOX preferentially at the desired lysosomal pH and temperature condition. The biological activity of the DOX-loaded MNPs was studied by MTT assay, fluorescence microscopy, and apoptosis. Intracellular-uptake studies revealed preferential uptake of these nanoparticles into cancer cells (HeLa cells) compared to normal fibroblast cells (L929 cells). The in vitro apoptosis study revealed that the DOX-loaded nanoparticles caused significant death to the HeLa cells. These nanoparticles were capable of target specific release of the loaded drug in response to pH and temperature and hence may serve as a potential drug carrier for in vivo applications.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.
Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
NASA Astrophysics Data System (ADS)
Abishek, N. S.; Naik, K. Gopalakrishna
2018-05-01
Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.
High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage
2012-08-28
diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with
Materials identification using a small-scale pixellated x-ray diffraction system
NASA Astrophysics Data System (ADS)
O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.
2016-05-01
A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus
Green, L.A.; Heck, J.L. Jr.
1985-04-23
A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.
Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus
Green, Lanny A.; Heck, Jr., Joaquim L.
1987-01-01
A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.
JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data
Steve P. Verrill; David E. Kretschmann; Victoria L. Herian
2006-01-01
X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...
2015-08-11
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.
2015-01-01
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423
NASA Astrophysics Data System (ADS)
Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.
2017-01-01
The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.
High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris
2010-01-01
X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463
High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...
2010-04-20
X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less
Guerra, I; Cardell, C
2015-10-01
The novel Structural Chemical Analyser (hyphenated Raman spectroscopy and scanning electron microscopy equipped with an X-ray detector) is gaining popularity since it allows 3-D morphological studies and elemental, molecular, structural and electronic analyses of a single complex micro-sized sample without transfer between instruments. However, its full potential remains unexploited in painting heritage where simultaneous identification of inorganic and organic materials in paintings is critically yet unresolved. Despite benefits and drawbacks shown in literature, new challenges have to be faced analysing multifaceted paint specimens. SEM-Structural Chemical Analyser systems differ since they are fabricated ad hoc by request. As configuration influences the procedure to optimize analyses, likewise analytical protocols have to be designed ad hoc. This paper deals with the optimization of the analytical procedure of a Variable Pressure Field Emission scanning electron microscopy equipped with an X-ray detector Raman spectroscopy system to analyse historical paint samples. We address essential parameters, technical challenges and limitations raised from analysing paint stratigraphies, archaeological samples and loose pigments. We show that accurate data interpretation requires comprehensive knowledge of factors affecting Raman spectra. We tackled: (i) the in-FESEM-Raman spectroscopy analytical sequence, (ii) correlations between FESEM and Structural Chemical Analyser/laser analytical position, (iii) Raman signal intensity under different VP-FESEM vacuum modes, (iv) carbon deposition on samples under FESEM low-vacuum mode, (v) crystal nature and morphology, (vi) depth of focus and (vii) surface-enhanced Raman scattering effect. We recommend careful planning of analysis strategies prior to research which, although time consuming, guarantees reliable results. The ultimate goal of this paper is to help to guide future users of a FESEM-Structural Chemical Analyser system in order to increase applications. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles.
Al-Hadeethi, Yas; Umar, Ahmad; Kumar, Rajesh; Al-Heniti, Saleh H; Raffah, Bahaaudin M
2018-04-01
In this paper, we report the synthesis, characterization and ethanol sensing applications of CuO nanoparticles. The CuO nanoparticles were prepared by a facile, low-temperature hydrothermal method and characterized in detail in terms of their structural, morphological, compositional and crystalline properties, through different characterization techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The detailed studies revealed that the synthesized CuO nanoparticles were well-crystalline and possessed monoclinic crystal structure. The synthesized CuO nanoparticles were utilized for the fabrication of highly sensitive ethanol gas sensor. At an optimized temperature of 320 °C, high sensitivity (Ra/Rg) of 39.29 was observed for 200 ppm of ethanol gas. Additionally, very low response (τres = 14 s) and recovery (τrec = 30 s) times were observed for 100 ppm of ethanol.
Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application
NASA Astrophysics Data System (ADS)
Rajwar, Birendra Kumar; Sharma, Shailendra Kumar
2018-05-01
In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.
NASA Astrophysics Data System (ADS)
Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.
2016-07-01
In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.
Water-repellent coatings prepared by modification of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Chakradhar, R. P. S.; Dinesh Kumar, V.
Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.
Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.
Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua
2006-03-28
Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.
NASA Astrophysics Data System (ADS)
Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel
2016-12-01
In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.
NASA Astrophysics Data System (ADS)
Xiang, Donghu; Zhu, Yabo; Cai, Cunjin; He, Zhanjun; Liu, Zhangsheng; Yin, Dagen; Luo, Jin
2011-12-01
Nano-CdS crystal has been succesfully synthesized by composite molten salt (CMS) method for the first time, using composite molten salt as a reaction solvent, sodium sulfide and cadmium nitrate hexahydrate as reactants at temperature of 200 °C for 24 h in the absence of organic dispersant or capping agents. X-ray diffraction and field emission scanning electron microscopy (FESEM) images indicated that the as-synthesized product were well crystallized and belonged to nano-scale. Their UV-vis absorption spectrum demonstrated a band gap of 2.49 eV corresponding to the absorption edge of 499 nm. The experimental result of photocatalytic degradation on methyl orange by the nano-CdS showed much better photocatalysis than that by the commercial CdS powder under the irradiation of ultraviolet light source.
NASA Astrophysics Data System (ADS)
Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra
2018-03-01
A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.
Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome
2018-08-01
Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.
Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.
Wang, Jun; Zhang, Kai; Zhu, Yuejin
2005-05-01
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.
Bioactivity of gelatin coated magnetic iron oxide nanoparticles: in vitro evaluation.
Gaihre, Babita; Khil, Myung Seob; Kang, Hyo Kyoung; Kim, Hak Yong
2009-02-01
Current research explores formation of bone like apatite on gelatin coated magnetic iron oxide nanoparticles (GIOPs) to evaluate the bioactivity of the material. The GIOPs were soaked in simulated body fluid (SBF) and the apatite formation on the surface was investigated in regular interval of time. Fourier transform-infrared (FT-IR) and x-ray diffraction spectroscopic (XRD) analyses were done to investigate the chemical changes and field emission-scanning electron microscopic (FE-SEM) analysis was done to investigate the morphological changes occurring on the surface of the GIOPs after soaking in different time intervals. The kinetic studies of the apatite growth in SBF suggest that initially calcium and phosphorous ions were deposited to the surface of the GIOPs from the SBF leading to formation of amorphous Ca/P particles. Later, after 9 days of the incubation the amorphous particles were fused to form needle and blade like crystalline structures of bone like apatite.
NASA Astrophysics Data System (ADS)
Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping
2008-12-01
The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A., E-mail: ak.phy87@gmail.com; Tiwari, S. P.; Krishna, K. M.
2016-05-23
Ho{sup 3+}/Yb{sup 3+} co-doped NaGdF{sub 4} up-conversion (UC) nano-particles were synthesized by thermal decomposition method. X-ray diffraction and FE-SEM image analysis were done to confirm the structure, morphology and determination of particle size. The UC emission spectra for as prepared as well as 100°C, 200°C, 300°C, 400°C, 800°C, 1000°C and 1200°C heated for 3h samples were recorded and there emission intensities were compared at a constant pump power of excitations 98.1 W/cm{sup 2}. The effect of emission intensity on decay time was also studied through focused and unfocused excitations. The synthesized material was successfully utilized in lateral finger mark detections onmore » the glass substrate through powder dusting method.« less
Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10.
Lv, Lu; Hor, Mei Peng; Su, Fabing; Zhao, X S
2005-07-01
In the present study, the competitive adsorption characteristics of binary and ternary heavy metal ions Pb2+, Cu2+, and Cd2+ on microporous titanosilicate ETS-10 were investigated in batch systems. Pure microporous titanosilicate ETS-10 was synthesized with P25 as the Ti source and characterized by the techniques of X-ray diffraction (XRD), field emission-scanning electron microscope (FESEM), nitrogen adsorption, and zeta-potential. Equilibrium and kinetic adsorption data showed that ETS-10 displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Pb2+ > Cd2+ > Cu2+. The equilibrium behaviors of heavy metals species with stronger affinity toward ETS-10 can be described by the Langmuir equation while the adsorption kinetics of the metals can be well fitted to a pseudo-second-order (PSO) model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali, E-mail: rozali@ukm.edu.my
2015-09-25
Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye onmore » 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.« less
Effect of polyvinyl alcohol on electrochemically deposited ZnO thin films for DSSC applications
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2017-05-01
Nanostructures of zinc oxide (ZnO) thin film are electrochemically deposited in the absence and presence of polyvinyl alcohol (PVA) on fluorine doped tin oxide (FTO) substrate. X-ray diffraction (XRD) patterns and Raman spectroscopy confirmed the formation of hexagonal structure of ZnO. The film prepared in the presence of PVA showed a better crystallinity and its crystalline growth along the (002) plane orientation. Field emission scanning electron microscope (FE-SEM) images display nanowire arrays (NWAs) and sponge like morphology for films prepared in the absence and presence of PVA, respectively. Photoluminescence (PL) spectra depict the film prepared in the presence PVA having less atomic defects with good crystal quality compared with other film. Dye sensitized solar cell (DSSC) is constructed using low cost eosin yellow dye and current-voltage (J-V) curve is recorded for optimized sponge like morphology based solar cell.
Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.
2018-04-01
Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.
Salari, M; Rezaee, M; Chidembo, A T; Konstantinov, K; Liu, H K
2012-06-01
The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.
Facile synthesis of ZnPc nanocubes: An electron emitting material for field emission display devices
NASA Astrophysics Data System (ADS)
Samanta, M.; Ghorai, U. K.; Mukherjee, M.; Howli, P.; Chattopadhyay, K. K.
2017-05-01
A simple low temperature water chemical route for synthesizing Zinc Phthalocyanine (ZnPc) nanostructures were reported here. The as-prepared samples were well analysed by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) technique. The plausible formation mechanism of cube like nanostructures was also explained here. Cold cathode emission properties of ZnPc nanocubes were studied by using an indigenously designed high vacuum system at anode to cathode distance 130 µm. The turn on field and enhancement factor is found to be 5.0 V/μm @ 1µA/cm2 and 1757 respectively. Cold cathode emission properties were further investigated theoretically by finite element method using ANSYS Maxwell simulation package. The obtained results strongly professed that ZnPc nanocubes can act as potential candidate for electron emitter for field emission display devices and many more.
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-05-01
RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.
NASA Astrophysics Data System (ADS)
Saberi, Maliheh; Ashkarran, Ali Akbar
Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.
Wu, Chia-Ching; Yang, Cheng-Fu
2013-06-12
P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.
Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching
2016-01-01
Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current−voltage (I−V) measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions. PMID:28773656
Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant
NASA Astrophysics Data System (ADS)
Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.
2018-05-01
Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.
NASA Astrophysics Data System (ADS)
Pattanayak, Ranjit; Raut, Subhajit; Kuila, Sourav; Chandrasekhar, Mallam; Panigrahi, Simanchala
2017-02-01
Polycrystalline three novel [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] magnetoelctricmultiferroic composite systems were fabricated by considering the variation (increasing) of BaM grain size. The desired formation of composites was confirmed by X-ray diffraction study. The FESEM and SEM study were verified the variation of grain size and 0-3 type connectivity of composite systems. To predict the room temperature multiferroicbehaviour of theses composite systems we were taken PE and MH loop. For investigating the extrinsic and intrinsic magnetoelctric effect magneto impedance spectroscopy was considered for theses composite systems. The variation of intrinsic magnetoelctric coupling was predicted by proposing a simple mechanical model.
Dip-coating of nano-sized CeO2 on SiC membrane and its effect on thermal diffusivity.
Park, Jihye; Jung, Miewon
2014-05-01
CeO2-SiC mixed composite membrane was fabricated with porous SiC ceramic and cerium oxide powder synthesized by sol-gel process. This CeO2-SiC membrane and SiC membrane which is made by the purified SiC ceramic were pressed and sintered in Ar atmosphere. And then, the SiC membrane was dip-coated by cerium oxide precursor sol solution and heat-treated in air. The surface morphology, particle size, porosity and structure analysis of the mixing and dip-coating SiC membrane were monitored by FE-SEM and X-ray diffraction analysis. Surface area, pore volume and pore diameter were determined by BET instrument. Thermal diffusivity was measured by laser flash method with increasing temperature. The relation between porosity and thermal diffusivity from different preparation process has been discussed on this study.
Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval
2015-03-05
ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
Synthesis of Hydroxyapatite through Ultrasound and Calcination Techniques
NASA Astrophysics Data System (ADS)
Akindoyo, John O.; Beg, M. D. H.; Ghazali, Suriati; Akindoyo, Edward O.; Jeyaratnam, Nitthiyah
2017-05-01
There is a growing demand for hydroxyapatite (HA) especially in medical applications, production of HA which is totally green is however a challenge. In this research, HA was produced from biowaste through ultrasound followed by calcination techniques. Pre-treatment of the biowaste was effectively achieved through the help of ultrasound. After calcination at 950°C, the obtained HA was characterized through Thermogravimetric (TGA) analysis, X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Spectrum of the produced HA was compared with standard HA index. The spectrum is in agreement with the standard HA as confirmed through FTIR, XRD and TGA result. Furthermore, morphological study of the HA through Field emission scanning electron microscope (FESEM) shows almost uniform spherical shape for the HA as expected. Based on the results obtained herein, combining ultrasound with calcination can help to produce pure HA with potential medical applications without the use of any organic solvent.
Bio-green synthesis of Fe doped SnO2 nanoparticle thin film
NASA Astrophysics Data System (ADS)
Gattu, Ketan P.; Ghule, Kalyani; Huse, Nanasaheb P.; Dive, Avinash S.; Bagul, Sagar B.; Digraskar, Renuka V.; Sharma, Ramphal; Ghule, Anil V.
2017-05-01
Herein Fe doped SnO2 nanoparticles have been synthesized using simple, cost effective and ecofriendly biosynthesis method, in which remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) was used. This extract consists of different bio-molecules which acted as complexing as well as capping agents for synthesis of Fe-doped SnO2 nanoparticles. The X-ray powder diffraction (XRD) and Field-emission scanning electron microscopy (FE-SEM) revealed uniform size distribution with the average size of 6 nm and confirmed the formation of rutile structure with space group (P42/mnm) and nanocrystalline nature of the products with spherical morphology. Further, the gas sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Fe-dopant is a promising noble metal additives to fabricate low cost SnO2 based sensor.
NASA Astrophysics Data System (ADS)
Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan
2014-06-01
Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag+ ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416 nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was ⩽85 nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6 ppm.
NASA Astrophysics Data System (ADS)
Li, Jing; Shi, Qingzhu; Chen, Yan; Song, Ming
2017-12-01
Bi2WO6 was synthesized via a facile hydrothermal method using different inorganic acid or alkali varied pH of the solution at 180℃ for 12 h, and characterized by X-ray diffraction, FESEM and photocurrent. Furthermore, the photocatalytic activity of Bi2WO6 was investigated in the reduction of aqueous Cr(VI) under visible light (λ > 420 nm) irradiation. As a result, assynthesized Bi2WO6 was an orthorhombic phase, and well-crystallized with 3D hierarchical structure constructed by arranged 2D layers of nanoplates. All the as-synthesized Bi2WO6 exhibited the visible light photocatalytic activities on aqueous Cr(VI), and Bi2WO6-(2) exhibited the highest photocatalytic reduction efficiency based on much higher separation and transfer efficiency of photogenerated electrons and holes.
Deposition and characterization of ZnSe nanocrystalline thin films
NASA Astrophysics Data System (ADS)
Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat
2018-02-01
ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.
NASA Astrophysics Data System (ADS)
Besral, N.; Paul, T.; Thakur, S.; Sarkar, S.; Sardar, K.; Chanda, K.; Das, A.; Chattopadhyay, K. K.
2018-04-01
The impact of varying electron beam voltage upon room temperature CL (cathodoluminescence) properties of crystalline organic-inorganic lead halide perovskite CH3NH3PbBr3 (Methylammonium lead tribromide) microcubes have been studied. CH3NH3PbBr3 microcubes were synthesized at room temperature by a very straight forward wet chemical route. After preliminary characterizations like XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), UV-Vis spectroscopy, CL study at three different beam voltages i.e. 5 kV, 10 kV and 15 kV respectively was performed at room temperature. Prominent emission signals were obtained with emission peaks at 2.190 eV (FWHM 0.120 eV), 2.222 eV (FWHM 0.108 eV) and 2.242 eV (FWHM 0.095 eV) for electron beam voltages 5 kV, 10 kV and 15 kV respectively.
Glass frits coated with silver nanoparticles for silicon solar cells
NASA Astrophysics Data System (ADS)
Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan
2015-06-01
Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.
NASA Astrophysics Data System (ADS)
Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun
2018-03-01
The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.
NASA Astrophysics Data System (ADS)
Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz
2015-03-01
Metal-organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH2 (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV-vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080; Zhu, Qingshan, E-mail: qszhu@home.ipe.ac.cn
{beta}-Ni(OH){sub 2} hierarchical micro-flowers, hierarchical hollow microspheres and nanosheets were synthesized via a facile, single-step and selected-control hydrothermal method. Both hierarchical micro-flowers and hierarchical hollow microspheres were built from two-dimensional nanosheets with thickness of 50-100 nm. The as-obtained products were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). It was observed that marked morphological changes in {beta}-Ni(OH){sub 2} depended on the initial concentrations of Ni{sup 2+} ions and glycine. A possible growth mechanism was proposed based on experimental results. In addition, the effect of morphology on the electrochemical properties wasmore » also investigated. Both hierarchical micro-flowers and hierarchical hollow microspheres exhibited enhanced specific capacity and high-rate discharge ability as compared with pure Ni(OH){sub 2} nanosheets. Investigations confirmed that hierarchical structures had a pronounced influence upon the electrochemical performance of nickel hydroxide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Changle; Qiao Xueliang; Luo Langli
Flower-like ZnO nano/microstructures have been synthesized by thermal treatment of Zn(NH{sub 3}){sub 4}{sup 2+} precursor in aqueous solvent, using ammonia as the structure directing agent. A number of techniques, including X-ray diffraction (XRD), field emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), thermal analysis, and photoluminescence (PL) were used to characterize the obtained ZnO structures. The photoluminescence (PL) measurements indicated that the as-synthesized ZnO structures showed UV ({approx}375 nm), blue ({approx}465 nm), and yellow ({approx}585 nm) emission bands when they were excited by a He-Gd laser using 320 nm as the excitation source. Furthermore, it has been interestingly foundmore » that the intensity of light emission at {approx}585 nm remarkably decreased when the obtained ZnO nanocrystals were annealed at 600 deg. C for 3 h in air. The reason might be the possible oxygen vacancies and interstitials in the sample decreased at high temperature.« less
Effect of microwave argon plasma on the glycosidic and hydrogen bonding system of cotton cellulose.
Prabhu, S; Vaideki, K; Anitha, S
2017-01-20
Cotton fabric was processed with microwave (Ar) plasma to alter its hydrophilicity. The process parameters namely microwave power, process gas pressure and processing time were optimized using Box-Behnken method available in the Design Expert software. It was observed that certain combinations of process parameters improved existing hydrophilicity while the other combinations decreased it. ATR-FTIR spectral analysis was used to identify the strain induced in inter chain, intra chain, and inter sheet hydrogen bond and glycosidic covalent bond due to plasma treatment. X-ray diffraction (XRD) studies was used to analyze the effect of plasma on unit cell parameters and degree of crystallinity. Fabric surface etching was identified using FESEM analysis. Thus, it can be concluded that the increase/decrease in the hydrophilicity of the plasma treated fabric was due to these structural and physical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.
2016-05-01
The Magneto-electric composites (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 (x=10%, 20% and 30%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive component Ni0.7Co0.1Cu0.2Fe2O4 (NCCF). The presences of constituent phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for NCCF ferrite phase and tetragonal perovskite structure for BT and, both spinel and pervoskite structures for synthesized ME composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency and composition dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at room temperature using Hioki LCR Hi-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The hysteresis behavior was studied to understand the magnetic ordering in the synthesized composites using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.
NASA Astrophysics Data System (ADS)
Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.
2016-05-01
The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.
Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.
Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori
2013-04-22
We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.
2016-02-15
X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less
NASA Astrophysics Data System (ADS)
Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui
2016-03-01
Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.
Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio
2016-05-30
The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.
Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction
NASA Astrophysics Data System (ADS)
Liang, Mengning; Harder, Ross; Robinson, Ian
2007-03-01
A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Quantitative analysis of thoria phase in Th-U alloys using diffraction studies
NASA Astrophysics Data System (ADS)
Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.
2017-05-01
In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.
Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser
Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...
2016-11-04
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less
Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong
2014-05-02
Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.
Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)
2012-05-14
on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m
Efficient modeling of Bragg coherent x-ray nanobeam diffraction
Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...
2015-07-02
X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less
Sun, Tao; Fezzaa, Kamel
2016-06-17
Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
NASA Astrophysics Data System (ADS)
Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori
2004-03-01
We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.
High-resolution ab initio three-dimensional x-ray diffraction microscopy
Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...
2006-01-01
Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less
Enhancing resolution in coherent x-ray diffraction imaging.
Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong
2016-12-14
Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
NASA Astrophysics Data System (ADS)
Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.
2014-12-01
In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).
NASA Astrophysics Data System (ADS)
Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.
2018-05-01
NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.
NASA Astrophysics Data System (ADS)
Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.
2017-04-01
A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.
Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui
2017-01-01
Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.
Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film
NASA Astrophysics Data System (ADS)
Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.
2018-02-01
Present work demonstrates the fabrication of graphene nanosheet (GN) based transparent conducting film (TCF) using spray coating. Green synthesis of GN is carried out by reduction of graphene oxide (GO) using urea as green reducing agent. The reductive ability of urea with varied concentration is studied for GO at low temperature (i.e., 90 °C). As synthesized graphene nanosheets (GNs) are characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscope (AFM), and X-ray Photon spectroscopy (XPS). Raman analysis confirms that the maximum reduction of oxygen species is noticed using 30 mg/ml urea concentration at 90 °C from GO, and found Raman D to G band ratio (ID/IG) of ∼1.30. XPS analysis validates the Raman signature of removal of oxygen functional groups from GO, and obtained C/O ratio of ∼5.28. Further, transparent conducting films (TCFs) are fabricated using synthesized GNs. Thermal graphitization is carried out to enhance the optical and electrical properties of TCFs. TCF shows best performance when it is annealed at 900 °C for 1 h in vacuum, and obtained sheet resistance is ∼1.89 kΩ/□ with transmittance of ∼62.53%.
Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.
2014-01-01
Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785
NASA Astrophysics Data System (ADS)
Hung, Pin-Kun; Kuo, Ting-Wei; Huang, Kuo-Chan; Wang, Na-Fu; Hsieh, Po-Tsung; Houng, Mau-Phon
2012-07-01
The surface morphology and the microstructure of CuInSe2 precursor films have been investigated by co-electrodeposition with different [Cu2+] concentrations from 2 mM to 4 mM. The characteristic of the precursor films was examined using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), glancing incidence angle X-ray diffraction (GIXRD) and micro-Raman spectrometer, respectively. The surface morphology of the precursor films become more smoother and compact with choice of appropriate [Cu2+] concentration (3-3.5 mM) in the electrolyte. The relation between surface morphology and [Cu2+] concentration is also considered in terms of electrodeposition nucleation mechanisms using the mathematical models of Scharifker and Hills. It is suggested that the higher [Cu2+] concentrations can provide more numbers of nucleation sites on the surface of the electrode. Results simulated from the Rietveld refinement method suggest that decreasing dCusbnd Se is related to charge transfer from interstitial copper atoms and can affect the film microstructure. Micro-Raman spectrum also shows that the excess Cu atoms in the precursor films does not contribute significantly to large amounts of secondary phases but rather exists in the crystallite structure as other defect types.
Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M
2014-01-01
Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.
NASA Astrophysics Data System (ADS)
Wang, Xin; Ye, Ke; Gao, Yinyi; Zhang, Hongyu; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue
2016-01-01
Nanoporous palladium supported on the carbon coated titanium carbide (C@TiC) nanowire arrays (Pd NP/C@TiC) are successfully prepared by a facile chemical vapor deposition of three-dimensional (3D) C@TiC substrate, followed by electrochemical codeposition of Pd-Ni and removal of Ni via dealloying. The structure and morphology of the obtained Pd NP/C@TiC electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) are used to examine the catalytic performances of the electrodes for H2O2 electroreduction in H2SO4 solution. The Pd NP/C@TiC electrode exhibits a largely effective specific surface area owing to its open nanoporous structure allowing the full utilization of Pd surface active sites. At the potential of 0.2 V in 2.0 mol L-1 H2O2 and 2 mol L-1 H2SO4 solutions, the reduction current density reaches 3.47 A mg-1, which is significantly higher than the catalytic activity of H2O2 electroreduction achieved previously with precious metals as catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zadehahmadi, Farnaz; Tangestaninejad, Shahram, E-mail: stanges@sci.ui.ac.ir; Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir
2014-10-15
In the present work, chloromethylated MIL-101(Cr) modified with imidazole, Im-MIL-101, was applied as a support for immobilizing of tetraphenylporphyrinatomangenese(III) chloride. The imidazole-bound MIL-101, Im-MIL-101, not only used as support for immobilization of manganese porphyrin but also applied as a heterogeneous axial base. The Mn(TPP)Cl@Im-MIL-101 catalyst was characterized by UV–vis, FT-IR, X-ray diffraction (XRD), N{sub 2} adsorption, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), elemental analysis and inductively coupled plasma (ICP) methods. The catalytic activity of this new catalytic system was investigated in the alkene epoxidation and alkane hydroxylation using NaIO{sub 4} as an oxidant in CH{sub 3}CN/H{submore » 2}O at room temperature. This heterogeneous catalyst is highly efficient, stable and reusable in the oxidation of hydrocarbons. - Highlights: • MIL-101 was modified by covalent post synthetic modification. • Mn(TPP)Cl was anchored to imidazole modified MIL-101 by covalent attachment. • A heterogeneous catalyst was prepared. • The catalyst was used for epoxidation of alkenes and hydroxylation of alkanes. • The catalyst was reusable.« less
The Evolution of Fabricated Gold Thin Films to Nano-Micro Particles Under Thermal Annealing Process
NASA Astrophysics Data System (ADS)
Hajivaliei, Mahdi; Nazari, Saeed
2016-06-01
Gold (Au) thin films with thickness of 35nm were prepared by electron beam deposition onto flat glass substrates under high vacuum (5.3×10-3Pa) condition and they were annealed in the range of 573-873 K for 1 and 2h in atmospheric pressure. The influence of the annealing temperature on the evolution of Au thin film to nano-micro particles was studied. Moreover, the basic properties of the films, namely morphological, structural and optical were investigated. The X-ray diffraction (XRD) analysis revealed that the Au thin films were cubic structure phase with lattice parameter around a=4.0786Å. The most preferential orientation is along (111) planes for all Au films. The lattice parameter and grain size in the films were calculated by X-ray patterns and correlated with annealing temperatures. The obtained results of ultraviolet-visible spectrometry (UV-Vis) indicate that with increasing annealing temperature, the surface plasmon resonance peak of gold nanocrystallite will disappear which implies the size of particles are grown. Field-emission scanning electron microscopy (FE-SEM) results show that the prepared gold thin films have been converted to nano-micro gold particles in different annealing temperatures. These results lead to controlling the size of produced nanocrystallite.
NASA Astrophysics Data System (ADS)
Mohamed, Ibrahim M. A.; Yasin, Ahmed S.; Barakat, Nasser A. M.; Song, Seung A.; Lee, Ha Eun; Kim, Seong Su
2018-03-01
A nanocomposite of Ni/Pd supported by carbonized poly-vinyl alcohol (PVA) nanofibers (NFs) was synthesized via electrospinning followed by calcination under an argon atmosphere. The as-synthesized NFs were studied using physicochemical analyses, such as field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTsbnd IR) and X-ray photoelectron spectroscopy (XPS), to investigate the morphology, crystallinity, effect of carbonization and surface chemistry of the NFs, respectively. Cyclic voltammetry (CV) and chronoamperometry (CA) were utilized to study the performance of the NFs towards electrooxidation reactions. The designed NFs present superior electrocatalytic behavior in an acid medium towards formic acid oxidation, as well as urea and ethanol oxidation in an alkaline medium. The electrocatalytic performance of the bimetallic NFs appears to arise from the assembly of bimetallic Ni/Pd@NFs based on PVA, which has hydroxyl groups. These hydroxyl groups can decrease the negative processes that occur as a result of metal-metal interactions, such as the aggregation process. This study introduces a novel non-precious electrocatalyst to facilitate the commercialization of fuel cells based on formic acid, urea and ethanol.
NASA Astrophysics Data System (ADS)
Xu, Zhe; Jiang, Deyi; Wei, Zhibo; Chen, Jie; Jing, Jianfeng
2018-01-01
Stainless steel meshes with superhydrophobic surfaces were successfully fabricated via a facile electrophoretic deposition process. The surface morphology and chemical compositions were characterized by a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and fourier-transform infrared spectrophotometer (FTIR). After stearic acid modification, the obtained nano-aluminum films on stainless steel meshes showed an excellent superhydrophobic properties with a water contact angle of 160° ± 1.2° and a water sliding angle of less than 5°. In addition, on the basis of the superhydrophobic meshes, a simple, continuous oil-water separation apparatus was designed, and the oil-water separation efficiency was up to 95.8% ± 0.9%. Meanwhile, after 20 oil-water separation cycles, the separation efficiency without significant reduction suggested the stable performance of superhydrophobic stainless steel meshes on the oil-water separation. Moreover, the flow rate of oil-water mixture and effective separation length were investigated to determine their effects on the oil-water separation efficiency, respectively. Our work provides a cost-efficient method to prepare stable superhydrophobic nano-Al films on stainless steel meshes, and it has promising practical applications on oil-water separation.
A portable X-ray diffraction apparatus for in situ analyses of masters' paintings
NASA Astrophysics Data System (ADS)
Eveno, Myriam; Duran, Adrian; Castaing, Jacques
2010-09-01
It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.
A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis
NASA Astrophysics Data System (ADS)
Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.
2018-04-01
Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.
X-ray fractography on fatigue fractured surface of austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo
1995-12-31
X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less
Toward in situ x-ray diffraction imaging at the nanometer scale
NASA Astrophysics Data System (ADS)
Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami
2008-08-01
We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.
Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.
2004-01-01
High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.
THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS
The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...
Wolf, Emil [University of Rochester, Rochester, New York, United States
2017-12-09
Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.
XRayView: a teaching aid for X-ray crystallography.
Phillips, G N
1995-10-01
A software package, XRayView, has been developed that uses interactive computer graphics to introduce basic concepts of x-ray diffraction by crystals, including the reciprocal lattice, the Ewald sphere construction, Laue cones, the wavelength dependence of the reciprocal lattice, primitive and centered lattices and systematic extinctions, rotation photography. Laue photography, space group determination and Laue group symmetry, and the alignment of crystals by examination of reciprocal space. XRayView is designed with "user-friendliness" in mind, using pull-down menus to control the program. Many of the experiences of using real x-ray diffraction equipment to examine crystalline diffraction can be simulated. Exercises are available on-line to guide the users through many typical x-ray diffraction experiments.
NASA Astrophysics Data System (ADS)
Paramita Mantry, Snigdha; Yadav, Abhinav; Fahad, Mohd; Sarun, P. M.
2018-03-01
Vanadium (V) substituted SrTiO3 (SrTi1-x V x O3 and x = 0.00-0.20) ceramic powders were synthesized by conventional solid state reaction method at sintering temperature 1250 ◦C for 2 hr. The structural, surface morphology and elemental valancy of the prepared samples were studied by using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The XRD analysis of SrTi1-x V x O3 confirmed the formation of single phase cubic crystal structure. The average grain size significantly increases from 0.5 μm to 7.2 μm with increasing V concentration. XPS spectrum confirms the partial reduction of Ti4+ to Ti3+ due to the doping of V5 + in SrTiO3 ceramics. The effect of V2O5 on the dielectric properties, impedance spectroscopy, Nyquist analysis and conductivity properties of SrTiO3 ceramics were investigated over a wide range of frequency (100 Hz—5 MHz) at 100 ◦C. The magnitude of dielectric constant and dielectric loss decreases with increase in frequency for all the samples. The maximum value of dielectric constant (ɛ r ˜ 500) is observed for x = 0.05 composition. The complex impedance analysis shows that the electrical conduction mechanism is mainly due to grain effect. The optimal dielectric constant (ɛ r ˜ 500) and effective capacitance (C eff = 35.80 nF) is observed for the sample with x = 0.05. Doping of donor cations lead to a drastic change in the microstructure and electrical behavior of SrTiO3 ceramics.
Application of MEMS-based x-ray optics as tuneable nanosecond choppers
NASA Astrophysics Data System (ADS)
Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin
2017-08-01
Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.
Fabrication of high-resolution x-ray diffractive optics at King's College London
NASA Astrophysics Data System (ADS)
Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia
1995-09-01
The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.
NASA Astrophysics Data System (ADS)
Ma, C.; Tschauner, O. D.
2016-12-01
The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stohr, J.
The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less
Stohr, J.
2017-01-11
The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less
Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction
NASA Astrophysics Data System (ADS)
Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.
2018-06-01
Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.
Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.
Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter
2011-03-01
A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.
Synthesis and luminescence properties of Eu3+-doped KLa(MoO4)2 red-emitting phosphor
NASA Astrophysics Data System (ADS)
Zuo, Haoqiang; Liu, Yun; Li, Jinyang; Shi, Xiaolei; Gao, Weiping
2015-09-01
Eu3+-doped KLa(MoO4)2 phosphors were synthesized by a simple hydrothermal method. X-ray diffraction (XRD) analysis demonstrated that the as-prepared products were pure monoclinic phase of KLa(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images indicated that the morphology of the prepared phosphors evolved from uniform spherical-like to irregular elliposid-like with increase of the concentration. The photoluminescence (PL) spectra displayed that the phosphors show strong red light around 618 nm, attributed to 5D0 → 7F2 transition of Eu3+ ion under 465 nm excitation, and the optimal Eu3+ doping concentration was about 15 mol.% based on the concentration dependent emission spectra. According to Dexter's theory the electric dipole-dipole interaction (D-D) is the main mechanism for energy transfer between Eu3+ and Eu3+ ions. The CIE chromaticity (x, y) of the phosphors were about (0.65, 0.35) and it is close to the standard red chromaticity of NTSC. Therefore, the phosphors could be used as red phosphors for white light-emitting diodes.
Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet
2012-01-01
polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Pradhan, Lagen Kumar; Pandey, Rabichandra; Kar, Manoranjan
2018-05-01
The aluminium doped barium hexaferrite BaFe12-xAlxO19 with x =0.0, 1.0, 2.0, 4.0 and 6.0 have been synthesized by the sol-gel method to modify the magnetic properties for technological applications. The crystal structure and phase purity of all the samples have been explored by employing the X-ray diffraction (XRD) technique. It confirms that the sample is nanocrystalline, hexagonal symmetry and all the intense peaks could be indexed to the P63/mmc space group. The obtained lattice parameters from the XRD analysis decrease with the increase in Al3+ content in the samples. The microstructural morphology and particle sizes of all samples were studied by using the Field Emission Scanning Electron Microscopy (FESEM-Hitachi-S4800) technique. The magnetic hysteresis (M-H) loops measurement has been carried out at room temperature by employing the vibrating sample magnetometer (VSM) over a field range of +20 kOe to -20 kOe. The magnetic hysteresis (M-H) loops revealed the ferromagnetic (hard magnetic materials) nature of the samples and, analyzed by using the Law of Approach to Saturation.
NASA Astrophysics Data System (ADS)
Shisode, M. V.; Kharat, Prashant B.; Bhoyar, Dhananjay N.; Vinayak, Vithal; Babrekar, M. K.; Jadhav, K. M.
2018-05-01
Ba2+ doped Bismuth ferrite nanoparticles having general formula Bi1-xBaxFeO3 (where, x = 0.00 and 0.20) were successfully synthesized by sol gel method, using nitrates as a starting material. Ethylene glycol was used as a solvent. The synthesized powder was sintered at 650°C for 4 hours to obtain pure phase BFO. Leaching with dilute nitric acid (HNO3) and distilled water (H2O) is done to remove the impurities. The structural, morphological, magnetic and ferroelectric properties were systematically investigated using standard characterization techniques like X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and room temperature magnetic behavior of the samples was studied using pulse field hysteresis loop tracer technique showing increase in saturation magnetizaion. P-E loop confirms the ferroelectric behavior of prepared nanoparticles. The coexistence of ferromagnetic and ferroelectric hysteresis loops in BFO and Bi0.8Ba0.2FeO3 nanoparticles samples at room temperature; it indicates that the samples are potential candidates for information storage and spintronics devices. The increase in magnetic properties may be important for practical application at room temperature.
Ultrafast Synthesis and Related Phase Evolution of Mg2Si and Mg2Sn Compounds
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Lu, Qiangbing; Yan, Yonggao; Su, Xianli; Tang, Xinfeng
2017-05-01
Both Mg2Si and Mg2Sn compounds were synthesized by an ultra-fast self-propagating high-temperature synthesis (SHS) method. The data regarding SHS were obtained via theoretical calculation combined with experiments, showing that the adiabatic temperature T ad and ignition temperature T ig of Mg2Si are a little higher than those of Mg2Sn. The mechanism of phase evolution and the concomitant microstructure evolution during the synthesis process of Mg2Si and Mg2Sn compounds were investigated by adopting SHS technique coupled with a sudden quenching treatment. Differential scanning calorimetry (DSC), field emission scanning electron microscopy (FESEM), and x-ray powder diffraction (XRD) results indicate that Mg2Si compound can be directly synthesized through the reaction of Mg and Si elements at around 850 K. Correspondingly, the formation of Mg2Sn needs to undergo melting of Sn and the subsequent feeble reaction between Mg and Sn elements before the large scale transformation at 730 K. As the groundwork, this research embodies great significance for future study on the ultrafast SHS process of the ternary Mg2Si1- x Sn x solid solutions.
Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys
Berman, Robert M.; Cohen, Isadore
1990-01-01
A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.
Crystal structure and density of helium to 232 kbar
NASA Technical Reports Server (NTRS)
Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.
1988-01-01
The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.
NASA Astrophysics Data System (ADS)
Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.
2018-01-01
Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.
2012-01-01
Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava
2018-06-01
The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.
Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.
Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less
Lee, Gooyong; Ibrahim, Shaliza; Kittappa, Shanmuga; Park, Heekyung; Park, Chang Min
2018-06-01
Novel heterostructured β-Bi 2 O 3 /Bi 2 O 2 CO 3 nanoplates (hBN) were synthesized to observe the sonocatalytic degradation of bisphenol A (BPA) (widely used as a model pollutant) under ultrasonic (US) irradiation. Prior to obtaining the hBN, the Bi 2 O 2 CO 3 micropowder precursor was prepared under hydrothermal conditions and then converted to hBN by increasing the calcination temperature to 300 °C. The synthesized hBN samples were characterized by field emission scanning electron microscope with energy dispersive X-ray analysis (FESEM/EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer diffuse reflection spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The hBN/US system exhibited greater sonocatalytic activity for the degradation of BPA than the US treatment with the single element bismuth oxide, β-Bi 2 O 3 prepared by annealing the Bi 2 O 2 CO 3 precursor at 400 °C for 1 h. The US frequency and US power intensity in the hBN/US system were the key operating parameters, which were responsible for the complete degradation of BPA during 6 h of reactions. The degradation efficiency of BPA under the US irradiation was positively correlated with the dose of hBN. Our findings indicate that heterostructured hBN can be used as an efficient sonocatalyst for the catalytic degradation of BPA in water and wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Hussain, Mohammad M.; Rahman, Mohammed M.; Asiri, Abdullah M.
2016-01-01
Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce2O3.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R2 = 0.9030) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6×10−3 μAμM-1cm-2 respectively. The Ce2O3.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results. PMID:27973600
Hussain, Mohammad M; Rahman, Mohammed M; Asiri, Abdullah M
2016-01-01
Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce2O3.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R2 = 0.9030) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6×10-3 μAμM-1cm-2 respectively. The Ce2O3.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results.
Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru
2016-01-01
UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.
Investigating the Effects of Low Temperature Annealing of Amorphous Corrosion Resistant Alloys.
1980-11-01
Ray Diffraction.................................................... 6 Differential Scanning Calorimetry....................................... 9...17 LIST OF FIGURES Figure 1. X- Ray Diffraction Results From Fe32Ni 36Cr 4P 2 B Annealed for One Hour at...Various Temperatures (Cr Ka Radiation) ................................. 7 Figure 2. X- Ray Diffraction Results From FeU2NiaeCr14SieB Annealed for One
Pauling, L
1987-06-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).
Pauling, Linus
1987-01-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841
High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
Daniels, J E; Drakopoulos, M
2009-07-01
The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa
The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.
Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.
Weiss, Manfred S
2017-01-01
For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-05-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-01-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir
Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions
NASA Astrophysics Data System (ADS)
Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.
2014-07-01
Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.
Spectroscopic imaging, diffraction, and holography with x-ray photoemission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less
Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers
NASA Astrophysics Data System (ADS)
Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.
2005-08-01
The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi
2014-11-01
Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.
Dynamical diffraction imaging (topography) with X-ray synchrotron radiation
NASA Technical Reports Server (NTRS)
Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.
1989-01-01
By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
NASA Astrophysics Data System (ADS)
Sharmila, S.; Senthilkumar, B.; Nithya, V. D.; Vediappan, Kumaran; Lee, Chang Woo; Selvan, R. Kalai
2013-11-01
Submicron-sized polyhedral Li4Ti5-xSnxO12 (x=0.0, 0.05, and 0.1) materials were successfully prepared by a single-step molten salt method. The structural, morphological, transport and electrochemical properties of the Li4Ti5-xSnxO12 were studied. X-ray diffraction patterns showed the formation of a cubic structure with a lattice constant of 8.31 Å, and the addition of dopants follows Vegard's law. Furthermore, FT-IR spectra revealed symmetric stretching vibrations of octahedral groups of MO6 lattice in Li4Ti5O12. The formation of polyhedral submicron Li4Ti5-xSnxO12 particles was inferred from FE-SEM images, and a particle size reduction was observed for Sn-doped Li4Ti5O12. The chemical composition of Ti, O and Sn was verified by EDAX. The DC electrical conductivity was found to increase with increasing temperature, and a maximum conductivity of 8.96×10-6 S cm-1 was observed at 200 °C for Li4Ti5O12. The galvanostatic charge-discharge behavior indicates that the Sn-doped Li4Ti5O12 could be used as an anode for Li-ion batteries due to its enhanced electrochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography
ERIC Educational Resources Information Center
Clegg, William
2004-01-01
The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…
Laser-induced Multi-energy Processing in Diamond Growth
2012-05-01
microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
Imaging single cells in a beam of live cyanobacteria with an X-ray laser.
van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas
2015-02-11
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.