Science.gov

Sample records for festuca arundinacea mirnas

  1. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application.

    PubMed

    Unver, Turgay; Bakar, Mine; Shearman, Robert C; Budak, Hikmet

    2010-04-01

    Glyphosate is a broad spectrum herbicide which has been widely used for non-selective weed control in turfgrass management. Festuca arundinacea cv. Falcon was shown to be one of the tolerant turfgrass species in response to varying levels of glyphosate [5% (1.58 mM), 20% (6.32 mM)] recommended for weed control. However, there is a lack of knowledge on the mRNA expression patterns and miRNA, critical regulators of gene expression, in response to varying levels of glyphosate treatments. Here, we investigate the transcriptome and miRNA-guided post-transcriptional networks using plant miRNA microarray and Affymetrix GeneChip Wheat Genome Array platforms. Transcriptome analysis revealed 93 up-regulated and 78 down-regulated genes, whereas a smaller number showed inverse differential expressions. miRNA chip analysis indicated a number of (34 out of the 853) plant miRNAs were differentially regulated in response to glyphosate treatments. Target transcripts of differentially regulated miRNAs were predicted and nine of them were quantified by quantitative real-time PCR (qRT-PCR). Target transcripts of miRNAs validate the expression level change of miRNAs detected by miRNA microarray analysis. Down-regulation of miRNAs upon 5 and 20% glyphosate applications led to the up-regulation of their target observed by qRT-PCR or vice versa. Quantification of F. arundinacea miRNA, homologous of osa-miR1436, revealed the agreement between the Affymetrix and miRNA microarray analyses. In addition to miRNA microarray experiment, 25 conserved F. arundinacea miRNAs were identified through homology-based approach and their secondary structures were predicted. The results presented serve as analyses of genome-wide expression profiling of miRNAs and target mRNAs in response to foliar glyphosate treatment in grass species.

  2. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x))

    PubMed Central

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-01-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  3. Utilization of flow cytometry for festulolium breeding (Lolium multiflorum (2x) × Festuca arundinacea (6x)).

    PubMed

    Akiyama, Yukio; Ueyama, Yasufumi; Hamada, Seiya; Kubota, Akito; Kato, Daisuke; Yamada-Akiyama, Hitomi; Takahara, Yoshinori; Fujimori, Masahiro

    2016-03-01

    Festulolium is a hybrid between Festuca and Lolium species that has valuable agronomic traits from both grass species. The purpose of our breeding program is to produce hexaploid festulolium that introduces tolerance to summer depression into Italian ryegrass (Lolium multiflorum) by crossing it with tall fescue (Festuca arundinacea). However, we found the DNA ploidy of hexaploids was not stable and was reduced in successive generations. We aimed to find out how to obtain stable high-ploidy festulolium. F1 hybrids of L. multiflorum and F. arundinacea were produced. The F3 generation was produced from putative hexaploid F2 individuals by open pollination. The F4 to F6 generations were obtained by polycrossing. The DNA ploidy levels of F2 to F6 individuals were estimated by flow cytometry. Cytological characteristics of the F5 and F6 individuals were investigated by FISH and GISH. The DNA ploidy level of hexaploid festulolium was reduced and stabilized at almost the same level as a tetraploid. Seed fertility was inversely correlated with an increase in ploidy level. GISH revealed no preferential Lolium transmission. FISH with a telomere probe revealed that counting the exact number of chromosomes in festulolium was difficult. DNA ploidy level was strongly correlated with the number of chromosomes. PMID:27162495

  4. [Effects of Festuca arundinacea on the microbial community in crude oil-contaminated saline-alkaline soil].

    PubMed

    Li, Xin; Zhang, Hui-Hui; Yue, Bing-Bing; Xu, Nan; Zhu, Wen-Xu; Hu, Ju-Wei; Sun, Guang-Yu

    2012-12-01

    By using the routine soil physical and chemical analysis methods and the Biolog technique, this paper studied the effects of Festuca arundinacea growth on the pH value, total salt content, and microbial community in the rhizosphere of crude dil-contaminated saline-alkaline soil in Songnen Plain of Northeast China. Crude oil contamination resulted in the increases of average well color development (AWCD), Shannon index (H), and carbon source utilization richness index (S), and altered the utilization patterns of carbon sources by the microbes. F. arundinacea had greater potential to remediate crude oil-contaminated soil. This plant could decrease the soil pH and soil total petroleum hydrocarbon (TPH) content, and increase the soil water content. The AWCD and S in F. arundinacea rhizosphere soil were obviously higher than those in the soil of naked land, providing a suitable environment for the growth and development of rhizosphere soil microbes.

  5. Phytoparasitic Nematode Populations in Festuca arundinacea Field Plots in Southwestern Missouri

    PubMed Central

    O'Day, M. H.; Niblack, T. L.; Bailey, W. C.

    1993-01-01

    Field plots of tall rescue (Festuca arundinacea) at two locations on the same experimental farm in southwestern Missouri were sampled (one in 1987-88, the other in 1988-89) to inventory root-parasitic nematodes and to determine whether cultivars or endophyte (Acremonium coenophialum) infection frequencies (EIF) affected nematode population densities within single growing seasons. Plots were planted with seven tall rescue cultivars: Kentucky-31, Kenhy, Johnstone, Martin, Mozark, Missouri-96, and Forager. Kentucky-31 seed with high and low EIF were planted in separate plots. Plant-parasitic nematodes were extracted from soil samples, identified to genus, and enumerated four and three times per year for the 1987-1988 and 1988-1989 studies, respectively. Several plant-parasitic genera were identified from both fields, including Helicotylenchus, Heterodera, Hoplolaimus, Paratylenchus, Pratylenchus, Tylenchorhynchus, and members of genera grouped in the family Tylenchidae. Densities of five of these seven groups of nematodes differed among tall fescue cultivars in the 1987-88 study, but only two out of eight groups did so in the 1988-89 study. Irrespective of tall rescue cultivar, EIF had no consistent impact on nematode densities. The putative suppressive effect of endophyte infection on infection by plant-parasitic nematodes is not detectable within single growing seasons and deserves long-term study in field situations. PMID:19279861

  6. Effect of Light Crude Oil-Contaminated Soil on Growth and Germination of Festuca arundinacea

    NASA Astrophysics Data System (ADS)

    Minai-Tehrani, Dariush; Shahriari, Malek-Hossein; Savaghebi-Firoozabadi, Gholamreza

    In this study the effect of different concentrations of light crude oil (up to 10%) on the growth and germination of Festuca arundinacea (Tall fescue) was studied. Present results showed that the germination number and dry biomass of the plant decreased by increasing light crude oil concentration in the soil. The biomass was higher in 1% crude oil sample while it was lower in 10% crude oil sample. The length of leaves reduced in higher crude oil concentration in comparison with the control. Total and oil-degrading colony count of soil showed that the microbial population in 7 and 10% samples was higher than the control and low concentrations of crude oil (1 and 3% samples). The crude oil reduction in the vegetated and the non-vegetated samples was higher in 1% sample. All vegetated samples had higher crude oil reduction than non-vegetated samples. The higher reduction was occurred at 1% sample, while the lower reduction was seen at 10% sample.

  7. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment.

    PubMed

    Gao, Caixia; Long, Danfeng; Lenk, Ingo; Nielsen, Klaus Kristian

    2008-10-01

    Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.

  8. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2013-02-01

    In a column experiment with horizontal permeable barriers, the effects of a biodegradable chelator-nitrilotriacetic acid (NTA) on the uptake of heavy metals from municipal solid waste (MSW) compost by Festuca arundinacea and metal leaching were investigated. The use of NTA was effective in increasing Cu, Pb, and Zn uptakes in shoots of two crops of F. arundinacea. In columns with barriers and treated with 20 mmol NTA per kg MSW compost, metal uptakes by the first and second crop of F. arundinacea were, respectively, 3.8 and 4.0 times for Pb, and 1.8 and 1.7 times for Zn greater with the added NTA than without it. Though NTA application mobilized metals, it caused only slight leaching of metals from MSW compost. Permeable barriers positioned between compost and soil effectively reduced metal leaching. NTA-assisted phytoextraction by turfgrass with permeable barriers to cleanup heavy metal contaminated MSW compost should be environmentally safe.

  9. Effect of simulated acid rain on the mutualism between tall fescue (Festuca arundinacea) and an endophytic fungus (Acremonium coenophialum)

    SciTech Connect

    Cheplick, G.P. )

    1993-03-01

    Biotic interactions between plants and microorganisms have the potential to be affected by acidic precipitation. I examined the effect of simulated sulfuric acid rain on the mutualism between a perennial forage grass (Festuca arundinacea) and a fungal endophyte (Acremonium coenophialum). Acid water was supplied as mists sprayed onto leaf surfaces or as water added to the soil for two groups in a greenhouse: one group had high levels of endophyte infection, while the other was predominantly noninfected. Control plants received distilled water (pH 6), while others received sulfuric acid water at pH 4.5 or pH 3. Plants were harvested after 4, 6, 8, and 23 wk. Leaf endophyte infection intensity as measured by hyphal counts was not affected by acid water treatment. Root mass and root: shoot ratios generally decreased with increasing acidity of both foliar sprays and soil water, but shoot mass was mostly not affected. There was a significant pH x infection interaction for plants exposed to acidic foliar sprays for 4 wk; root and shoot mass decreased with acidity, but only for infected plants. It was found that acid rain may be deleterious to tall fescue growth at specific stages of development, but biomass production in response to acid rain is not likely to be influenced by fungal endophytes within mature plants. 55 refs., 2 figs., 3 tabs.

  10. Responses of tall fescue (Festuca arundinacea) to growth in naphthalene-contaminated sand: xenobiotic stress versus water stress.

    PubMed

    Balasubramaniyam, Anuluxshy; Chapman, Mark M; Harvey, Patricia J

    2015-05-01

    The adaptations of tall fescue (Festuca arundinacea) arising from growth in naphthalene-contaminated sand (0.8 g kg(-1) sand dry weight (dw)) were investigated in the contexts of xenobiotic stress and water stress. The transfer of polycyclic aromatic hydrocarbons (PAHs) across the root endodermis was investigated using the hydrophobic Nile red stain as a PAH homologue. Nile red was applied to the epidermis of a living root to visualise uptake into the root through the transpiration stream, and the distance travelled by the stain into the root tissues was investigated using epi-fluorescence microscopy (Nikon Eclipse 90i). The results showed that the Nile red applied to the roots grown in naphthalene-contaminated sand was unable to penetrate the roots beyond the endodermis, whereas those grown in 'clean' sand showed evidence of uptake into the xylem vessels beyond the endodermis. Furthermore, partial collapse was observed in the cortex of naphthalene-treated roots, suggesting drought stress. Interestingly, the treated plants showed visual resilience to drought stress whilst the leaves of the control plants showed signs of wilting.

  11. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  12. Responses of tall fescue (Festuca arundinacea) to growth in naphthalene-contaminated sand: xenobiotic stress versus water stress.

    PubMed

    Balasubramaniyam, Anuluxshy; Chapman, Mark M; Harvey, Patricia J

    2015-05-01

    The adaptations of tall fescue (Festuca arundinacea) arising from growth in naphthalene-contaminated sand (0.8 g kg(-1) sand dry weight (dw)) were investigated in the contexts of xenobiotic stress and water stress. The transfer of polycyclic aromatic hydrocarbons (PAHs) across the root endodermis was investigated using the hydrophobic Nile red stain as a PAH homologue. Nile red was applied to the epidermis of a living root to visualise uptake into the root through the transpiration stream, and the distance travelled by the stain into the root tissues was investigated using epi-fluorescence microscopy (Nikon Eclipse 90i). The results showed that the Nile red applied to the roots grown in naphthalene-contaminated sand was unable to penetrate the roots beyond the endodermis, whereas those grown in 'clean' sand showed evidence of uptake into the xylem vessels beyond the endodermis. Furthermore, partial collapse was observed in the cortex of naphthalene-treated roots, suggesting drought stress. Interestingly, the treated plants showed visual resilience to drought stress whilst the leaves of the control plants showed signs of wilting. PMID:25874421

  13. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    PubMed

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  14. Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils

    PubMed Central

    Nord, Eric A.; Jaramillo, Raúl E.; Lynch, Jonathan P.

    2015-01-01

    Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm) increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration—nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change. PMID:25774160

  15. Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin.

    PubMed

    Matthews, David J; Moran, Bridget M; Otte, Marinus L

    2005-03-01

    Several wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc. The degree of tolerance was compared to known zinc-tolerant E. angustifolium and Festuca rubra Merlin. It was found that A. plantago-aquatica and P. arundinacea did not posses innate tolerance to zinc, but that C. rostrata was able to tolerate elevated levels of zinc, at levels comparable to those tolerated by E. angustifolium and F. rubra Merlin. The findings support the theory that some wetland angiosperm species tend to be tolerant to exposure to high levels of metals, regardless of their origin. PMID:15589661

  16. Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin.

    PubMed

    Matthews, David J; Moran, Bridget M; Otte, Marinus L

    2005-03-01

    Several wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc. The degree of tolerance was compared to known zinc-tolerant E. angustifolium and Festuca rubra Merlin. It was found that A. plantago-aquatica and P. arundinacea did not posses innate tolerance to zinc, but that C. rostrata was able to tolerate elevated levels of zinc, at levels comparable to those tolerated by E. angustifolium and F. rubra Merlin. The findings support the theory that some wetland angiosperm species tend to be tolerant to exposure to high levels of metals, regardless of their origin.

  17. Selenium accumulation and selenium-salt co-tolerance in five grass species. [Festuca arundinaceae; Agropyron deserorum; Buchloe dactyloides; Agrostis stolonifera; Cynodon dactylon

    SciTech Connect

    Wu, L.; Huang, Z.; Burau, R.G.

    1987-04-01

    Five grass species including Tall fescue (Festuca arundinaceae Schred), Crested wheatgrass (Agropyron deserorum Fisch), Buffalo grass (Buchlor dactyloides (Nutt.) Engelm.), Seaside bentgrass (Agrostis stolonifera L.) and Bermuda grass (Cynodon dactylon (L.) Pers., Syn.) were examined for selenium and salt tolerance and selenium accumulation under solution culture conditions. Distinct differences in both selenium and salt tolerance were detected among the five species, but no direct association between selenium and salt resistance was found. Tall fescue displayed considerable tolerance under 1 ppm selenium and 100 mM salt treatment. Combined selenium and salt treatment revealed that selenium uptake was increased by the incorporation of salt in the culture solution. However, salt uptake was not significantly affected by the presence of selenium in the culture solution. At moderate toxic levels of selenium, the species with greater tolerance accumulated less selenium than did the less tolerant species.

  18. Characterization of Proanthocyanidins from Seeds of Perennial Ryegrass (Lolium perenne L.) and Tall Fescue (Festuca arundinacea) by Liquid Chromatography-Mass Spectrometry.

    PubMed

    Fraser, Karl; Collette, Vern; Hancock, Kerry R

    2016-09-01

    Perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) are forage species of the grass family (Poaceae) that are key components of temperate pasture-based agricultural systems. Proanthocyanidins (PAs) are oligomeric flavonoids that, when provided as part of a farm animal's diet, have been reported to improve animal production and health. Up to now, forage grasses have been deemed not to produce PAs. This paper reports for the first time the detection of polymerized PAs in aqueous methanolic extracts of seed tissue of both perennial ryegrass and tall fescue, using LC-MS/MS. We have determined the structure of the PAs to be trans-flavan-3-ol-based, consisting predominately of afzelechin and catechin and linked primarily by B-type bonds. Investigations into the leaf tissue of both species failed to detect any PAs. This discovery opens the possibility of using genetic engineering tools to achieve tannin accumulation in leaf tissue of perennial ryegrass and tall fescue. PMID:27532250

  19. A simple thin-layer chromatographic method for the detection of ergovaline in leaf sheaths of tall fescue (Festuca arundinacea) infected with Neotyphodium coenophialum.

    PubMed

    Salvat, A E; Godoy, H M

    2001-09-01

    A relatively simple and inexpensive thin-layer chromatographic (TLC) method is described for the detection and semiquantitative measurement of ergovaline in leaf sheaths of tall fescue (Festuca arundinacea). Samples were finely ground and extracted with methanol. The extracts were filtered and the methanol was evaporated. The aqueous residue was extracted with hexane, followed by chloroform at pH 9. The chloroform extract was concentrated and further purified on a preparative silica gel TLC plate, developed with toluene/ethyl acetate/acetonitrile (50:10:40). The ergovaline band was scraped and eluted with methanol. The eluant was concentrated and an aliquot was applied to a silica gel TLC plate. The plate was developed successively with chloroform/acetone/acetic acid (90:10:5) and chloroform/ethanol (9:1). Ergovaline was visualized with p-dimethylaminobenzaldehyde and sulfuric acid. Semiquantitation of ergovaline was achieved by comparison with a known standard of ergotamine, which was shown to have the same Rf as ergovaline in this system. Spike recovery of ergotamine averaged 60%, with a limit of detection of 200 microg/kg of dry tall fescue leaf sheaths. The method was applied to 15 tall fescue samples with varying degrees of fungal infection, and ergovaline was identified in all contaminated samples with endophyte infection above 15%. Thin-layer chromatography may be also applicable for tall fescue seed, where the ergovaline content is usually higher and the amount of interfering pigments is much lower.

  20. Changes in the abundance of sugars and sugar-like compounds in tall fescue (Festuca arundinacea) due to growth in naphthalene-treated sand.

    PubMed

    Balasubramaniyam, Anuluxshy; Harvey, Patricia J

    2015-04-01

    The hydrophilic metabolome of tall fescue (Festuca arundinacea) adapted to grow in naphthalene-treated sand (0.8 g kg(-1) sand dw) was analysed using gas chromatography-mass spectrometry, and peaks corresponding to the more abundant compounds were tentatively identified from analysis of their mass spectral features and reference to the NIST Mass Spectral Database. Particular attention was paid to sugars as they are known to play important roles as stress regulators in plants. The results showed that the abundance of sugars was greater in the roots but lesser in the shoots of treated plants when compared to their control counterparts. The results for indole acetic acid (IAA) were notable: IAA was prominently less in the treated roots compared to shoots, and in treated shoots, IAA was particularly subdued compared to untreated shoots consistent with IAA degradation in treated plant tissues. The differences in the molecular phenotype between control and treated plants were expressed in root structural differences. The treated roots were modified to have greater suberisation, enhanced thickening in the endodermis and distortions in the cortical zone as demonstrated through scanning electron and epi-fluorescence microscopy.

  1. Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration

    PubMed Central

    Perlikowski, Dawid; Czyżniejewski, Mariusz; Marczak, Łukasz; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed. PMID:27504113

  2. Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration.

    PubMed

    Perlikowski, Dawid; Czyżniejewski, Mariusz; Marczak, Łukasz; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed. PMID:27504113

  3. Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Xu, Yi; Xu, Qian; Huang, Bingru

    2015-01-01

    Root growth inhibition by water stress may be related to oxidative damages. The objectives of this study were to determine whether exogenous application of ascorbic acid (ASA) could mitigate root growth decline due to water stress and whether ASA effects on root growth could be regulated through activating non-enzymatic or enzymatic antioxidant systems in perennial grass species. Tall fescue (Festuca arundinacea Schreb. cv. “K-31”) plants were grown in nutrient solution, and polyethylene glycol (PEG)-8000 was added into the solution to induce water stress. For exogenous ASA treatment, ASA (5 mM) was added into the solution with or without PEG-8000. Plants treated with ASA under water stress showed significantly increased root growth rate, and those roots had significantly lower content of reactive oxygen species (ROS) (H2O2 and O2− content) than those without ASA treatment. Malondialdehyde content in root tips treated with ASA under water stress was also significantly reduced compared with those under water stress alone. In addition, free ascorbate and total ascorbate content were significantly higher in roots treated with ASA under water stress than those without ASA treatment. The enzymatic activities for ROS scavenging-related genes were not significantly altered by ASA treatment under water stress, while transcript abundances of genes encoding superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase showed significant decreases in the root elongation zone and significant increases in the root maturation zone treated with ASA under water stress. Transcripts of genes for expansins and xyloglucan endotransglycosylases showed increased abundances in ASA-treated root maturation zone under water stress, indicating that ASA could accelerated cell wall loosening and cell expansion. The results suggested that exogenous treatment of roots with ASA enhanced root elongation under water

  4. Detection of kestoses and kestose-related oligosaccharides in extracts of Festuca arundinacea, Dactylis glomerate L. , and Asparagus officinalis L. root cultures and invertase by sup 13 C and sup 1 H nuclear magnetic resonance spectroscopy

    SciTech Connect

    Forsythe, K.L.; Feather, M.S.; Gracz, H.; Wong, T.C. )

    1990-04-01

    Previous studies show that {sup 13}C nuclear magnetic resonance spectroscopy can be used to detect and identify mixtures of 1-kestose and neokestose after conversion to the acetate derivatives. In this study, unequivocal assignments are made for the anomeric carbon and proton signals for the above two trisaccharide acetates as well as for 6-kestose hendecaacetate and for nystose tetradecaacetate (a 1-kestose-derived tetrasaccharide). A number of oligosaccharide fractions were isolated from several plant species, converted to the acetates, and nuclear magnetic resonance spectra obtained. Using the above reference data, the following information was obtained. The trisaccharide fraction from Dactylis gomerata L. stem tissue and Asparagus officinalis L. roots contain both 1-kestose and neokestose, and the tetrasaccharide fractions contain three components, one of which is nystose. Penta- and hexasaccharide acetates were also isolated from A. officinalis L. roots and were found to contain, respectively, four and at least five components. All components of both of the above species appear to contain a kestose residue and to be produced by the sequential addition of fructofuranosyl units to these. The trisaccharide fraction from Festuca arundinacea is complex, and contains at least five different components, two of which appear to be 1-kestose and neokestose.

  5. Tiller production in cocksfoot (Dactylis glomerata) and tall fescue (Festuca arundinacea) growing along a light gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasture managers seek to balance leaf appearance with leaf utilization to meet livestock nutritional needs and sustain sward productivity. Achieving this balance when managing forages in silvopasture, requires techniques that account for the influence of light and defoliation on tiller appearance a...

  6. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea).

    PubMed

    Lu, Mang; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Min; Xu, Yu-Xin; Wu, Xue-Jiao

    2014-01-21

    90-Day growth chamber experiments were performed to investigate the interactive effect of pyrene and heavy metals (Cu, Cd, and Pb) on the growth of tall fescue and its uptake, accumulation, and dissipation of heavy metals and pyrene. Results show that plant growth and phytomass production were impacted by the interaction of heavy metals and pyrene. They were significantly decreased with heavy metal additions (100-2000 mg/kg), but they were only slightly declined with pyrene spiked up to 100 mg/kg. The addition of a moderate dosage of pyrene (100 mg/kg) lessened heavy metal toxicity to plants, resulting in enhanced plant growth and increased metal accumulation in plant tissues, thus improving heavy metal removal by plants. In contrast, heavy metals always reduced both plant growth and pyrene dissipation in soils. The chemical forms of Cu, Cd, and Pb in plant organs varied with metal species and pyrene addition. The dissipation and mineralization of pyrene tended to decline in both planted soil and unplanted soils with the presence of heavy metals, whereas they were enhanced with planting. The results demonstrate the complex interactive effects of organic pollutants and heavy metals on phytoremediation in soils. It can be concluded that, to a certain extent, tall fescue may be useful for phytoremediation of pyrene-heavy metal-contaminated sites. Further work is needed to enhance methods for phytoremediation of heavy metal-organics co-contaminated soil.

  7. Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Chen, Liang; Sun, Xiaoyan; Yang, Yong; Liu, Hongmei; Xu, Qingguo

    2015-01-01

    Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivars were desirable in modern pastoral industries exceed the potential of existing cultivars. Therefore, well understanding the agronomic traits and describing germplasms would help to overcome these constraints, and morphological evaluation of tall fescue germplasm is the key component in selecting rational parents for hybridization breeding. However, describing the morphological traits of tall fescue germplasm is costly and time-consuming. Fortunately, biotechnology approaches can supplement conventional breeding efforts for tall fescue improvement. Association mapping, as a powerful approach to identify association between agronomic traits and molecular markers has been widely used for enhancing the utilization, conservation and management of the tall fescue germplasms. Therefore, in the present research, 115 tall fescue accessions from different origins (25 accessions are cultivars; 31 accessions from America; 32 accessions from European; 7 accessions from Africa; 20 accessions from Asia), were evaluated for agronomic traits and genetic diversity with 90 simple sequence repeat (SSR) markers. The panel displayed significant variation in spike count per plant (SCP) and spike weight (SW). However, BCS performed the lowest CV among all the observed agronomic traits. Three subpopulations were identified within the collections but no obvious relative kinship (K) was found. The GLM model was used to describe the association between SSR and agronomic traits. Fifty-one SSR markers associated with agronomic traits were observed. Twelve single-associated markers were associated with PH; six single-associated markers were associated with BCS; eight single-associated markers were associated with SW; five single-associated markers were associated with SC; seven single-associated markers were associated with SCP; three single-associated markers were associated with SL. Especially, we observed that the genetic variation of SW was explained 11.6 % by M37 marker. It is interesting to observe that nine markers (M1, M2, M35, M54 marker was associated with both BCS and SC; M3, M4 markers were associated with BCS, SW, and SC; M19 marker was associated with both pH and PD, M40 marker was associated with both SCP and SW; and M193 marker was associated with both PH and SL) were associated with more than two agronomic traits. Notably, Branch count per spike (BCS) was explained by four markers (M1, M2, M3, and M4) exceeding 10 %. These identified marker alleles associated with agronomic traits could provide important information and markers for molecular-assisted breeding that facilitate the breeding process in tall fescue. PMID:26186338

  8. Effects of pseudo-microgravity on symbiosis between endophyte, Neotyphodium, and its host plant, tall fescue (Festuca arundinacea)

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, K.; Wakabayashi, K.; Hiraishi, K.; Yoshida, S.; Hashimoto, H.; Shinozaki, S.; Yamashita, M.

    Endophyte is a group of microbes that symbiotically live in plant body Endophyte provides host plant its metabolites that protect the plant from insect pests In addition to this host plants are resistive against environmental stress In general endophyte lives in seeds to seeds of the infected plants through multiple generations The infection of fungi has never been observed and their original pathway is still unknown in nature The aim of this study is to examine whether this stable symbiosis between endophytes and its host plant would be modified under pseudo-microgravity or not We also aim to observe the infection under an exotic environment in terms of gravity We found that the internal hyphae of both the incubated plant under pseudo-microgravity and the ground control became indistinct with the number of incubation days A part of the endophyte in the seed under its autolysis was suggested because the amount of fungi in the base of the shoot that was observed with the incubated plant under the ground control was far less than that in the seed before sowing Hyphae began to grow in the germinating seed after a 3-day incubation period However a lot of aggregated fungi still existed in the 3-day incubated seed under pseudo-microgravity Moreover hyphae in the 3-day incubated seed under pseudo-microgravity were more indistinctly than that under the ground control The fungi were observed in the boundary of the seed and the shoot of the 5-day incubated seed under the ground control but not under pseudo-microgravity By this observation it was suggested that

  9. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex

    PubMed Central

    2010-01-01

    Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first phylogenetic analysis of

  10. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress

    PubMed Central

    Hu, Tao; Liu, Shu-Qian; Amombo, Erick; Fu, Jin-Min

    2015-01-01

    When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as “stress memory”. However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP) genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4) relative to the first stress (S1), and basal transcript levels during the recovery states (R1, R2, and R3). Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC) for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid), sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose), amino acids (serine, proline, pyroglutamic acid, glycine, alanine), and one fatty acid (butanoic acid) in pre-acclimated plants. These observations involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process. PMID:26136755

  11. Interactions between Metopolophium festucae cerealium (Hemiptera: Aphididae) and Barley yellow dwarf virus (BYDV-PAV)

    PubMed Central

    Sadeghi, S. E.; Bjur, J.; Ingwell, L.; Unger, L.; Bosque-Pérez, N. A.; Eigenbrode, S. D.

    2016-01-01

    Interactions between an invasive aphid, Metopolophium festucae (Theobald) subsp. cerealium, and Barley yellow dwarf virus (BYDV-PAV) were studied under laboratory conditions. M. festucae cerealium is an economic pest of wheat and barley that has recently been found in high population densities in wheat in the Pacific Northwest of the United States. BYDV-PAV is the most prevalent and injurious species of BYDV worldwide and in the Pacific Northwest. Although M. festucae sensu stricto (Theobald 1917) has been reported previously as a vector of some BYDV isolates, there is no confirmed transmission of BYDV by M. festucae cerealium. Two experiments examined the ability of M. festucae cerealium to transmit BYDV-PAV. The first used single aphids caged to indicator plants of a BYDV-susceptible winter wheat cultivar and the second used multiple aphids on each test plant. M. festucae cerealium did not transmit BYDV-PAV in either experiment, whereas transmission by a known BYDV vector, Rhopalosiphum padi L., was consistently high (≥93%). A third experiment compared the intrinsic growth rate, days until first reproduction and daily reproduction by M. festucae cerealium on sham-inoculated and BYDV-PAV-infected wheat, but detected no differences. The findings are reviewed in light published data on M. festucae species, BYDV transmission, and the potential pest status of this new invading aphid. PMID:26896673

  12. Development of fine-leaved Festuca grass for forage and wildfire control in the Great Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought and heat tolerant fine-leaved fescue (Festuca ssp.) grasses have potential as components in rangeland greenstrips for wildfire control in semi-arid climates, although such grasses have not been evaluated under rangeland conditions. Therefore, 64 geographically diverse Festuca accessions of ...

  13. Interactions between Metopolophium festucae cerealium (Hemiptera: Aphididae) and Barley yellow dwarf virus (BYDV-PAV).

    PubMed

    Sadeghi, S E; Bjur, J; Ingwell, L; Unger, L; Bosque-Pérez, N A; Eigenbrode, S D

    2016-01-01

    Interactions between an invasive aphid, Metopolophium festucae (Theobald) subsp. cerealium, and Barley yellow dwarf virus (BYDV-PAV) were studied under laboratory conditions. M. festucae cerealium is an economic pest of wheat and barley that has recently been found in high population densities in wheat in the Pacific Northwest of the United States. BYDV-PAV is the most prevalent and injurious species of BYDV worldwide and in the Pacific Northwest. Although M. festucae sensu stricto (Theobald 1917) has been reported previously as a vector of some BYDV isolates, there is no confirmed transmission of BYDV by M. festucae cerealium. Two experiments examined the ability of M. festucae cerealium to transmit BYDV-PAV. The first used single aphids caged to indicator plants of a BYDV-susceptible winter wheat cultivar and the second used multiple aphids on each test plant. M. festucae cerealium did not transmit BYDV-PAV in either experiment, whereas transmission by a known BYDV vector, Rhopalosiphum padi L., was consistently high (≥ 93%). A third experiment compared the intrinsic growth rate, days until first reproduction and daily reproduction by M. festucae cerealium on sham-inoculated and BYDV-PAV-infected wheat, but detected no differences. The findings are reviewed in light published data on M. festucae species, BYDV transmission, and the potential pest status of this new invading aphid. PMID:26896673

  14. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  15. Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability

    PubMed Central

    Vázquez-de-Aldana, Beatriz R.; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E−) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands. PMID:24367672

  16. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex

    PubMed Central

    Perlikowski, Dawid; Kierszniowska, Sylwia; Sawikowska, Aneta; Krajewski, Paweł; Rapacz, Marcin; Eckhardt, Änne; Kosmala, Arkadiusz

    2016-01-01

    Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed

  17. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex.

    PubMed

    Perlikowski, Dawid; Kierszniowska, Sylwia; Sawikowska, Aneta; Krajewski, Paweł; Rapacz, Marcin; Eckhardt, Änne; Kosmala, Arkadiusz

    2016-01-01

    Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed

  18. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae).

    PubMed

    Barth, Susanne; Jankowska, Marta Jolanta; Hodkinson, Trevor Roland; Vellani, Tia; Klaas, Manfred

    2016-03-22

    Forty three microsatellite markers were developed for further genetic characterisation of a forage and biomass grass crop, for which genomic resources are currently scarce. The microsatellite markers were developed from a normalized EST-SSR library. All of the 43 markers gave a clear banding pattern on 3% Metaphor agarose gels. Eight selected SSR markers were tested in detail for polymorphism across eleven DNA samples of large geographic distribution across Europe. The new set of 43 SSR markers will help future research to characterise the genetic structure and diversity of Phalaris arundinacea, with a potential to further understand its invasive character in North American wetlands, as well as aid in breeding work for desired biomass and forage traits. P. arundinacea is particularly valued in the northern latitude as a crop with high biomass potential, even more so on marginal lands.

  19. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae.

    PubMed

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  20. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae

    PubMed Central

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  1. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    PubMed Central

    Ambrose, Karen V.; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  2. Comparative physico-chemical profiles of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.).

    PubMed

    Rajashekhara, N; Shukla, Vinay J; Ravishankar, B; Sharma, Parameshwar P

    2013-10-01

    Tugaksheeree is as an ingredient in many Ayurvedic formulations. The starch obtained from the rhizomes of two plants, is used as Tugaksheeree, Curcuma angustifolia (CA) Roxb. (Family: Zingiberaceae) and Maranta arundinacea (MA) Linn. (Family Marantaceae). In the present study, a comparative physico-analysis of both the drugs has been carried out. The results suggest that the starch from CA and MA has similar organoleptic characters. The percentage of starch content is higher in the rhizome of CA when compared with that of MA and the starch of MA is packed more densely than the starch in CA. The chemical constituents of both the starch and rhizomes are partially similar to each other. Hence, the therapeutic activities may be similar. PMID:24696578

  3. Comparative physico-chemical profiles of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.).

    PubMed

    Rajashekhara, N; Shukla, Vinay J; Ravishankar, B; Sharma, Parameshwar P

    2013-10-01

    Tugaksheeree is as an ingredient in many Ayurvedic formulations. The starch obtained from the rhizomes of two plants, is used as Tugaksheeree, Curcuma angustifolia (CA) Roxb. (Family: Zingiberaceae) and Maranta arundinacea (MA) Linn. (Family Marantaceae). In the present study, a comparative physico-analysis of both the drugs has been carried out. The results suggest that the starch from CA and MA has similar organoleptic characters. The percentage of starch content is higher in the rhizome of CA when compared with that of MA and the starch of MA is packed more densely than the starch in CA. The chemical constituents of both the starch and rhizomes are partially similar to each other. Hence, the therapeutic activities may be similar.

  4. Comparative physico-chemical profiles of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.)

    PubMed Central

    Rajashekhara, N.; Shukla, Vinay J.; Ravishankar, B.; Sharma, Parameshwar P.

    2013-01-01

    Tugaksheeree is as an ingredient in many Ayurvedic formulations. The starch obtained from the rhizomes of two plants, is used as Tugaksheeree, Curcuma angustifolia (CA) Roxb. (Family: Zingiberaceae) and Maranta arundinacea (MA) Linn. (Family Marantaceae). In the present study, a comparative physico-analysis of both the drugs has been carried out. The results suggest that the starch from CA and MA has similar organoleptic characters. The percentage of starch content is higher in the rhizome of CA when compared with that of MA and the starch of MA is packed more densely than the starch in CA. The chemical constituents of both the starch and rhizomes are partially similar to each other. Hence, the therapeutic activities may be similar. PMID:24696578

  5. Evaluation of Antidiarrheal Activity of Methanolic Extract of Maranta arundinacea Linn. Leaves.

    PubMed

    Rahman, Md Khalilur; Chowdhury, Md Ashraf Uddin; Islam, Mohammed Taufiqual; Chowdhury, Md Anisuzzaman; Uddin, Muhammad Erfan; Sumi, Chandra Datta

    2015-01-01

    Diarrhea is one of the most common causes for thousands of deaths every year. Therefore, identification of new source of antidiarrheal drugs becomes one of the most prominent focuses in modern research. Our aim was to investigate the antidiarrheal and cytotoxic activities of methanolic extract of Maranta arundinacea linn. (MEMA) leaves in rats and brine shrimp, respectively. Antidiarrheal effect was evaluated by using castor oil-induced diarrhea, enteropooling, and gastrointestinal motility tests at 200 mg/kg and 400 mg/kg body weight in rats where the cytotoxic activity was justified using brine shrimp lethality bioassay at different concentrations of MEMA. The extract showed considerable antidiarrheal effect by inhibiting 42.67% and 57.75% of diarrheal episode at the doses of 200 and 400 mg/kg, respectively. MEMA also significantly (p < 0.01) reduced the castor oil-induced intestinal volume (2.14 ± 0.16 to 1.61 ± 0.12 mL) in enteropooling test as well as intestinal transit (33.00 to 43.36%) in GI motility test, compared to their respective control. These observed effects are comparable to that of standard drug loperamide (5 mg/kg). On the other hand, in brine shrimp lethality test after 24 h, surviving brine shrimp larvae were counted and LD50 was assessed. Result showed that MEMA was potent against brine shrimp with LD50 value of 420 µg/mL. So the highest dose of 400 µg/mL of MEMA was not toxic to mice. So these results indicate that bioactive compounds are present in methanolic extract of Maranta arundinacea leaves including significant antidiarrheal activity and could be accounted for pharmacological effects. PMID:26346095

  6. Evaluation of Antidiarrheal Activity of Methanolic Extract of Maranta arundinacea Linn. Leaves

    PubMed Central

    Rahman, Md. Khalilur; Chowdhury, Md. Ashraf Uddin; Islam, Mohammed Taufiqual; Chowdhury, Md. Anisuzzaman; Uddin, Muhammad Erfan; Sumi, Chandra Datta

    2015-01-01

    Diarrhea is one of the most common causes for thousands of deaths every year. Therefore, identification of new source of antidiarrheal drugs becomes one of the most prominent focuses in modern research. Our aim was to investigate the antidiarrheal and cytotoxic activities of methanolic extract of Maranta arundinacea linn. (MEMA) leaves in rats and brine shrimp, respectively. Antidiarrheal effect was evaluated by using castor oil-induced diarrhea, enteropooling, and gastrointestinal motility tests at 200 mg/kg and 400 mg/kg body weight in rats where the cytotoxic activity was justified using brine shrimp lethality bioassay at different concentrations of MEMA. The extract showed considerable antidiarrheal effect by inhibiting 42.67% and 57.75% of diarrheal episode at the doses of 200 and 400 mg/kg, respectively. MEMA also significantly (p < 0.01) reduced the castor oil-induced intestinal volume (2.14 ± 0.16 to 1.61 ± 0.12 mL) in enteropooling test as well as intestinal transit (33.00 to 43.36%) in GI motility test, compared to their respective control. These observed effects are comparable to that of standard drug loperamide (5 mg/kg). On the other hand, in brine shrimp lethality test after 24 h, surviving brine shrimp larvae were counted and LD50 was assessed. Result showed that MEMA was potent against brine shrimp with LD50 value of 420 µg/mL. So the highest dose of 400 µg/mL of MEMA was not toxic to mice. So these results indicate that bioactive compounds are present in methanolic extract of Maranta arundinacea leaves including significant antidiarrheal activity and could be accounted for pharmacological effects. PMID:26346095

  7. miRNAs Related to Skeletal Diseases.

    PubMed

    Seeliger, Claudine; Balmayor, Elizabeth R; van Griensven, Martijn

    2016-09-01

    miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations. PMID:27418331

  8. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    PubMed

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high.

  9. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    PubMed

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high. PMID:25659333

  10. Genetic characterization of Kyrgyzstan fine-leaved Festuca valesiaca germplasm for use in semi-arid low-maintenance turf applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fine-leaved Festuca valesiaca Shleidcher ex. Gaudin (2n = 2x-4x) is native to heavily grazed, cold, semi-arid, Asian rangelands. However, its potential for low-maintenance turf applications in the semi-arid western United States and its relatedness to other agriculturally important Festuca species ...

  11. A comparative study of efficacy of Tugaksheeree [Curcuma angustifolia Roxb. and Maranta arundinacea Linn.] in management of Amlapitta.

    PubMed

    Rajashekhara, N; Sharma, P P

    2010-10-01

    Amlapitta is a disease caused by increase of Amla Guna of Pitta. Starch obtained from the rhizomes of two plants viz., Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used as Tugaksheeree. In the present clinical study, the efficacy of Tugaksheeree was studied on 67 patients of Amlapitta. A 0 total of 84 patients suffering from Amlapitta were selected from the O.P.D. and I.P.D. sections in the department of Dravyaguna, I.P.G.T. and R.A., Hospital, Jamnagar, and were randomly divided into two groups. Thirty four patients completed the treatment course in Group I, and 33 patients completed the treatment course in Group II. The efficacy of drug Tugaksheeree was studied through internal administration of the starches of C. angustifolia Roxb. (Fam. Zingiberaceae) in Group I and M. arundinacea Linn. (Fam. Marantaceae) in Group II with the dose of 4 g TID with water for 30 days. Both the drugs were found highly effective in treating Amlapitta. They significantly relieved the cardinal symptoms viz., Avipaka, Tikta-amlodgara, Daha, Shoola, Chhardi and the associated symptoms viz., Aruchi, Gaurava, Udaradhmana, Antrakujana, Vit bheda, Shiroruja, Angasada, and Trit. Statistically significant increase in body weight was noticed in both the groups. This may be because the drugs corrected the Agni and acted as Brihmana and Dhatupushtikara. Both the drugs did not produce any side effects. Therefore, both these drugs (C. angustifolia Roxb. and M. arundinacea Linn.) can be used as substitutes for each other.

  12. Epichloae infection in a native South African grass, Festuca costata Nees.

    PubMed

    McGranahan, D A; Burgdorf, R; Kirkman, K P

    2015-07-01

    Fungal endophytes have been documented in almost all terrestrial plant groups. Although the endophyte infection syndrome in agronomic cultivars is well studied, relatively little work addresses questions of spatial ecology and fire effects on epichloae endophyte infection in native grasses, and none, to our knowledge, in sub-Saharan Africa. We sampled seven populations of the native Festuca costata Nees along the spline of the Drakensberg range in South Africa at several spatial scales, including both recently burned and unburned stands. We tested epichloae presence and prevalence with immunoblot assays, PCR and genetic sequencing. We found epichloae endophytes were present and prevalent (38-98% infection rates depending on location). Variation in infection rates occurred primarily among locations, but also among bunches. There was little evidence that endophyte infection rates varied with fire. Novel evidence of epichloae infection of a native Festuca in South Africa opens the door to several new research questions, from the phylogenetic relationship between epichloae of sub-Saharan Africa and other continents to the ecological advantages or disadvantages that endophytes confer upon their hosts, especially in a fire-prone ecosystem vulnerable to global environmental change.

  13. Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes.

    PubMed

    Rodríguez-Echeverría, Susana; Freitas, Helena

    2006-11-01

    Dune vegetation is essential for the formation and preservation of sand dunes and the protection of the coast line. Coastal sand dunes are harsh environments where arbuscular mycorrhizal fungi (AMF) play an important role in promoting plant establishment and growth. We present a study of the diversity of AMF associated with A. arenaria ssp. arundinacea in two locations of the Portuguese coast under a Mediterranean climate. These two locations were selected to compare a well-preserved dune system from a protected area with a degraded dune system from a public beach. AMF diversity was assessed mainly by cloning and sequencing of a fragment of the ribosomal SSU using the primer NS31 and AM1. Most of the 89 AMF clones obtained from the rhizosphere and roots of A. arenaria belonged to the genus Glomus, the largest clade within the Glomeromycota. Higher AMF diversity was found in the least disturbed site, in which spores of Scutellospora persica, Glomus constrictum and Glomus globiferum were found in the rhizosphere of A. arenaria.

  14. Evaluation of immunostimulatory effect of the arrowroot (Maranta arundinacea. L) in vitro and in vivo.

    PubMed

    Kumalasari, Ika Dyah; Harmayani, Eni; Lestari, Lily Arsanti; Raharjo, Sri; Asmara, Widya; Nishi, Kosuke; Sugahara, Takuya

    2012-03-01

    Arrowroot (Maranta arundinacea. L) is an underutilized local crop potentially to be developed as carbohydrate source and functional food in Indonesia. The objectives of this research are to evaluate the immunostimulatory effects of arrowroot extracts in vitro by using animal cell culture techniques, and in vivo by using BALB/c mice. The arrowroot tuber extracts were prepared by heat-treatment at 121 °C for 20 min in distilled water. The IgM production stimulatory activity of arrowroot tuber extracts against human hybridoma HB4C5 cells and mouse splenocytes was assessed. The result indicated that the arrowroot tuber extract stimulated IgM production by HB4C5 cells and immunoglobulin (IgG, IgA and IgM) production by splenocytes in vitro. In addition, the arrowroot tuber extracts strongly enhanced interferon γ production by splenocytes. In vivo study indicated that the diet containing arrowroot extracts increased the serum IgG, IgA and IgM levels in mice. These results revealed that the arrowroot tuber extracts have immunostimulatory effects in vivo as well as in vitro. PMID:22038480

  15. Evaluation of immunostimulatory effect of the arrowroot (Maranta arundinacea. L) in vitro and in vivo.

    PubMed

    Kumalasari, Ika Dyah; Harmayani, Eni; Lestari, Lily Arsanti; Raharjo, Sri; Asmara, Widya; Nishi, Kosuke; Sugahara, Takuya

    2012-03-01

    Arrowroot (Maranta arundinacea. L) is an underutilized local crop potentially to be developed as carbohydrate source and functional food in Indonesia. The objectives of this research are to evaluate the immunostimulatory effects of arrowroot extracts in vitro by using animal cell culture techniques, and in vivo by using BALB/c mice. The arrowroot tuber extracts were prepared by heat-treatment at 121 °C for 20 min in distilled water. The IgM production stimulatory activity of arrowroot tuber extracts against human hybridoma HB4C5 cells and mouse splenocytes was assessed. The result indicated that the arrowroot tuber extract stimulated IgM production by HB4C5 cells and immunoglobulin (IgG, IgA and IgM) production by splenocytes in vitro. In addition, the arrowroot tuber extracts strongly enhanced interferon γ production by splenocytes. In vivo study indicated that the diet containing arrowroot extracts increased the serum IgG, IgA and IgM levels in mice. These results revealed that the arrowroot tuber extracts have immunostimulatory effects in vivo as well as in vitro.

  16. Identifying miRNAs, targets and functions

    PubMed Central

    Liu, Bing; Li, Jiuyong

    2014-01-01

    microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and further inferring miRNA functions have been a critical strategy for understanding normal biological processes of miRNAs and their roles in the development of disease. In this review, we focus on computational methods of inferring miRNA functions, including miRNA functional annotation and inferring miRNA regulatory modules, by integrating heterogeneous data sources. We also briefly introduce the research in miRNA discovery and miRNA-target identification with an emphasis on the challenges to computational biology. PMID:23175680

  17. Estrogenic activity of a hydro-alcoholic extract of Bambusa arundinaceae leaves on female wistar rats

    PubMed Central

    Jawaid, Talha; Awasthi, Akanksha; Kamal, Mehnaz

    2015-01-01

    To study the estrogenic activity of the hydro-alcoholic extract of Bambusa arundinaceae leaves (HEBA) in female Wistar rats. The dried powdered leaves were extracted with hydroalcoholic mixture (60%), and the resultant extract was subjected for phytochemical analyses to identify different phytoconstituents. HEBA were administered to ovariectomized rats for 7 days at three different doses (viz., 200, 300, 400 mg/kg body weight, p.o.) and their estrogenic activity were compared with each of daily treatment with 0.2 mg/kg body weight, i.p. conjugated equine estrogen as a positive control or olive oil as a negative control. Estrogenic activity was evaluated by doing uterotropic assay, vaginal cytology and measurement of vaginal opening in female Wistar rats. Oral administration of HEBA in ovariectomized immature and mature female Wistar rats in a dose of 400 mg/kg b.w. resulted in significant increase in the uterine wet weight (in mg) (224.82 ± 7.01) and (912.25 ± 27.22) when compared with ovariectomized control rats (111.52 ± 3.17) and (506.67 ± 21.39). HEBA (400 mg/kg b.w., p.o.) treated rats, showing only cornified epithelial cells which was an indication of the presence of the estrogen and also showed 100% vaginal opening. It was observed that HEBA possess significant estrogenic activity at 400 mg/kg b.w., p.o. which was evident by uterotropic assay, measurement of vaginal opening, and histopathological changes. PMID:25709965

  18. meta-Tyrosine in Festuca rubra ssp. commutata (Chewings fescue) is synthesized by hydroxylation of phenylalanine.

    PubMed

    Huang, Tengfang; Rehak, Ludmila; Jander, Georg

    2012-03-01

    m-Tyrosine is a non-protein amino acid that is structurally similar to the common protein amino acids p-tyrosine and phenylalanine. Copious amounts of m-tyrosine can be found in root exudates of the fine fescue cultivar, Festuca rubra L. ssp. commutata (Chewings fescue). The phytotoxicity of m-tyrosine may contribute to the allelopathic potential of F. rubra. m-Tyrosine in Euphorbia myrsinites (donkey-tail spurge), was previously shown to be synthesized via transamination of m-hydroxyphenylpyruvate. Here we show that m-tyrosine biosynthesis in F. rubra occurs through direct hydroxylation of phenylalanine in the root tips, perhaps through the activity of a cytochrome P450 enzyme. Hence, E. myrsinites and F. rubra, the only two plant species known to produce m-tyrosine, use distinct biosynthetic pathways that likely arose independently in evolutionary history.

  19. Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT.

    PubMed

    Altenbach, Denise; Nüesch, Eveline; Ritsema, Tita; Boller, Thomas; Wiemken, Andres

    2005-08-29

    The active center of the glycoside hydrolase family 32 contains the three characteristic motifs (N/S)DPNG, RDP, and EC. We replaced the N-terminal region including the (N/S)DPNG motif of barley 6-SFT (sucrose:fructan 6-fructosyltransferase) by the corresponding region of Festuca 1-SST (sucrose:sucrose 1-fructosyltransferase). The chimeric enzyme, expressed in Pichia, retained the specificity of 6-SFT. Attempts to replace a larger piece at the N-terminus including also the RDP motif failed. A point mutation introduced in the RDP motif of 1-SST abolished enzymatic activity. Interestingly, point mutations of the EC-motif resulted in an enzyme which had lost the capability to form 1-kestose and glucose from sucrose but still accepted 1-kestose, producing fructose and sucrose as well as nystose.

  20. Volatile constituents of Festuca nigrescens, Phleum alpinum and Poa alpina from N. W. Italian Alpine pastures.

    PubMed

    Tava, Aldo; Cecotti, Roberto; Grecchi, Maris; Falchero, Luca; Coppa, Mauro; Lombardi, Giampiero

    2011-01-01

    The composition of the volatile fractions of three important grasses from sub-alpine N.W. Italian pastures, namely Festuca nigrescens Lam. non Gaudin (chewing fescue), Phleum alpinum L. (alpine timothy) and Poa alpina L. (alpine bluegrass) was investigated. The fresh aerial parts were collected at the flowering stage during the summer season. The volatile oils obtained from green tissues by steam distillation in a Clevenger-type apparatus, were analyzed by GC/FID and GC/MS. The oil yield was 0.04 +/- 0.01% weight/fresh weight bases for each of the investigated species. Several classes of compounds were found in the volatile fractions, including aldehydes, alcohols, acids, hydrocarbons, esters, ketones, terpenes, and phenolics. Qualitative and quantitative differences were observed. PMID:21366056

  1. miRNAs in brain development

    SciTech Connect

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  2. A comparative study of efficacy of Tugaksheeree [Curcuma angustifolia Roxb. and Maranta arundinacea Linn.] in management of Amlapitta.

    PubMed

    Rajashekhara, N; Sharma, P P

    2010-10-01

    Amlapitta is a disease caused by increase of Amla Guna of Pitta. Starch obtained from the rhizomes of two plants viz., Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used as Tugaksheeree. In the present clinical study, the efficacy of Tugaksheeree was studied on 67 patients of Amlapitta. A 0 total of 84 patients suffering from Amlapitta were selected from the O.P.D. and I.P.D. sections in the department of Dravyaguna, I.P.G.T. and R.A., Hospital, Jamnagar, and were randomly divided into two groups. Thirty four patients completed the treatment course in Group I, and 33 patients completed the treatment course in Group II. The efficacy of drug Tugaksheeree was studied through internal administration of the starches of C. angustifolia Roxb. (Fam. Zingiberaceae) in Group I and M. arundinacea Linn. (Fam. Marantaceae) in Group II with the dose of 4 g TID with water for 30 days. Both the drugs were found highly effective in treating Amlapitta. They significantly relieved the cardinal symptoms viz., Avipaka, Tikta-amlodgara, Daha, Shoola, Chhardi and the associated symptoms viz., Aruchi, Gaurava, Udaradhmana, Antrakujana, Vit bheda, Shiroruja, Angasada, and Trit. Statistically significant increase in body weight was noticed in both the groups. This may be because the drugs corrected the Agni and acted as Brihmana and Dhatupushtikara. Both the drugs did not produce any side effects. Therefore, both these drugs (C. angustifolia Roxb. and M. arundinacea Linn.) can be used as substitutes for each other. PMID:22048544

  3. The evaluation of anti-ulcerogenic effect of rhizome starch of two source plants of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.) on pyloric ligated rats

    PubMed Central

    Rajashekhara, N.; Ashok, B. K.; Sharma, Parmeshwar P.; Ravishankar, B.

    2014-01-01

    Background: In the present era, because of the life-style, the disorders such as hyperacidity and gastric ulcers are found very frequently. Satwa (starch) obtained from the rhizomes of two plants namely Curcuma angustifolia Roxb. and Maranta arundinacea Linn. are used in folklore practice for the treatment of above complaints under the name Tugaksheeree. Aim: To compare the anti-ulcerogenic activity of the above two drugs in pyloric ligation induced gastric ulcer in albino rats. Materials and Methods: A total of 18 Wistar strain albino rats of both sexes grouped into three groups. Group C served as pyloric ligated control group, Group I received starch of C. angustifolia suspension and Group II received starch of M. arundinacea for seven days. On 8th day pylorus was ligated. After ligation the animals were deprived of food and water and sacrificed at the end of 14 h. The collected gastric contents were used for biochemical estimation and ulcer index was calculated from excised stomach. Results: Both the test drugs showed statistically significant decrease in the volume, increase in the pH, reduced the free acidity of gastric juice and decreased the peptic activity. The starch of C. angustifolia reduced a total acidity non-significantly while M. arundinacea reduced it significantly. Among the two drugs the M. arundinacea has effectively reduced the peptic activity, which is statistically significant. M. arundinacea shown statistically significant increase of total carbohydrates. Conclusion: Both the test drugs proved anti-ulcer activity and prevents the chance of gastric ulcer. Among these two M. arundinacea is more effective. PMID:25558167

  4. Bioinformatics of cardiovascular miRNA biology.

    PubMed

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'.

  5. Redox Regulation of an AP-1-Like Transcription Factor, YapA, in the Fungal Symbiont Epichloë festucae

    PubMed Central

    Cartwright, Gemma M.

    2013-01-01

    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA. PMID:23893078

  6. Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae.

    PubMed

    Cartwright, Gemma M; Scott, Barry

    2013-10-01

    One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA. PMID:23893078

  7. Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis.

    PubMed Central

    King, J; Armstead, I P; Donnison, I S; Thomas, H M; Jones, R N; Kearsey, M J; Roberts, L A; Thomas, A; Morgan, W G; King, I P

    2002-01-01

    A single chromosome of the grass species Festuca pratensis has been introgressed into Lolium perenne to produce a diploid monosomic substitution line 2n = 2x = 14. In this line recombination occurs throughout the length of the F. pratensis/L. perenne bivalent. The F. pratensis chromosome and recombinants between it and its L. perenne homeologue can be visualized using genomic in situ hybridization (GISH). GISH junctions represent the physical locations of sites of recombination, enabling a range of recombinant chromosomes to be used for physical mapping of the introgressed F. pratensis chromosome. The physical map, in conjunction with a genetic map composed of 104 F. pratensis-specific amplified fragment length polymorphisms (AFLPs), demonstrated: (1) the first large-scale analysis of the physical distribution of AFLPs; (2) variation in the relationship between genetic and physical distance from one part of the F. pratensis chromosome to another (e.g., variation was observed between and within chromosome arms); (3) that nucleolar organizer regions (NORs) and centromeres greatly reduce recombination; (4) that coding sequences are present close to the centromere and NORs in areas of low recombination in plant species with large genomes; and (5) apparent complete synteny between the F. pratensis chromosome and rice chromosome 1. PMID:12019245

  8. Differential expression of alpha- and beta-expansin genes in the elongating leaf of Festuca pratensis.

    PubMed

    Reidy, B; McQueen-Mason, S; Nösberger, J; Fleming, A

    2001-07-01

    Grasses contain a number of genes encoding both alpha- and beta-expansins. These cell wall proteins are predicted to play a role in cell wall modifications, particularly during tissue elongation. We report here on the characterisation of five alpha- and three vegetative beta-expansins expressed in the leaf elongation zone (LEZ) of the forage grass, Festuca pratensis Huds. The expression of the predominant alpha-expansin (FpExp2) was localised to the vascular tissue, as was the beta-expansin FpExpB3. Expression of another beta-expansin (FpExpB2) was not localised to vascular tissue but was highly expressed in roots and initiating tillers. This is the first description of vegetative beta-expansin gene expression at the organ and tissue level and also the first evidence of differential expression between members of this gene family. In addition, an analysis of both alpha- and beta-expansin expression along the LEZ revealed no correlation with growth rate distribution, whereas we were able to identify a novel xyloglucan endotransglycosylase (FpXET1) whose expression profile closely mimicked leaf growth rate. These data suggest that alpha- and beta-expansin activities in the grass leaf are associated with tissue differentiation, that expansins involved in leaf growth may represent more minor components of the spectrum of expansin genes expressed in this tissue, and that XETs may be useful markers for the analysis of grass leaf growth.

  9. Evaluation of acute toxicity and anti-ulcerogenic study of rhizome starch of two source plants of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.)

    PubMed Central

    Rajashekhara, N.; Ashok, B.K.; Sharma, Parmeshwar P.; Ravishankar, B.

    2014-01-01

    Background: Disorders like hyperacidity and gastric ulcers are found very frequently now days because of a faulty lifestyle. Starches (Satwa) obtained from the rhizomes of two plants namely, Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used in folklore practice, as Tugaksheeree, for the treatment of the above-mentioned complaints. Aim: To assess the acute toxicity potential of the C. angustifolia and M. arundinacea along with their assessment for adaptogenic activity, by noting their effect on forced swimming-induced hypothermia and gastric ulceration in rats. Materials and Methods: For acute toxicity study, the effect of test drugs C. angustifolia and M. arundinacea rhizome starch were studied after a single administration of up to three dose levels, with 4400 mg/kg as the maximum dose. The animals were observed for 72 hours periodically and mortality was recorded up to seven days. The adaptogenic and anti-ulcer activities were assessed by determining and comparing the changes in rectal temperature, ponderal changes, ulcer index and histopathological parameters in the test drug group with that of stress control group. Results: Both the drugs did not produce any toxic symptoms or mortality even up to the maximum dose level of 4400 mg/kg. Both the test drugs significantly reversed the stress-induced gastric ulceration in comparison to stress-control rats. Starch from rhizome of C. angustifolia reversed forced swimming-induced hypothermia apparently, but not to a significant extent. However, the reversal of hypothermia found statistically significant in the rhizome starch of the M. arundinacea treated group. Conclusion: M. arundinacea had better anti-stress activity in comparision to C. angustifolia. PMID:26195908

  10. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  11. MiRNAs in bone diseases.

    PubMed

    Moore, Benjamin T; Xiao, Peng

    2013-01-01

    MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.

  12. miRNA Digger: a comprehensive pipeline for genome-wide novel miRNA mining.

    PubMed

    Yu, Lan; Shao, Chaogang; Ye, Xinghuo; Meng, Yijun; Zhou, Yincong; Chen, Ming

    2016-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression. The recent advances in high-throughput sequencing (HTS) technique have greatly facilitated large-scale detection of the miRNAs. However, thoroughly discovery of novel miRNAs from the available HTS data sets remains a major challenge. In this study, we observed that Dicer-mediated cleavage sites for the processing of the miRNA precursors could be mapped by using degradome sequencing data in both animals and plants. In this regard, a novel tool, miRNA Digger, was developed for systematical discovery of miRNA candidates through genome-wide screening of cleavage signals based on degradome sequencing data. To test its sensitivity and reliability, miRNA Digger was applied to discover miRNAs from four organs of Arabidopsis. The results revealed that a majority of already known mature miRNAs along with their miRNA*s expressed in these four organs were successfully recovered. Notably, a total of 30 novel miRNA-miRNA* pairs that have not been registered in miRBase were discovered by miRNA Digger. After target prediction and degradome sequencing data-based validation, eleven miRNA-target interactions involving six of the novel miRNAs were identified. Taken together, miRNA Digger could be applied for sensitive detection of novel miRNAs and it could be freely downloaded from http://www.bioinfolab.cn/miRNA_Digger/index.html. PMID:26732371

  13. Evidence for Positive Selection within the PgiC1 Locus in the Grass Festuca ovina.

    PubMed

    Li, Yuan; Canbäck, Björn; Johansson, Tomas; Tunlid, Anders; Prentice, Honor C

    2015-01-01

    The dimeric metabolic enzyme phosphoglucose isomerase (PGI, EC 5.3.1.9) plays an essential role in energy production. In the grass Festuca ovina, field surveys of enzyme variation suggest that genetic variation at cytosolic PGI (PGIC) may be adaptively important. In the present study, we investigated the molecular basis of the potential adaptive significance of PGIC in F. ovina by analyzing cDNA sequence variation within the PgiC1 gene. Two, complementary, types of selection test both identified PGIC1 codon (amino acid) sites 200 and 173 as candidate targets of positive selection. Both candidate sites involve charge-changing amino acid polymorphisms. On the homology-modeled F. ovina PGIC1 3-D protein structure, the two candidate sites are located on the edge of either the inter-monomer boundary or the inter-domain cleft; examination of the homology-modeled PGIC1 structure suggests that the amino acid changes at the two candidate sites are likely to influence the inter-monomer interaction or the domain-domain packing. Biochemical studies in humans have shown that mutations at several amino acid sites that are located close to the candidate sites in F. ovina, at the inter-monomer boundary or the inter-domain cleft, can significantly change the stability and/or kinetic properties of the PGI enzyme. Molecular evolutionary studies in a wide range of other organisms suggest that PGI amino acid sites with similar locations to those of the candidate sites in F. ovina may be the targets of positive/balancing selection. Candidate sites 200 and 173 are the only sites that appear to discriminate between the two most common PGIC enzyme electromorphs in F. ovina: earlier studies suggest that these electromorphs are implicated in local adaptation to different grassland microhabitats. Our results suggest that PGIC1 sites 200 and 173 are under positive selection in F. ovina.

  14. Endophyte-mediated resistance to herbivores depends on herbivore identity in the wild grass Festuca subverticillata.

    PubMed

    Afkhami, Michelle E; Rudgers, Jennifer A

    2009-08-01

    Understanding factors that affect the context dependency of species interactions has been identified as a critical research area in ecology. The presence of symbionts in host plants can be an important factor influencing the outcome of plant-insect interactions. Similarly, herbivore identity can alter the outcome of plant-symbiont interactions. Symbiotic foliar fungal endophytes confer resistance to herbivores in economically important agronomic grasses, in part through the production of alkaloids. Although endophytes are common in nature, relatively little is known about their effects on herbivores of native, wild grass species, and a recent meta-analysis suggested that endophytes are only beneficial in agronomic settings. In this study, we performed choice trials for five insect species and a greenhouse experiment with one species to assess effects of the fungal endophyte Neotyphodium sp. on herbivores of the wild grass Festuca subverticillata. In feeding trials, endophyte presence altered the preference of all five insect species tested. However, the magnitude and direction of preference varied among species, with Pterophylla camellifolia (F.), Spodoptera frugiperda (J. E. Smith), and Rhopalosiphum padi L. preferring endophyte-disinfected plants and Encoptolophus costalis (Scudder) and Romalea guttata (Houttuyn) preferring endophyte-symbiotic plants. Despite reducing insect preference, the endophyte had no significant effect on S. frugiperda performance in a no-choice greenhouse experiment and did not increase plant growth in response to this herbivore. Our results show that endophyte-mediated resistance to herbivory depends strongly on herbivore identity and suggest that the fitness consequences of endophyte symbiosis for host plants will be context dependent on the local composition of insect herbivores. PMID:19689887

  15. Prediction of miRNA targets.

    PubMed

    Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis

    2015-01-01

    Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction. PMID:25577381

  16. Telomere Length, TERT, and miRNA Expression

    PubMed Central

    Slattery, Martha L.; Herrick, Jennifer S.; Pellatt, Andrew J.; Wolff, Roger K.; Mullany, Lila E.

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  17. Telomere Length, TERT, and miRNA Expression.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Pellatt, Andrew J; Wolff, Roger K; Mullany, Lila E

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  18. Transcriptional regulation of mammalian miRNA genes

    PubMed Central

    Schanen, Brian C.; Li, Xiaoman

    2010-01-01

    MicroRNAs (miRNAs) are members of a growing family of non-coding transcripts, 21-23 nucleotides long, which regulate a diverse collection of biological processes and various diseases by RNA-mediated gene-silencing mechanisms. While currently many studies focus on defining the regulatory functions of miRNAs, few are directed towards how miRNA genes are themselves transcriptionally regulated. Recent studies of miRNA transcription have elucidated RNA polymerase II as the major polymerase of miRNAs, however, little is known of the structural features of miRNA promoters, especially those of mammalian miRNAs. Here, we review the current literature regarding features conserved among miRNA promoters useful for their detection and the current novel methodologies available to enable researchers to advance our understanding of the transcriptional regulation of miRNA genes. PMID:20977933

  19. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities.

    PubMed

    Schooler, S S; McEvoy, P B; Hammond, P; Coombs, E M

    2009-06-01

    Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species.

  20. Assessment of Grazing Effect on Sheep Fescue (Festuca valesiaca)Dominated Steppe Rangelands in the semi-arid Central Anatolian Region of Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of increased grazing pressure over the last fifty years, vegetation of the steppe rangelands in the semi-arid Central Anatolian Region of Turkey has been severely degraded. In these pastures, Festuca valesiaca (a sod forming short-grass) and Thymus sipyleus ssp rosulans (a prostrate shrub) a...

  1. Development of fine-leaved Festuca grass populations identified genetic resources having potential for improved forage production and wildfire control in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought and heat tolerant fine-leaved fescue (Festuca ssp.) grasses have potential as components in rangeland greenstrips for wildfire control in semi-arid climates. However, such fine-leaved grasses have been difficult to identify because of specific adaptations, lack of late maturity, and often p...

  2. Phenotypic and genotypic analysis of a U.S. native fine-leaved Festuca population portends its potential use for low-input urban landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continued reduction in limited natural resources worldwide increasingly necessitates the incorporation of low maintenance and input plant materials into urban landscapes. Although some fine-leaved Festuca grass species have been utilized in formal gardens and native urban landscapes because of thei...

  3. miRNAs in Bone Development

    PubMed Central

    Papaioannou, Garyfallia

    2015-01-01

    Skeletal development is a multistage process during which mesenchymal progenitor cells undergo proliferation and differentiation and subsequently give rise to bone and cartilage forming cells. Each step is regulated by various transcription factors and signaling molecules. microRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. Several in vivo and in vitro studies have shown that miRNAs play significant roles in skeletal development. Identifying their functions may give insights into the treatment of developmental disorders of the skeleton. This review summarizes miRNAs that have been shown to participate in various stages of skeletal development by targeting crucial factors. PMID:27019617

  4. Dissection of miRNA pathways using arabidopsis mesophyll protoplasts.

    PubMed

    Martinho, Cláudia; Confraria, Ana; Elias, Carlos Alexandre; Crozet, Pierre; Rubio-Somoza, Ignacio; Weigel, Detlef; Baena-González, Elena

    2015-02-01

    MicroRNAs (miRNAs) control gene expression mostly post-transcriptionally by guiding transcript cleavage and/or translational repression of complementary mRNA targets, thereby regulating developmental processes and stress responses. Despite the remarkable expansion of the field, the mechanisms underlying miRNA activity are not fully understood. In this article, we describe a transient expression system in Arabidopsis mesophyll protoplasts, which is highly amenable for the dissection of miRNA pathways. We show that by transiently overexpressing primary miRNAs and target mimics, we can manipulate miRNA levels and consequently impact on their targets. Furthermore, we developed a set of luciferase-based sensors for quantifying miRNA activity that respond specifically to both endogenous and overexpressed miRNAs and target mimics. We demonstrate that these miRNA sensors can be used to test the impact of putative components of the miRNA pathway on miRNA activity, as well as the impact of specific mutations, by either overexpression or the use of protoplasts from the corresponding mutants. We further show that our miRNA sensors can be used for investigating the effect of chemicals on miRNA activity. Our cell-based transient expression system is fast and easy to set up, and generates quantitative results, being a powerful tool for assaying miRNA activity in vivo.

  5. Identification of a gene involved in the regulation of hyphal growth of Epichloë festucae during symbiosis.

    PubMed

    Bassett, Shalome A; Johnson, Richard D; Simpson, Wayne R; Laugraud, Aurelie; Jordan, T William; Bryan, Gregory T

    2016-10-01

    Secreted proteins, those involved in cell wall biogenesis, are likely to play a role in communication in the symbiotic interaction between the fungal endophyte Epichloë festucae with perennial ryegrass (Lolium perenne), particularly given the close association between fungal hyphae and the plant cell wall. Our hypothesis was that secreted proteins are likely to be responsible for establishing and maintaining a normal symbiotic relationship. We analyzed an endophyte EST database for genes with predicted signal peptide sequences. Here, we report the identification and characterization of rhgA; a gene involved in the regulation of hyphal growth in planta In planta analysis of ΔrhgA mutants showed that disruption of rhgA resulted in extensive unregulated hyphal growth. This phenotype was fully complemented by insertion of the rhgA gene and suggests that rhgA is important for maintaining normal hyphal growth during symbiosis. PMID:27624305

  6. RNA Binding Proteins in the miRNA Pathway

    PubMed Central

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2015-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  7. RNA Binding Proteins in the miRNA Pathway.

    PubMed

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2016-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  8. Discovery of miRNAs and Their Corresponding miRNA Genes in Atlantic Cod (Gadus morhua): Use of Stable miRNAs as Reference Genes Reveals Subgroups of miRNAs That Are Highly Expressed in Particular Organs

    PubMed Central

    Andreassen, Rune; Rangnes, Fredrik; Sivertsen, Maria; Chiang, Michelle; Tran, Michelle; Worren, Merete Molton

    2016-01-01

    Background Atlantic cod (Gadus morhua) is among the economically most important species in the northern Atlantic Ocean and a model species for studying development of the immune system in vertebrates. MicroRNAs (miRNAs) are an abundant class of small RNA molecules that regulate fundamental biological processes at the post-transcriptional level. Detailed knowledge about a species miRNA repertoire is necessary to study how the miRNA transcriptome modulate gene expression. We have therefore discovered and characterized mature miRNAs and their corresponding miRNA genes in Atlantic cod. We have also performed a validation study to identify suitable reference genes for RT-qPCR analysis of miRNA expression in Atlantic cod. Finally, we utilized the newly characterized miRNA repertoire and the dedicated RT-qPCR method to reveal miRNAs that are highly expressed in certain organs. Results The discovery analysis revealed 490 mature miRNAs (401 unique sequences) along with precursor sequences and genomic location of the miRNA genes. Twenty six of these were novel miRNA genes. Validation studies ranked gmo-miR-17-1—5p or the two-gene combination gmo-miR25-3p and gmo-miR210-5p as most suitable qPCR reference genes. Analysis by RT-qPCR revealed 45 miRNAs with significantly higher expression in tissues from one or a few organs. Comparisons to other vertebrates indicate that some of these miRNAs may regulate processes like growth, lipid metabolism, immune response to microbial infections and scar damage repair. Three teleost-specific and three novel Atlantic cod miRNAs were among the differentially expressed miRNAs. Conclusions The number of known mature miRNAs was considerably increased by our identification of miRNAs and miRNA genes in Atlantic cod. This will benefit further functional studies of miRNA expression using deep sequencing methods. The validation study showed that stable miRNAs are suitable reference genes for RT-qPCR analysis of miRNA expression. Applying RT-qPCR we

  9. Viral miRNAs and immune evasion.

    PubMed

    Boss, Isaac W; Renne, Rolf

    2011-01-01

    Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.

  10. Breeding bird territory placement in riparian wet meadows in relation to invasive reed canary grass, Phalaris arundinacea

    USGS Publications Warehouse

    Kirsch, E.M.; Gray, B.R.; Fox, T.J.; Thogmartin, W.E.

    2007-01-01

    Invasive plants are a growing concern worldwide for conservation of native habitats. In endangered wet meadow habitat in the Upper Midwestern United States, reed canary grass (Phalaris arundinacea) is a recognized problem and its prevalence is more widespread than the better-known invasive wetland plant purple loosestrife (Lythrum salicaria). Although resource managers are concerned about the effect of reed canary grass on birds, this is the first study to report how common wet meadow birds use habitat in relation to reed canary grass cover and dominance. We examined three response variables: territory placement, size of territories, and numbers of territories per plot in relation to cover of reed canary grass. Territory locations for Sedge Wren (Cistothorus platensis) and Song Sparrow (Melospiza melodia) were positively associated with reed canary grass cover, while those for Common Yellowthroat (Geothlypis trichas) were not. Only Swamp Sparrow (M. georgiana) territory locations were negatively associated with reed canary grass cover and dominance (which indicated a tendency to place territories where there was no reed canary grass or where many plant species occurred with reed canary grass). Swamp Sparrow territories were positively associated with vegetation height density and litter depth. Common Yellowthroat territories were positively associated with vegetation height density and shrub cover. Song Sparrow territories were negatively associated with litter depth. Reed canary grass cover within territories was not associated with territory size for any of these four bird species. Territory density per plot was not associated with average reed canary grass cover of plots for all four species. Sedge Wrens and Song Sparrows may not respond negatively to reed canary grass because this grass is native to wet meadows of North America, and in the study area it merely replaces other tall lush plants. Avoidance of reed canary grass by Swamp Sparrows may be mediated

  11. Impact of Host Genes and Strand Selection on miRNA and miRNA* Expression

    PubMed Central

    Biasiolo, Marta; Sales, Gabriele; Lionetti, Marta; Agnelli, Luca; Todoerti, Katia; Bisognin, Andrea; Coppe, Alessandro; Romualdi, Chiara; Neri, Antonino; Bortoluzzi, Stefania

    2011-01-01

    Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic, multifactorial disorders and in human cancers. We exploited sequence, genomic and expression information to investigate two main aspects of post-transcriptional regulation in miRNA biogenesis, namely strand selection regulation and expression relationships between intragenic miRNAs and host genes. We considered miRNAs expression profiles, measured in five sizeable microarray datasets, including samples from different normal cell types and tissues, as well as different tumours and disease states. First, the study of expression profiles of “sister” miRNA pairs (miRNA/miRNA*, 5′ and 3′ strands of the same hairpin precursor) showed that the strand selection is highly regulated since it shows tissue-/cell-/condition-specific modulation. We used information about the direction and the strength of the strand selection bias to perform an unsupervised cluster analysis for the sample classification evidencing that is able to distinguish among different tissues, and sometimes between normal and malignant cells. Then, considering a minimum expression threshold, in few miRNA pairs only one mature miRNA is always present in all considered cell types, whereas the majority of pairs were concurrently expressed in some cell types and alternatively in others. In a significant fraction of concurrently expressed pairs, the major and the minor forms found at comparable levels may contribute to post-transcriptional gene silencing, possibly in a coordinate way. In the second part of the study, the behaved tendency to co-expression of intragenic miRNAs and their “host” mRNA genes was confuted by expression profiles examination, suggesting that the expression profile of a given host gene can hardly be a good estimator of co-transcribed miRNA(s) for post-transcriptional regulatory networks inference. Our results point out the regulatory importance of post-transcriptional phases of miRNAs

  12. PGC-Enriched miRNAs Control Germ Cell Development

    PubMed Central

    Bhin, Jinhyuk; Jeong, Hoe-Su; Kim, Jong Soo; Shin, Jeong Oh; Hong, Ki Sung; Jung, Han-Sung; Kim, Changhoon; Hwang, Daehee; Kim, Kye-Seong

    2015-01-01

    Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development. PMID:26442865

  13. Do miRNAs have a deep evolutionary history?

    PubMed

    Tarver, James E; Donoghue, Philip C J; Peterson, Kevin J

    2012-10-01

    The recent discovery of microRNAs (miRNAs) in unicellular eukaryotes, including miRNAs known previously only from animals or plants, implies that miRNAs have a deep evolutionary history among eukaryotes. This contrasts with the prevailing view that miRNAs evolved convergently in animals and plants. We re-evaluate the evidence and find that none of the 73 plant and animal miRNAs described from protists meet the required criteria for miRNA annotation and, by implication, animals and plants did not acquire any of their respective miRNA genes from the crown ancestor of eukaryotes. Furthermore, of the 159 novel miRNAs previously identified among the seven species of unicellular protists examined, only 28 from the algae Ectocarpus and Chlamydomonas, meet the criteria for miRNA annotation. Therefore, at present only five groups of eukaryotes are known to possess miRNAs, indicating that miRNAs have evolved independently within eukaryotes through exaptation of their shared inherited RNAi machinery.

  14. Mitochondria: one of the destinations of miRNAs.

    PubMed

    Sripada, Lakshmi; Tomar, Dhanendra; Singh, Rajesh

    2012-11-01

    The cellular processes are controlled by a narrow range of mRNA and proteins levels, where small RNAs (sRNAs) known as miRNAs play a critical role. The spatial and temporal regulation of miRNA processing components and mature miRNA is emerging. The recent studies suggest that mitochondria are one of the destinations of pre as well as mature miRNAs. The role of mitochondria extends beyond energy metabolism to many other cellular processes like metabolism, cell death and inflammation. The new found destination of miRNAs suggest the role of mitochondria in monitoring site specific regulations of proteins as well as the function of mitochondria. The studies in this direction will decipher the novel role of mitochondria-associated miRNAs in different cellular processes. This review is focussed on the recent studies demonstrating the presence of miRNAs in mitochondria and its possible significance in different cellular and physiological conditions.

  15. Host settling behavior, reproductive performance, and effects on plant growth of an exotic cereal aphid, Metopolophium festucae subsp. cerealium (Hemiptera: Aphididae).

    PubMed

    Davis, T S; Wu, Y; Eigenbrode, S D

    2014-06-01

    The cereal aphid Metopolophium festucae subsp. cerealium (Stroyan) is a recent addition to North America, but little is known about this species in its exotic habitat. We surveyed aphid populations for 3 years (2011-2013) to investigate changes in aphid density in the Pacific Northwest United States. We tested aphid host settling preference and fecundity on eight grass species, four native grasses (bluebunch wheatgrass, blue wild rye, Idaho fescue, and rough fescue) and four cereal crops (corn, wheat, barley, and oat), and evaluated the effects of aphid feeding on plant biomass. Four important findings emerged: 1) aphid prevalence in sweep net samples increased from 2011 to 2012, but remained stable from 2012 to 2013; 2) aphids preferentially settled on wheat and avoided corn, but aphids did not discriminate between barley, oat, and native grasses; 3) aphid fecundity was high on wheat and barley, intermediate on oat and blue wild rye, low on Idaho fescue, rough fescue, and bluebunch wheatgrass, and aphids did not reproduce at all on corn; and 4) barley, corn, oats, Idaho fescue, and blue wild rye were not susceptible to aphid feeding damage, but wheat, rough fescue, and bluebunch wheatgrass were susceptible to aphid feeding damage. Our results suggest that wheat and barley are preferred by M. festucae cerealium, and that aphids reproduce most rapidly on these hosts and cause significant reductions in wheat but not barley growth. Also, M. festucae cerealium appears capable of surviving on native grasses, although only bluebunch wheatgrass and rough fescue were susceptible to aphid feeding damage.

  16. miRNA Isolation from FFPET Specimen: A Technical Comparison of miRNA and Total RNA Isolation Methods.

    PubMed

    Nagy, Zsófia Brigitta; Wichmann, Barnabás; Kalmár, Alexandra; Barták, Barbara Kinga; Tulassay, Zsolt; Molnár, Béla

    2016-07-01

    MiRNA remain stable for detection and PCR-based amplification in FFPE tissue samples. Several miRNA extraction kits are available, however miRNA fraction, as part of total RNA can be isolated using total RNA purification methods, as well. Our primary aim was to compare four different miRNA and total RNA isolation methods from FFPE tissues. Further purposes were to evaluate quantitatively and qualitatively the yield of the isolated miRNA. MiRNAs were isolated from normal colorectal cancer FFPE specimens from the same patients. Two miRNA isolation kits (High Pure miRNA Isolation Kit, miRCURY™ RNA Isolation Kit) and two total RNA isolation kits were compared (High Pure RNA Paraffin Kit, MagNA Pure 96 Cellular RNA LV Kit). Quantity and quality were determined, expression analysis was performed by real-time PCR using qPCR Human Panel I + II (Exiqon) method detecting 742 human miRNAs in parallel. The yield of total RNA was found to be higher than miRNA purification protocols (in CRC: Ex: 0203 ± 0021 μg; HPm: 1,45 ± 0,8 μg; HPp: 21,36 ± 4,98 μg; MP: 8,6 ± 5,1 μg). MiRNAs were detected in lower relative quantity of total RNA compared to the miRNA kits. Higher number of miRNAs could be detected by the miRNA isolation kits in comparison to the total RNA isolation methods. (Ex: 497 ± 16; HPm: 542 ± 11; HPp: 332 ± 36; MP: 295 ± 74). Colon specific miRNAs (miR-21-5p;-34-5p) give satisfying results by miRNA isolation kits. Although miRNA can be detected also after total RNA isolation methods, for reliable and reproducible miRNA expression profiling the use of miRNA isolation kits are more suitable.

  17. Semirna: searching for plant miRNAs using target sequences.

    PubMed

    Muñoz-Mérida, Antonio; Perkins, James R; Viguera, Enrique; Thode, Guillermo; Bejarano, Eduardo R; Pérez-Pulido, Antonio J

    2012-04-01

    Many plant genomes are already known, and new ones are being sequenced every year. The next step for researchers is to identify all of the functional elements in these genomes, including the important class of functional elements known as microRNAs (miRNAs), which are involved in posttranscriptional regulatory pathways. However, computational tools for predicting new plant miRNAs are limited, and there is a particular need for tools that can be used easily by laboratory researchers. We present semirna, a new tool for predicting miRNAs in plant genomes, available as a Web server. This tool takes a putative target sequence such as a messenger RNA (mRNA) as input, and allows users to search for miRNAs that target this sequence. It can also be used to determine whether small RNA sequences from massive sequencing analysis represent true miRNAs and to search for miRNAs in new genomes using homology. Semirna has shown a high level of accuracy using various test sets, and gives users the ability to search for miRNAs with several different adjustable parameters. Semirna, a user-friendly and intuitive Web server for predicting miRNA sequences, can be reached at http://www.bioinfocabd.upo.es/semirna/ . It is useful for researchers searching for miRNAs involved in particular pathways, as well as those searching for miRNAs in newly sequenced genomes.

  18. Semirna: searching for plant miRNAs using target sequences.

    PubMed

    Muñoz-Mérida, Antonio; Perkins, James R; Viguera, Enrique; Thode, Guillermo; Bejarano, Eduardo R; Pérez-Pulido, Antonio J

    2012-04-01

    Many plant genomes are already known, and new ones are being sequenced every year. The next step for researchers is to identify all of the functional elements in these genomes, including the important class of functional elements known as microRNAs (miRNAs), which are involved in posttranscriptional regulatory pathways. However, computational tools for predicting new plant miRNAs are limited, and there is a particular need for tools that can be used easily by laboratory researchers. We present semirna, a new tool for predicting miRNAs in plant genomes, available as a Web server. This tool takes a putative target sequence such as a messenger RNA (mRNA) as input, and allows users to search for miRNAs that target this sequence. It can also be used to determine whether small RNA sequences from massive sequencing analysis represent true miRNAs and to search for miRNAs in new genomes using homology. Semirna has shown a high level of accuracy using various test sets, and gives users the ability to search for miRNAs with several different adjustable parameters. Semirna, a user-friendly and intuitive Web server for predicting miRNA sequences, can be reached at http://www.bioinfocabd.upo.es/semirna/ . It is useful for researchers searching for miRNAs involved in particular pathways, as well as those searching for miRNAs in newly sequenced genomes. PMID:22433074

  19. Formulation of New Algorithmics for miRNAs

    PubMed Central

    Fujii, Yoichi Robertus

    2008-01-01

    microRNAs (miRNAs) are a class of small RNAs, 21-25 nucleotides (nts) long with single-stranded RNA. miRNA targets the sequences of messenger RNA (mRNA) through incomplete base-pairing of the target sequence. The incomplete pairing of miRNA to mRNA triggers either translational repression or epigenetically mediated transcriptional gene silencing (TGS). miRNA and RNA silencing in mammalian cells may participate in natural ecological interactions and miRNA itself should contain the original information that is required to control viral proliferation, according to the hypothesis of RNA waves. While the hypothesis involves so-called resident and genomic miRNA as the genetic information, resident miRNAs may evolve and jump into other RNAs, and then become genomic miRNAs. Thus, the inheritable character may be acquired by both types of miRNAs. It is reasonable to believe that preparations of new algorithmics models for the flow of miRNAs may provide an opportunity to overcome the acquired immunodeficiency syndrome (AIDS) pandemic. PMID:19440463

  20. Staged miRNA re-regulation patterns during reprogramming

    PubMed Central

    2013-01-01

    Background MiRNAs often operate in feedback loops with transcription factors and represent a key mechanism for fine-tuning gene expression. In transcription factor-induced reprogramming, miRNAs play a critical role; however, detailed analyses of miRNA expression changes during reprogramming at the level of deep sequencing have not been previously reported. Results We use four factor reprogramming to induce pluripotent stem cells from mouse fibroblasts and isolate FACS-sorted Thy1- and SSEA1+ intermediates and Oct4-GFP+ induced pluripotent stem cells (iPSCs). Small RNAs from these cells, and two partial-iPSC lines, another iPSC line, and mouse embryonic stem cells (mES cells) were deep sequenced. A comprehensive resetting of the miRNA profile occurs during reprogramming; however, analysis of miRNA co-expression patterns yields only a few patterns of change. Dlk1-Dio3 region miRNAs dominate the large pool of miRNAs experiencing small but significant fold changes early in reprogramming. Overexpression of Dlk1-Dio3 miRNAs early in reprogramming reduces reprogramming efficiency, suggesting the observed downregulation of these miRNAs may contribute to reprogramming. As reprogramming progresses, fewer miRNAs show changes in expression, but those changes are generally of greater magnitude. Conclusions The broad resetting of the miRNA profile during reprogramming that we observe is due to small changes in gene expression in many miRNAs early in the process, and large changes in only a few miRNAs late in reprogramming. This corresponds with a previously observed transition from a stochastic to a more deterministic signal. PMID:24380417

  1. PlantMirnaT: miRNA and mRNA integrated analysis fully utilizing characteristics of plant sequencing data.

    PubMed

    Rhee, S; Chae, H; Kim, S

    2015-07-15

    miRNA is known to regulate up to several hundreds coding genes, thus the integrated analysis of miRNA and mRNA expression data is an important problem. Unfortunately, the integrated analysis is challenging since it needs to consider expression data of two different types, miRNA and mRNA, and target relationship between miRNA and mRNA is not clear, especially when microarray data is used. Fortunately, due to the low sequencing cost, small RNA and RNA sequencing are routinely processed and we may be able to infer regulation relationships between miRNAs and mRNAs more accurately by using sequencing data. However, no method is developed specifically for sequencing data. Thus we developed PlantMirnaT, a new miRNA-mRNA integrated analysis system. To fully leverage the power of sequencing data, three major features are developed and implemented in PlantMirnaT. First, we implemented a plant-specific short read mapping tool based on recent discoveries on miRNA target relationship in plant. Second, we designed and implemented an algorithm considering miRNA targets in the full intragenic region, not just 3' UTR. Lastly but most importantly, our algorithm is designed to consider quantity of miRNA expression and its distribution on target mRNAs. The new algorithm was used to characterize rice under drought condition using our proprietary data. Our algorithm successfully discovered that two miRNAs, miRNA1425-5p, miRNA 398b, that are involved in suppression of glucose pathway in a naturally drought resistant rice, Vandana. The system can be downloaded at https://sites.google.com/site/biohealthinformaticslab/resources. PMID:25863133

  2. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils.

    PubMed

    Malagoli, Mario; Rossignolo, Virginia; Salvalaggio, Nico; Schiavon, Michela

    2014-03-01

    The extensive use of copper-bearing fungicides in vineyards is responsible for the accumulation of copper (Cu) in soils. Grass species able to accumulate Cu could be cultivated in the vineyard inter-rows for copper phytoextraction. In this study, the capacity of Festuca rubra cv Merlin and Sinapis alba to tolerate and accumulate copper (Cu) was first investigated in a hydroponic system without the interference of soil chemical-physical properties. After the amendment of Cu (5 or 10 mg Cu l-(1)) to nutrient solution, shoot Cu concentration in F. rubra increased up to 108.63 mg Cu kg(-1) DW, more than three times higher than in S. alba (31.56 mg Cu kg(-1) DW). The relationship between Cu concentration in plants and external Cu was dose-dependent and species specific. Results obtained from the hydroponic experiment were confirmed by growing plants in pots containing soil collected from six Italian vineyards. The content of soil organic matter was crucial to enhance Cu tolerance and accumulation in the shoot tissues of both plant species. Although S. alba produced more biomass than F. rubra in most soils, F. rubra accumulated significantly more Cu (up to threefold to fourfold) in the shoots. Given these results, we recommended that F. rubra cv Merlin could be cultivated in the vineyard rows to reduce excess Cu in vineyard soils. PMID:24234763

  3. An Extracellular Siderophore Is Required to Maintain the Mutualistic Interaction of Epichloë festucae with Lolium perenne

    PubMed Central

    Johnson, Linda J.; Koulman, Albert; Christensen, Michael; Lane, Geoffrey A.; Fraser, Karl; Forester, Natasha; Johnson, Richard D.; Bryan, Gregory T.; Rasmussen, Susanne

    2013-01-01

    We have identified from the mutualistic grass endophyte Epichloë festucae a non-ribosomal peptide synthetase gene (sidN) encoding a siderophore synthetase. The enzymatic product of SidN is shown to be a novel extracellular siderophore designated as epichloënin A, related to ferrirubin from the ferrichrome family. Targeted gene disruption of sidN eliminated biosynthesis of epichloënin A in vitro and in planta. During iron-depleted axenic growth, ΔsidN mutants accumulated the pathway intermediate N5-trans-anhydromevalonyl-N5-hydroxyornithine (trans-AMHO), displayed sensitivity to oxidative stress and showed deficiencies in both polarized hyphal growth and sporulation. Infection of Lolium perenne (perennial ryegrass) with ΔsidN mutants resulted in perturbations of the endophyte-grass symbioses. Deviations from the characteristic tightly regulated synchronous growth of the fungus with its plant partner were observed and infected plants were stunted. Analysis of these plants by light and transmission electron microscopy revealed abnormalities in the distribution and localization of ΔsidN mutant hyphae as well as deformities in hyphal ultrastructure. We hypothesize that lack of epichloënin A alters iron homeostasis of the symbiotum, changing it from mutually beneficial to antagonistic. Iron itself or epichloënin A may serve as an important molecular/cellular signal for controlling fungal growth and hence the symbiotic interaction. PMID:23658520

  4. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils.

    PubMed

    Malagoli, Mario; Rossignolo, Virginia; Salvalaggio, Nico; Schiavon, Michela

    2014-03-01

    The extensive use of copper-bearing fungicides in vineyards is responsible for the accumulation of copper (Cu) in soils. Grass species able to accumulate Cu could be cultivated in the vineyard inter-rows for copper phytoextraction. In this study, the capacity of Festuca rubra cv Merlin and Sinapis alba to tolerate and accumulate copper (Cu) was first investigated in a hydroponic system without the interference of soil chemical-physical properties. After the amendment of Cu (5 or 10 mg Cu l-(1)) to nutrient solution, shoot Cu concentration in F. rubra increased up to 108.63 mg Cu kg(-1) DW, more than three times higher than in S. alba (31.56 mg Cu kg(-1) DW). The relationship between Cu concentration in plants and external Cu was dose-dependent and species specific. Results obtained from the hydroponic experiment were confirmed by growing plants in pots containing soil collected from six Italian vineyards. The content of soil organic matter was crucial to enhance Cu tolerance and accumulation in the shoot tissues of both plant species. Although S. alba produced more biomass than F. rubra in most soils, F. rubra accumulated significantly more Cu (up to threefold to fourfold) in the shoots. Given these results, we recommended that F. rubra cv Merlin could be cultivated in the vineyard rows to reduce excess Cu in vineyard soils.

  5. How meristem plasticity in response to soil nutrients and light affects plant growth in four Festuca grass species.

    PubMed

    Sugiyama, Shu-ichi; Gotoh, Minako

    2010-02-01

    Investigation of responses of meristems to environmental conditions is important for understanding the mechanisms and consequences of plant phenotypic plasticity. Here, we examined how meristem plasticity to light and soil nutrients affected leaf growth and relative growth rate (RGR) in fast- and slow-growing Festuca grass species. Activity in shoot apical meristems was measured by leaf appearance rate, and that in leaf meristems by the duration and rate of cell production, which was further divided into single cell cycle time and the number of dividing cells. Light and soil nutrients affected activity in shoot apical meristems similarly. The high nutrient supply increased the number of dividing cells, which was responsible for enhancement of cell production rate; shaded conditions extended the duration of cell production. As a result, leaf length increased under high nutrient and shaded conditions. The RGR was correlated positively with the total meristem size of the shoot under a low nutrient supply, implying inhibition of RGR by cell production under nutrient-limited conditions. Fast-growing species were more plastic for cell production rate and specific leaf area (SLA) but less plastic for RGR than slow-growing species. This study demonstrates that meristem plasticity plays key roles in characterizing environmental responses of plant species.

  6. miRNA Inhibition in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Beavers, Kelsey R.; Nelson, Christopher E.; Duvall, Craig L.

    2014-01-01

    MicroRNA (miRNA) are noncoding RNA that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has recently motivated expanding efforts toward development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair. PMID:25553957

  7. Genome-wide miRNA seeds prediction in Archaea.

    PubMed

    Wang, Shengqin; Xu, Yuming; Lu, Zuhong

    2014-01-01

    Growing evidence indicates that miRNA genes exist in the archaeal genome, though the functional role of such noncoding RNA remains unclear. Here, we integrated the phylogenetic information of available archaeal genomes to predict miRNA seeds (typically defined as the 2-8 nucleotides of mature miRNAs) on the genomic scale. Finally, we found 2649 candidate seeds with significant conservation signal. Eleven of 29 unique seeds from previous study support our result (P value <0.01), which demonstrates that the pipeline is suitable to predict experimentally detectable miRNA seeds. The statistical significance of the overlap between the detected archaeal seeds and known eukaryotic seeds shows that the miRNA may evolve before the divergence of these two domains of cellular life. In addition, miRNA targets are enriched for genes involved in transcriptional regulation, which is consistent with the situation in eukaryote. Our research will enhance the regulatory network analysis in Archaea.

  8. miRNAs: biological and clinical determinants in epilepsy

    PubMed Central

    Alsharafi, Walid A.; Xiao, Bo; Abuhamed, Mutasem M.; Luo, Zhaohui

    2015-01-01

    Recently, microRNAs (miRNAs) are reported to be crucial modulators in the pathogenesis and potential treatment of epilepsies. To date, several miRNAs have been demonstrated to be significantly expressed in the epileptic tissues and strongly associated with the development of epilepsy. Specifically, miRNAs regulate synaptic strength, inflammation, neuronal and glial function, ion channels, and apoptosis. Furthermore, peripheral blood miRNAs can also be utilized as diagnostic biomarkers to assess disease risk and treatment responses. Here, we will summarize the recent available literature regarding the role of miRNAs in the pathogenesis and treatment of epilepsy. Moreover, we will provide brief insight into the potential of miRNA as diagnostic biomarkers for early diagnosis and prognosis of epilepsy. PMID:26528124

  9. Distribution of miRNA expression across human tissues.

    PubMed

    Ludwig, Nicole; Leidinger, Petra; Becker, Kurt; Backes, Christina; Fehlmann, Tobias; Pallasch, Christian; Rheinheimer, Steffi; Meder, Benjamin; Stähler, Cord; Meese, Eckart; Keller, Andreas

    2016-05-01

    We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10(-8)) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).

  10. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  11. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

  12. miRNA expression atlas in male rat

    PubMed Central

    Minami, Keiichi; Uehara, Takeki; Morikawa, Yuji; Omura, Ko; Kanki, Masayuki; Horinouchi, Akira; Ono, Atsushi; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2014-01-01

    MicroRNAs (miRNAs) are small (~22 nucleotide) noncoding RNAs that play pivotal roles in regulation of gene expression. The value of miRNAs as circulating biomarkers is now broadly recognized; such tissue-specific biomarkers can be used to monitor tissue injury and several pathophysiological conditions in organs. In addition, miRNA profiles of normal organs and tissues are important for obtaining a better understanding of the source of modulated miRNAs in blood and how those modulations reflect various physiological and toxicological conditions. This work was aimed at creating an miRNA atlas in rats, as part of a collaborative effort with the Toxicogenomics Informatics Project in Japan (TGP2). We analyzed genome-wide miRNA profiles of 55 different organs and tissues obtained from normal male rats using miRNA arrays. The work presented herein represents a comprehensive dataset derived from normal samples profiled in a single study. Here we present the whole dataset with miRNA profiles of multiple organs, as well as precise information on experimental procedures and organ-specific miRNAs identified in this dataset. PMID:25977763

  13. Comparative analysis of known miRNAs across platyhelminths.

    PubMed

    Jin, Xiaoliang; Lu, Lixia; Su, Hailong; Lou, Zhongzi; Wang, Fang; Zheng, Yadong; Xu, Guo-Tong

    2013-08-01

    MicroRNAs (miRNAs) are a subtype of small regulatory RNAs that are involved in numerous biological processes through small RNA-induced silencing networks. In an attempt to explore the phylogeny of miRNAs across five platyhelminths, we integrated annotated miRNAs and their full genomes. We identified conserved miRNA clusters and, in particular, miR-71/2 was conserved from planarian to parasitic flatworms and was expanded in free-living Schmidtea mediterranea. Analysis of 22 miRNA loci provided compelling evidence that most known miRNAs are conserved across platyhelminths. Meanwhile, we also observed alterations of known protein-coding genes flanking miRNA(s), such as transcriptional direction conversion and locus relocation, in around ~ 41% of 22 known miRNA loci. Compared with Echinococcus multilocularis, the majority of these events occurred in evolution-distant Hymenolepis microstoma, Schistosoma japonicum or/and S. mediterranea. These results imply rearrangement events occurred near the known miRNA loci.

  14. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development. PMID:25366556

  15. Exploration of miRNA families for hypotheses generation.

    PubMed

    Kamanu, Timothy K K; Radovanovic, Aleksandar; Archer, John A C; Bajic, Vladimir B

    2013-01-01

    Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  16. MiRNA in atopic dermatitis

    PubMed Central

    Rudnicka, Lidia; Samochocki, Zbigniew

    2016-01-01

    MicroRNAs are relatively new molecules that have been widely studied in recent years as to determine their exact function in the human body. It is suggested that microRNAs control approx. 30% of all genes, making them one of the largest groups that control the expression of proteins. Various functions of miRNAs have already been described. In skin diseases, there are more and more studies describing an altered expression of microRNAs in the skin or serum. Relatively little is known about the function of these molecules in atopic dermatitis, which prompted us to gather current reports on this subject. PMID:27512348

  17. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae.

    PubMed

    Smith, Lisa M; Burbano, Hernán A; Wang, Xi; Fitz, Joffrey; Wang, George; Ural-Blimke, Yonca; Weigel, Detlef

    2015-02-01

    MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences. PMID:25557441

  18. Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery

    PubMed Central

    Li, Na; You, Xintian; Chen, Tao; Mackowiak, Sebastian D.; Friedländer, Marc R.; Weigt, Martina; Du, Hang; Gogol-Döring, Andreas; Chang, Zisong; Dieterich, Christoph; Hu, Yuhui; Chen, Wei

    2013-01-01

    MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences. PMID:23396444

  19. Patterns of miRNA expression in Arctic charr development.

    PubMed

    Kapralova, Kalina H; Franzdóttir, Sigrídur Rut; Jónsson, Hákon; Snorrason, Sigurður S; Jónsson, Zophonías O

    2014-01-01

    Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation. PMID:25170615

  20. Patterns of MiRNA Expression in Arctic Charr Development

    PubMed Central

    Kapralova, Kalina H.; Franzdóttir, Sigrídur Rut; Jónsson, Hákon; Snorrason, Sigurður S.; Jónsson, Zophonías O.

    2014-01-01

    Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation. PMID:25170615

  1. Co-expressed miRNAs in gastric adenocarcinoma.

    PubMed

    Yepes, Sally; López, Rocío; Andrade, Rafael E; Rodriguez-Urrego, Paula A; López-Kleine, Liliana; Torres, Maria Mercedes

    2016-08-01

    Co-expression networks may provide insights into the patterns of molecular interactions that underlie cellular processes. To obtain a better understanding of miRNA expression patterns in gastric adenocarcinoma and to provide markers that can be associated with histopathological findings, we performed weighted gene correlation network analysis (WGCNA) and compare it with a supervised analysis. Integrative analysis of target predictions and miRNA expression profiles in gastric cancer samples was also performed. WGCNA identified a module of co-expressed miRNAs that were associated with histological traits and tumor condition. Hub genes were identified based on statistical analysis and network centrality. The miRNAs 100, let-7c, 125b and 99a stood out for their association with the diffuse histological subtype. The 181 miRNA family and miRNA 21 highlighted for their association with the tumoral phenotype. The integrated analysis of miRNA and gene expression profiles showed the let-7 miRNA family playing a central role in the regulatory relationships. PMID:27422560

  2. miRNA control of tissue repair and regeneration.

    PubMed

    Sen, Chandan K; Ghatak, Subhadip

    2015-10-01

    Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.

  3. A Novel Putative miRNA Target Enhancer Signal

    PubMed Central

    Schmidt, Thorsten; Mewes, Hans-Werner; Stümpflen, Volker

    2009-01-01

    It is known that miRNA target sites are very short and the effect of miRNA-target site interaction alone appears as being unspecific. Recent experiments suggest further context signals involved in miRNA target site recognition and regulation. Here, we present a novel GC-rich RNA motif downstream of experimentally supported miRNA target sites in human mRNAs with no similarity to previously reported functional motifs. We demonstrate that the novel motif can be found in at least one third of all transcripts regulated by miRNAs. Furthermore, we show that motif occurrence and the frequency of miRNA target sites as well as the stability of their duplex structures correlate. The finding, that the novel motif is significantly associated with miRNA target sites, suggests a functional role of the motif in miRNA target site biology. Beyond, the novel motif has the impact to improve prediction of miRNA target sites significantly. PMID:19649282

  4. Viral miRNAs: tools for immune evasion.

    PubMed

    Boss, Isaac W; Renne, Rolf

    2010-08-01

    MicroRNAs (miRNAs) are noncoding RNA molecules approximately 22 nucleotides in length that post-transcriptionally regulate gene expression by complementary binding to target mRNAs. MiRNAs have been identified in a diverse range of both metazoan and plant species. Functionally, miRNAs modulate multiple cellular processes including development, hematopoiesis, immunity, and oncogenesis. More recently, DNA viruses were found to encode and express miRNAs during host infection. Although the functions of most viral miRNAs are not well understood, early analysis of target genes pointed to immune modulation suggesting that viral miRNAs are a component of the immune evasion repertoire, which facilitates viral persistence. In addition to directly targeting immune functions, viral encoded miRNAs contribute to immune evasion by targeting proapoptotic genes, and in the case of herpesviruses, by controlling viral latency. Here we summarize the recently discovered targets of viral miRNAs and discuss the complex nature of this novel emerging regulatory mechanism.

  5. Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne

    PubMed Central

    Koulman, Albert; Lee, T. Verne; Fraser, Karl; Johnson, Linda; Arcus, Vickery; Lott, J. Shaun; Rasmussen, Susanne; Lane, Geoffrey

    2012-01-01

    A number of genes encoding non-ribosomal peptide synthetases (NRPSs) have been identified in fungi of Epichloë/Neotyphodium species, endophytes of Pooid grasses, including sidN, putatively encoding a ferrichrome siderophore-synthesizing NRPS. Targeted gene replacement and complementation of sidN in Epichloë festucae has established that extracellular siderophore epichloënin A is the major product of the SidN enzyme complex (Johnson et al., 2007a). We report here high resolution mass spectrometric fragmentation experiments and NMR analysis of an isolated fraction establishing that epichloënin A is a siderophore of the ferrichrome family, comprising a cyclic sequence of four glycines, a glutamine and three Nδ-trans-anhydromevalonyl–Nδ-hydroxyornithine (AMHO) moieties. Epichloënin A is unusual among ferrichrome siderophores in comprising an octapeptide rather than hexapeptide sequence, and in incorporating a glutamine residue. During this investigation we have established that desferrichrome siderophores with pendant trans-AMHO groups can be distinguished from those with pendant cis-AMHO groups by the characteristic neutral loss of an hydroxyornithine moiety in the MS/MS spectrum. A minor component, epichloënin B, has been characterized as the triglycine variant by mass spectrometry. A peptide characterized by mass spectrometry as the putative deoxygenation product, epichloëamide has been detected together with ferriepichloënin A in guttation fluid from ryegrass (Lolium perenne) plants infected with wild-type E. festucae, but not in plants infected with the ΔsidN mutant strain, and also detected at trace levels in wild-type E. festucae fungal culture. PMID:22196939

  6. Host settling behavior, reproductive performance, and effects on plant growth of an exotic cereal aphid, Metopolophium festucae subsp. cerealium (Hemiptera: Aphididae).

    PubMed

    Davis, T S; Wu, Y; Eigenbrode, S D

    2014-06-01

    The cereal aphid Metopolophium festucae subsp. cerealium (Stroyan) is a recent addition to North America, but little is known about this species in its exotic habitat. We surveyed aphid populations for 3 years (2011-2013) to investigate changes in aphid density in the Pacific Northwest United States. We tested aphid host settling preference and fecundity on eight grass species, four native grasses (bluebunch wheatgrass, blue wild rye, Idaho fescue, and rough fescue) and four cereal crops (corn, wheat, barley, and oat), and evaluated the effects of aphid feeding on plant biomass. Four important findings emerged: 1) aphid prevalence in sweep net samples increased from 2011 to 2012, but remained stable from 2012 to 2013; 2) aphids preferentially settled on wheat and avoided corn, but aphids did not discriminate between barley, oat, and native grasses; 3) aphid fecundity was high on wheat and barley, intermediate on oat and blue wild rye, low on Idaho fescue, rough fescue, and bluebunch wheatgrass, and aphids did not reproduce at all on corn; and 4) barley, corn, oats, Idaho fescue, and blue wild rye were not susceptible to aphid feeding damage, but wheat, rough fescue, and bluebunch wheatgrass were susceptible to aphid feeding damage. Our results suggest that wheat and barley are preferred by M. festucae cerealium, and that aphids reproduce most rapidly on these hosts and cause significant reductions in wheat but not barley growth. Also, M. festucae cerealium appears capable of surviving on native grasses, although only bluebunch wheatgrass and rough fescue were susceptible to aphid feeding damage. PMID:24874155

  7. Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae.

    PubMed

    Lukito, Yonathan; Chujo, Tetsuya; Scott, Barry

    2015-12-01

    In order to survive and adapt to the environment, it is imperative for fungi to be able to sense and respond to changes in extracellular pH conditions. In ascomycetes, sensing of extracellular pH is mediated by the Pal pathway resulting in activation of the PacC transcription factor at alkaline pH. The role of PacC in regulating fungal virulence and pathogenicity has been described in several pathogenic fungi but to date not in a symbiotic fungus. Epichloë festucae is a biotrophic fungal endophyte that forms a stable mutualistic interaction with Lolium perenne. In this study, pacC deletion (ΔpacC) and dominant active (pacC(C)) mutants were generated in order to study the cellular roles of PacC in E. festucae. Deletion of pacC resulted in increased sensitivity of the mutant to salt-stress but surprisingly did not affect the ability of the mutant to grow under alkaline pH conditions. Alkaline pH was observed to induce conidiation in wild-type E. festucae but not in the ΔpacC mutant. On the other hand the pacC(C) mutant had increased conidiation at neutral pH alone. Null pacC mutants had no effect on the symbiotic interaction with ryegrass plants whereas the pacC(C) mutant increased the tiller number. Examination of the growth of the pacC(C) mutant in the plant revealed the formation of aberrant convoluted hyphal structures and an increase in hyphal breakage, which are possible reasons for the altered host interaction phenotype.

  8. Modulation of Host miRNAs by Intracellular Bacterial Pathogens

    PubMed Central

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  9. Modulation of Host miRNAs by Intracellular Bacterial Pathogens.

    PubMed

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  10. PEI-complexed LNA antiseeds as miRNA inhibitors

    PubMed Central

    Thomas, Maren; Lange-Grünweller, Kerstin; Dayyoub, Eyas; Bakowsky, Udo; Weirauch, Ulrike; Aigner, Achim; Hartmann, Roland K.; Grünweller, Arnold

    2012-01-01

    Antisense inhibition of oncogenic or other disease-related miRNAs and miRNA families in vivo may provide novel therapeutic strategies. However, this approach relies on the development of potent miRNA inhibitors and their efficient delivery into cells. Here, we introduce short seed-directed LNA oligonucleotides (12- or 14-mer antiseeds) with a phosphodiester backbone (PO) for efficient miRNA inhibition. We have analyzed such LNA (PO) antiseeds using a let-7a-controlled luciferase reporter assay and identified them as active miRNA inhibitors in vitro. Moreover, LNA (PO) 14-mer antiseeds against ongogenic miR-17–5p and miR-20a derepress endogenous p21 expression more persistently than corresponding miRNA hairpin inhibitors, which are often used to inhibit miRNA function. Further analysis of the antiseed-mediated derepression of p21 in luciferase reporter constructs - containing the 3′-UTR of p21 and harboring two binding sites for miRNAs of the miR-106b family - provided evidence that the LNA antiseeds inhibit miRNA families while hairpin inhibitors act in a miRNA-specific manner. The derepression caused by LNA antiseeds is specific, as demonstrated via seed mutagenesis of the miR-106b target sites. Importantly, we show functional delivery of LNA (PO) 14-mer antiseeds into cells upon complexation with polyethylenimine (PEI F25-LMW), which leads to the formation of polymeric nanoparticles. In contrast, attempts to deliver a functional seed-directed tiny LNA 8-mer with a phosphorothioate backbone (PS) by formulation with PEI F25-LMW remained unsuccessful. In conclusion, LNA (PO) 14-mer antiseeds are attractive miRNA inhibitors, and their PEI-based delivery may represent a promising new strategy for therapeutic applications. PMID:22894918

  11. A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants.

    PubMed

    Jain, Vaibhav; Plaisance-Bonstaff, Karlie; Sangani, Rajnikumar; Lanier, Curtis; Dolce, Alexander; Hu, Jianhong; Brulois, Kevin; Haecker, Irina; Turner, Peter; Renne, Rolf; Krueger, Brian

    2016-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 viral microRNAs (miRNAs) that are expressed during latency. Research into KSHV miRNA function has suffered from a lack of genetic systems to study viral miRNA mutations in the context of the viral genome. We used the Escherichia coli Red recombination system together with a new bacmid background, BAC16, to create mutants for all known KSHV miRNAs. The specific miRNA deletions or mutations and the integrity of the bacmids have been strictly quality controlled using PCR, restriction digestion, and sequencing. In addition, stable viral producer cell lines based on iSLK cells have been created for wildtype KSHV, for 12 individual miRNA knock-out mutants (ΔmiR-K12-1 through -12), and for mutants deleted for 10 of 12 (ΔmiR-cluster) or all 12 miRNAs (ΔmiR-all). NGS, in combination with SureSelect technology, was employed to sequence the entire latent genome within all producer cell lines. qPCR assays were used to verify the expression of the remaining viral miRNAs in a subset of mutants. Induction of the lytic cycle leads to efficient production of progeny viruses that have been used to infect endothelial cells. Wt BAC16 and miR mutant iSLK producer cell lines are now available to the research community. PMID:26907327

  12. Phytoalexins, miRNAs and breast cancer: a review of phytochemical mediated miRNA regulation in breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A specific class of endogenous, non-coding RNAs, classified as microRNAs (miRNAs), has been identified. It has been found that miRNAs are associated with many biological processes and disease states, including all stages of cancer from initiation to tumor promotion and progression. These studies d...

  13. Serum miRNA-499 and miRNA-210: A potential role in early diagnosis of acute coronary syndrome.

    PubMed

    Shalaby, Sally M; El-Shal, Amal S; Shoukry, Amira; Khedr, Mohamad H; Abdelraheim, Nader

    2016-08-01

    In clinical practice, there is still a need for novel biomarkers, which can reliably rule in or rule out acute coronary syndrome (ACS) immediately on admission. This is of particular interest in patients with unstable angina (UA) and non-ST-segment elevation myocardial infarction (NSTEMI) in whom diagnostic uncertainty is high. The aim of the present study is to evaluate the potential role of miRNA-499 and miRNA-210 as novel molecular biomarkers for early diagnosis of UA and NSTEMI suspected patients presented at the emergency unit. A total of 110 patients presenting to the intensive care unit (ICU) within 24 h of onset of chest pain suggestive of ACS were enrolled in the study. They included 37 UA, 48 NSTEMI and 25 noncardiac chest pain (NCCP) patients. Immediately at enrollment, blood samples were taken for estimation of serum miRNA-499 and miRNA-210 expression levels by real time PCR. miRNA-499 and miRNA-210 expression levels were significantly increased in UA and NSTEMI patients compared with NCCP patients (P < 0.001). Receiver operating characteristic (ROC) curve analysis revealed that the area under curve (AUC) of miR-499 for the diagnosis of UA and NSTEMI was 0.98 and 0.97, respectively; while the AUC of miRNA-210 was 0.84 and 0.90, respectively. The important finding of our study was that the AUC of miRNA-499 for the diagnosis of ACS patients with symptoms onset <3 h was 0.89, while the AUC of miRNA-210 was 0.86. Interestingly, combining miRNA-499 and miRNA-210 significantly improved the diagnostic value by increasing the AUC to 0.96, P < 0.001. In conclusion, serum miRNA-499 and miRNA-210 are associated with UA and NSTEMI and with those presenting within 3 h of symptom onset. Both miRNAs might be potentially novel biomarkers for accelerating the diagnosis of ACS patients in emergency unit. © 2016 IUBMB Life, 68(8):673-682, 2016. PMID:27346801

  14. [The role of miRNA in endometrial cancer in the context of miRNA 205].

    PubMed

    Wilczyński, Miłosz; Danielska, Justyna; Dzieniecka, Monika; Malinowski, Andrzej

    2015-11-01

    MiRNAs are small, non-coding molecules of ribonucleic acids of approximately 22 bp length, which serve as regulators of gene expression and protein translation due to interference with messenger RNA (mRNA). MiRNAs, which take part in the regulation of cell cycle and apoptosis, may be associated with carcinogenesis. Aberrant expression of miRNAs in endometrial cancer might contribute to the endometrial cancer initiation or progression, as well as metastasis formation, and may influence cancer invasiveness. Specific-miRNAs expressed in endometrial cancer tissues may serve as diagnostic markers of the disease, prognostic biomarkers, or play an important part in oncological therapy We aimed to describe the role of miRNAs in endometrial cancer with special consideration of miRNA 205. PMID:26817318

  15. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    PubMed

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  16. miRNA Expression Analyses in Prostate Cancer Clinical Tissues

    PubMed Central

    Bucay, Nathan; Shahryari, Varahram; Majid, Shahana; Yamamura, Soichiro; Mitsui, Yozo; Tabatabai, Z. Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro; Saini, Sharanjot

    2015-01-01

    A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA). PMID:26382040

  17. miRNA and methylation: a multifaceted liaison.

    PubMed

    Chhabra, Ravindresh

    2015-01-19

    miRNAs and DNA methylation are both critical regulators of gene expression. Aberration in miRNA expression or DNA methylation is a causal factor for numerous pathological conditions. DNA methylation can inhibit the transcription of miRNAs, just like coding genes, by methylating the CpG islands in the promoter regions of miRNAs. Conversely, certain miRNAs can directly target DNA methyltransferases and bring about their inhibition, thereby affecting the whole genome methylation pattern. Recently, methylation patterns have also been revealed in mRNA. Surprisingly, the two most commonly studied methylation states in mRNA (m6A and m5C) are found to be enriched in 3'-UTRs (untranslated regions), the target site for the majority of miRNAs. Whereas m5C is reported to stabilise mRNA, m6A has a destabilising effect on mRNA. However, the effect of mRNA methylation on its interaction with miRNAs is largely unexplored. The review highlights the complex interplay between microRNA and methylation at DNA and mRNA level. PMID:25469751

  18. MicroRNAs (miRNAs) in neurodegenerative diseases.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Rajeev, Bernard W

    2008-01-01

    Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.

  19. miRNAs: Key Players in Neurodegenerative Disorders and Epilepsy.

    PubMed

    Karnati, Hanuma Kumar; Panigrahi, Manas Kumar; Gutti, Ravi Kumar; Greig, Nigel H; Tamargo, Ian A

    2015-01-01

    MicroRNAs (miRNAs) are endogenous, ∼22 nucleotide, non-coding RNA molecules that function as post-transcriptional regulators of gene expression. miRNA dysregulation has been observed in cancer and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis, and the neurological disorder, epilepsy. Neuronal degradation and death are important hallmarks of neurodegenerative disorders. Additionally, abnormalities in metabolism, synapsis and axonal transport have been associated with Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. A number of recently published studies have demonstrated the importance of miRNAs in the nervous system and have contributed to the growing body of evidence on miRNA dysregulation in neurological disorders. Knowledge of the expressions and activities of such miRNAs may aid in the development of novel therapeutics. In this review, we discuss the significance of miRNA dysregulation in the development of neurodegenerative disorders and the use of miRNAs as targets for therapeutic intervention.

  20. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    PubMed Central

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  1. miRNA Expression Analyses in Prostate Cancer Clinical Tissues.

    PubMed

    Bucay, Nathan; Shahryari, Varahram; Majid, Shahana; Yamamura, Soichiro; Mitsui, Yozo; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro; Saini, Sharanjot

    2015-01-01

    A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA). PMID:26382040

  2. miRNA Expression Analyses in Prostate Cancer Clinical Tissues.

    PubMed

    Bucay, Nathan; Shahryari, Varahram; Majid, Shahana; Yamamura, Soichiro; Mitsui, Yozo; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro; Saini, Sharanjot

    2015-09-08

    A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA).

  3. Milk miRNAs: simple nutrients or systemic functional regulators?

    PubMed

    Melnik, Bodo C; Kakulas, Foteini; Geddes, Donna T; Hartmann, Peter E; John, Swen Malte; Carrera-Bastos, Pedro; Cordain, Loren; Schmitz, Gerd

    2016-01-01

    Milk is rich in miRNAs that appear to play important roles in the postnatal development of all mammals. Currently, two competing hypotheses exist: the functional hypothesis, which proposes that milk miRNAs are transferred to the offspring and exert physiological regulatory functions, and the nutritional hypothesis, which suggests that these molecules do not reach the systemic circulation of the milk recipient, but merely provide nutrition without conferring active regulatory signals to the offspring. The functional hypothesis is based on indirect evidence and requires further investigation. The nutritional hypothesis is primarily based on three mouse models, which are inherently problematic: 1) miRNA-375 KO mice, 2) miRNA-200c/141 KO mice, and 3) transgenic mice presenting high levels of miRNA-30b in milk. This article presents circumstantial evidence that these mouse models may all be inappropriate to study the physiological traffic of milk miRNAs to the newborn mammal, and calls for new studies using more relevant mouse models or human milk to address the fate and role of milk miRNAs in the offspring and the adult consumer of cow's milk. PMID:27330539

  4. Protocol for miRNA isolation from biofluids.

    PubMed

    Lekchnov, Evgeny A; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Bryzgunova, Olga E; Vlassov, Valentin V; Laktionov, Pavel P

    2016-04-15

    MicroRNAs (miRNAs) have been identified as promising biomarkers in cancer and other diseases. Packaging of miRNAs into vesicles and complexes with proteins ensures their stability in biological fluids but also complicates their isolation. Conventional protocols used to isolate cell-free RNA are generally successful in overcoming these difficulties; however, they are costly, labor-intensive, or heavily reliant on the use of hazardous chemicals. Here we describe a protocol that is suitable for isolating miRNAs from biofluids, including blood plasma and urine. The protocol is based on precipitation of proteins, denaturation of miRNA-containing complexes with octanoic acid and guanidine isothiocyanate, and subsequent purification of miRNA on spin columns. The efficacy of miRNA extraction by phenol-chloroform extraction, miRCURY RNA isolation kit--biofluids (Exiqon), and the proposed protocol was compared by quantitative reverse-transcription PCR of miR-16 and miR-126. The proposed protocol was slightly more effective for isolating miRNA from plasma and significantly superior to the other two methods for miRNA isolation from urine. Spectrophotometry and SDS-PAGE data suggest that the disparity in performance between miRCURY Biofluids and the proposed protocol can be attributed to differences in precipitation mechanisms, as confirmed by the retention of different proteins in the supernatant. PMID:26874020

  5. miRNA and miRNA target genes in copy number variations occurring in individuals with intellectual disability

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are a family of short, non-coding RNAs modulating expression of human protein coding genes (miRNA target genes). Their dysfunction is associated with many human diseases, including neurodevelopmental disorders. It has been recently shown that genomic copy number variations (CNVs) can cause aberrant expression of integral miRNAs and their target genes, and contribute to intellectual disability (ID). Results To better understand the CNV-miRNA relationship in ID, we investigated the prevalence and function of miRNAs and miRNA target genes in five groups of CNVs. Three groups of CNVs were from 213 probands with ID (24 de novo CNVs, 46 familial and 216 common CNVs), one group of CNVs was from a cohort of 32 cognitively normal subjects (67 CNVs) and one group of CNVs represented 40 ID related syndromic regions listed in DECIPHER (30 CNVs) which served as positive controls for CNVs causing or predisposing to ID. Our results show that 1). The number of miRNAs is significantly higher in de novo or DECIPHER CNVs than in familial or common CNV subgroups (P < 0.01). 2). miRNAs with brain related functions are more prevalent in de novo CNV groups compared to common CNV groups. 3). More miRNA target genes are found in de novo, familial and DECIPHER CNVs than in the common CNV subgroup (P < 0.05). 4). The MAPK signaling cascade is found to be enriched among the miRNA target genes from de novo and DECIPHER CNV subgroups. Conclusions Our findings reveal an increase in miRNA and miRNA target gene content in de novo versus common CNVs in subjects with ID. Their expression profile and participation in pathways support a possible role of miRNA copy number change in cognition and/or CNV-mediated developmental delay. Systematic analysis of expression/function of miRNAs in addition to coding genes integral to CNVs could uncover new causes of ID. PMID:23937676

  6. Novel regulation and functional interaction of polycistronic miRNAs.

    PubMed

    Truscott, Mary; Islam, Abul B M M K; Frolov, Maxim V

    2016-01-01

    The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response. PMID:26554028

  7. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array.

    PubMed

    Cebeci, Ozge; Budak, Hikmet

    2009-01-01

    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate.

  8. Functions of miRNAs during Mammalian Heart Development

    PubMed Central

    Yan, Shun; Jiao, Kai

    2016-01-01

    MicroRNAs (miRNAs) play essential roles during mammalian heart development and have emerged as attractive therapeutic targets for cardiovascular diseases. The mammalian embryonic heart is mainly derived from four major cell types during development. These include cardiomyocytes, endocardial cells, epicardial cells, and neural crest cells. Recent data have identified various miRNAs as critical regulators of the proper differentiation, proliferation, and survival of these cell types. In this review, we briefly introduce the contemporary understanding of mammalian cardiac development. We also focus on recent developments in the field of cardiac miRNAs and their functions during the development of different cell types. PMID:27213371

  9. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    PubMed Central

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  10. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.

    PubMed

    Voorhoeve, P Mathijs; le Sage, Carlos; Schrier, Mariette; Gillis, Ad J M; Stoop, Hans; Nagel, Remco; Liu, Ying-Poi; van Duijse, Josyanne; Drost, Jarno; Griekspoor, Alexander; Zlotorynski, Eitan; Yabuta, Norikazu; De Vita, Gabriella; Nojima, Hiroshi; Looijenga, Leendert H J; Agami, Reuven

    2006-03-24

    Endogenous small RNAs (miRNAs) regulate gene expression by mechanisms conserved across metazoans. While the number of verified human miRNAs is still expanding, only few have been functionally annotated. To perform genetic screens for novel functions of miRNAs, we developed a library of vectors expressing the majority of cloned human miRNAs and created corresponding DNA barcode arrays. In a screen for miRNAs that cooperate with oncogenes in cellular transformation, we identified miR-372 and miR-373, each permitting proliferation and tumorigenesis of primary human cells that harbor both oncogenic RAS and active wild-type p53. These miRNAs neutralize p53-mediated CDK inhibition, possibly through direct inhibition of the expression of the tumor-suppressor LATS2. We provide evidence that these miRNAs are potential novel oncogenes participating in the development of human testicular germ cell tumors by numbing the p53 pathway, thus allowing tumorigenic growth in the presence of wild-type p53.

  11. N6-adenosine methylation in MiRNAs.

    PubMed

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  12. N6-Adenosine Methylation in MiRNAs

    PubMed Central

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  13. Impact of miRNAs on cardiovascular aging.

    PubMed

    Lee, Seahyoung; Choi, Eunhyun; Cha, Min-Ji; Park, Ae-Jun; Yoon, Cheesoon; Hwang, Ki-Chul

    2015-09-01

    Aging is a multidimensional process that leads to an increased risk of developing severe diseases, such as cancer and cardiovascular, neurodegenerative, and immunological diseases. Recently, small non-coding RNAs known as microRNAs (miRNAs) have been shown to regulate gene expression, which contributes to many physiological and pathophysiological processes in humans. Increasing evidence suggests that changes in miRNA expression profiles contribute to cellular senescence, aging and aging-related diseases. However, only a few miRNAs whose functions have been elucidated have been associated with aging and/or aging-related diseases. This article reviews the currently available findings regarding the roles of aging-related miRNAs, with a focus on cardiac and cardiovascular aging. PMID:26512249

  14. Exploring the miRNA Regulatory Network Using Evolutionary Correlations

    PubMed Central

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective. PMID:25299225

  15. Maternal Plasma miRNAs Expression in Preeclamptic Pregnancies

    PubMed Central

    Li, Hailing; Ge, Qinyu; Guo, Li; Lu, Zuhong

    2013-01-01

    Objective. Preeclampsia (PE) is a pregnancy-specific syndrome and one of the leading causes of maternal and fetal morbidity and mortality. The pathophysiological mechanisms of PE remain poorly known. Recently, circulating miRNAs are considered as potential useful noninvasive biomarkers. The aim of this study was to identify differentially expressed plasma miRNAs in preeclamptic pregnancies compared with normal pregnancies. Methods. Maternal plasma miRNA expression profiles were detected by SOLiD sequencing. Differential expressions between mPE/sPE and control group were found. Next, four differentially expressed plasma miRNAs were chosen to validate their expression in other large scale samples by real-time PCR. Results. In terms of sequencing results, we identified that 51 miRNAs were differentially expressed. Four differentially expressed plasma miRNAs (miR-141, miR-144, miR-221, and miR-29a) were selected to validate the sequencing results. RT-PCR data confirmed the reliability of sequencing results. The further statistical analysis showed that maternal plasma miR-141 and miR-29a are significantly overexpressed in mPE (P < 0.05). Maternal plasma miR-144 is significantly underexpressed in mPE and sPE (P < 0.05). Conclusions. Results showed that there were differentially expressed maternal plasma miRNAs in patients with preeclampsia. These plasma miRNAs might be used as notable biomarkers for diagnosis of preeclampsia. PMID:24195082

  16. Aberrant miRNA profiles associated with chronic benzene poisoning.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Yang, Jing; Niu, Piye; Tian, Lin; Gao, Ai

    2014-06-01

    Chronic occupational benzene exposure is associated with an increased risk of hematological malignancies. To gain an insight into the new biomarkers and molecular mechanisms of chronic benzene poisoning, miRNA profiles and mRNA expression pattern from the peripheral blood mononuclear cells of chronic benzene poisoning patients and health controls matched age and gender without benzene exposure were performed using the Exiqon miRNA PCR ARRAY and Gene Chip Human Gene 2.0ST Arrays, respectively. Totally, 6 up-regulated miRNAs (miR-34a, miR-205, miR-10b, let-7d, miR-185 and miR-423-5p-2) and 7 down-regulated miRNAs (miR-133a, miR-543, hsa-miR-130a, miR-27b,miR-223, miR-142-5p and miR-320b) were found in chronic benzene poisoning group compared to health controls (P ≤ 0.05). By integrating miRNA and mRNA expression data, these differential miRNAs were mainly involved in regulation of transcription from RNA polymerase II promoter, axon guidance, regulation of transcription, DNA-dependent, nervous system development, and regulation of actin cytoskeleton organization. Further, pathway analysis indicated that SMAD4, PLCB1, NFAT5, GNAI2, PTEN, VEGFA, BCL2, CTNNB1 and CCND1 were key target genes of differential miRNAs which were implicated in Adherens junction, TGF-beta signaling pathway, Wnt signaling pathway, tight junction and Pathways in cancer. In conclusion, the aberrant miRNAs might be a potential biomarker of chronic benzene poisoning.

  17. MiRNA expression patterns predict survival in glioblastoma

    PubMed Central

    2011-01-01

    Background In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. Methods 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip "Geniom® Biochip MPEA homo-sapiens" was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. Results It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. Conclusions At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required. PMID:22074483

  18. Cell-free Circulating miRNA Biomarkers in Cancer

    PubMed Central

    Mo, Meng-Hsuan; Chen, Liang; Fu, Yebo; Wang, Wendy; Fu, Sidney W.

    2012-01-01

    Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice. PMID:23074383

  19. Determination of MiRNA Targets in Skeletal Muscle Cells

    PubMed Central

    Huang, Zhan-Peng; Espinoza-Lewis, Ramón; Wang, Da-Zhi

    2014-01-01

    MicroRNAs (miRNAs) are a class of small ∼22 nucleotide noncoding RNAs which regulate gene expression at the posttranscriptional level by either destabilizing and consequently degrading their targeted mRNAs or by repressing their translation. Emerging evidence has demonstrated that miRNAs are essential for normal mammalian development, homeostasis, and many other functions. In addition, deleterious changes in miRNA expression were associated with human diseases. Several muscle-specific miRNAs, including miR-1, miR-133, miR-206, and miR-208, have been shown to be important for normal myo-blast differentiation, proliferation, and muscle remodeling in response to stress. They have also been implicated in various cardiac and skeletal muscular diseases. miRNA-based gene therapies hold great potential for the treatment of cardiac and skeletal muscle diseases. Herein, we describe methods commonly applied to study the biological role of miRNAs, as well as techniques utilized to manipulate miRNA expression and to investigate their target regulation. PMID:22130855

  20. Content of Heavy Metals in the Reed Canarygrass (Phalaris Arundinacea L.) in the First Year of Harvest

    NASA Astrophysics Data System (ADS)

    Poisa, Liena; Adamovics, Aleksandrs; Platace, Rasma

    2010-01-01

    One of the major factors in achieving more biofuel is the amount of crop yield, but that is not synonymous with the yield quality. Plants are contaminated by heavy metals not only through the soil, but also from atmospheric pollution. The aim of this research was to establish the amount of heavy metals in the dry matter of reed canarygrass (Phalaris arundinacea L.). The Marathon variety of reed canarygrass was studied with two sowing periods and four N-fertilizer rate applications. The concentration level of arsenic (As), cadmium (Cd), lead (Pb) and titanium (Ti) in the samples of reed canarygrass were analysed with the coupled plasma optical emission spectrometer Perkin Elmer 2100 DV. The samples of reed canarygrass taken in April had a greater concentration of As, Cd, Pb, which means that the plants absorb the heavy metals also from the snow covering. The first year yield of reed canarygrass established a fundamental negative correlation between the amount of As, Cd, Pb and the ash content. The samples taken in April have a greater heavy metal contamination, than the samples taken in October. The sowing period fundamentally affected the concentration of lead in reed canarygrass samples, but the level of N-fertilizer rate application affected the amount of cadmium and arsenic.

  1. The impacts of Phalaris arundinacea (reed canary grass) invasion on wetland plant richness in the Oregon Coast Range, USA, depend on beavers

    USGS Publications Warehouse

    Perkins, T.; Wilson, M.

    2005-01-01

    Invasive plants can threaten diversity and ecosystem function. We examined the relationship between the invasive Phalaris arundinacea (reed canarygrass) and species richness in beaver wetlands in Oregon, USA. Four basins (drainages) were chosen and three sites each of beaver impoundments, unimpounded areas and areas upstream of debris jams were randomly chosen in each basin for further study (n = 36). Analysis of covariance (ANCOVA) showed that the relationship between Phalaris and species richness differed significantly (p = 0.01) by site type. Dam sites (beaver impoundments) exhibited a strong inverse relationship between Phalaris and species richness (bD = a??0.15), with one species lost for each 7% increase in Phalaris cover. In contrast, there was essentially no relationship between Phalaris cover and species richness in jam sites (debris jam impoundments formed by flooding; bJ = +0.01) and unimpounded sites (bU = a??0.03). The cycle of beaver impoundment and abandonment both disrupts the native community and provides an ideal environment for Phalaris, which once established tends to exclude development of herbaceous communities and limits species richness. Because beaver wetlands are a dominant wetland type in the Coast Range, Phalaris invasion presents a real threat to landscape heterogeneity and ecosystem function in the region.

  2. Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells.

    PubMed

    Ghosh, Souvik; Bose, Mainak; Ray, Anirban; Bhattacharyya, Suvendra N

    2015-03-15

    MicroRNAs (miRNAs) are tiny posttranscriptional regulators of gene expression in metazoan cells, where activity and abundance of miRNAs are tightly controlled. Regulated turnover of these regulatory RNAs is important to optimize cellular response to external stimuli. We report that the stability of mature miRNAs increases inversely with cell proliferation, and the increased number of microribonucleoproteins (miRNPs) in growth-restricted mammalian cells are in turn associated with polysomes. This heightened association of miRNA with polysomes also elicits reduced degradation of target mRNAs and impaired extracellular export of miRNA via exosomes. Overall polysome sequestration contributes to an increase of cellular miRNA levels but without an increase in miRNA activity. Therefore miRNA activity and turnover can be controlled by subcellular distribution of miRNPs that may get differentially regulated as a function of cell growth in mammalian cells.

  3. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.

    PubMed

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment. PMID:26379276

  4. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation

    PubMed Central

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J.; Weinstein, Joanna L.; Mets, Marilyn B.; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A.

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment. PMID:26379276

  5. Classification of various muscular tissues using miRNA profiling.

    PubMed

    Endo, Kosuke; Weng, Huachun; Naito, Yukiko; Sasaoka, Toshikuni; Takahashi, Akio; Fukushima, Yasue; Iwai, Naoharu

    2013-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs of 18-23 nucleotides that regulate gene expression. Recently, plasma miRNAs have been investigated as biomarkers for various diseases. In the present study, we explored whether miRNA expression profiling of various muscle cells may be useful for the diagnosis of various diseases involving muscle necrosis. miRNA expression profiling was assessed by miRNA array and real-time reverse-transcriptase polymerase chain reaction by using a reverse primer of a stem loop structure. Profiling of various muscle cells of mouse, including cardiac muscles, skeletal muscles, and vascular and visceral smooth muscles, indicated that profiling of miR-1, miR-133a, miR-133b, miR-145, miR-206, miR-208a, miR-208b, and miR499 were adequate to discriminate muscle cells. miR-145 was remarkably highly expressed in smooth muscles. miR-208a and miR-499 were highly expressed in cardiomyocytes. miR-133a was highly expressed in fast-twitch skeletal muscles. miR-206 and miR-208b were expressed in the slow-twitch skeletal muscles, and they can likely discriminate fast- and slow-twitch types of skeletal muscle cells. We observed that brown fat adipose cells had an miRNA expression profile very similar to those of skeletal muscle cells in the mouse. Plasma concentrations of miR-133a and miR-145 were extremely useful in diagnosing skeletal muscle necrosis in a mouse model of Duchenne muscular dystrophy and colon smooth muscle necrosis in a rat ischemic colitis model, respectively. In the present study, we investigated the miRNA expression profiles of various muscular tissues. Our results suggest that expression profiling would be useful for the diagnosis of various diseases such as muscular necrosis.

  6. miRNA profiling along tumour progression in ovarian carcinoma

    PubMed Central

    Vaksman, Olga; Stavnes, Helene Tuft; Kærn, Janne; Trope, Claes G; Davidson, Ben; Reich, Reuven

    2011-01-01

    Abstract MicroRNAs (miRNAs) are small non-coding RNAs that exert a regulatory effect post-transcriptionally by binding target mRNAs and inhibiting gene translation. miRNA expression is deregulated in cancer. The aim of this study was to characterize the differences in miRNA expression pattern and the miRNA-regulating machinery between ovarian carcinoma (OC) cells in primary tumours versus effusions. Using miRNA array platforms, we analysed a set of 21 tumours (13 effusions, 8 primary carcinomas) and identified three sets of miRNAs, one that is highly expressed in both primary carcinomas and effusions, one overexpressed in primary carcinomas and one overexpressed in effusions. Levels of selected miRNAs were analysed using quantitative PCR in an independent set of 45 additional tumours (30 effusions, 15 primary carcinomas). Reduced miR-145 and miR-214 and elevated let-7f, miR-182, miR-210, miR-200c, miR-222 and miR-23a levels were found in effusions in both sets. In silico target prediction programs identified potential target genes for some of the differentially expressed miRNAs. Expression of zinc finger E-box binding homeobox (ZEB)1 and c-Myc, targets of miR-200c, as well as of p21 protein (Cdc42/Rac)-activated kinase (PAK)1 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), predicted targets of miR-222, were analysed. Inverse correlations between expression levels of the indicated miRNAs and of the predicted target genes were found. In addition, higher expression of the miRNA-processing molecules Ago1, Ago2 and Dicer was observed in effusions compared to primary carcinomas. In conclusion, our data are the first to document different miRNA expression and regulation profiles in primary and metastatic OC, suggesting a role for these molecules in tumour progression. PMID:20716115

  7. Identification of miRNAs in sorghum by using bioinformatics approach

    PubMed Central

    Katiyar, Amit; Smita, Shuchi; Chinnusamy, Viswanathan; Pandey, Dev Mani; Bansal, Kailash

    2012-01-01

    MicroRNAs (miRNAs) regulate gene expression mainly by post-transcriptional gene silencing (PTGS) and in some cases by transcriptional genes silencing (TGS). miRNAs play critical roles in developmental processes, nutrient homeostasis, abiotic stress and pathogen responses of plants. In contrast to the large number of miRNAs predicted in cereal model plant rice, only 148 miRNAs were predicted in sorghum till date (miRBase release 17). This suggested that miRNAs identified in sorghum is far from saturation. Hence, we developed a bioinformatics pipeline using an in-house PERL script and publicly available structure prediction tools to identify miRNAs and their target genes from publically available Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS). About 1,379 known and unique plant miRNAs from 33 different crops were used to predict new miRNAs in sorghum. We identified 31 new miRNAs belonging to 10 different miRNA families. We predicted 72 potential target genes for 31 miRNAs, and most of these target genes are predicted to be involved in plant growth and development. These newly identified miRNAs add to the growing database of miRNA and lay the foundation for further understanding of miRNA function in sorghum plant development. PMID:22415044

  8. The miRNA biogenesis in marine bivalves

    PubMed Central

    Rosani, Umberto; Pallavicini, Alberto

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  9. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  10. The Role of miRNAs in Cartilage Homeostasis

    PubMed Central

    Li, Yong Ping; Wei, Xiao Chun; Li1, Peng Cu; Chen, Chun Wei; Wang, Xiao Hu; Jiao, Qiang; Wang, Dong Ming; Wei, Fang Yuan; Zhang, Jian Zhong; Wei, Lei

    2015-01-01

    Osteoarthritis (OA) is an age-related disease with poorly understood pathogenesis. Recent studies have demonstrated that miRNA might play a key role in OA initiation and development. We reviewed recent publications and elucidated the connection between miRNA and OA cartilage anabolic and catabolic signals, including four signaling pathways: TGF-β/Smads and BMPs signaling, associated with cartilage anabolism; and MAPK and NF-KB signaling, associated with cartilage catabolism. We also explored the relationships with MMP, ADAMTS and NOS (NitricOxide Synthases) families, as well as with the catabolic cytokines IL-1 and TNF-α. The potential role of miRNAs in biological processes such as cartilage degeneration, chondrocyte proliferation, and differentiation is discussed. Collective evidence indicates that miRNAs play a critical role in cartilage degeneration. These findings will aid in understanding the molecular network that governs articular cartilage homeostasis and in to elucidate the role of miRNA in the pathogenesis of OA. PMID:27019614

  11. Use of miRNAs as biomarkers in sepsis.

    PubMed

    Dumache, Raluca; Rogobete, Alexandru Florin; Bedreag, Ovidiu Horea; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Corina Maria; Nartita, Radu; Sandesc, Dorel

    2015-01-01

    Sepsis is one of the most common causes of death in critical patients. Severe generalized inflammation, infections, and severe physiological imbalances significantly decrease the survival rate with more than 50%. Moreover, monitoring, evaluation, and therapy management often become extremely difficult for the clinician in this type of patients. Current methods of diagnosing sepsis vary based especially on the determination of biochemical-humoral markers, such as cytokines, components of the complement, and proinflammatory and anti-inflammatory compounds. Recent studies highlight the use of new biomarkers for sepsis, namely, miRNAs. miRNAs belong to a class of small, noncoding RNAs with an approximate content of 19-23 nucleotides. Following biochemical and physiological imbalances, the expression of miRNAs in blood or other body fluids changes significantly. Moreover, its stability, specificity, and selectivity make miRNAs ideal candidates for sepsis biomarkers. In conclusion, we can affirm that stable species of circulating miRNAs represent potential biomarkers for monitoring the evolution of sepsis.

  12. The miRNA biogenesis in marine bivalves.

    PubMed

    Rosani, Umberto; Pallavicini, Alberto; Venier, Paola

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  13. miRNA therapeutics in cardiovascular diseases: promises and problems

    PubMed Central

    Nouraee, Nazila; Mowla, Seyed J.

    2015-01-01

    microRNAs (miRNAs) are a novel class of non-coding RNAs which found their way into the clinic due to their fundamental roles in cellular processes such as differentiation, proliferation, and apoptosis. Recently, miRNAs have been known as micromodulators in cellular communications being involved in cell signaling and microenvironment remodeling. In this review, we will focus on the role of miRNAs in cardiovascular diseases (CVDs) and their reliability as diagnostic and therapeutic biomarkers in these conditions. CVDs comprise a variety of blood vessels and heart disorders with a high rate of morbidity and mortality worldwide. This necessitates introduction of novel molecular biomarkers for early detection, prevention, or treatment of these diseases. miRNAs, due to their stability, tissue-specific expression pattern and secretion to the corresponding body fluids, are attractive targets for cardiovascular-associated therapeutics. Explaining the challenges ahead of miRNA-based therapies, we will discuss the exosomes as delivery packages for miRNA drugs and promising novel strategies for the future of miRNA-based therapeutics. These approaches provide insights to the future of personalized medicine for the treatment of CVDs. PMID:26175755

  14. Adaptive evolution of testis-specific, recently evolved, clustered miRNAs in Drosophila

    PubMed Central

    Mohammed, Jaaved; Bortolamiol-Becet, Diane; Flynt, Alex S.; Gronau, Ilan; Siepel, Adam; Lai, Eric C.

    2014-01-01

    The propensity of animal miRNAs to regulate targets bearing modest complementarity, most notably via pairing with miRNA positions ∼2–8 (the “seed”), is believed to drive major aspects of miRNA evolution. First, minimal targeting requirements have allowed most conserved miRNAs to acquire large target cohorts, thus imposing strong selection on miRNAs to maintain their seed sequences. Second, the modest pairing needed for repression suggests that evolutionarily nascent miRNAs may generally induce net detrimental, rather than beneficial, regulatory effects. Hence, levels and activities of newly emerged miRNAs are expected to be limited to preserve the status quo of gene expression. In this study, we unexpectedly show that Drosophila testes specifically express a substantial miRNA population that contravenes these tenets. We find that multiple genomic clusters of testis-restricted miRNAs harbor recently evolved miRNAs, whose experimentally verified orthologs exhibit divergent sequences, even within seed regions. Moreover, this class of miRNAs exhibits higher expression and greater phenotypic capacities in transgenic misexpression assays than do non-testis-restricted miRNAs of similar evolutionary age. These observations suggest that these testis-restricted miRNAs may be evolving adaptively, and several methods of evolutionary analysis provide strong support for this notion. Consistent with this, proof-of-principle tests show that orthologous miRNAs with divergent seeds can distinguish target sensors in a species-cognate manner. Finally, we observe that testis-restricted miRNA clusters exhibit extraordinary dynamics of miRNA gene flux in other Drosophila species. Altogether, our findings reveal a surprising tissue-directed influence of miRNA evolution, involving a distinct mode of miRNA function connected to adaptive gene regulation in the testis. PMID:24942624

  15. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development. PMID:26854194

  16. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk.

    PubMed

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E; Geddes, Donna T; Kakulas, Foteini

    2016-02-08

    Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development.

  17. Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in Golden Retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients.

    PubMed

    Jeanson-Leh, Laurence; Lameth, Julie; Krimi, Soraya; Buisset, Julien; Amor, Fatima; Le Guiner, Caroline; Barthélémy, Inès; Servais, Laurent; Blot, Stéphane; Voit, Thomas; Israeli, David

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a fatal, X-linked neuromuscular disease that affects 1 boy in 3500 to 5000 boys. The golden retriever muscular dystrophy dog is the best clinically relevant DMD animal model. Here, we used a high-thoughput miRNA sequencing screening for identification of candidate serum miRNA biomarkers in golden retriever muscular dystrophy dogs. We confirmed the dysregulation of the previously described muscle miRNAs, miR-1, miR-133, miR-206, and miR-378, and identified a new candidate muscle miRNA, miR-95. We identified two other classes of dysregulated serum miRNAs in muscular dystrophy: miRNAs belonging to the largest known miRNA cluster that resides in the imprinting DLK1-DIO3 genomic region and miRNAs associated with cardiac disease, including miR-208a, miR-208b, and miR-499. No simple correlation was identified between serum levels of cardiac miRNAs and cardiac functional parameters in golden retriever muscular dystrophy dogs. Finally, we confirmed a dysregulation of miR-95, miR-208a, miR-208b, miR-499, and miR-539 in a small cohort of DMD patients. Given the interspecies conservation of miRNAs and preliminary data in DMD patients, these newly identified dysregulated miRNAs are strong candidate biomarkers for DMD patients.

  18. miRNAs in atherosclerotic plaque initiation, progression, and rupture

    PubMed Central

    Andreou, Ioannis; Sun, Xinghui; Stone, Peter H.; Edelman, Elazer R.; Feinberg, Mark W.

    2015-01-01

    Atherosclerosis is a chronic immune-inflammatory disorder that integrates multiple cell types and a diverse set of inflammatory mediators. miRNAs are emerging as important post-transcriptional regulators of gene expression in most, if not all, vertebrate cells and constitute central players in many physiological and pathological processes. Rapidly accumulating experimental studies reveal their key role in cellular and molecular processes related to the development of atherosclerosis. Here, we review the current evidence for the involvement of miRNAs in early atherosclerotic lesion formation to plaque rupture and erosion. We conclude with a perspective on the clinical relevance, therapeutic opportunities, and future challenges of miRNA biology in the pathogenesis of this complex disease. PMID:25771097

  19. miRNAs in mtDNA-less cell mitochondria

    PubMed Central

    Dasgupta, N; Peng, Y; Tan, Z; Ciraolo, G; Wang, D; Li, R

    2015-01-01

    The novel regulation mechanism in mtDNA-less cells was investigated. Very low mtDNA copy in mtDNA-less 206 ρ° cells was identified. But no 13 mitochondria-specific proteins were translated in 206 ρ° cells. Their mitochondrial respiration complexes V, III and II were 86.5, 29.4 and 49.6% of 143B cells, respectively. Complexes I and IV completely lack in 206 ρ° cells. Non-mitochondrial respiration to generate ATP in 206 ρ° cells was discovered. The expression levels of some mitochondrial RNAs including 12S rRNA, COX1, COX2, COX3, ND4 and ND5 were low. However, ND1, ND3 and Cyto b were not expressed in 206 ρ° cells. Unequal transcription of mitochondrial RNAs indicated the post-transcriptional cleavage and processing mechanisms in the regulation of mitochondrial gene expression in 206 ρ° cells. MicroRNAs (miRNAs) may modulate these mitochondrial RNA expression in these cells. RNA-induced silencing complex indeed within 206 ρ° cell mitochondria indicated miRNAs in 206 ρ° cell mitochondria. miRNA profile in mtDNA-less 206 ρ° cells was studied by next-generation sequencing of small RNAs. Several mitochondria-enriched miRNAs such as miR-181c-5p and miR-146a-5p were identified in 206 ρ° cell mitochondria. miR-181c-5p and miR-146a-5p had 23 and 19 potential targets on mitochondrial RNAs respectively, and these two miRNAs had multiple targets on mitochondria-associated messenger RNAs encoded by nuclear genes. These data provided the first direct evidence that miRNAs were imported into mitochondria and regulated mitochondrial RNA expressions. PMID:27551440

  20. Novel Insights into miRNA in Lung and Heart Inflammatory Diseases

    PubMed Central

    Petrkova, Jana; Petrek, Martin

    2014-01-01

    MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression. PMID:24991086

  1. Impacts of Whole-Genome Triplication on MIRNA Evolution in Brassica rapa.

    PubMed

    Sun, Chao; Wu, Jian; Liang, Jianli; Schnable, James C; Yang, Wencai; Cheng, Feng; Wang, Xiaowu

    2015-11-01

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play essential roles in eukaryotes. Although the influence of whole-genome triplication (WGT) on protein-coding genes has been well documented in Brassica rapa, little is known about its impacts on MIRNAs. In this study, through generating a comprehensive annotation of 680 MIRNAs for B. rapa, we analyzed the evolutionary characteristics of these MIRNAs from different aspects in B. rapa. First, while MIRNAs and genes show similar patterns of biased distribution among subgenomes of B. rapa, we found that MIRNAs are much more overretained than genes following fractionation after WGT. Second, multiple-copy MIRNAs show significant sequence conservation than that of single-copy MIRNAs, which is opposite to that of genes. This indicates that increased purifying selection is acting upon these highly retained multiple-copy MIRNAs and their functional importance over singleton MIRNAs. Furthermore, we found the extensive divergence between pairs of miRNAs and their target genes following the WGT in B. rapa. In summary, our study provides a valuable resource for exploring MIRNA in B. rapa and highlights the impacts of WGT on the evolution of MIRNA.

  2. Impacts of Whole-Genome Triplication on MIRNA Evolution in Brassica rapa.

    PubMed

    Sun, Chao; Wu, Jian; Liang, Jianli; Schnable, James C; Yang, Wencai; Cheng, Feng; Wang, Xiaowu

    2015-11-01

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play essential roles in eukaryotes. Although the influence of whole-genome triplication (WGT) on protein-coding genes has been well documented in Brassica rapa, little is known about its impacts on MIRNAs. In this study, through generating a comprehensive annotation of 680 MIRNAs for B. rapa, we analyzed the evolutionary characteristics of these MIRNAs from different aspects in B. rapa. First, while MIRNAs and genes show similar patterns of biased distribution among subgenomes of B. rapa, we found that MIRNAs are much more overretained than genes following fractionation after WGT. Second, multiple-copy MIRNAs show significant sequence conservation than that of single-copy MIRNAs, which is opposite to that of genes. This indicates that increased purifying selection is acting upon these highly retained multiple-copy MIRNAs and their functional importance over singleton MIRNAs. Furthermore, we found the extensive divergence between pairs of miRNAs and their target genes following the WGT in B. rapa. In summary, our study provides a valuable resource for exploring MIRNA in B. rapa and highlights the impacts of WGT on the evolution of MIRNA. PMID:26527651

  3. The Role of miRNA in Papillary Thyroid Cancer in the Context of miRNA Let-7 Family

    PubMed Central

    Perdas, Ewelina; Stawski, Robert; Nowak, Dariusz; Zubrzycka, Maria

    2016-01-01

    Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. RET/PTC rearrangement is the most common genetic modification identified in this category of cancer, increasing proliferation and dedifferentiation by the activation of the RET/PTC-RAS-BRAF-MAPK-ERK signaling pathway. Recently, let-7 miRNA was found to reduce RAS levels, acting as a tumor suppressor gene. Circulating miRNA profiles of the let-7 family may be used as novel noninvasive diagnostic, prognostic, treatment and surveillance markers for PTC. PMID:27314338

  4. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing.

    PubMed

    Zhang, Runxuan; Marshall, David; Bryan, Glenn J; Hornyik, Csaba

    2013-01-01

    Micro RNAs (miRNAs) represent a class of short, non-coding, endogenous RNAs which play important roles in post-transcriptional regulation of gene expression. While the diverse functions of miRNAs in model plants have been well studied, the impact of miRNAs in crop plant biology is poorly understood. Here we used high-throughput sequencing and bioinformatics analysis to analyze miRNAs in the tuber bearing crop potato (Solanum tuberosum). Small RNAs were analysed from leaf and stolon tissues. 28 conserved miRNA families were found and potato-specific miRNAs were identified and validated by RNA gel blot hybridization. The size, origin and predicted targets of conserved and potato specific miRNAs are described. The large number of miRNAs and complex population of small RNAs in potato suggest important roles for these non-coding RNAs in diverse physiological and metabolic pathways.

  5. Scaffolds for Artificial miRNA Expression in Animal Cells.

    PubMed

    Calloni, Raquel; Bonatto, Diego

    2015-10-01

    Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.

  6. Challenges in using circulating miRNAs as cancer biomarkers.

    PubMed

    Tiberio, Paola; Callari, Maurizio; Angeloni, Valentina; Daidone, Maria Grazia; Appierto, Valentina

    2015-01-01

    In the last years, circulating miRNAs have emerged as a new class of promising cancer biomarkers. Independent studies have shown the feasibility of using these small RNAs as tools for the diagnosis and prognosis of different types of malignancies as well as for predicting and possibly monitoring treatment response. However, despite an initial enthusiasm for their possible clinical application, widespread inconsistencies have been observed among the studies, and miRNA-based tools still represent the object of research within clinical diagnostic or treatment protocols. The poor overlap of results could be explained, at least in part, by preanalytical and analytical variables and donor-related factors that could generate artefacts, impairing an accurate quantification of circulating miRNAs. In fact, critical issues are represented by nonuniform sample choice, handling, and processing, as well as by blood cell contamination in sample preparation and lack of consensus for data normalization. In this review, we address the potential technical biases and individual-related parameters that can influence circulating miRNA studies' outcome. The exciting potential of circulating miRNAs as cancer biomarkers could confer an important advance in the disease management, but their clinical significance might not be proven without a global consensus of procedures and standardized protocols for their accurate detection. PMID:25874226

  7. Preliminary analysis of miRNA pathway in Schistosoma mansoni.

    PubMed

    Gomes, Matheus S; Cabral, Fernanda J; Jannotti-Passos, Liana K; Carvalho, Omar; Rodrigues, Vanderlei; Baba, Elio H; Sá, Renata G

    2009-03-01

    RNA silencing refers to a series of nuclear and cytoplasmatic processes involved in the post-transcriptional regulation of gene expression or post-transcriptional gene silencing (PTGS), either by sequence-specific mRNA degradation or by translational arrest. The best characterized small RNAs are microRNAs (miRNAs), which predominantly perform gene silencing through post-transcriptional mechanisms. In this work we used bioinformatic approaches to identify the parasitic trematode Schistosoma mansoni sequences that are similar to enzymes involved in the post-transcriptional gene silencing mediated by miRNA pathway. We used amino acid sequences of well-known proteins involved in the miRNA pathway against S. mansoni genome and transcriptome databases identifying a total of 13 putative proteins in the parasite. In addition, the transcript levels of SmDicer1 and SmAgo2/3/4 were identified by qRT-PCR using cercariae, adult worms, eggs and in vitro cultivated schistosomula. Our results showed that the SmDicer1 and SmAgo2/3/4 are differentially expressed during schistosomula development, suggesting that the miRNA pathway is regulated at the transcript level and therefore may control gene expression during the life cycle of S. mansoni.

  8. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria.

    PubMed

    Delić, Denis; Dkhil, Mohamed; Al-Quraishy, Saleh; Wunderlich, Frank

    2011-05-01

    Evidence is accumulating that miRNAs are critically implicated in the outcome of diseases, but little information is available for infectious diseases. This study investigates the hepatic miRNA signature in female C57BL/6 mice infected with self-healing Plasmodium chabaudi malaria. Primary infections result in approximately 50% peak parasitemia on day 8 p.i., approximately 80% survival, and development of protective immunity. The latter is evidenced as 100% survival and 1.5% peak parasitemia upon homolog re-infections of those mice which are still alive on day 56 after primary infection. Such immune mice exhibit increased levels of IgG2a and IgG2b isotypes and still contain P. chabaudi-infected erythrocytes in their livers as revealed by light microscopy and PCR analysis. Primary infections, but not secondary infections, induce an upregulation of hepatic mRNAs encoding IL-1β, TNFα, IFNγ, NF-κB, and iNOS, and a downregulation of mRNAs for CYP7A1 and SULT2A2, respectively. Using miRXplore microarrays containing 634 mouse miRNAs in combination with quantitative RT-PCR, the liver is found to respond to primary infections with an upregulation of the three miRNA species miR-26b, MCMV-miR-M23-1-5p, and miR-1274a, and a downregulation of the 16 miRNA species miR-101b, let-7a, let-7g, miR-193a-3p, miR-192, miR-142-5p, miR-465d, miR-677, miR-98, miR-694, miR-374(*), miR-450b-5p, miR-464, miR-377, miR-20a(*), and miR-466d-3p, respectively. Surprisingly, about the same pattern of miRNA expression is revealed in immune mice, and this pattern is even sustained upon homolog re-infections of immune mice. These data suggest that development of protective immunity against malarial blood stages of P. chabaudi is associated with a reprogramming of the expression of distinct miRNA species in the female mouse liver.

  9. Identification of miRNA encoded by Jatropha curcas from EST and GSS

    PubMed Central

    Vishwakarma, Nutan Prakash; Jadeja, Vasant J.

    2013-01-01

    miRNAs are endogenous approx 22 nucleotide RNA which mediates transcriptional or Post-transcriptional gene regulation and play a critical role in diverse aspects of plant development. miRNA identification in wet lab have various constraints, it is time consuming and expensive. It also faces the limitation of identifying miRNAs expressed at specific time and/or at special conditions. Due to the nature of strong conservation of miRNA in plant species, the use of comparative genomics approach for expressed sequence tags (ESTs), Genome Survey Sequence (GSS) and structural feature criteria filter has paved the way toward the identification of conserved miRNAs from the plant species whose genomes are not yet available in public domain. To identify the novel miRNA from Jatropha curcas, a total of 46862 EST sequences and 1569 GSS were searched for homology to previously known viridiplantae 2502 mature miRNA. After predicting the RNA secondary structure, 24 new potential miRNA were identified in J. curcas. Using the newly identified miRNA sequences, a total of 78 potential target genes were identified for 3 miRNA families. Most of the miRNA targeted genes were predicted to encode transcription factors that regulate cell growth and development, signaling, and metabolism. These findings considerably broaden the scope of understanding the functions of miRNA in J. curcas. PMID:23299511

  10. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis. PMID:27132794

  11. [Web server for prediction of miRNAs and their precursors and binding sites].

    PubMed

    Vorozheykin, P S; Titov, I I

    2015-01-01

    A microRNA (miRNA) is a small noncoding RNA molecule about 22 nucleotides in length. The paper describes a web server for predicting miRNAs and their precursors and binding sites. The predictions are based on either sequence similarity to known miRNAs of 223 organisms or context-structural hidden Markov models. It has been shown that the proposed methods of prediction of human miRNAs and pre-miRNAs outperform the existing ones in accuracy. The average deviation of predicted 5'-ends of human miRNAs from actual positions is 3.13 nt in the case of predicting one pair of complementary miRNAs (miRNA-miRNA* duplex). A useful option for our application is the prediction of an additional miRNA pair. In this mode, the pairs closest to actual miRNA deviate by 1.61 nt on average. The proposed method also shows good performance in predicting mouse miRNAs. Binding sites for miRNAs are predicted by two known approaches based on complementarity and thermodynamic stability of the miRNA-mRNA duplex and on a new approach, which takes into account miRNAs competition for the site. The role of the secondary structure in miRNA processing is considered. The web server is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/rnaanalys/. PMID:26510603

  12. A bootstrap based analysis pipeline for efficient classification of phylogenetically related animal miRNAs

    PubMed Central

    Huang, Yong; Gu, Xun

    2007-01-01

    Background Phylogenetically related miRNAs (miRNA families) convey important information of the function and evolution of miRNAs. Due to the special sequence features of miRNAs, pair-wise sequence identity between miRNA precursors alone is often inadequate for unequivocally judging the phylogenetic relationships between miRNAs. Most of the current methods for miRNA classification rely heavily on manual inspection and lack measurements of the reliability of the results. Results In this study, we designed an analysis pipeline (the Phylogeny-Bootstrap-Cluster (PBC) pipeline) to identify miRNA families based on branch stability in the bootstrap trees derived from overlapping genome-wide miRNA sequence sets. We tested the PBC analysis pipeline with the miRNAs from six animal species, H. sapiens, M. musculus, G. gallus, D. rerio, D. melanogaster, and C. elegans. The resulting classification was compared with the miRNA families defined in miRBase. The two classifications were largely consistent. Conclusion The PBC analysis pipeline is an efficient method for classifying large numbers of heterogeneous miRNA sequences. It requires minimum human involvement and provides measurements of the reliability of the classification results. PMID:17341314

  13. Deregulation of the miRNAs Expression in Cervical Cancer: Human Papillomavirus Implications

    PubMed Central

    Gómez-Gómez, Yazmín; Organista-Nava, Jorge; Gariglio, Patricio

    2013-01-01

    MicroRNAs (miRNAs) are a class of small non coding RNAs of 18–25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC. PMID:24490161

  14. Deregulation of the miRNAs expression in cervical cancer: human papillomavirus implications.

    PubMed

    Gómez-Gómez, Yazmín; Organista-Nava, Jorge; Gariglio, Patricio

    2013-01-01

    MicroRNAs (miRNAs) are a class of small non coding RNAs of 18-25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC.

  15. Upregulation of miRNA3195 and miRNA374b Mediates the Anti-Angiogenic Properties of Melatonin in Hypoxic PC-3 Prostate Cancer Cells

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Lee, Sangyoon; Kim, Sung-hoon

    2015-01-01

    Recently microRNAs (miRNAs) have been attractive targets with their key roles in biological regulation through post-transcription to control mRNA stability and protein translation. Though melatonin was known as an anti-angiogenic agent, the underlying mechanism of melatonin in PC-3 prostate cancer cells under hypoxia still remains unclear. Thus, in the current study, we elucidated the important roles of miRNAs in melatonin-induced anti-angiogenic activity in hypoxic PC-3 cells. miRNA array revealed that 33 miRNAs (>2 folds) including miRNA3195 and miRNA 374b were significantly upregulated and 16 miRNAs were downregulated in melatonin-treated PC-3 cells under hypoxia compared to untreated control. Melatonin significantly attenuated the expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha and vascular endothelial growth factor (VEGF) at mRNA level in hypoxic PC-3 cells. Consistently, melatonin enhanced the expression of miRNA3195 and miRNA 374b in hypoxic PC-3 cells by qRT-PCR analysis. Of note, overexpression of miRNA3195 and miRNA374b mimics attenuated the mRNA levels of angiogenesis related genes such as HIF-1alpha, HIF-2 alpha and VEGF in PC-3 cells under hypoxia. Furthermore, overexpression of miRNA3195 and miRNA374b suppressed typical angiogenic protein VEGF at the protein level and VEGF production induced by melatonin, while antisense oligonucleotides against miRNA 3195 or miRNA 374b did not affect VEGF production induced by melatonin. Also, overexpression of miR3195 or miR374b reduced HIF-1 alpha immunofluorescent expression in hypoxic PC-3 compared to untreated control. Overall, our findings suggest that upregulation of miRNA3195 and miRNA374b mediates anti-angiogenic property induced by melatonin in hypoxic PC-3 cells. PMID:25553085

  16. Circulating miRNA Biomarkers for Alzheimer's Disease

    PubMed Central

    Kumar, Pavan; Dezso, Zoltan; MacKenzie, Crystal; Oestreicher, Judy; Agoulnik, Sergei; Byrne, Michael; Bernier, Francois; Yanagimachi, Mamoru; Aoshima, Ken; Oda, Yoshiya

    2013-01-01

    A minimally invasive diagnostic assay for early detection of Alzheimer's disease (AD) is required to select optimal patient groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care. Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ∼22 nt length and are now recognized to regulate ∼60% of all known genes through post-transcriptional gene silencing (RNAi). They have potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls (NC) with >95% accuracy (AUC of 0.953). There was a >2 fold difference for all signature miRNAs between the AD and NC samples, with p-values<0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a role in AD etiology. PMID:23922807

  17. Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles

    PubMed Central

    Calura, Enrica; Martini, Paolo; Sales, Gabriele; Beltrame, Luca; Chiorino, Giovanna; D’Incalci, Maurizio; Marchini, Sergio; Romualdi, Chiara

    2014-01-01

    The production rate of gene expression data is nothing less than astounding. However, with the benefit of hindsight we can assert that, since we completely ignored the non-coding part of the transcriptome, we spent the last decade to study cell mechanisms having few data in our hands. In this scenario, microRNAs, which are key post-trascriptional regulators, deserve special attention. Given the state of knowledge about their biogenesis, mechanisms of action and the numerous experimentally validated target genes, miRNAs are also gradually appearing in the formal pathway representations such as KEGG and Reactome maps. However, the number of miRNAs annotated in pathway maps are very few and pathway analyses exploiting this new regulatory layer are still lacking. To fill these gaps, we present ‘micrographite’ a new pipeline to perform topological pathway analysis integrating gene and miRNA expression profiles. Here, micrographite is used to study and dissect the epithelial ovarian cancer gene and miRNA transcriptome defining and validating a new regulatory circuit related to ovarian cancer histotype specificity. PMID:24803669

  18. Multiplexed miRNA Fluorescence In Situ Hybridization for Formalin-Fixed Paraffin-Embedded Tissues

    PubMed Central

    Renwick, Neil; Cekan, Pavol; Bognanni, Claudia; Tuschl, Thomas

    2015-01-01

    Multiplexed miRNA fluorescence in situ hybridization (miRNA FISH) is an advanced method for visualizing differentially expressed miRNAs, together with other reference RNAs, in archival tissues. Some miRNAs are excellent disease biomarkers due to their abundance and cell-type specificity. However, these short RNA molecules are difficult to visualize due to loss by diffusion, probe mishybridization, and signal detection and signal amplification issues. Here, we describe a reliable and adjustable method for visualizing and normalizing miRNA signals in formalin-fixed paraffin-embedded (FFPE) tissue sections. PMID:25218385

  19. Developing miRNA therapeutics for cardiac repair in ischemic heart disease

    PubMed Central

    Zhu, Kai; Liu, Dingqian; Lai, Hao

    2016-01-01

    MicroRNAs (miRNAs) families have been found to be powerful regulators in a wide variety of diseases, which enables the possible use of miRNAs in therapeutic strategies for cardiac repair after ischemic heart disease. This review provides some general insights into miRNAs modulation for development of current molecular and cellular therapeutics in cardiac repair, including endogenous regeneration, endogenous repair, stem cells transplantation, and reprogramming. We also review the delivery strategies for miRNAs modulation, and briefly summarize the current bench and clinical efforts that are being made to explore miRNAs as the future therapeutic target. PMID:27747027

  20. [Progress on the miRNA related with mammary gland development and lactation].

    PubMed

    Jin, Xiao-Lu; Yang, Jian-Xiang; Li, Zhen; Liu, Hong-Yun; Liu, Jian-Xin

    2013-06-01

    MicroRNAs (miRNAs) are non-coding RNAs that play important roles in post transcriptional regulation. They are involved in the regulation of mammary gland development and lactation. In this paper, we summarized the expression pattern of miRNAs which varied with tissues and lactation stages, and the functions of several miRNAs are also briefly reviewed. The objective of this work is to give reference for further study on miRNAs in mammary gland, and to provide theoretical basis and ideas for the use of miRNAs in improving healthy development of mammary gland and regulating the efficiency of lactation and the quality of milk.

  1. A guide for miRNA target prediction and analysis using web-based applications.

    PubMed

    Leitão, Ana Lúcia; Costa, Marina C; Enguita, Francisco J

    2014-01-01

    MiRNAs are small noncoding RNAs which act by binding to the 3'UTR of mRNA transcripts to exert a negative regulatory effect. The miRNA binding to its target follows rules based on the base complementarity of the seed sequence (2-9 first nucleotides of the miRNA sequence). Several algorithms have been developed to predict miRNA binding to genomic targets and its physiological consequences. This chapter will describe several practical aspects for the use of miRNA target prediction algorithms taking advantage of their web interfaces as well as how to produce integrative results in a graphical manner.

  2. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya.

    PubMed

    Liang, Gang; Li, Yang; He, Hua; Wang, Fang; Yu, Diqiu

    2013-10-01

    Plant microRNAs (miRNAs) post-transcriptionally regulate target gene expression to modulate growth and development and biotic and abiotic stress responses. By analyzing small RNA deep sequencing data in combination with the genome sequence, we identified 75 conserved miRNAs and 11 novel miRNAs. Their target genes were also predicted. For most conserved miRNAs, the miRNA-target pairs were conserved across plant species. In addition to these conserved miRNA-target pairs, we also identified some papaya-specific miRNA-target regulatory pathways. Both miR168 and miR530 target the Argonaute 1 gene, indicating a second autoregulatory mechanism for miRNA regulation. A non-conserved miRNA was mapped within an intron of Dicer-like 1 (DCL1), suggesting a conserved homeostatic autoregulatory mechanism for DCL1 expression. A 21-nt miRNA triggers secondary siRNA production from its target genes, nucleotide-binding site leucine-rich repeat protein genes. Certain phased-miRNAs were processed from their conserved miRNA precursors, indicating a putative miRNA evolution mechanism. In addition, we identified a Carica papaya-specific miRNA that targets an ethylene receptor gene, implying its function in the ethylene signaling pathway. This work will also advance our understanding of miRNA functions and evolution in plants.

  3. Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans.

    PubMed

    Tomé-Carneiro, Joao; Crespo, María Carmen; Iglesias-Gutierrez, Eduardo; Martín, Roberto; Gil-Zamorano, Judit; Tomas-Zapico, Cristina; Burgos-Ramos, Emma; Correa, Carlos; Gómez-Coronado, Diego; Lasunción, Miguel A; Herrera, Emilio; Visioli, Francesco; Dávalos, Alberto

    2016-08-01

    Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols, hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also, HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized, double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However, the effects of HT on triglycerides warrant further investigations. PMID:27322812

  4. Regulation of the alkaloid biosynthesis by miRNA in opium poppy.

    PubMed

    Boke, Hatice; Ozhuner, Esma; Turktas, Mine; Parmaksiz, Iskender; Ozcan, Sebahattin; Unver, Turgay

    2015-04-01

    Opium poppy (Papaver somniferum) is an important medicinal plant producing benzylisoquinoline alkaloids (BIA). MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) of approximately 21 nucleotides. They are noncoding, but regulate gene expression in eukaryotes. Although many studies have been conducted on the identification and functions of plant miRNA, scarce researches on miRNA regulation of alkaloid biosynthesis have been reported. In this study, a total of 316 conserved and 11 novel miRNAs were identified in opium poppy using second-generation sequencing and direct cloning. Tissue-specific regulation of miRNA expression was comparatively analysed by miRNA microarray assays. A total of 232 miRNAs were found to be differentially expressed among four tissues. Likewise, 1469 target transcripts were detected using in silico and experimental approaches. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates carbohydrate metabolism and genetic-information processing. Additionally, miRNA target transcripts were mostly involved in response to stress against various factors and secondary-metabolite biosynthesis processes. Target transcript identification analyses revealed that some of the miRNAs might be involved in BIA biosynthesis, such as pso-miR13, pso-miR2161 and pso-miR408. Additionally, three putatively mature miRNA sequences were predicted to be targeting BIA-biosynthesis genes.

  5. Transcriptome and small RNA deep sequencing reveals deregulation of miRNA biogenesis in human glioma.

    PubMed

    Moore, Lynette M; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N; Zhang, Wei; Nykter, Matti

    2013-02-01

    Altered expression of oncogenic and tumour-suppressing microRNAs (miRNAs) is widely associated with tumourigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumours. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and examined expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression.

  6. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  7. Identification of Dirofilaria immitis miRNA using illumina deep sequencing

    PubMed Central

    2013-01-01

    The heartworm Dirofilaria immitis is the causative agent of cardiopulmonary dirofilariosis in dogs and cats, which also infects a wide range of wild mammals and humans. The complex life cycle of D. immitis with several developmental stages in its invertebrate mosquito vectors and its vertebrate hosts indicates the importance of miRNA in growth and development, and their ability to regulate infection of mammalian hosts. This study identified the miRNA profiles of D. immitis of zoonotic significance by deep sequencing. A total of 1063 conserved miRNA candidates, including 68 anti-sense miRNA (miRNA*) sequences, were predicted by computational methods and could be grouped into 808 miRNA families. A significant bias towards family members, family abundance and sequence nucleotides was observed. Thirteen novel miRNA candidates were predicted by alignment with the Brugia malayi genome. Eleven out of 13 predicted miRNA candidates were verified by using a PCR-based method. Target genes of the novel miRNA candidates were predicted by using the heartworm transcriptome dataset. To our knowledge, this is the first report of miRNA profiles in D. immitis, which will contribute to a better understanding of the complex biology of this zoonotic filarial nematode and the molecular regulation roles of miRNA involved. Our findings may also become a useful resource for small RNA studies in other filarial parasitic nematodes. PMID:23331513

  8. Regulation of the alkaloid biosynthesis by miRNA in opium poppy.

    PubMed

    Boke, Hatice; Ozhuner, Esma; Turktas, Mine; Parmaksiz, Iskender; Ozcan, Sebahattin; Unver, Turgay

    2015-04-01

    Opium poppy (Papaver somniferum) is an important medicinal plant producing benzylisoquinoline alkaloids (BIA). MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) of approximately 21 nucleotides. They are noncoding, but regulate gene expression in eukaryotes. Although many studies have been conducted on the identification and functions of plant miRNA, scarce researches on miRNA regulation of alkaloid biosynthesis have been reported. In this study, a total of 316 conserved and 11 novel miRNAs were identified in opium poppy using second-generation sequencing and direct cloning. Tissue-specific regulation of miRNA expression was comparatively analysed by miRNA microarray assays. A total of 232 miRNAs were found to be differentially expressed among four tissues. Likewise, 1469 target transcripts were detected using in silico and experimental approaches. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates carbohydrate metabolism and genetic-information processing. Additionally, miRNA target transcripts were mostly involved in response to stress against various factors and secondary-metabolite biosynthesis processes. Target transcript identification analyses revealed that some of the miRNAs might be involved in BIA biosynthesis, such as pso-miR13, pso-miR2161 and pso-miR408. Additionally, three putatively mature miRNA sequences were predicted to be targeting BIA-biosynthesis genes. PMID:25735537

  9. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths

    PubMed Central

    Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.

    2015-01-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364

  10. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    PubMed

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. PMID:25380780

  11. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland.

    PubMed

    Zhang, Xiaoying; Cairns, Murray; Rose, Barbara; O'Brien, Christopher; Shannon, Kerwin; Clark, Jonathan; Gamble, Jennifer; Tran, Nham

    2009-06-15

    Genome-wide microRNA (miRNA) expression profiling of salivary gland pleomorphic adenomas revealed a distinct expression signature consisting largely of upregulated miRNAs compared with matched normal tissue. Microarray data were confirmed by quantitative real time RT-PCR (q-RTPCR). Five miRNA genes upregulated in the tumours were found in close proximity to fragile sites and/or cancer associated genomic regions. Interestingly, q-RTPCR revealed an increase in the expression of components of the miRNA processing machinery (Dicer, Drosha, DGCR8 and p68) in tumours suggesting that the deregulation of miRNA expression may result from increased miRNA biogenesis. Target gene prediction analysis of the altered miRNAs indicated that genes in a number of signalling pathways important in tumourigenesis including WNT, MAPK and JAK-STAT were overrepresented. Significantly, the oncogene PLAG1 was overexpressed in our cohort and may be potentially regulated by these miRNAs. This is the first study to examine changes in the miRNA milieu in pleomorphic adenoma, the most common salivary gland tumour. This study has demonstrated an upregulation of both miRNAs genes and an upregulation of the miRNA processing machinery. These changes may be potential underlying mechanisms for the development of these benign tumours.

  12. Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate

    PubMed Central

    Shalgi, Reut; Brosh, Ran; Oren, Moshe; Pilpel, Yitzhak; Rotter, Varda

    2009-01-01

    miRNAs function as a critical regulatory layer in development, differentiation, and the maintenance of cell fate. Depletion of miRNAs from embryonic stem cells impairs their differentiation capacity. Total elimination of miRNAs leads to premature senescence in normal cells and tissues through activation of the DNA-damage checkpoint, whereas ablation of miRNAs in cancer cell lines results in an opposite effect, enhancing their tumorigenic potential. Here we compile evidence from the literature that point at miRNAs as key players in the maintenance of genomic integrity and proper cell fate. There is an apparent gap between our understanding of the subtle way by which miRNAs modulate protein levels, and their profound impact on cell fate. We propose that examining miRNAs in the context of the regulatory transcriptional and post-transcriptional networks they are embedded in may provide a broader view of their role in controlling cell fate. PMID:20157565

  13. miRNAs Are Involved in Determining the Improved Vigor of Autotetrapoid Chrysanthemum nankingense

    PubMed Central

    Dong, Bin; Wang, Haibin; Song, Aiping; Liu, Tao; Chen, Yun; Fang, Weimin; Chen, Sumei; Chen, Fadi; Guan, Zhiyong; Jiang, Jiafu

    2016-01-01

    Many plant species are autopolyploid, a condition frequently associated with improvements in both vegetative and reproductive vigor. The possible contribution of miRNAs to this improvement was investigated by characterizing the miRNA content of a diploid and an autotetraploid form of Chrysanthemum nankingense. 162 and 161 known miRNA sequences were identified in 2x and 4x library. The length of 22 and 25 nt was predominant in diploid. However, 21 and 24 nt showed dominance in autotetraploid. It seems likely that autopolyploidization have had an immediate effect the distribution of miRNAs. In addition, the abundance of the miRNAs differed markedly between the two ploidy levels and contributed to their targets diversity. A number of target genes associated with miRNAs play important roles in growth and development. The conclusion was that some miRNAs likely make a contribution to the vigor displayed by autotetraploid C. nankingense. PMID:27733854

  14. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria

    PubMed Central

    Aranda, Manuel; Ravasi, Timothy

    2016-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae. PMID:26871907

  15. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria.

    PubMed

    Liew, Yi Jin; Ryu, Taewoo; Aranda, Manuel; Ravasi, Timothy

    2016-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae. PMID:26871907

  16. Three new species of eriophyoid mites from grass hosts in Croatia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new species of grass-feeding eriophyid mites are described from Croatia: Acaralox croatiae n. sp., inhabiting purple moorgrass, Molinia coerulea (L.) Moench; Aculodes festucae n. sp., inhabiting tall fescue, Festuca arundinacea Schreb.; and Aculodes sylvatici n. sp., inhabiting false brome, Br...

  17. Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp

    PubMed Central

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  18. Functional divergence of the miRNA transcriptome at the onset of Drosophila metamorphosis.

    PubMed

    Yeh, Shu-Dan; von Grotthuss, Marcin; Gandasetiawan, Kania A; Jayasekera, Suvini; Xia, Xiao-Qin; Chan, Carolus; Jayaswal, Vivek; Ranz, José M

    2014-10-01

    MicroRNAs (miRNAs) are endogenous RNA molecules that regulate gene expression posttranscriptionally. To date, the emergence of miRNAs and their patterns of sequence evolution have been analyzed in great detail. However, the extent to which miRNA expression levels have evolved over time, the role different evolutionary forces play in shaping these changes, and whether this variation in miRNA expression can reveal the interplay between miRNAs and mRNAs remain poorly understood. This is especially true for miRNA expressed during key developmental transitions. Here, we assayed miRNA expression levels immediately before (≥18BPF [18 h before puparium formation]) and after (PF) the increase in the hormone ecdysone responsible for triggering metamorphosis. We did so in four strains of Drosophila melanogaster and two closely related species. In contrast to their sequence conservation, approximately 25% of miRNAs analyzed showed significant within-species variation in male expression levels at ≥18BPF and/or PF. Additionally, approximately 33% showed modifications in their pattern of expression bias between developmental timepoints. A separate analysis of the ≥18BPF and PF stages revealed that changes in miRNA abundance accumulate linearly over evolutionary time at PF but not at ≥18BPF. Importantly, ≥18BPF-enriched miRNAs showed the greatest variation in expression levels both within and between species, so are the less likely to evolve under stabilizing selection. Functional attributes, such as expression ubiquity, appeared more tightly associated with lower levels of miRNA expression polymorphism at PF than at ≥18BPF. Furthermore, ≥18BPF- and PF-enriched miRNAs showed opposite patterns of covariation in expression with mRNAs, which denoted the type of regulatory relationship between miRNAs and mRNAs. Collectively, our results show contrasting patterns of functional divergence associated with miRNA expression levels during Drosophila ontogeny.

  19. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  20. Evolutionary comparisons of miRNA regulation system in six model organisms.

    PubMed

    Mao, Xiaofan; Li, Li; Cao, Yicheng

    2014-02-01

    miRNAs are a class of endogenous small non-coding regulatory RNAs, that can mediate the transcriptional gene silencing as well as gene expression activation. miRNAs, which are found in a wide range of species, participate in cell differentiation, proliferation, development, apoptosis, tumorigenesis, metabolism, immune system, and signaling pathways. Here, we focused on the relationship between evolution and the miRNA system, with an emphasis on both miRNAs and their target genes. Six species from the evolutionary ladder were selected as a focus of this study. Public data were retrieved and combined to compare miRNAs abundance, miRNA families, molecular functions of target genes, biological processes of target genes, protein families of target gene products, transcription factors regulated by the miRNAs, signaling pathways and tissues across the six species. We found that the expansion rate of miRNAs was significantly higher compared to other genes in human evolution. Newborn miRNA families, which were quantitatively larger than dead miRNA families, seem to be closely related to the species complexity and tissue specificity. Additionally, miRNAs in higher order species were more likely to target genes related to signaling and the immune system, while miRNAs from lower order species preferred to target genes related to the embryonic development process, reproduction and growth. Meanwhile, miRNA systems displayed diversity in regulating transcription factors, signaling pathways and tissues. Our research suggested that the miRNA system might promote evolution, especially in higher species.

  1. Characterization and comparative profiling of MiRNA transcriptomes in bighead carp and silver carp.

    PubMed

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large 'hairpin' precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  2. MiRNA-21 Expression Decreases from Primary Tumors to Liver Metastases in Colorectal Carcinoma

    PubMed Central

    Feiersinger, Fabian; Nolte, Elke; Wach, Sven; Rau, Tilman T.; Vassos, Nikolaos; Geppert, Carol; Konrad, Andreas; Merkel, Susanne; Taubert, Helge; Stürzl, Michael; Croner, Roland S.

    2016-01-01

    Objective Metastasis is the major cause of death in colorectal cancer patients. Expression of certain miRNAs in the primary tumors has been shown to be associated with progression of colorectal cancer and the initiation of metastasis. In this study, we compared miRNA expression in primary colorectal cancer and corresponding liver metastases in order to get an idea of the oncogenic importance of the miRNAs in established metastases. Methods We analyzed the expression of miRNA-21, miRNA-31 and miRNA-373 in corresponding formalin-fixed paraffin-embedded (FFPE) tissue samples of primary colorectal cancer, liver metastasis and healthy tissues of 29 patients by quantitative real-time PCR. Results All three miRNAs were significantly up-regulated in the primary tumor tissues as compared to healthy colon mucosa of the respective patients (p < 0.01). MiRNA-21 and miRNA-31 were also higher expressed in liver metastases as compared to healthy liver tissues (p < 0.01). No significant difference of expression of miRNA-31 and miRNA-373 was observed between primary tumors and metastases. Of note, miRNA-21 expression was significantly reduced in liver metastases as compared to the primary colorectal tumors (p < 0.01). Conclusion In the context of previous studies demonstrating increased miRNA-21 expression in metastatic primary tumors, our findings raise the question whether miRNA-21 might be involved in the initiation but not in the perpetuation and growth of metastases. PMID:26845148

  3. Regulation of Gene Expression in Plants through miRNA Inactivation

    PubMed Central

    Zhang, Yuanji; Ziegler, Todd E.; Roberts, James K.; Heck, Gregory R.

    2011-01-01

    Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA) sites embedded in either non-protein-coding or within the 3′ untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants. PMID:21731706

  4. Plasma miRNA-506 as a Prognostic Biomarker for Esophageal Squamous Cell Carcinoma

    PubMed Central

    Li, Shu-Ping; Su, Hong-Xin; Zhao, Da; Guan, Quan-Lin

    2016-01-01

    Background MicroRNAs (miRNAs) are responsible for regulating proliferation, differentiation, apoptosis, invasion, and metastasis in tumor cells. miRNA-506 is abnormally expressed in multiple tumors, indicating that it might be oncogenic or tumor-suppressive. However, little is known about the association between miRNA-506 expression and esophageal squamous cell carcinoma (ESCC). Material/Methods We examined the expression of miRNA-506 in the plasma of ESCC patients using quantitative real-time polymerase chain reaction (qRT-PCR) to determine the association between miRNA-506 expression and clinicopathological features of ESCC. ROC curves were produced for ESCC diagnosis by plasma miRNA-506 and the area under curve was calculated to explore its diagnostic value. Results Average miRNA-506 expression levels were remarkably higher in the plasma of ESCC patients than in healthy volunteers (P<0.001). The expression of miRNA-506 in the plasma was closely associated with lymph node status (P=0.004), TNM stage (P=0.031), and tumor length (P<0.001). According to ROC curves, the area under the curve for plasma miRNA-506 was 0.835, indicating statistical significance for ESCC diagnosis by plasma miRNA-506 (P<0.001). Kaplan-Meier analysis showed that patients with high miRNA-506 expression had significantly shorter survival time than those with low miRNA-506 expression. Cox regression analysis demonstrated that T stage, N stage, tumor length, and miRNA-506 expression levels were significantly correlated with prognosis in ESCC patients. Conclusions miRNA-506 can serve as an important molecular marker for diagnosis and prognostic prediction of ESCC. PMID:27345473

  5. Conserved miRNAs and their targets identified in lettuce (Lactuca) by EST analysis.

    PubMed

    Han, Yousheng; Zhu, Benzhong; Luan, Fulei; Zhu, Hongliang; Shao, Yi; Chen, Anjun; Lu, Chengwen; Luo, Yunbo

    2010-09-01

    MicroRNAs (miRNAs) are a newly identified class of endogenous, non-coding, short ( approximately 21nt) RNAs that play important roles in regulating gene expression at post-transcriptional level by targeting mRNA cleavage or translational inhibition in plants and animals. Though there are lots of differences between plant miRNAs and animal miRNAs, most of these tiny RNAs are highly conserved in each kingdom. Here, we show the conserved miRNAs in lettuce (Lactuca) identified using EST (expressed sequence tag) analysis. Namely, all previously known miRNAs in other plant species were blasted against lettuce EST sequences to select novel miRNAs in lettuce by a series of filtering criteria. By this strategy, we found a total of 21 conserved miRNAs belonging to 12 miRNA families. After analyzing the conservation and evolution of lettuce miRNAs and their counterparts in other plant species, we revealed that though miRNAs are highly conserved, some specific sites are more likely to mutate. To confirm the expression of identified miRNAs in lettuce, an RT-PCR approach was employed. Moreover, all identified lettuce miRNAs were used to search their potential target genes by miRU web-server from TIGR database available at http://www.tigr.org and a total of 63 potential targets for 10 identified miRNA families in lettuce were found. Similar to previous works, some miRNA targets are transcription factors involved in lettuce growth and development, metabolism, and stress responses.

  6. Exosomes and Exosomal miRNA in Respiratory Diseases

    PubMed Central

    Alipoor, Shamila D.; Garssen, Johan; Movassaghi, Masoud

    2016-01-01

    Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases. PMID:27738390

  7. UPR-inducible miRNAs contribute to stressful situations.

    PubMed

    Chitnis, Nilesh; Pytel, Dariusz; Diehl, J Alan

    2013-09-01

    The endoplasmic reticulum (ER) senses both extracellular and intracellular stresses that can disrupt its ability to facilitate the maturation of proteins destined for secretory pathways. The accumulation of misfolded proteins within the ER triggers an adaptive signaling pathway coined the unfolded protein response (UPR). UPR activation contributes to cell adaptation by reducing the rate of protein translation while increasing the synthesis of chaperones. Although we have gained considerable insight into the mechanisms that regulate gene expression and certain aspects of protein translation, the contribution of miRNAs to UPR-dependent activities has only recently been investigated. Here we highlight recent insights into the contribution of miRNAs to UPR-dependent cellular adaptive responses.

  8. miRNA signature identification of retinoblastoma and the correlations between differentially expressed miRNAs during retinoblastoma progression

    PubMed Central

    Yang, Yang

    2015-01-01

    Purpose Retinoblastoma (RB) is a common pediatric cancer. The study aimed to uncover the mechanisms of RB progression and identify novel therapeutic biomarkers. Methods The miRNA expression profile GSE7072, which includes three RB samples and three healthy retina samples, was used. After data normalization using the preprocessCore package, differentially expressed miRNAs (DE-miRs) were selected by the limma package. The targets of the DE-miRs were predicted based on two databases, followed by construction of the miRNA–target network. Pathway enrichment analysis was conducted for the targets of the DE-miRNAs using DAVID. The CTD database was used to predict RB-related genes, followed by clustering analysis using the pvclust package. The correlation network of DE-miRs was established. MiRNA expression was validated in another data set, GSE41321. Results In total, 24 DE-miRs were identified whose targets were correlated with the cell cycle pathway. Among them, hsa-miR-373, hsa-miR-125b, and hsa-miR-181a were highlighted in the miRNA–target regulatory network; 14 DE-miRs, including hsa-miR-373, hsa-miR-125b, hsa-miR-18a, hsa-miR-25, hsa-miR-20a, and hsa-let-7 (a, b, c), were shown to distinguish RB from healthy tissue. In addition, hsa-miR-25, hsa-miR-18a, and hsa-miR-20a shared the common target BCL2L11; hsa-let-7b and hsa-miR-125b targeted the genes CDC25A, CDK6, and LIN28A. Expression of three miRNAs in GSE41321 was consistent with that in GSE7072. Conclusions Several critical miRNAs were identified in RB progression. Hsa-miR-373 might regulate RB invasion and metastasis, hsa-miR-181a might involve in the CDKN1B-mediated cell cycle pathway, and hsa-miR-125b and hsa-let-7b might serve as tumor suppressors by coregulating CDK6, CDC25A, and LIN28A. The miRNAs hsa-miR-25, hsa-miR-18a, and hsa-miR-20a might exert their function by coregulating BCL2L1. PMID:26730174

  9. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and ...

  10. Role of miRNA-9 in Brain Development

    PubMed Central

    Radhakrishnan, Balachandar; Alwin Prem Anand, A.

    2016-01-01

    MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern. PMID:27721656

  11. Multiplexed miRNA northern blots via hybridization chain reaction

    PubMed Central

    Schwarzkopf, Maayan; Pierce, Niles A.

    2016-01-01

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2′OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs. PMID:27270083

  12. Multiplexed miRNA northern blots via hybridization chain reaction.

    PubMed

    Schwarzkopf, Maayan; Pierce, Niles A

    2016-09-01

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2'OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs. PMID:27270083

  13. Assessing Agreement between miRNA Microarray Platforms

    PubMed Central

    Bassani, Niccolò P.; Ambrogi, Federico; Biganzoli, Elia M.

    2014-01-01

    Over the last few years, miRNA microarray platforms have provided great insights into the biological mechanisms underlying the onset and development of several diseases. However, only a few studies have evaluated the concordance between different microarray platforms using methods that took into account measurement error in the data. In this work, we propose the use of a modified version of the Bland–Altman plot to assess agreement between microarray platforms. To this aim, two samples, one renal tumor cell line and a pool of 20 different human normal tissues, were profiled using three different miRNA platforms (Affymetrix, Agilent, Illumina) on triplicate arrays. Intra-platform reliability was assessed by calculating pair-wise concordance correlation coefficients (CCC) between technical replicates and overall concordance correlation coefficient (OCCC) with bootstrap percentile confidence intervals, which revealed moderate-to-good repeatability of all platforms for both samples. Modified Bland–Altman analysis revealed good patterns of concordance for Agilent and Illumina, whereas Affymetrix showed poor-to-moderate agreement for both samples considered. The proposed method is useful to assess agreement between array platforms by modifying the original Bland–Altman plot to let it account for measurement error and bias correction and can be used to assess patterns of concordance between other kinds of arrays other than miRNA microarrays.

  14. MiRNA-20 and MiRNA-106a Regulate Spermatogonial Stem Cell Renewal at the Post-transcriptional Level via Targeting STAT3 and Ccnd1

    PubMed Central

    He, Zuping; Jiang, Jiji; Kokkinaki, Maria; Tang, Lin; Zeng, Wenxian; Gallicano, Ian; Dobrinski, Ina; Dym, Martin

    2013-01-01

    Studies onspermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction. PMID:23836497

  15. Genome-wide analysis for discovery of new rice miRNA reveals natural antisense miRNA (nat-miRNAs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small RNAs (21-24nt) are involved in gene regulation through translation inhibition, mRNA cleavage, or directing chromatin modifications. In rice, currently ~240 miRNAs have been annotated. We sequenced more than four million small RNAs from rice and identified another 24 miRNA genes. Among these, w...

  16. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    PubMed

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  17. SIV replication is directly downregulated by four antiviral miRNAs

    PubMed Central

    2013-01-01

    Background Host cell microRNAs (miRNAs) have been shown to regulate the expression of both cellular and viral RNAs, in particular impacting both Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). To investigate the role of miRNAs in regulating replication of the simian immunodeficiency virus (SIV) in macrophage lineage cells, we used primary macrophages to study targeting of SIV RNA by miRNAs. We examined whether specific host miRNAs directly target SIV RNA early in infection and might be induced via type I interferon pathways. Results miRNA target prediction programs identified miRNA binding sites within SIV RNA. Predicted binding sites for miRs-29a, -29b, -9 and -146a were identified in the SIV Nef/U3 and R regions, and all four miRNAs decreased virus production and viral RNA expression in primary macrophages. To determine whether levels of these miRNAs were affected by SIV infection, IFNβ or TNFα treatments, miRNA RT-qPCR assays measured miRNA levels after infection or treatment of macrophages. SIV RNA levels as well as virus production was downregulated by direct targeting of the SIV Nef/U3 and R regions by four miRNAs. miRs-29a, -29b, -9 and -146a were induced in primary macrophages after SIV infection. Each of these miRNAs was regulated by innate immune signaling through TNFα and/or the type I IFN, IFNβ. Conclusions The effects on miRNAs caused by HIV/SIV infection are illustrated by changes in their cellular expression throughout the course of disease, and in different patient populations. Our data demonstrate that levels of primary transcripts and mature miRs-29a, -29b, -9 and -146a are modulated by SIV infection. We show that the SIV 3′ UTR contains functional miRNA response elements (MREs) for all four miRNAs. Notably, these miRNAs regulate virus production and viral RNA levels in macrophages, the primary cells infected in the CNS that drive inflammation leading to HIV-associated neurocognitive disorders. This report may aid in

  18. Effects of form of nitrogen fertilization on the accumulation of Pb, As, Sc Ge and U in shoots of reed canary grass (Phalaris arundinacea L.)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    Nitrogen (N) fertilization is necessary for growth and development of plants but it may also causes an increased metal uptake by plants due to changes of physiochemical properties of the elements in soil. The research in phytoremediation and phytomining conducted so far has revealed that the effect of nitrogen fertilizers initially depends on the form of application, as N is the only element that can be readily utilized by plants in its cationic (ammonia) or anionic form (nitrate) causing several effects in soil-plant system. However, to our knowledge most of the recent studies only documented an improvement of yield parameters and the uptake of heavy metals by plants as a result of different forms of N-fertilization. Here we report the result of a field experiment were we tried to obtain more information about the effects of form of N-fertilization on uptake of As, Pb, Sc Ge and U in reed canary grass (Phalaris arundinacea L.). In this study, reed canary grass was grown on 15 plots (4 m² each) under field conditions on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the effects of a fertilization with different N-forms on the accumulation, the plots plants received 5 g N / m² in three doses as NH4SO4, Mg(NO3)2 or NH4NO3. The geometrical arrangement of plots was randomized and every treatment was fivefold replicated. After a 50 day period of plant growth, the plants were harvested and concentrations of trace metals in the shoots were measured with ICP-MS. As a result of the different N-treatments we found that in plants treated with NH4SO4 concentrations of Pb and As as well as of Sc, Ge and U were significantly increased in plant tissues compared to plants treated with NH4NO3. Furthermore, no significant changes in mineral composition of plants between the Mg(NO3)2 and NH4NO3 treatments could be observed. Our interpretation of these results is that it might be an effect of the acidification of

  19. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance

    PubMed Central

    Leidinger, Petra; Backes, Christina; Rheinheimer, Stefanie; Keller, Andreas; Meese, Eckart

    2015-01-01

    Background Circulating microRNAs (miRNAs) from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min), 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples) we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays. Results While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003). Validation by qRT-PCR confirmed this finding. Conclusion The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA

  20. miRNA Profiling Reveals Dysregulation of RET and RET-Regulating Pathways in Hirschsprung's Disease.

    PubMed

    Li, Shuangshuang; Wang, Shiqi; Guo, Zhenhua; Wu, Huan; Jin, Xianqing; Wang, Yi; Li, Xiaoqing; Liang, Shaoyan

    2016-01-01

    Hirschsprung's disease (HSCR), the most common congenital malformation of the gut, is regulated by multiple signal transduction pathways. Several components of these pathways are important targets for microRNAs (miRNAs). Multiple miRNAs have been associated with the pathophysiology of HSCR, and serum miRNAs profiles of HSCR patients have been reported, but miRNA expression in HSCR colon tissue is almost completely unexplored. Using microarray technology, we screened colon tissue to detect miRNAs whose expression profiles were altered in HSCR and identify targets of differentially expressed miRNAs. Following filtering of low-intensity signals, data normalization, and volcano plot filtering, we identified 168 differentially expressed miRNAs (104 up-regulated and 64 down-regulated). Fifty of these mRNAs represent major targets of dysegulated miRNAs and may thus important roles in the pathophysiology of HSCR. Pathway analysis revealed that 7 of the miRNA targets encode proteins involved in regulation of cell proliferation and migration via RET and related signaling pathways (MAPK and PI3K/AKT). Our results identify miRNAs that play key roles in the pathophysiology of the complex multi-factorial disease HSCR. PMID:26933947

  1. miRNA in situ hybridization in circulating tumor cells - MishCTC

    PubMed Central

    Ortega, Francisco G.; Lorente, Jose A.; Garcia Puche, Jose L.; Ruiz, Maria P.; Sanchez-Martin, Rosario M.; de Miguel-Pérez, Diego; Diaz-Mochon, Juan J.; Serrano, Maria J.

    2015-01-01

    Circulating tumor cells (CTCs) must be phenotypically and genetically characterized before they can be utilized in clinical applications. Here, we present the first protocol for the detection of miRNAs in CTCs using in situ hybridization (ISH) combined with immunomagnetic selection based on cytokeratin (CK) expression and immunocytochemistry. Locked-Nucleic Acid (LNA) probes associated with an enzyme-labeled fluorescence (ELF) signal amplification approach were used to detect miRNA-21 in CTCs. This protocol was optimized using both epithelial tumor (MDA-MB468) and epithelial non-tumor (MCF-10A) cell lines, and miRNA-21 was selected as the target miRNA because of its known role as an onco-miRNA. Hematopoietic cells do not express miRNA-21; thus, miRNA-21 is an ideal marker for detecting CTCs. Peripheral blood samples were taken from 25 cancer patients and these samples were analyzed using our developed protocol. Of the 25 samples, 11 contained CTCs. For all 11 CTC-positive samples, the isolated CTCs expressed both CK and miRNA-21. Finally, the protocol was applied to monitor miRNA-21 expression in epithelial to mesenchymal transition (EMT)-induced MCF-7 cells, an epithelial tumor cell line. CK expression was lost in these cells, whereas miRNA-21 was still expressed, suggesting that miRNA-21 might be a good marker for detecting CTCs with an EMT phenotype. PMID:25777797

  2. miRNA Profiling Reveals Dysregulation of RET and RET-Regulating Pathways in Hirschsprung's Disease

    PubMed Central

    Li, Shuangshuang; Wang, Shiqi; Guo, Zhenhua; Wu, Huan; Jin, Xianqing; Wang, Yi; Li, Xiaoqing; Liang, Shaoyan

    2016-01-01

    Hirschsprung’s disease (HSCR), the most common congenital malformation of the gut, is regulated by multiple signal transduction pathways. Several components of these pathways are important targets for microRNAs (miRNAs). Multiple miRNAs have been associated with the pathophysiology of HSCR, and serum miRNAs profiles of HSCR patients have been reported, but miRNA expression in HSCR colon tissue is almost completely unexplored. Using microarray technology, we screened colon tissue to detect miRNAs whose expression profiles were altered in HSCR and identify targets of differentially expressed miRNAs. Following filtering of low-intensity signals, data normalization, and volcano plot filtering, we identified 168 differentially expressed miRNAs (104 up-regulated and 64 down-regulated). Fifty of these mRNAs represent major targets of dysegulated miRNAs and may thus important roles in the pathophysiology of HSCR. Pathway analysis revealed that 7 of the miRNA targets encode proteins involved in regulation of cell proliferation and migration via RET and related signaling pathways (MAPK and PI3K/AKT). Our results identify miRNAs that play key roles in the pathophysiology of the complex multi-factorial disease HSCR. PMID:26933947

  3. PmiRExAt: plant miRNA expression atlas database and web applications

    PubMed Central

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157

  4. Analysis of Chromosome 17 miRNAs and Their Importance in Medulloblastomas

    PubMed Central

    López-Ochoa, Sebastian; Ramírez-García, Marina

    2015-01-01

    MicroRNAs (miRNAs) are small sequences of nucleotides that regulate posttranscriptionally gene expression. In recent years they have been recognized as very important general regulators of proliferation, differentiation, adhesion, cell death, and others. In some cases, the characteristic presence of miRNAs reflects some of the cellular pathways that may be altered. Particularly medulloblastomas (MB) represent entities that undergo almost characteristic alterations of chromosome 17: from loss of discrete fragments and isochromosomes formation to complete loss of one of them. An analysis of the major loci on this chromosome revealed that it contains at least 19 genes encoding miRNAs which may regulate the development and differentiation of the brain and cerebellum. miRNAs are regulators of real complex networks; they can regulate from 100 to over 300 messengers of various proteins. In this review some miRNAs are considered to be important in MB studies. Some of them are miRNA-5047, miRNA-1253, miRNA-2909, and miRNA-634. Everyone can significantly affect the development, growth, and cell invasion of MB, and they have not been explored in this tumor. In this review, we propose some miRNAs that can affect some genes in MB, and hence the importance of its study. PMID:25866804

  5. Analysis of miRNAs and their targets during adventitious shoot organogenesis of Acacia crassicarpa.

    PubMed

    Liu, Weina; Yu, Wangning; Hou, Lingyu; Wang, Xiaoyu; Zheng, Fei; Wang, Weixuan; Liang, Di; Yang, Hailun; Jin, Yi; Xie, Xiangming

    2014-01-01

    Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa.

  6. PmiRExAt: plant miRNA expression atlas database and web applications.

    PubMed

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database.Database URL:http://pmirexat.nabi.res.in. PMID:27081157

  7. Genome-wide fungal stress responsive miRNA expression in wheat.

    PubMed

    Inal, Behçet; Türktaş, Mine; Eren, Hakan; Ilhan, Emre; Okay, Sezer; Atak, Mehmet; Erayman, Mustafa; Unver, Turgay

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding class of RNAs. They were identified in many plants with their diverse regulatory roles in several cellular and metabolic processes. A number of miRNAs were involved in biotic and abiotic stress responses. Here, fungal stress responsive wheat miRNAs were analyzed by using miRNA-microarray strategy. Two different fungi (Fusarium culmorum and Bipolaris sorokiniana) were inoculated on resistant and sensitive wheat cultivars. A total of 87 differentially regulated miRNAs were detected in the 8 × 15 K array including all of the available plant miRNAs. Using bioinformatics tools, the target transcripts of responsive miRNAs were predicted, and related biological processes and mechanisms were assessed. A number of the miRNAs such as miR2592s, miR869.1, miR169b were highly differentially regulated showing more than 200-fold change upon fungal-inoculation. Some of the miRNAs were identified as fungal-inoculation responsive for the first time. The analyses showed that some of the differentially regulated miRNAs targeted resistance-related genes such as LRR, glucuronosyl transferase, peroxidase and Pto kinase. The comparison of the two miRNA-microarray analyses indicated that fungal-responsive wheat miRNAs were differentially regulated in pathogen- and cultivar-specific manners.

  8. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs

    PubMed Central

    Ludwig, Nicole; Kim, Yoo-Jin; Mueller, Sabine C.; Backes, Christina; Werner, Tamara V.; Galata, Valentina; Sartorius, Elke; Bohle, Rainer M.; Keller, Andreas; Meese, Eckart

    2015-01-01

    Background Micro (mi)RNAs are key regulators of gene expression and offer themselves as biomarkers for cancer development and progression. Meningioma is one of the most frequent primary intracranial tumors. As of yet, there are limited data on the role of miRNAs in meningioma of different histological subtypes and the affected signaling pathways. Methods In this study, we compared expression of 1205 miRNAs in different meningioma grades and histological subtypes using microarrays and independently validated deregulation of selected miRNAs with quantitative real-time PCR. Clinical utility of a subset of miRNAs as biomarkers for World Health Organization (WHO) grade II meningioma based on quantitative real-time data was tested. Potential targets of deregulated miRNAs were discovered with an in silico analysis. Results We identified 13 miRNAs deregulated between different subtypes of benign meningiomas, and 52 miRNAs deregulated in anaplastic meningioma compared with benign meningiomas. Known and putative target genes of deregulated miRNAs include genes involved in epithelial-to-mesenchymal transition for benign meningiomas, and Wnt, transforming growth factor–β, and vascular endothelial growth factor signaling for higher-grade meningiomas. Furthermore, a 4-miRNA signature (miR-222, -34a*, -136, and -497) shows promise as a biomarker differentiating WHO grade II from grade I meningiomas with an area under the curve of 0.75. Conclusions Our data provide novel insights into the contribution of miRNAs to the phenotypic spectrum in benign meningiomas. By deregulating translation of genes belonging to signaling pathways known to be important for meningioma genesis and progression, miRNAs provide a second in line amplification of growth promoting cellular signals. MiRNAs as biomarkers for diagnosis of aggressive meningiomas might prove useful and should be explored further in a prospective manner. PMID:25681310

  9. Annotation of primate miRNAs by high throughput sequencing of small RNA libraries

    PubMed Central

    2012-01-01

    Background In addition to genome sequencing, accurate functional annotation of genomes is required in order to carry out comparative and evolutionary analyses between species. Among primates, the human genome is the most extensively annotated. Human miRNA gene annotation is based on multiple lines of evidence including evidence for expression as well as prediction of the characteristic hairpin structure. In contrast, most miRNA genes in non-human primates are annotated based on homology without any expression evidence. We have sequenced small-RNA libraries from chimpanzee, gorilla, orangutan and rhesus macaque from multiple individuals and tissues. Using patterns of miRNA expression in conjunction with a model of miRNA biogenesis we used these high-throughput sequencing data to identify novel miRNAs in non-human primates. Results We predicted 47 new miRNAs in chimpanzee, 240 in gorilla, 55 in orangutan and 47 in rhesus macaque. The algorithm we used was able to predict 64% of the previously known miRNAs in chimpanzee, 94% in gorilla, 61% in orangutan and 71% in rhesus macaque. We therefore added evidence for expression in between one and five tissues to miRNAs that were previously annotated based only on homology to human miRNAs. We increased from 60 to 175 the number miRNAs that are located in orthologous regions in humans and the four non-human primate species studied here. Conclusions In this study we provide expression evidence for homology-based annotated miRNAs and predict de novo miRNAs in four non-human primate species. We increased the number of annotated miRNA genes and provided evidence for their expression in four non-human primates. Similar approaches using different individuals and tissues would improve annotation in non-human primates and allow for further comparative studies in the future. PMID:22453055

  10. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    PubMed

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  11. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    PubMed

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna. PMID:26799570

  12. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing

    PubMed Central

    Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna. PMID:26799570

  13. μHEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix

    PubMed Central

    2013-01-01

    Background The miRNAs, a class of short approximately 22‐nucleotide non‐coding RNAs, often act post‐transcriptionally to inhibit mRNA expression. In effect, they control gene expression by targeting mRNA. They also help in carrying out normal functioning of a cell as they play an important role in various cellular processes. However, dysregulation of miRNAs is found to be a major cause of a disease. It has been demonstrated that miRNA expression is altered in many human cancers, suggesting that they may play an important role as disease biomarkers. Multiple reports have also noted the utility of miRNAs for the diagnosis of cancer. Among the large number of miRNAs present in a microarray data, a modest number might be sufficient to classify human cancers. Hence, the identification of differentially expressed miRNAs is an important problem particularly for the data sets with large number of miRNAs and small number of samples. Results In this regard, a new miRNA selection algorithm, called μHEM, is presented based on rough hypercuboid approach. It selects a set of miRNAs from a microarray data by maximizing both relevance and significance of the selected miRNAs. The degree of dependency of sample categories on miRNAs is defined, based on the concept of hypercuboid equivalence partition matrix, to measure both relevance and significance of miRNAs. The effectiveness of the new approach is demonstrated on six publicly available miRNA expression data sets using support vector machine. The.632+ bootstrap error estimate is used to minimize the variability and biasedness of the derived results. Conclusions An important finding is that the μHEM algorithm achieves lowest B.632+ error rate of support vector machine with a reduced set of differentially expressed miRNAs on four expression data sets compare to some existing machine learning and statistical methods, while for other two data sets, the error rate of the μHEM algorithm is comparable with the existing

  14. A method for clustering of miRNA sequences using fragmented programming.

    PubMed

    Ivashchenko, Anatoly; Pyrkova, Anna; Niyazova, Raigul

    2016-01-01

    Clustering of miRNA sequences is an important problem in molecular genetics associated cellular biology. Thousands of such sequences are known today through advancement in sophisticated molecular tools, sequencing techniques, computational resources and rule based mathematical models. Analysis of such large-scale miRNA sequences for inferring patterns towards deducing cellular function is a great challenge in modern molecular biology. Therefore, it is of interest to develop mathematical models specific for miRNA sequences. The process is to group (cluster) such miRNA sequences using well-defined known features. We describe a method for clustering of miRNA sequences using fragmented programming. Subsequently, we illustrated the utility of the model using a dendrogram (a tree diagram) for publically known A.thaliana miRNA nucleotide sequences towards the inference of observed conserved patterns. PMID:27212839

  15. A method for clustering of miRNA sequences using fragmented programming

    PubMed Central

    Ivashchenko, Anatoly; Pyrkova, Anna; Niyazova, Raigul

    2016-01-01

    Clustering of miRNA sequences is an important problem in molecular genetics associated cellular biology. Thousands of such sequences are known today through advancement in sophisticated molecular tools, sequencing techniques, computational resources and rule based mathematical models. Analysis of such large-scale miRNA sequences for inferring patterns towards deducing cellular function is a great challenge in modern molecular biology. Therefore, it is of interest to develop mathematical models specific for miRNA sequences. The process is to group (cluster) such miRNA sequences using well-defined known features. We describe a method for clustering of miRNA sequences using fragmented programming. Subsequently, we illustrated the utility of the model using a dendrogram (a tree diagram) for publically known A.thaliana miRNA nucleotide sequences towards the inference of observed conserved patterns PMID:27212839

  16. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  17. Dynamic regulation of novel and conserved miRNAs across various tissues of diverse Cucurbit spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were rec...

  18. Small RNA sequencing identifies miRNA roles in ovule and fibre development.

    PubMed

    Xie, Fuliang; Jones, Don C; Wang, Qinglian; Sun, Runrun; Zhang, Baohong

    2015-04-01

    MicroRNAs (miRNAs) have been found to be differentially expressed during cotton fibre development. However, which specific miRNAs and how they are involved in fibre development is unclear. Here, using deep sequencing, 65 conserved miRNA families were identified and 32 families were differentially expressed between leaf and ovule. At least 40 miRNAs were either leaf or ovule specific, whereas 62 miRNAs were shared in both leaf and ovule. qRT-PCR confirmed these miRNAs were differentially expressed during fibre early development. A total of 820 genes were potentially targeted by the identified miRNAs, whose functions are involved in a series of biological processes including fibre development, metabolism and signal transduction. Many predicted miRNA-target pairs were subsequently validated by degradome sequencing analysis. GO and KEGG analyses showed that the identified miRNAs and their targets were classified to 1027 GO terms including 568 biological processes, 324 molecular functions and 135 cellular components and were enriched to 78 KEGG pathways. At least seven unique miRNAs participate in trichome regulatory interaction network. Eleven trans-acting siRNA (tasiRNA) candidate genes were also identified in cotton. One has never been found in other plant species and two of them were derived from MYB and ARF, both of which play important roles in cotton fibre development. Sixteen genes were predicted to be tasiRNA targets, including sucrose synthase and MYB2. Together, this study discovered new miRNAs in cotton and offered evidences that miRNAs play important roles in cotton ovule/fibre development. The identification of tasiRNA genes and their targets broadens our understanding of the complicated regulatory mechanism of miRNAs in cotton.

  19. Circulating miRNAs as biomarkers for neurodegenerative disorders.

    PubMed

    Grasso, Margherita; Piscopo, Paola; Confaloni, Annamaria; Denti, Michela A

    2014-05-23

    Neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and frontotemporal dementias (FTD), are considered distinct entities, however, there is increasing evidence of an overlap from the clinical, pathological and genetic points of view. All neurodegenerative diseases are characterized by neuronal loss and death in specific areas of the brain, for example, hippocampus and cortex for AD, midbrain for PD, frontal and temporal lobes for FTD. Loss of neurons is a relatively late event in the progression of neurodegenerative diseases that is typically preceded by other events such as metabolic changes, synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities, such as axonal transport defects. The brain's ability to compensate for these dysfunctions occurs over a long period of time and results in late clinical manifestation of symptoms, when successful pharmacological intervention is no longer feasible. Currently, diagnosis of AD, PD and different forms of dementia is based primarily on analysis of the patient's cognitive function. It is therefore important to find non-invasive diagnostic methods useful to detect neurodegenerative diseases during early, preferably asymptomatic stages, when a pharmacological intervention is still possible. Altered expression of microRNAs (miRNAs) in many disease states, including neurodegeneration, and increasing relevance of miRNAs in biofluids in different pathologies has prompted the study of their possible application as neurodegenerative diseases biomarkers in order to identify new therapeutic targets. Here, we review what is known about the role of miRNAs in the pathogenesis of neurodegeneration and the possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative conditions.

  20. Differential expression of miRNAs and their relation to active tuberculosis.

    PubMed

    Xu, Zhihong; Zhou, Aiping; Ni, Jinjing; Zhang, Qiufen; Wang, Ying; Lu, Jie; Wu, Wenjuan; Karakousis, Petros C; Lu, Shuihua; Yao, Yufeng

    2015-07-01

    The aim of this work was to screen miRNA signatures dysregulated in tuberculosis to improve our understanding of the biological role of miRNAs involved in the disease. Datasets deposited in publically available databases from microarray studies on infectious diseases and malignancies were retrieved, screened, and subjected to further analysis. Effect sizes were combined using the inverse-variance model and between-study heterogeneity was evaluated by the random effects model. 35 miRNAs were differentially expressed (12 up-regulated, 23 down-regulated; p < 0.05) by combining 15 datasets of tuberculosis and other infectious diseases. 15 miRNAs were found to be significantly differentially regulated (7 up-regulated, 8 down-regulated; p < 0.05) by combining 53 datasets of tuberculosis and malignancies. Most of the miRNA signatures identified in this study were found to be involved in immune responses and metabolism. Expression of these miRNA signatures in serum samples from TB subjects (n = 11) as well as healthy controls (n = 10) was examined by TaqMan miRNA array. Taken together, the results revealed differential expression of miRNAs in TB, but available datasets are limited and these miRNA signatures should be validated in future studies.

  1. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed.

    PubMed

    Hu, Xiaoju; Pokharel, Kisun; Peippo, Jaana; Ghanem, Nasser; Zhaboyev, Ismail; Kantanen, Juha; Li, Meng-Hua

    2016-04-01

    Until recently, there have been few studies concerning miRNAs or miRNA-mediated biological processes in sheep (Ovis aries). In the present study, we used a deep-sequencing approach to examine ovarian miRNAs and the mRNA transcriptomes in two ewes of a highly prolific breed, Finnsheep. We identified 113 known sheep miRNAs, 131 miRNAs conserved in other mammals and 60 novel miRNAs, the expression levels of which accounted for 78.22%, 21.73% and 0.05% of the total respectively. Furthermore, the 10 most abundantly expressed miRNAs in the two libraries were characterized in detail, and the putative target genes of these miRNAs were annotated using GO annotation and KEGG pathway enrichment analyses. Among the target genes, intracellular transducers (SMAD1, SMAD4, SMAD5 and SMAD9) and bone morphogenetic protein (BMP) receptors (BMPR1B and BMPR2) were involved in the transforming growth factor β (TGFβ) signaling pathway in the reproductive axis, and the most significant GO terms were intracellular part (GO:0044424), binding (GO:0005488) and biological_process (GO:0008150) for cellular component, molecular function and biological process respectively. Thus, these results expanded the sheep miRNA database and provided additional information on the prolificacy trait regulated through specific miRNAs in sheep and other mammals. PMID:26582387

  2. Platelets confound the measurement of extracellular miRNA in archived plasma

    PubMed Central

    Mitchell, Adam J.; Gray, Warren D.; Hayek, Salim S.; Ko, Yi-An; Thomas, Sheena; Rooney, Kim; Awad, Mosaab; Roback, John D.; Quyyumi, Arshed; Searles, Charles D.

    2016-01-01

    Extracellular miRNAs are detectable in biofluids and represent a novel class of disease biomarker. Although many studies have utilized archived plasma for miRNA biomarker discovery, the effects of processing and storage have not been rigorously studied. Previous reports have suggested plasma samples are commonly contaminated by platelets, significantly confounding the measurement of extracellular miRNA, which was thought to be easily addressed by additional post-thaw plasma processing. In a case-control study of archived plasma, we noted a significant correlation between miRNA levels and platelet counts despite post-thaw processing. We thus examined the effects of a single freeze/thaw cycle on microparticles (MPs) and miRNA levels, and show that a single freeze/thaw cycle of plasma dramatically increases the number of platelet-derived MPs, contaminates the extracellular miRNA pool, and profoundly affects the levels of miRNAs detected. The measurement of extracellular miRNAs in archived samples is critically dependent on the removal of residual platelets prior to freezing plasma samples. Many previous clinical studies of extracellular miRNA in archived plasma should be interpreted with caution and future studies should avoid the effects of platelet contamination. PMID:27623086

  3. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri.

    PubMed

    Padmashree, Dyavegowda; Swamy, Narayanaswamy Ramachandra

    2015-01-01

    Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool). PMID:26770029

  4. miRegulome: a knowledge-base of miRNA regulomics and analysis

    PubMed Central

    Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam

    2015-01-01

    miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. Availability: http://bnet.egr.vcu.edu/miRegulome. PMID:26243198

  5. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex.

    PubMed

    Garibaldi, F; Falcone, E; Trisciuoglio, D; Colombo, T; Lisek, K; Walerych, D; Del Sal, G; Paci, P; Bossi, G; Piaggio, G; Gurtner, A

    2016-07-21

    Downregulation of microRNAs (miRNAs) is commonly observed in cancers and promotes tumorigenesis suggesting that miRNAs may function as tumor suppressors. However, the mechanism through which miRNAs are regulated in cancer, and the connection between oncogenes and miRNA biogenesis remain poorly understood. The TP53 tumor-suppressor gene is mutated in half of human cancers resulting in an oncogene with gain-of-function activities. Here we demonstrate that mutant p53 (mutp53) oncoproteins modulate the biogenesis of a subset of miRNAs in cancer cells inhibiting their post-transcriptional maturation. Interestingly, among these miRNAs several are also downregulated in human tumors. By confocal, co-immunoprecipitation and RNA-chromatin immunoprecipitation experiments, we show that endogenous mutp53 binds and sequesters RNA helicases p72/82 from the microprocessor complex, interfering with Drosha-pri-miRNAs association. In agreement with this, the overexpression of p72 leads to an increase of mature miRNAs levels. Moreover, functional experiments demonstrate the oncosuppressive role of mutp53-dependent miRNAs (miR-517a, -519a, -218, -105). Our study highlights a previously undescribed mechanism by which mutp53 interferes with Drosha-p72/82 association leading, at least in part, to miRNA deregulation observed in cancer.

  6. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.

    PubMed

    Morales-Prieto, D M; Ospina-Prieto, S; Schmidt, A; Chaiwangyen, W; Markert, U R

    2014-02-01

    MicroRNAs (miRNAs) regulate the expression of a large number of genes in plants and animals. Placental miRNAs appeared late in evolution and can be found only in mammals. Nevertheless, these miRNAs are constantly under evolutionary pressure. As a consequence, miRNA sequences and their mRNA targets may differ between species, and some miRNAs can only be found in humans. Their expression can be tissue- or cell-specific and can vary time-dependently. Human placenta tissue exhibits a specific miRNA expression pattern that dynamically changes during pregnancy and is reflected in the maternal plasma. Some placental miRNAs are involved in or associated with major pregnancy disorders, such as preeclampsia, intrauterine growth restriction or preterm delivery and, therefore, have a strong potential for usage as sensitive and specific biomarkers. In this review we summarize current knowledge on the origin of placental miRNAs, their expression in humans with special regard to trophoblast cells, interspecies differences, and their future as biomarkers. It can be concluded that animal models for human reproduction have a different panel of miRNAs and targets, and can only partly reflect or predict the situation in humans.

  7. Conserved miRNAs and Their Response to Salt Stress in Wild Eggplant Solanum linnaeanum Roots

    PubMed Central

    Zhuang, Yong; Zhou, Xiao-Hui; Liu, Jun

    2014-01-01

    The Solanaceae family includes some important vegetable crops, and they often suffer from salinity stress. Some miRNAs have been identified to regulate gene expression in plant response to salt stress; however, little is known about the involvement of miRNAs in Solanaceae species. To identify salt-responsive miRNAs, high-throughput sequencing was used to sequence libraries constructed from roots of the salt tolerant species, Solanum linnaeanum, treated with and without NaCl. The sequencing identified 98 conserved miRNAs corresponding to 37 families, and some of these miRNAs and their expression were verified by quantitative real-time PCR. Under the salt stress, 11 of the miRNAs were down-regulated, and 3 of the miRNAs were up-regulated. Potential targets of the salt-responsive miRNAs were predicted to be involved in diverse cellular processes in plants. This investigation provides valuable information for functional characterization of miRNAs in S. linnaeanum, and would be useful for developing strategies for the genetic improvement of the Solanaceae crops. PMID:24413753

  8. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer

    PubMed Central

    Wilczynski, Milosz; Wojciechowski, Michal; Malinowski, Andrzej

    2016-01-01

    Endometrial cancer is one of the most common malignancies of the reproductive female tract, with endometrioid endometrial cancer being the most frequent type. Despite the relatively favourable prognosis in cases of endometrial cancer, there is a necessity to evaluate clinical and prognostic utility of new molecular markers. MiRNAs are small, non-coding RNA molecules that take part in RNA silencing and post-transcriptional regulation of gene expression. Altered expression of miRNAs may be associated with cancer initiation, progression and metastatic capabilities. MiRNA-205 seems to be one of the key regulators of gene expression in endometrial cancer. In this study, we investigated clinical and prognostic role of miRNA-205 in endometrioid endometrial cancer. After total RNA extraction from 100 archival formalin-fixed paraffin-embedded tissues, real-time quantitative RT-PCR was used to define miRNA-205 expression levels. The aim of the study was to evaluate miRNA-205 expression levels in regard to patients’ clinical and histopathological features, such as: survival rate, recurrence rate, staging, myometrial invasion, grading and lymph nodes involvement. Higher levels of miRNA-205 expression were observed in tumours with less than half of myometrial invasion and non-advanced cancers. Kaplan-Maier analysis revealed that higher levels of miRNA-205 were associated with better overall survival (p = 0,034). These results indicate potential clinical utility of miRNA-205 as a prognostic marker. PMID:27737015

  9. Computational identification of miRNAs that modulate the differentiation of mesenchymal stem cells to osteoblasts

    PubMed Central

    Seenprachawong, Kanokwan; Nuchnoi, Pornlada; Nantasenamat, Chanin; Prachayasittikul, Virapong

    2016-01-01

    MicroRNAs (miRNAs) are small endogenous noncoding RNAs that play an instrumental role in post-transcriptional modulation of gene expression. Genes related to osteogenesis (i.e., RUNX2, COL1A1 and OSX) is important in controlling the differentiation of mesenchymal stem cells (MSCs) to bone tissues. The regulated expression level of miRNAs is critically important for the differentiation of MSCs to preosteoblasts. The understanding of miRNA regulation in osteogenesis could be applied for future applications in bone defects. Therefore, this study aims to shed light on the mechanistic pathway underlying osteogenesis by predicting miRNAs that may modulate this pathway. This study investigates RUNX2, which is a major transcription factor for osteogenesis that drives MSCs into preosteoblasts. Three different prediction tools were employed for identifying miRNAs related to osteogenesis using the 3’UTR of RUNX2 as the target gene. Of the 1,023 miRNAs, 70 miRNAs were found by at least two of the tools. Candidate miRNAs were then selected based on their free energy values, followed by assessing the probability of target accessibility. The results showed that miRNAs 23b, 23a, 30b, 143, 203, 217, and 221 could regulate the RUNX2 gene during the differentiation of MSCs to preosteoblasts. PMID:27168985

  10. Global miRNA expression is temporally correlated with acute kidney injury in mice

    PubMed Central

    Chen, Xiao

    2016-01-01

    MicroRNAs (miRNAs) are negative regulators of gene expression and protein abundance. Current evidence shows an association of miRNAs with acute kidney injury (AKI) leading to substantially increased morbidity and mortality. Here, we investigated whether miRNAs are inductive regulators responsible for the pathological development of AKI. Microarray analysis was used to detect temporal changes in global miRNA expression within 48 h after AKI in mice. Results indicated that global miRNA expression gradually increased over 24 h from ischemia reperfusion injury after 24 h, and then decreased from 24 h to 48 h. A similar trend was observed for the index of tubulointerstitial injury and the level of serum creatinine, and there was a significant correlation between the level of total miRNA expression and the level of serum creatinine (p < 0.05). This expression-phenotype correlation was validated by quantitative reverse transcription PCR on individual miRNAs, including miR-18a, -134, -182, -210 and -214. Increased global miRNA expression may lead to widespread translational repression and reduced cellular activity. Furthermore, significant inflammatory cytokine release and peritubular capillary loss were observed, suggesting that the initiation of systematic destruction programs was due to AKI. Our findings provide new understanding of the dominant role of miRNAs in promoting the pathological development of AKI. PMID:26966664

  11. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum.

    PubMed

    Singh, Noopur; Sharma, Ashok

    2014-12-01

    microRNA is known to play an important role in growth and development of the plants and also in environmental stress. Ocimum basilicum (Basil) is a well known herb for its medicinal properties. In this study, we used in-silico approaches to identify miRNAs and their targets regulating different functions in O. basilicum using EST approach. Additionally, functional annotation, gene ontology and pathway analysis of identified target transcripts were also done. Seven miRNA families were identified. Meaningful regulations of target transcript by identified miRNAs were computationally evaluated. Four miRNA families have been reported by us for the first time from the Lamiaceae. Our results further confirmed that uracil was the predominant base in the first positions of identified mature miRNA sequence, while adenine and uracil were predominant in pre-miRNA sequences. Phylogenetic analysis was carried out to determine the relation between O. basilicum and other plant pre-miRNAs. Thirteen potential targets were evaluated for 4 miRNA families. Majority of the identified target transcripts regulated by miRNAs showed response to stress. miRNA 5021 was also indicated for playing an important role in the amino acid metabolism and co-factor metabolism in this plant. To the best of our knowledge this is the first in silico study describing miRNAs and their regulation in different metabolic pathways of O. basilicum.

  12. Uptake of dietary milk miRNAs by adult humans: a validation study

    PubMed Central

    Auerbach, Amanda; Vyas, Gopi; Li, Anne; Halushka, Marc; Witwer, Kenneth

    2016-01-01

    Breast milk is replete with nutritional content as well as nucleic acids including microRNAs (miRNAs). In a recent report, adult humans who drank bovine milk appeared to have increased circulating levels of miRNAs miR-29b-3p and miR-200c-3p. Since these miRNAs are homologous between human and cow, these results could be explained by xeno-miRNA influx, endogenous miRNA regulation, or both. More data were needed to validate the results and explore for additional milk-related alterations in circulating miRNAs. Samples from the published study were obtained, and 223 small RNA features were profiled with a custom OpenArray, followed by individual quantitative PCR assays for selected miRNAs. Additionally, small RNA sequencing (RNA-seq) data obtained from plasma samples of the same project were analyzed to find human and uniquely bovine miRNAs. OpenArray revealed no significantly altered miRNA signals after milk ingestion, and this was confirmed by qPCR. Plasma sequencing data contained no miR-29b or miR-200c reads and no intake-consistent mapping of uniquely bovine miRNAs. In conclusion, the results do not support transfer of dietary xenomiRs into the circulation of adult humans. PMID:27158459

  13. Methylation of miRNA genes in the response to temperature stress in Populus simonii.

    PubMed

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  14. Reliable reference miRNAs for quantitative gene expression analysis of stress responses in Caenorhabditis elegans

    PubMed Central

    2014-01-01

    Background Quantitative real-time PCR (qPCR) has become the “gold standard” for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data. Results Here we undertook a systematic approach to identify highly stable miRNAs in different stress conditions such as low oxygen (hypoxia), UV-stress and high temperature (heat-stress) in the nematode Caenorhabditis elegans. We conducted genome-wide RNA-seq for small RNAs and selected abundant miRNAs with minimal variation of expression between the different conditions. We further validated the stable expression of a selection of those constitutively expressed candidates in the different stress conditions by SYBR Green qPCR. The selected miRNA candidates were analyzed for stability by applying the widely used geNorm logarithm. With this approach, we were able to successfully identify suitable reference miRNAs for each stress condition. Interestingly, we also found that 3 miRNAs, namely mir-2-5p, mir-46-3p and mir-47-3p, are stable in all the above-mentioned conditions suggesting that they might have general functions independent of stress. Conclusions Our analysis offers a comprehensive list of stably expressed miRNAs in different stress conditions that can be confidently used as reference miRNAs for qPCR analysis in C. elegans. PMID:24656064

  15. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis.

    PubMed

    Haecker, Irina; Renne, Rolf

    2014-01-01

    MiRNAs regulate gene expression by binding predominantly to the 3' untranslated region (UTR) of target transcripts to prevent their translation and/or induce target degradation. In addition to the more than 1200 human miRNAs, human DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) encode miRNAs. Target predictions indicate that each miRNA targets hundreds of transcripts, many of which are regulated by multiple miRNAs. Thus, target identification is a big challenge for the field. Most methods used currently investigate single miRNA-target interactions and are not able to analyze complex miRNA-target networks. To overcome these challenges, cross-linking and immunoprecipitation (CLIP), a recently developed method to study direct RNA-protein interactions in living cells, has been successfully applied to miRNA target analysis. It utilizes Argonaute (Ago)-immunoprecipitation to isolate native Ago-miRNA-mRNA complexes. In four recent publications, two variants of the CLIP method (HITS-CLIP and PAR-CLIP) were utilized to determine the targetomes of human and viral miRNAs in cells infected with the gamma-herpesviruses KSHV and EBV, which are associated with a number of human cancers. Here, we briefly introduce herpesvirus-encoded miRNAs and then focus on how CLIP technology has largely impacted our understanding of viral miRNAs in viral biology and pathogenesis. PMID:24940765

  16. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed.

    PubMed

    Hu, Xiaoju; Pokharel, Kisun; Peippo, Jaana; Ghanem, Nasser; Zhaboyev, Ismail; Kantanen, Juha; Li, Meng-Hua

    2016-04-01

    Until recently, there have been few studies concerning miRNAs or miRNA-mediated biological processes in sheep (Ovis aries). In the present study, we used a deep-sequencing approach to examine ovarian miRNAs and the mRNA transcriptomes in two ewes of a highly prolific breed, Finnsheep. We identified 113 known sheep miRNAs, 131 miRNAs conserved in other mammals and 60 novel miRNAs, the expression levels of which accounted for 78.22%, 21.73% and 0.05% of the total respectively. Furthermore, the 10 most abundantly expressed miRNAs in the two libraries were characterized in detail, and the putative target genes of these miRNAs were annotated using GO annotation and KEGG pathway enrichment analyses. Among the target genes, intracellular transducers (SMAD1, SMAD4, SMAD5 and SMAD9) and bone morphogenetic protein (BMP) receptors (BMPR1B and BMPR2) were involved in the transforming growth factor β (TGFβ) signaling pathway in the reproductive axis, and the most significant GO terms were intracellular part (GO:0044424), binding (GO:0005488) and biological_process (GO:0008150) for cellular component, molecular function and biological process respectively. Thus, these results expanded the sheep miRNA database and provided additional information on the prolificacy trait regulated through specific miRNAs in sheep and other mammals.

  17. Platelets confound the measurement of extracellular miRNA in archived plasma.

    PubMed

    Mitchell, Adam J; Gray, Warren D; Hayek, Salim S; Ko, Yi-An; Thomas, Sheena; Rooney, Kim; Awad, Mosaab; Roback, John D; Quyyumi, Arshed; Searles, Charles D

    2016-01-01

    Extracellular miRNAs are detectable in biofluids and represent a novel class of disease biomarker. Although many studies have utilized archived plasma for miRNA biomarker discovery, the effects of processing and storage have not been rigorously studied. Previous reports have suggested plasma samples are commonly contaminated by platelets, significantly confounding the measurement of extracellular miRNA, which was thought to be easily addressed by additional post-thaw plasma processing. In a case-control study of archived plasma, we noted a significant correlation between miRNA levels and platelet counts despite post-thaw processing. We thus examined the effects of a single freeze/thaw cycle on microparticles (MPs) and miRNA levels, and show that a single freeze/thaw cycle of plasma dramatically increases the number of platelet-derived MPs, contaminates the extracellular miRNA pool, and profoundly affects the levels of miRNAs detected. The measurement of extracellular miRNAs in archived samples is critically dependent on the removal of residual platelets prior to freezing plasma samples. Many previous clinical studies of extracellular miRNA in archived plasma should be interpreted with caution and future studies should avoid the effects of platelet contamination. PMID:27623086

  18. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri.

    PubMed

    Padmashree, Dyavegowda; Swamy, Narayanaswamy Ramachandra

    2015-01-01

    Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool).

  19. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri

    PubMed Central

    Padmashree, Dyavegowda; Swamy, Narayanaswamy Ramachandra

    2015-01-01

    Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool). PMID:26770029

  20. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum.

    PubMed

    Singh, Noopur; Sharma, Ashok

    2014-12-01

    microRNA is known to play an important role in growth and development of the plants and also in environmental stress. Ocimum basilicum (Basil) is a well known herb for its medicinal properties. In this study, we used in-silico approaches to identify miRNAs and their targets regulating different functions in O. basilicum using EST approach. Additionally, functional annotation, gene ontology and pathway analysis of identified target transcripts were also done. Seven miRNA families were identified. Meaningful regulations of target transcript by identified miRNAs were computationally evaluated. Four miRNA families have been reported by us for the first time from the Lamiaceae. Our results further confirmed that uracil was the predominant base in the first positions of identified mature miRNA sequence, while adenine and uracil were predominant in pre-miRNA sequences. Phylogenetic analysis was carried out to determine the relation between O. basilicum and other plant pre-miRNAs. Thirteen potential targets were evaluated for 4 miRNA families. Majority of the identified target transcripts regulated by miRNAs showed response to stress. miRNA 5021 was also indicated for playing an important role in the amino acid metabolism and co-factor metabolism in this plant. To the best of our knowledge this is the first in silico study describing miRNAs and their regulation in different metabolic pathways of O. basilicum. PMID:25256277

  1. Methylation of miRNA genes in the response to temperature stress in Populus simonii

    PubMed Central

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  2. Conserved miRNAs and their response to salt stress in wild eggplant Solanum linnaeanum roots.

    PubMed

    Zhuang, Yong; Zhou, Xiao-Hui; Liu, Jun

    2014-01-09

    The Solanaceae family includes some important vegetable crops, and they often suffer from salinity stress. Some miRNAs have been identified to regulate gene expression in plant response to salt stress; however, little is known about the involvement of miRNAs in Solanaceae species. To identify salt-responsive miRNAs, high-throughput sequencing was used to sequence libraries constructed from roots of the salt tolerant species, Solanum linnaeanum, treated with and without NaCl. The sequencing identified 98 conserved miRNAs corresponding to 37 families, and some of these miRNAs and their expression were verified by quantitative real-time PCR. Under the salt stress, 11 of the miRNAs were down-regulated, and 3 of the miRNAs were up-regulated. Potential targets of the salt-responsive miRNAs were predicted to be involved in diverse cellular processes in plants. This investigation provides valuable information for functional characterization of miRNAs in S. linnaeanum, and would be useful for developing strategies for the genetic improvement of the Solanaceae crops.

  3. miRiadne: a web tool for consistent integration of miRNA nomenclature

    PubMed Central

    Bonnal, Raoul J. P.; Rossi, Riccardo L.; Carpi, Donatella; Ranzani, Valeria; Abrignani, Sergio; Pagani, Massimiliano

    2015-01-01

    The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org. PMID:25897123

  4. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    PubMed

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  5. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge

    PubMed Central

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-01-01

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential. PMID:26284487

  6. miRNAs as Biomarkers in Chronic Myelogenous Leukemia

    PubMed Central

    Kotagama, Kasuen; Chang, Yung; Mangone, Marco

    2015-01-01

    Strategy, Management and Health PolicyEnabling Technology, Genomics, ProteomicsPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I-III Regulatory, Quality, ManufacturingPostmarketing Phase IV Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm that is frequently characterized by the constitutive expression of the oncogenic protein BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs) targeting breakpoint cluster region-ABL are the first-line therapy for most CML patients and have drastically improved the prognosis of CML. However, some CML patients are unresponsive to TKI treatment, and a notable proportion of initially responsive patients develop drug resistance. Several molecular pathways have been correlated with resistance to TKI treatment, however, the exact mechanism of developing drug resistance remains ambiguous. Recently, microRNAs (miRNAs) have been implicated in the progression of CML and the development of resistance to TKI treatment based on their important regulatory function in cell homeostasis, and the deregulation observed in the initiation and progression of many leukemia subtypes. In this review, we summarize some of the major discoveries regarding miRNAs in CML, and their relevance as biomarkers for diagnosis, disease progression, and drug sensitivity. PMID:26284455

  7. A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia

    PubMed Central

    Qiu, Jin; Cosmopoulos, Katherine; Pegtel, Michiel; Hopmans, Erik; Murray, Paul; Middeldorp, Jaap; Shapiro, Michael; Thorley-Lawson, David A.

    2011-01-01

    We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between

  8. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    SciTech Connect

    Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  9. MicroRNA Expression and Identification of Putative miRNA Targets in Ovarian Cancer

    PubMed Central

    Dahiya, Neetu; Sherman-Baust, Cheryl A.; Wang, Tian-Li; Davidson, Ben; Shih, Ie-Ming; Zhang, Yongqing; Wood, William; Becker, Kevin G.; Morin, Patrice J.

    2008-01-01

    Background MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes. Methodology/Principal Findings Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines. miR-221 stands out as a highly elevated miRNA in ovarian cancer, while miR-21 and several members of the let-7 family are found downregulated. Public databases were used to reveal potential targets for the highly differentially expressed miRNAs. In order to experimentally identify transcripts whose stability may be affected by the differentially expressed miRNAs, we transfected precursor miRNAs into human cancer cell lines and used oligonucleotide microarrays to examine changes in the mRNA levels. Interestingly, there was little overlap between the predicted and the experimental targets or pathways, or between experimental targets/pathways obtained using different cell lines, highlighting the complexity of miRNA target selection. Conclusion/Significance Our results identify several differentially expressed miRNAs in ovarian cancer and identify potential target transcripts that may be regulated by these miRNAs. These miRNAs and their targets may have important roles in the initiation and development of ovarian cancer. PMID:18560586

  10. Repertoire and evolution of miRNA genes in four divergent nematode species

    PubMed Central

    de Wit, Elzo; Linsen, Sam E.V.; Cuppen, Edwin; Berezikov, Eugene

    2009-01-01

    miRNAs are ∼22-nt RNA molecules that play important roles in post-transcriptional regulation. We have performed small RNA sequencing in the nematodes Caenorhabditis elegans, C. briggsae, C. remanei, and Pristionchus pacificus, which have diverged up to 400 million years ago, to establish the repertoire and evolutionary dynamics of miRNAs in these species. In addition to previously known miRNA genes from C. elegans and C. briggsae we demonstrate expression of many of their homologs in C. remanei and P. pacificus, and identified in total more than 100 novel expressed miRNA genes, the majority of which belong to P. pacificus. Interestingly, more than half of all identified miRNA genes are conserved at the seed level in all four nematode species, whereas only a few miRNAs appear to be species specific. In our compendium of miRNAs we observed evidence for known mechanisms of miRNA evolution including antisense transcription and arm switching, as well as miRNA family expansion through gene duplication. In addition, we identified a novel mode of miRNA evolution, termed “hairpin shifting,” in which an alternative hairpin is formed with up- or downstream sequences, leading to shifting of the hairpin and creation of novel miRNA* species. Finally, we identified 21U-RNAs in all four nematodes, including P. pacificus, where the upstream 21U-RNA motif is more diverged. The identification and systematic analysis of small RNA repertoire in four nematode species described here provides a valuable resource for understanding the evolutionary dynamics of miRNA-mediated gene regulation. PMID:19755563

  11. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis

    PubMed Central

    Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of

  12. Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice

    PubMed Central

    Lacombe, Séverine; Nagasaki, Hiroshi; Santi, Carole; Duval, David; Piégu, Benoît; Bangratz, Martine; Breitler, Jean-Christophe; Guiderdoni, Emmanuel; Brugidou, Christophe; Hirsch, Judith; Cao, Xiaofeng; Brice, Claire; Panaud, Olivier; Karlowski, Wojciech M; Sato, Yutaka; Echeverria, Manuel

    2008-01-01

    Background The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein. In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets. Results We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively. In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site. Conclusion The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that

  13. Targeting of Runx2 by miRNA-135 and miRNA-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease

    PubMed Central

    Taipaleenmäki, Hanna; Browne, Gillian; Akech, Jacqueline; Zustin, Jozef; van Wijnen, Andre J.; Stein, Janet L.; Hesse, Eric; Stein, Gary S.; Lian, Jane B.

    2015-01-01

    Progression of breast cancer to metastatic bone disease is linked to deregulated expression of the transcription factor Runx2. Therefore, our goal was to evaluate the potential for clinical use of Runx2-targeting microRNAs (miRNAs) to reduce tumor growth and bone metastatic burden. Expression analysis of a panel of miRNAs regulating Runx2 revealed a reciprocal relationship between the abundance of Runx2 protein and two miRNAs, miR-135 and miR-203. These miRNAs are highly expressed in normal breast epithelial cells where Runx2 is not detected, and absent in metastatic breast cancer cells and tissue biopsies that express Runx2. Reconstituting metastatic MDA-MB-231-Luc cells with miR-135 and miR-203 reduced the abundance of Runx2 and expression of the metastasis-promoting Runx2 target genes IL-11, MMP-13, and PTHrP. Additionally, tumor cell viability was decreased and migration suppressed in vitro. Orthotopic implantation of MDA-MB-231-luc cells delivered with miR-135 or miR-203, followed by an intratumoral administration of the synthetic miRNAs reduced the tumor growth and spontaneous metastasis to bone. Furthermore, intratibial injection of these miRNA-delivered cells impaired tumor growth in the bone environment and inhibited bone resorption. Importantly, reconstitution of Runx2 in MDA-MB-231-luc cells delivered with miR-135 and miR-203 reversed the inhibitory effect of the miRNAs on tumor growth and metastasis. Thus, we have identified that aberrant expression of Runx2 in aggressive tumor cells is related to the loss of specific Runx2-targeting miRNAs and that a clinically relevant replacement strategy by delivery of synthetic miRNAs is a candidate therapeutic approach to prevent metastatic bone disease by this route. PMID:25634212

  14. Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Huang, Yao-Ting; Hsu, Chen-Tran; Lu, Hsiang-Chia; Chou, Ming-Lun; Chen, Li-Chi; Ou, Chia-I; Liao, Der-Chih; Yeh, Ysuan-Yu; Chang, Song-Bing; Shen, Su-Chen; Wu, Fu-Huei; Shih, Ming-Che; Chan, Ming-Tsair

    2013-05-01

    The orchid Erycina pusilla has a short life cycle and relatively low chromosome number, making it a potential model plant for orchid functional genomics. To that end, small RNAs (sRNAs) from different developmental stages of different organs were sequenced. In this miRNA mix, 33 annotated miRNA families and 110 putative miRNA-targeted transcripts were identified in E. pusilla. Fifteen E. pusilla miRNA target genes were found to be similar to those in other species. There were putative novel miRNAs identified by 3 different strategies. The genomic sequences of the four miRNAs that were identified using rice genome as the reference can form the stem loop structure. The t0000354 miRNA, identified using rice genome sequences and a Phalaenopsis study, had a high read count. The target gene of this miRNA is MADS (unigene30603), which belongs to the AP3-PI subfamily. The most abundant miRNA was E. pusilla miR156 (epu-miR156), orthologs of which work to maintain the vegetative phase by repressing the expression of the SQUAMOSA promoter-binding-like (SPL) transcription factors. Fifteen genes in the E. pusilla SPL (EpSPL) family were identified, nine of which contained the putative epu-miR156 target site. Target genes of epu-miR172, also a key regulator of developmental changes in the APETALA2 (EpAP2) family, were identified. Experiments using 5'RLM-RACE demonstrated that the genes EpSPL1, 2, 3, 4, 7, 9, 10, 14 and EpAP2-9, -10, -11 were regulated by epu-miR156 and epu-miR172, respectively.

  15. Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation

    PubMed Central

    Buller, Benjamin; Chopp, Michael; Ueno, Yuji; Zhang, Li; Zhang, Rui Lan; Morris, Daniel; Zhang, Yi; Zhang, Zheng Gang

    2012-01-01

    Serum response factor (SRF) is a transcription factor that transactivates actin associated genes, and has been implicated in oligodendrocyte (OL) differentiation. To date, it has not been investigated in cerebral ischemia. We investigated the dynamics of SRF expression after stroke in vivo and the role of SRF in oligodendrocyte differentiation in vitro. Using immunohistochemistry, we found that SRF was upregulated in OLs and OL precursor cells (OPCs) after stroke. Moreover, upregulation of SRF was concurrent with downregulation of the microRNAs (miRNAs) miR-9 and the miR-200 family in the ischemic white matter region, the corpus callosum. Inhibition of SRF activation by CCG-1423, a specific inhibitor of SRF function, blocked OPCs from differentiating into OLs. Over-expression of miR-9 and miR-200 in cultured OPCs suppressed SRF expression and inhibited OPC differentiation. Moreover, co-expression of miR-9 and miR-200 attenuated activity of a luciferase reporter assay containing the Srf 3′ untranslated region (UTR). Collectively, this study is the first to show that stroke upregulates SRF expression in OPCs and OLs, and that SRF levels are mediated by miRNAs and regulate OPC differentiation. PMID:22907787

  16. Identification of Nutritional Stress-Responsive miRNAs in Phaseolus vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are key regulators for Arabidopsis development and stress responses. A hybridization approach using miRNAs-macroarrays was used to identify miRNAs that respond to nutritional stress in Phaseolus vulgaris. miRNAs-macroarrays were prepared by printing nylon filters with DNA syntheti...

  17. Enhancing miRNA annotation confidence in miRBase by continuous cross dataset analysis

    PubMed Central

    Kjems, Jørgen; Bramsen, Jesper B

    2011-01-01

    The immaculate annotation of all microRNAs (miRNAs) is a prerequisite to study their biological function on a genome-wide scale. However, the original criteria for proper miRNA annotation seem unsuited for the automated analysis of the immense number of small RNA reads available in next generation sequencing (NGS) datasets. Here we analyze the confidence of past miRNA annotation in miRBase by cross-analyzing publicly available NGS datasets using strengthened annotation requirements. Our analysis highlights that a large number of annotated human miRNAs in miRBase seems to require more experimental validation to be confidently annotated. Notably, our dataset analysis also identified almost 300 currently non-annotated miRNA*s and 28 novel miRNAs. These observations hereby greatly increase the confidence of past miRNA annotation in miRBase but also illustrate the usefulness of continuous re-evaluating NGS datasets in the identification of novel miRNAs. PMID:21558790

  18. Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics.

    PubMed

    Matsui, Masayuki; Prakash, Thazha P; Corey, David R

    2016-05-01

    MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression. Aberrant expression of miRNAs can affect development of cancer and other diseases. Synthetic miRNA mimics can modulate gene expression and offer an approach to therapy. Inside cells, mature miRNAs are produced as double-stranded RNAs and miRNA mimics typically retain both strands. This need for two strands has the potential to complicate drug development. Recently, synthetic chemically modified single-stranded silencing RNAs (ss-siRNA) have been shown to function through the RNAi pathway to induce gene silencing in cell culture and animals. Here, we test the hypothesis that single-stranded miRNA (ss-miRNA) can also mimic the function of miRNAs. We show that ss-miRNAs can act as miRNA mimics to silence the expression of target genes. Gene silencing requires expression of argonaute 2 (AGO2) protein and involves recruitment of AGO2 to the target transcripts. Chemically modified ss-miRNAs function effectively inside cells through endogenous RNAi pathways and broaden the options for miRNA-based oligonucleotide drug development.

  19. Potent degradation of neuronal miRNAs induced by highly complementary targets

    PubMed Central

    de la Mata, Manuel; Gaidatzis, Dimos; Vitanescu, Mirela; Stadler, Michael B; Wentzel, Corinna; Scheiffele, Peter; Filipowicz, Witold; Großhans, Helge

    2015-01-01

    MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3′ terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system. PMID:25724380

  20. Application of miRNAs as Biomarkers of Exposure and Effects in Risk Evaluation

    EPA Science Inventory

    Of the known epigenetic mechanisms, non-coding RNA and more specifically, microRNA (miRNA), offer the most immediate promise for risk assessment applications because these molecules can serve as excellent biomarkers of toxicity. The advantages of miRNA versus more classical prot...

  1. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism.

    PubMed

    Mennigen, Jan A

    2016-09-01

    MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions. PMID:26384523

  2. Expressional analysis of immune-related miRNAs in breast milk.

    PubMed

    Na, R S; E, G X; Sun, W; Sun, X W; Qiu, X Y; Chen, L P; Huang, Y F

    2015-09-25

    Immune-related miRNAs in breast milk are extracellular miRNAs that are related to immune organ development and regulation of the immune function in infants and young animals. The goal of this study was to compare the expression levels of five immune-related miRNAs in breast milk in black goats, humans, and dairy cattle. The miRNAs from milk were extracted and the expression levels were assessed using quantitive RT-PCR methods. MiR-146, miR-155, miR-181a, miR-223, and miR-150 were all detected in Dazu black goat milk, and these miRNAs were significantly more highly expressed in colostrum than in mature milk of goats (P < 0.01), except for miR-150. Further, all five miRNAs were expressed in human colostrum, but patterns differed from those in goats: miR-146 and miR-155 were highly expressed (P < 0.01) in human colostrum, whereas miR-223 was abundant in goat colostrum (P < 0.01). In addition, five miRNAs were significantly higher in bovine mature milk than in goat milk (P < 0.01). Taken together, these results confirm that immune-related miRNAs are rich in breast milk with different expression levels depending on the lactation phase and species.

  3. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus.

    PubMed

    Shen, Enhui; Zou, Jun; Hubertus Behrens, Falk; Chen, Li; Ye, Chuyu; Dai, Shutao; Li, Ruiyan; Ni, Meng; Jiang, Xiaoxue; Qiu, Jie; Liu, Yang; Wang, Weidi; Zhu, Qian-Hao; Chalhoub, Boulos; Bancroft, Ian; Meng, Jinling; Cai, Daguang; Fan, Longjiang

    2015-12-01

    The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs.

  4. Characterization of miRNAs from hydrothermal vent shrimp Rimicaris exoculata.

    PubMed

    Zhou, Yadong; He, Yaodong; Wang, Chunsheng; Zhang, Xiaobo

    2015-12-01

    Deep-sea hydrothermal vent shrimp Rimicaris exoculata is a dominant species aggregating in vent fields along the Mid-Atlantic Ocean Ridge. MicroRNAs play important roles in life cycles of eukaryotes. However, little is known about miRNAs of vent animals. In the present study, a small RNA cDNA library from the muscle of R. exoculata was constructed and the miRNA sequencing was performed. The results indicated that a total of 7,983,331 raw reads were obtained, representing 569,354 unique sequences. Based on sequence analysis, R. exoculata contained 159 conserved miRNAs and 34 novel miRNAs. The conserved miRNAs included 54 families belonging to three different taxonomic units (bilaterian, protostomes and arthropods). The results also showed that miR-2001, a lost miRNA in crustaceans, existed in R. exoculata. Among the conserved miRNAs, iso-miRs were detected. Therefore, this study presented the first insight into the miRNAs of deep-sea hydrothermal vent animals. PMID:26439286

  5. Two novel aspects of the kinetics of gene expression including miRNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2013-04-01

    In eukaryotic cells, many genes are transcribed into non-coding RNAs. Small RNAs or, more specifically, microRNAs (miRNAs) form an abundant sub-class of such RNAs. miRNAs are transcribed as long noncoding RNA and then generated via a processing pathway down to the 20-24-nucleotide length. The key ability of miRNAs is to associate with target mRNAs and to suppress their translation and/or facilitate degradation. Using the mean-field kinetic equations and Monte Carlo simulations, we analyze two aspects of this interplay. First, we describe the situation when the formation of mRNA or miRNA is periodically modulated by a transcription factor which itself is not perturbed by these species. Depending on the ratio between the mRNA and miRNA formation rates, the corresponding induced periodic kinetics are shown to be either nearly harmonic or shaped as anti-phase pulses. The second part of the work is related to recent experimental studies indicating that differentiation of stem cells often involves changes in gene transcription into miRNAs and/or the interference between miRNAs, mRNAs and proteins. In particular, the regulatory protein obtained via mRNA translation may suppress the miRNA formation, and the latter may suppress in turn the miRNA-mRNA association and degradation. The corresponding bistable kinetics are described in detail.

  6. Spatiotemporal plasticity of miRNAs functions: The miR-17-92 case.

    PubMed

    Bonaldi, Tiziana; Mihailovich, Marija

    2016-05-01

    The functional effect of a specific miRNA is tightly linked to the transcriptome, thus having the potential to elicit distinct outcomes in different cellular states. Our recent discovery of a dual role of the miR-17-92 cluster, which shifts from oncogene to tumor suppressor during lymphoma progression, exemplifies the spatiotemporal plasticity of miRNAs. PMID:27314099

  7. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism.

    PubMed

    Mennigen, Jan A

    2016-09-01

    MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.

  8. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health.

    PubMed

    Srinivasan, Hemalatha; Das, Samarjit

    2015-10-01

    Cardiovascular disease is one of the major causes of human morbidity and mortality in the world. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and are known to be involved in the pathogenesis of heart diseases, but the translocation phenomenon and the mode of action in mitochondria are largely unknown. Recent mitochondrial proteome analysis unveiled at least 2000 proteins, of which only 13 are made by the mitochondrial genome. There are numerous studies demonstrating the translocation of proteins into the mitochondria and also translocation of ribosomal RNA (viz., 5S rRNA) into mitochondria. Recent studies have suggested that miRNAs contain sequence elements that affect their subcellular localization, particularly nuclear localization. If there are sequence elements that direct miRNAs to the nucleus, it is also possible that similar sequence elements exist to direct miRNAs to the mitochondria. In this review we have summarized most of the miRNAs that have been shown to play an important role in mitochondrial function, either by regulating mitochondrial genes or by regulating nuclear genes that are known to influence mitochondrial function. While the focus of this review is cardiovascular diseases, we also illustrate the role of mitochondrial miRNA (MitomiR) in the initiation and progression of various diseases, including cardiovascular diseases, metabolic diseases, and cancer. Our goal here is to summarize the miRNAs that are localized to the mitochondrial fraction of cells, and how these miRNAs modulate cardiovascular health.

  9. Deep-sequence profiling of miRNAs and their target prediction in Monotropa hypopitys.

    PubMed

    Shchennikova, Anna V; Beletsky, Alexey V; Shulga, Olga A; Mazur, Alexander M; Prokhortchouk, Egor B; Kochieva, Elena Z; Ravin, Nikolay V; Skryabin, Konstantin G

    2016-07-01

    Myco-heterotroph Monotropa hypopitys is a widely spread perennial herb used to study symbiotic interactions and physiological mechanisms underlying the development of non-photosynthetic plant. Here, we performed, for the first time, transcriptome-wide characterization of M. hypopitys miRNA profile using high throughput Illumina sequencing. As a result of small RNA library sequencing and bioinformatic analysis, we identified 55 members belonging to 40 families of known miRNAs and 17 putative novel miRNAs unique for M. hypopitys. Computational screening revealed 206 potential mRNA targets for known miRNAs and 31 potential mRNA targets for novel miRNAs. The predicted target genes were described in Gene Ontology terms and were found to be involved in a broad range of metabolic and regulatory pathways. The identification of novel M. hypopitys-specific miRNAs, some with few target genes and low abundances, suggests their recent evolutionary origin and participation in highly specialized regulatory mechanisms fundamental for non-photosynthetic biology of M. hypopitys. This global analysis of miRNAs and their potential targets in M. hypopitys provides a framework for further investigation of miRNA role in the evolution and establishment of non-photosynthetic myco-heterotrophs. PMID:27097902

  10. Identification and Characterization of Salvia miltiorrhizain miRNAs in Response to Replanting Disease.

    PubMed

    Zhang, Haihua; Jin, Weibo; Zhu, Xiaole; Liu, Lin; He, Zhigui; Yang, Shushen; Liang, Zongsuo; Yan, Xijun; He, Yanfeng; Liu, Yan

    2016-01-01

    Replanting disease is a major factor limiting the artificial cultivation of the traditional Chinese medicinal herb Salvia miltiorrhiza. At present, little information is available regarding the role of miRNAs in response to replanting disease. In this study, two small RNA libraries obtained from first-year (FPR) and second-year plant (SPR) roots were subjected to a high-throughput sequencing method. Bioinformatics analysis revealed that 110 known and 7 novel miRNAs were annotated in the roots of S. miltiorrhiza. Moreover, 39 known and 2 novel miRNAs were identified and validated for differential expression in FPR compared with SPR. Thirty-one of these miRNAs were further analyzed by qRT-PCR, which revealed that 5 miRNAs negatively regulated the expression levels of 7 target genes involved in root development or stress responses. This study not only provides novel insights into the miRNA content of S. miltiorrhiza in response to replanting disease but also demonstrates that 5 miRNAs may be involved in these responses. Interactions among the differentially expressed miRNAs with their targets may form an important component of the molecular basis of replanting disease in S. miltiorrhiza. PMID:27483013

  11. Dissecting the regulation rules of cancer-related miRNAs based on network analysis

    PubMed Central

    Liu, Zhongyu; Guo, Yanzhi; Pu, Xuemei; Li, Menglong

    2016-01-01

    miRNAs (microRNAs) are a set of endogenous and small non-coding RNAs which specifically induce degradation of target mRNAs or inhibit protein translation to control gene expression. Obviously, aberrant miRNA expression in human cells will lead to a serious of changes in protein-protein interaction network (PPIN), thus to activate or inactivate some pathways related to various diseases, especially carcinogenesis. In this study, we systematically constructed the miRNA-regulated co-expressed protein-protein interaction network (CePPIN) for 17 cancers firstly. We investigated the topological parameters and functional annotation for the proteins in CePPIN, especially for those miRNA targets. We found that targets regulated by more miRNAs tend to play a more important role in the forming process of cancers. We further elucidated the miRNA regulation rules in PPIN from a more systematical perspective. By GO and KEGG pathway analysis, miRNA targets are involved in various cellular processes mostly related to cell cycle, such as cell proliferation, growth, differentiation, etc. Through the Pfam classification, we found that miRNAs belonging to the same family tend to have targets from the same family which displays the synergistic function of these miRNAs. Finally, the case study on miR-519d and miR-21-regulated sub-network was performed to support our findings. PMID:27694936

  12. Transcription Factors Are Targeted by Differentially Expressed miRNAs in Primates

    PubMed Central

    Dannemann, Michael; Prüfer, Kay; Lizano, Esther; Nickel, Birgit; Burbano, Hernán A.; Kelso, Janet

    2012-01-01

    MicroRNAs (miRNAs) are small RNA molecules involved in the regulation of mammalian gene expression. Together with other transcription regulators, miRNAs modulate the expression of genes and thereby potentially contribute to tissue and species diversity. To identify miRNAs that are differentially expressed between tissues and/or species, and the genes regulated by these, we have quantified expression of miRNAs and messenger RNAs in five tissues from multiple human, chimpanzee, and rhesus macaque individuals using high-throughput sequencing. The breadth of this tissue and species data allows us to show that downregulation of target genes by miRNAs is more pronounced between tissues than between species and that downregulation is more pronounced for genes with fewer binding sites for expressed miRNAs. Intriguingly, we find that tissue- and species-specific miRNAs target transcription factor genes (TFs) significantly more often than expected. Through their regulatory effect on transcription factors, miRNAs may therefore exert an indirect influence on a larger proportion of genes than previously thought. PMID:22454130

  13. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies⋆

    PubMed Central

    Chen, Yunching; Gao, Dong-Yu; Huang, Leaf

    2016-01-01

    MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, play an important role in modulating gene expressions, thereby regulating downstream signaling pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach plays an important role in cancer therapy. However, one of the major challenges of miRNA-based cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs In vivo. This review discusses the key challenges to the development of the carriers for miRNA-based therapy and explores current strategies to systemically deliver miRNAs to cancer without induction of toxicity. PMID:24859533

  14. Joint analysis of miRNA and mRNA expression data.

    PubMed

    Muniategui, Ander; Pey, Jon; Planes, Francisco J; Rubio, Angel

    2013-05-01

    miRNAs are small RNA molecules ('22 nt) that interact with their target mRNAs inhibiting translation or/and cleavaging the target mRNA. This interaction is guided by sequence complentarity and results in the reduction of mRNA and/or protein levels. miRNAs are involved in key biological processes and different diseases. Therefore, deciphering miRNA targets is crucial for diagnostics and therapeutics. However, miRNA regulatory mechanisms are complex and there is still no high-throughput and low-cost miRNA target screening technique. In recent years, several computational methods based on sequence complementarity of the miRNA and the mRNAs have been developed. However, the predicted interactions using these computational methods are inconsistent and the expected false positive rates are still large. Recently, it has been proposed to use the expression values of miRNAs and mRNAs (and/or proteins) to refine the results of sequence-based putative targets for a particular experiment. These methods have shown to be effective identifying the most prominent interactions from the databases of putative targets. Here, we review these methods that combine both expression and sequence-based putative targets to predict miRNA targets. PMID:22692086

  15. Identification and Characterization of Salvia miltiorrhizain miRNAs in Response to Replanting Disease

    PubMed Central

    Zhu, Xiaole; Liu, Lin; He, Zhigui; Yang, Shushen; Liang, Zongsuo; Yan, Xijun; He, Yanfeng; Liu, Yan

    2016-01-01

    Replanting disease is a major factor limiting the artificial cultivation of the traditional Chinese medicinal herb Salvia miltiorrhiza. At present, little information is available regarding the role of miRNAs in response to replanting disease. In this study, two small RNA libraries obtained from first-year (FPR) and second-year plant (SPR) roots were subjected to a high-throughput sequencing method. Bioinformatics analysis revealed that 110 known and 7 novel miRNAs were annotated in the roots of S. miltiorrhiza. Moreover, 39 known and 2 novel miRNAs were identified and validated for differential expression in FPR compared with SPR. Thirty-one of these miRNAs were further analyzed by qRT-PCR, which revealed that 5 miRNAs negatively regulated the expression levels of 7 target genes involved in root development or stress responses. This study not only provides novel insights into the miRNA content of S. miltiorrhiza in response to replanting disease but also demonstrates that 5 miRNAs may be involved in these responses. Interactions among the differentially expressed miRNAs with their targets may form an important component of the molecular basis of replanting disease in S. miltiorrhiza. PMID:27483013

  16. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus.

    PubMed

    Shen, Enhui; Zou, Jun; Hubertus Behrens, Falk; Chen, Li; Ye, Chuyu; Dai, Shutao; Li, Ruiyan; Ni, Meng; Jiang, Xiaoxue; Qiu, Jie; Liu, Yang; Wang, Weidi; Zhu, Qian-Hao; Chalhoub, Boulos; Bancroft, Ian; Meng, Jinling; Cai, Daguang; Fan, Longjiang

    2015-12-01

    The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs. PMID:26357884

  17. miRNA-940 reduction contributes to human Tetralogy of Fallot development.

    PubMed

    Liang, Dandan; Xu, Xinran; Deng, Fangfei; Feng, Jing; Zhang, Hong; Liu, Ying; Zhang, Yangyang; Pan, Lei; Liu, Yi; Zhang, Dasheng; Li, Jun; Liang, Xingqun; Sun, Yunfu; Xiao, Junjie; Chen, Yi-Han

    2014-09-01

    Tetralogy of Fallot (TOF) is a complex congenital heart defect and the microRNAs regulation in TOF development is largely unknown. Herein, we explored the role of miRNAs in TOF. Among 75 dysregulated miRNAs identified from human heart tissues, miRNA-940 was the most down-regulated one. Interestingly, miRNA-940 was most highly expressed in normal human right ventricular out-flow tract comparing to other heart chambers. As TOF is caused by altered proliferation, migration and/or differentiation of the progenitor cells of the secondary heart field, we isolated Sca-1(+) human cardiomyocyte progenitor cells (hCMPC) for miRNA-940 function analysis. miRNA-940 reduction significantly promoted hCMPCs proliferation and inhibited hCMPCs migration. We found that JARID2 is an endogenous target regulated by miRNA-940. Functional analyses showed that JARID2 also affected hCMPCs proliferation and migration. Thus, decreased miRNA-940 affects the proliferation and migration of the progenitor cells of the secondary heart field by targeting JARID2 and potentially leads to TOF development.

  18. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus

    PubMed Central

    Shen, Enhui; Zou, Jun; Hubertus Behrens, Falk; Chen, Li; Ye, Chuyu; Dai, Shutao; Li, Ruiyan; Ni, Meng; Jiang, Xiaoxue; Qiu, Jie; Liu, Yang; Wang, Weidi; Zhu, Qian-Hao; Chalhoub, Boulos; Bancroft, Ian; Meng, Jinling; Cai, Daguang; Fan, Longjiang

    2015-01-01

    The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors’ genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs. PMID:26357884

  19. miRNA143 Induces K562 Cell Apoptosis Through Downregulating BCR-ABL

    PubMed Central

    Liang, Bing; Song, Yanbin; Zheng, Wenling; Ma, Wenli

    2016-01-01

    Background Leukemia seriously threats human health and life. MicroRNA regulates cell growth, proliferation, apoptosis, and cell cycle. Whether microRNA could be treated as a target for leukemia is still unclear and the mechanism by which microRNA143 regulates K562 cells needs further investigation. Material/Methods miRNA143 and its scramble miRNA were synthesized and transfected to K562 cells. MTT assay was used to detect K562 cell proliferation. Flow cytometry and a caspase-3 activity detection kit were used to test K562 cell apoptosis. Western blot analysis was performed to determine breakpoint cluster region-Abelson (BCR-ABL) expression. BCR-ABL overexpression and siRNA were used to change BCR-ABL level, and cell apoptosis was detected again after lipofection transfection. Results miRNA143 transfection inhibited K562 cell growth and induced its apoptosis. miRNA143 transfection decreased BCR-ABL expression. BCR-ABL overexpression suppressed miRNA143-induced K562 cell apoptosis, while its reduction enhanced miRNA143-induced apoptosis. Conclusions miRNA143 induced K562 cell apoptosis through downregulating BCR-ABL. miRNA143 might be a target for a new leukemia therapy. PMID:27492780

  20. The Sequence and Structure Determine the Function of Mature Human miRNAs.

    PubMed

    Rolle, Katarzyna; Piwecka, Monika; Belter, Agnieszka; Wawrzyniak, Dariusz; Jeleniewicz, Jaroslaw; Barciszewska, Miroslawa Z; Barciszewski, Jan

    2016-01-01

    Micro RNAs (miRNAs) (19-25 nucleotides in length) belong to the group of non-coding RNAs are the most abundant group of posttranscriptional regulators in multicellular organisms. They affect a gene expression by binding of fully or partially complementary sequences to the 3'-UTR of target mRNA. Furthermore, miRNAs present a mechanism by which genes with diverse functions on multiple pathways can be simultaneously regulated at the post-transcriptional level. However, little is known about the specific pathways through which miRNAs with specific sequence or structural motifs regulate the cellular processes. In this paper we showed the broad and deep characteristics of mature miRNAs according to their sequence and structural motifs. We investigated a distinct group of miRNAs characterized by the presence of specific sequence motifs, such as UGUGU, GU-repeats and purine/pyrimidine contents. Using computational function and pathway analysis of their targeted genes, we were able to observe the relevance of sequence and the type of targeted mRNAs. As the consequence of the sequence analysis we finally provide the comprehensive description of pathways, biological processes and proteins associated with the distinct group of characterized miRNAs. Here, we found that the specific group of miRNAs with UGUGU can activate the targets associated to the interferon induction pathway or pathways prominently observed during carcinogenesis. GU-rich miRNAs are prone to regulate mostly processes in neurogenesis, whereas purine/pyrimidine rich miRNAs could be involved rather in transport and/or degradation of RNAs. Additionally, we have also analyzed the simple sequence repeats (SSRs). Their variation within mature miRNAs might be critical for normal miRNA regular activity. Expansion or contraction of SSRs in mature miRNA might directly affect its mRNA interaction or even change the function of that distinct miRNA. Our results prove that due to the specific sequence features, these

  1. Inference of miRNA targets using evolutionary conservation and pathway analysis

    PubMed Central

    Gaidatzis, Dimos; van Nimwegen, Erik; Hausser, Jean; Zavolan, Mihaela

    2007-01-01

    Background MicroRNAs have emerged as important regulatory genes in a variety of cellular processes and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional annotations are available only for a very small fraction of these miRNAs, and even in these cases only partially. Results We developed a general Bayesian method for the inference of miRNA target sites, in which, for each miRNA, we explicitly model the evolution of orthologous target sites in a set of related species. Using this method we predict target sites for all known miRNAs in flies, worms, fish, and mammals. By comparing our predictions in fly with a reference set of experimentally tested miRNA-mRNA interactions we show that our general method performs at least as well as the most accurate methods available to date, including ones specifically tailored for target prediction in fly. An important novel feature of our model is that it explicitly infers the phylogenetic distribution of functional target sites, independently for each miRNA. This allows us to infer species-specific and clade-specific miRNA targeting. We also show that, in long human 3' UTRs, miRNA target sites occur preferentially near the start and near the end of the 3' UTR. To characterize miRNA function beyond the predicted lists of targets we further present a method to infer significant associations between the sets of targets predicted for individual miRNAs and specific biochemical pathways, in particular those of the KEGG pathway database. We show that this approach retrieves several known functional miRNA-mRNA associations, and predicts novel functions for known miRNAs in cell growth and in development. Conclusion We have presented a Bayesian target prediction algorithm without any tunable parameters, that can be applied to sequences from any clade of species. The algorithm automatically infers the phylogenetic distribution of functional sites for each miRNA, and assigns a posterior

  2. The interplay between MDV and HVT affects viral miRNa expression.

    PubMed

    Goher, Mohamed; Hicks, Julie A; Liu, Hsiao-Ching

    2013-06-01

    It is well established that herpesviruses encode numerous microRNAs (miRNAs) and that these virally encoded small RNAs play multiple roles in infection. The present study was undertaken to determine how co-infection of a pathogenic MDV serotype one (MDV1) strain (MD5) and a vaccine strain (herpesvirus of turkeys [HVT]) alters viral miRNA expression in vivo. We first used small RNA deep sequencing to identify MDV1-encoded miRNAs that are expressed in tumorigenic spleens of MDV1-infected birds. The expression patterns of these miRNAs were then further assessed at an early time point (7 days postinfection [dpi]) and a late time point (42 dpi) in birds with and without HVT vaccination using real-time PCR (RT-PCR). Additionally, the effect of MDV1 co-infection on HVT-encoded miRNAs was determined using RT-PCR. A diverse population of miRNAs was expressed in MDV-induced tumorigenic spleens at 42 dpi, with 18 of the 26 known mature miRNAs represented. Of these, both mdv1-miR-M4-5p and mdv1-miR-M2-3p were the most highly expressed miRNAs. RT-PCR analysis further revealed that nine MDV miRNAs were differentially expressed between 7 dpi and 42 dpi infected spleens. At 7 dpi, three miRNAs were differentially expressed between the spleens of birds co-infected with HVT and MD5 compared with birds singly infected with MD5, whereas at 42 dpi, nine miRNAs were differentially expressed. At 7 dpi, the expression of seven HVT-encoded miRNAs was affected in the spleens of co-infected birds compared with birds only receiving the HVT vaccine. At 42 dpi, six HVT-encoded miRNAs were differentially expressed between the two groups. Target prediction analysis suggests that these differentially expressed viral miRNAs are involved in regulating several cellular processes, including cell proliferation and the adaptive immune response.

  3. Loa loa and Onchocerca ochengi miRNAs detected in host circulation.

    PubMed

    Tritten, Lucienne; O'Neill, Maeghan; Nutting, Chuck; Wanji, Samuel; Njouendoui, Abdel; Fombad, Fanny; Kengne-Ouaffo, Jonas; Mackenzie, Charles; Geary, Timothy

    2014-11-01

    A combination of deep-sequencing and bioinformatics analysis enabled identification of twenty-two microRNA candidates of potential nematode origin in plasma from Loa loa-infected baboons and a further ten from the plasma of an Onchocerca ochengi-infected cow. The obtained data were compared to results from previous work on miRNA candidates from Dirofilaria immitis and O. volvulus found in host circulating blood, to examine the species specificity of the released miRNA. None of the miRNA candidates was found to be present in all four host-parasite scenarios and most of them were specific to only one of them. Eight candidate miRNAs were found to be identical in the full sequence in at least two different infections, while nine candidate miRNAs were found to be similar but not identical in at least four filarial species. PMID:25461483

  4. Treatment-independent miRNA signature in blood of wilms tumor patients

    PubMed Central

    2012-01-01

    Background Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001. Results We did not find a significant difference between miRNA signature of both groups. However both, Wilms tumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. The signature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5% and of patients after chemotherapy an accuracy of 97.0%, each as compared to healthy controls. Conclusion Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of four weeks preoperative chemotherapy treatment. PMID:22871070

  5. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure

    PubMed Central

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Amarasiriwardena, Chitra; Svensson, Katherine; Oken, Emily; Solano-Gonzalez, Maritsa; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O

    2015-01-01

    Aim: Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. Materials & methods: We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. Results: Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. Conclusion: The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy. PMID:26418635

  6. Use of miRNAs in biofluids as biomarkers in dietary and lifestyle intervention studies.

    PubMed

    Rome, Sophie

    2015-09-01

    The selection of biomarkers in nutrigenomics needs to reflect subtle changes in homoeostasis representing the relation between nutrition and health, or nutrition and disease. It is believed that noncoding RNAs, such as circulating microRNAs (miRNAs), may represent such a new class of integrative biomarkers. Until now, the most relevant body fluids for miRNA quantification in response to nutrition have not been clearly defined, but recent studies listed in this review indicate that miRNAs from plasma or serum, PBMC and faeces might be relevant biomarkers to quantify the physiological impacts of dietary or lifestyle intervention studies. In addition, a number of recent studies also indicate that miRNAs could permit to monitor the impact of diet on gut microbiota. We also discuss the main preanalytical considerations that are important to take into account before miRNA screening which can affect the reproducibility of the data.

  7. Loa loa and Onchocerca ochengi miRNAs detected in host circulation.

    PubMed

    Tritten, Lucienne; O'Neill, Maeghan; Nutting, Chuck; Wanji, Samuel; Njouendoui, Abdel; Fombad, Fanny; Kengne-Ouaffo, Jonas; Mackenzie, Charles; Geary, Timothy

    2014-11-01

    A combination of deep-sequencing and bioinformatics analysis enabled identification of twenty-two microRNA candidates of potential nematode origin in plasma from Loa loa-infected baboons and a further ten from the plasma of an Onchocerca ochengi-infected cow. The obtained data were compared to results from previous work on miRNA candidates from Dirofilaria immitis and O. volvulus found in host circulating blood, to examine the species specificity of the released miRNA. None of the miRNA candidates was found to be present in all four host-parasite scenarios and most of them were specific to only one of them. Eight candidate miRNAs were found to be identical in the full sequence in at least two different infections, while nine candidate miRNAs were found to be similar but not identical in at least four filarial species.

  8. Potential application of miRNAs as diagnostic and therapeutic tools in chronic pancreatitis

    PubMed Central

    Hu, Liang-Hao; Ji, Jun-Tao; Li, Zhao-Shen

    2015-01-01

    Chronic pancreatitis (CP) is a progressive inflammatory disease typified by end-stage fibrosis. This disease can also increase the risk of pancreatic cancer. The associated diagnosis, pain and other complications further add to the burden of disease management. In recent years, significant progress has been achieved in identifying miRNAs and their physiological functions, including mRNA repression and protein expression control. Given the extensive effort made on miRNA research, a close correlation has been discovered between certain types of miRNAs and disease progression, particularly for tissue fibrosis. Designing miRNA-related tools for disease diagnosis and therapeutic treatments presents a novel and potential research frontier. In the current review, we discuss various miRNAs closely interacting with CP, as well as the possible development of targeted miRNA therapies in managing this disease. PMID:26149296

  9. Pleiotropic constraints, expression level, and the evolution of miRNA sequences.

    PubMed

    Jovelin, Richard

    2013-12-01

    Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3'UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.

  10. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    PubMed

    Vignier, Nicolas; Amor, Fatima; Fogel, Paul; Duvallet, Angélique; Poupiot, Jérôme; Charrier, Sabine; Arock, Michel; Montus, Marie; Nelson, Isabelle; Richard, Isabelle; Carrier, Lucie; Servais, Laurent; Voit, Thomas; Bonne, Gisèle; Israeli, David

    2013-01-01

    Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs) as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophy type 2D (LGMD2D), limb-girdle muscular dystrophy type 2C (LGMD2C), Emery-Dreifuss muscular dystrophy (EDMD) and hypertrophic cardiomyopathy (HCM). Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  11. miRNAs Signature in Head and Neck Squamous Cell Carcinoma Metastasis: A Literature Review

    PubMed Central

    Irani, Soussan

    2016-01-01

    Statement of the Problem Head and neck cancers include epithelial tumors arising in the oral cavity, pharynx, larynx, paranasal sinuses, and nasal cavity. Metastasis is a hallmark of cancer. MicroRNAs (miRNAs) are endogenous small non-coding RNAs involved in cell proliferation, development, differentiation and metastasis. It is believed that miRNA alterations correlate with initiation and progression of cancer cell proliferation or inhibition of tumorigenesis. Moreover, miRNAs have different roles in development, progression, and metastasis of head and neck squamous cell carcinoma (HNSCC). Altered expression of miRNAs could be novel molecular biomarkers for the definite diagnosis of cancer, metastatic site, cancer stage, and its progression. Purpose The purpose of this review was to provide a comprehensive literature review of the role of miRNAs in head and neck cancer metastasis. Search strategy A relevant English literature search in PubMed, ScienceDirect, and Google Scholar was performed. The keywords ‘miRNA’, ‘head and neck’, and ‘cancer’ were searched in title and abstract of publications; limited from 1990 to 2015. The inclusion criterion was the role of miRNAs in cancer metastasis. The exclusion criterion was the other functions of miRNAs in cancers. Out of 15221 articles, the full texts of 442 articles were retrieved and only 133 articles met the inclusion criteria. Conclusion Despite the advances in cancer treatment, the mortality rate of HNSCC is still high. The potential application of miRNAs for cancer therapy has been demonstrated in many studies; miRNAs function as either tumor suppressor or oncogene. The recognition of metastamir and their targets may lead to better understanding of HNSCC oncogenesis, and consequently, development of new therapeutic strategies which is a necessity in cancer treatment. Development of therapeutic agents based on miRNAs is a promising target. PMID:27284551

  12. Differential expression of circulating miRNAs in maternal plasma in pregnancies with fetal macrosomia

    PubMed Central

    GE, QINYU; ZHU, YANAN; LI, HAILING; TIAN, FEI; XIE, XUEYING; BAI, YUNFEI

    2015-01-01

    Macrosomia is associated with problems at birth and has life-long health implications for the infant. The aim of this study was to profile the plasma microRNAs (miRNAs or miRs) and evaluate the potential of circulating miRNAs to predict fetal macrosomia. The expression levels of miRNAs in plasma samples obtained from pregnant women with fetal macrosomia and from women with normal pregnancies (controls) were analyzed using TaqMan Low-Density Arrays (TLDAs) followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) validation and analysis. The TLDA data revealed that 143 miRNAs were differentially expressed in the plasma samples from pregnant women with fetal macrosomia compared with the controls (43 upregulated and 100 downregulated miRNAs). Twelve of these miRNAs were selected for RT-qPCR analysis. Receiver operational characteristic (ROC) curve analysis indicated that several miRNAs (e.g., miR-141-3p and miR-200c-3p) were clearly distinguished between pregnancies with fetal macrosomia and other types of abnormal pregnancy and healthy pregnancies with high sensitivity and specificity (AUC >0.9). The expression of miRNA clusters also showed a similar trend in pregnancies with fetal macrosomia. This study provides a platform for profiling circulating miRNAs in maternal plasma. Our data also suggest that altered levels of maternal plasma miRNAs have great potential to serve as non-invasive biomarkers and as a mechanistic indicator of abnormal pregnancies. PMID:25370776

  13. Differential miRNA expression in inherently high- and low-active inbred mice

    PubMed Central

    Dawes, Michelle; Kochan, Kelli J; Riggs, Penny K; Timothy Lightfoot, J

    2015-01-01

    Despite established health benefits of regular exercise, the majority of Americans do not meet the recommended levels of physical activity. While it is known that voluntary activity levels are largely heritable, the genetic mechanisms that regulate activity are not well understood. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit transcription by binding to a target gene, inhibiting protein production. The purpose of this study was to investigate differential miRNA expression between inherently high- (C57L/J) and low- (C3H/HeJ) active inbred mice in soleus, extensor digitorum longus (EDL), and nucleus accumbens tissues. Expression was initially determined by miRNA microarray analysis, and selected miRNAs were validated by qRT-PCR. Expression of 13 miRNAs varied between strains in the nucleus accumbens, 20 in soleus, and eight in EDL, by microarray analysis. Two miRNAs were validated by qRT-PCR in the nucleus accumbens; miR-466 was downregulated (∼4 fold; P < 0.0004), and miR-342-5p was upregulated (∼115 fold; P < 0.0001) in high-active mice. MiR-466 was downregulated (∼5 fold; P < 0.0001) in the soleus of high-active mice as well. Interestingly, miR-466 is one of several miRNA families with sequence located in intron 10 of Sfmbt2; miRNAs at this locus are thought to drive imprinting of this gene. “Pathways in cancer” and “TGFβ signaling” were the most significant pathways of putative target genes in both the soleus and nucleus accumbens. Our results are the first to consider differential miRNA expression between high- and low-active mice, and suggest that miRNAs may play a role in regulation of physical activity. PMID:26229004

  14. Mature MiRNAs Form Secondary Structure, which Suggests Their Function beyond RISC

    PubMed Central

    Belter, Agnieszka; Gudanis, Dorota; Rolle, Katarzyna; Piwecka, Monika; Gdaniec, Zofia; Naskręt-Barciszewska, Mirosława Z.; Barciszewski, Jan

    2014-01-01

    The generally accepted model of the miRNA-guided RNA down-regulation suggests that mature miRNA targets mRNA in a nucleotide sequence-specific manner. However, we have shown that the nucleotide sequence of miRNA is not the only determinant of miRNA specificity. Using specific nucleases, T1, V1 and S1 as well as NMR, UV/Vis and CD spectroscopies, we found that miR-21, miR-93 and miR-296 can adopt hairpin and/or homoduplex structures. The secondary structure of those miRNAs in solution is a function of RNA concentration and ionic conditions. Additionally, we have shown that a formation of miRNA hairpin is facilitated by cellular environment.Looking for functional consequences of this observation, we have perceived that structure of these miRNAs resemble RNA aptamers, short oligonucleotides forming a stable 3D structures with a high affinity and specificity for their targets. We compared structures of anti-tenascin C (anti-Tn-C) aptamers, which inhibit brain tumor glioblastoma multiforme (GBM, WHO IV) and selected miRNA. A strong overexpression of miR-21, miR-93 as well Tn-C in GBM may imply some connections between them. The structural similarity of these miRNA hairpins and anti-Tn-C aptamers indicates that miRNAs may function also beyond RISC and are even more sophisticated regulators, that it was previously expected. We think that the knowledge of the miRNA structure may give a new insight into miRNA-dependent gene regulation mechanism and be a step forward in the understanding their function and involvement in cancerogenesis. This may improve design process of anti-miRNA therapeutics. PMID:25423301

  15. Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel.

    PubMed

    Liu, Yuting; Hu, Wenchao; Wang, Haifang; Lu, Minghua; Shao, Chunxuan; Menzel, Corinna; Yan, Zheng; Li, Ying; Zhao, Sen; Khaitovich, Philipp; Liu, Mofang; Chen, Wei; Barnes, Brian M; Yan, Jun

    2010-09-01

    MicroRNAs (miRNAs) are 19- to 25-nucleotide-long small and noncoding RNAs now well-known for their regulatory roles in gene expression through posttranscriptional and translational controls. Mammalian hibernation is a physiological process involving profound changes in set-points for food consumption, body mass and growth, body temperature, and metabolic rate in which miRNAs may play important regulatory roles. In an initial study, we analyzed miRNAs in the liver of an extreme hibernating species, the Arctic ground squirrel (Spermophilus parryii), using massively parallel Illumina sequencing technology. We identified >200 ground squirrel miRNAs, including 18 novel miRNAs specific to ground squirrel and mir-506 that is fast evolving in the ground squirrel lineage. Comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 mo after hibernation had ended (nonhibernating), we identified differentially expressed miRNAs during hibernation, which are also compared with the results from two other miRNA profiling methods: Agilent miRNA microarray and real-time PCR. Among the most significant miRNAs, miR-320 and miR-378 were significantly underexpressed during both stages of hibernation compared with nonhibernating animals, whereas miR-486 and miR-451 were overexpressed in late torpor but returned in early arousal to the levels similar to those in nonhibernating animals. Analyses of their putative target genes suggest that these miRNAs could play an important role in suppressing tumor progression and cell growth during hibernation. High-throughput sequencing data and microarray data have been submitted to GEO database with accession: GSE19808.

  16. miRNA Expression Profiling of the Murine TH-MYCN Neuroblastoma Model Reveals Similarities with Human Tumors and Identifies Novel Candidate MiRNAs

    PubMed Central

    Terrile, Marta; Bryan, Kenneth; Vaughan, Lynsey; Hallsworth, Albert; Webber, Hannah

    2011-01-01

    Background MicroRNAs are small molecules which regulate gene expression post-transcriptionally and aberrant expression of several miRNAs is associated with neuroblastoma, a childhood cancer arising from precursor cells of the sympathetic nervous system. Amplification of the MYCN transcription factor characterizes the most clinically aggressive subtype of this disease, and although alteration of p53 signaling is not commonly found in primary tumors, deregulation of proteins involved in this pathway frequently arise in recurrent disease after pharmacological treatment. TH-MYCN is a well-characterized transgenic model of MYCN-driven neuroblastoma which recapitulates many clinicopathologic features of the human disease. Here, we evaluate the dysregulation of miRNAs in tumors from TH-MYCN mice that are either wild-type (TH-MYCN) or deficient (TH-MYCN/p53ERTAM) for the p53 tumor suppressor gene. Principal Findings We analyzed the expression of 591 miRNAs in control (adrenal) and neuroblastoma tumor tissues derived from either TH-MYCN or TH-MYCN/p53ERTAM mice, respectively wild-type or deficient in p53. Comparing miRNA expression in tumor and control samples, we identified 159 differentially expressed miRNAs. Using data previously obtained from human neuroblastoma samples, we performed a comparison of miRNA expression between murine and human tumors to assess the concordance between murine and human expression data. Notably, the miR-17-5p-92 oncogenic polycistronic cluster, which is over-expressed in human MYCN amplified tumors, was over-expressed in mouse tumors. Moreover, analyzing miRNAs expression in a mouse model (TH-MYCN/p53ERTAM) possessing a transgenic p53 allele that drives the expression of an inactive protein, we identified miR-125b-3p and miR-676 as directly or indirectly regulated by the level of functional p53. Significance Our study represents the first miRNA profiling of an important mouse model of neuroblastoma. Similarities and differences in miRNAs

  17. miRNA in Prostate Cancer: New Prospects for Old Challenges

    PubMed Central

    Mekhail, Samy M; Yousef, Peter G; Jackinsky, Stephen W; Pasic, Maria; Yousef, George M

    2014-01-01

    Abstract Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men but has limited prognostic biomarkers available for follow up. MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression of their target genes. Accumulating experimental evidence reports differential miRNA expression in PCa, and that miRNAs are actively involved in the pathogenesis and progression of PCa. miRNA and androgen receptor signaling cross-talk is an established factor in PCa pathogenesis. Differential miRNA expression was found between patients with high versus low Gleason scores, and was also observed in patients with biochemical failure, hormone-resistant cancer and in metastasis. Metastasis requires epithelial-mesenchymal transition which shares many cancer stem cell biological characteristics and both are associated with miRNA dysregulation. In the era of personalized medicine, there is a broad spectrum of potential clinical applications of miRNAs. These applications can significantly improve PCa management including their use as diagnostic and/or prognostic markers, or as predictive markers for treatment efficiency. Preliminary evidence demonstrates that miRNAs can also be used for risk stratification. Circulatory miRNAs can serve as non-invasive biomarkers in urine and/or serum of PCa patients. More recently, analysis of miRNAs and circulating tumor cells are gaining significant attention. Moreover, miRNAs represent an attractive new class of therapeutic targets for PCa. Here, we summarize the current knowledge and the future prospects of miRNAs in PCa, their advantages, and potential challenges as tissue and circulating biomarkers. Prostate cancer (PCa) is the most commonly diagnosed cancer among men in western populations. The American Cancer Society estimated 239, 590 new cases and 29, 720 expected deaths in the USA in 2013. One in every six men are at risk of developing PCa during their lifetime (1). Currently, the standard biomarker for PCa

  18. miRNA in Prostate Cancer: New Prospects for Old Challenges.

    PubMed

    Mekhail, Samy M; Yousef, Peter G; Jackinsky, Stephen W; Pasic, Maria; Yousef, George M

    2014-04-01

    Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men but has limited prognostic biomarkers available for follow up. MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression of their target genes. Accumulating experimental evidence reports differential miRNA expression in PCa, and that miRNAs are actively involved in the pathogenesis and progression of PCa. miRNA and androgen receptor signaling cross-talk is an established factor in PCa pathogenesis. Differential miRNA expression was found between patients with high versus low Gleason scores, and was also observed in patients with biochemical failure, hormone-resistant cancer and in metastasis. Metastasis requires epithelial-mesenchymal transition which shares many cancer stem cell biological characteristics and both are associated with miRNA dysregulation. In the era of personalized medicine, there is a broad spectrum of potential clinical applications of miRNAs. These applications can significantly improve PCa management including their use as diagnostic and/or prognostic markers, or as predictive markers for treatment efficiency. Preliminary evidence demonstrates that miRNAs can also be used for risk stratification. Circulatory miRNAs can serve as non-invasive biomarkers in urine and/or serum of PCa patients. More recently, analysis of miRNAs and circulating tumor cells are gaining significant attention. Moreover, miRNAs represent an attractive new class of therapeutic targets for PCa. Here, we summarize the current knowledge and the future prospects of miRNAs in PCa, their advantages, and potential challenges as tissue and circulating biomarkers. Prostate cancer (PCa) is the most commonly diagnosed cancer among men in western populations. The American Cancer Society estimated 239, 590 new cases and 29, 720 expected deaths in the USA in 2013. One in every six men are at risk of developing PCa during their lifetime (1). Currently, the standard biomarker for PCa diagnosis is

  19. Lipopolysaccharide-Induced Differential Expression of miRNAs in Male and Female Rhipicephalus haemaphysaloides Ticks

    PubMed Central

    Zhang, Houshuang; Zhou, Yongzhi; Cao, Jie; Zhou, Jinlin

    2015-01-01

    Lipopolysaccharide (LPS) stimulates the innate immune response in arthropods. In tick vectors, LPS activates expression of immune genes, including those for antibacterial peptides. miRNAs are 21–24 nt non-coding small RNAs that regulate target mRNAs at the post-transcriptional level. However, our understanding of tick innate immunity is limited to a few cellular immune reactions and some characterized immune molecules. Moreover, there is little information on the regulation of the immune system in ticks by miRNA. Therefore, this study aimed to analyze the differential expression of miRNAs in male and female ticks after LPS injection. LPS was injected into male and female Rhipicephalus haemaphysaloides ticks to stimulate immune response, with phosphate buffered saline (PBS)-injected ticks as negative controls. miRNAs from each group were sequenced and analyzed. In the PBS- and LPS-injected female ticks, 11.46 and 12.82 million reads of 18–30 nt were obtained respectively. There were 13.92 and 15.29 million reads of 18–30 nt obtained in the PBS- and LPS-injected male ticks, respectively. Expression of miRNAs in male ticks was greater than that in female ticks. There were 955 and 984 conserved miRNA families in the PBS- and LPS-injected female ticks, respectively, and correspondingly 1684 and 1552 conserved miRNA families in male ticks. Nine novel miRNAs were detected as common miRNAs in two or more tested samples. There were 37 known miRNAs up-regulated >10-fold and 33 down-regulated >10-fold in LPS-injected female ticks; and correspondingly 52 and 59 miRNAs in male ticks. Differential expression of miRNAs in PBS- and LPS-injected samples supports their involvement in the regulation of innate immunity. These data provide an important resource for more detailed functional analysis of miRNAs in this species. PMID:26430879

  20. miRNA-10b sponge: An anti-breast cancer study in vitro

    PubMed Central

    LIANG, AI-LING; ZHANG, TING-TING; ZHOU, NING; WU, CUI YUN; LIN, MAN-HUA; LIU, YONG-JUN

    2016-01-01

    Breast cancer is a malignant tumor with the highest incidence among women. Breast cancer metastasis is the major cause of treatment failure and mortality among such patients. MicroRNAs (miRNAs) are a class of small molecular non-coding regulatory RNAs, which act as oncogenes or tumor suppressors in breast cancer. miRNA-10b has been found to exhibit a high expression level in advanced and metastatic breast cancer, and is closely related to breast cancer metastasis. An miRNA sponge is an mRNA with several repeated sequences of complete or incomplete complementarity to the natural miRNA in its 3′ non-translating region. It acts as a sponge adsorbing miRNAs and ensures their separation from their targets and inhibits their function. The present study designed a sponge plasmid against miRNA-10b and transiently transfected it into high and low metastatic human breast cancer cell lines MDA-MB-231 and MCF-7, and analyzed the effects of the miRNA-10b sponge on the growth and proliferation, migration and invasion in these cell lines. qRT-PCR results found that the sponge plasmid effectively inhibited the expression of miRNA-10b, and upregulated the expression of the miRNA-10b target protein HOXD-10. The results from the CCK-8 assay found that the miRNA-10b sponge inhibited the growth of breast cancer cell lines MDA-MB-231 and MCF-7. Results of the plate cloning experiments indicated that the miRNA-10b sponge suppressed the colony formation of the MDA-MB-231 and MCF-7 cells. The results of wound healing and Transwell assays showed that the miRNA-10b sponge inhibited the migration and invasion of the breast cancer cell lines MDA-MB-231 and MCF-7. Our results demonstrated that the miRNA-10b sponge effectively inhibited the growth and proliferation of breast cancer MDA-MB-231 and MCF-7 cells. In addition, it also restrained the migration and invasion of human highly metastatic breast cancer MDA-MB-231 cells. PMID:26820121

  1. Identification of miRNAs and their targets in tea (Camellia sinensis).

    PubMed

    Zhu, Quan-wu; Luo, Yao-ping

    2013-10-01

    MicroRNAs (miRNAs) are endogenous small RNAs playing a crucial role in plant growth and development, as well as stress responses. Among them, some are highly evolutionally conserved in the plant kingdom, this provide a powerful strategy for identifying miRNAs in a new species. Tea (Camellia sinensis) is one of the most important commercial beverage crops in the world, but only a limited number of miRNAs have been identified. In the present study, a total of 14 new C. sinensis miRNAs were identified by expressed sequence tag (EST) analysis from 47452 available C. sinensis ESTs. These miRNAs potentially target 51 mRNAs, which can act as transcription factors, and participate in stress response, transmembrane transport, and signal transduction. Analysis of gene ontology (GO), based on these targets, suggested that 37 biological processes were involved, such as oxidation-reduction process, stress response, and transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis inferred that the identified miRNAs took part in 13 metabolic networks. Our study will help further understanding of the essential roles of miRNAs in C. sinensis growth and development, and stress response.

  2. Identification of miRNAs and their targets in tea (Camellia sinensis)#

    PubMed Central

    Zhu, Quan-wu; Luo, Yao-ping

    2013-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs playing a crucial role in plant growth and development, as well as stress responses. Among them, some are highly evolutionally conserved in the plant kingdom, this provide a powerful strategy for identifying miRNAs in a new species. Tea (Camellia sinensis) is one of the most important commercial beverage crops in the world, but only a limited number of miRNAs have been identified. In the present study, a total of 14 new C. sinensis miRNAs were identified by expressed sequence tag (EST) analysis from 47 452 available C. sinensis ESTs. These miRNAs potentially target 51 mRNAs, which can act as transcription factors, and participate in stress response, transmembrane transport, and signal transduction. Analysis of gene ontology (GO), based on these targets, suggested that 37 biological processes were involved, such as oxidation-reduction process, stress response, and transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis inferred that the identified miRNAs took part in 13 metabolic networks. Our study will help further understanding of the essential roles of miRNAs in C. sinensis growth and development, and stress response. PMID:24101208

  3. miRNAs Regulation and Its Role as Biomarkers in Endometriosis

    PubMed Central

    Marí-Alexandre, Josep; Sánchez-Izquierdo, Dolors; Gilabert-Estellés, Juan; Barceló-Molina, Moisés; Braza-Boïls, Aitana; Sandoval, Juan

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs (18–22 nt) that function as modulators of gene expression. Since their discovery in 1993 in C. elegans, our knowledge about their biogenesis, function, and mechanism of action has increased enormously, especially in recent years, with the development of deep-sequencing technologies. New biogenesis pathways and sources of miRNAs are changing our concept about these molecules. The study of the miRNA contribution to pathological states is a field of great interest in research. Different groups have reported the implication of miRNAs in pathologies such as cancer, diabetes, cardiovascular, and gynecological diseases. It is also well-known that miRNAs are present in biofluids (plasma, serum, urine, semen, and menstrual blood) and have been proposed as ideal candidates as disease biomarkers. The goal of this review is to highlight the current knowledge in the field of miRNAs with a special emphasis to their role in endometriosis and the newest investigations addressing the use of miRNAs as biomarkers for this gynecological disease. PMID:26771608

  4. Extracellular miRNAs: origin, function and biomarkers in hepatic diseases.

    PubMed

    Zhou, Bingcong; Li, Zhiyang; Yang, Haowen; He, Nongyue

    2014-10-01

    MicroRNAs (miRNAs), a class of 19-24 nucleotides non-coding RNAs, regulate gene expression by inhibiting both translation and stability of specific mRNAs at the post-transcriptional level. The existence of miRNAs in a series of mammalian body fluids as extracellular nuclease-resistant entities, together with the aberrant expression of miRNAs during the occurrence and development of a wide range of diseases, triggers the possibility that miRNAs as promising noninvasive diagnostic biomarkers are applied to predict the pathological status of the body. However, the origin and biological function of extracellular miRNAs have not been systematically elucidated. In this review, we summarize the current literature on the biogenesis and post-transcriptional regulation of miRNAs, discuss available evidence regarding the possible origin and release of extracellular miRNAs, and collect novel views on their potentials as key mediators in cell-cell communication processes. Finally, we shed light on the accumulating knowledge about their utilities as diagnostic biomarkers in hepatic diseases.

  5. Evaluation of inhibition of miRNA expression induced by anti-miRNA oligonucleotides.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Baik, Ja-Hyun; Song, Eun Joo

    2016-07-01

    MicroRNAs (miRNAs) are short RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play an important role in the pathogenesis of diseases. Numerous studies aimed at developing novel miRNA-based drugs or determining miRNA functions have been conducted by inhibiting miRNAs using anti-miRNA oligonucleotides (AMOs), which inhibit the function by hybridizing with miRNA. To increase the binding affinity and specificity to target miRNA, AMOs with various chemical modifications have been developed. Evaluating the potency of these various types of AMOs is an essential step in their development. In this study, we developed a capillary electrophoresis with laser-induced fluorescence (CE-LIF) method to evaluate the potency of AMOs by measuring changes in miRNA levels with fluorescence-labeled ssDNA probes using AMO-miR-23a, which inhibits miR-23a related to lung cancer. In order to eliminate interference by excess AMOs during hybridization of the ssDNA probe with the miR-23a, the concentration of the ssDNA probe was optimized. This newly developed method was used to compare the potency of two different modified AMOs. The data were supported by the results of a luciferase assay. This study demonstrated that CE-LIF analysis could be used to accurately evaluate AMO potency in biological samples. PMID:27178549

  6. Comparative genomic analysis of upstream miRNA regulatory motifs in Caenorhabditis.

    PubMed

    Jovelin, Richard; Krizus, Aldis; Taghizada, Bakhtiyar; Gray, Jeremy C; Phillips, Patrick C; Claycomb, Julie M; Cutter, Asher D

    2016-07-01

    MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes. PMID:27140965

  7. Cardiomyocyte-Specific miRNA-30c Over-Expression Causes Dilated Cardiomyopathy

    PubMed Central

    Wijnen, Wino J.; van der Made, Ingeborg; van den Oever, Stephanie; Hiller, Monika; de Boer, Bouke A.; Picavet, Daisy I.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Tijsen, Anke J.; Hagoort, Jaco; van Veen, Henk; Everts, Vincent; Ruijter, Jan M.; Pinto, Yigal M.; Creemers, Esther E.

    2014-01-01

    MicroRNAs (miRNAs) regulate many aspects of cellular function and their deregulation has been implicated in heart disease. MiRNA-30c is differentially expressed in the heart during the progression towards heart failure and in vitro studies hint to its importance in cellular physiology. As little is known about the in vivo function of miRNA-30c in the heart, we generated transgenic mice that specifically overexpress miRNA-30c in cardiomyocytes. We show that these mice display no abnormalities until about 6 weeks of age, but subsequently develop a severely dilated cardiomyopathy. Gene expression analysis of the miRNA-30c transgenic hearts before onset of the phenotype indicated disturbed mitochondrial function. This was further evident by the downregulation of mitochondrial oxidative phosphorylation (OXPHOS) complexes III and IV at the protein level. Taken together these data indicate impaired mitochondrial function due to OXPHOS protein depletion as a potential cause for the observed dilated cardiomyopathic phenotype in miRNA-30c transgenic mice. We thus establish an in vivo role for miRNA-30c in cardiac physiology, particularly in mitochondrial function. PMID:24789369

  8. Identification of novel miRNAs from drought tolerant rice variety Nagina 22

    PubMed Central

    Mutum, Roseeta Devi; Kumar, Santosh; Balyan, Sonia; Kansal, Shivani; Mathur, Saloni; Raghuvanshi, Saurabh

    2016-01-01

    MicroRNAs regulate a spectrum of developmental and biochemical processes in plants and animals. Thus, knowledge of the entire miRNome is essential to understand the complete regulatory schema of any organism. The current study attempts to unravel yet undiscovered miRNA genes in rice. Analysis of small RNA libraries from various tissues of drought-tolerant ‘aus’ rice variety Nagina 22 (N22) identified 71 novel miRNAs. These were validated based on precursor hairpin structure, small RNA mapping pattern, ‘star’ sequence, conservation and identification of targets based on degradome data. While some novel miRNAs were conserved in other monocots and dicots, most appear to be lineage-specific. They were segregated into two different classes based on the closeness to the classical miRNA definition. Interestingly, evidence of a miRNA-like cleavage was found even for miRNAs that lie beyond the classical definition. Several novel miRNAs displayed tissue-enriched and/or drought responsive expression. Generation and analysis of the degradome data from N22 along with publicly available degradome identified several high confidence targets implicated in regulation of fundamental processes such as flowering and stress response. Thus, discovery of these novel miRNAs considerably expands the dimension of the miRNA-mediated regulation in rice. PMID:27499088

  9. Serum miRNA expression profiles change in autoimmune vitiligo in mice.

    PubMed

    Shi, Yu-Ling; Weiland, Matthew; Lim, Henry W; Mi, Qing-Sheng; Zhou, Li

    2014-02-01

    It is widely believed that non-segmental vitiligo results from the autoimmune destruction of melanocytes. MicroRNAs (miRNAs), a class of small non-coding RNAs that negatively regulate gene expression, are involved in the immune cell development and function and regulate the development of autoimmune diseases. Recent studies demonstrate that functional miRNAs can be detected in the serum and serve as biomarkers of various diseases. In the present study, we used a mouse autoimmune vitiligo model, in which melanocyte autoreactive CD4+ T cells were adoptively transferred into Rag1(-/-) host mice. Serum miRNA expression was profiled in vitiligo developed mice and control mice using TaqMan RT-PCR arrays. We have found that the expressions of 20 serum miRNAs were changed in vitiligo mice compared to control mice. Three increased miRNAs, miR-146a, miR-191, and miR-342-3p, were further confirmed by a single TaqMan RT-PCR. Our findings suggest that miRNAs may be involved in vitiligo development and serum miRNAs could serve as serum biomarkers for vitiligo in mice.

  10. Small RNA Sequencing Based Identification of MiRNAs in Daphnia magna.

    PubMed

    Ünlü, Ercan Selçuk; Gordon, Donna M; Telli, Murat

    2015-01-01

    Small RNA molecules are short, non-coding RNAs identified for their crucial role in post-transcriptional regulation. A well-studied example includes miRNAs (microRNAs) which have been identified in several model organisms including the freshwater flea and planktonic crustacean Daphnia. A model for epigenetic-based studies with an available genome database, the identification of miRNAs and their potential role in regulating Daphnia gene expression has only recently garnered interest. Computational-based work using Daphnia pulex, has indicated the existence of 45 miRNAs, 14 of which have been experimentally verified. To extend this study, we took a sequencing approach towards identifying miRNAs present in a small RNA library isolated from Daphnia magna. Using Perl codes designed for comparative genomic analysis, 815,699 reads were obtained from 4 million raw reads and run against a database file of known miRNA sequences. Using this approach, we have identified 205 putative mature miRNA sequences belonging to 188 distinct miRNA families. Data from this study provides critical information necessary to begin an investigation into a role for these transcripts in the epigenetic regulation of Daphnia magna.

  11. Psmir: a database of potential associations between small molecules and miRNAs.

    PubMed

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  12. Bioinformatic analysis of miRNA expression patterns in TFF2 knock-out mice.

    PubMed

    Yin, Y; Shan, H Q; Huang, W; Wu, Y M; Lu, H; Jin, Y

    2014-10-20

    Trefoil factors, which bear a unique 3-loop trefoil domain, are a family of small secretory protease-resistant peptides (7-12 kDa) discovered in the 1980s. Trefoil factor 2 (TFF2) is a unique member of trefoil factors family that plays important roles in gastrointestinal mucosal defense and repair. However, few studies have characterized the miRNA expression patterns in TFF2 knock-out mice. In this study, we investigated the regulatory role of miRNAs in TFF2 knock-out mice. Whole miRNome profiling for TFF2 knock-out mice and wild-type mice were downloaded from the Gene Expression Omnibus database. A total of 14 differentially expressed miRNAs were identified using the limma package. Target genes for 2 differentially expressed miRNAs were retrieved from 2 databases. After mapping these target genes into STRING, an interaction network was constructed. Gene Ontology analysis suggested that the differentially expressed miRNAs are involved in cyclic AMP metabolism and the growth process. Additionally, dysregulated miRNAs target pathways of transforming growth factor-beta signaling pathway and cytokine-cytokine receptor interaction. Our results suggest that miRNAs may play important regulatory roles in processes involving TFF2, particularly in the regulation of signal transduction pathways. However, further validation of our results is needed.

  13. Identification of novel miRNAs from drought tolerant rice variety Nagina 22.

    PubMed

    Mutum, Roseeta Devi; Kumar, Santosh; Balyan, Sonia; Kansal, Shivani; Mathur, Saloni; Raghuvanshi, Saurabh

    2016-01-01

    MicroRNAs regulate a spectrum of developmental and biochemical processes in plants and animals. Thus, knowledge of the entire miRNome is essential to understand the complete regulatory schema of any organism. The current study attempts to unravel yet undiscovered miRNA genes in rice. Analysis of small RNA libraries from various tissues of drought-tolerant 'aus' rice variety Nagina 22 (N22) identified 71 novel miRNAs. These were validated based on precursor hairpin structure, small RNA mapping pattern, 'star' sequence, conservation and identification of targets based on degradome data. While some novel miRNAs were conserved in other monocots and dicots, most appear to be lineage-specific. They were segregated into two different classes based on the closeness to the classical miRNA definition. Interestingly, evidence of a miRNA-like cleavage was found even for miRNAs that lie beyond the classical definition. Several novel miRNAs displayed tissue-enriched and/or drought responsive expression. Generation and analysis of the degradome data from N22 along with publicly available degradome identified several high confidence targets implicated in regulation of fundamental processes such as flowering and stress response. Thus, discovery of these novel miRNAs considerably expands the dimension of the miRNA-mediated regulation in rice. PMID:27499088

  14. Psmir: a database of potential associations between small molecules and miRNAs

    PubMed Central

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-01

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules’ effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/. PMID:26759061

  15. Small RNA Sequencing Based Identification of MiRNAs in Daphnia magna

    PubMed Central

    2015-01-01

    Small RNA molecules are short, non-coding RNAs identified for their crucial role in post-transcriptional regulation. A well-studied example includes miRNAs (microRNAs) which have been identified in several model organisms including the freshwater flea and planktonic crustacean Daphnia. A model for epigenetic-based studies with an available genome database, the identification of miRNAs and their potential role in regulating Daphnia gene expression has only recently garnered interest. Computational-based work using Daphnia pulex, has indicated the existence of 45 miRNAs, 14 of which have been experimentally verified. To extend this study, we took a sequencing approach towards identifying miRNAs present in a small RNA library isolated from Daphnia magna. Using Perl codes designed for comparative genomic analysis, 815,699 reads were obtained from 4 million raw reads and run against a database file of known miRNA sequences. Using this approach, we have identified 205 putative mature miRNA sequences belonging to 188 distinct miRNA families. Data from this study provides critical information necessary to begin an investigation into a role for these transcripts in the epigenetic regulation of Daphnia magna. PMID:26367422

  16. Loss of miRNAs during Processing and Storage of Cow's (Bos taurus)Milk

    PubMed Central

    Howard, Katherine M.; Kusuma, Rio Jati; Baier, Scott R.; Friemel, Taylor; Markham, Laura; Vanamala, Jairam; Zempleni, and Janos

    2015-01-01

    MicroRNAs (miRs, miRNAs) play central roles in gene regulation. Previously, we reported that miRNAs from somatic cell content, and handling by consumers on the degradation of miRNAs in milk; we also quantified miRNAs in dairy products. Pasteurization and homogenization caused a 63% loss of miR-200c, whereas a 67% loss observed for miR-29b was statistically significant only in skim milk. Effects of cold storage and somatic cell content were quantitatively minor (<2% loss). Heating in the microwave caused a 40% loss of miR-29b but no loss of miR-200c. The milk fat content had no effect on miRNA stability during storage and microwave heating. The concentrations of miRNAs in dairy products were considerably lower than in store-bought milk. We conclude that processing of milk by dairies and handling by consumers causes a significant loss of miRNAs. PMID:25565082

  17. Identification of microRNA as sepsis biomarker based on miRNAs regulatory network analysis.

    PubMed

    Huang, Jie; Sun, Zhandong; Yan, Wenying; Zhu, Yujie; Lin, Yuxin; Chen, Jiajai; Shen, Bairong; Wang, Jian

    2014-01-01

    Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers.

  18. LMTK3 escapes tumour suppressor miRNAs via sequestration of DDX5.

    PubMed

    Jacob, Jimmy; Favicchio, Rosy; Karimian, Negin; Mehrabi, Maryam; Harding, Victoria; Castellano, Leandro; Stebbing, Justin; Giamas, Georgios

    2016-03-01

    Lemur tyrosine kinase-3 (LMTK3) plays an important role in cancer progression and is associated with breast, lung, gastric and colorectal cancer. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that typically repress target genes at post-transcriptional level and have an important role in tumorigenesis. By performing a miRNA expression profile, we identified a subset of miRNAs modulated by LMTK3. We show that LMTK3 induces miR-34a, miR-196-a2 and miR-182 levels by interacting with DEAD-box RNA helicase p68 (DDX5). LMTK3 binds via DDX5 to the pri-miRNA of these three mature miRNAs, thereby sequestrating them from further processing. Ectopic expression of miR-34a and miR-182 in LMTK3-overexpressing cell lines (MCF7-LMTK3 and MDA-MB-231-LMTK3) inhibits breast cancer proliferation, invasion and migration. Interestingly, miR-34a and miR-182 directly bind to the 3'UTR of LMTK3 mRNA and consequently inhibit both its stability and translation, acting as tumour suppressor-like miRNAs. In aggregate, we show that LMTK3 is involved in miRNA biogenesis through modulation of the Microprocessor complex, inducing miRNAs that target LMTK3 itself. PMID:26739063

  19. Psmir: a database of potential associations between small molecules and miRNAs.

    PubMed

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-01

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/. PMID:26759061

  20. Effectiveness and Usability of Bioinformatics Tools to Analyze Pathways Associated with miRNA Expression

    PubMed Central

    Mullany, Lila E; Wolff, Roger K; Slattery, Martha L

    2015-01-01

    MiRNAs are small, nonprotein-coding RNA molecules involved in gene regulation. While bioinformatics help guide miRNA research, it is less clear how they perform when studying biological pathways. We used 13 criteria to evaluate effectiveness and usability of existing bioinformatics tools. We evaluated the performance of six bioinformatics tools with a cluster of 12 differentially expressed miRNAs in colorectal tumors and three additional sets of 12 miRNAs that are not part of a known cluster. MiRPath performed the best of all the tools in linking miRNAs, with 92% of all miRNAs linked as well as the highest based on our established criteria followed by Ingenuity (58% linked). Other tools, including Empirical Gene Ontology, miRó, miRMaid, and PhenomiR, were limited by their lack of available tutorials, lack of flexibility and interpretability, and/or difficulty using the tool. In summary, we observed a lack of standardization across bioinformatic tools and a general lack of specificity in terms of pathways identified between groups of miRNAs. Hopefully, this evaluation will help guide the development of new tools. PMID:26560461

  1. MicroRNA expression during demosponge dissociation, reaggregation, and differentiation and a evolutionarily conserved demosponge miRNA expression profile.

    PubMed

    Robinson, Jeffrey M

    2015-11-01

    Demosponges share eight orthologous microRNAs (miRNAs), with none in common with Bilateria. Biological functions of these demosponge miRNAs are unknown. Bilaterian miRNAs are key regulators of cellular processes including cell cycle, differentiation, and metabolism. Resolving if demosponge miRNAs participate in such biological functions will provide clues whether these functions are convergent, evidence on the mode of evolution of cellular developmental processes. Here, a quantitative PCR (qPCR) assay was developed and used to test for differential miRNA expression during dissociation and reaggregation in Spongosorites, compare expression profiles between choanosome and cortex in Spongosorites, and compare undifferentiated gemmules to differentiated juveniles in Ephydatia. During Spongosorites dissociation and reaggregation, miRNA expression showed a global decrease in expression across a range of reaggregating cell densities. miRNA differential response could be related to various general cellular responses, potentially related to nutrient-poor conditions of the minimal artificial seawater media, stress response from tissue dissociation, or loss of cell-cell or cell-matrix contact. In Ephydatia, overall increase in miRNA expression in gemmule-hatched stage 4/5 juveniles relative to gemmules is observed, indicating that increased miRNA expression may be related to increased cellular activity such as migration, cell cycle, and/or differentiation. Observed differential miRNA expression of miRNA during dissociation in Spongosorites (lowered global expression), and during activation, and differentiation of Ephydatia gemmules (increased global expression) could indicate that miRNA expression is associated with cell cycle, differentiation, or metabolism pathways. Interspecies comparison was performed, results indicating that orthologous miRNAs share similar relative expression pattern between the four species tested (Spongosorites, Cinachyrella, Haliclona, and Ephydatia

  2. A path-based measurement for human miRNA functional similarities using miRNA-disease associations.

    PubMed

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-01-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity. PMID:27585796

  3. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    PubMed Central

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-01-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity. PMID:27585796

  4. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    NASA Astrophysics Data System (ADS)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  5. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach.

    PubMed

    Singh, Noopur; Srivastava, Swati; Sharma, Ashok

    2016-01-10

    MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.

  6. Role of miRNAs in Epicardial Adipose Tissue in CAD Patients with T2DM

    PubMed Central

    Lu, Mu; Huai, Shitao; Song, Yaqin

    2016-01-01

    Background. Epicardial adipose tissue (EAT) is identified as an atypical fat depot surrounding the heart with a putative role in the involvement of metabolic disorders, including obesity, type-2 diabetes mellitus, and atherosclerosis. We profiled miRNAs in EAT of metabolic patients with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM) versus metabolically healthy patients by microarray. Compared to metabolically healthy patients, we identified forty-two miRNAs that are differentially expressed in patients with CAD and T2DM from Xinjiang, China. Eleven miRNAs were selected as potential novel miRNAs according to P value and fold change. Then the potential novel miRNAs targeted genes were predicted via TargetScan, PicTar, and miRTarbase, and the function of the target genes was predicted via Gene Ontology (GO) analysis while the enriched KEGG pathway analyses of the miRNAs targeted genes were performed by bioinformatics software DAVID. Then protein-protein interaction networks of the targeted gene were conducted by online software STRING. Finally, using microarray, bioinformatics approaches revealed the possible molecular mechanisms pathogenesis of CAD and T2DM. A total of 11 differentially expressed miRNAs were identified and among them, hsa-miR-4687-3p drew specific attention. Bioinformatics analysis revealed that insulin signaling pathway is the central way involved in the progression of metabolic disorders. Conclusions. The current findings support the fact that miRNAs are involved in the pathogenesis of metabolic disorders in EAT of CAD patients with T2DM, and validation of the results of these miRNAs by independent and prospective study is certainly warranted. PMID:27597954

  7. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    SciTech Connect

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  8. Ammonia-induced miRNA expression changes in cultured rat astrocytes.

    PubMed

    Oenarto, Jessica; Karababa, Ayse; Castoldi, Mirco; Bidmon, Hans J; Görg, Boris; Häussinger, Dieter

    2016-01-01

    Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes. Using a combined miRNA and gene microarray approach, 43 miRNA species which were downregulated and 142 genes which were upregulated by NH4Cl (5 mmol/l, 48 h) in cultured rat astrocytes were found. Ammonia-induced miRNA and gene expression changes were validated by qPCR and 43 potential miRNA target genes, including HO-1, were identified by matching upregulated mRNA species with predicted targets of miRNA species downregulated by ammonia. Inhibition of HO-1 targeting miRNAs which were downregulated by NH4Cl strongly upregulated HO-1 mRNA and protein levels and inhibited astrocyte proliferation in a HO-1-dependent way. Preventing ammonia-induced upregulation of HO-1 by taurine (5 mmol/l) as well as blocking HO-1 activity by tin-protoporphyrine IX fully prevented ammonia-induced proliferation inhibition and senescence. The data suggest that ammonia induces astrocyte senescence through NADPH oxidase-dependent downregulation of HO-1 targeting miRNAs and concomitant upregulation of HO-1 at both mRNA and protein level. PMID:26755400

  9. Differential Expression of miRNAs Under Salt Stress in Spartina alterniflora Leaf Tissues.

    PubMed

    Qin, Zuodong; Chen, Jishuang; Jin, Leilei; Duns, Gregory J; Ouyang, Pingkai

    2015-02-01

    Coastal marsh habitats are impacted by many factors or disturbances, including habitat destruction, pollution, and the introduction of invasive species. Spartina alterniflora (S. alterniflora) is an important invasive species, accounting for a significant proportion of the invasive plants spread around the world. Salt stress is a major environmental stress factor, which affects plant growth and development. Little information is available regarding S. alterniflora microRNAs (miRNAs) which play important regulatory roles in plant growth and development. In order to detect S. alterniflora miRNAs and determine any expression differences between S. alterniflora plants cultivated on ordinary soils from the greenhouse and salty soils from Dafeng, in Jiangsu province of China, we carried out the detection and quantification of S. alterniflora miRNAs by microarray. Among the 81 miRNAs identified as significantly down- or up-regulated under the salt stress, 21 of the miRNAs represent 8 miRNA gene families in S. alterniflora. We found that miR168, miR399, miR395, miR393, miR171, miR396, miR169, and miR164 were down-regulated under salinity stress, and 60 of the miRNAs were up-regulated, which were revealed to be induced by salt stress in plants. The identification of differentially expressed novel plant miRNAs and their target genes, and the analysis of expression, provide molecular evidence for the possible involvement of miRNAs in the process of salt response and/or salt tolerance in S. alterniflora. PMID:26353690

  10. Role of miRNAs in Epicardial Adipose Tissue in CAD Patients with T2DM.

    PubMed

    Liu, Yang; Fu, Wenbo; Lu, Mu; Huai, Shitao; Song, Yaqin; Wei, Yutao

    2016-01-01

    Background. Epicardial adipose tissue (EAT) is identified as an atypical fat depot surrounding the heart with a putative role in the involvement of metabolic disorders, including obesity, type-2 diabetes mellitus, and atherosclerosis. We profiled miRNAs in EAT of metabolic patients with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM) versus metabolically healthy patients by microarray. Compared to metabolically healthy patients, we identified forty-two miRNAs that are differentially expressed in patients with CAD and T2DM from Xinjiang, China. Eleven miRNAs were selected as potential novel miRNAs according to P value and fold change. Then the potential novel miRNAs targeted genes were predicted via TargetScan, PicTar, and miRTarbase, and the function of the target genes was predicted via Gene Ontology (GO) analysis while the enriched KEGG pathway analyses of the miRNAs targeted genes were performed by bioinformatics software DAVID. Then protein-protein interaction networks of the targeted gene were conducted by online software STRING. Finally, using microarray, bioinformatics approaches revealed the possible molecular mechanisms pathogenesis of CAD and T2DM. A total of 11 differentially expressed miRNAs were identified and among them, hsa-miR-4687-3p drew specific attention. Bioinformatics analysis revealed that insulin signaling pathway is the central way involved in the progression of metabolic disorders. Conclusions. The current findings support the fact that miRNAs are involved in the pathogenesis of metabolic disorders in EAT of CAD patients with T2DM, and validation of the results of these miRNAs by independent and prospective study is certainly warranted. PMID:27597954

  11. Development of a circulating miRNA assay to monitor tumor burden: From mouse to man

    PubMed Central

    Greystoke, Alastair; Ayub, Mahmood; Rothwell, Dominic G.; Morris, Dan; Burt, Deborah; Hodgkinson, Cassandra L.; Morrow, Christopher J.; Smith, Nigel; Aung, Kyaw; Valle, Juan; Carter, Louise; Blackhall, Fiona; Dive, Caroline; Brady, Ged

    2016-01-01

    Circulating miRNA stability suggests potential utility of miRNA based biomarkers to monitor tumor burden and/or progression, particularly in cancer types where serial biopsy is impractical. Assessment of miRNA specificity and sensitivity is challenging within the clinical setting. To address this, circulating miRNAs were examined in mice bearing human SCLC tumor xenografts and SCLC patient derived circulating tumor cell explant models (CDX). We identified 49 miRNAs using human TaqMan Low Density Arrays readily detectable in 10 μl tail vein plasma from mice carrying H526 SCLC xenografts that were low or undetectable in non-tumor bearing controls. Circulating miR-95 measured serially in mice bearing CDX was detected with tumor volumes as low as 10 mm3 and faithfully reported subsequent tumor growth. Having established assay sensitivity in mouse models, we identified 26 miRNAs that were elevated in a stage dependent manner in a pilot study of plasma from SCLC patients (n = 16) compared to healthy controls (n = 11) that were also elevated in the mouse models. We selected a smaller panel of 10 previously reported miRNAs (miRs 95, 141, 200a, 200b, 200c, 210, 335#, 375, 429) that were consistently elevated in SCLC, some of which are reported to be elevated in other cancer types. Using a multiplex qPCR assay, elevated levels of miRNAs across the panel were also observed in a further 66 patients with non-small cell lung, colorectal or pancreatic cancers. The utility of this circulating miRNA panel as an early warning of tumor progression across several tumor types merits further evaluation in larger studies. PMID:26654130

  12. Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer.

    PubMed

    Ma, Jie; Lin, Yanli; Zhan, Min; Mann, Dean L; Stass, Sanford A; Jiang, Feng

    2015-10-01

    Tremendous efforts have been made to develop cancer biomarkers by detecting circulating extracellular miRNAs directly released from tumors. Yet, none of the cell-free biomarkers has been accepted to be used for early detection of non-small cell lung cancer (NSCLC). Peripheral blood mononucleated cells (PBMCs) act as the first line of defense against malignancy in immune system, their dysfunction may occur as an early event in cancer immunogenicity or immune evasion. We proposed to investigate whether analysis of miRNA expressions of PBMCs has diagnostic value for NSCLC. We first used a microarray to analyze PBMCs of 16 stage I NSCLC patients and 16 cancer-free smokers, and identified seven PBMC miRNAs with a significantly altered expression level in NSCLC patients. In a training set of 84 NSCLC patients and 69 cancer-free smokers, a panel of two miRNAs (miRs-19b-3p and -29b-3p) were developed from the seven PBMC miRNAs, producing 72.62% sensitivity and 82.61% specificity in identifying NSCLC. Furthermore, the miRNAs could identify squamous cell lung carcinoma (SCC), a major type of NSCLC, with 80.00% sensitivity and 89.86% specificity. The expression levels of the miRNAs were independent of disease stage. In a testing set of 56 NSCLC patients and 46 controls, the performance of the biomarkers was reproducibly confirmed. The study presents the first in-depth analysis of PBMC miRNA profile of NSCLC patients. The assessment of PBMC miRNAs may provide a new diagnostic approach for the early detection of NSCLC.

  13. Role of miRNAs in muscle stem cell biology: proliferation, differentiation and death.

    PubMed

    Crippa, Stefania; Cassano, Marco; Sampaolesi, Maurilio

    2012-01-01

    miRNAs are small non-coding RNAs that regulate post-transcriptionally gene expression by degradation or translational repression of specific target mRNAs. In the 90s, lin-4 and let-7 were firstly identified as small regulatory RNAs able to control C. elegans larval development, by specifically targeting the 3'UTR of lin-14 and lin-28, respectively. These findings have introduced a novel and wide layer of complexity in the regulation of mRNA and protein expression. Lin-4 and let-7 are now considered the founding members of an abundant class of small fine-tuned RNAs, called microRNAs (miRNAs), in viruses, green algae, plants, flies, worms, and in mammals. In humans, the estimated number of genes encoding for miRNAs is as high as 1000 and around 30% of the protein-coding genes are post-transcriptionally controlled by miRNAs. This article reviews the role of miRNAs in regulating several biological responses in muscle cells, ranging from proliferation, differentiation and adaptation to stress cues. Cardiac and skeletal muscles are powerful examples to summarize the activity of miRNAs in cell fate specification, lineage differentiation and metabolic pathways. Indeed, specific miRNAs control the number of proliferating muscle progenitors to guarantee the proper formation of the heart and muscle fibers and to assure the self-renewal of muscle progenitors during adult tissue regeneration. On the other side, several other miRNAs promote the differentiation of muscle progenitors into skeletal myofibers or into cardiomyocytes, where metabolic activity, survival and remodeling process in response to stress, injury and chronic diseases are also fine-tuned by miRNAs. PMID:22352753

  14. Two wavelength-shifting molecular beacons for simultaneous and selective imaging of vesicular miRNA-21 and miRNA-31 in living cancer cells.

    PubMed

    Bohländer, Peggy R; Abba, Mohammed L; Bestvater, Felix; Allgayer, Heike; Wagenknecht, Hans-Achim

    2016-06-14

    Two molecular beacons were designed as complementary fluorescent imaging probes for miRNA-21 and miRNA-31. Both beacons were prepared by a combination of solid-phase protocol and Cu(i)-catalyzed cycloaddition chemistry. The four photostable and bright fluorophores were attached to 2'-positions in the stem part of the two beacons. One beacon was labeled by a green-to-red emitting and the other by a blue-to-yellow emitting energy transfer pair. This two by two combination yields the four color emission readout. In vitro experiments demonstrate rapid and highly selective opening of both molecular beacons upon addition of the complementary target RNA and excellent green : red and blue : yellow emission color contrasts. Confocal microscopy of selected cancer cell lines provides evidence that a four color imaging of versicular miRNA-21 and miRNA-31 can be achieved both selectively and simultaneously upon transfection by the beacons, and that the fluorescent readouts track well with miRNA levels determined by PCR. PMID:27114268

  15. Two wavelength-shifting molecular beacons for simultaneous and selective imaging of vesicular miRNA-21 and miRNA-31 in living cancer cells.

    PubMed

    Bohländer, Peggy R; Abba, Mohammed L; Bestvater, Felix; Allgayer, Heike; Wagenknecht, Hans-Achim

    2016-06-14

    Two molecular beacons were designed as complementary fluorescent imaging probes for miRNA-21 and miRNA-31. Both beacons were prepared by a combination of solid-phase protocol and Cu(i)-catalyzed cycloaddition chemistry. The four photostable and bright fluorophores were attached to 2'-positions in the stem part of the two beacons. One beacon was labeled by a green-to-red emitting and the other by a blue-to-yellow emitting energy transfer pair. This two by two combination yields the four color emission readout. In vitro experiments demonstrate rapid and highly selective opening of both molecular beacons upon addition of the complementary target RNA and excellent green : red and blue : yellow emission color contrasts. Confocal microscopy of selected cancer cell lines provides evidence that a four color imaging of versicular miRNA-21 and miRNA-31 can be achieved both selectively and simultaneously upon transfection by the beacons, and that the fluorescent readouts track well with miRNA levels determined by PCR.

  16. Expression Profiles of miRNA Subsets Distinguish Human Colorectal Carcinoma and Normal Colonic Mucosa

    PubMed Central

    Pellatt, Daniel F; Stevens, John R; Wolff, Roger K; Mullany, Lila E; Herrick, Jennifer S; Samowitz, Wade; Slattery, Martha L

    2016-01-01

    OBJECTIVES: MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that are commonly dysregulated in colorectal tumors. The objective of this study was to identify smaller subsets of highly predictive miRNAs. METHODS: Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. Tissue samples were available for 1,953 individuals, of which 1,894 had carcinoma tissue and 1,599 had normal mucosa available for statistical analysis. Agilent Human miRNA Microarray V.19.0 was used to generate miRNA expression profiles; validation of expression levels was carried out using quantitative PCR. We used random forest analysis and verified findings with logistic modeling in separate data sets. Important microRNAs are identified and bioinformatics tools are used to identify target genes and related biological pathways. RESULTS: We identified 16 miRNAs for colon and 17 miRNAs for rectal carcinoma that appear to differentiate between carcinoma and normal mucosa; of these, 12 were important for both colon and rectal cancer, hsa-miR-663b, hsa-miR-4539, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-21-5p, hsa-miR-4506, hsa-miR-92a-3p, hsa-miR-93-5p, hsa-miR-145-5p, hsa-miR-3651, hsa-miR-378a-3p, and hsa-miR-378i. Estimated misclassification rates were low at 4.83% and 2.5% among colon and rectal observations, respectively. Among independent observations, logistic modeling reinforced the importance of these miRNAs, finding the primary principal components of their variation statistically significant (P<0.001 among both colon and rectal observations) and again producing low misclassification rates. Repeating our analysis without those miRNAs initially identified as important identified other important miRNAs; however, misclassification rates increased and distinctions between remaining miRNAs in terms of classification importance were reduced. CONCLUSIONS: Our data support the hypothesis that while many miRNAs are

  17. miRNAs at the interface of cellular stress and disease.

    PubMed

    Emde, Anna; Hornstein, Eran

    2014-07-01

    microRNAs (miRNAs) are a family of small, non-coding RNAs, which provides broad silencing activity of mRNA targets in a sequence-dependent fashion. This review explores the hypothesis that the miRNA machinery is intimately linked with the cellular stress pathway and apparatus. Stress signaling potentially alters the function of the miRNA-bioprocessing core components and decompensates regulation. In addition, dysregulation of miRNA activity renders the cell more prone to stress and emerges as a new pathway for age-related insults and diseases, such as neurodegeneration.

  18. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    Chen, YongPing; Wei, QianQian; Chen, XuePing; Li, ChunYu; Cao, Bei; Ou, RuWei; Hadano, Shinji; Shang, Hui-Fang

    2016-01-01

    Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the peripheral

  19. An Introspective Update on the Influence of miRNAs in Breast Carcinoma and Neuroblastoma Chemoresistance

    PubMed Central

    2014-01-01

    Chemoresistance to conventional cytotoxic drugs may occur in any type of cancer and this can either be inherent or develop through time. Studies have linked this acquired resistance to the abnormal expression of microRNAs (miRNAs) that normally silence genes. At abnormal levels, miRNAs can either gain ability to silence tumour suppressor genes or else lose ability to silence oncogenes. miRNAs can also affect pathways that are involved in drug metabolism, such as drug efflux pumps, resulting in a resistant phenotype. The scope of this review is to provide an introspective analysis on the specific niches of breast carcinoma and neuroblastoma research. PMID:25548681

  20. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection

    PubMed Central

    2016-01-01

    We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer. PMID:27713932

  1. Dysregulated Serum MiRNA Profile and Promising Biomarkers in Dengue-infected Patients

    PubMed Central

    Ouyang, Xiaoxi; Jiang, Xin; Gu, Dayong; Zhang, Yaou; Kong, S.K.; Jiang, Chaoxin; Xie, Weidong

    2016-01-01

    Objectives: Pathological biomarkers and mechanisms of dengue infection are poorly understood. We investigated a new serum biomarker using miRNAs and performed further correlation analysis in dengue-infected patients. Methods: Expression levels of broad-spectrum miRNAs in serum samples from three patients with dengue virus type 1 (DENV-1) and three healthy volunteers were separately analyzed using miRNA PCR arrays. The expressions of the five selected miRNAs were verified by qRT-PCR in the sera of 40 DENV-1 patients and compared with those from 32 healthy controls. Receiver operating characteristic (ROC) curve and correlation analyses were performed to evaluate the potential of these miRNAs for the diagnosis of dengue infection. Results: MiRNA PCR arrays revealed that 41 miRNAs were upregulated, whereas 12 miRNAs were down-regulated in the sera of DENV-1 patients compared with those in healthy controls. Among these miRNAs, qRT-PCR validation showed that serum hsa-miR-21-5p, hsa-miR-590-5p, hsa-miR-188-5p, and hsa-miR-152-3p were upregulated, whereas hsa-miR-146a-5p was down-regulated in dengue-infected patients compared with healthy controls. ROC curves showed serum hsa-miR-21-5p and hsa-miR-146a-5p could distinguish dengue-infected patients with preferable sensitivity and specificity. Correlation analysis indicated that expression levels of serum hsa-miR-21-5p and hsa-miR-146a-5p were negative and positively correlated with the number of white blood cells and neutrophils, respectively. Functional analysis of target proteins of these miRNAs in silico indicated their involvement in inflammation and cell proliferation. Conclusion: Dengue-infected patients have a broad “fingerprint” profile with dysregulated serum miRNAs. Among these miRNAs, serum hsa-miR-21-5p, hsa-miR-146a-5p, hsa-miR-590-5p, hsa-miR-188-5p, and hsa-miR-152-3p were identified as promising serum indicators for dengue infection. PMID:26941580

  2. Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling.

    PubMed

    Liu, Yun; Niu, Minghui; Yao, Chencheng; Hai, Yanan; Yuan, Qingqing; Liu, Yang; Guo, Ying; Li, Zheng; He, Zuping

    2015-01-30

    Human spermatogenic cells have not yet been isolated, and notably, their global miRNA profiles remain unknown. Here we have effectively isolated human spermatogonia, pachytene spermatocytes and round spermatids using STA-PUT velocity sedimentation. RT-PCR, immunocytochemistry and meiosis spread assays revealed that the purities of isolated human spermatogonia, pachytene spermatocytes, and round spermatids were 90%, and the viability of these isolated cells was over 98%. MiRNA microarrays showed distinct global miRNA profiles among human spermatogonia, pachytene spermatocytes, and round spermatids. Thirty-two miRNAs were significantly up-regulated whereas 78 miRNAs were down-regulated between human spermatogonia and pachytene spermatocytes, suggesting that these miRNAs are involved in the meiosis and mitosis, respectively. In total, 144 miRNAs were significantly up-regulated while 29 miRNAs were down-regulated between pachytene spermatocytes and round spermatids, reflecting potential roles of these miRNAs in mediating spermiogenesis. A number of novel binding targets of miRNAs were further identified using various softwares and verified by real-time PCR. Our ability of isolating human spermatogonia, pachytene spermatocytes and round spermatids and unveiling their distinct global miRNA signatures and novel targets could provide novel small RNA regulatory mechanisms mediating three phases of human spermatogenesis and offer new targets for the treatment of male infertility.

  3. Human Milk Cells Contain Numerous miRNAs that May Change with Milk Removal and Regulate Multiple Physiological Processes

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) is a complex biofluid conferring nutritional, protective and developmental components for optimal infant growth. Amongst these are maternal cells, which change in response to feeding and were recently shown to be a rich source of miRNAs. We used next generation sequencing to characterize the cellular miRNA profile of HM collected before and after feeding. HM cells conserved higher miRNA content than the lipid and skim HM fractions or other body fluids, in accordance with previous studies. In total, 1467 known mature and 1996 novel miRNAs were identified, with 89 high-confidence novel miRNAs. HM cell content was higher post-feeding (p < 0.05), and was positively associated with total miRNA content (p = 0.014) and species number (p < 0.001). This coincided with upregulation of 29 known and 2 novel miRNAs, and downregulation of 4 known and 1 novel miRNAs post-feeding, but no statistically significant change in expression was found for the remaining miRNAs. These findings suggest that feeding may influence the miRNA content of HM cells. The most highly and differentially expressed miRNAs were key regulators of milk components, with potential diagnostic value in lactation performance. They are also involved in the control of body fluid balance, thirst, appetite, immune response, and development, implicating their functional significance for the infant. PMID:27322254

  4. In silico identification of miRNAs and their targets from the expressed sequence tags of Raphanus sativus

    PubMed Central

    Muvva, Charuvaka; Tewari, Lata; Aruna, Kasoju; Ranjit, Pabbati; MD, Zahoorullah S; MD, K A Matheen; Veeramachaneni, Hemanth

    2012-01-01

    MicroRNAs (miRNAs) are a novel growing family of endogenous, small, non- coding, single-stranded RNA molecules directly involved in regulating gene expression at the posttranscriptional level. High conservation of miRNAs in plant provides the foundation for identification of new miRNAs in other plant species through homology alignment. Here, previous known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) database of Raphanus sativus, and according to a series of filtering criteria, a total of 48 miRNAs belonging to 9 miRNA families were identified, and 16 potential target genes of them were subsequently predicted, most of which seemed to encode transcription factors or enzymes participating in regulation of development, growth and other physiological processes. Overall, our findings lay the foundation for further researches of miRNAs function in R.sativus. PMID:22359443

  5. miRNA Regulons Associated with Synaptic Function

    PubMed Central

    Paschou, Maria; Paraskevopoulou, Maria D.; Vlachos, Ioannis S.; Koukouraki, Pelagia; Hatzigeorgiou, Artemis G.; Doxakis, Epaminondas

    2012-01-01

    Differential RNA localization and local protein synthesis regulate synapse function and plasticity in neurons. MicroRNAs are a conserved class of regulatory RNAs that control mRNA stability and translation in tissues. They are abundant in the brain but the extent into which they are involved in synaptic mRNA regulation is poorly known. Herein, a computational analysis of the coding and 3′UTR regions of 242 presynaptic and 304 postsynaptic proteins revealed that 91% of them are predicted to be microRNA targets. Analysis of the longest 3′UTR isoform of synaptic transcripts showed that presynaptic mRNAs have significantly longer 3′UTR than control and postsynaptic mRNAs. In contrast, the shortest 3′UTR isoform of postsynaptic mRNAs is significantly shorter than control and presynaptic mRNAs, indicating they avert microRNA regulation under specific conditions. Examination of microRNA binding site density of synaptic 3′UTRs revealed that they are twice as dense as the rest of protein-coding transcripts and that approximately 50% of synaptic transcripts are predicted to have more than five different microRNA sites. An interaction map exploring the association of microRNAs and their targets revealed that a small set of ten microRNAs is predicted to regulate 77% and 80% of presynaptic and postsynaptic transcripts, respectively. Intriguingly, many of these microRNAs have yet to be identified outside primate mammals, implicating them in cognition differences observed between high-level primates and non-primate mammals. Importantly, the identified miRNAs have been previously associated with psychotic disorders that are characterized by neural circuitry dysfunction, such as schizophrenia. Finally, molecular dissection of their KEGG pathways showed enrichment for neuronal and synaptic processes. Adding on current knowledge, this investigation revealed the extent of miRNA regulation at the synapse and predicted critical microRNAs that would aid future research on the

  6. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae.

    PubMed

    Niones, Jennifer T; Takemoto, Daigo

    2015-01-01

    Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes.

  7. VibA, a Homologue of a Transcription Factor for Fungal Heterokaryon Incompatibility, Is Involved in Antifungal Compound Production in the Plant-Symbiotic Fungus Epichloë festucae

    PubMed Central

    Niones, Jennifer T.

    2014-01-01

    Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes. PMID:24906411

  8. Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing

    PubMed Central

    Gong, Jing; Wu, Yuliang; Zhang, Xiantong; Liao, Yifang; Sibanda, Vusumuzi Leroy; Liu, Wei; Guo, An-Yuan

    2014-01-01

    MicroRNAs (miRNAs) play key regulatory roles in various biological processes and diseases. A comprehensive analysis of large scale small RNA sequencing data (smRNA-seq) will be very helpful to explore tissue or disease specific miRNA markers and uncover miRNA variants. Here, we systematically analyzed 410 human smRNA-seq datasets, which samples are from 24 tissue/disease/cell lines. We tested the mapping strategies and found that it was necessary to make multiple-round mappings with different mismatch parameters. miRNA expression profiles revealed that on average ∼70% of known miRNAs were expressed at low level or not expressed (RPM < 1) in a sample and only ∼9% of known miRNAs were relatively highly expressed (RPM > 100). About 30% known miRNAs were not expressed in all of our used samples. The miRNA expression profiles were compiled into an online database (HMED, http://bioinfo.life.hust.edu.cn/smallRNA/). Dozens of tissue/disease specific miRNAs, disease/control dysregulated miRNAs and miRNAs with arm switching events were discovered. Further, we identified some highly confident editing sites including 24 A-to-I sites and 23 C-to-U sites. About half of them were widespread miRNA editing sites in different tissues. We characterized that the 2 types of editing sites have different features with regard to location, editing level and frequency. Our analyses for expression profiles, specific miRNA markers, arm switching, and editing sites, may provide valuable information for further studies of miRNA function and biomarker finding. PMID:25692236

  9. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21.

    PubMed

    Rafiee-Pour, Hossain-Ali; Behpour, Mohsen; Keshavarz, Mahin

    2016-03-15

    Small noncoding microRNAs (miRNAs) have emerged as ideal noninvasive biomarkers for early-phase cancer detection. In this report, a label-free and simple electrochemical miRNA biosensor is developed based on employing methylene blue (MB) as a redox indicator. The successfully immobilization of the single strand DNA (ss-DNA) probe and hybridization with the target miRNA sequence were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) technique was used to record the oxidation peak current of MB under optimal condition and an increase in the peak current was observed after hybridization. By employing this strategy, miRNA can detect in a range from 0.1 to 500.0 pM with a relatively low detection limit of 84.3 fM. The electrochemical response of MB on ss-DNA and duplex of miRNA/DNA was characterized by CV and chronocoulometry method. The linear relation between the redox peak currents (Ip) and scan rate (ν) indicates that the electron transfer (ET) between MB and the electrode surface was mediated by the miRNA/DNA π-stacked duplex. The value of surface coverage (Γ) was calculated that indicated increase amount of MB on the surface of modified electrode after hybridization event and revealed the adsorption of MB at modified electrode is monolayer. Also, the electron transfer rate constants (ks) of MB were estimated. The results of kinetic analysis were confirmed by chronocoulometry method. The discrimination ability of miRNA biosensor even against a noncomplementary target was also studied. Consequently, this strategy will be valuable for sensitive, selective and label-free detection of miRNA.

  10. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21.

    PubMed

    Rafiee-Pour, Hossain-Ali; Behpour, Mohsen; Keshavarz, Mahin

    2016-03-15

    Small noncoding microRNAs (miRNAs) have emerged as ideal noninvasive biomarkers for early-phase cancer detection. In this report, a label-free and simple electrochemical miRNA biosensor is developed based on employing methylene blue (MB) as a redox indicator. The successfully immobilization of the single strand DNA (ss-DNA) probe and hybridization with the target miRNA sequence were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) technique was used to record the oxidation peak current of MB under optimal condition and an increase in the peak current was observed after hybridization. By employing this strategy, miRNA can detect in a range from 0.1 to 500.0 pM with a relatively low detection limit of 84.3 fM. The electrochemical response of MB on ss-DNA and duplex of miRNA/DNA was characterized by CV and chronocoulometry method. The linear relation between the redox peak currents (Ip) and scan rate (ν) indicates that the electron transfer (ET) between MB and the electrode surface was mediated by the miRNA/DNA π-stacked duplex. The value of surface coverage (Γ) was calculated that indicated increase amount of MB on the surface of modified electrode after hybridization event and revealed the adsorption of MB at modified electrode is monolayer. Also, the electron transfer rate constants (ks) of MB were estimated. The results of kinetic analysis were confirmed by chronocoulometry method. The discrimination ability of miRNA biosensor even against a noncomplementary target was also studied. Consequently, this strategy will be valuable for sensitive, selective and label-free detection of miRNA. PMID:26409019

  11. Epigenetic Regulation of miRNAs and Breast Cancer Stem Cells

    PubMed Central

    Duru, Nadire; Gernapudi, Ramkishore; Eades, Gabriel; Eckert, Richard; Zhou, Qun

    2015-01-01

    MicroRNAs have emerged as important targets of chemopreventive strategies in breast cancer. We have found that miRNAs are dysregulated at an early stage in breast cancer, in non-malignant Ductal Carcinoma In Situ. Many dietary chemoprevention agents can act by epigenetically activating miRNA-signaling pathways involved in tumor cell proliferation and invasive progression. In addition, many miRNAs activated via chemopreventive strategies target cancer stem cell signaling and prevent tumor progression or relapse. Specifically, we have found that miRNAs regulate DCIS stem cells, which may play important roles in breast cancer progression to invasive disease. We have shown that chemopreventive agents can directly inhibit DCIS stem cells and block tumor formation in vivo, via activation of tumor suppressor miRNAs. PMID:26052481

  12. Selective packaging of cellular miRNAs in HIV-1 particles.

    PubMed

    Schopman, Nick C T; van Montfort, Thijs; Willemsen, Marcel; Knoepfel, Stefanie A; Pollakis, Georgios; van Kampen, Antoine; Sanders, Rogier W; Haasnoot, Joost; Berkhout, Ben

    2012-11-01

    Retroviral particles are known to package specific host cell components such as RNA molecules in addition to the two copies of the viral RNA genome. The highly sensitive SOLiD sequencing technology was used to determine the cellular miRNA content of human immunodeficiency virus type 1 (HIV-1) particles. We determined the relative concentration of cellular miRNAs in a T cell line and several primary cell subsets before and after HIV-1 infection, and compared those values to the miRNA content of virion particles. A small subset of the cellular miRNAs is dramatically concentrated in the virions up to 115 fold, suggesting a biological function in HIV-1 replication. PMID:22728443

  13. Introns of plant pri-miRNAs enhance miRNA biogenesis

    PubMed Central

    Bielewicz, Dawid; Kalak, Malgorzata; Kalyna, Maria; Windels, David; Barta, Andrea; Vazquez, Franck; Szweykowska-Kulinska, Zofia; Jarmolowski, Artur

    2013-01-01

    Plant MIR genes are independent transcription units that encode long primary miRNA precursors, which usually contain introns. For two miRNA genes, MIR163 and MIR161, we show that introns are crucial for the accumulation of proper levels of mature miRNA. Removal of the intron in both cases led to a drop-off in the level of mature miRNAs. We demonstrate that the stimulating effects of the intron mostly reside in the 5′ss rather than on a genuine splicing event. Our findings are biologically significant as the presence of functional splice sites in the MIR163 gene appears mandatory for pathogen-triggered accumulation of miR163 and proper regulation of at least one of its targets. PMID:23681439

  14. miRNAFold: a web server for fast miRNA precursor prediction in genomes.

    PubMed

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-07-01

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. PMID:27242364

  15. New insights of medicinal plant therapeutic activity-The miRNA transfer.

    PubMed

    Sala-Cirtog, Maria; Marian, Catalin; Anghel, Andrei

    2015-08-01

    MicroRNA (miRNA) has become the spotlight of the biomedical research around the world and is considered to be a major post-transcriptional gene regulator. This small, endogenous RNA (21-25 nucleotides long) plays an important role by targeting specific mRNAs in plants, animals and humans. Herbal medicine has been used for thousands of years, however little is known about its molecular mechanism of action. Since the discovery of plant miRNA in human tissue and sera after ingestion, the connection between the two kingdoms is presented under a new perspective. Forward pharmacology, such as miRNA therapeutics could be the next best step toward identifying novel therapeutic options involving medicinal plants. Besides reporting the latest findings regarding the cross-kingdom transfer of miRNA and its therapeutic application, this review can inform further investigations that could lead to a modern definition of herbal medicine.

  16. miRNAFold: a web server for fast miRNA precursor prediction in genomes

    PubMed Central

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-01-01

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. PMID:27242364

  17. miRNAs as serum biomarkers for Duchenne muscular dystrophy.

    PubMed

    Cacchiarelli, Davide; Legnini, Ivano; Martone, Julie; Cazzella, Valentina; D'Amico, Adele; Bertini, Enrico; Bozzoni, Irene

    2011-05-01

    Dystrophin absence in Duchenne muscular dystrophy (DMD) causes severe muscle degeneration. We describe that, as consequence of fibre damage, specific muscle-miRNAs are released in to the bloodstream of DMD patients and their levels correlate with the severity of the disease. The same miRNAs are abundant also in the blood of mdx mice and recover to wild-type levels in animals 'cured' through exon skipping. Even though creatine kinase (CK) blood levels have been utilized as diagnostic markers of several neuromuscular diseases, including DMD, we demonstrate that they correlate less well with the disease severity. Although the analysis of a larger number of patients should allow to obtain more refined correlations with the different stages of disease progression, we propose that miR-1, miR-133, and miR-206 are new and valuable biomarkers for the diagnosis of DMD and possibly also for monitoring the outcomes of therapeutic interventions in humans. Despite many different DMD therapeutic approaches are now entering clinical trials, a unifying method for assessing the benefit of different treatments is still lacking.

  18. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1

    PubMed Central

    2011-01-01

    Background MicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model

  19. Regulation of PP2Cm expression by miRNA-204/211 and miRNA-22 in mouse and human cells

    PubMed Central

    Pan, Bang-fen; Gao, Chen; Ren, Shu-xun; Wang, Yi-bin; Sun, Hai-peng; Zhou, Mei-yi

    2015-01-01

    Aim: The mitochondrial targeted 2C-type serine/threonine protein phosphatase (PP2Cm) is encoded by the gene PPM1K and is highly conserved among vertebrates. PP2Cm plays a critical role in branched-chain amino acid catabolism and regulates cell survival. Its expression is dynamically regulated by the nutrient environment and pathological stresses. However, little is known about the molecular mechanism underlying the regulation of PPM1K gene expression. In this study, we aimed to reveal how PPM1K expression is affected by miRNA-mediated post-transcriptional regulation. Methods: Computational analysis based on conserved miRNA binding motifs was applied to predict the candidate miRNAs that potentially affect PPM1K expression. Dual-luciferase reporter assay was performed to verify the miRNAs' binding sites in the PPM1K gene and their influence on PPM1K 3′UTR activity. We further over-expressed the mimics of these miRNAs in human and mouse cells to examine whether miRNAs affected the mRNA level of PPM1K. Results: Computational analysis identified numerous miRNAs potentially targeting PPM1K. Luciferase reporter assays demonstrated that the 3′UTR of PPM1K gene contained the recognition sites of miR-204 and miR-211. Overexpression of these miRNAs in human and mouse cells diminished the 3′UTR activity and the endogenous mRNA level of PPM1K. However, the miR-22 binding site was found only in human and not mouse PPM1K 3′UTR. Accordingly, PPM1K 3′UTR activity was suppressed by miR-22 overexpression in human but not mouse cells. Conclusion: These data suggest that different miRNAs contribute to the regulation of PP2Cm expression in a species-specific manner. miR-204 and miR-211 are efficient in both mouse and human cells, while miR-22 regulates PP2Cm expression only in human cells. PMID:26592513

  20. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds.

    PubMed

    Hou, Xinhua; Yang, Yalan; Zhu, Shiyun; Hua, Chaoju; Zhou, Rong; Mu, Yulian; Tang, Zhonglin; Li, Kui

    2016-04-01

    The pig is an important source of animal protein, and is also an ideal model for human disease. There are significant differences in growth rate, muscle mass, and meat quality between different breeds. To understand the molecular mechanisms underlying porcine skeletal muscle phenotypes, we performed mRNA and miRNA profiling of muscle from three different breeds of pig, Landrace (lean-type), Tongcheng (obese-type), and Wuzhishan (mini-type) by Solexa sequencing. Forty-three genes and 106 miRNAs were differentially expressed between Landrace and Tongcheng pigs, 92 genes and 151 miRNAs were differentially expressed between Tongcheng and Wuzhishan pigs, and 145 genes and 156 miRNAs were differential expressed between Landrace and Wuzhishan pigs. Gene ontology analysis suggested that genes differentially expressed between Landrace and Tongcheng pigs were mainly involved in the biological processes of oxidative stress and muscle organ development. Meanwhile, for Tongcheng vs Wuzhishan and Landrace vs Wuzhishan pigs, the differentially expressed genes were involved in fatty acid metabolism, oxidative stress, muscle contraction, and muscle organ development, processes that are closely related to meat quality. To investigate the molecular mechanisms underlying meat quality diversity based on differentially expressed genes and miRNAs, interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down-regulated miRNAs or down-regulated genes with up-regulated miRNAs. Our findings identify candidate genes and miRNAs associated with muscle development and indicate their potential roles in muscle phenotype variance between different pig breeds. These results serve as a foundation for further studies on muscle development and molecular breeding. PMID:26458558

  1. Plasma miRNA expression profile in the diagnosis of late-onset hypogonadism

    PubMed Central

    Russell, Nicholas; Grossmann, Mathis

    2016-01-01

    Researchers reporting in the Nature journal Scientific Reports1 have used next generation sequencing and quantitative reverse transcriptase PCR (RT-PCR) technology to profile plasma microRNA (miRNA) expression in cohorts of men with and without late-onset hypogonadism (LOH). The study proposes a panel of three miRNAs as novel biomarkers to aid in the diagnosis of LOH. PMID:27364544

  2. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    PubMed

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response.

  3. A blood based 12-miRNA signature of Alzheimer disease patients

    PubMed Central

    2013-01-01

    Background Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples. Results We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies. Conclusions The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases. PMID:23895045

  4. Growth Hormone-Regulated mRNAs and miRNAs in Chicken Hepatocytes

    PubMed Central

    Wang, Huijuan; Shao, Fang; Yu, JianFeng; Jiang, Honglin; Han, Yaoping; Gong, Daoqing; Gu, Zhiliang

    2014-01-01

    Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis and miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GH-upregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism. PMID:25386791

  5. A miRNA signature associated with human metastatic medullary thyroid carcinoma.

    PubMed

    Santarpia, Libero; Calin, George A; Adam, Liana; Ye, Lei; Fusco, Alfredo; Giunti, Serena; Thaller, Christina; Paladini, Laura; Zhang, Xinna; Jimenez, Camilo; Trimarchi, Francesco; El-Naggar, Adel K; Gagel, Robert F

    2013-12-01

    MicroRNAs (miRNAs) represent a class of small, non-coding RNAs that control gene expression by targeting mRNA and triggering either translational repression or RNA degradation. The objective of our study was to evaluate the involvement of miRNAs in human medullary thyroid carcinoma (MTC) and to identify the markers of metastatic cells and aggressive tumour behaviour. Using matched primary and metastatic tumour samples, we identified a subset of miRNAs aberrantly regulated in metastatic MTC. Deregulated miRNAs were confirmed by quantitative real-time PCR and validated by in situ hybridisation on a large independent set of primary and metastatic MTC samples. Our results uncovered ten miRNAs that were significantly expressed and deregulated in metastatic tumours: miR-10a, miR-200b/-200c, miR-7 and miR-29c were down-regulated and miR-130a, miR-138, miR-193a-3p, miR-373 and miR-498 were up-regulated. Bioinformatic approaches revealed potential miRNA targets and signals involved in metastatic MTC pathways. Migration, proliferation and invasion assays were performed in cell lines treated with miR-200 antagomirs to ascertain a direct role for this miRNA in MTC tumourigenesis. We show that the members of miR-200 family regulate the expression of E-cadherin by directly targeting ZEB1 and ZEB2 mRNA and through the enhanced expression of tumour growth factor β (TGFβ)-2 and TGFβ-1. Overall, the treated cells shifted to a mesenchymal phenotype, thereby acquiring an aggressive phenotype with increased motility and invasion. Our data identify a robust miRNA signature associated with metastatic MTC and distinct biological processes, e.g., TGFβ signalling pathway, providing new potential insights into the mechanisms of MTC metastasis.

  6. Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles

    PubMed Central

    Zhang, Weijia; Le, Thuc Duy; Liu, Lin; Zhou, Zhi-Hua; Li, Jiuyong

    2016-01-01

    Motivation microRNAs (miRNAs) play crucial roles in post-transcriptional gene regulation of both plants and mammals, and dysfunctions of miRNAs are often associated with tumorigenesis and development through the effects on their target messenger RNAs (mRNAs). Identifying miRNA functions is critical for understanding cancer mechanisms and determining the efficacy of drugs. Computational methods analyzing high-throughput data offer great assistance in understanding the diverse and complex relationships between miRNAs and mRNAs. However, most of the existing methods do not fully utilise the available knowledge in biology to reduce the uncertainty in the modeling process. Therefore it is desirable to develop a method that can seamlessly integrate existing biological knowledge and high-throughput data into the process of discovering miRNA regulation mechanisms. Results In this article we present an integrative framework, CIDER (Causal miRNA target Discovery with Expression profile and Regulatory knowledge), to predict miRNA targets. CIDER is able to utilise a variety of gene regulation knowledge, including transcriptional and post-transcriptional knowledge, and to exploit gene expression data for the discovery of miRNA-mRNA regulatory relationships. The benefits of our framework is demonstrated by both simulation study and the analysis of the epithelial-to-mesenchymal transition (EMT) and the breast cancer (BRCA) datasets. Our results reveal that even a limited amount of either Transcription Factor (TF)-miRNA or miRNA-mRNA regulatory knowledge improves the performance of miRNA target prediction, and the combination of the two types of knowledge enhances the improvement further. Another useful property of the framework is that its performance increases monotonically with the increase of regulatory knowledge. PMID:27064982

  7. Trafficking of mature miRNA-122 into the nucleus of live liver cells.

    PubMed

    Földes-Papp, Zeno; König, Karsten; Studier, Hauke; Bückle, Reiner; Breunig, H Georg; Uchugonova, Aisada; Kostner, Gerhard M

    2009-09-01

    The binding of superquencher molecular beacon (SQMB) probes to human single-stranded cellular miRNA-122 targets was detected in various single live cells with femtosecond laser microscopy. For delivery of the SQMB-probes, 3D-nanoprocessing of single cells with sub-15 femtosecond 85 MHz near-infrared laser pulses was applied. Transient nanopores were formed by focusing the laser beam for some milliseconds on the membrane of a single cell in order to import of SQMB-probes into the cells. In single cells of the human liver cell lines Huh-7D12 and IHH that expressed miRNA-122, we measured target binding in the cytoplasm by two-photon fluorescence imaging. We found increased fluorescence with time in a nonlinear manner up to the point where steady state saturation was reached. We also studied the intracellular distribution of target SQMB and provide for the first time strong experimental evidence that cytoplasmic miRNA travels into the cell nucleus. To interpret nonlinear binding, a number of individual miRNA-122 positive cells (Huh-7D12 and IHH) and negative control cells, human VA13 fibroblasts and Caco-2 cells were analyzed. Our experimental data are consistent with the cytoplasmic assembly of nuclear miRNA and provide further mechanistic insight in the regulatory function of miRNAs in cellular physiology. An open issue in the regulation of gene expression by miRNA is whether miRNA can activate gene expression in addition to the well-known inhibitory effect. A first step for such a regulatory role could be the travelling of miRNA-RISC into the nucleus.

  8. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds.

    PubMed

    Hou, Xinhua; Yang, Yalan; Zhu, Shiyun; Hua, Chaoju; Zhou, Rong; Mu, Yulian; Tang, Zhonglin; Li, Kui

    2016-04-01

    The pig is an important source of animal protein, and is also an ideal model for human disease. There are significant differences in growth rate, muscle mass, and meat quality between different breeds. To understand the molecular mechanisms underlying porcine skeletal muscle phenotypes, we performed mRNA and miRNA profiling of muscle from three different breeds of pig, Landrace (lean-type), Tongcheng (obese-type), and Wuzhishan (mini-type) by Solexa sequencing. Forty-three genes and 106 miRNAs were differentially expressed between Landrace and Tongcheng pigs, 92 genes and 151 miRNAs were differentially expressed between Tongcheng and Wuzhishan pigs, and 145 genes and 156 miRNAs were differential expressed between Landrace and Wuzhishan pigs. Gene ontology analysis suggested that genes differentially expressed between Landrace and Tongcheng pigs were mainly involved in the biological processes of oxidative stress and muscle organ development. Meanwhile, for Tongcheng vs Wuzhishan and Landrace vs Wuzhishan pigs, the differentially expressed genes were involved in fatty acid metabolism, oxidative stress, muscle contraction, and muscle organ development, processes that are closely related to meat quality. To investigate the molecular mechanisms underlying meat quality diversity based on differentially expressed genes and miRNAs, interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down-regulated miRNAs or down-regulated genes with up-regulated miRNAs. Our findings identify candidate genes and miRNAs associated with muscle development and indicate their potential roles in muscle phenotype variance between different pig breeds. These results serve as a foundation for further studies on muscle development and molecular breeding.

  9. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles

    PubMed Central

    Agrawal, Rahul; Dale, Tina P.; Al-Zubaidi, Mohammed A.; Benny Malgulwar, Prit; Forsyth, Nicholas R.; Kulshreshtha, Ritu

    2016-01-01

    MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology. PMID:27783707

  10. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish.

    PubMed

    Nam, Hyun-Sik; Hwang, Kyu-Seok; Jeong, Yun-Mi; Ryu, Jeong-Im; Choi, Tae-Young; Bae, Myung-Ae; Son, Woo-Chan; You, Kwan-Hee; Son, Hwa-Young; Kim, Cheol-Hee

    2016-01-01

    MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM) and cell death in larval liver (5 μM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish. PMID:27563662

  11. miRNA, siRNA, piRNA and argonautes: news in small matters.

    PubMed

    Riedmann, Lucia T; Schwentner, Raphaela

    2010-01-01

    Since the discovery of the first microRNA (miRNA) family member lin-4 in Caenorhabditis elegans by Lee et al. and RNA interference (RNAi) by Andrew Fire and his colleagues in the 1990s, the new field of regulatory non-coding RNAs has enormously gained momentum and importance. Small regulatory RNAs comprise small interfering RNAs (siRNAs), miRNAs and Piwi-associated small RNAs (piRNAs). Generated from double-stranded RNAs (dsRNAs), siRNAs trigger sequence-specific mRNA decay also known as RNA interference (RNAi). miRNAs in association with Argonaute (AGO ) and GW182 proteins, forming the RNA-induced silencing complex (RISC), mediate fine tuning of gene expression and are involved in various biological key processes. An estimate of 500-1,000 miRNA genes exist in vertebrates and plants and about 100 in invertebrates. Each miRNA is predicted to target hundreds of mRNAs thus influencing key regulatory mechanisms of the cell. Consequently, deregulated miRNA expression has been suggested to contribute to the initiation and progression of human cancer and other diseases. piRNAs associated with Piwi proteins protect the animal germline from mobile genetic elements, thereby acting as a small RNA-based immune system. PMID:20200493

  12. New Insights on Coffea miRNAs: Features and Evolutionary Conservation.

    PubMed

    Chaves, S S; Fernandes-Brum, C N; Silva, G F F; Ferrara-Barbosa, B C; Paiva, L V; Nogueira, F T S; Cardoso, T C S; Amaral, L R; de Souza Gomes, M; Chalfun-Junior, A

    2015-10-01

    Small RNAs influence the gene expression at the post-transcriptional level by guiding messenger RNA (mRNA) cleavage, translational repression, and chromatin modifications. In addition to model plants, the microRNAs (miRNAs) have been identified in different crop species. In this work, we developed a specific pipeline to search for coffee miRNA homologs on expressed sequence tags (ESTs) and genome survey sequences (GSS) databases. As a result, 36 microRNAs were identified and a total of 616 and 362 potential targets for Coffea arabica and Coffea canephora, respectively. The evolutionary analyses of these molecules were performed by comparing the primary and secondary structures of precursors and mature miRNAs with their orthologs. Moreover, using a stem-loop RT-PCR assay, we evaluated the accumulation of mature miRNAs in genomes with different ploidy levels, detecting an increase in the miRNAs accumulation according to the ploidy raising. Finally, a 5' RACE (Rapid Amplification of cDNA Ends) assay was performed to verify the regulation of auxin responsive factor 8 (ARF8) by MIR167 in coffee plants. The great variety of target genes indicates the functional plasticity of these molecules and reinforces the importance of understanding the RNAi-dependent regulatory mechanisms. Our results expand the study of miRNAs and their target genes in this crop, providing new challenges to understand the biology of these species. PMID:26277190

  13. The emerging role of miRNAs in inflammatory bowel disease: a review

    PubMed Central

    Chapman, Christopher G.

    2015-01-01

    Inflammatory bowel disease (IBD), comprised of ulcerative colitis and Crohn’s disease, is believed to develop as a result of a deregulated inflammatory response to environmental factors in genetically susceptible individuals. Despite advances in understanding the genetic risks of IBD, associated single nucleotide polymorphisms have low penetrance, monozygotic twin studies suggest a low concordance rate, and increasing worldwide IBD incidence leave gaps in our understanding of IBD heritability and highlight the importance of environmental influences. Operating at the interface between environment and heritable molecular and cellular phenotypes, microRNAs (miRNAs) are a class of endogenous, small noncoding RNAs that regulate gene expression. Studies to date have identified unique miRNA expression profile signatures in IBD and preliminary functional analyses associate these deregulated miRNAs to canonical pathways associated with IBD pathogenesis. In this review, we summarize and discuss the miRNA expression signatures associated with IBD in tissue and peripheral blood, highlight miRNAs with potential future clinical applications as diagnostic and therapeutic targets, and provide an outlook on how to develop miRNA based therapies. PMID:25553076

  14. Detection of miRNA regulatory effect on triple negative breast cancer transcriptome.

    PubMed

    Martignetti, Loredana; Tesson, Bruno; Almeida, Anna; Zinovyev, Andrei; Tucker, Gordon C; Dubois, Thierry; Barillot, Emmanuel

    2015-01-01

    Identifying key microRNAs (miRNAs) contributing to the genesis and development of a particular disease is a focus of many recent studies. We introduce here a rank-based algorithm to detect miRNA regulatory activity in cancer-derived tissue samples which combines measurements of gene and miRNA expression levels and sequence-based target predictions. The method is designed to detect modest but coordinated changes in the expression of sequence-based predicted target genes. We applied our algorithm to a cohort of 129 tumour and healthy breast tissues and showed its effectiveness in identifying functional miRNAs possibly involved in the disease. These observations have been validated using an independent publicly available breast cancer dataset from The Cancer Genome Atlas. We focused on the triple negative breast cancer subtype to highlight potentially relevant miRNAs in this tumour subtype. For those miRNAs identified as potential regulators, we characterize the function of affected target genes by enrichment analysis. In the two independent datasets, the affected targets are not necessarily the same, but display similar enriched categories, including breast cancer related processes like cell substrate adherens junction, regulation of cell migration, nuclear pore complex and integrin pathway. The R script implementing our method together with the datasets used in the study can be downloaded here (http://bioinfo-out.curie.fr/projects/targetrunningsum).

  15. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance

    PubMed Central

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861

  16. An approach to identify the novel miRNA encoded from H. Annuus EST sequences.

    PubMed

    Gupta, Hemant; Tiwari, Tanushree; Patel, Maulik; Mehta, Aditya; Ghosh, Arpita

    2015-12-01

    MicroRNAs are a newly discovered class of non-protein small RNAs with 22-24 nucleotides. They play multiple roles in biological processes including development, cell proliferation, apoptosis, stress responses and many other cell functions. In this research, several approaches were combined to make a computational prediction of potential miRNAs and their targets in Helianthus annuus (H. annuus). The already available information of the plant miRNAs present in miRBase v21 was used against expressed sequence tags (ESTs). A total of three miRNAs were detected from which one potential novel miRNA was identified following a range of strict filtering criteria. The target prediction was carried out for these three miRNAs having various targets. These targets were functionally annotated and GO terms were assigned. To study the conserved nature of the miRNAs, predicted phylogenetic analysis was carried out. These findings will significantly provide the broader picture for understanding the functions in H. annuus. PMID:26697356

  17. Non-inhibited miRNAs shape the cellular response to anti-miR.

    PubMed

    Androsavich, John R; Chau, B Nelson

    2014-06-01

    Identification of primary microRNA (miRNA) gene targets is critical for developing miRNA-based therapeutics and understanding their mechanisms of action. However, disentangling primary target derepression induced by miRNA inhibition from secondary effects on the transcriptome remains a technical challenge. Here, we utilized RNA immunoprecipitation (RIP) combined with competitive binding assays to identify novel primary targets of miR-122. These transcripts physically dissociate from AGO2-miRNA complexes when anti-miR is spiked into liver lysates. mRNA target displacement strongly correlated with expression changes in these genes following in vivo anti-miR dosing, suggesting that derepression of these targets directly reflects changes in AGO2 target occupancy. Importantly, using a metric based on weighted miRNA expression, we found that the most responsive mRNA target candidates in both RIP competition assays and expression profiling experiments were those with fewer alternative seed sites for highly expressed non-inhibited miRNAs. These data strongly suggest that miRNA co-regulation modulates the transcriptomic response to anti-miR. We demonstrate the practical utility of this 'miR-target impact' model, and encourage its incorporation, together with the RIP competition assay, into existing target prediction and validation pipelines.

  18. miRNAs in human papilloma virus associated oral and oropharyngeal squamous cell carcinomas.

    PubMed

    Salazar, Carolina; Calvopiña, Diego; Punyadeera, Chamindie

    2014-11-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world with 600,000 new cases diagnosed annually. Tobacco and alcohol use have been associated as the principal etiological factors of this pathogenesis. The incidence of smoking-associated HNSCC has declined, while human papilloma virus (HPV)-associated HNSCC is on the rise. There are currently no clinically validated biomarkers to detect this cancer at an early stage (cancers independent of HPV status). It is well-established that the aberrant expression of miRNAs can lead to tumorigenesis. miRNA expression differences have also been demonstrated in HPV-positive and HPV-negative HNSCC tumor tissues as well as in body fluids. Therefore, miRNAs have the potential to provide an unprecedented insight into the pathogenesis of HNSCC and serve as potential biomarkers. This review addresses HNSCC disease burden and the regulation of miRNA by HPV viral oncoproteins, potential miRNA biomarkers and future perspectives. miRNA provides an unique opportunity to fulfill the current clinical challenge in HNSCC patient management by enabling early detection followed by targeted interventions, leading to a significant reduction in mortality and morbidity.

  19. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    PubMed Central

    Jeong, Yun-Mi; Ryu, Jeong-Im; Choi, Tae-Young; Bae, Myung-Ae; Son, Woo-Chan

    2016-01-01

    MicroRNA-122 (miRNA-122), also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen) at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM) and cell death in larval liver (5 μM) at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish. PMID:27563662

  20. MAGIA, a web-based tool for miRNA and Genes Integrated Analysis

    PubMed Central

    Sales, Gabriele; Coppe, Alessandro; Bisognin, Andrea; Biasiolo, Marta; Bortoluzzi, Stefania; Romualdi, Chiara

    2010-01-01

    MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof. The analysis section comprises a multistep procedure for (i) direct integration through different functional measures (parametric and non-parametric correlation indexes, a variational Bayesian model, mutual information and a meta-analysis approach based on P-value combination) of mRNA and miRNA expression data, (ii) construction of bipartite regulatory network of the best miRNA and mRNA putative interactions and (iii) retrieval of information available in several public databases of genes, miRNAs and diseases and via scientific literature text-mining. MAGIA is freely available for Academic users at http://gencomp.bio.unipd.it/magia. PMID:20484379

  1. MAGIA, a web-based tool for miRNA and Genes Integrated Analysis.

    PubMed

    Sales, Gabriele; Coppe, Alessandro; Bisognin, Andrea; Biasiolo, Marta; Bortoluzzi, Stefania; Romualdi, Chiara

    2010-07-01

    MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof. The analysis section comprises a multistep procedure for (i) direct integration through different functional measures (parametric and non-parametric correlation indexes, a variational Bayesian model, mutual information and a meta-analysis approach based on P-value combination) of mRNA and miRNA expression data, (ii) construction of bipartite regulatory network of the best miRNA and mRNA putative interactions and (iii) retrieval of information available in several public databases of genes, miRNAs and diseases and via scientific literature text-mining. MAGIA is freely available for Academic users at http://gencomp.bio.unipd.it/magia.

  2. Differentially Expressed miRNAs in Tumor, Adjacent, and Normal Tissues of Lung Adenocarcinoma

    PubMed Central

    Tian, Fei; Li, Rui; Chen, Zhenzhu; Shen, Yanting; Lu, Jiafeng; Xie, Xueying; Ge, Qinyu

    2016-01-01

    Lung cancer is the leading cause of cancer deaths. Non-small-cell lung cancer (NSCLC) is the major type of lung cancer. The aim of this study was to characterize the expression profiles of miRNAs in adenocarcinoma (AC), one major subtype of NSCLC. In this study, the miRNAs were detected in normal, adjacent, and tumor tissues by next-generation sequencing. Then the expression levels of differential miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the results, 259, 401, and 389 miRNAs were detected in tumor, adjacent, and normal tissues of pooled AC samples, respectively. In addition, for the first time we have found that miR-21-5p and miR-196a-5p were gradually upregulated from normal to adjacent to tumor tissues; miR-218-5p was gradually downregulated with 2-fold or greater change in AC tissues. These 3 miRNAs were validated by qRT-PCR. Lastly, we predicted target genes of these 3 miRNAs and enriched the potential functions and regulatory pathways. The aberrant miR-21-5p, miR-196a-5p, and miR-218-5p may become biomarkers for diagnosis and prognosis of lung adenocarcinoma. This research may be useful for lung adenocarcinoma diagnosis and the study of pathology in lung cancer. PMID:27247934

  3. New Insights on Coffea miRNAs: Features and Evolutionary Conservation.

    PubMed

    Chaves, S S; Fernandes-Brum, C N; Silva, G F F; Ferrara-Barbosa, B C; Paiva, L V; Nogueira, F T S; Cardoso, T C S; Amaral, L R; de Souza Gomes, M; Chalfun-Junior, A

    2015-10-01

    Small RNAs influence the gene expression at the post-transcriptional level by guiding messenger RNA (mRNA) cleavage, translational repression, and chromatin modifications. In addition to model plants, the microRNAs (miRNAs) have been identified in different crop species. In this work, we developed a specific pipeline to search for coffee miRNA homologs on expressed sequence tags (ESTs) and genome survey sequences (GSS) databases. As a result, 36 microRNAs were identified and a total of 616 and 362 potential targets for Coffea arabica and Coffea canephora, respectively. The evolutionary analyses of these molecules were performed by comparing the primary and secondary structures of precursors and mature miRNAs with their orthologs. Moreover, using a stem-loop RT-PCR assay, we evaluated the accumulation of mature miRNAs in genomes with different ploidy levels, detecting an increase in the miRNAs accumulation according to the ploidy raising. Finally, a 5' RACE (Rapid Amplification of cDNA Ends) assay was performed to verify the regulation of auxin responsive factor 8 (ARF8) by MIR167 in coffee plants. The great variety of target genes indicates the functional plasticity of these molecules and reinforces the importance of understanding the RNAi-dependent regulatory mechanisms. Our results expand the study of miRNAs and their target genes in this crop, providing new challenges to understand the biology of these species.

  4. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration.

    PubMed

    Scheel, Troels K H; Luna, Joseph M; Liniger, Matthias; Nishiuchi, Eiko; Rozen-Gagnon, Kathryn; Shlomai, Amir; Auray, Gaël; Gerber, Markus; Fak, John; Keller, Irene; Bruggmann, Rémy; Darnell, Robert B; Ruggli, Nicolas; Rice, Charles M

    2016-03-01

    Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries, critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de-repression of cellular miR-17 targets, thereby altering the host transcriptome. These findings generalize the concept of RNA virus dependence on cellular miRNAs and connect virus-induced miRNA sequestration to host transcriptome regulation. PMID:26962949

  5. Differential Expression of miRNAs in Brassica napus Root following Infection with Plasmodiophora brassicae

    PubMed Central

    Verma, Shiv S.; Rahman, Muhammad H.; Deyholos, Michael K.; Basu, Urmila; Kav, Nat N. V.

    2014-01-01

    Canola (oilseed rape, Brassica napus L.) is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs) during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations). P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5′ RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs), hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen. PMID:24497962

  6. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance.

    PubMed

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance.

  7. Identification of the miRNA targetome in hippocampal neurons using RIP-seq.

    PubMed

    Malmevik, Josephine; Petri, Rebecca; Klussendorf, Thies; Knauff, Pina; Åkerblom, Malin; Johansson, Jenny; Soneji, Shamit; Jakobsson, Johan

    2015-01-01

    MicroRNAs (miRNAs) are key players in the regulation of neuronal processes by targeting a large network of target messenger RNAs (mRNAs). However, the identity and function of mRNAs targeted by miRNAs in specific cells of the brain are largely unknown. Here, we established an adeno-associated viral vector (AAV)-based neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high-throughput sequencing to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this approach, we identified more than two thousand miRNA targets in hippocampal neurons, regulating essential neuronal features such as cell signalling, transcription and axon guidance. Furthermore, we found that stable inhibition of the highly expressed miR-124 and miR-125 in hippocampal neurons led to significant but distinct changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. These findings greatly enhance our understanding of the miRNA targetome in hippocampal neurons. PMID:26219083

  8. Effects of space radiation and microgravity on miRNA expression profile in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Sun, Yeqing; Lei, Huang; Gao, Ying

    2012-07-01

    Living organisms experience a shock and subsequent adaption when they are subjected to space radiation and microgravity during spaceflight. Such changes have been already documented for some biological consequences including skeletal muscle alterations, reduced immune function and bone loss. Recent advancement in the field of molecular biology has demonstrated that small non-coding microRNA (miRNA) can have a broad effect on gene expression networks, and play a key role in cellular response to environmental stresses. However, little is known about how radiation exposure and altered gravity affect miRNA expression. In the present study, we explored the changes in expression of miRNA and related genes from Caenorhabditis elegans (C.elegans) flown on spaceflight. We used wild-type (N2) and dys-1 mutant (deletion of dys-1) stains of C.elegans, which were cultured to Dauer stage and transferred to special SIMbox in the experiment container. These worms taken by Shenzhou VIII spacecraft experienced the 16.5-day shuttle spaceflight. During spaceflight, they suffered space radiation and underwent static zero gravity (microgravity) or imitated earth gravity (1g) in the rotating condition. In contrast, these worms live under static earth gravity (1g) in ground-based controls. To evaluate the effects of space radiation and microgravity on miRNA expression profile, we performed miRNA microarray expression analysis and found that a set of miRNAs in N2 groups were significantly upregulated or downregualted in radiation and microgravity conditions. Among these altered miRNAs, there are two up-regulated and four down-regulated miRNAs in space radiation conditions; one down-regulated miRNAs in microgravity condition. Expression of several miRNAs in N2 groups was only changed significantly in the imitated earth gravity (1g) conditions, presenting these altered miRNAs were affected by radiation exposure alone. Notably, dys-1 mutant is not sensitive to altered gravity due to muscle

  9. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system

    PubMed Central

    Narayanan, Anand; Hill-Teran, Guillermina; Moro, Albertomaria; Ristori, Emma; Kasper, Dionna M.; A. Roden, Christine; Lu, Jun; Nicoli, Stefania

    2016-01-01

    A large number of microRNAs (miRNAs) are grouped into families derived from the same phylogenetic ancestors. miRNAs within a family often share the same physiological functions despite differences in their primary sequences, secondary structures, or chromosomal locations. Consequently, the generation of animal models to analyze the activity of miRNA families is extremely challenging. Using zebrafish as a model system, we successfully provide experimental evidence that a large number of miRNAs can be simultaneously mutated to abrogate the activity of an entire miRNA family. We show that injection of the Cas9 nuclease and two, four, ten, and up to twenty-four multiplexed single guide RNAs (sgRNAs) can induce mutations in 90% of the miRNA genomic sequences analyzed. We performed a survey of these 45 mutations in 10 miRNA genes, analyzing the impact of our mutagenesis strategy on the processing of each miRNA both computationally and in vivo. Our results offer an effective approach to mutate and study the activity of miRNA families and pave the way for further analysis on the function of complex miRNA families in higher multicellular organisms. PMID:27572667

  10. In silico screening of alleged miRNAs associated with cell competition: an emerging cellular event in cancer.

    PubMed

    Patel, Manish; Antala, Bhavesh; Shrivastava, Neeta

    2015-12-01

    Cell competition is identified as a crucial phenomenon for cancer and organ development. There is a possibility that microRNAs (miRNAs) may play an important role in the regulation of expression of genes involved in cell competition. In silico screening of miRNAs is an effort to abridge, economize and expedite the experimental approaches to identification of potential miRNAs involved in cell competition, as no study has reported involvement of miRNAs in cell competition to date. In this study, we used multiple screening steps as follows: (i) selection of cell competition related genes of Drosophila through a literature survey; (ii) homology study of selected cell competition related genes; (iii) identification of miRNAs that target conserved cell competition-related genes through prediction tools; (iv) sequence conservation analysis of identified miRNAs with human genome; (v) identification of conserved cell competition miRNAs using their expression profiles and exploration of roles of their homologous human miRNAs. This study led to the identification of nine potential cell competition miRNAs in the Drosophila genome. Importantly, eighteen human homologs of these nine potential Drosophila miRNAs are well reported for their involvement in different types of cancers. This confirms their probable involvement in cell competition as well, because cell competition is well justified for its involvement in cancer initiation and maintenance.

  11. MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature.

    PubMed

    Fortunato, Orazio; Verri, Carla; Pastorino, Ugo; Sozzi, Gabriella; Boeri, Mattia

    2016-01-01

    Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA signature classifier (MSC) able to discriminate lung cancer with more aggressive features. In the present work, microarray miRNA profiling of tumor tissues collected from 19 lung cancer patients with an available MSC result were perform in order to find a possible association between miRNA expression and the MSC risk level. Eleven tissue mature miRNAs and six miRNA precursors were observed to be associated with the plasma MSC risk level of patients. Not one of these miRNAs was included in the MSC algorithm. A pathway enrichment analysis revealed a role of these miRNA in the main pathways determining lung cancer aggressiveness. Overall, these findings add to the knowledge that tissue and plasma miRNAs behave as excellent diagnostic and prognostic biomarkers, which may find rapid application in clinical settings. PMID:27600084

  12. MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature

    PubMed Central

    Fortunato, Orazio; Verri, Carla; Pastorino, Ugo; Sozzi, Gabriella; Boeri, Mattia

    2016-01-01

    Lung cancer is the most common cause of cancer deaths worldwide. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression. Many studies have reported that alterations in miRNA expression are involved in several human tumors. We have previously identified a circulating miRNA signature classifier (MSC) able to discriminate lung cancer with more aggressive features. In the present work, microarray miRNA profiling of tumor tissues collected from 19 lung cancer patients with an available MSC result were perform in order to find a possible association between miRNA expression and the MSC risk level. Eleven tissue mature miRNAs and six miRNA precursors were observed to be associated with the plasma MSC risk level of patients. Not one of these miRNAs was included in the MSC algorithm. A pathway enrichment analysis revealed a role of these miRNA in the main pathways determining lung cancer aggressiveness. Overall, these findings add to the knowledge that tissue and plasma miRNAs behave as excellent diagnostic and prognostic biomarkers, which may find rapid application in clinical settings. PMID:27600084

  13. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing

    PubMed Central

    Chen, Min; Bao, Hai; Wu, Qiuming; Wang, Yanwei

    2015-01-01

    miRNAs are endogenous non-coding small RNAs with important regulatory roles in stress responses. Nitrogen (N) is an indispensable macronutrient required for plant growth and development. Previous studies have identified a variety of known and novel miRNAs responsive to low N stress in plants, including Populus. However, miRNAs involved in the cleavage of target genes and the corresponding regulatory networks in response to N stress in Populus remain largely unknown. Consequently, degradome sequencing was employed for global detection and validation of N-responsive miRNAs and their targets. A total of 60 unique miRNAs (39 conserved, 13 non-conserved, and eight novel) were experimentally identified to target 64 mRNA transcripts and 21 precursors. Among them, we further verified the cleavage of 11 N-responsive miRNAs identified previously and provided empirical evidence for the cleavage mode of these miRNAs on their target mRNAs. Furthermore, five miRNA stars (miRNA*s) were shown to have cleavage function. The specificity and diversity of cleavage sites on the targets and miRNA precursors in P. tomentosa were further detected. Identification and annotation of miRNA-mediated cleavage of target genes in Populus can increase our understanding of miRNA-mediated molecular mechanisms of woody plants adapted to low N environments. PMID:26096002

  14. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors

    PubMed Central

    2013-01-01

    Background The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. Results We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. Conclusions Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer. PMID:24257477

  15. A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular miRNAs

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular mRNAs. A significant amount of miRNAs has been found in extracellular human body fluids (e.g. plasma and serum) and some circulating miRNAs in the blood have been successfully revealed as biomarkers for diseases including cardiovascular diseases and cancer. Released miRNAs do not necessarily reflect the abundance of miRNAs in the cell of origin. It is claimed that release of miRNAs from cells into blood and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. Moreover, miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. In particular, the use of drugs should be taken into consideration while analyzing plasma miRNA levels as drug treatment. This may impair their employment as biomarkers. Description We enriched our manually curated extracellular/circulating microRNAs database, miRandola, by providing (i) a systematic comparison of expression profiles of cellular and extracellular miRNAs, (ii) a miRNA targets enrichment analysis procedure, (iii) information on drugs and their effect on miRNA expression, obtained by applying a natural language processing algorithm to abstracts obtained from PubMed. Conclusions This allows users to improve the knowledge about the function, diagnostic potential, and the drug effects on cellular and circulating miRNAs. PMID:25077952

  16. Integrative Analysis of miRNA and Inflammatory Gene Expression After Acute Particulate Matter Exposure

    PubMed Central

    Motta, Valeria

    2013-01-01

    MicroRNAs (miRNAs) are environmentally sensitive inhibitors of gene expression that may mediate the effects of metal-rich particulate matter (PM) and toxic metals on human individuals. Previous environmental miRNA studies have investigated a limited number of candidate miRNAs and have not yet evaluated the functional effects on gene expression. In this study, we wanted to identify PM-sensitive miRNAs using microarray profiling on matched baseline and postexposure RNA from foundry workers with well-characterized exposure to metal-rich PM and to characterize miRNA relations with expression of candidate inflammatory genes. We applied microarray analysis of 847 human miRNAs and real-time PCR analysis of 18 candidate inflammatory genes on matched blood samples collected from foundry workers at baseline and after 3 days of work (postexposure). We identified differentially expressed miRNAs (fold change [FC] > 2 and p < 0.05) and correlated their expression with the inflammatory associated genes. We performed in silico network analysis in MetaCore v6.9 to characterize the biological pathways connecting miRNA-mRNA pairs. Microarray analysis identified four miRNAs that were differentially expressed in postexposure compared with baseline samples, including miR-421 (FC = 2.81, p < 0.001), miR-146a (FC = 2.62, p = 0.007), miR-29a (FC = 2.91, p < 0.001), and let-7g (FC = 2.73, p = 0.019). Using false discovery date adjustment for multiple comparisons, we found 11 miRNA-mRNA correlated pairs involving the 4 differentially expressed miRNAs and candidate inflammatory genes. In silico network analysis with MetaCore database identified biological interactions for all the 11 miRNA-mRNA pairs, which ranged from direct mRNA targeting to complex interactions with multiple intermediates. Acute PM exposure may affect gene regulation through PM-responsive miRNAs that directly or indirectly control inflammatory gene expression. PMID:23358196

  17. Human miRNA Precursors with Box H/ACA snoRNA Features

    PubMed Central

    Scott, Michelle S.; Avolio, Fabio; Ono, Motoharu; Lamond, Angus I.; Barton, Geoffrey J.

    2009-01-01

    MicroRNAs (miRNAs) and small nucleolar RNAs (snoRNAs) are two classes of small non-coding regulatory RNAs, which have been much investigated in recent years. While their respective functions in the cell are distinct, they share interesting genomic similarities, and recent sequencing projects have identified processed forms of snoRNAs that resemble miRNAs. Here, we investigate a possible evolutionary relationship between miRNAs and box H/ACA snoRNAs. A comparison of the genomic locations of reported miRNAs and snoRNAs reveals an overlap of specific members of these classes. To test the hypothesis that some miRNAs might have evolved from snoRNA encoding genomic regions, reported miRNA-encoding regions were scanned for the presence of box H/ACA snoRNA features. Twenty miRNA precursors show significant similarity to H/ACA snoRNAs as predicted by snoGPS. These include molecules predicted to target known ribosomal RNA pseudouridylation sites in vivo for which no guide snoRNA has yet been reported. The predicted folded structures of these twenty H/ACA snoRNA-like miRNA precursors reveal molecules which resemble the structures of known box H/ACA snoRNAs. The genomic regions surrounding these predicted snoRNA-like miRNAs are often similar to regions around snoRNA retroposons, including the presence of transposable elements, target site duplications and poly (A) tails. We further show that the precursors of five H/ACA snoRNA-like miRNAs (miR-151, miR-605, mir-664, miR-215 and miR-140) bind to dyskerin, a specific protein component of functional box H/ACA small nucleolar ribonucleoprotein complexes suggesting that these molecules have retained some H/ACA snoRNA functionality. The detection of small RNA molecules that share features of miRNAs and snoRNAs suggest that these classes of RNA may have an evolutionary relationship. PMID:19763159

  18. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing

    PubMed Central

    2014-01-01

    Background In plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages. Results We used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed. Conclusions This study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development

  19. Citrus psorosis virus 24K protein interacts with citrus miRNA precursors, affects their processing and subsequent miRNA accumulation and target expression.

    PubMed

    Reyes, Carina A; Ocolotobiche, Eliana E; Marmisollé, Facundo E; Robles Luna, Gabriel; Borniego, María B; Bazzini, Ariel A; Asurmendi, Sebastian; García, María L

    2016-04-01

    Sweet orange (Citrus sinensis), one of the most important fruit crops worldwide, may suffer from disease symptoms induced by virus infections, thus resulting in dramatic economic losses. Here, we show that the infection of sweet orange plants with two isolates of Citrus psorosis virus (CPsV) expressing different symptomatology alters the accumulation of a set of endogenous microRNAs (miRNAs). Within these miRNAs, miR156, miR167 and miR171 were the most down-regulated, with almost a three-fold reduction in infected samples. This down-regulation led to a concomitant up-regulation of some of their targets, such as Squamosa promoter-binding protein-like 9 and 13, as well as Scarecrow-like 6. The processing of miRNA precursors, pre-miR156 and pre-miR171, in sweet orange seems to be affected by the virus. For instance, virus infection increases the level of unprocessed precursors, which is accompanied by a concomitant decrease in mature species accumulation. miR156a primary transcript accumulation remained unaltered, thus strongly suggesting a processing deregulation for this transcript. The co-immunoprecipitation of viral 24K protein with pre-miR156a or pre-miR171a suggests that the alteration in the processing of these precursors might be caused by a direct or indirect interaction with this particular viral protein. This result is also consistent with the nuclear localization of both miRNA precursors and the CPsV 24K protein. This study contributes to the understanding of the manner in which a virus can alter host regulatory mechanisms, particularly miRNA biogenesis and target expression.

  20. Five miRNAs Considered as Molecular Targets for Predicting Esophageal Cancer

    PubMed Central

    Zhao, Jia-ying; Wang, Fei; Li, Yi; Zhang, Xing-bo; Yang, Lei; Wang, Wei; Xu, Hao; Liu, Da-zhong; Zhang, Lin-you

    2015-01-01

    Background Esophageal cancer (EC) is one of the most aggressive malignant gastrointestinal tumors; however the traditional therapies for EC are not effective enough. Great improvements are needed to explore new and valid treatments for EC. We aimed to screen the differentially expressed miRNAs (DEMs) in esophageal cancer and explore the pathogenesis of esophageal cancer along with functions and pathways of the target genes. Material/Methods miRNA high-throughput sequencing data were downloaded from The Cancer Genome Atlas (TCGA), then the DEMs underwent principal component analysis (PCA) based on their expression value. Following that, TargetScan software was used to predict the target genes, and enrichment analysis and pathway annotation of these target genes were done by DAVID and KEGG, respectively. Finally, survival analysis between the DEMs and patient survival time was done, and the miRNAs with prediction potential were identified. Results A total of 140 DEMs were obtained, 113 miRNAs were up-regulated including hsa-mir-153-2, hsa-mir-92a-1 and hsa-mir-182; while 27 miRNAs were down-regulated including hsa-mir comprising 29a, hsa-mir-100 and hsa-mir-139 and so on. Five miRNAs (hsa-mir-103-1, hsa-mir-18a, hsa-mir-324, hsa-mir-369 and hsa-mir-320b-2) with diagnostic and preventive potential were significantly correlated with survival time. Conclusions The crucial molecular targets such as p53 may provide great clinical value in treatment, as well to provide new ideas for esophageal cancer therapy. The target genes of miRNA were found to play key roles in protein phosphorylation, and the functions of the target genes during protein phosphorylation should be further studied to explore novel treatment of EC. PMID:26498375

  1. A serum 6-miRNA panel as a novel non-invasive biomarker for meningioma

    PubMed Central

    Zhi, Feng; Shao, Naiyuan; Li, Bowen; Xue, Lian; Deng, Danni; Xu, Yuan; Lan, Qing; Peng, Ya; Yang, Yilin

    2016-01-01

    Circulating microRNAs (miRNAs) hold great promise as novel clinically blood-based biomarkers for cancer diagnosis and prognosis. However, little is known about their impact in meningioma. The TLDA assay was performed as an initial survey to determine the serum miRNA expression profile in two pooled samples from 20 pre-operative meningiomas and 20 matched healthy controls. Selected candidate miRNAs were subsequently validated individually in another 210 patients and 210 healthy controls from two independent cohorts by qRT-PCR. The serum levels of miR-106a-5p, miR-219-5p, miR-375, and miR-409-3p were significantly increased, whereas the serum levels of miR-197 and miR-224 were markedly decreased. The area under the ROC curve (AUC) for the six combined miRNAs was 0.778. The 4 increased miRNAs were significantly decreased, while the 2 decreased miRNAs were significantly increased after tumor removal. Furthermore, the expression levels of miR-224 were associated with sex, and the expression levels of miR-219-5p were positively associated with the clinical stages of meningioma. Finally, the high expression of miR-409-3p and low expression of miR-224 were significantly correlated with higher recurrence rates. The present study revealed that the panel of 6 serum miRNA may have the potential to be used clinically as an auxiliary tool for meningioma patients. PMID:27558167

  2. Effect of miRNA-27a and Leptin Polymorphisms on Risk of Recurrent Spontaneous Abortion

    PubMed Central

    Wang, Chun-Yan; Wang, Shu-Guang; Wang, Jia-Li; Zhou, Li-Ying; Liu, Hong-Jun; Wang, Yi-Feng

    2016-01-01

    Background The aim of this study was to investigate the possible associations of miRNA-27a and Leptin polymorphisms with the risk of recurrent spontaneous abortion (RSA). Material/Methods Between May 2013 and April 2015 at Shenzhen Longhua New District Central Hospital, we randomly recruited 138 RSA patients as the case group and another 142 normal pregnancy women as the control group. We used denaturing high-performance liquid chromatography (DHPLC) to determine the genotypes and allele frequencies of miRNA-27a rs895819 A/G and Leptin rs7799039 G/A. Results The GG genotype and G allele frequencies of miRNA-27a rs895819 A/G were higher in the case group than in the control group, and the AA genotype and A allele frequencies of Leptin rs7799039 G/A were also higher in the case group than in the control group (all P<0.05). MiRNA-27a rs895819 A/G and Leptin rs7799039 G/A polymorphisms increased the risk of RSA (Exp (B)=2.732, 95% CI=1.625~4.596, P=0.000; Exp (B)=4.081, 95% CI=1.817~9.164, P=0.001). GG-AA or AG-AA carriers had a higher risk of RSA. The miRNA-27a expression of AA carriers of miRNA-27a rs895819 was lower than that of AG+GG carriers both in the case and control groups (all P=0.024). The plasma leptin concentration of GG carriers was lower than that of GA+AA carriers in the case group (P=0.026). Conclusions The polymorphisms of miRNA-27a rs895819 A/G and Leptin rs7799039 G/A may contribute to an increased risk of RSA. PMID:27694792

  3. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer.

    PubMed

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede; Christensen, Lise-Lotte; Thorsen, Stine Buch; Stenvang, Jan; Hvam, Michael Lykke; Thomsen, Anni; Mouritzen, Peter; Rasmussen, Mads Heilskov; Nielsen, Hans Jørgen; Ørntoft, Torben Falck; Andersen, Claus Lindbjerg

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics. Here we describe a sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer (CRC). The epithelial-derived EVs were isolated by immunoaffinity-capture using the epithelial cell adhesion molecule (EpCAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood plasma isolated from CRC patients prior to surgery contained elevated levels of 13 EpCAM(+)-EV miRNAs compared with healthy individuals. Upon surgical tumour removal, the plasma levels of 8 of these were reduced (miR-16-5p, miR-23a-3p, miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-30b-5p, miR-30c-5p and miR-222-3p). These findings indicate that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC. This work describes a non-invasive blood-based method for sensitive detection of cancer with potential for clinical use in relation to diagnosis and screening. We used the method to study CRC; however, it is not restricted to this disease. It may in principle be used to study any cancer that release epithelial-derived EVs into circulation. PMID:27576678

  4. Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA.

    PubMed

    Tryggestad, Jeanie B; Vishwanath, Anu; Jiang, Shaoning; Mallappa, Ashwini; Teague, April M; Takahashi, Yusuke; Thompson, David M; Chernausek, Steven D

    2016-11-01

    We aimed to identify miRNAs whose expression levels in fetal tissues are altered by exposure to a diabetic milieu and elucidate the impact on target protein expression. Gestational diabetes mellitus (GDM) affects both immediate and future disease risk in the offspring. We hypothesized that GDM alters miRNA expression in human umbilical vein endothelial cells (HUVECs) that may influence metabolic processes. A cross-sectional design compared differences in miRNA expression in HUVECs and target protein abundance in placentae between infants of women with GDM (IGDM) and infants born to normoglycaemic controls. miRNAs were identified using microarray profiling and literature review and validated by quantitative PCR (qPCR). In vitro transfection studies explored the impact of the miRNA on target protein expression. Expression of seven miRNA species, miR-30c-5p, miR-452-5p, miR-126-3p, miR-130b-3p, miR-148a-3p, miR-let-7a-5p and miR-let-7g-5p, was higher in the HUVECs of IGDM. Abundance of the catalytic subunit of AMP-activated protein kinase α1 (AMPKα1) was decreased in the HUVECs and BeWo cells (transformed trophoblast cell line) transfected with miR-130b and miR-148a mimics. AMPKα1 expression was also decreased in placental tissues of IGDM. The expression of several miRNAs were altered by in utero exposure to DM in infants of women whose dysglycaemia was very well controlled by current standards. Decreased expression of AMPKα1 as a result of increased levels of miR-130b and miR-148a may potentially explain the decrease in fat oxidation we reported in infants at 1 month of age and, if persistent, may predispose offspring to future metabolic disease. PMID:27562513

  5. miRNA profiling of circulating EpCAM+ extracellular vesicles: promising biomarkers of colorectal cancer

    PubMed Central

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede; Christensen, Lise-Lotte; Thorsen, Stine Buch; Stenvang, Jan; Hvam, Michael Lykke; Thomsen, Anni; Mouritzen, Peter; Rasmussen, Mads Heilskov; Nielsen, Hans Jørgen; Ørntoft, Torben Falck; Andersen, Claus Lindbjerg

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics. Here we describe a sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer (CRC). The epithelial-derived EVs were isolated by immunoaffinity-capture using the epithelial cell adhesion molecule (EpCAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood plasma isolated from CRC patients prior to surgery contained elevated levels of 13 EpCAM+-EV miRNAs compared with healthy individuals. Upon surgical tumour removal, the plasma levels of 8 of these were reduced (miR-16-5p, miR-23a-3p, miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-30b-5p, miR-30c-5p and miR-222-3p). These findings indicate that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC. This work describes a non-invasive blood-based method for sensitive detection of cancer with potential for clinical use in relation to diagnosis and screening. We used the method to study CRC; however, it is not restricted to this disease. It may in principle be used to study any cancer that release epithelial-derived EVs into circulation. PMID:27576678

  6. Implication of miRNAs for inflammatory bowel disease treatment: Systematic review

    PubMed Central

    Chen, Wei-Xu; Ren, Li-Hua; Shi, Rui-Hua

    2014-01-01

    Inflammatory bowel disease (IBD) is believed to develop via a complex interaction between genetic, environmental factors and the mucosal immune system. Crohn’s disease and ulcerative colitis are two major clinical forms of IBD. MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNA molecules, and evolutionary conserved in animals and plants. It controls protein production at the post-transcriptional level by targeting mRNAs for translational repression or degradation. MiRNAs are important in many biological processes, such as signal transduction, cellular proliferation, differentiation and apoptosis. Considerable attention has been paid on the key role of miRNAs in autoimmune and inflammatory disease, especially IBD. Recent studies have identified altered miRNA profiles in ulcerative colitis, Crohn’s disease and inflammatory bowel disease-associated colorectal cancer. In addition, emerging data have implicated that special miRNAs which suppress functional targets play a critical role in regulating key pathogenic mechanism in IBD. MiRNAs were found involving in regulation of nuclear transcription factor kappa B pathway (e.g., miR-146a, miR-146b, miR-122, miR-132, miR-126), intestinal epithelial barrier function (e.g., miR-21, miR-150, miR-200b) and the autophagic activity (e.g., miR-30c, miR-130a, miR-106b, miR-93, miR-196). This review aims at discussing recent advances in our understanding of miRNAs in IBD pathogenesis, their role as disease biomarkers, and perspective for future investigation and clinical application. PMID:24891977

  7. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    PubMed Central

    Cross, Courtney E.; Tolba, Mai F.; Rondelli, Catherine M.; Xu, Meixiang; Abdel-Rahman, Sherif Z.

    2015-01-01

    The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE) is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM) for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50) significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM) analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development. PMID:26339600

  8. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    PubMed

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer.

  9. Inference of gene regulation via miRNAs during ES cell differentiation using MiRaGE method.

    PubMed

    Yoshizawa, Masato; Taguchi, Y-H; Yasuda, Jun

    2011-01-01

    MicroRNA (miRNA) is a critical regulator of cell growth, differentiation, and development. To identify important miRNAs in a biological process, many bioinformatical tools have been developed. We have developed MiRaGE (MiRNA Ranking by Gene Expression) method to infer the regulation of gene expression by miRNAs from changes of gene expression profiles. The method does not require precedent array normalization. We applied the method to elucidate possibly important miRNAs during embryonic stem (ES) cell differentiation to neuronal cells and we infer that certain miRNAs, including miR-200 family, miR-429, miR-302 family, and miR-17-92 cluster members may be important to the maintenance of undifferentiated status in ES cells. PMID:22272132

  10. microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress.

    PubMed

    Martin, Ruth C; Liu, Po-Pu; Goloviznina, Natalya A; Nonogaki, Hiroyuki

    2010-05-01

    microRNAs (miRNAs) are small, single-stranded RNAs that down-regulate target genes at the post-transcriptional level. miRNAs regulate target genes by guiding mRNA cleavage or by repressing translation. miRNAs play crucial roles in a broad range of developmental processes in plants. Multiple miRNAs are present in germinating seeds and seedlings of Arabidopsis, some of which are involved in the regulation of germination and seedling growth by plant hormones such as abscisic acid (ABA) and auxin. The involvement of miRNAs in ABA responses is not limited to the early stages of plant development but seems to be important for general stress responses throughout the plant life cycle. This Darwin review summarizes recent progress in miRNA research focusing on seed and stress biology, two topics which were of interest to Charles Darwin.

  11. Detection of 1α,25-dihydroxyvitamin D-regulated miRNAs in zebrafish by whole transcriptome sequencing.

    PubMed

    Craig, Theodore A; Zhang, Yuji; Magis, Andrew T; Funk, Cory C; Price, Nathan D; Ekker, Stephen C; Kumar, Rajiv

    2014-06-01

    The sterol hormone, 1α,25-dihydroxyvitamin D₃ (1α,25(OH)₂D₃), regulates gene expression and messenger RNA (mRNA) concentrations in zebrafish in vivo. Since mRNA concentrations and translation are influenced by micro-RNAs (miRNAs), we examined the influence of 1α,25(OH)₂D₃ on miRNA expression in zebrafish in vivo with whole transcriptome RNA sequencing, searched for miRNA binding sites in 1α,25(OH)₂D₃-sensitive genes, and performed correlation analyses between 1α,25(OH)₂D₃-sensitive miRNAs and mRNAs. In vehicle- and 1α,25(OH)₂D₃-treated, 7-day postfertilization larvae, between 282 and 295 known precursor miRNAs were expressed, and in vehicle- and 1α,25(OH)₂D₃-treated fish, between 83 and 122 novel miRNAs were detected. Following 1α,25(OH)₂D₃ treatment, 31 precursor miRNAs were differentially expressed (p<0.05). The differentially expressed miRNAs are predicted to potentially alter mRNAs for metabolic enzymes, transcription factors, growth factors, and Jak-STAT signaling. We verified the role of a 1α,25(OH)₂D₃-sensitive miRNA, miR125b, by demonstrating alterations in the concentrations of the mRNA of a 1α,25(OH)₂D₃-regulated gene, Cyp24a1, following transfection of renal cells with a miR125b miRNA mimic. Changes in the Cyp24a1 mRNA concentration by the miR125b miRNA mimic were associated with changes in the protein for Cyp24a1. Our data show that 1α,25(OH)₂D₃ regulates miRNA in zebrafish larvae in vivo and could thereby influence vitamin D-sensitive mRNA concentrations.

  12. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer

    PubMed Central

    da Silva Oliveira, Kelly Cristina; Thomaz Araújo, Taíssa Maíra; Albuquerque, Camila Inagaki; Barata, Gabriela Alcantara; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Rodrigues Mello Junior, Fernando Augusto; Khayat, André Salim; de Assumpção, Paulo Pimentel; Rodriguez Burbano, Rommel Mário; Smith, Marília Cardoso; Calcagno, Danielle Queiroz

    2016-01-01

    Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.

  13. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer.

    PubMed

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC.

  14. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are endogenous regulators of a broad range of physiological processes and act by either degrading mRNA or blocking its translation. Oilseed rape (Brassica napus) is one of the most important crops in China, Europe and other Asian countries with publicly available expressed sequence tags (ESTs) and genomic survey sequence (GSS) databases, but little is known about its miRNAs and their targets. To date, only 46 miRNAs have been identified in B. napus. Results Forty-one conserved and 62 brassica-specific candidate B. napus miRNAs, including 20 miRNA* sequences, were identified using Solexa sequencing technology. Furthermore, 33 non-redundant mRNA targets of conserved brassica miRNAs and 19 new non-redundant mRNA targets of novel brassica-specific miRNAs were identified by genome-scale sequencing of mRNA degradome. Conclusions This study describes large scale cloning and characterization of B. napus miRNAs and their potential targets, providing the foundation for further characterization of miRNA function in the regulation of diverse physiological processes in B. napus. PMID:22920854

  15. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.

    PubMed

    Chaulk, Steven G; Thede, Gina L; Kent, Oliver A; Xu, Zhizhong; Gesner, Emily M; Veldhoen, Richard A; Khanna, Suneil K; Goping, Ing Swie; MacMillan, Andrew M; Mendell, Joshua T; Young, Howard S; Fahlman, Richard P; Glover, J N Mark

    2011-01-01

    MicroRNAs (miRNAs) regulate gene expression in a variety of biological pathways such as development and tumourigenesis. miRNAs are initially expressed as long primary transcripts (pri-miRNAs) that undergo sequential processing by Drosha and then Dicer to yield mature miRNAs. miR-17~92 is a miRNA cluster that encodes 6 miRNAs and while it is essential for development it also has reported oncogenic activity. To date, the role of RNA structure in miRNA biogenesis has only been considered in terms of the secondary structural elements required for processing of pri-miRNAs by Drosha. Here we report that the miR-17~92 cluster has a compact globular tertiary structure where miRNAs internalized within the core of the folded structure are processed less efficiently than miRNAs on the surface of the structure. Increased miR-92 expression resulting from disruption of the compact miR-17~92 structure results in increased repression of integrin α5 mRNA, a known target of miR-92a. In summary, we describe the first example of pri-miRNA structure modulating differential expression of constituent miRNAs.

  16. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer.

    PubMed

    da Silva Oliveira, Kelly Cristina; Thomaz Araújo, Taíssa Maíra; Albuquerque, Camila Inagaki; Barata, Gabriela Alcantara; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Rodrigues Mello Junior, Fernando Augusto; Khayat, André Salim; de Assumpção, Paulo Pimentel; Rodriguez Burbano, Rommel Mário; Smith, Marília Cardoso; Calcagno, Danielle Queiroz

    2016-09-21

    Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity. PMID:27672290

  17. miRNA-29a targets COL3A1 to regulate the level of type III collagen in pig.

    PubMed

    Chuan-Hao, Li; Wei, Chen; Jia-Qing, Hu; Yan-Dong, Wang; Shou-Dong, Wang; Yong-Qing, Zeng; Hui, Wang

    2016-10-30

    COL3A1 encodes the protein, collagen type III alpha 1, which is an important component of collagen. Collagen can have a considerable effect on the processing quality of meat, and is nutritious. Bioinformatic analysis using Targetscan showed that COL3A1 could be a target gene of miRNA-29a. Moreover, we found that Laiwu pigs have higher levels of type III collagen and lower levels of miRNA-29a than Landrace pigs. Therefore, we hypothesized that miRNA-29a suppresses the expression of COL3A1 by targeting its 3'-UTR. miRNA-29a appears to play an inhibitory role in the regulation of COL3A1 in PK15 cells because of the following: (1) overexpression of miRNA-29a resulted in a significant down-regulation of COL3A1 protein levels (2) overexpression of miRNA-29a significantly decreased the level of COL3A1 mRNA. (3) The activity of a COL3A1 luciferase reporter was significant reduced by miRNA-29a. Furthermore, the levels of miRNA-29a and collagen type III in four tissues in Laiwu and Landrace pigs were consistent with the above observations. In this study, we identified COL3A1 as a direct target for miRNA-29a, which will inform further studies of meat quality. PMID:27476968

  18. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer

    PubMed Central

    da Silva Oliveira, Kelly Cristina; Thomaz Araújo, Taíssa Maíra; Albuquerque, Camila Inagaki; Barata, Gabriela Alcantara; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Rodrigues Mello Junior, Fernando Augusto; Khayat, André Salim; de Assumpção, Paulo Pimentel; Rodriguez Burbano, Rommel Mário; Smith, Marília Cardoso; Calcagno, Danielle Queiroz

    2016-01-01

    Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity. PMID:27672290

  19. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  20. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans

    PubMed Central

    Bhomia, Manish; Balakathiresan, Nagaraja S.; Wang, Kevin K.; Papa, Linda; Maheshwari, Radha K.

    2016-01-01

    MicroRNAs (MiRNAs) are small endogenous RNA molecules and have emerged as novel serum diagnostic biomarkers for several diseases due to their stability and detection at minute quantities. In this study, we have identified a serum miRNA signature in human serum samples of mild to severe TBI, which can be used for diagnosis of mild and moderate TBI (MMTBI). Human serum samples of MMTBI, severe TBI (STBI), orthopedic injury and healthy controls were used and miRNA profiling was done using taqman real time PCR. The real time PCR data for the MMTBI, STBI and orthopedic injury was normalized to the control samples which showed upregulation of 39, 37 and 33 miRNAs in MMTBI, STBI and orthopedic injury groups respectively. TBI groups were compared to orthopedic injury group and an up-regulation of 18 and 20 miRNAs in MMTBI and STBI groups was observed. Among these, a signature of 10 miRNAs was found to be present in both MMTBI and STBI groups. These 10 miRNAs were validated in cerebrospinal fluid (CSF) from STBI and four miRNAs were found to be upregulated in CSF. In conclusion, we identified a subset of 10 unique miRNAs which can be used for diagnosis of MMTBI and STBI. PMID:27338832

  1. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii.

    PubMed

    Akpinar, Bala A; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant

  2. Discovering miRNA Regulatory Networks in Holt-Oram Syndrome Using a Zebrafish Model.

    PubMed

    D'Aurizio, Romina; Russo, Francesco; Chiavacci, Elena; Baumgart, Mario; Groth, Marco; D'Onofrio, Mara; Arisi, Ivan; Rainaldi, Giuseppe; Pitto, Letizia; Pellegrini, Marco

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in the post-transcriptional regulation of gene expression. miRNAs are involved in the regulation of many biological processes such as differentiation, apoptosis, and cell proliferation. miRNAs are expressed in embryonic, postnatal, and adult hearts, and they have a key role in the regulation of gene expression during cardiovascular development and disease. Aberrant expression of miRNAs is associated with abnormal cardiac cell differentiation and dysfunction. Tbx5 is a member of the T-box gene family, which acts as transcription factor involved in the vertebrate heart development. Alteration of Tbx5 level affects the expression of hundreds of genes. Haploinsufficiency and gene duplication of Tbx5 are at the basis of the cardiac abnormalities associated with Holt-Oram syndrome (HOS). Recent data indicate that miRNAs might be an important part of the regulatory circuit through which Tbx5 controls heart development. Using high-throughput technologies, we characterized genome-widely the miRNA and mRNA expression profiles in WT- and Tbx5-depleted zebrafish embryos at two crucial developmental time points, 24 and 48 h post fertilization (hpf). We found that several miRNAs, which are potential effectors of Tbx5, are differentially expressed; some of them are already known to be involved in cardiac development and functions, such as miR-30, miR-34, miR-190, and miR-21. We performed an integrated analysis of miRNA expression data with gene expression profiles to refine computational target prediction approaches by means of the inversely correlation of miRNA-mRNA expressions, and we highlighted targets, which have roles in cardiac contractility, cardiomyocyte proliferation/apoptosis, and morphogenesis, crucial functions regulated by Tbx5. This approach allowed to discover complex regulatory circuits involving novel miRNAs and protein coding genes not considered before in the HOS such as miR-34a and mi

  3. Human Breast Milk miRNA, Maternal Probiotic Supplementation and Atopic Dermatitis in Offspring

    PubMed Central

    Simpson, Melanie Rae; Brede, Gaute; Johansen, Jostein; Johnsen, Roar; Storrø, Ola; Sætrom, Pål; Øien, Torbjørn

    2015-01-01

    Background Perinatal probiotic ingestion has been shown to prevent atopic dermatitis (AD) in infancy in a number of randomised trials. The Probiotics in the Prevention of Allergy among Children in Trondheim (ProPACT) trial involved a probiotic supplementation regime given solely to mothers in the perinatal period and demonstrated a ~40% relative risk reduction in the cumulative incidence of AD at 2 years of age. However, the mechanisms behind this effect are incompletely understood. Micro-RNAs (miRNA) are abundant in mammalian milk and may influence the developing gastrointestinal and immune systems of newborn infants. The objectives of this study were to describe the miRNA profile of human breast milk, and to investigate breast milk miRNAs as possible mediators of the observed preventative effect of probiotics. Methods Small RNA sequencing was conducted on samples collected 3 months postpartum from 54 women participating in the ProPACT trial. Differential expression of miRNA was assessed for the probiotic vs placebo and AD vs non-AD groups. The results were further analysed using functional prediction techniques. Results Human breast milk samples contain a relatively stable core group of highly expressed miRNAs, including miR-148a-3p, miR-22-3p, miR-30d-5p, let-7b-5p and miR-200a-3p. Functional analysis of these miRNAs revealed enrichment in a broad range of biological processes and molecular functions. Although several miRNAs were found to be differentially expressed on comparison of the probiotic vs placebo and AD vs non-AD groups, none had an acceptable false discovery rate and their biological significance in the development of AD is not immediately apparent from their predicted functional consequences. Conclusion Whilst breast milk miRNAs have the potential to be active in a diverse range of tissues and biological process, individual miRNAs in breast milk 3 months postpartum are unlikely to play a major role in the prevention of atopic dermatitis in infancy

  4. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii.

    PubMed

    Akpinar, Bala A; Budak, Hikmet

    2016-01-01

    As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant