Sample records for festuca arundinacea mirnas

  1. Endophyte status of tall fescue (festuca arundinacea) affects seed predation

    USDA-ARS?s Scientific Manuscript database

    In a preliminary study seed of a tall fescue (Festuca arundinacea Schreb.) variety ‘Jesup’ without endophyte were consumed at a slightly higher rate by common cricket (Acheta domesticus L.) in a standard feeding trial than the same fescue variety with the endophyte. Although, the preference for the...

  2. Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms.

    PubMed

    Płażek, Agnieszka; Pociecha, Ewa; Augustyniak, Adam; Masajada, Katarzyna; Dziurka, Michał; Majka, Joanna; Perlikowski, Dawid; Pawłowicz, Izabela; Kosmala, Arkadiusz

    2018-02-01

    The potential of resistance to Microdochium nivale is still not recognized for numerous plant species. The forage grasses of Lolium-Festuca complex are important for grass-biomass production in the temperate regions. Lolium multiflorum is a grass with a high forage quality and productivity but also a relatively low resistance to M. nivale. On the contrary, F. arundinacea has a higher potential of resistance but simultaneously a significantly lower forage quality. These two species cross with each other and the intergeneric hybrids possess complementary characters of both genera. Herein, for the first time, we perform the research on L. multiflorum/F. arundinacea introgression forms to decipher mechanisms of resistance to M. nivale in that group of plants. Two forms with distinct levels of resistance were used as models in cytogenetic and biochemical studies. The resistant plant was shown to be a tetraploid with 28 L. multiflorum chromosomes, including one with three F. arundinacea introgressions. The susceptible introgression form revealed the unbalanced genomic structure and only 25 chromosomes. Twenty four chromosomes were shown to be L. multiflorum chromosomes, including one chromosome with F. arundinacea segment. One Festuca chromosome with additional two interstitial F. arundinacea segments, was also revealed in the susceptible form. The selected introgression forms differed in the accumulation profiles of total soluble carbohydrates, phytohormones, and phenolics in the leaf and crown tissue under the control and infection conditions. The higher amount of carbohydrates and salicylic acid in the leaves and crowns as well as a lower amount of abscisic acid in both studied organs and jasmonic acid in the crowns, were shown to be crucial for the expression of resistance to M. nivale in the analyzed hybrids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Host suitability of tall fescue (Festuca arundinacea) cultivars to Meloidogyne ethiopica and M. graminicola.

    USDA-ARS?s Scientific Manuscript database

    Considering the importance of the perennial grass tall fescue (Festuca arundinacea) having as forage potential and its resistance to many pests, including some phytoparasitic nematodes, the host reaction of three tall fescue cultivars (cvs. Bulldogs 51, Georgia 5 and Jesup AR542 ) were evaluated for...

  4. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing.

    PubMed

    Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin

    2017-06-01

    MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.

  5. How planting configuration influences plant secondary metabolites and total N in tall fescue (Festuca arundinacea Schreb.), alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.)

    USDA-ARS?s Scientific Manuscript database

    Theories suggest that incorporating alfalfa (Medicago sativa L.; Alf) or birdsfoot trefoil (Lotus corniculatus L.; BFT) into endophyte-infected tall fescue (Festuca arundinaceas Schreb.; E+TF) pasturelands may improve livestock production. We investigated how planting configuration might influence p...

  6. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2013-02-01

    In a column experiment with horizontal permeable barriers, the effects of a biodegradable chelator-nitrilotriacetic acid (NTA) on the uptake of heavy metals from municipal solid waste (MSW) compost by Festuca arundinacea and metal leaching were investigated. The use of NTA was effective in increasing Cu, Pb, and Zn uptakes in shoots of two crops of F. arundinacea. In columns with barriers and treated with 20 mmol NTA per kg MSW compost, metal uptakes by the first and second crop of F. arundinacea were, respectively, 3.8 and 4.0 times for Pb, and 1.8 and 1.7 times for Zn greater with the added NTA than without it. Though NTA application mobilized metals, it caused only slight leaching of metals from MSW compost. Permeable barriers positioned between compost and soil effectively reduced metal leaching. NTA-assisted phytoextraction by turfgrass with permeable barriers to cleanup heavy metal contaminated MSW compost should be environmentally safe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea.

    PubMed

    Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Perlikowski, Dawid; Rapacz, Marcin; Ratajczak, Dominika; Kosmala, Arkadiusz

    2018-06-07

    Acclimation of photosynthetic apparatus to variable environmental conditions is an important component of tolerance to dehydration stresses, including salinity. The present study deals with the research on alterations in chloroplast proteome of the forage grasses. Based on chlorophyll fluorescence parameters, two genotypes of a model grass species-Festuca arundinacea with distinct levels of salinity tolerance: low salt tolerant (LST) and high salt tolerant (HST), were selected. Next, two-dimensional electrophoresis and mass spectrometry were applied under both control and salt stress conditions to identify proteins accumulated differentially between these two genotypes. The physiological analysis revealed that under NaCl treatment the studied plants differed in photosystem II activity, water content, and ion accumulation. The differentially accumulated proteins included ATPase B, ATP synthase, ribulose-1,5-bisphosphate carboxylase large and small subunits, cytochrome b6-f complex iron-sulfur subunit, oxygen-evolving enhancer proteins (OEE), OEE1 and OEE2, plastidic fructose-bisphosphate aldolase (pFBA), and lipocalin. A higher level of lipocalin, potentially involved in prevention of lipid peroxidation under stress, was also observed in the HST genotype. Our physiological and proteomic results performed for the first time on the species of forage grasses clearly showed that chloroplast metabolism adjustment could be a crucial factor in developing salinity tolerance.

  8. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  9. Photosynthate partitioning in basal zones of tall fescue leaf blades. [Festuca arundinacea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard, G.; Nelson, C.J.

    Elongating grass leaves have successive zones of cell division, cell elongation, and cell maturation in the basal portion of the blade and are a strong sink for photosynthate. Our objective was to determine dry matter (DM) deposition and partitioning in basal zones of elongating tall fescue (Festuca arundinacea Schreb.) leaf blades. Vegetative tall fescue plants were grown in continuous light (350 micromoles per square meter per second photosynthetic photon flux density) to obtain a constant spatial distribution of elongation growth with time. Content and net deposition rates of water-soluble carbohydrates (WSC) and DM along elongating leaf blades were determined. Thesemore » data were compared with accumulation of {sup 14}C in the basal zones following leaf-labeling with {sup 14}CO{sub 2}. Net deposition of DM was highest in the active cell elongation zone, due mainly to deposition of WSC. The maturation zone, just distal to the elongation zone, accounted for 22% of total net deposition of DM in elongating leaves. However, the spatial profile of {sup 14}C accumulation suggested that the elongation zone and the maturation zone were sinks of equal strength. WSC-free DM accounted for 55% of the total net DM deposition in elongating leaf blades, but only 10% of incoming {sup 14}C-photosynthate accumulated in the water-insoluble fraction (WIF {approximately} WSC-free DM) after 2 hours. In the maturation zone, more WSC was used for synthesis of WSC-free DM than was imported as recent photosynthate.« less

  10. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    PubMed

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  11. Chloride and sulfate salinity effects on selenium accumulation by tall fescue. [Festuca arundinacea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Wu; Zhang-Zhi Huang

    The discovery of high levels of Se in soil and water samples from the San Joaquin Valley, California, and of its responsibility for deformity and death of wildlife at Kesterson National Wildlife Refuge have renewed interest in the bioaccumulation of this element. Greenhouse nutrient solution culture and field experiments were conducted to examine the effects of Cl and SO{sub 4} salt on growth and Se accumulation in tall fescue (Festuca arundinacea Schreb.) cultivars Alta, Falcon, and Olympic. Sulfate salt substantially reduced growth inhibition and Se accumulation. Tall fescue from the field irrigated with water low in salinity had higher tissuemore » Se concentration than plants from the field irrigated with water high in salinity. No difference in tissue Se concentration was found among the three tall fescue cultivars; however, forage-type Alta produced the most shoot biomass and accumulated the most total Se. The soil irrigated with water high in salinity had 10 times higher Se concentration than soil irrigated with water low in salinity. The highest soil Se concentration was found in the top 15 cm of soil. Growing fescue for one year reduced soil Se by 50%. Selenium concentrations below 15-cm depth were lower and similar between the bare soil and the soil under tall fescue. Both the high and low salinity water irrigations did not cause high levels of Se accumulation by the tall fescue cultivars unless there was continual addition of Se into the system. This study generated important information for Se bioaccumulation management in soils with elevated salinity and Se levels.« less

  12. Ozone and sulfur dioxide effects on tall fescue. II. Alteration of quality constituents. [Festuca arundinacea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagler, R.B.; Youngner, V.B.

    A greenhouse study was conducted to determine whether ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/) might alter forage quality parameters of tall fescue (Festuca arundinacea Schreb. Alta). Plants were exposed weekly to four O/sub 3/ treatments, 0, 0.10, 0.20, and 0.30 ..mu..L L/sup -1/; with or without 0.10 ..mu..L L/sup -1/ SO/sub 2/, 6 h d/sup -1/ for 12 weeks. Ozone had a much greater impact on forage quality than did SO/sub 2/. Ozone increased protein content on a g kg/sup -1/ basis and decreased protein on a weight per plant basis. Ozone reduced crude fat, crude fiber, andmore » total nonstructural carbohydrate contents of the forage. Crude ash content increased due to O/sub 3/ exposure. On a weight per plant basis, O/sub 3/ decreased the forage concentration of Ca, Mg, and P. Ozone increased Ca concentration of herbage. Sulfur dioxide increased ash content of the forage. Phosphorus concentration and weight per plant of Mg and P were all reduced by SO/sub 2/ Significant pollutant interactions occurred for crude fiber, crude ash, total Mg, and total P contents of forage. While treatments resulted in some apparent increases in forage quality, these were at the expense of yield. The most adverse effects on forage quality were an increase in ash content which resulted from an interaction of SO/sub 2/ with O/sub 3/, and a reduction in soluble carbohydrate content of shoots due to O/sub 3/.« less

  13. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against 13C in the C3 grasses Dactylis glomerata, Festuca arundinacea and Phalaris arundinacea.

    PubMed

    Mårtensson, Linda-Maria; Carlsson, Georg; Prade, Thomas; Kørup, Kirsten; Lærke, Poul Erik; Jensen, Erik Steen

    2017-04-01

    Climate change impacts rainfall patterns which may lead to drought stress in rain-fed agricultural systems. Crops with higher drought tolerance are required on marginal land with low precipitation or on soils with low water retention used for biomass production. It is essential to obtain plant breeding tools, which can identify genotypes with improved drought tolerance and water use efficiency (WUE). In C 3 plant species, the variation in discrimination against 13 C (Δ 13 C) during photosynthesis has been shown to be a potential indicator for WUE, where discrimination against 13 C and WUE were negatively correlated. The aim of this study was to determine the variation in the discrimination against 13 C between species and cultivars of three perennial C 3 grasses (Dactylis glomerata (cocksfoot), Festuca arundinacea (tall fescue) and Phalaris arundinacea (reed canary grass)) and test the relationships between discrimination against 13 C, season-long water use WUE B , shoot and root biomass production in plants grown under well-watered and water-limited conditions. The grasses were grown in the greenhouse and exposed to two irrigation regimes, which corresponded to 25% and 60% water holding capacity, respectively. We found negative relationships between discrimination against 13 C and WUE B and between discrimination against 13 C and shoot biomass production, under both the well-watered and water-limited growth conditions (p < 0.001). Discrimination against 13 C decreased in response to water limitation (p < 0.001). We found interspecific differences in the discrimination against 13 C, WUE B , and shoot biomass production, where the cocksfoot cultivars showed lowest and the reed canary grass cultivars highest values of discrimination against 13 C. Cocksfoot cultivars also showed highest WUE B , shoot biomass production and potential tolerance to water limitation. We conclude that discrimination against 13 C appears to be a useful indicator, when selecting C 3

  14. Effect of simulated acid rain on the mutualism between tall fescue (Festuca arundinacea) and an endophytic fungus (Acremonium coenophialum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheplick, G.P.

    Biotic interactions between plants and microorganisms have the potential to be affected by acidic precipitation. I examined the effect of simulated sulfuric acid rain on the mutualism between a perennial forage grass (Festuca arundinacea) and a fungal endophyte (Acremonium coenophialum). Acid water was supplied as mists sprayed onto leaf surfaces or as water added to the soil for two groups in a greenhouse: one group had high levels of endophyte infection, while the other was predominantly noninfected. Control plants received distilled water (pH 6), while others received sulfuric acid water at pH 4.5 or pH 3. Plants were harvested aftermore » 4, 6, 8, and 23 wk. Leaf endophyte infection intensity as measured by hyphal counts was not affected by acid water treatment. Root mass and root: shoot ratios generally decreased with increasing acidity of both foliar sprays and soil water, but shoot mass was mostly not affected. There was a significant pH x infection interaction for plants exposed to acidic foliar sprays for 4 wk; root and shoot mass decreased with acidity, but only for infected plants. It was found that acid rain may be deleterious to tall fescue growth at specific stages of development, but biomass production in response to acid rain is not likely to be influenced by fungal endophytes within mature plants. 55 refs., 2 figs., 3 tabs.« less

  15. Lead Accumulation by Tall Fescue (Festuca arundinacea Schreb.) Grown on a Lead-Contaminated Soil

    PubMed Central

    Begonia, M. T.; Begonia, G. B.; Ighoavodha, M.; Gilliard, D.

    2005-01-01

    Phytoextraction is gaining acceptance as a cost-effective and environmentally friendly phytoremediation strategy for reducing toxic metal levels from contaminated soils. Cognizant of the potential of this phytoremediation technique as an alternative to expensive engineering-based remediation technologies, experiments were conducted to evaluate the suitability of some plants as phytoextraction species. From one of our preliminary studies, we found that tall fescue (Festuca arundinacea Schreb. cv. Spirit) can tolerate and accumulate significant amounts of lead (Pb) in its shoots when grown in Pb-amended sand. To further evaluate the suitability of tall fescue as one of the potential crop rotation species for phytoextraction, a study was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA) alone or in combination with acetic acid can further enhance the shoot uptake of Pb. Seeds were planted in 3.8 L plastic pots containing top soil, peat, and sand (4:2:1, v:v:v) spiked with various levels (0,1000, 2000 mg Pb/kg dry soil) of lead. At six weeks after planting, aqueous solutions (0, 5 mmol/kg dry soil) of EDTA and acetic acid (5 mmol/kg dry soil) were applied to the root zone, and all plants were harvested a week later. Results revealed that tall fescue was relatively tolerant to moderate levels of Pb as shown by non-significant differences in root and shoot biomass among treatments. An exception to this trend however, was the slight reduction in root and shoot biomass of plants exposed to the highest Pb level in combination with the two chelates. Root Pb concentration increased with increasing level of soil-applied Pb. Further increases in root Pb concentrations were attributed to chelate amendments. Translocation index, which is a measure of the partitioning of the metal to the shoots, was significantly enhanced with chelate addition especially when both EDTA and acetic acid were used. Chelate-induced increases in translocation indices

  16. Molecular discrimination of tall fescue morphotypes in association with Festuca relatives

    PubMed Central

    Chekhovskiy, Konstantin

    2018-01-01

    Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species used as forage and turf, and in conservation plantings. There are three morphotypes in hexaploid tall fescue: Continental, Mediterranean and Rhizomatous. This study was conducted to develop morphotype-specific molecular markers to distinguish Continental and Mediterranean tall fescues, and establish their relationships with other species of the Festuca genus for genomic inference. Chloroplast sequence variation and simple sequence repeat (SSR) polymorphism were explored in 12 genotypes of three tall fescue morphotypes and four Festuca species. Hypervariable chloroplast regions were retrieved by using 33 specifically designed primers followed by sequencing the PCR products. SSR polymorphism was studied using 144 tall fescue SSR primers. Four chloroplast (NFTCHL17, NFTCHL43, NFTCHL45 and NFTCHL48) and three SSR (nffa090, nffa204 and nffa338) markers were identified which can distinctly differentiate Continental and Mediterranean morphotypes. A primer pair, NFTCHL45, amplified a 47 bp deletion between the two morphotypes is being routinely used in the Noble Research Institute’s core facility for morphotype discrimination. Both chloroplast sequence variation and SSR diversity showed a close association between Rhizomatous and Continental morphotypes, while the Mediterranean morphotype was in a distant clade. F. pratensis and F. arundinacea var. glaucescens, the P and G1G2 genome donors, respectively, were grouped with the Continental clade, and F. mairei (M1M2 genome) grouped with the Mediterranean clade in chloroplast sequence variation, while both F. pratensis and F. mairei formed independent clade in SSR analysis. Age estimation based on chloroplast sequence variation indicated that the Continental and Mediterranean clades might have been colonized independently during 0.65 ± 0.06 and 0.96 ± 0.1 million years ago (Mya) respectively. The findings of the study will

  17. Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils

    PubMed Central

    Nord, Eric A.; Jaramillo, Raúl E.; Lynch, Jonathan P.

    2015-01-01

    Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm) increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration—nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change. PMID:25774160

  18. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    PubMed

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  19. Vegetation of waste disposal areas at a coal-fired power plant in Kansas. [Agropyron elongatum, Festuca arundinacea, Melilotus officinalis, Echinochloa crusgalli, Populus deltoides, Juniperus virginiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulhern, D.W.; Robel, R.J.; Furness, J.C.

    Disposal of scrubber sludge and fly ash waste from coal-fired power plants is a costly problem for utilities. Current regulations call for the retired waste areas to be covered with topsoil, then seeded to produce a protective vegetative cap. We conducted field tests over a 3-yr period to determine if a vegetative cover could be established without first adding topsoil to waste sites. Seven herbaceous and six tree species were planted on scrubber sludge and bottom ash sites. These substrates were first amended with fertilizer, and then hay, woodchips, or cow (Bos taurus) manure. The bottom ash was not capablemore » of supporting vegetative growth, even with amendment. Tall wheatgrass (Agropyron elongatum, (Host) Beauv.), tall fescue (Festuca arundinacea Schreb.), yellow sweet clover (Melilotus officinalis Lam.), and Japanese millet (Echinochloa crusgalli (L.) Beauv.) grew well on scrubber sludge, as did eastern cottonwood (Populus deltoides Marsh.) and eastern red cedar trees (Juniperus virginiana L.). Generally, herbaceous plants grew best on scrubber sludge to which manure and fertilizer were added, the trees survived and grew best on scrubber sludge amended with woodchips and fertilizer. This study demonstrates that a good vegetative cover can be produced on scrubber sludge waste areas without first covering them with topsoil.« less

  20. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism

    PubMed Central

    Ma, Xiqing; Xu, Qian; Meyer, William A.; Huang, Bingru

    2016-01-01

    Background and Aims Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. Methods A rhizomatous genotype of tall fescue (‘BR’) plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3. Key Results BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3. Conclusions Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3. The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue. PMID:27443301

  1. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism.

    PubMed

    Ma, Xiqing; Xu, Qian; Meyer, William A; Huang, Bingru

    2016-09-01

    Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of sewage sludge on Di-(2-ethylhexyl) phthalate uptake by plants. [Lactuca sativa L. ; Daucus carota L. ; Capsicum annuum L. ; Festuca arundinacea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda, J.M.; O'Connor, G.A.; Eiceman, G.A.

    Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. A greenhouse study was conducted to determine the effect of sludge on plant uptake of {sup 14}C-DEHP (carbonyl labeled). Plants grown included three food chain crops, lettuce (Lactuca sativa L.), carrot (Daucus carota L.) and chile pepper (Capsicum annuum L.) and tall fescue (Festuca arundinacea Schreb.). Net {sup 14}C concentration in plants grown in soil amended with {sup 14}C-DEHP-contaminated sludge was independent of sludge rate (at the same DEHP loading) for lettuce, chile fruit, and carrot roots. Net {sup 14}C concentration, however, was inversely related to sludgemore » rate in carrot tops, fescue, and chile plants. Intact DEHP was not detected in plants by gas chromatography/mass spectrometry analysis. Calculated plant DEHP concentrations (based on measured net {sup 14}C concentrations and DEHP specific activities) were generally correlated better with DEHP soil solution concentrations than with total DEHP soil concentrations. Net {sup 14}C-DEHP bioconcentration factors were calculated from initial soil DEHP concentration and plant fresh weights. Bioconcentration factors ranged from 0.01 to 0.03 for fescue, lettuce, carrots, and chile, suggesting little DEHP uptake. Additionally, because intact DEHP was not detected in any plants, DEHP uptake by plants was of minor importance and would not limit sludge additions to soils used to grow these crops.« less

  3. Development and mapping of DArT markers within the Festuca - Lolium complex

    PubMed Central

    Kopecký, David; Bartoš, Jan; Lukaszewski, Adam J; Baird, James H; Černoch, Vladimír; Kölliker, Roland; Rognli, Odd Arne; Blois, Helene; Caig, Vanessa; Lübberstedt, Thomas; Studer, Bruno; Shaw, Paul; Doležel, Jaroslav; Kilian, Andrzej

    2009-01-01

    Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions. PMID:19832973

  4. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex

    PubMed Central

    2010-01-01

    Background The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions This study describes the first phylogenetic analysis of

  5. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd

    PubMed Central

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted

  6. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd.

    PubMed

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted

  7. Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.).

    PubMed

    Hand, Melanie L; Cogan, Noel O I; Forster, John W

    2012-04-01

    Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar

  8. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (Festuca arundinacea Schreb.).

    PubMed

    Rekik, Imen; Chaabane, Zayneb; Missaoui, Amara; Bouket, Ali Chenari; Luptakova, Lenka; Elleuch, Amine; Belbahri, Lassaad

    2017-03-15

    Wastewater reuse in agriculture may help mitigate water scarcity. This may be reached if high quality treatments removing harmful pollutants are applied. The aim of the present study was to compare the effect of untreated (UTW) and treated wastewater (TW) on germination and seedlings development of alfalfa (Medicago sativa L.), fescue (Festuca arundinacea Schreb.) and sorghum (Sorghum bicolor (L.) Moench). UTW presented high turbidity (130 NTU), chemical and biological oxygen demand (COD, 719mgL -1 , BOD 5, 291mgL -1 ) and metal concentrations. These levels caused mortality (18% for fescue), decreased germination speed in seeds (37.5% for alfalfa) and reductions of root and stem length in seedlings (80% and 22% respectively for alfalfa). Adverse effects on seeds germination were reflected at the biochemical level by increased H 2 O 2 levels (6 times for sorghum after 5days) and by increased Malondialdehyde (MDA) levels (more than 600 times for sorghum roots) during seedlings development. When TW was used, these parameters were close to control seeds ones. They were also dependent on plant species and developmental stage. Therefore, for efficient reclaimed wastewater reuse in irrigation, suitable crops, displaying wide tolerance to toxic contents during germination and later seedling development stages have to be selected. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tall fescue production and nutrient status on southwest Virginia mine soils. [Festuca arundinadea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.A.; Daniels, W.L.; Bell, J.C.

    Tall fescue (Festuca arundinacea Schreb.) is a hardy grass species commonly used in surface mine reclamation and soil conservation. This study documented changes in fescue production (five growing seasons) and nutrient status (three growing seasons) as influenced by spoil type and various amendments. In Exp. I, fescue growth and nutrient status on five mixes of fertilized sandstone (SS) and siltstone (SiS) spoils were compared. A 2:1 SS/SiS control and treatments of 112 Mg ha/sup -1/ sawdust, native topsoil, and 22, 56, 112, and 224 Mg ha/sup -1/ municipal sewage sludge were compared in Exp. II. Standing biomass was measured inmore » 1982-1984 and 1986 and tissue nutrient levels were measured in 1982-1984. High SiS spoils inhibited initial biomass production in Exp. I, but parent material effect diminished with time. All spoil mixes maintained adequate fescue production for five growing seasons, primarily due to small annual N additions (56 kg ha/sup -1/). In Exp. II, the highest yields were maintained on greater than or equal to 56 Mg ha/sup -1/ sludge treatments. Heavy metal uptake was not a problem, even in very high sludge treatments. Sludge-amended mine soils were superior to both native topsoil and inorganically fertilized spoils in their ability to sustain long-term fescue production without periodic augmentation.« less

  10. Green synthesis of silver nanoparticle using Bambusa arundinacea leaves

    NASA Astrophysics Data System (ADS)

    Kataria, Bharat; Shyam, Vasvani; Kaushik, Babiya; Vasoya, Jaydeep; Joseph, Joyce; Savaliya, Chirag; Kumar, Sumit; Parikh, Sachin P.; Thakar, C. M.; Pandya, D. D.; Ravalia, A. B.; Markna, J. H.; Shah, N. A.

    2017-05-01

    The synthesis of nanoparticles using ecofriendly way is an interesting area in advance nanotechnology. Silver (Ag) nanoparticles are usually synthesized by chemicals route, which are quite flammable and toxic in nature. This study deals with a biosynthesis process (environment friendly) of silver nanoparticles using Bambusa arundinacea leaves for its antibacterial activity. The formation and characterization of AgNPs was confirmed by UV-Vis spectroscopy. Silver nanoparticles were successfully synthesized from AgNO3 through a simple green route using the latex of Bambusa arundinacea leaves as reducing as well as capping agent. Scanning Electron Microscopy (SEM) study indicates the formation of grains (particles) with different size and shape.

  11. Calibration and use of plate meter regressions for pasture mass estimation in an Appalachian silvopasture

    USDA-ARS?s Scientific Manuscript database

    A standardized plate meter for measuring pasture mass was calibrated at the Agroforestry Research and Demonstration Site in Blacksburg, VA, using six ungrazed plots of established tall fescue (Festuca arundinaceae) overseeded with orchardgrass (Dactylis glomerata). Each plot was interplanted with b...

  12. Marker-trait association of rangeland and turf traits in hybrids of Festuca idahoensis and Festuca ovina

    USDA-ARS?s Scientific Manuscript database

    The fine fescue species Festuca idahoensis Elmer is native to the Intermountain West and has potential for low-input turf and rangeland applications. The poor seed production and weak seedling vigor of this species may be overcome by identification and improvement of interspecific hybrids between F...

  13. Differential predation of forage seed

    USDA-ARS?s Scientific Manuscript database

    In recent field experiments we observed that the main invertebrate seed predators of overseeded tall fescue (Festuca arundinacea Schreb.) or Italian ryegrass (Lolium multiflorum Lam.) seed in unimproved pastures were harvester ants (Pogonomyrmex sp.) and common field crickets (Gryllus sp.) To determ...

  14. Nutrient source and tillage impacts on tall fescue production and soil properties

    USDA-ARS?s Scientific Manuscript database

    Tall fescue (Festuca arundinacea Schreb.) grass provides a major forage base for many livestock production systems in the southeastern United States. Forage production with manure helps recycle nutrients with less environmental impacts. This two year study examined tall fescue forage production and ...

  15. Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures

    USDA-ARS?s Scientific Manuscript database

    A well-managed irrigated pasture is optimized for forage production with the use of N fertilizer which incurs extra expense. The objective was to determine which binary grass-legume mixture and mixture planting ratio of tall fescue (Festuca arundinacea Schreb.) (TF), meadow brome (Bromus bieberstei...

  16. Notice of release of Syn1 Tall Fescue

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of Syn1 tall fescue [Festuca arundinacea (syn., Lolium arundinaceum Darbyshire; Schedonorus phoenix (Scop.) Holub)] (PI xxxx, PI xxxx) germplasm developed by Dr. Bryan K. Kindiger at the USDA-ARS Grazinglands Res...

  17. Models analyses for allelopathic effects of chicory at equivalent coupling of nitrogen supply and pH level on F. arundinacea, T. repens and M. sativa.

    PubMed

    Wang, Quanzhen; Xie, Bao; Wu, Chunhui; Chen, Guo; Wang, Zhengwei; Cui, Jian; Hu, Tianming; Wiatrak, Pawel

    2012-01-01

    Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar, malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses. The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to 131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar, MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively.

  18. Models Analyses for Allelopathic Effects of Chicory at Equivalent Coupling of Nitrogen Supply and pH Level on F. arundinacea, T. repens and M. sativa

    PubMed Central

    Wang, Quanzhen; Xie, Bao; Wu, Chunhui; Chen, Guo; Wang, Zhengwei; Cui, Jian; Hu, Tianming; Wiatrak, Pawel

    2012-01-01

    Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar, malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses. The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to 131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar, MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively. PMID:22384054

  19. Predation of warm-and cool-season grass seed by the common cricket (Acheta domesticus L.)

    USDA-ARS?s Scientific Manuscript database

    In field experiments we noted that one of the main predators of tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.) seed was the field cricket (Gryllus sp.). To determine if there might be a seed predation preference among forage grasses a laboratory study was ...

  20. Soil Organic Carbon Fractions Differ in Two Contrasting Tall Fescue Systems

    USDA-ARS?s Scientific Manuscript database

    The value of tall fescue (Festuca arundinacea Schreb.) for C sequestration in addition to forage production and soil conservation is of current interest. However, studies relating to the impacts of endophyte infected (E+) and endophyte free (E-) tall fescue on soil organic matter fractions are few....

  1. Registration and Release of Syn1RR tall fescue

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service of the United States DepaRRment of Agriculture announces the release of the new tall fescue [Festuca arundinacea (syn., Lolium arundinaceum Darbyshire; Schedonorus phoenix (Scop.) Holub)] cultivar Syn1RR. Syn1RR is a rust tolerant tall fescue cultivar that exhibits...

  2. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses

    USDA-ARS?s Scientific Manuscript database

    This study investigated the fate and uptake of [14C]-TNT from soil into orchardgrass (Dactylis glomerata), perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) over a one year period in a greenhouse-controlled environment. Pots (n=4 for each grass, containing 10 mg cold TNT/kg s...

  3. Cytogenetics of Festulolium (Festuca x Lolium hybrids).

    PubMed

    Kopecký, D; Lukaszewski, A J; Dolezel, J

    2008-01-01

    Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination. 2008 S. Karger AG, Basel

  4. Development of fine-leaved Festuca grass for forage and wildfire control in the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Drought and heat tolerant fine-leaved fescue (Festuca ssp.) grasses have potential as components in rangeland greenstrips for wildfire control in semi-arid climates, although such grasses have not been evaluated under rangeland conditions. Therefore, 64 geographically diverse Festuca accessions of ...

  5. The combined effects of sediment accretion (burial) and nutrient enrichment on the growth and propagation of Phalaris arundinacea

    PubMed Central

    Chen, Xinsheng; Liao, Yulin; Xie, Yonghong; Wu, Chao; Li, Feng; Deng, Zhengmiao; Li, Xu

    2017-01-01

    Sediment accretion (burial) and nutrient enrichment occur concurrently in lacustrine wetlands, but the role of these two aspects of sedimentation on macrophyte performance has rarely been examined. Here, we investigated the concurrent effects of sediment accretion and nutrient enrichment on the growth and propagation of Phalaris arundinacea L. using a factorial sediment burial by nutrient addition experimental design. Regardless of burial depth, nutrient addition increased biomass accumulation, shoot mass ratio, the number of rhizomes, and the length of ramets and rhizomes. While burial had little effect on plant growth and propagation, it had an interactive effect with nutrient addition on belowground growth and ramet production. These results indicate that P. arundinacea is tolerant to burial, which allows it to grow in habitats with high sedimentation rates. However, the enhanced growth and propagation of P. arundinacea following sedimentation were primarily related to nutrient enrichment. This suggests that nutrient enrichment of sediments, which occurs in many lacustrine wetlands, increases the risk of invasion by P. arundinacea. PMID:28054590

  6. Grass control improves early growth of black walnut more than either deep ripping or irrigation

    Treesearch

    J.W. Van Sambeek; F.D. McBride

    1991-01-01

    Chemical control of a tall fescue sod (Festuca arundinacea Schreb.) using glyphosate and simazine improved early tree growth of black walnut (Juglans nigra L.) more than either deep ripping or irrigation on an upland old field site in southern Illinois. Growth of trees with irrigation and grass control was less than with grass...

  7. Using poultry litter in black walnut nutrient management

    Treesearch

    Felix, Jr. Ponder; James E. Jones; Rita Mueller

    2005-01-01

    Poultry litter was evaluated as a fertilizer in a young (three-year-old) and an old (35-year-old) black walnut (Juglans nigra L.) plantation in southwest Missouri. The older planting had a fescue (Festuca arundinaceae Schreb.) ground cover that is grazed by cattle. In the young plantation, weeds were mowed and sprayed with...

  8. Effects of spoil texture on growth of K-31 tall fescue

    Treesearch

    David H. Van Lear

    1971-01-01

    Growth of K-31 tall fescue (Festuca arundinacea) was significantly affected by the particle-size distribution, or texture, of four spoils from eastern Kentucky. Growth on spoils having no toxic chemical properties generally was greatest where texture consisted of about equal quantities of soil-size material and a coarser fraction (2 mm. to 6.4 mm.),...

  9. Changes in carbohydrate content and membrane stability of two ecotypes of Calamagrostis arundinacea growing at different elevations in the drawdown zone of the Three Gorges Reservoir.

    PubMed

    Lei, Shutong; Zeng, Bo; Yuan, Zhi; Su, Xiaolei

    2014-01-01

    The Three Gorges project has caused many ecosystem problems. Ecological restoration using readily-available plants is an effective way of mitigating environmental impacts. Two perennial submergence-tolerant ecotypes of Calamagrostis arundinacea were planted in an experimental field in the drawdown zone. Responses of the two plant ecotypes to flooding stress in the drawdown zone were unknown. Carbohydrate content and membrane stability, two key factors for survival of plants under flooding stress, of two ecotypes (designated "dwarf" and "green") of C. arundinacea growing at different elevations of the drawdown zone were investigated. Live stems (LS) and dead stems (DS) of the two plant ecotypes at eight elevations (175, 170, 162, 160, 158, 155, 152 m and 149 m) were sampled. Contents of soluble sugar, starch and malondialdehyde (MDA), as well as plasma membrane permeability of live stems were measured. The lowest elevations for survival of dwarf and green C. arundinacea were 160 m and 158 m, respectively. Soluble sugar content of live stems of both ecotypes decreased with elevation, with amounts from an elevation of 170 m being lower than from an elevation of 175 m. MDA content and plasma membrane permeability in live stems of green C. arundinacea did not increase with the decrease in elevation, while these measures in dwarf C. arundinacea from an elevation of 162 m were significantly higher than from an elevation of 175 m. Carbohydrate content, especially soluble sugar content, in both ecotypes was more sensitive to flooding stress than membrane stability. Green C. arundinacea had a higher tolerance to submergence than dwarf C. arundinacea, and thus green C. arundinacea can be planted at lower elevations than dwarf C. arundinacea.

  10. Effect of Rhizosphere Enzymes on Phytoremediation in PAH-Contaminated Soil Using Five Plant Species

    PubMed Central

    Liu, Rui; Dai, Yuanyuan; Sun, Libo

    2015-01-01

    A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix), dehydrogenase (except Fire Phoenix), and urease (except Medicago sativa L.) were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592). The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix) was inhibited during the cultivation process (at 60d and 120d). At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665). Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil. PMID:25822167

  11. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    PubMed Central

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  12. [Allelopathic effects of invasive weed Solidago canadensis on native plants].

    PubMed

    Mei, Lingxiao; Chen, Xin; Tang, Jianjun

    2005-12-01

    With growth chamber method, this paper studied the allelopathic potential of invasive weed Solidago canadensis on native plant species. Different concentration S. canadensis root and rhizome extracts were examined, and the test plants were Trifolium repens, Trifolium pretense, Medicago lupulina, Lolium perenne, Suaeda glauca, Plantago virginica, Kummerowia stipulacea, Festuca arundinacea, Ageratum conyzoides, Portulaca oleracea, and Amaranthus spinosus. The results showed that the allelopathic inhibitory effect of the extracts from both S. canadensis root and rhizome was enhanced with increasing concentration, and rhizome extracts had a higher effect than root extracts. At the lowest concentration (1:60), root extract had little effect on the seed germination and seedling growth of T. repens, but rhizome extract could inhibit the germination of all test plants though the inhibitory effect varied with different species. The inhibition was the greatest for grass, followed by forb and legume. 1:60 (m:m) rhizome extract had similar effects on seed germination and radicel growth, but for outgrowth, the extract could inhibit Kummerowia stipulacea, Amaranthus spinosus and Festuca arundinacea, had no significant impact on Lolium perenne, Plantago virginica, Ageratum conyzoides, Portulaca oleracea and Amaranthus spinosus, and stimulated Trifolium repens, Trifolium pretense and Medicago lupulina.

  13. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults.

    PubMed

    Fluitt, Maurice B; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K

    2016-12-01

    The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=-0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=-0.89, p=0.01). To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults.

  14. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults

    PubMed Central

    Fluitt, Maurice B.; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K.

    2017-01-01

    Aims The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Main Methods Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. Key Findings miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=−0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=−0.89, p=0.01). Significance To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults. PMID:29399662

  15. Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability

    PubMed Central

    Vázquez-de-Aldana, Beatriz R.; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E−) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands. PMID:24367672

  16. About miRNAs, miRNA seeds, target genes and target pathways.

    PubMed

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  17. Landscape composition and configuration predict the abundance of Phalaris arundinacea L. in Wisconsin wetlands

    USDA-ARS?s Scientific Manuscript database

    Reed canary grass (Phalaris arundinacea L.) is one of the most dominant wetland invaders in North America over the past century. The expansion of urbanization and intensification of agriculture have caused increased sedimentation and eutrophication of wetlands, which have been shown to encourage re...

  18. Seed transfer zones for a native grass Festuca roemeri: genecological evidence

    Treesearch

    Barbara L. Wilson; Dale C. Darris; Rob Fiegener; Matthew E. Horning; Keli Kuykendall

    2008-01-01

    A common-garden study of Festuca roemeri (Pavlick) E. B. Alexeev (Poaceae) revealed substantial genetic variation within and among 47 populations from throughout its range in the Pacific Northwest, USA, for growth, fitness, phenological, and morphological traits. Using climatic and physiographic variables, genetic patterns over the landscape were...

  19. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  20. Evaluation of acute toxicity and anti-ulcerogenic study of rhizome starch of two source plants of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.).

    PubMed

    Rajashekhara, N; Ashok, B K; Sharma, Parmeshwar P; Ravishankar, B

    2014-01-01

    Disorders like hyperacidity and gastric ulcers are found very frequently now days because of a faulty lifestyle. Starches (Satwa) obtained from the rhizomes of two plants namely, Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used in folklore practice, as Tugaksheeree, for the treatment of the above-mentioned complaints. To assess the acute toxicity potential of the C. angustifolia and M. arundinacea along with their assessment for adaptogenic activity, by noting their effect on forced swimming-induced hypothermia and gastric ulceration in rats. For acute toxicity study, the effect of test drugs C. angustifolia and M. arundinacea rhizome starch were studied after a single administration of up to three dose levels, with 4400 mg/kg as the maximum dose. The animals were observed for 72 hours periodically and mortality was recorded up to seven days. The adaptogenic and anti-ulcer activities were assessed by determining and comparing the changes in rectal temperature, ponderal changes, ulcer index and histopathological parameters in the test drug group with that of stress control group. Both the drugs did not produce any toxic symptoms or mortality even up to the maximum dose level of 4400 mg/kg. Both the test drugs significantly reversed the stress-induced gastric ulceration in comparison to stress-control rats. Starch from rhizome of C. angustifolia reversed forced swimming-induced hypothermia apparently, but not to a significant extent. However, the reversal of hypothermia found statistically significant in the rhizome starch of the M. arundinacea treated group. M. arundinacea had better anti-stress activity in comparision to C. angustifolia.

  1. Cluster fescue (Festuca paradoxa Desv.): A multipurpose native cool-season grass

    Treesearch

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; R.A. Pierce

    2005-01-01

    Native cool-season grasses (NCSG) are adapted to a wide range of habitats and environmental conditions, and cluster fescue (Festuca paradoxa Desv.) is no exception. Cluster fescue can be found in unplowed upland prairies, prairie draws, savannas, forest openings, and glades (Aiken et al. 1996). Although its range includes 23 states in the continental...

  2. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    NASA Astrophysics Data System (ADS)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  3. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae).

    PubMed

    Barth, Susanne; Jankowska, Marta Jolanta; Hodkinson, Trevor Roland; Vellani, Tia; Klaas, Manfred

    2016-03-22

    Forty three microsatellite markers were developed for further genetic characterisation of a forage and biomass grass crop, for which genomic resources are currently scarce. The microsatellite markers were developed from a normalized EST-SSR library. All of the 43 markers gave a clear banding pattern on 3% Metaphor agarose gels. Eight selected SSR markers were tested in detail for polymorphism across eleven DNA samples of large geographic distribution across Europe. The new set of 43 SSR markers will help future research to characterise the genetic structure and diversity of Phalaris arundinacea, with a potential to further understand its invasive character in North American wetlands, as well as aid in breeding work for desired biomass and forage traits. P. arundinacea is particularly valued in the northern latitude as a crop with high biomass potential, even more so on marginal lands.

  4. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development

    PubMed Central

    Granados-López, Angelica Judith; Ruiz-Carrillo, José Luis; Servín-González, Luis Steven; Martínez-Rodríguez, José Luis; Reyes-Estrada, Claudia Araceli; Gutiérrez-Hernández, Rosalinda; López, Jesús Adrián

    2017-01-01

    Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches. PMID:28216603

  5. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development.

    PubMed

    Granados-López, Angelica Judith; Ruiz-Carrillo, José Luis; Servín-González, Luis Steven; Martínez-Rodríguez, José Luis; Reyes-Estrada, Claudia Araceli; Gutiérrez-Hernández, Rosalinda; López, Jesús Adrián

    2017-02-14

    Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.

  6. Influence factors and prediction of stormwater runoff of urban green space in Tianjin, China: laboratory experiment and quantitative theory model.

    PubMed

    Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren

    2013-01-01

    The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.

  7. Biosynthetic Pathway for Sex Pheromone Components Produced in a Plusiinae Moth, Plusia festucae

    PubMed Central

    Watanabe, Hayaki; Matsui, Aya; Inomata, Sin-ichi; Yamamoto, Masanobu; Ando, Tetsu

    2011-01-01

    While many Plusiinae species commonly secrete (Z)-7-dodecenyl acetate (Z7-12:OAc) as a key pheromone component, female moths of the rice looper (Plusia festucae) exceptionally utilize (Z)-5-dodecenyl acetate (Z5-12:OAc) to communicate with their partners. GC–MS analysis of methyl esters derived from fatty acids included in the pheromone gland of P. festucae showed a series of esters monounsaturated at the ω7-position, i.e., (Z)-5-dodecenoate, (Z)-7-tetradecenoate, (Z)-9-hexadecenoate (Z9-16:Me), and (Z)-11-octadecenoate (Z11-18:Me). By topical application of D3-labled palmitic acid (16:Acid) and stearic acid (18:Acid) to the pheromone glands, similar amounts of D3-Z5-12:OAc were detected. The glands treated with D13-labeled monoenoic acids (Z9-16:Acid and Z11-18:Acid), which were custom-made by utilizing an acetylene coupling reaction with D13-1-bromohexane, also produced similar amounts of D13-Z5-12:OAc. These results suggested that Z5-12:OAc was biosynthesized by ω7-desaturase with low substrate specificity, which could introduce a double bond at the 9-position of a 16:Acid derivative and the 11-position of an 18:Acid derivative. Additional experiments with the glands pretreated with an inhibitor of chain elongation supported this speculation. Furthermore, a comparative study with another Plusiinae species (Chrysodeixis eriosoma) secreting Z7-12:OAc indicated that the β-oxidation systems of P. festucae and C. eriosoma were different. PMID:22649385

  8. miRNAs in brain development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs havemore » been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.« less

  9. Assessing Installation Ethnobotanical Resources Using Land Condition Trend Analysis (LCTA) Data: A Fort Riley, Kansas, Case Study

    DTIC Science & Technology

    1998-07-01

    Festuca arundinacea 3.3 4.0 S Fragaria virginiana 3.0 3.0 S Grindelia squarrosa 4.0 S Helianthus annuus 4.0 S Hieracium longipilum 4.0 G Hordeum...B Ceanothus serrulatus G L Asclepias verticillata S B Celastrus scandens S B Asclepias viridiflora S B Celtis occidentalis S B Asclepias viridis G...F Lythrum alatum S F Fragaria virginiana S B Lythrum califomicum S L Madura pomifera S B Polygonum aviculare S B Madia yosemitana G L Polygonum

  10. Combination of miRNA499 and miRNA133 Exerts a Synergic Effect on Cardiac Differentiation

    PubMed Central

    Pisano, Federica; Altomare, Claudia; Cervio, Elisabetta; Barile, Lucio; Rocchetti, Marcella; Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Copes, Francesco; Mura, Manuela; Danieli, Patrizia; Viarengo, Gianluca; Zaza, Antonio; Gnecchi, Massimiliano

    2015-01-01

    Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1, or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real-time polymerase chain reaction showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine, and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 was also able to induce the differentiation of human mesenchymal stromal cells toward the cardiac lineage. Stem Cells 2015;33:1187–1199 PMID:25534971

  11. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs.

    PubMed

    Patel, Vir D; Capra, John A

    2017-08-31

    microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper expression of miRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will help resolve differences in their functional dynamics and how they influence disease. We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than unrelated miRNAs. Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased

  12. A comparative study of efficacy of Tugaksheeree [Curcuma angustifolia Roxb. and Maranta arundinacea Linn.] in management of Amlapitta

    PubMed Central

    Rajashekhara, N.; Sharma, P. P.

    2010-01-01

    Amlapitta is a disease caused by increase of Amla Guna of Pitta. Starch obtained from the rhizomes of two plants viz., Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used as Tugaksheeree. In the present clinical study, the efficacy of Tugaksheeree was studied on 67 patients of Amlapitta. A 0 total of 84 patients suffering from Amlapitta were selected from the O.P.D. and I.P.D. sections in the department of Dravyaguna, I.P.G.T. and R.A., Hospital, Jamnagar, and were randomly divided into two groups. Thirty four patients completed the treatment course in Group I, and 33 patients completed the treatment course in Group II. The efficacy of drug Tugaksheeree was studied through internal administration of the starches of C. angustifolia Roxb. (Fam. Zingiberaceae) in Group I and M. arundinacea Linn. (Fam. Marantaceae) in Group II with the dose of 4 g TID with water for 30 days. Both the drugs were found highly effective in treating Amlapitta. They significantly relieved the cardinal symptoms viz., Avipaka, Tikta-amlodgara, Daha, Shoola, Chhardi and the associated symptoms viz., Aruchi, Gaurava, Udaradhmana, Antrakujana, Vit bheda, Shiroruja, Angasada, and Trit. Statistically significant increase in body weight was noticed in both the groups. This may be because the drugs corrected the Agni and acted as Brihmana and Dhatupushtikara. Both the drugs did not produce any side effects. Therefore, both these drugs (C. angustifolia Roxb. and M. arundinacea Linn.) can be used as substitutes for each other. PMID:22048544

  13. A comparative study of efficacy of Tugaksheeree [Curcuma angustifolia Roxb. and Maranta arundinacea Linn.] in management of Amlapitta.

    PubMed

    Rajashekhara, N; Sharma, P P

    2010-10-01

    Amlapitta is a disease caused by increase of Amla Guna of Pitta. Starch obtained from the rhizomes of two plants viz., Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used as Tugaksheeree. In the present clinical study, the efficacy of Tugaksheeree was studied on 67 patients of Amlapitta. A 0 total of 84 patients suffering from Amlapitta were selected from the O.P.D. and I.P.D. sections in the department of Dravyaguna, I.P.G.T. and R.A., Hospital, Jamnagar, and were randomly divided into two groups. Thirty four patients completed the treatment course in Group I, and 33 patients completed the treatment course in Group II. The efficacy of drug Tugaksheeree was studied through internal administration of the starches of C. angustifolia Roxb. (Fam. Zingiberaceae) in Group I and M. arundinacea Linn. (Fam. Marantaceae) in Group II with the dose of 4 g TID with water for 30 days. Both the drugs were found highly effective in treating Amlapitta. They significantly relieved the cardinal symptoms viz., Avipaka, Tikta-amlodgara, Daha, Shoola, Chhardi and the associated symptoms viz., Aruchi, Gaurava, Udaradhmana, Antrakujana, Vit bheda, Shiroruja, Angasada, and Trit. Statistically significant increase in body weight was noticed in both the groups. This may be because the drugs corrected the Agni and acted as Brihmana and Dhatupushtikara. Both the drugs did not produce any side effects. Therefore, both these drugs (C. angustifolia Roxb. and M. arundinacea Linn.) can be used as substitutes for each other.

  14. Bioinformatics of cardiovascular miRNA biology.

    PubMed

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Shade Tolerance of Festuca paradoxa Desv., a Cool-Season Grass Native to North America

    Treesearch

    Nadia Navarrete-Tindall; Larry Mechlin; J. W. Van Sambeek

    2003-01-01

    Paradox grass (Festuca paradoxa Desv.) is a native cool-season grass found in prairies and forest openings. Paradox grass has not been included in tree plantings. To determine paradox grass adaptation to shaded environmmts, we established a pot experiment in the shade laboratory at the University of Missouri Horticulture and Agroforestry Research...

  16. An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth.

    PubMed

    Li, Fang; Guo, Yan'e; Christensen, Michael J; Gao, Ping; Li, Yanzhong; Duan, Tingyu

    2018-02-01

    Leaf spot of perennial ryegrass (Lolium perenne) caused by Bipolaris sorokiniana is an important disease in temperate regions of the world. We designed this experiment to test for the combined effects of the arbuscular mycorrhizal (AM) fungus Claroideoglomus etunicatum and the grass endophyte fungus Epichloë festucae var. lolii on growth and disease occurrence in perennial ryegrass. The results show that C. etunicatum increased plant P uptake and total dry weight and that this beneficial effect was slightly enhanced when in association with the grass endophyte. The presence in plants of both the endophyte and B. sorokiniana decreased AM fungal colonization. Plants inoculated with B. sorokiniana showed the typical leaf spot symptoms 2 weeks after inoculation and the lowest disease incidence was with plants that were host to both C. etunicatum and E. festucae var. lolii. Plants with these two fungi had much higher activity of peroxidases (POD), superoxide dismutase (SOD) and catalase (CAT) and lower values of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ). The AM fungus C. etunicatum and the grass endophyte fungus E. festucae var. lolii have the potential to promote perennial ryegrass growth and resistance to B. sorokiniana leaf spot.

  17. [The role of miRNA in endometrial cancer in the context of miRNA 205].

    PubMed

    Wilczyński, Miłosz; Danielska, Justyna; Dzieniecka, Monika; Malinowski, Andrzej

    2015-11-01

    MiRNAs are small, non-coding molecules of ribonucleic acids of approximately 22 bp length, which serve as regulators of gene expression and protein translation due to interference with messenger RNA (mRNA). MiRNAs, which take part in the regulation of cell cycle and apoptosis, may be associated with carcinogenesis. Aberrant expression of miRNAs in endometrial cancer might contribute to the endometrial cancer initiation or progression, as well as metastasis formation, and may influence cancer invasiveness. Specific-miRNAs expressed in endometrial cancer tissues may serve as diagnostic markers of the disease, prognostic biomarkers, or play an important part in oncological therapy We aimed to describe the role of miRNAs in endometrial cancer with special consideration of miRNA 205.

  18. MiRNAs in bone diseases.

    PubMed

    Moore, Benjamin T; Xiao, Peng

    2013-01-01

    MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.

  19. Proteomics for understanding miRNA biology

    PubMed Central

    Huang, Tai-Chung; Pinto, Sneha M.; Pandey, Akhilesh

    2013-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology. PMID:23125164

  20. Characterization of the mammalian miRNA turnover landscape

    PubMed Central

    Guo, Yanwen; Liu, Jun; Elfenbein, Sarah J.; Ma, Yinghong; Zhong, Mei; Qiu, Caihong; Ding, Ye; Lu, Jun

    2015-01-01

    Steady state cellular microRNA (miRNA) levels represent the balance between miRNA biogenesis and turnover. The kinetics and sequence determinants of mammalian miRNA turnover during and after miRNA maturation are not fully understood. Through a large-scale study on mammalian miRNA turnover, we report the co-existence of multiple cellular miRNA pools with distinct turnover kinetics and biogenesis properties and reveal previously unrecognized sequence features for fast turnover miRNAs. We measured miRNA turnover rates in eight mammalian cell types with a combination of expression profiling and deep sequencing. While most miRNAs are stable, a subset of miRNAs, mostly miRNA*s, turnovers quickly, many of which display a two-step turnover kinetics. Moreover, different sequence isoforms of the same miRNA can possess vastly different turnover rates. Fast turnover miRNA isoforms are enriched for 5′ nucleotide bias against Argonaute-(AGO)-loading, but also additional 3′ and central sequence features. Modeling based on two fast turnover miRNA*s miR-222-5p and miR-125b-1-3p, we unexpectedly found that while both miRNA*s are associated with AGO, they strongly differ in HSP90 association and sensitivity to HSP90 inhibition. Our data characterize the landscape of genome-wide miRNA turnover in cultured mammalian cells and reveal differential HSP90 requirements for different miRNA*s. Our findings also implicate rules for designing stable small RNAs, such as siRNAs. PMID:25653157

  1. Proteomics for understanding miRNA biology.

    PubMed

    Huang, Tai-Chung; Pinto, Sneha M; Pandey, Akhilesh

    2013-02-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.

    PubMed

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment.

  3. Narcolepsy patients' blood-based miRNA expression profiling: miRNA expression differences with Pandemrix vaccination.

    PubMed

    Mosakhani, N; Sarhadi, V; Panula, P; Partinen, M; Knuutila, S

    2017-11-01

    Narcolepsy is a neurological sleep disorder characterized by excessive daytime sleepiness and nighttime sleep disturbance. Among children and adolescents vaccinated with Pandemrix vaccine in Finland and Sweden, the number of narcolepsy cases increased. Our aim was to identify miRNAs involved in narcolepsy and their association with Pandemrix vaccination. We performed global miRNA proofing by miRNA microarrays followed by RT-PCR verification on 20 narcolepsy patients (Pandemrix-associated and Pandemrix-non-associated) and 17 controls (vaccinated and non-vaccinated). Between all narcolepsy patients and controls, 11 miRNAs were differentially expressed; 17 miRNAs showed significantly differential expression between Pandemrix-non-associated narcolepsy patients and non-vaccinated healthy controls. MiR-188-5p and miR-4499 were over-expressed in narcolepsy patients vs healthy controls. Two miRNAs, miR-1470 and miR-4455, were under-expressed in Pandemrix-associated narcolepsy patients vs Pandemrix-non-associated narcolepsy patients. We identified miRNA expression patterns in narcolepsy patients that linked them to mRNA targets known to be involved in brain-related pathways or brain disorders. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  5. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development. PMID:26854194

  6. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk.

    PubMed

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E; Geddes, Donna T; Kakulas, Foteini

    2016-02-08

    Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development.

  7. Evaluation of the miRNA-146a and miRNA-155 Expression Levels in Patients with Oral Lichen Planus.

    PubMed

    Ahmadi-Motamayel, Fatemeh; Bayat, Zeynab; Hajilooi, Mehrdad; Shahryar-Hesami, Soroosh; Mahdavinezhad, Ali; Samie, Lida; Solgi, Ghasem

    2017-12-01

    Oral Lichen Planus (OLP) is a chronic autoimmune disease that could be considered as a potential premalignant status. To evaluate the miRNA-146a and miRNA-155 expression levels in patients with oral Lichen planus lesions compared to healthy subjects with normal oral mucosa. Forty patients with oral lichen planus and 18 healthy age and gender-matched controls were recruited in this case-control study. Oral lichen planus was diagnosed clinically and pathologically. The expression levels of two miRNAs in peripheral blood samples were determined using commercial TaqMan MicroRNA Assays. Relative quantification of gene expression was calculated by the 2-ΔΔct method. The expression levels of miRNA-146a and miRNA-155 in patients with oral Lichen planus were significantly higher than those of healthy controls. Also, a direct but insignificant correlation was found between miRNA-155 and miRNA-146a expression levels among the patient group. Our findings indicate that miRNA-146a and miRNA-155 could be potential biomarkers for the immunopathogenesis of oral lichen planus.

  8. A leachate a day keeps the seedlings away: mowing and the inhibitory effects of Festuca paniculata in subalpine grasslands

    PubMed Central

    Viard-Crétat, Flore; Gallet, Christiane; Lefebvre, Marianne; Lavorel, Sandra

    2009-01-01

    Background and Aims Is the release of allelochemicals by the dominant tussock grass Festuca paniculata responsible for its dominance by inhibiting growth of neighbour grasses in subalpine grasslands? As such a community is also structured by mowing practices, what could be the impact of mowing on allelopathy? Methods A design was used that isolated allelopathy from resource competition by separating donor plants (Festuca paniculata) from target plants (F. paniculata, Dactylis glomerata and Bromus erectus). Leachates from donor pots containing bare soil, unmown F. paniculata or mown F. paniculata continuously irrigated target pots containing seedlings. Activated carbon was added in half of the target pots to adsorb potential allelochemicals. C and N analyses of target potting soil were used to test for any effect of treatments on resources. Total phenol concentration was measured in the solutions flowing from donor to target pots. Results Festuca paniculata leachates inhibited seedling growth of D. glomerata and B. erectus. Inhibition was correlated with polyphenol concentration, and was not due to resource competition for nitrogen. Mowing the leaves of the donor plants did not significantly increase this inhibition. The activated carbon treatment was not conclusive as it inhibited the seedling growing under control pots with only bare soil. Conclusions The results suggest that allelopathy may be at least partly responsible for F. paniculata dominance in subalpine meadows by inhibition of colonization by neighbouring species. PMID:19324898

  9. Insect Feeding Deterrents in Endophyte-Infected Tall Fescue †

    PubMed Central

    Johnson, M. C.; Dahlman, D. L.; Siegel, M. R.; Bush, L. P.; Latch, G. C. M.; Potter, D. A.; Varney, D. R.

    1985-01-01

    The presence of an endophytic fungus, Acremonium coenophialum, in tall fescue (Festuca arundinacea) deterred aphid feeding by Rhopalosiphum padi and Schizaphis graminum. Both species of aphid were unable to survive when confined to endophyte-infected tall fescue plants. Feeding deterrents and toxic factors to R. padi and Oncopeltus fasciatus, large milkweed bug, were primarily associated with a methanol extract obtained when endophyte-infected tall fescue seed was serially extracted with hexane, ethyl acetate, and methanol. The concentrations of pyrrolizidine alkaloids were determined to be 30 to 100 times greater in the methanol extract than in the hexane and ethyl acetate extracts. PMID:16346751

  10. Forage lignins: isolation, characterization and degradation in the gastrointestinal trace of ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiroz, R.A.

    1987-01-01

    A series of experiments were conducted to investigate the structural composition of forage lignins, structural changes of lignins in the gastrointestinal tract, alkali delignification kinetics and the use of core lignin components as an internal marker. Three species were selected to represent different forage types; alfalfa (Medicago sativa L.), a temperate perennial legume, tall fescue (Festuca arundinacea Schreb.), a temperate perennial grass and coastal bermudagrass (Cynodon dactylon L. Pers.), a tropical perennial grass. Alkaline lignins soluble in 1,4-dioxane, from forage and feces, were isolated and characterized using /sup 13/C nuclear magnetic resonance spectroscopy and nitrobenzene oxidation.

  11. Identification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer

    PubMed Central

    Liu, Pengfei; Sun, Manna; Jiang, Wenhua; Zhao, Jinkun; Liang, Chunyong; Zhang, Huilai

    2016-01-01

    The present study aimed to identify the differentially expressed genes (DEGs) regulated by microRNA (miRNA)-221 and miRNA-222 that are associated with the resistance of breast cancer to fulvestrant. The GSE19777 transcription profile was downloaded from the Gene Expression Omnibus database, and includes data from three samples of antisense miRNA-221-transfected fulvestrant-resistant MCF7-FR breast cancer cells, three samples of antisense miRNA-222-transfected fulvestrant-resistant MCF7-FR cells and three samples of control inhibitor (green fluorescent protein)-treated fulvestrant-resistant MCF7-FR cells. The linear models for microarray data package in R/Bioconductor was employed to screen for DEGs in the miRNA-transfected cells, and the pheatmap package in R was used to perform two-way clustering. Pathway enrichment was conducted using the Gene Set Enrichment Analysis tool. Furthermore, a miRNA-messenger (m) RNA regulatory network depicting interactions between miRNA-targeted upregulated DEGs was constructed and visualized using Cytoscape. In total, 492 and 404 DEGs were identified for the antisense miRNA-221-transfected MCF7-FR cells and the antisense miRNA-222-transfected MCF7-FR cells, respectively. Genes of the pentose phosphate pathway (PPP) were significantly enriched in the antisense miRNA-221-transfected MCF7-FR cells. In addition, components of the Wnt signaling pathway and cell adhesion molecules (CAMs) were significantly enriched in the antisense miRNA-222-transfected MCF7-FR cells. In the miRNA-mRNA regulatory network, miRNA-222 was demonstrated to target protocadherin 10 (PCDH10). The results of the present study suggested that the PPP and Wnt signaling pathways, as well as CAMs and PCDH10, may be associated with the resistance of breast cancer to fulvestrant. PMID:27895744

  12. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    PubMed Central

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  13. Prediction of miRNA targets.

    PubMed

    Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis

    2015-01-01

    Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction.

  14. miRNA 206 and miRNA 574-5p are highly expression in coronary artery disease

    PubMed Central

    Zhou, Jianqing; Shao, Guofeng; Chen, Xiaoliang; Yang, Xi; Huang, Xiaoyan; Peng, Ping; Ba, Yanna; Zhang, Lin; Jehangir, Tashina; Bu, Shizhong; Liu, Ningsheng; Lian, Jiangfang

    2015-01-01

    Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide. Innovative diagnostic biomarkers are a pressing need for this disease. miRNAs profiling is an innovative method of identifying biomarkers for many diseases and could be proven as a powerful tool in the diagnosis and treatment of CAD. We performed miRNA microarray analysis from the plasma of three CAD patients and three healthy controls. Subsequently, we performed quantitative real-time PCR (qRT-PCR) analysis of miRNA expression in plasma of another 67 CAD patients and 67 healthy controls. We identified two miRNAs (miR-206 and miR-574-5p) that were significantly up-regulated in CAD patients as compared with healthy controls (P<0.05). The receiver operating characteristic (ROC) curves indicated these two miRNAs had great potential to provide sensitive and specific diagnostic value for CAD. PMID:26685009

  15. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance

    PubMed Central

    Leidinger, Petra; Backes, Christina; Rheinheimer, Stefanie; Keller, Andreas; Meese, Eckart

    2015-01-01

    Background Circulating microRNAs (miRNAs) from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min), 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples) we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays. Results While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003). Validation by qRT-PCR confirmed this finding. Conclusion The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA

  16. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance.

    PubMed

    Leidinger, Petra; Backes, Christina; Rheinheimer, Stefanie; Keller, Andreas; Meese, Eckart

    2015-01-01

    Circulating microRNAs (miRNAs) from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min), 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples) we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays. While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003). Validation by qRT-PCR confirmed this finding. The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA profiles that belong to a specific

  17. Virus-encoded miRNAs in Ebola virus disease.

    PubMed

    Duy, Janice; Honko, Anna N; Altamura, Louis A; Bixler, Sandra L; Wollen-Roberts, Suzanne; Wauquier, Nadia; O'Hearn, Aileen; Mucker, Eric M; Johnson, Joshua C; Shamblin, Joshua D; Zelko, Justine; Botto, Miriam A; Bangura, James; Coomber, Moinya; Pitt, M Louise; Gonzalez, Jean-Paul; Schoepp, Randal J; Goff, Arthur J; Minogue, Timothy D

    2018-04-24

    Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.

  18. Dynamics of miRNA biogenesis and nuclear transport.

    PubMed

    Kotipalli, Aneesh; Gutti, Ravikumar; Mitra, Chanchal K

    2016-12-01

    MicroRNAs (miRNAs) are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS) are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC) regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE) solver in the Octave software.

  19. Dynamics of miRNA biogenesis and nuclear transport.

    PubMed

    Kotipalli, Aneesh; Gutti, Ravikumar; Mitra, Chanchal K

    2016-12-22

    MicroRNAs (miRNAs) are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS) are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS) or transcriptional gene activation (TGA). In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC) regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE) solver in the Octave software.

  20. Random Distribution Pattern and Non-adaptivity of Genome Size in a Highly Variable Population of Festuca pallens

    PubMed Central

    Šmarda, Petr; Bureš, Petr; Horová, Lucie

    2007-01-01

    Background and Aims The spatial and statistical distribution of genome sizes and the adaptivity of genome size to some types of habitat, vegetation or microclimatic conditions were investigated in a tetraploid population of Festuca pallens. The population was previously documented to vary highly in genome size and is assumed as a model for the study of the initial stages of genome size differentiation. Methods Using DAPI flow cytometry, samples were measured repeatedly with diploid Festuca pallens as the internal standard. Altogether 172 plants from 57 plots (2·25 m2), distributed in contrasting habitats over the whole locality in South Moravia, Czech Republic, were sampled. The differences in DNA content were confirmed by the double peaks of simultaneously measured samples. Key Results At maximum, a 1·115-fold difference in genome size was observed. The statistical distribution of genome sizes was found to be continuous and best fits the extreme (Gumbel) distribution with rare occurrences of extremely large genomes (positive-skewed), as it is similar for the log-normal distribution of the whole Angiosperms. Even plants from the same plot frequently varied considerably in genome size and the spatial distribution of genome sizes was generally random and unautocorrelated (P > 0·05). The observed spatial pattern and the overall lack of correlations of genome size with recognized vegetation types or microclimatic conditions indicate the absence of ecological adaptivity of genome size in the studied population. Conclusions These experimental data on intraspecific genome size variability in Festuca pallens argue for the absence of natural selection and the selective non-significance of genome size in the initial stages of genome size differentiation, and corroborate the current hypothetical model of genome size evolution in Angiosperms (Bennetzen et al., 2005, Annals of Botany 95: 127–132). PMID:17565968

  1. Viruses and miRNAs: More Friends than Foes.

    PubMed

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  2. Viruses and miRNAs: More Friends than Foes

    PubMed Central

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host–pathogen interaction. PMID:28555130

  3. miRNA: The nemesis of gastric cancer (Review).

    PubMed

    Xu, Xiaohui; Yang, Xiaodong; Xing, Chungen; Zhang, Shuyu; Cao, Jianping

    2013-09-01

    microRNAs (miRNAs) are a group of small non-coding RNAs that are ~22 (18 to 25) nucleotides (nt) long and have been associated with a variety of diseases, including cancer. Increasing evidence indicates that miRNAs are essential in the development, diagnosis, treatment and prognosis of a variety of tumors. The utility of miRNAs as biomarkers for diagnosis and of target molecules for the treatment of cancers is increasingly being recognized. With the discovery of circulating miRNAs, a non-invasive approach for the diagnosis and treatment of cancer has been identified. This review summarizes the role of miRNAs in the development of different tumors, as well as a variety of other biological events. Moreover, this review focuses on analyzing the function and mechanism of gastric cancer-related miRNAs and investigates the importance of circulating miRNAs in gastric cancer, as well as their origin. Finally, this review lists a number of the problems that must be solved prior to miRNAs being used as reliable non-invasive tools for the diagnosis, treatment and prognosis of gastric cancer.

  4. Polycross populations of the native grass Festuca roemeri as pre-varietal germplasm: their derivation, release, increase, and use

    Treesearch

    Dale C. Darris; Barbara L. Wilson; Rob Fiegener; Matthew E. Horning

    2008-01-01

    Results of a recent common-garden study provide evidence needed to delineate appropriate seed transfer zones for the native grass Festuca roemeri (Pavlick) E. B. Alexeev (Poaceae). That information has been used to develop pre-variety germplasm releases to provide ecologically and genetically appropriate seeds for habitat restoration, erosion...

  5. Evolutionary relationships between miRNA genes and their activity.

    PubMed

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  6. miRNA Profiles in Plasma from Patients with Sleep Disorders Reveal Dysregulation of miRNAs in Narcolepsy and Other Central Hypersomnias

    PubMed Central

    Holm, Anja; Bang-Berthelsen, Claus Heiner; Knudsen, Stine; Kornum, Birgitte R.; Modvig, Signe; Jennum, Poul; Gammeltoft, Steen

    2014-01-01

    Study Objectives: MicroRNAs (miRNAs) have been implicated in the pathogenesis of human diseases including neurological disorders. The aim is to address the involvement of miRNAs in the pathophysiology of central hypersomnias including autoimmune narcolepsy with cataplexy and hypocretin deficiency (type 1 narcolepsy), narcolepsy without cataplexy (type 2 narcolepsy), and idiopathic hypersomnia. Design: We conducted high-throughput analysis of miRNA in plasma from three groups of patients—with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively—in comparison with healthy controls using quantitative real-time polymerase chain reaction (qPCR) panels. Setting: University hospital based sleep clinic and research laboratories. Patients: Twelve patients with type 1 narcolepsy, 12 patients with type 2 narcolepsy, 12 patients with idiopathic hypersomnia, and 12 healthy controls. Measurements and Results: By analyzing miRNA in plasma with qPCR we identified 50, 24, and 6 miRNAs that were different in patients with type 1 narcolepsy, type 2 narcolepsy, and idiopathic hypersomnia, respectively, compared with healthy controls. Twenty miRNA candidates who fulfilled the criteria of at least two-fold difference and p-value < 0.05 were selected to validate the miRNA changes in an independent cohort of patients. Four miRNAs differed significantly between type 1 narcolepsy patients and healthy controls. Levels of miR-30c, let-7f, and miR-26a were higher, whereas the level of miR-130a was lower in type 1 narcolepsy than healthy controls. The miRNA differences were not specific for type 1 narcolepsy, since the levels of the four miRNAs were also altered in patients with type 2 narcolepsy and idiopathic hypersomnia compared with healthy controls. Conclusion: The levels of four miRNAs differed in plasma from patients with type 1 narcolepsy, type 2 narcolepsy and idiopathic hypersomnia suggesting that alterations of miRNAs may be involved in the

  7. Comparative physico-chemical profiles of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.).

    PubMed

    Rajashekhara, N; Shukla, Vinay J; Ravishankar, B; Sharma, Parameshwar P

    2013-10-01

    Tugaksheeree is as an ingredient in many Ayurvedic formulations. The starch obtained from the rhizomes of two plants, is used as Tugaksheeree, Curcuma angustifolia (CA) Roxb. (Family: Zingiberaceae) and Maranta arundinacea (MA) Linn. (Family Marantaceae). In the present study, a comparative physico-analysis of both the drugs has been carried out. The results suggest that the starch from CA and MA has similar organoleptic characters. The percentage of starch content is higher in the rhizome of CA when compared with that of MA and the starch of MA is packed more densely than the starch in CA. The chemical constituents of both the starch and rhizomes are partially similar to each other. Hence, the therapeutic activities may be similar.

  8. Genome-wide analysis of miRNAs in Carya cathayensis.

    PubMed

    Sun, Zhi-Chao; Zhang, Liang-Sheng; Wang, Zheng-Jia

    2017-11-29

    MicroRNA (miRNA) plays an important role in plant development regulation. Hickory is an economically important plant in which the amount of flowering determines its production. Here, 51 conserved miRNAs, which belong to 16 families and 195 novel miRNAs were identified in hickory genome. For each conserved miRNA family, we used sequences from hickory and other plants to construct a phylogenetic tree, which shows that each family has members in hickory. Some of the conserved miRNA families (i.e., miR167 and miR397) have more members in hickory than in other plants because of gene expansion. MiR166 exhibited tandem duplication with three copies being observed. Many members of these conserved miRNA families were detected in hickory flowers, and the expression patterns of target genes were opposite to those of the related miRNAs, indicating that miRNAs may have important functions in floral regulation of hickory. Taken together, a comprehensive analysis was conducted to identify miRNAs produced in hickory flower organs, demonstrating functional conservation and diversity of miRNA families among hickory, Arabidopsis, grape, and poplar.

  9. miRNA Temporal Analyzer (mirnaTA): a bioinformatics tool for identifying differentially expressed microRNAs in temporal studies using normal quantile transformation.

    PubMed

    Cer, Regina Z; Herrera-Galeano, J Enrique; Anderson, Joseph J; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh P

    2014-01-01

    Understanding the biological roles of microRNAs (miRNAs) is a an active area of research that has produced a surge of publications in PubMed, particularly in cancer research. Along with this increasing interest, many open-source bioinformatics tools to identify existing and/or discover novel miRNAs in next-generation sequencing (NGS) reads become available. While miRNA identification and discovery tools are significantly improved, the development of miRNA differential expression analysis tools, especially in temporal studies, remains substantially challenging. Further, the installation of currently available software is non-trivial and steps of testing with example datasets, trying with one's own dataset, and interpreting the results require notable expertise and time. Subsequently, there is a strong need for a tool that allows scientists to normalize raw data, perform statistical analyses, and provide intuitive results without having to invest significant efforts. We have developed miRNA Temporal Analyzer (mirnaTA), a bioinformatics package to identify differentially expressed miRNAs in temporal studies. mirnaTA is written in Perl and R (Version 2.13.0 or later) and can be run across multiple platforms, such as Linux, Mac and Windows. In the current version, mirnaTA requires users to provide a simple, tab-delimited, matrix file containing miRNA name and count data from a minimum of two to a maximum of 20 time points and three replicates. To recalibrate data and remove technical variability, raw data is normalized using Normal Quantile Transformation (NQT), and linear regression model is used to locate any miRNAs which are differentially expressed in a linear pattern. Subsequently, remaining miRNAs which do not fit a linear model are further analyzed in two different non-linear methods 1) cumulative distribution function (CDF) or 2) analysis of variances (ANOVA). After both linear and non-linear analyses are completed, statistically significant miRNAs (P < 0

  10. miRNA Signatures of Insulin Resistance in Obesity.

    PubMed

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  11. An Epichloë festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne

    PubMed Central

    Green, Kimberly A.; Becker, Yvonne; Fitzsimons, Helen L.

    2016-01-01

    Summary In both Sordaria macrospora and Neurospora crassa, components of the conserved STRIPAK (striatin‐interacting phosphatase and kinase) complex regulate cell–cell fusion, hyphal network development and fruiting body formation. Interestingly, a number of Epichloë festucae genes that are required for hyphal cell–cell fusion, such as noxA, noxR, proA, mpkA and mkkA, are also required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. To determine whether MobC, a homologue of the STRIPAK complex component MOB3 in S. macrospora and N. crassa, is required for E. festucae hyphal fusion and symbiosis, a mobC deletion strain was generated. The ΔmobC mutant showed reduced rates of hyphal cell–cell fusion, formed intrahyphal hyphae and exhibited enhanced conidiation. Plants infected with ΔmobC were severely stunted. Hyphae of ΔmobC showed a proliferative pattern of growth within the leaves of Lolium perenne with increased colonization of the intercellular spaces and vascular bundles. Although hyphae were still able to form expressoria, structures allowing the colonization of the leaf surface, the frequency of formation was significantly reduced. Collectively, these results show that the STRIPAK component MobC is required for the establishment of a mutualistic symbiotic association between E. festucae and L. perenne, and plays an accessory role in the regulation of hyphal cell–cell fusion and expressorium development in E. festucae. PMID:27277141

  12. miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease.

    PubMed

    Schulte, Christian; Molz, Simon; Appelbaum, Sebastian; Karakas, Mahir; Ojeda, Francisco; Lau, Denise M; Hartmann, Tim; Lackner, Karl J; Westermann, Dirk; Schnabel, Renate B; Blankenberg, Stefan; Zeller, Tanja

    2015-01-01

    Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers in cardiovascular disease and in particular, coronary artery disease (CAD). Few studies were undertaken to perform analyses with regard to risk stratification of future cardiovascular events. miR-126, miR-197 and miR-223 are involved in endovascular inflammation and platelet activation and have been described as biomarkers in the diagnosis of CAD. They were identified in a prospective study in relation to future myocardial infarction. The aim of our study was to further evaluate the prognostic value of these miRNAs in a large prospective cohort of patients with documented CAD. Levels of miR-126, miR-197 and miR-223 were evaluated in serum samples of 873 CAD patients with respect to the endpoint cardiovascular death. miRNA quantification was performed using real time polymerase chain reaction (RT-qPCR). The median follow-up period was 4 years (IQR 2.78-5.04). The median age of all patients was 64 years (IQR 57-69) with 80.2% males. 38.9% of the patients presented with acute coronary syndrome (ACS), 61.1% were diagnosed with stable angina pectoris (SAP). Elevated levels of miRNA-197 and miRNA-223 reliably predicted future cardiovascular death in the overall group (miRNA-197: hazard ratio (HR) 1.77 per one standard deviation (SD) increase (95% confidence interval (CI) 1.20; 2.60), p = 0.004, C-index 0.78; miRNA-223: HR 2.23 per one SD increase (1.20; 4.14), p = 0.011, C-index 0.80). In ACS patients the prognostic power of both miRNAs was even higher (miRNA-197: HR 2.24 per one SD increase (1.25; 4.01), p = 0.006, C-index 0.89); miRA-223: HR 4.94 per one SD increase (1.42; 17.20), p = 0.012, C-index 0.89). Serum-derived circulating miRNA-197 and miRNA-223 were identified as predictors for cardiovascular death in a large patient cohort with CAD. These results reinforce the assumption that circulating miRNAs are promising biomarkers with prognostic value with respect to future

  13. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development

    PubMed Central

    Vaucheret, Hervé; Vazquez, Franck; Crété, Patrice; Bartel, David P.

    2004-01-01

    MicroRNAs (miRNAs) are endogenous 21–24-nt RNAs that can down-regulate gene expression by pairing to the messages of protein-coding genes to specify mRNA cleavage or repression of productive translation. They act within the RNA-induced silencing complex (RISC), which in animals contains a member of the Argonaute family of proteins. In the present study, we show that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs. In hypomorphic ago1 alleles, this compromised miRNA function occurs without a substantial change in miRNA accumulation, whereas in null alleles it is accompanied by a drop in some of the miRNAs. Therefore, AGO1 acts within the Arabidopsis miRNA pathway, probably within the miRNA-programmed RISC, such that the absence of AGO1 destabilizes some of the miRNAs. We also show that targeting of AGO1 mRNA by miR168 is needed for proper plant development, illustrating the importance of feedback control by this miRNA. Transgenic plants expressing a mutant AGO1 mRNA with decreased complementarity to miR168 overaccumulate AGO1 mRNA and exhibit developmental defects partially overlapping with those of dcl1, hen1, and hyl1 mutants showing a decrease in miRNA accumulation. miRNA targets overaccumulate in miR168-resistant plants, suggesting that a large excess of AGO1 protein interferes with the function of RISC or sequesters miRNAs or other RISC components. Developmental defects induced by a miR168-resistant AGO1 mRNA can be rescued by a compensatory miRNA that is complementary to the mutant AGO1 mRNA, proving the regulatory relationship between miR168 and its target and opening the way for engineering artificial miRNAs in plants. PMID:15131082

  14. Gene silencing efficiency and INF-β induction effects of splicing miRNA 155-based artificial miRNA with pre-miRNA stem-loop structures.

    PubMed

    Sin, Onsam; Mabiala, Prudence; Liu, Ye; Sun, Ying; Hu, Tao; Liu, Qingzhen; Guo, Deyin

    2012-02-01

    Artificial microRNA (miRNA) expression vectors have been developed and used for RNA interference. The secondary structure of artificial miRNA is important for RNA interference efficacy. We designed two groups of six artificial splicing miRNA 155-based miRNAs (SM155-based miRNAs) with the same target in the coding region or 3' UTR of a target gene and studied their RNA silencing efficiency and interferon β (IFN-β) induction effects. SM155-based miRNA with a mismatch at the +1 position and a bulge at the +11, +12 positions in a miRNA precursor stem-loop structure showed the highest gene silencing efficiency and lowest IFN-β induction effect (increased IFN-β mRNA level by 10% in both target cases), regardless of the specificity of the target sequence, suggesting that pSM155-based miRNA with this design could be a valuable miRNA expression vector.

  15. miRNA*: a passenger stranded in RNA-induced silencing complex?

    PubMed

    Mah, S M; Buske, C; Humphries, R K; Kuchenbauer, F

    2010-01-01

    Processing of the pre-microRNA (pre-miRNA) through Dicer1 generates a miRNA duplex, consisting of a miRNA and miRNA* strand (also termed guide strand and passenger strand, respectively). Despite the general consensus that miRNA*s have no regulatory activity, recent publications have provided evidence that the abundance, possible function, and physiological relevance of miRNA*s have been underestimated. This review provides an account of our current understanding of miRNA* origination and activity, mounting evidence for their unique functions and regulatory mechanisms, and examples of specific miRNA*s from the literature.

  16. SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne.

    PubMed

    Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry

    2017-02-01

    Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  17. Performance of Arrowroot (Marantha arundinacea) in various light intensities

    NASA Astrophysics Data System (ADS)

    Oktafani, M. B.; Supriyono; Budiastuti, MTh S.; Purnomo, D.

    2018-03-01

    Arrowroot (Marantha arundinacea) is one of the potential food crops to support food security programs. Light intensity is one of the important factors for plant growth. Arrowroot cultivation technology still need further development. Traditionally, arrowroot grows wild under canopy without intentisification of cultivating which have low productivity. The purpose of research was to investigate the suitable light intensity for arrowroot. The experiment was conducted at Jumantono as Experimental Field of Faculty of Agricultural, University of Sebelas Maret Surakarta located in Karanganyar, from March to September 2016. The experiment used a complete randomized block design (CRBD) of light intensity level there are 27400 lux (full sun light), 18900 lux (shaded 31%), 13500 lux (shaded 51%) and 7400 lux (shaded 72%). Each treatment was replicated six times so there were 24 experimental units. The results showed that arrowroot is a low light adaptive plant. Arrowroot under the light intensity 7400 lux (27% full light), the number of leaves and tillers is not significantly different than under full light, although the plant is higher. The highest tuber diameter and length were 1.91 and 25.06 cm, respectively, and tuber weight reached 607.5-651.67 g per plant.

  18. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  19. miRNA regulation in the early development of barley seed

    PubMed Central

    2012-01-01

    Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835

  20. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant “Yanfu 6”

    PubMed Central

    Song, Chunhui; Zhang, Dong; Zheng, Liwei; Zhang, Jie; Zhang, Baojuan; Luo, Wenwen; Li, Youmei; Li, Guangfang; Ma, Juanjuan; Han, Mingyu

    2017-01-01

    The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of “Nagafu 2” (CF) and spur-type bud mutation “Yanfu 6” (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture. PMID:28424721

  1. Isolation and Identification of miRNAs in Jatropha curcas

    PubMed Central

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  2. Functional screening identifies miRNAs inducing cardiac regeneration.

    PubMed

    Eulalio, Ana; Mano, Miguel; Dal Ferro, Matteo; Zentilin, Lorena; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro

    2012-12-20

    In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.

  3. Towards a new standardized method for circulating miRNAs profiling in clinical studies: Interest of the exogenous normalization to improve miRNA signature accuracy.

    PubMed

    Vigneron, Nicolas; Meryet-Figuière, Matthieu; Guttin, Audrey; Issartel, Jean-Paul; Lambert, Bernard; Briand, Mélanie; Louis, Marie-Hélène; Vernon, Mégane; Lebailly, Pierre; Lecluse, Yannick; Joly, Florence; Krieger, Sophie; Lheureux, Stéphanie; Clarisse, Bénédicte; Leconte, Alexandra; Gauduchon, Pascal; Poulain, Laurent; Denoyelle, Christophe

    2016-08-01

    Circulating miRNAs are promising biomarkers in oncology but have not yet been implemented in the clinic given the lack of concordance across studies. In order to increase the cross-studies reliability, we attempted to reduce and to control the circulating miRNA expression variability between patients. First, to maximize profiling signals and to reduce miRNA expression variability, three isolation kits were compared and the NucleoSpin(®) kit provided higher miRNA concentrations than the other widely used kits. Second, to control inter-sample variability during the profiling step, the exogenous miRNAs normalization method commonly used for RT-qPCR validation step was adapted to microarray experiments. Importantly, exogenous miRNAs presented two-fold lower inter-sample variability than the widely used endogenous miR-16-5p reflecting that the latter is subject to both biological and technical variability. Although Caenorhabditis elegans miRNAs isolation yields were heterogeneous, they correlated to each other and to their geometrical mean across samples. The normalization based on the geometrical mean of three exogenous miRNAs increased the correlation up-to 0.97 between the microarrays and individual RT-qPCR steps of circulating miRNAs expression. Overall, this new strategy open new avenue to identify reliable circulating miRNA signatures for translation into clinical practice. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    PubMed

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  5. Combined miRNA profiling and proteomics demonstrates that different miRNAs target a common set of proteins to promote colorectal cancer metastasis.

    PubMed

    Torres, Sofía; Garcia-Palmero, Irene; Bartolomé, Rubén A; Fernandez-Aceñero, María Jesús; Molina, Elena; Calviño, Eva; Segura, Miguel F; Casal, J Ignacio

    2017-05-01

    The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis

    PubMed Central

    Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Fernández-Borges, Natalia; Andréoletti, Olivier; Díez, Juana; Fischer, Andre; Sklaviadis, Theodoros; Ferrer, Isidre; Zerr, Inga

    2018-01-01

    Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer’s disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to

  7. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis.

    PubMed

    Llorens, Franc; Thüne, Katrin; Martí, Eulàlia; Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Michel, Uwe; Fernández-Borges, Natalia; Andréoletti, Olivier; Del Río, José Antonio; Díez, Juana; Fischer, Andre; Bonn, Stefan; Sklaviadis, Theodoros; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2018-01-01

    Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to

  8. Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Pellatt, Daniel F; Stevens, John R; Wolff, Roger K

    2016-08-01

    MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that

  9. Phenotypic and genotypic analysis of a U.S. native fine-leaved Festuca population portends its potential use for low-input urban landscapes

    USDA-ARS?s Scientific Manuscript database

    Continued reduction in limited natural resources worldwide increasingly necessitates the incorporation of low maintenance and input plant materials into urban landscapes. Although some fine-leaved Festuca grass species have been utilized in formal gardens and native urban landscapes because of thei...

  10. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis.

  11. Phytoalexins, miRNAs and breast cancer: a review of phytochemical mediated miRNA regulation in breast cancer

    USDA-ARS?s Scientific Manuscript database

    A specific class of endogenous, non-coding RNAs, classified as microRNAs (miRNAs), has been identified. It has been found that miRNAs are associated with many biological processes and disease states, including all stages of cancer from initiation to tumor promotion and progression. These studies d...

  12. miRNAs Expressions and Interaction with Biological Systems in Patients with Alzheimer`s Disease. Using miRNAs as a Diagnosis and Prognosis Biomarker.

    PubMed

    Negoita, Silvius I; Sandesc, Dorel; Rogobete, Alexandru F; Dutu, Madalina; Bedreag, Ovidiu H; Papurica, Marius; Ercisli, Muhammed F; Popovici, Sonia E; Dumache, Raluca; Sandesc, Mihai; Dinu, Anca; Sas, Adriana M; Serban, Denis; Corneci, Dan

    2017-09-01

    A high percentage of patients develop Alzheimer`s disease (AD). The main signs are loss of memory and cognitive functions which have a significant impact on lifestyle. Numerous studies have been conducted to identify new biomarkers for early diagnosis of patients with AD. An ideal biomarker is represented by the expression of miRNAs. In this paper, we want to summarize expressions miRNAs in AD. We also want to present the pathophysiological and genetic interactions of miRNAs with protein systems in these patients. For the study, we examined available studies in scientific databases, such as PubMed and Scopus. The studies were searched using the keywords "miRNAs expression", "Alzheimer`s disease", "genetic polymorphisms", and "genetic biomarkers". For the assessment and monitoring of patients with AD, the expression of miRNAs can be used successfully due to increased specificity and selectivity. Moreover, the expression of miRNAs can provide important answers regarding possible genetic interactions and genetic therapeutic regimens. For the evaluation and non-invasive monitoring of patients with Alzheimer`s disease the expression of miRNAs can be successfully used.

  13. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1.

    PubMed

    He, Zuping; Jiang, Jiji; Kokkinaki, Maria; Tang, Lin; Zeng, Wenxian; Gallicano, Ian; Dobrinski, Ina; Dym, Martin

    2013-10-01

    Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction. © AlphaMed Press.

  14. Evaluation of the capability of the PCV2 genome to encode miRNAs: lack of viral miRNA expression in an experimental infection.

    PubMed

    Núñez-Hernández, Fernando; Pérez, Lester J; Vera, Gonzalo; Córdoba, Sarai; Segalés, Joaquim; Sánchez, Armand; Núñez, José I

    2015-05-01

    Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express miRNAs in an in vivo subclinical infection.

  15. The role of miRNAs in endometrial cancer.

    PubMed

    Vasilatou, Diamantina; Sioulas, Vasileios D; Pappa, Vasiliki; Papageorgiou, Sotirios G; Vlahos, Nikolaos F

    2015-01-01

    miRNAs are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Since their discovery, miRNAs have been associated with every cell function including malignant transformation and metastasis. Endometrial cancer is the most common gynecologic malignancy. However, improvement should be made in interobserver agreement on histological typing and individualized therapeutic approaches. This article summarizes the role of miRNAs in endometrial cancer pathogenesis and treatment.

  16. Clinical value of integrated-signature miRNAs in esophageal cancer.

    PubMed

    Zhang, Heng-Chao; Tang, Kai-Fu

    2017-08-01

    MicroRNAs (miRNAs) are crucial regulators of gene expression in tumorigenesis and are of great interest to researchers, but miRNA profiles are often inconsistent between studies. The aim of this study was to confirm candidate miRNA biomarkers for esophageal cancer from integrated-miRNA expression profiling data and TCGA (The Cancer Genome Atlas) data in tissues. Here, we identify five significant miRNAs by a comprehensive analysis in esophageal cancer, and two of them (hsa-miR-100-5p and hsa-miR-133b) show better prognoses with significant difference for both 3-year and 5-year survival. Additionally, they participate in esophageal cancer occurrence and development according to KEGG and Panther enrichment analyses. Therefore, these five miRNAs may serve as miRNA biomarkers in esophageal cancer. Analysis of differential expression for target genes of these miRNAs may also provide new therapeutic alternatives in esophageal cancer. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. MiRGOFS: A GO-based functional similarity measure for miRNAs, with applications to the prediction of miRNA subcellular localization and miRNA-disease association.

    PubMed

    Yang, Yang; Fu, Xiaofeng; Qu, Wenhao; Xiao, Yiqun; Shen, Hong-Bin

    2018-04-27

    Benefiting from high-throughput experimental technologies, whole-genome analysis of microRNAs (miRNAs) has been more and more common to uncover important regulatory roles of miRNAs and identify miRNA biomarkers for disease diagnosis. As a complementary information to the high-throughput experimental data, domain knowledge like the Gene Ontology and KEGG pathway is usually used to guide gene function analysis. However, functional annotation for miRNAs is scarce in the public databases. Till now, only a few methods have been proposed for measuring the functional similarity between miRNAs based on public annotation data, and these methods cover a very limited number of miRNAs, which are not applicable to large-scale miRNA analysis. In this paper, we propose a new method to measure the functional similarity for miRNAs, called miRGOFS, which has two notable features: I) it adopts a new GO semantic similarity metric which considers both common ancestors and descendants of GO terms; II) it computes similarity between GO sets in an asymmetric manner, and weights each GO term by its statistical significance. The miRGOFS-based predictor achieves an F1 of 61.2% on a benchmark data set of miRNA localization, and AUC values of 87.7% and 81.1% on two benchmark sets of miRNA-disease association, respectively. Compared with the existing functional similarity measurements of miRNAs, miRGOFS has the advantages of higher accuracy and larger coverage of human miRNAs (over 1000 miRNAs). http://www.csbio.sjtu.edu.cn/bioinf/MiRGOFS/. yangyang@cs.sjtu.edu.cn or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.

  18. Regulation of Bone Formation During Disuse by miRNA

    NASA Technical Reports Server (NTRS)

    Thomas, Nicholas; Choi, Catherine Y.; Alwood, Joshua S.

    2016-01-01

    Astronauts lose bone structure during long-duration spaceflight. These changes are due, in part, to insufficient bone formation by the osteoblast cells. Little is known about the role that small (approximately 22 nucleotide), non-coding micro-RNAs (miRNAs) play in the osteoblast response to microgravity. We hypothesize that osteoblast-lineage cells alter their miRNA status during microgravity exposure, contributing to impaired bone formation during weightlessness. To simulate weightlessness, female mice (C57BL/6, Charles River, 10 weeks of age, n = 6) were hindlimb unloaded for 12 days. Age-matched and normally ambulating mice served as controls (n=6). To assess the expression of miRNAs in skeletal tissue, the right and left tibia of the mice were collected ex vivo and cleaned of soft-tissue and marrow. Total RNA was collected from tibial bone and relative abundance was measured for miRNAs of interest using quantitative real time PCR array looking at 372 unique and well-characterized mature miRNAs using the delta-delta Ct method. Transcripts of interest were normalized to an average of 6 reference RNAs. Preliminary results show that hindlimb unloading decreased the expression of 14 miRNAs to less than 1.4-2.9X control levels and increased the expression of 5 miRNAs relative to the control mice greater than 1-2-1.5X (p less than 0.05, respectively). Using the miRSystem we assessed overlapping target genes predicted to be regulated by multiple members of the 19 differentially expressed miRNAs as well as in silico predicted targets of our individual miRNAs. Our miRSystem results indicated that a number of our differentially expressed miRNAs were regulators of genes related to the Wnt-Beta Catenin pathway-a known regulator of bone health-and, interestingly, the estrogen-mediated cell-cycle regulation pathway, which may indicate that simulated weightlessness induced systemic hormonal changes that contributed to bone loss. We plan to follow up these findings by measuring

  19. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.

    PubMed

    Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I

    2017-02-01

    The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

  20. Deregulation of the miRNAs Expression in Cervical Cancer: Human Papillomavirus Implications

    PubMed Central

    Gómez-Gómez, Yazmín; Organista-Nava, Jorge; Gariglio, Patricio

    2013-01-01

    MicroRNAs (miRNAs) are a class of small non coding RNAs of 18–25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC. PMID:24490161

  1. Development of a low-cost detection method for miRNA microarray.

    PubMed

    Li, Wei; Zhao, Botao; Jin, Youxin; Ruan, Kangcheng

    2010-04-01

    MicroRNA (miRNA) microarray is a powerful tool to explore the expression profiling of miRNA. The current detection method used in miRNA microarray is mainly fluorescence based, which usually requires costly detection system such as laser confocal scanner of tens of thousands of dollars. Recently, we developed a low-cost yet sensitive detection method for miRNA microarray based on enzyme-linked assay. In this approach, the biotinylated miRNAs were captured by the corresponding oligonucleotide probes immobilized on microarray slide; and then the biotinylated miRNAs would capture streptavidin-conjugated alkaline phosphatase. A purple-black precipitation on each biotinylated miRNA spot was produced by the enzyme catalytic reaction. It could be easily detected by a charge-coupled device digital camera mounted on a microscope, which lowers the detection cost more than 100 fold compared with that of fluorescence method. Our data showed that signal intensity of the spot correlates well with the biotinylated miRNA concentration and the detection limit for miRNAs is at least 0.4 fmol and the detection dynamic range spans about 2.5 orders of magnitude, which is comparable to that of fluorescence method.

  2. Seven protective miRNA signatures for prognosis of cervical cancer.

    PubMed

    Liu, Bei; Ding, Jin-Feng; Luo, Jian; Lu, Li; Yang, Fen; Tan, Xiao-Dong

    2016-08-30

    Cervical cancer is the second cause of cancer death in females in their 20s and 30s, but there were limited studies about its prognosis. This study aims to identify miRNA related to prognosis and study their functions. TCGA data of patients with cervical cancer were used to build univariate Cox's model with single clinical parameter or miRNA expression level. Multivariate Cox's model was built using both clinical information and miRNA expression levels. At last, STRING was used to enrich gene ontology or pathway for validated targets of significant miRNAs, and visualize the interactions among them. Using univariate Cox's model with clinical parameters, we found that two clinical parameters, tobacco use and clinical stage, and seven miRNAs were highly correlated with the survival status. Only using the expression level of miRNA signatures, the model could separate patients into high-risk and low-risk groups successfully. An optimal feature-selected model was proposed based on two clinical parameters and seven miRNAs. Functional analysis of these seven miRNAs showed they were associated to various pathways related to cancer, including MAPK, VEGF and P53 pathways. These results helped the research of identifying targets for targeted therapy which could potentially allow tailoring of treatment for cervical cancer patients.

  3. Clinical and pathological implications of miRNA in bladder cancer.

    PubMed

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20-22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.

  4. Clinical and pathological implications of miRNA in bladder cancer

    PubMed Central

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer. PMID:25653521

  5. Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers

    PubMed Central

    Shi, Jian

    2015-01-01

    Neurotrophins are involved in many physiological and pathological processes in the nervous system. They regulate and modify signal transduction, transcription and translation in neurons. It is recently demonstrated that the neurotrophin expression is regulated by microRNAs (miRNAs), changing our views on neurotrophins and miRNAs. Generally, miRNAs regulate neurotrophins and their receptors in at least two ways: (1) miRNAs bind directly to the 3′ untranslated region (UTR) of isoform-specific mRNAs and post-transcriptionally regulate their expression; (2) miRNAs bind to the 3′ UTR of the regulatory factors of neurotrophins and regulate their expression. On the other hand, neurotrophins can regulate miRNAs. The results of BNDF research show that neurotrophins regulate miRNAs in at least three ways: (1) ERK stimulation enhances the activation of TRBP (HIV-1 TAR RNA-binding protein) and Dicer, leading to the upregulation of miRNA biogenesis; (2) ERK-dependent upregulation of Lin28a (RNA-binding proteins) blocks select miRNA biogenesis; (3) transcriptional regulation of miRNA expression through activation of transcription factors, including CREB and NF-κB. These regulatory processes integrate positive and negative regulatory loops in neurotrophin and miRNA signaling pathways, and also expand the function of neurotrophins and miRNAs. In this review, we summarize the current knowledge of the regulatory networks between neurotrophins and miRNAs in brain diseases and cancers, for which novel cutting edge therapeutic, delivery and diagnostic approaches are emerging. PMID:25544363

  6. Current Update on Synopsis of miRNA Dysregulation in Neurological Disorders

    PubMed Central

    Kamal, Mohammad A.; Mushtaq, Gohar; Greig, Nigel H.

    2018-01-01

    Aberrant expression of microRNAs (miRNAs) has been implicated in various neurological disorders (NDs) of the central nervous system such as Alzheimer disease, Parkinson’s disease, Huntington disease, amyotrophic lateral sclerosis, schizophrenia and autism. If dysregulated miRNAs are identified in patients suffering from NDs, this may serve as a biomarker for the earlier diagnosis and monitoring of disease progression. Identifying the role of miRNAs in normal cellular processes and understanding how dysregulated miRNA expression is responsible for their neurological effects is also critical in the development of new therapeutic strategies for NDs. miRNAs hold great promise from a therapeutic point of view especially if it can be proved that a single miRNA has the ability to influence several target genes, making it possible for the researchers to potentially modify a whole disease phenotype by modulating a single miRNA molecule. Hence, better understanding of the mechanisms by which miRNA play a role in the pathogenesis of NDs may provide novel targets to scientists and researchers for innovative therapies. PMID:25714967

  7. miRNA signature associated with outcome of gastric cancer patients following chemotherapy

    PubMed Central

    2011-01-01

    Background Identification of patients who likely will or will not benefit from cytotoxic chemotherapy through the use of biomarkers could greatly improve clinical management by better defining appropriate treatment options for patients. microRNAs may be potentially useful biomarkers that help guide individualized therapy for cancer because microRNA expression is dysregulated in cancer. In order to identify miRNA signatures for gastric cancer and for predicting clinical resistance to cisplatin/fluorouracil (CF) chemotherapy, a comprehensive miRNA microarray analysis was performed using endoscopic biopsy samples. Methods Biopsy samples were collected prior to chemotherapy from 90 gastric cancer patients treated with CF and from 34 healthy volunteers. At the time of disease progression, post-treatment samples were additionally collected from 8 clinical responders. miRNA expression was determined using a custom-designed Agilent microarray. In order to identify a miRNA signature for chemotherapy resistance, we correlated miRNA expression levels with the time to progression (TTP) of disease after CF therapy. Results A miRNA signature distinguishing gastric cancer from normal stomach epithelium was identified. 30 miRNAs were significantly inversely correlated with TTP whereas 28 miRNAs were significantly positively correlated with TTP of 82 cancer patients (P<0.05). Prominent among the upregulated miRNAs associated with chemosensitivity were miRNAs known to regulate apoptosis, including let-7g, miR-342, miR-16, miR-181, miR-1, and miR-34. When this 58-miRNA predictor was applied to a separate set of pre- and post-treatment tumor samples from the 8 clinical responders, all of the 8 pre-treatment samples were correctly predicted as low-risk, whereas samples from the post-treatment tumors that developed chemoresistance were predicted to be in the high-risk category by the 58 miRNA signature, suggesting that selection for the expression of these miRNAs occurred as

  8. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer.

    PubMed

    Pandima Devi, Kasi; Rajavel, Tamilselvam; Daglia, Maria; Nabavi, Seyed Fazel; Bishayee, Anupam; Nabavi, Seyed Mohammad

    2017-10-01

    In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    PubMed

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  10. The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure.

    PubMed

    Becker, Matthias; Becker, Yvonne; Green, Kimberly; Scott, Barry

    2016-07-01

    Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network. E. festucae also grows as an epiphyte, but the mechanism for leaf surface colonization is not known. Here we identify an appressorium-like structure, which we call an expressorium that allows endophytic hyphae to penetrate the cuticle from the inside of the leaf to establish an epiphytic hyphal net on the surface of the leaf. We used a combination of scanning electron, transmission electron and confocal laser scanning microscopy to characterize this novel fungal structure and determine the composition of the hyphal cell wall using aniline blue and wheat germ agglutinin labelled with Alexafluor-488. Expressoria differentiate immediately below the cuticle in the leaf blade and leaf sheath intercalary cell division zones where the hyphae grow by tip growth. Differentiation of this structure requires components of both the NoxA and NoxB NADPH oxidase complexes. Major remodelling of the hyphal cell wall occurs following exit from the leaf. These results establish that the symbiotic association of E. festucae with L. perenne involves an interconnected hyphal network of both endophytic and epiphytic hyphae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. In Vivo Delivery of Cytoplasmic RNA Virus-derived miRNAs

    PubMed Central

    Langlois, Ryan A; Shapiro, Jillian S; Pham, Alissa M; tenOever, Benjamin R

    2012-01-01

    The discovery of microRNAs (miRNAs) revealed an unappreciated level of post-transcriptional control used by the cell to maintain optimal protein levels. This process has represented an attractive strategy for therapeutics that is currently limited by in vivo delivery constraints. Here, we describe the generation of a single-stranded, cytoplasmic virus of negative polarity capable of producing functional miRNAs. Cytoplasmic RNA virus-derived miRNAs accumulated to high levels in vitro, generated significant amounts of miRNA star strand, associated with the RNA-induced silencing complex (RISC), and conferred post transcriptional gene silencing in a sequence-specific manner. Furthermore, we demonstrate that these vectors could deliver miRNAs to a wide range of tissues, and sustain prolonged expression capable of achieving measurable knockdown of physiological targets in vivo. Taken together, these results validate noncanonical processing of cytoplasmic-derived miRNAs and provide a novel platform for small RNA delivery. PMID:22086233

  12. Exploring miRNA based approaches in cancer diagnostics and therapeutics.

    PubMed

    Mishra, Shivangi; Yadav, Tanuja; Rani, Vibha

    2016-02-01

    MicroRNAs (miRNAs), a highly conserved class of tissue specific, small non-protein coding RNAs maintain cell homeostasis by negative gene regulation. Proper controlling of miRNA expression is required for a balanced physiological environment, as these small molecules influence almost every genetic pathway from cell cycle checkpoint, cell proliferation to apoptosis, with a wide range of target genes. Deregulation in miRNAs expression correlates with various cancers by acting as tumor suppressors and oncogenes. Although promising therapies exist to control tumor development and progression, there is a lack of efficient diagnostic and therapeutic approaches for delineating various types of cancer. The molecularly different tumors can be differentiated by specific miRNA profiling as their phenotypic signatures, which can hence be exploited to surmount the diagnostic and therapeutic challenges. Present review discusses the involvement of miRNAs in oncogenesis with the analysis of patented research available on miRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Computational methods for identifying miRNA sponge interactions.

    PubMed

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2017-07-01

    Recent findings show that coding genes are not the only targets that miRNAs interact with. In fact, there is a pool of different RNAs competing with each other to attract miRNAs for interactions, thus acting as competing endogenous RNAs (ceRNAs). The ceRNAs indirectly regulate each other via the titration mechanism, i.e. the increasing concentration of a ceRNA will decrease the number of miRNAs that are available for interacting with other targets. The cross-talks between ceRNAs, i.e. their interactions mediated by miRNAs, have been identified as the drivers in many disease conditions, including cancers. In recent years, some computational methods have emerged for identifying ceRNA-ceRNA interactions. However, there remain great challenges and opportunities for developing computational methods to provide new insights into ceRNA regulatory mechanisms.In this paper, we review the publically available databases of ceRNA-ceRNA interactions and the computational methods for identifying ceRNA-ceRNA interactions (also known as miRNA sponge interactions). We also conduct a comparison study of the methods with a breast cancer dataset. Our aim is to provide a current snapshot of the advances of the computational methods in identifying miRNA sponge interactions and to discuss the remaining challenges. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. miRNAs and ovarian cancer: An overview.

    PubMed

    Deb, Bornali; Uddin, Arif; Chakraborty, Supriyo

    2018-05-01

    Ovarian cancer (OC) is the sixth most common cancer in women globally. However, even with the advances in detection and therapeutics it still represents the most dangerous gynecologic malignancy in women of the industrialized countries. The discovery of micro-RNAs (miRNA), a small noncoding RNA molecule targeting multiple mRNAs and regulation of gene expression by triggering translation repression and/or RNA degradation, has revealed the existence of a new array for regulation of genes involved in cancer. This review summarizes the current knowledge regarding the role of miRNAs expression in OC. It also provides information about potential clinical relevance of circulating miRNAs for OC diagnosis, prognosis, and therapeutics. The identification of functional targets for miRNAs represents a major obstacle in our understanding of microRNA function in OC, but significant progress is being made. The better understanding of the role of microRNA expression in ovarian cancer may provide new array for the detection, diagnosis, and therapy of the OC. © 2017 Wiley Periodicals, Inc.

  15. Generation of a stable cell line for constitutive miRNA expression.

    PubMed

    Lieber, Diana

    2013-01-01

    miRNAs have in recent years emerged as novel players in virus-host interactions. While individual miRNAs are capable of regulating many targets simultaneously, not much is known about the role of distinct host or viral miRNAs in the context of infection. Analysis of the function of a miRNA is often hampered by the complexity of virus-host interactions and the enormous changes in the host cell during infection. Many viral miRNAs as for example from Kaposi sarcoma-associated Herpesvirus (KSHV) are probably exclusively expressed in latent infection. This might lead to a steady-state situation with offense and defense mechanisms counteracting each other. Cellular miRNAs involved in defense against pathogens on the other hand might be suppressed in infection. A cell culture system allowing for constitutive expression of individual miRNAs at high levels is a useful tool to enhance miRNA-specific functions and to uncouple viral miRNA function from other infection-related mechanisms. Here, a protocol is described to generate stable cell lines for constitutive expression of single cellular or viral miRNA precursors in absence of infection. The procedure comprises cloning of the precursor sequence, generation of the lentiviral expression vector, transduction of the cells of interest, selection for polyclonal cell lines, and isolation of monoclonal cell lines by limiting dilution.

  16. miRegulome: a knowledge-base of miRNA regulomics and analysis.

    PubMed

    Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam

    2015-08-05

    miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. http://bnet.egr.vcu.edu/miRegulome.

  17. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linkedmore » to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.« less

  18. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients

    PubMed Central

    Delić, Denis; Eisele, Claudia; Schmid, Ramona; Baum, Patrick; Wiech, Franziska; Gerl, Martin; Zimdahl, Heike; Pullen, Steven S.; Urquhart, Richard

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies. PMID:26930277

  19. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    PubMed

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  20. miRNAs in the Pathogenesis of Systemic Lupus Erythematosus

    PubMed Central

    Qu, Bo; Shen, Nan

    2015-01-01

    MicroRNAs (miRNAs) were first discovered as regulatory RNAs that controlled the timing of the larval development of Caenorhabditis elegans. Since then, nearly 30,000 mature miRNA products have been found in many species, including plants, warms, flies and mammals. Currently, miRNAs are well established as endogenous small (~22 nt) noncoding RNAs, which have functions in regulating mRNA stability and translation. Owing to intensive investigations during the last decade, miRNAs were found to play essential roles in regulating many physiological and pathological processes. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by elevated autoantibodies against nuclear antigens and excessive inflammatory responses affecting multiple organs. Although efforts were taken and theories were produced to elucidate the pathogenesis of SLE, we still lack sufficient knowledge about the disease for developing effective therapies for lupus patients. Recent advances indicate that miRNAs are involved in the development of SLE, which gives us new insights into the pathogenesis of SLE and might lead to the finding of new therapeutic targets. Here, we will review recent discoveries about how miRNAs are involved in the pathogenesis of SLE and how it can promote the development of new therapy. PMID:25927578

  1. miRNAs in the Pathogenesis of Systemic Lupus Erythematosus.

    PubMed

    Qu, Bo; Shen, Nan

    2015-04-28

    MicroRNAs (miRNAs) were first discovered as regulatory RNAs that controlled the timing of the larval development of Caenorhabditis elegans. Since then, nearly 30,000 mature miRNA products have been found in many species, including plants, warms, flies and mammals. Currently, miRNAs are well established as endogenous small (~22 nt) noncoding RNAs, which have functions in regulating mRNA stability and translation. Owing to intensive investigations during the last decade, miRNAs were found to play essential roles in regulating many physiological and pathological processes. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by elevated autoantibodies against nuclear antigens and excessive inflammatory responses affecting multiple organs. Although efforts were taken and theories were produced to elucidate the pathogenesis of SLE, we still lack sufficient knowledge about the disease for developing effective therapies for lupus patients. Recent advances indicate that miRNAs are involved in the development of SLE, which gives us new insights into the pathogenesis of SLE and might lead to the finding of new therapeutic targets. Here, we will review recent discoveries about how miRNAs are involved in the pathogenesis of SLE and how it can promote the development of new therapy.

  2. Development of fine-leaved Festuca grass populations identified genetic resources having potential for improved forage production and wildfire control in the western United States

    USDA-ARS?s Scientific Manuscript database

    Drought and heat tolerant fine-leaved fescue (Festuca ssp.) grasses have potential as components in rangeland greenstrips for wildfire control in semi-arid climates. However, such fine-leaved grasses have been difficult to identify because of specific adaptations, lack of late maturity, and often p...

  3. Detection of Plant miRNAs Abundance in Human Breast Milk.

    PubMed

    Lukasik, Anna; Brzozowska, Iwona; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr

    2017-12-23

    Breast milk is a natural food and important component of infant nutrition. Apart from the alimentary substances, breast milk contains many important bioactive compounds, including endogenous microRNA molecules (miRNAs). These regulatory molecules were identified in various mammalian biological fluids and were shown to be mostly packed in exosomes. Recently, it was revealed that plant food-derived miRNAs are stably present in human blood and regulate the expression of specific human genes. Since then, the scientific community has focused its efforts on contradicting or confirming this discovery. With the same intention, qRT-PCR experiments were performed to evaluate the presence of five plant food-derived miRNAs (miR166a, miR156a, miR157a, miR172a and miR168a) in breast milk (whole milk and exosomes) from healthy volunteers. In whole milk samples, all examined miRNAs were identified, while only two of these miRNAs were confirmed to be present in exosomes. The plant miRNA concentration in the samples ranged from 4 to 700 fM. Complementary bioinformatics analysis suggests that the evaluated plant miRNAs may potentially influence several crucial biological pathways in the infant organism.

  4. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes

    PubMed Central

    Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei

    2015-01-01

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H+-ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA

  5. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes.

    PubMed

    Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei

    2015-01-01

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H (+) -ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA

  6. miRNA-34b is directly involved in the aging of macrophages.

    PubMed

    Liang, Wei; Gao, Sheng; Liang, Liu; Huang, Xianing; Hu, Nan; Lu, Xiaoling; Zhao, Yongxiang

    2017-08-01

    MicroRNAs (miRNAs) are a class of short noncoding RNA that play important regulatory roles in living organisms. These RNA molecules are implicated in the development and progression of malignant diseases such as cancer and are closely associated with cell aging. Findings demonstrating that microRNA is associated with aging in macrophages have nevertheless rarely been reported. This study's objective was to investigate if miRNA-34 is linked to aging process of macrophages. We built a cell aging model in mouse RAW264.7 macrophages using D-galactose and determined the expression levels of miRNA-34a, miRNA-34b, and miRNA-34c in aging and normal macrophages by fluorescence quantitative polymerase chain reaction (q-PCR). We predicted a target gene of miRNA-34 using biological information techniques and constructed the recombinant plasmid pGL3-E2f3 for the putative target gene E2f3. The expression level of miRNA-34b was 5.23 times higher in aging macrophages than in normal macrophages. The luciferase activity decreased by nearly 50 % in cells transfected with miRNA-34b mimics, while no significant decrease in luciferase activity was noted in cells transfected with the miRNA-34b inhibitor or unrelated sequences. Our findings provide the groundwork for further research into the molecular mechanisms whereby miRNA-34b regulates the aging of macrophages. miRNA-34b is associated with the aging of RAW264.7 macrophages, and E2f3 is a target gene of miRNA-34b.

  7. Effect of miRNA-203 on cervical cancer cells and its underlying mechanism.

    PubMed

    Yin, X Z; Zhao, D M; Zhang, G X; Liu, L

    2016-09-23

    miRNA-203 is involved in the development and progression of various types of cancer. However, its role in cervical cancer remains unclear. The aim of this study was to investigate the effect of miRNA-203 on the proliferation and migration of HeLa cervical cancer cells, as well as survivin expression in these cells. A miRNA-203 primer probe was designed according to a sequence obtained from NCBI. The expression of miRNA-203 in cervical epithelial cells and cervical cancer cells was detected by quantitative reverse transcriptase-polymerase chain reaction. The miRNA-203 expression pattern was compared between these two cell lines. The cervical cancer cells were transfected with miRNA-203 mimic or inhibitor to determine their effects on proliferation and migration. The expression of the miRNA-203 target protein (survivin) was analyzed by western blot. Cervical cancer cells showed reduced miRNA-203 expression compared to cervical epithelial cells. Transfection of miRNA-203 mimic upregulated the expression of miRNA-203, suppressed cell proliferation and migration, and downregulated survivin expression (P < 0.05). However, downregulation of miRNA-203 expression did not affect proliferation, migration, and survivin expression in cervical cancer cells (P > 0.05). In conclusion, upregulation of miRNA-203 in cervical cancer cells inhibits the proliferative and migratory capacities of these cells by downregulating the expression of survivin.

  8. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus.

    PubMed

    Hashimoto, Naoko; Tanaka, Tomoaki

    2017-02-01

    MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.

  9. PmiRExAt: plant miRNA expression atlas database and web applications

    PubMed Central

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157

  10. Can nanotechnology improve cancer diagnosis through miRNA detection?

    PubMed

    Fiammengo, Roberto

    2017-01-01

    miRNAs are key regulators of gene expression, and alterations in their expression levels correlate with the onset and progression of cancer. Although miRNAs have been proposed as biomarkers for cancer diagnosis, their application in routine clinical praxis is yet to come. Current quantification strategies have limitation, and there is a great interest in developing innovative ones. Since a few years, nanotechnology-based approaches for miRNA quantification are emerging at fast pace but there is urgent need to go beyond the proof-of-concept stage. Nanotechnology will have a strong impact on cancer diagnosis through miRNA detection only if it is demonstrated that the newly developed approaches are indeed working on 'real-world' samples under standardized conditions.

  11. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies⋆

    PubMed Central

    Chen, Yunching; Gao, Dong-Yu; Huang, Leaf

    2016-01-01

    MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, play an important role in modulating gene expressions, thereby regulating downstream signaling pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach plays an important role in cancer therapy. However, one of the major challenges of miRNA-based cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs In vivo. This review discusses the key challenges to the development of the carriers for miRNA-based therapy and explores current strategies to systemically deliver miRNAs to cancer without induction of toxicity. PMID:24859533

  13. Identification of miRNAs during mouse postnatal ovarian development and superovulation.

    PubMed

    Khan, Hamid Ali; Zhao, Yi; Wang, Li; Li, Qian; Du, Yu-Ai; Dan, Yi; Huo, Li-Jun

    2015-07-08

    MicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level. Tight regulation of multitude of genes involved in ovarian development and folliculogenesis could be regulated at transcription level by these miRNAs. Therefore, tissue specific miRNAs identification is considered a key step towards understanding the role of miRNAs in biological processes. To investigate the role of microRNAs during ovarian development and folliculogenesis we sequenced eight different libraries using Illumina deep sequencing technology. Different developmental stages were selected to explore miRNAs expression pattern at different stages of gonadal maturation with/without treatment of PMSG/hCG for superovulation. From massive sequencing reads, clean reads of 16-26 bp were selected for further analysis of differential expression analysis and novel microRNA annotation. Expression analysis of all miRNAs at different developmental stages showed that some miRNAs were present ubiquitously while others were differentially expressed at different stages. Among differentially expressed miRNAs we reported 61 miRNAs with a fold change of more than 2 at different developmental stages among all libraries. Among the up-regulated miRNAs, mmu-mir-1298 had the highest fold change with 4.025 while mmu-mir-150 was down-regulated more than 3 fold. Furthermore, we found 2659 target genes for 20 differentially expressed microRNAs using seven different target predictions programs (DIANA-mT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR5, TargetScan). Analysis of the predicted targets showed certain ovary specific genes targeted by single or multiple microRNAs. Furthermore, pathway annotation and Gene ontology showed involvement of these microRNAs in basic cellular process. These results suggest the presence of different miRNAs at different stages of ovarian development and

  14. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.

    PubMed

    Kwekkeboom, Rick F J; Lei, Zhiyong; Doevendans, Pieter A; Musters, René J P; Sluijter, Joost P G

    2014-09-01

    Dysregulation of miRNA expression has been associated with many cardiovascular diseases in animal models, as well as in patients. In the present review, we summarize recent findings on the role of miRNAs in cardiovascular diseases and discuss the opportunities, possibilities and challenges of using miRNAs as future therapeutic targets. Furthermore, we focus on the different approaches that can be used to deliver these newly developed miRNA therapeutics to their sites of action. Since siRNAs are structurally homologous with the miRNA therapeutics, important lessons learned from siRNA delivery strategies are discussed that might be applicable to targeted delivery of miRNA therapeutics, thereby reducing costs and potential side effects, and improving efficacy.

  15. Application of miRNAs as Biomarkers of Exposure and Effects ...

    EPA Pesticide Factsheets

    Of the known epigenetic mechanisms, non-coding RNA and more specifically, microRNA (miRNA), offer the most immediate promise for risk assessment applications because these molecules can serve as excellent biomarkers of toxicity. The advantages of miRNA versus more classical protein toxicity biomarkers include: greater stability and earlier appearance in biofluids that can be obtained by relatively non-invasive approaches; tissue- and/or cell-specific expression patterns; evolutionary conservation in both sequence and function across species; and novel technologies for sensitive and accurate quantification. Further, information on individual miRNA is readily available through databases such as miRBase and others. Thus miRNA biomarkers offer substantial benefits in terms of cost, time, convenience, sensitivity, and specificity when assessing environmental-induced toxicity in model systems or human cohorts. Although this field is rapidly expanding, documented examples include associations of miR-155 with lymphocytic leukemia, miR-122 with liver toxicity; miR-206 with skeletal muscle disease; and miR-208a-3p with cardiac toxicity. Despite their promise, some challenges in using miRNAs as toxicity biomarkers remain, including the need for improved methods for normalizing miRNA measurements, translating findings of biofluid-based miRNA biomarker alterations in experimental models to human health and specific cell/tissue injury, and finally, the need to better defi

  16. Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma.

    PubMed

    Nayak, Subhashree; Aich, Meghali; Kumar, Anupam; Sengupta, Suman; Bajad, Prajakta; Dhapola, Parashar; Paul, Deepanjan; Narta, Kiran; Purkrait, Suvendu; Mehani, Bharati; Suri, Ashish; Chakraborty, Debojyoti; Mukhopadhyay, Arijit; Sarkar, Chitra

    2018-05-16

    Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78-88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson's r = 0.62; p < 3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy.

  17. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    PubMed

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  18. miRNA expression in control and FSHD fetal human muscle biopsies.

    PubMed

    Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.

  19. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules".

    PubMed

    Wang, Wang-Xia; Wilfred, Bernard R; Xie, Kevin; Jennings, Mary H; Hu, Yanling Hu; Stromberg, Arnold J; Nelson, Peter T

    2010-01-01

    MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using an assay we validated previously-a "RIP-Chip" experimental design. RIP-Chip data provided a list of mRNAs recruited into the AGO-miRNP in correlation to each miRNA. These experimentally identified miRNA targets were analyzed for complementary six nucleotide "seed" sequences within the transfected miRNAs. We found that miR-124 targets tended to have sequences in the 3'UTR that would be recognized by the 5' seed of miR-124, as described in previous studies. By contrast, miR-107 targets tended to have 'seed' sequences in the mRNA open reading frame, but not the 3' UTR. Further, mRNA targets of miR-128 and miR-320 are less enriched for 6-mer seed sequences in comparison to miR-107 and miR-124. In sum, our data support the importance of the 5' seed in determining binding characteristics for some miRNAs; however, the "binding rules" are complex, and individual miRNAs can have distinct sequence determinants that lead to mRNA targeting.

  20. A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia

    PubMed Central

    Qiu, Jin; Cosmopoulos, Katherine; Pegtel, Michiel; Hopmans, Erik; Murray, Paul; Middeldorp, Jaap; Shapiro, Michael; Thorley-Lawson, David A.

    2011-01-01

    We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between

  1. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging.

    PubMed

    Olivieri, Fabiola; Capri, Miriam; Bonafè, Massimiliano; Morsiani, Cristina; Jung, Hwa Jin; Spazzafumo, Liana; Viña, Jose; Suh, Yousin

    2017-07-01

    Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are currently conceived as those endowed with the strongest ability to provide information about the trajectories of healthy and unhealthy aging. We review the available data on miRNAs in aging and underpin the evidence suggesting that circulating miRNAs (and cognate shuttles), especially those involved in the regulation of inflammation (inflamma-miRs) may constitute biomarkers capable of reliably depicting healthy and unhealthy aging trajectories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. RNA sequencing reveals significant miRNAs in Atypical endometrial hyperplasia.

    PubMed

    Tang, Shiqian; Dai, Yinmei

    2018-06-01

    In this paper, we aimed to investigate the miRNAs that played a regulatory role in the development of atypical endometrial hyperplasia (AEH). RNA sequencing was performed for endometrial tissues from 3 AEH patients and 3 endometrial normal hyperplasia patients. RNA sequencing data were processed and differentially expressed (DE) miRNAs were identified between AEH and controls. The target genes for DE miRNAs were identified and mapped to the protein-protein interaction (PPI) network. The miRNA related functions were predicted and miRNA-disease gene network was constructed. Total 18 DE miRNAs were overlapped in three sample groups, among which hsa-miR-577, hsa-miR-182-5p and hsa-miR-183-5p were top three miRNAs that targeting largest number of genes. Function analysis showed that the 18 overlapped miRNAs mainly related with cancer and signaling transduction related pathways. PPI network showed that total 12 genes were among top 20 genes based on three network topological features including BCL2, UMPS, MAPK13, PRKCB, CREB1, IGF1, SP1, SMAD3, IGF1R, NOTCH2, WNT5A, TK2. Top 10 miRNAs in miRNA-disease gene network were identified such as hsa-miR-577 (degree = 17), hsa-miR-182-5p (degree = 16) and hsa-miR-3609 (degree = 13). hsa-miR-577 and hsa-miR-182-5p may play regulatory role in AEH through AMPK signal pathway and Wnt signaling pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Crosstalk between Hippo signalling and miRNAs in tumour progression.

    PubMed

    Li, Nianshuang; Xie, Chuan; Lu, Nonghua

    2017-04-01

    The Hippo signalling pathway co-ordinately modulates cell regeneration and organ size, and its deregulation contributes to tumorigenesis through many cellular processes, including overproliferation, apoptosis resistance and cell migration. Recent discoveries have shed new light on how microRNAs (miRNAs) are closely linked to the Hippo pathway in tumour progression. Hippo signalling has been reported to affect widespread miRNA biogenesis. In turn, several miRNAs regulate Hippo signalling, which contributes to carcinogenesis. This article will provide an overview of the crosstalk between Hippo signalling and miRNAs in the development of cancer and further appraise potential targets for therapeutic intervention. © 2016 Federation of European Biochemical Societies.

  4. Identification of Mouse Serum miRNA Endogenous References by Global Gene Expression Profiles

    PubMed Central

    Mi, Qing-Sheng; Weiland, Matthew; Qi, Rui-Qun; Gao, Xing-Hua; Poisson, Laila M.; Zhou, Li

    2012-01-01

    MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments. PMID:22348064

  5. TargetCompare: A web interface to compare simultaneous miRNAs targets

    PubMed Central

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-dos-Santos, André M; dos Santos, Ândrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. Availability http://lghm.ufpa.br/targetcompare PMID:25352731

  6. Sensitive and label-free detection of miRNA-145 by triplex formation.

    PubMed

    Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon

    2016-01-01

    The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.

  7. Comparative studies of two methods for miRNA isolation from milk whey.

    PubMed

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-06-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS(®) followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS(®) followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (<200 nt) from milk whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100).

  8. Comparative studies of two methods for miRNA isolation from milk whey*

    PubMed Central

    Jin, Xiao-lu; Wei, Zi-hai; Liu, Lan; Liu, Hong-yun; Liu, Jian-xin

    2015-01-01

    MicroRNAs (miRNAs) from milk whey have been considered for their potential as noninvasive biomarkers for milk quality control and disease diagnosis. However, standard protocols for miRNA isolation and quantification from milk whey are not well established. The objective of this study was to compare two methods for the isolation of miRNAs from milk whey. These two methods were modified phenol-based technique (Trizol LS® followed by phenol precipitation, the TP method) and combined phenol and column-based approach (Trizol LS® followed by cleanup using the miRNeasy kit, the TM method). Yield and quality of RNA were rigorously measured using a NanoDrop ND-1000 spectrophotometer and then the distribution of RNA was precisely detected in a Bioanalyzer 2100 instrument by microchip gel electrophoresis. Several endogenous miRNAs (bta-miR-141, bta-miR-146a, bta-miR-148a, bta-miR-200c, bta-miR-362, and bta-miR-375) and an exogenous spike-in synthetic control miRNA (cel-miR-39) were quantified by real-time polymerase chain reaction (PCR) to examine the apparent recovery efficiency of milk whey miRNAs. Both methods could successfully isolate sufficient small RNA (<200 nt) from milk whey, and their yields were quite similar. However, the quantification results show that the total miRNA recovery efficiency by the TM method is superior to that by the TP method. The TM method performed better than the TP for recovery of milk whey miRNA due to its consistency and good repeatability in endogenous and spike-in miRNA recovery. Additionally, quantitative recovery analysis of a spike-in miRNA may be more accurate to reflect the milk whey miRNA recovery efficiency than using traditional RNA quality analysis instruments (NanoDrop or Bioanalyzer 2100). PMID:26055915

  9. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  10. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    NASA Astrophysics Data System (ADS)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  11. Human Milk and Matched Serum Demonstrate Concentration of Select miRNAs.

    PubMed

    Qin, Wenyi; Dasgupta, Santanu; Corradi, John; Sauter, Edward R

    Pregnancy-associated breast cancers (PABCs), especially those diagnosed after childbirth, are often aggressive, with a poor prognosis. Factors influencing PABC are largely unknown. Micro(mi)RNAs are present in many human body fluids and shown to influence cancer development and/or growth. In six nursing mothers, we determined if breast cancer-associated miRNAs were (1) detectable in human breast milk and (2) if detectable, their relative expression in milk fractions compared to matched serum. We evaluated by quantitative PCR the expression of 11 cancer-associated miRNAs (10a-5p, 16, 21, 100, 140, 145, 155, 181, 199, 205, 212) in breast milk cells, fat and supernatant (skim milk), and matched serum. miRNA expression was detectable in all samples. For 10/11 miRNAs, mean relative expression compared to control (ΔCt) values was lowest in milk cells, the exception being miR205. Relative concentration was highest in the skim fraction of milk for all miRNAs. Expression was higher in skim milk than matched serum for 7/11 miRNAs and in serum for 4/11 miRNAs. miR205 expression was higher in all milk fractions than in matched serum. In conclusion, the expression of breast cancer-associated miRNAs is detectable in human breast milk and serum samples. The concentration is highest in skim milk, but is also detectable in milk fat and milk cells.

  12. miRNAtools: Advanced Training Using the miRNA Web of Knowledge.

    PubMed

    Stępień, Ewa Ł; Costa, Marina C; Enguita, Francisco J

    2018-02-16

    Micro-RNAs (miRNAs) are small non-coding RNAs that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets have helped the development not only of many computer applications for the prediction of miRNA target recognition but also of specific applications for functional assessment and analysis. Learning about miRNA function requires practical training in the use of specific computer and web-based applications that are complementary to wet-lab studies. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This article compiles tools with which miRNAs and their regulatory action can be analyzed and that function to collect and organize information dispersed on the web. The miRNAtools website contains a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials engage in analyses of the functions of selected miRNAs, starting with their nomenclature and genomic localization and finishing with their involvement in specific cellular functions.

  13. Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp

    PubMed Central

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  14. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    PubMed

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation

    PubMed Central

    Sosa, Enrique; Flores, Luis; Yan, Wei; McCarrey, John R.

    2015-01-01

    Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. PMID:26395485

  16. Effector and regulatory dendritic cells display distinct patterns of miRNA expression

    PubMed Central

    Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet‐Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron‐Bodo, Véronique; Moingeon, Philippe

    2017-01-01

    Abstract Introduction MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Method Using specific culture conditions, we differentiated immature human monocyte‐derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of TH1, TH2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non‐allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. Results We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR‐132 and miR‐155), was down‐regulated compared to non‐allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Conclusions Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow‐up AIT efficacy. PMID:28497578

  17. Identifying relevant group of miRNAs in cancer using fuzzy mutual information.

    PubMed

    Pal, Jayanta Kumar; Ray, Shubhra Sankar; Pal, Sankar K

    2016-04-01

    MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy. Fuzzy mutual information is used in computing the relevance of a group and the redundancy of miRNAs within it. Superiority of the most relevant group to all others, in deciding normal or cancer, is demonstrated on breast, renal, colorectal, lung, melanoma and prostate data. The merit of FMIMS as compared to several existing methods is established. While 12 out of 15 selected miRNAs by FMIMS corroborate with those of biological investigations, three of them viz., "hsa-miR-519," "hsa-miR-431" and "hsa-miR-320c" are possible novel predictions for renal cancer, lung cancer and melanoma, respectively. The selected miRNAs are found to be involved in disease-specific pathways by targeting various genes. The method is also able to detect the responsible miRNAs even at the primary stage of cancer. The related code is available at http://www.jayanta.droppages.com/FMIMS.html .

  18. miRiadne: a web tool for consistent integration of miRNA nomenclature.

    PubMed

    Bonnal, Raoul J P; Rossi, Riccardo L; Carpi, Donatella; Ranzani, Valeria; Abrignani, Sergio; Pagani, Massimiliano

    2015-07-01

    The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer.

    PubMed

    Wilczynski, Milosz; Danielska, Justyna; Dzieniecka, Monika; Szymanska, Bozena; Wojciechowski, Michal; Malinowski, Andrzej

    2016-01-01

    Endometrial cancer is one of the most common malignancies of the reproductive female tract, with endometrioid endometrial cancer being the most frequent type. Despite the relatively favourable prognosis in cases of endometrial cancer, there is a necessity to evaluate clinical and prognostic utility of new molecular markers. MiRNAs are small, non-coding RNA molecules that take part in RNA silencing and post-transcriptional regulation of gene expression. Altered expression of miRNAs may be associated with cancer initiation, progression and metastatic capabilities. MiRNA-205 seems to be one of the key regulators of gene expression in endometrial cancer. In this study, we investigated clinical and prognostic role of miRNA-205 in endometrioid endometrial cancer. After total RNA extraction from 100 archival formalin-fixed paraffin-embedded tissues, real-time quantitative RT-PCR was used to define miRNA-205 expression levels. The aim of the study was to evaluate miRNA-205 expression levels in regard to patients' clinical and histopathological features, such as: survival rate, recurrence rate, staging, myometrial invasion, grading and lymph nodes involvement. Higher levels of miRNA-205 expression were observed in tumours with less than half of myometrial invasion and non-advanced cancers. Kaplan-Maier analysis revealed that higher levels of miRNA-205 were associated with better overall survival (p = 0,034). These results indicate potential clinical utility of miRNA-205 as a prognostic marker.

  20. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity.

    PubMed

    Fagegaltier, Delphine; König, Annekatrin; Gordon, Assaf; Lai, Eric C; Gingeras, Thomas R; Hannon, Gregory J; Shcherbata, Halyna R

    2014-10-01

    MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila. Copyright © 2014 by the Genetics Society of America.

  1. Regulatory network involving miRNAs and genes in serous ovarian carcinoma

    PubMed Central

    Zhao, Haiyan; Xu, Hao; Xue, Luchen

    2017-01-01

    Serous ovarian carcinoma (SOC) is one of the most life-threatening types of gynecological malignancy, but the pathogenesis of SOC remains unknown. Previous studies have indicated that differentially expressed genes and microRNAs (miRNAs) serve important functions in SOC. However, genes and miRNAs are identified in a disperse form, and limited information is known about the regulatory association between miRNAs and genes in SOC. In the present study, three regulatory networks were hierarchically constructed, including a differentially-expressed network, a related network and a global network to reveal associations between each factor. In each network, there were three types of factors, which were genes, miRNAs and transcription factors that interact with each other. Focus was placed on the differentially-expressed network, in which all genes and miRNAs were differentially expressed and therefore may have affected the development of SOC. Following the comparison and analysis between the three networks, a number of signaling pathways which demonstrated differentially expressed elements were highlighted. Subsequently, the upstream and downstream elements of differentially expressed miRNAs and genes were listed, and a number of key elements (differentially expressed miRNAs, genes and TFs predicted using the P-match method) were analyzed. The differentially expressed network partially illuminated the pathogenesis of SOC. It was hypothesized that if there was no differential expression of miRNAs and genes, SOC may be prevented and treatment may be identified. The present study provided a theoretical foundation for gene therapy for SOC. PMID:29113276

  2. Effects of five mulch materials on microclimatic conditions affecting the establishment of vegetation on minesoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, T.R.; Wittwer, R.F.

    1980-12-01

    The influence of five mulch materials (hardwood bark, hardwood bark with chicken manure, hardwood bark with composted sewage, pelletized grass by-products, and recycled magazine stock) on microclimate and their effect on the revegetation of mine spoils was evaluated. Four tree species (black walnut, Juglan nigra L., boxelder, Acer negundo L., Ohio buckeye, Aesculus glabra Willd., and eastern white pine, Pinus strobus L.) were spot-seeded and a forage mixture of tall fescue, Festuca arundinacea Schreb., orchard grass, Dactylis glomerata L., Dutch white clover, Trifolium repens L., and birdsfoot refoil, Lotus cornicalatans L. was broadcast as a cover. Minesoil temperature and moisture,more » germination, survival and height growth of trees, and percent cover by forages were variables measured. Chemical analysis for mineral content of the five mulch materials was obtained.« less

  3. Laser-induced Breakdown Spectroscopy used to Detect Endophyte-mediated Accumulation of Metals by Tall Fescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Stewart, Arthur J; Gwinn, Dr. Kimberley

    Laser-induced breakdown spectroscopy was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by ICP-MS. Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni and Zn) were measured by both techniques at concentrations great enough to reliably compare. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typicallymore » achieved using ICP-MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.« less

  4. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cdmore » concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.« less

  5. Epigenetic Regulation of miRNAs and Breast Cancer Stem Cells

    PubMed Central

    Duru, Nadire; Gernapudi, Ramkishore; Eades, Gabriel; Eckert, Richard; Zhou, Qun

    2015-01-01

    MicroRNAs have emerged as important targets of chemopreventive strategies in breast cancer. We have found that miRNAs are dysregulated at an early stage in breast cancer, in non-malignant Ductal Carcinoma In Situ. Many dietary chemoprevention agents can act by epigenetically activating miRNA-signaling pathways involved in tumor cell proliferation and invasive progression. In addition, many miRNAs activated via chemopreventive strategies target cancer stem cell signaling and prevent tumor progression or relapse. Specifically, we have found that miRNAs regulate DCIS stem cells, which may play important roles in breast cancer progression to invasive disease. We have shown that chemopreventive agents can directly inhibit DCIS stem cells and block tumor formation in vivo, via activation of tumor suppressor miRNAs. PMID:26052481

  6. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.

    PubMed

    Morales-Prieto, D M; Ospina-Prieto, S; Schmidt, A; Chaiwangyen, W; Markert, U R

    2014-02-01

    MicroRNAs (miRNAs) regulate the expression of a large number of genes in plants and animals. Placental miRNAs appeared late in evolution and can be found only in mammals. Nevertheless, these miRNAs are constantly under evolutionary pressure. As a consequence, miRNA sequences and their mRNA targets may differ between species, and some miRNAs can only be found in humans. Their expression can be tissue- or cell-specific and can vary time-dependently. Human placenta tissue exhibits a specific miRNA expression pattern that dynamically changes during pregnancy and is reflected in the maternal plasma. Some placental miRNAs are involved in or associated with major pregnancy disorders, such as preeclampsia, intrauterine growth restriction or preterm delivery and, therefore, have a strong potential for usage as sensitive and specific biomarkers. In this review we summarize current knowledge on the origin of placental miRNAs, their expression in humans with special regard to trophoblast cells, interspecies differences, and their future as biomarkers. It can be concluded that animal models for human reproduction have a different panel of miRNAs and targets, and can only partly reflect or predict the situation in humans. Copyright © 2013. Published by Elsevier Ltd.

  7. Effector and regulatory dendritic cells display distinct patterns of miRNA expression.

    PubMed

    Lombardi, Vincent; Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet-Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron-Bodo, Véronique; Moingeon, Philippe

    2017-09-01

    MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Using specific culture conditions, we differentiated immature human monocyte-derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non-allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR-132 and miR-155), was down-regulated compared to non-allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow-up AIT efficacy. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  8. Loop nucleotides control primary and mature miRNA function in target recognition and repression

    PubMed Central

    Yue, Si-Biao; Deis Trujillo, Robin; Tang, Yujie; O'Gorman, William E

    2011-01-01

    MicroRNA (miRNA) genes produce three major RNA products; primary (pri-), precursor (pre-), and mature miRNAs. Each product includes sequences complementary to cognate targets, thus they all can in principle interact with the targets. In a recent study we showed that pri-miRNAs play a direct role in target recognition and repression in the absence of functional mature miRNAs. Here we examined the functional contribution of pri-miRNAs in target regulation when full-length functional miRNAs are present. We found that pri-let-7 loop nucleotides control the production of the 5′ end of mature miRNAs and modulate the activity of the miRNA gene. This insight enabled us to modulate biogenesis of functional mature miRNAs and dissect the causal relationships between mature miRNA biogenesis and target repression. We demonstrate that both pri- and mature miRNAs can contribute to target repression and that their contributions can be distinguished by the differences between the pri- and mature miRNAs' sensitivity to bind to the first seed nucleotide. Our results demonstrate that the regulatory information encoded in the pri-/pre-miRNA loop nucleotides controls the activities of pri-miRNAs and mature let-7 by influencing pri-miRNA and target complex formation and the fidelity of mature miRNA seed generation. PMID:22142974

  9. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths

    PubMed Central

    Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.

    2015-01-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364

  10. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    PubMed Central

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy. PMID:25749473

  11. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    PubMed

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  12. Psmir: a database of potential associations between small molecules and miRNAs

    PubMed Central

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-01

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules’ effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/. PMID:26759061

  13. Psmir: a database of potential associations between small molecules and miRNAs.

    PubMed

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  14. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication.

    PubMed

    Zhao, Yuhai; Cong, Lin; Lukiw, Walter J

    2018-01-01

    microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.

  15. C-mii: a tool for plant miRNA and target identification.

    PubMed

    Numnark, Somrak; Mhuantong, Wuttichai; Ingsriswang, Supawadee; Wichadakul, Duangdao

    2012-01-01

    MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported. Their methods, however, are only described as flow diagrams, which require programming skills and the understanding of input and output of the connected programs to reproduce. To overcome these limitations and programming complexities, we proposed C-mii as a ready-made software package for both plant miRNA and target identification. C-mii was designed and implemented based on established computational steps and criteria derived from previous literature with the following distinguishing features. First, software is easy to install with all-in-one programs and packaged databases. Second, it comes with graphical user interfaces (GUIs) for ease of use. Users can identify plant miRNAs and targets via step-by-step execution, explore the detailed results from each step, filter the results according to proposed constraints in plant miRNA and target biogenesis, and export sequences and structures of interest. Third, it supplies bird's eye views of the identification results with infographics and grouping information. Fourth, in terms of functionality, it extends the standard computational steps of miRNA target identification with miRNA-target folding and GO annotation. Fifth, it provides helper functions for the update of pre-installed databases and automatic recovery. Finally, it supports multi-project and multi-thread management. C-mii constitutes the first complete software package with graphical user interfaces enabling computational identification of both plant miRNA genes and miRNA

  16. C-mii: a tool for plant miRNA and target identification

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported. Their methods, however, are only described as flow diagrams, which require programming skills and the understanding of input and output of the connected programs to reproduce. Results To overcome these limitations and programming complexities, we proposed C-mii as a ready-made software package for both plant miRNA and target identification. C-mii was designed and implemented based on established computational steps and criteria derived from previous literature with the following distinguishing features. First, software is easy to install with all-in-one programs and packaged databases. Second, it comes with graphical user interfaces (GUIs) for ease of use. Users can identify plant miRNAs and targets via step-by-step execution, explore the detailed results from each step, filter the results according to proposed constraints in plant miRNA and target biogenesis, and export sequences and structures of interest. Third, it supplies bird's eye views of the identification results with infographics and grouping information. Fourth, in terms of functionality, it extends the standard computational steps of miRNA target identification with miRNA-target folding and GO annotation. Fifth, it provides helper functions for the update of pre-installed databases and automatic recovery. Finally, it supports multi-project and multi-thread management. Conclusions C-mii constitutes the first complete software package with graphical user interfaces enabling computational identification of

  17. Identification and Characterization of the miRNA Transcriptome of Ovis aries

    PubMed Central

    Wei, Caihong; Sheng, Xihui; Ren, Hangxing; Xu, Lingyang; Lu, Jian; Liu, Jiasen; Zhang, Li; Du, Lixin

    2013-01-01

    The discovery and identification of Ovis aries (sheep) miRNAs will further promote the study of miRNA functions and gene regulatory mechanisms. To explore the microRNAome (miRNAome) of sheep in depth, samples were collected that included eight developmental stages: the longissimus dorsi muscles of Texel fetuses at 70, 85, 100, 120, and 135 days, and the longissimus dorsi muscles of Ujumqin fetuses at 70, 85, 100, 120, and 135 d, and lambs at 0 (birth), 35, and 70 d. These samples covered all of the representative periods of Ovis aries growth and development throughout gestation (about 150 d) and 70 d after birth. Texel and Ujumqin libraries were separately subjected to Solexa deep sequencing; 35,700,772 raw reads were obtained overall. We used ACGT101-miR v4.2 to analyze the sequence data. Following meticulous comparisons with mammalian mature miRNAs, precursor hairpins (pre-miRNAs), and the latest sheep genome, we substantially extended the Ovis aries miRNAome. The list of pre-miRNAs was extended to 2,319, expressing 2,914 mature miRNAs. Among those, 1,879 were genome mapped to unique miRNAs, representing 2,436 genome locations, and 1,754 pre-miRNAs were mapped to chromosomes. Furthermore, the Ovis aries miRNAome was processed using an elaborate bioinformatic analysis that examined multiple end sequence variation in miRNAs, precursors, chromosomal localizations, species-specific expressions, and conservative properties. Taken together, this study provides the most comprehensive and accurate exploration of the sheep miRNAome, and draws conclusions about numerous characteristics of Ovis aries miRNAs, including miRNAs and isomiRs. PMID:23516575

  18. Two closely related Rho GTPases, Cdc42 and RacA, of the en-dophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant

    PubMed Central

    2018-01-01

    Epichloë festucae is an endophytic fungus which systemically colonizes temperate grasses to establish symbiotic associations. Maintaining symptomless infection is a key requirement for endophytes, a feature that distinguishes them from pathogenic fungi. While pathogenic fungi extend their hyphae by tip growth, hyphae of E. festucae systemically colonize the intercellular space of expanding host leaves via a unique mechanism of hyphal intercalary growth. This study reports that two homologous Rho GTPases, Cdc42 and RacA, have distinctive roles in the regulation of E. festucae growth in planta. Here we highlight the vital role of Cdc42 for intercalary hyphal growth, as well as involvement of RacA in regulation of hyphal network formation, and demonstrate the consequences of mutations in these genes on plant tissue infection. Functions of Cdc42 and RacA are mediated via interactions with BemA and NoxR respectively, which are expected components of the ROS producing NOX complex. Symbiotic defects found in the racA mutant were rescued by introduction of a Cdc42 with key amino acids substitutions crucial for RacA function, highlighting the significance of the specific interactions of these GTPases with BemA and NoxR for their functional differentiation in symbiotic infection. PMID:29370294

  19. Two closely related Rho GTPases, Cdc42 and RacA, of the en-dophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant.

    PubMed

    Kayano, Yuka; Tanaka, Aiko; Takemoto, Daigo

    2018-01-01

    Epichloë festucae is an endophytic fungus which systemically colonizes temperate grasses to establish symbiotic associations. Maintaining symptomless infection is a key requirement for endophytes, a feature that distinguishes them from pathogenic fungi. While pathogenic fungi extend their hyphae by tip growth, hyphae of E. festucae systemically colonize the intercellular space of expanding host leaves via a unique mechanism of hyphal intercalary growth. This study reports that two homologous Rho GTPases, Cdc42 and RacA, have distinctive roles in the regulation of E. festucae growth in planta. Here we highlight the vital role of Cdc42 for intercalary hyphal growth, as well as involvement of RacA in regulation of hyphal network formation, and demonstrate the consequences of mutations in these genes on plant tissue infection. Functions of Cdc42 and RacA are mediated via interactions with BemA and NoxR respectively, which are expected components of the ROS producing NOX complex. Symbiotic defects found in the racA mutant were rescued by introduction of a Cdc42 with key amino acids substitutions crucial for RacA function, highlighting the significance of the specific interactions of these GTPases with BemA and NoxR for their functional differentiation in symbiotic infection.

  20. Stability of miRNA in human urine supports its biomarker potential

    PubMed Central

    Mall, Christine; Rocke, David M; Durbin-Johnson, Blythe; Weiss, Robert H

    2013-01-01

    Aim miRNAs are showing utility as biomarkers in urologic disease, however, a rigorous evaluation of their stability in urine is lacking. Here, we evaluate the stability of miRNAs in urine under clinically relevant storage procedures. Materials & methods Eight healthy individuals provided clean catch urine samples that were stored at room temperature or at 4°C for 5 days, or subjected to ten freeze–thaw cycles at -80°C. For each condition, two miRNAs, miR-16 and miR-21, were quantitated by quantitative real-time PCR. Results All conditions demonstrated a surprising degree of stability of miRNAs in the urine: by the end of ten freeze–thaw cycles, 23–37% of the initial amount remained; over the 5-day period of storage at room temperature, 35% of the initial amount remained; and at 4°C, 42–56% of the initial amount remained. Both miRNAs also showed degradation at approximately the same rate. Conclusion miRNAs are relatively stable in urine under a variety of storage conditions, which supports their utility as urinary biomarkers. PMID:23905899

  1. Identification of the miRNA targetome in hippocampal neurons using RIP-seq.

    PubMed

    Malmevik, Josephine; Petri, Rebecca; Klussendorf, Thies; Knauff, Pina; Åkerblom, Malin; Johansson, Jenny; Soneji, Shamit; Jakobsson, Johan

    2015-07-28

    MicroRNAs (miRNAs) are key players in the regulation of neuronal processes by targeting a large network of target messenger RNAs (mRNAs). However, the identity and function of mRNAs targeted by miRNAs in specific cells of the brain are largely unknown. Here, we established an adeno-associated viral vector (AAV)-based neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high-throughput sequencing to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this approach, we identified more than two thousand miRNA targets in hippocampal neurons, regulating essential neuronal features such as cell signalling, transcription and axon guidance. Furthermore, we found that stable inhibition of the highly expressed miR-124 and miR-125 in hippocampal neurons led to significant but distinct changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. These findings greatly enhance our understanding of the miRNA targetome in hippocampal neurons.

  2. miRNAs as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo

    2012-03-01

    Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.

  3. An integrated expression atlas of miRNAs and their promoters in human and mouse

    PubMed Central

    de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.

    2018-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439

  4. Identification of Viscum album L. miRNAs and prediction of their medicinal values

    PubMed Central

    Adolf, Jacob; Melzig, Matthias F.

    2017-01-01

    MicroRNAs (miRNAs) are a class of approximately 22 nucleotides single-stranded non-coding RNA molecules that play crucial roles in gene expression. It has been reported that the plant miRNAs might enter mammalian bloodstream and have a functional role in human metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Viscum album L. (Loranthaceae, European mistletoe) has been widely used for the treatment of cancer and cardiovascular diseases, but its functional compounds have not been well characterized. We considered that miRNAs might be involved in the pharmacological activities of V. album. High-throughput Illumina sequencing was performed to identify the novel and conserved miRNAs of V. album. The putative human targets were predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid methods, the intersection of 30697 potential human genes have been predicted as putative targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG pathways. Interestingly, these highly enriched KEGG pathways were associated with some human diseases, especially cancer, cardiovascular diseases and neurological disorders, which might explain the clinical use as well as folk medicine use of mistletoe. However, further experimental validation is necessary to confirm these human targets of mistletoe miRNAs. Additionally, target genes involved in bioactive components synthesis in V. album were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid biosynthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album. PMID:29112983

  5. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    PubMed

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    PubMed

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.

  7. miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis

    PubMed Central

    Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rubio-Somoza, Ignacio; Baena-González, Elena

    2013-01-01

    The SnRK1 protein kinase, the plant ortholog of mammalian AMPK and yeast Snf1, is activated by the energy depletion caused by adverse environmental conditions. Upon activation, SnRK1 triggers extensive transcriptional changes to restore homeostasis and promote stress tolerance and survival partly through the inhibition of anabolism and the activation of catabolism. Despite the identification of a few bZIP transcription factors as downstream effectors, the mechanisms underlying gene regulation, and in particular gene repression by SnRK1, remain mostly unknown. microRNAs (miRNAs) are 20–24 nt RNAs that regulate gene expression post-transcriptionally by driving the cleavage and/or translation attenuation of complementary mRNA targets. In addition to their role in plant development, mounting evidence implicates miRNAs in the response to environmental stress. Given the involvement of miRNAs in stress responses and the fact that some of the SnRK1-regulated genes are miRNA targets, we postulated that miRNAs drive part of the transcriptional reprogramming triggered by SnRK1. By comparing the transcriptional response to energy deprivation between WT and dcl1-9, a mutant deficient in miRNA biogenesis, we identified 831 starvation genes misregulated in the dcl1-9 mutant, out of which 155 are validated or predicted miRNA targets. Functional clustering analysis revealed that the main cellular processes potentially co-regulated by SnRK1 and miRNAs are translation and organelle function and uncover TCP transcription factors as one of the most highly enriched functional clusters. TCP repression during energy deprivation was impaired in miR319 knockdown (MIM319) plants, demonstrating the involvement of miR319 in the stress-dependent regulation of TCPs. Altogether, our data indicates that miRNAs are components of the SnRK1 signaling cascade contributing to the regulation of specific mRNA targets and possibly tuning down particular cellular processes during the stress response

  8. MiRNA-21 has effects to protect kidney injury induced by sepsis.

    PubMed

    Fu, Dian; Dong, Jie; Li, Ping; Tang, Chaopeng; Cheng, Wen; Xu, Zhenyu; Zhou, Wenquan; Ge, Jingping; Xia, Chen; Zhang, Zhengyu

    2017-10-01

    To investigate the miRNA-21 over-expression in the acute kidney injury induced by sepsis, we developed a sepsis induced in vitro model by lip polysaccharide (LPS) and in vovo model by cecal ligation and puncture (CLP) surgery. LPS or CLP surgery induced kidney cell apoptosis increasing. However, the kidney injury indexes of miRNA groups which were transfected with miRNA-21 were significantly suppressed. In further study, the relative proteins expressions were evaluated to explain the miRNA-21 mechanism to improve sepsis induced kidney cell apoptosis. The results were shown that miRNA-21 over-expression had effects to protect kidney cell apoptosis induced by sepsis via PTEN/PI3K/AKT signaling pathway. Copyright © 2017. Published by Elsevier Masson SAS.

  9. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma

    PubMed Central

    Turchinovich, Andrey; Burwinkel, Barbara

    2012-01-01

    Studies of miRNA association with Argonaute (AGO) proteins in mammalian cells have indicated lack of bias toward particular AGO. However, to our knowledge, the use of quantitative methods for studying miRNA association with different AGOs has not been reported so far. In this work we compared the total miRNA content in AGO1 and AGO2 immunoprecipitates obtained from MCF7 adenocarcinoma cells using TaqMan Low Density miRNA Arrays and successfully verified selected miRNAs with qPCR. For most of the miRNA species AGO1 and AGO2 profiles were well correlated, however, some miRNAs demonstrated consistent biases toward one of the Argonautes. Furthermore, miRNAs which were predominantly AGO2-associated derived mostly from sense strands of the corresponding pre-miRNAs while the majority of AGO1 biased miRNAs originated from antisense strands of the pre-miRNAs. Additionally, we show that circulating miRNA in human blood plasma can be immunoprecipitated with both AGO1 and AGO2 antibody. However, unlike in cell lysates, AGO1 and AGO2 associated miRNA profiles in plasma did not correlate, indicating that many cell types contribute to circulating miRNA (given that expression of AGO proteins is tissue specific). Furthermore, AGO-specific miRNA profiles in blood cells differed significantly from miRNAs profiles in plasma indicating that most circulating miRNAs are likely to derive from non-blood cells. Since circulating miRNAs hold great promise as biomarkers for numerous cancers and other diseases, we hypothesize that AGO-specific miRNA profiles might add an additional dimension to circulating miRNA-based diagnostics. PMID:22858679

  10. miRNAs as biomarkers for diagnosis of heart failure

    PubMed Central

    Yan, Hualin; Ma, Fan; Zhang, Yi; Wang, Chuan; Qiu, Dajian; Zhou, Kaiyu; Hua, Yimin; Li, Yifei

    2017-01-01

    Abstract Background: With the rapid development of molecular biology, the kind of mircoRNA (miRNA) has been introduced into emerging role both in cardiac development and pathological procedure. Thus, we conduct this meta-analysis to find out the role of circulating miRNA as a biomarker in detecting heart failure. Methods: We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and World Health Organization clinical trials registry center to identify relevant studies up to August 2016. We performed meta-analysis in a fixed/random-effect model using Meta-disc 1.4. We used STATA 14.0 to estimate the publication bias and meta-regression. Besides, we took use of SPSS 17.0 to evaluate variance between several groups. Information on true positive, false positive, false negative, and true negative, as well as the quality of research was extracted. Results: We use results from 10 articles to analyze the pooled accuracy. The overall performance of total mixed miRNAs (TmiRs) detection was: pooled sensitivity, 0.74 (95% confidence interval [CI], 0.72 to 0.75); pooled specificity, 0.69 (95%CI, 0.67 to 0.71); and area under the summary receiver operating characteristic curves value (SROC), 0.7991. The miRNA-423-5p (miR-423-5p) detection was: pooled sensitivity, 0.81 (95%CI, 0.76 to 0.85); pooled specificity, 0.67 (95%CI, 0.61 to 0.73); and SROC, 0.8600. However, taken the same patients population, we extracted the data of BNP for detecting heart failure and performed meta-analysis with acceptable SROC as 0.9291. Among the variance analysis, the diagnostic performance of miR-423-5p claimed significant advantages of other pooled results. However, the combination of miRNAs and BNP could increase the accuracy of detecting of heart failure. Unfortunately, there was no dramatic advantage of miR-423-5p compared to BNP protocol. Conclusion: Despite interstudy variability, the performance test of miRNA for detecting heart failure revealed that miR-423-5p

  11. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  12. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level.

    PubMed

    Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui

    2017-05-01

    MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.

  13. Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression

    PubMed Central

    Li, Feng; Li, Xiang; Feng, Li; Shi, Xinrui; Wang, Lihua; Li, Xia

    2016-01-01

    Glioma is a malignant nervous system tumor with a high fatality rate and poor prognosis. MicroRNAs (miRNAs) are important post-transcriptional modulators of glioma initiation and progression. Tumor progression often results from dysfunctional co-operation between pathways regulated by miRNAs. We therefore constructed a glioma progression-related miRNA-pathway crosstalk network that not only revealed some key miRNA-pathway patterns, but also helped characterize the functional roles of miRNAs during glioma progression. Our data indicate that crosstalk between cell cycle and p53 pathways is associated with grade II to grade III progression, while cell communications-related pathways involving regulation of actin cytoskeleton and adherens junctions are associated with grade IV glioblastoma progression. Furthermore, miRNAs and their crosstalk pathways may be useful for stratifying glioma and glioblastoma patients into groups with short or long survival times. Our data indicate that a combination of miRNA and pathway crosstalk information can be used for survival prediction. PMID:27013589

  14. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  15. Genome wide predictions of miRNA regulation by transcription factors.

    PubMed

    Ruffalo, Matthew; Bar-Joseph, Ziv

    2016-09-01

    Reconstructing regulatory networks from expression and interaction data is a major goal of systems biology. While much work has focused on trying to experimentally and computationally determine the set of transcription-factors (TFs) and microRNAs (miRNAs) that regulate genes in these networks, relatively little work has focused on inferring the regulation of miRNAs by TFs. Such regulation can play an important role in several biological processes including development and disease. The main challenge for predicting such interactions is the very small positive training set currently available. Another challenge is the fact that a large fraction of miRNAs are encoded within genes making it hard to determine the specific way in which they are regulated. To enable genome wide predictions of TF-miRNA interactions, we extended semi-supervised machine-learning approaches to integrate a large set of different types of data including sequence, expression, ChIP-seq and epigenetic data. As we show, the methods we develop achieve good performance on both a labeled test set, and when analyzing general co-expression networks. We next analyze mRNA and miRNA cancer expression data, demonstrating the advantage of using the predicted set of interactions for identifying more coherent and relevant modules, genes, and miRNAs. The complete set of predictions is available on the supporting website and can be used by any method that combines miRNAs, genes, and TFs. Code and full set of predictions are available from the supporting website: http://cs.cmu.edu/~mruffalo/tf-mirna/ zivbj@cs.cmu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    PubMed

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  17. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  18. Multistep Model of Cervical Cancer: Participation of miRNAs and Coding Genes

    PubMed Central

    López, Angelica Judith Granados; López, Jesús Adrián

    2014-01-01

    Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs) have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1), the second comprises immortal cell changes to tumorigenic cells (CIN 2), the third step includes cell changes to increase tumorigenic capacity (CIN 3), and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs. PMID:25192291

  19. siRNA Versus miRNA as Therapeutics for Gene Silencing

    PubMed Central

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-01-01

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed. PMID:26372022

  20. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  1. Deep sequencing of small RNA repertoires in mice reveals metabolic disorders-associated hepatic miRNAs.

    PubMed

    Liang, Tingming; Liu, Chang; Ye, Zhenchao

    2013-01-01

    Obesity and associated metabolic disorders contribute importantly to the metabolic syndrome. On the other hand, microRNAs (miRNAs) are a class of small non-coding RNAs that repress target gene expression by inducing mRNA degradation and/or translation repression. Dysregulation of specific miRNAs in obesity may influence energy metabolism and cause insulin resistance, which leads to dyslipidemia, steatosis hepatis and type 2 diabetes. In the present study, we comprehensively analyzed and validated dysregulated miRNAs in ob/ob mouse liver, as well as miRNA groups based on miRNA gene cluster and gene family by using deep sequencing miRNA datasets. We found that over 13.8% of the total analyzed miRNAs were dysregulated, of which 37 miRNA species showed significantly differential expression. Further RT-qPCR analysis in some selected miRNAs validated the similar expression patterns observed in deep sequencing. Interestingly, we found that miRNA gene cluster and family always showed consistent dysregulation patterns in ob/ob mouse liver, although they had various enrichment levels. Functional enrichment analysis revealed the versatile physiological roles (over six signal pathways and five human diseases) of these miRNAs. Biological studies indicated that overexpression of miR-126 or inhibition of miR-24 in AML-12 cells attenuated free fatty acids-induced fat accumulation. Taken together, our data strongly suggest that obesity and metabolic disturbance are tightly associated with functional miRNAs. We also identified hepatic miRNA candidates serving as potential biomarkers for the diagnose of the metabolic syndrome.

  2. Splenic marginal zone lymphoma: comprehensive analysis of gene expression and miRNA profiling.

    PubMed

    Arribas, Alberto J; Gómez-Abad, Cristina; Sánchez-Beato, Margarita; Martinez, Nerea; Dilisio, Lorena; Casado, Felipe; Cruz, Miguel A; Algara, Patrocinio; Piris, Miguel A; Mollejo, Manuela

    2013-07-01

    Splenic marginal zone lymphoma is a small B-cell neoplasm whose molecular pathogenesis is still essentially unknown and whose differentiation from other small B-cell lymphomas is hampered by the lack of specific markers. We have analyzed the gene expression and miRNA profiles of 31 splenic marginal zone lymphoma cases. For comparison, 7 spleens with reactive lymphoid hyperplasia, 10 spleens infiltrated by chronic lymphocytic leukemia, 12 spleens with follicular lymphoma, 6 spleens infiltrated by mantle cell lymphoma and 15 lymph nodes infiltrated by nodal marginal zone lymphoma were included. The results were validated by qRT-PCR in an independent series including 77 paraffin-embedded splenic marginal zone lymphomas. The splenic marginal zone lymphoma miRNA signature had deregulated expression of 51 miRNAs. The most highly overexpressed miRNAs were miR-155, miR-21, miR-34a, miR-193b and miR-100, while the most repressed miRNAs were miR-377, miR-27b, miR-145, miR-376a and miR-424. MiRNAs located in 14q32-31 were underexpressed in splenic marginal zone lymphoma compared with reactive lymphoid tissues and other B-cell lymphomas. Finally, the gene expression data were integrated with the miRNA profile to identify functional relationships between genes and deregulated miRNAs. Our study reveals miRNAs that are deregulated in splenic marginal zone lymphoma and identifies new candidate diagnostic molecules for splenic marginal zone lymphoma.

  3. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    PubMed

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post

  4. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma?

    PubMed

    Palmini, Gaia; Marini, Francesca; Brandi, Maria Luisa

    2017-03-07

    Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.

  5. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    PubMed

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  6. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs.

    PubMed

    Ludwig, Nicole; Kim, Yoo-Jin; Mueller, Sabine C; Backes, Christina; Werner, Tamara V; Galata, Valentina; Sartorius, Elke; Bohle, Rainer M; Keller, Andreas; Meese, Eckart

    2015-09-01

    Micro (mi)RNAs are key regulators of gene expression and offer themselves as biomarkers for cancer development and progression. Meningioma is one of the most frequent primary intracranial tumors. As of yet, there are limited data on the role of miRNAs in meningioma of different histological subtypes and the affected signaling pathways. In this study, we compared expression of 1205 miRNAs in different meningioma grades and histological subtypes using microarrays and independently validated deregulation of selected miRNAs with quantitative real-time PCR. Clinical utility of a subset of miRNAs as biomarkers for World Health Organization (WHO) grade II meningioma based on quantitative real-time data was tested. Potential targets of deregulated miRNAs were discovered with an in silico analysis. We identified 13 miRNAs deregulated between different subtypes of benign meningiomas, and 52 miRNAs deregulated in anaplastic meningioma compared with benign meningiomas. Known and putative target genes of deregulated miRNAs include genes involved in epithelial-to-mesenchymal transition for benign meningiomas, and Wnt, transforming growth factor-β, and vascular endothelial growth factor signaling for higher-grade meningiomas. Furthermore, a 4-miRNA signature (miR-222, -34a*, -136, and -497) shows promise as a biomarker differentiating WHO grade II from grade I meningiomas with an area under the curve of 0.75. Our data provide novel insights into the contribution of miRNAs to the phenotypic spectrum in benign meningiomas. By deregulating translation of genes belonging to signaling pathways known to be important for meningioma genesis and progression, miRNAs provide a second in line amplification of growth promoting cellular signals. MiRNAs as biomarkers for diagnosis of aggressive meningiomas might prove useful and should be explored further in a prospective manner. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights

  7. Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers.

    PubMed

    Rawlings-Goss, Renata A; Campbell, Michael C; Tishkoff, Sarah A

    2014-08-28

    MiRNA expression profiling is being actively investigated as a clinical biomarker and diagnostic tool to detect multiple cancer types and stages as well as other complex diseases. Initial investigations, however, have not comprehensively taken into account genetic variability affecting miRNA expression and/or function in populations of different ethnic backgrounds. Therefore, more complete surveys of miRNA genetic variability are needed to assess global patterns of miRNA variation within and between diverse human populations and their effect on clinically relevant miRNA genes. Genetic variation in 1524 miRNA genes was examined using whole genome sequencing (60x coverage) in a panel of 69 unrelated individuals from 14 global populations, including European, Asian and African populations. We identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants that are globally population-differentiated in frequency between African and non-African populations (PD-miRNA). The top 1% of PD-miRNA were significantly enriched for regulation of genes involved in glucose/insulin metabolism and cell division (p < 10(-7)), most significantly the mitosis pathway, which is strongly linked to cancer onset. Overall, we identify 7 PD-miRNAs that are currently implicated as cancer biomarkers or diagnostics: hsa-mir-202, hsa-mir-423, hsa-mir-196a-2, hsa-mir-520h, hsa-mir-647, hsa-mir-943, and hsa-mir-1908. Notably, hsa-mir-202, a potential breast cancer biomarker, was found to show significantly high allele frequency differentiation at SNP rs12355840, which is known to affect miRNA expression levels in vivo and subsequently breast cancer mortality. MiRNA expression profiles represent a promising new category of disease biomarkers. However, population specific genetic variation can affect the prevalence and baseline expression of these miRNAs in diverse populations. Consequently, miRNA genetic and expression level variation among ethnic groups may be contributing in

  8. Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis.

    PubMed

    Reithmair, Marlene; Buschmann, Dominik; Märte, Melanie; Kirchner, Benedikt; Hagl, Daniel; Kaufmann, Ines; Pfob, Martina; Chouker, Alexander; Steinlein, Ortrud K; Pfaffl, Michael W; Schelling, Gustav

    2017-10-01

    Septic shock is a common medical condition with a mortality approaching 50% where early diagnosis and treatment are of particular importance for patient survival. Novel biomarkers that serve as prompt indicators of sepsis are urgently needed. High-throughput technologies assessing circulating microRNAs represent an important tool for biomarker identification, but the blood-compartment specificity of these miRNAs has not yet been investigated. We characterized miRNA profiles from serum exosomes, total serum and blood cells (leukocytes, erythrocytes, platelets) of sepsis patients by next-generation sequencing and RT-qPCR (n = 3 × 22) and established differences in miRNA expression between blood compartments. In silico analysis was used to identify compartment-specific signalling functions of differentially regulated miRNAs in sepsis-relevant pathways. In septic shock, a total of 77 and 103 miRNAs were down- and up-regulated, respectively. A majority of these regulated miRNAs (14 in serum, 32 in exosomes and 73 in blood cells) had not been previously associated with sepsis. We found a distinctly compartment-specific regulation of miRNAs between sepsis patients and healthy volunteers. Blood cellular miR-199b-5p was identified as a potential early indicator for sepsis and septic shock. miR-125b-5p and miR-26b-5p were uniquely regulated in exosomes and serum, respectively, while one miRNA (miR-27b-3p) was present in all three compartments. The expression of sepsis-associated miRNAs is compartment-specific. Exosome-derived miRNAs contribute significant information regarding sepsis diagnosis and survival prediction and could serve as newly identified targets for the development of novel sepsis biomarkers. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    PubMed

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  10. miRNA Signature and Dicer Requirement during Human Endometrial Stromal Decidualization In Vitro

    PubMed Central

    Estella, Carlos; Herrer, Isabel; Moreno-Moya, Juan Manuel; Quiñonero, Alicia; Martínez, Sebastián; Pellicer, Antonio; Simón, Carlos

    2012-01-01

    Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs) decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human endometrial decidualization

  11. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.

    PubMed

    Krol, Jacek; Sobczak, Krzysztof; Wilczynska, Urszula; Drath, Maria; Jasinska, Anna; Kaczynska, Danuta; Krzyzosiak, Wlodzimierz J

    2004-10-01

    We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).

  12. miRNA Profiles as a Predictor of Chemoresponsiveness in Wilms’ Tumor Blastema

    PubMed Central

    Watson, Jenny A.; Bryan, Kenneth; Williams, Richard; Popov, Sergey; Vujanic, Gordan; Coulomb, Aurore; Boccon-Gibod, Liliane; Graf, Norbert; Pritchard-Jones, Kathy; O’Sullivan, Maureen

    2013-01-01

    The current SIOP treatment protocol for Wilms’ tumor involves pre-operative chemotherapy followed by nephrectomy. Not all patients benefit equally from such chemotherapy. The aim of this study was to generate a miRNA profile of chemo resistant blastemal cells in high risk Wilms’ tumors which might serve as predictive markers of therapeutic response at the pre-treatment biopsy stage. We have shown here that unsupervised hierarchical clustering of genome-wide miRNA expression profiles can clearly separate intermediate risk tumors from high risk tumors. A total of 29 miRNAs were significantly differentially expressed between post-treatment intermediate risk and high risk groups, including miRNAs that have been previously linked to chemo resistance in other cancer types. Furthermore, 7 of these 29 miRNAs were already at the pre-treatment biopsy stage differentially expressed between cases ultimately deemed intermediate risk compared to high risk. These miRNA alterations include down-regulation in high risk cases of miR-193a.5p, miR-27a and the up-regulation of miR-483.5p, miR-628.5p, miR-590.5p, miR-302a and miR-367. The demonstration of such miRNA markers at the pre-treatment biopsy stage could permit stratification of patients to more tailored treatment regimens. PMID:23308219

  13. Apple miRNAs and tasiRNAs with novel regulatory networks

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. Results We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. Conclusions Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family. PMID:22704043

  14. Apple miRNAs and tasiRNAs with novel regulatory networks

    USDA-ARS?s Scientific Manuscript database

    MiRNAs, negatively affecting gene expression at the post-transcriptional levels, have been shown to control numerous genes involved in various biological and metabolic processes. To date, the identification of miRNAs in plants focused on certain model plants, such as Arabidopsis and rice. Investig...

  15. Platelets miRNA as a Prediction Marker of Thrombotic Episodes

    PubMed Central

    Dzieciol, Malgorzata

    2016-01-01

    The blood platelets are crucial for the coagulation physiology to maintain haemostatic balance and are involved in various pathologies such as atherosclerosis and thrombosis. The studies of recent years have shown that anucleated platelets are able to succeed protein synthesis. Additionally, mRNA translation in blood platelets is regulated by miRNA molecules. Recent works postulate the possibility of using miRNAs as biomarkers of atherosclerosis and ischemic episodes. This review article describes clinical studies that presented blood platelets miRNAs expression profile changes in different thrombotic states, which suggest use of these molecules as predictive biomarkers. PMID:28042196

  16. Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV)

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms, including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs. In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes. Results In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus (HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function. To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For two of the reported quasi-modules, supporting evidence from biological and medical literature is provided. Conclusions The modules found by our method may advance the understanding of the role of miRNAs in host-viral interactions, and the genes in these modules may serve as candidates for further experimental validation. PMID:23206407

  17. Association between the miRNA signatures in plasma and bronchoalveolar fluid in respiratory pathologies.

    PubMed

    Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis

    2012-01-01

    The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases.

  18. Association between the miRNA Signatures in Plasma and Bronchoalveolar Fluid in Respiratory Pathologies

    PubMed Central

    Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis

    2012-01-01

    The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases. PMID:22430188

  19. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    PubMed

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  20. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development

    PubMed Central

    Wang, Guangzhi; Ma, Xinli; Li, Meihua; Wu, Haibo; Fu, Qiushi; Zhang, Yi; Yi, Hongping

    2017-01-01

    MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, “transcription, DNA-dependent”, “rRNA processing”, “oxidation reduction”, “signal transduction”, “regulation of transcription, DNA-dependent”, and “metabolic process” were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5’ RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices. PMID:28742088

  1. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles

    PubMed Central

    Agrawal, Rahul; Dale, Tina P.; Al-Zubaidi, Mohammed A.; Benny Malgulwar, Prit; Forsyth, Nicholas R.; Kulshreshtha, Ritu

    2016-01-01

    MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology. PMID:27783707

  2. Identification of Nutritional Stress-Responsive miRNAs in Phaseolus vulgaris

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are key regulators for Arabidopsis development and stress responses. A hybridization approach using miRNAs-macroarrays was used to identify miRNAs that respond to nutritional stress in Phaseolus vulgaris. miRNAs-macroarrays were prepared by printing nylon filters with DNA syntheti...

  3. miRNAs as therapeutic targets in ischemic heart disease.

    PubMed

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  4. Effects of space radiation and microgravity on miRNA expression profile in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Sun, Yeqing; Lei, Huang; Gao, Ying

    2012-07-01

    Living organisms experience a shock and subsequent adaption when they are subjected to space radiation and microgravity during spaceflight. Such changes have been already documented for some biological consequences including skeletal muscle alterations, reduced immune function and bone loss. Recent advancement in the field of molecular biology has demonstrated that small non-coding microRNA (miRNA) can have a broad effect on gene expression networks, and play a key role in cellular response to environmental stresses. However, little is known about how radiation exposure and altered gravity affect miRNA expression. In the present study, we explored the changes in expression of miRNA and related genes from Caenorhabditis elegans (C.elegans) flown on spaceflight. We used wild-type (N2) and dys-1 mutant (deletion of dys-1) stains of C.elegans, which were cultured to Dauer stage and transferred to special SIMbox in the experiment container. These worms taken by Shenzhou VIII spacecraft experienced the 16.5-day shuttle spaceflight. During spaceflight, they suffered space radiation and underwent static zero gravity (microgravity) or imitated earth gravity (1g) in the rotating condition. In contrast, these worms live under static earth gravity (1g) in ground-based controls. To evaluate the effects of space radiation and microgravity on miRNA expression profile, we performed miRNA microarray expression analysis and found that a set of miRNAs in N2 groups were significantly upregulated or downregualted in radiation and microgravity conditions. Among these altered miRNAs, there are two up-regulated and four down-regulated miRNAs in space radiation conditions; one down-regulated miRNAs in microgravity condition. Expression of several miRNAs in N2 groups was only changed significantly in the imitated earth gravity (1g) conditions, presenting these altered miRNAs were affected by radiation exposure alone. Notably, dys-1 mutant is not sensitive to altered gravity due to muscle

  5. High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes

    PubMed Central

    Fahlgren, Noah; Howell, Miya D.; Kasschau, Kristin D.; Chapman, Elisabeth J.; Sullivan, Christopher M.; Cumbie, Jason S.; Givan, Scott A.; Law, Theresa F.; Grant, Sarah R.; Dangl, Jeffery L.; Carrington, James C.

    2007-01-01

    In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks. PMID:17299599

  6. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    PubMed Central

    2011-01-01

    Background It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase

  7. Scaffolds for Artificial miRNA Expression in Animal Cells.

    PubMed

    Calloni, Raquel; Bonatto, Diego

    2015-10-01

    Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.

  8. In silico MCMV Silencing Concludes Potential Host-Derived miRNAs in Maize

    PubMed Central

    Iqbal, Muhammad Shahzad; Jabbar, Basit; Sharif, Muhammad Nauman; Ali, Qurban; Husnain, Tayyab; Nasir, Idrees A.

    2017-01-01

    Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins: P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat protein are encoded from sgRNA1, located at the 3′end of the genome and sgRNA2 is located at the extremity of the 3′genome end. The objective of this study is to locate the possible attachment sites of Zea mays derived miRNAs in the genome of MCMV using four diverse miRNA target prediction algorithms. In total, 321 mature miRNAs were retrieved from miRBase (miRNA database) and were tested for hybridization of MCMV genome. These algorithms considered the parameters of seed pairing, minimum free energy, target site accessibility, multiple target sites, pattern recognition and folding energy for attachment. Out of 321 miRNAs only 10 maize miRNAs are predicted for silencing of MCMV genome. The results of this study can hence act as the first step towards the development of MCMV resistant transgenic Maize plants through expression of the selected miRNAs. PMID:28400775

  9. Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species

    PubMed Central

    Kacprzak, Malgorzata; Grobelak, Anna; Grosser, Anna; Prasad, M. N. V.

    2013-01-01

    The role of sewage sludge as an immobilising agent in the phytostabilization of metal-contaminated soil was evaluated using five grass species viz., Dactylis glomerata L., Festuca arundinacea Schreb., F. rubra L., Lolium perenne L., L. westerwoldicum L. The function of metal immobilization was investigated by monitoring pH, Eh and Cd, Pb, and Zn levels in column experiment over a period of 5-months. Grasses grown on sewage sludge-amendments produced high biomass in comparison to controls. A significant reduction in metal uptake by plants was also observed as a result of sewage sludge application, which was attributed to decreased bioavailability through soil stabilisation. We have observed that the sludge amendment decreased metal bioavailability and concentrations in soil at a depth of 25 cm, in contrast to untreated columns, where metal concentrations in the soil solution were very high. PMID:24912245

  10. MicroRNA-focused CRISPR-Cas9 Library Screen Reveals Fitness-Associated miRNAs.

    PubMed

    Kurata, Jessica S; Lin, Ren-Jang

    2018-05-02

    MicroRNAs (miRNAs) are posttranscriptional gene regulators that play important roles in the control of cell fitness, differentiation, and development. The CRISPR-Cas9 gene-editing system is composed of the Cas9 nuclease in complex with a single guide RNA (sgRNA) and directs DNA cleavage at a predetermined site. Several CRISPR-Cas9 libraries have been constructed for genome-scale knockout screens of protein function; however few libraries have included miRNA genes. Here we constructed a miRNA-focused CRISPR-Cas9 library that targets 1,594 (85%) annotated human miRNA stem-loops. The sgRNAs in our LX-miR library are designed to have high on-target and low off-target activity, and each miRNA is targeted by 4-5 sgRNAs. We used this sgRNA library to screen for miRNAs that affect cell fitness of HeLa or NCI-N87 cells by monitoring the change in frequency of each sgRNA over time. By considering the expression in the tested cells and the dysregulation of the miRNAs in cancer specimens, we identified five HeLa pro-fitness and cervical cancer up-regulated miRNAs (miR-31-5p, miR-92b-3p, miR-146b-5p, miR-151a-3p, and miR-194-5p). Similarly, we identified six NCI-N87 pro-fitness and gastric cancer up-regulated miRNAs (miR-95-3p, miR-181a-5p, miR-188-5p, miR-196b-5p, miR-584-5p, and miR-1304-3p), as well as three anti-fitness and down-regulated miRNAs (let-7a-3p, miR-100-5p, and miR-149-5p). Some of those miRNAs are known to be oncogenic or tumor-suppressive, but others are novel. Taken together, the LX-miR library is useful for genome-wide unbiased screening to identify miRNAs important for cellular fitness and likely to be useful for other functional screens. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. ImmunemiR - A Database of Prioritized Immune miRNA Disease Associations and its Interactome.

    PubMed

    Prabahar, Archana; Natarajan, Jeyakumar

    2017-01-01

    MicroRNAs are the key regulators of gene expression and their abnormal expression in the immune system may be associated with several human diseases such as inflammation, cancer and autoimmune diseases. Elucidation of miRNA disease association through the interactome will deepen the understanding of its disease mechanisms. A specialized database for immune miRNAs is highly desirable to demonstrate the immune miRNA disease associations in the interactome. miRNAs specific to immune related diseases were retrieved from curated databases such as HMDD, miR2disease and PubMed literature based on MeSH classification of immune system diseases. The additional data such as miRNA target genes, genes coding protein-protein interaction information were compiled from related resources. Further, miRNAs were prioritized to specific immune diseases using random walk ranking algorithm. In total 245 immune miRNAs associated with 92 OMIM disease categories were identified from external databases. The resultant data were compiled as ImmunemiR, a database of prioritized immune miRNA disease associations. This database provides both text based annotation information and network visualization of its interactome. To our knowledge, ImmunemiR is the first available database to provide a comprehensive repository of human immune disease associated miRNAs with network visualization options of its target genes, protein-protein interactions (PPI) and its disease associations. It is freely available at http://www.biominingbu.org/immunemir/. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Higher miRNA Tolerance in Immortal Li-Fraumeni Fibroblasts with Abrogated Interferon Signaling Pathway

    PubMed Central

    Li, Qunfang; Tainsky, Michael A.

    2013-01-01

    The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway–defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicertransfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. PMID:21199806

  13. Higher miRNA tolerance in immortal Li-Fraumeni fibroblasts with abrogated interferon signaling pathway.

    PubMed

    Li, Qunfang; Tainsky, Michael A

    2011-01-01

    The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway-defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicer-transfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. © 2011 AACR.

  14. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum.

    PubMed

    Singh, Noopur; Sharma, Ashok

    2014-12-01

    microRNA is known to play an important role in growth and development of the plants and also in environmental stress. Ocimum basilicum (Basil) is a well known herb for its medicinal properties. In this study, we used in-silico approaches to identify miRNAs and their targets regulating different functions in O. basilicum using EST approach. Additionally, functional annotation, gene ontology and pathway analysis of identified target transcripts were also done. Seven miRNA families were identified. Meaningful regulations of target transcript by identified miRNAs were computationally evaluated. Four miRNA families have been reported by us for the first time from the Lamiaceae. Our results further confirmed that uracil was the predominant base in the first positions of identified mature miRNA sequence, while adenine and uracil were predominant in pre-miRNA sequences. Phylogenetic analysis was carried out to determine the relation between O. basilicum and other plant pre-miRNAs. Thirteen potential targets were evaluated for 4 miRNA families. Majority of the identified target transcripts regulated by miRNAs showed response to stress. miRNA 5021 was also indicated for playing an important role in the amino acid metabolism and co-factor metabolism in this plant. To the best of our knowledge this is the first in silico study describing miRNAs and their regulation in different metabolic pathways of O. basilicum. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Identification, characterization and expression analysis of pigeonpea miRNAs in response to Fusarium wilt.

    PubMed

    Hussain, Khalid; Mungikar, Kanak; Kulkarni, Abhijeet; Kamble, Avinash

    2018-05-05

    Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer.

    PubMed

    Yang, Wanli; Ma, Jiaojiao; Zhou, Wei; Cao, Bo; Zhou, Xin; Yang, Zhiping; Zhang, Hongwei; Zhao, Qingchuan; Fan, Daiming; Hong, Liu

    2017-11-01

    Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.

  17. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility.

    PubMed

    Latini, Andrea; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola

    2017-08-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.

  18. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.

    PubMed

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-11-27

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

  19. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome

    PubMed Central

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-01-01

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs. PMID:21364831

  20. Computational Prediction of miRNA Genes from Small RNA Sequencing Data

    PubMed Central

    Kang, Wenjing; Friedländer, Marc R.

    2015-01-01

    Next-generation sequencing now for the first time allows researchers to gage the depth and variation of entire transcriptomes. However, now as rare transcripts can be detected that are present in cells at single copies, more advanced computational tools are needed to accurately annotate and profile them. microRNAs (miRNAs) are 22 nucleotide small RNAs (sRNAs) that post-transcriptionally reduce the output of protein coding genes. They have established roles in numerous biological processes, including cancers and other diseases. During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes that are discovered are mined from small RNA sequencing (sRNA-seq), which can detect more than a billion RNAs in a single run. However, given that many of the detected RNAs are degradation products from all types of transcripts, the accurate identification of miRNAs remain a non-trivial computational problem. Here, we review the tools available to predict animal miRNAs from sRNA sequencing data. We present tools for generalist and specialist use cases, including prediction from massively pooled data or in species without reference genome. We also present wet-lab methods used to validate predicted miRNAs, and approaches to computationally benchmark prediction accuracy. For each tool, we reference validation experiments and benchmarking efforts. Last, we discuss the future of the field. PMID:25674563

  1. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysismore » and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.« less

  2. Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea.

    PubMed

    Wiche, Oliver; Tischler, Dirk; Fauser, Carla; Lodemann, Jana; Heilmeier, Hermann

    2017-08-03

    Effects of citric acid and desferrioxamine B (DFO-B) on the availability of Ge and selected rare earth elements (REEs) (La, Nd, Gd, Er) to Phalaris arundinacea were investigated. A soil dissolution experiment was conducted to elucidate the effect of citric acid and DFO-B at different concentrations (1 and 10 mmol L -1 citric acid) on the release of Ge and REEs from soil. In a greenhouse, plants of P. arundinacea were cultivated on soil and on sand cultures to investigate the effects of citric acid and DFO-B on the uptake of Ge and REEs by the plants. Addition of 10 mmol L -1 citric acid significantly enhanced desorption of Ge and REEs from soil and uptake into soil-grown plants. Applying DFO-B enhanced the dissolution and the uptake of REEs, while no effect on Ge was observed. In sand cultures, the presence of citric acid and DFO-B significantly decreased the uptake of Ge and REEs, indicating a discrimination of the formed complexes during uptake. This study clearly indicates that citric acid and the microbial siderophore DFO-B may enhance phytoextraction of Ge and REEs due to the formation of soluble complexes that increase the migration of elements in the rhizosphere.

  3. Targeted gene deletion of miRNAs in mice by TALEN system.

    PubMed

    Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi

    2013-01-01

    Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  4. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    PubMed

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  5. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy

    PubMed Central

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy. PMID:28493972

  6. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    PubMed

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal; Baril, Patrick

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  7. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa)

    PubMed Central

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-01-01

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. PMID:27797952

  8. Serum-circulating miRNAs predict neuroblastoma progression in mouse model of high-risk metastatic disease.

    PubMed

    Ramraj, Satish Kumar; Aravindan, Sheeja; Somasundaram, Dinesh Babu; Herman, Terence S; Natarajan, Mohan; Aravindan, Natarajan

    2016-04-05

    Circulating miRNAs have momentous clinical relevance as prognostic biomarkers and in the progression of solid tumors. Recognizing novel candidates of neuroblastoma-specific circulating miRNAs would allow us to identify potential prognostic biomarkers that could predict the switch from favorable to high-risk metastatic neuroblastoma (HR-NB). Utilizing mouse models of favorable and HR-NB and whole miRnome profiling, we identified high serum levels of 34 and low levels of 46 miRNAs in animals with HR-NB. Preferential sequence homology exclusion of mouse miRNAs identified 25 (11 increased; 14 decreased) human-specific prognostic marker candidates, of which, 21 were unique to HR-NB. miRNA QPCR validated miRnome profile. Target analysis defined the candidate miRNAs' signal transduction flow-through and demonstrated their converged roles in tumor progression. miRNA silencing studies verified the function of select miRNAs on the translation of at least 14 target proteins. Expressions of critical targets that correlate tumor progression in tissue of multifarious organs identify the orchestration of HR-NB. Significant (>10 fold) increase in serum levels of miR-381, miR-548h, and miR-580 identify them as potential prognostic markers for neuroblastoma progression. For the first time, we identified serum-circulating miRNAs that predict the switch from favorable to HR-NB and, further imply that these miRNAs could play a functional role in tumor progression.

  9. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring

    PubMed Central

    Zhang, Qian; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as “bridges” between the mother and the offspring by affecting the MAPK pathway. PMID:28669221

  10. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-08-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.

  11. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    PubMed

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential

  12. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    PubMed

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  13. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma.

    PubMed

    Gai, Chiara; Camussi, Francesco; Broccoletti, Roberto; Gambino, Alessio; Cabras, Marco; Molinaro, Luca; Carossa, Stefano; Camussi, Giovanni; Arduino, Paolo G

    2018-04-18

    Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.

  14. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    PubMed

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show

  15. Ensemble Methods for MiRNA Target Prediction from Expression Data.

    PubMed

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2015-01-01

    microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth

  16. Ensemble Methods for MiRNA Target Prediction from Expression Data

    PubMed Central

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong

    2015-01-01

    Background microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. Results In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and

  17. Nano-cone optical fiber array sensors for MiRNA profiling

    NASA Astrophysics Data System (ADS)

    Wang, Yunshan; Senapati, Satyajyoti; Stoddart, Paul; Howard, Scott; Chang, Hsueh-Chia

    2013-09-01

    Up/down regulation of microRNA panels has been correlated to cardiovascular diseases and cancer. Frequent miRNA profiling at home can hence allow early cancer diagnosis and home-use chronic disease monitoring, thus reducing both mortality rate and healthcare cost. However, lifetime of miRNAs is less than 1 hour without preservation and their concentrations range from pM to mM. Despite rapid progress in the last decade, modern nucleic acid analysis methods still do not allow personalized miRNA profiling---Real-time PCR and DNA micro-array both require elaborate miRNA preservation steps and expensive equipment and nano pore sensors cannot selectively quantify a large panel with a large dynamic range. We report a novel and low-cost optical fiber sensing platform, which has the potential to profile a panel of miRNA with simple LED light sources and detectors. The individual tips of an optical imaging fiber bundle (mm in diameter with 7000 fiber cores) were etched into cones with 10 nm radius of curvature and coated with Au. FRET (Forster Resonant Energy Transfer) hairpin oligo probes, with the loop complementary to a specific miRNA that can release the hairpin, were functionalized onto the conic tips. Exciting light in the optical fiber waveguide is optimally coupled to surface plasmonics on the gold surface, which then converges to the conic tips with two orders of magnitude enhancement in intensity. Unlike nanoparticle plasmonics, tip plasmonics can be excited over a large band width and hence the plasmonic enhanced fluorescence signal of the FRET reporter is also focused towards the tip--- and is further enhanced with the periodic resonant grid of the fiber array which gives rise to pronounced standing wave interference patterns. Multiplexing is realized by functionalizing different probes onto one fiber bundle using a photoactivation process.

  18. Preclinical Evaluation of An Anti-HCV miRNA Cluster for Treatment of HCV Infection

    PubMed Central

    Yang, Xiao; Marcucci, Katherine; Anguela, Xavier; Couto, Linda B.

    2013-01-01

    We developed a strategy to treat hepatitis C virus (HCV) infection by replacing five endogenous microRNA (miRNA) sequences of a natural miRNA cluster (miR-17–92) with sequences that are complementary to the HCV genome. This miRNA cluster (HCV-miR-Cluster 5) is delivered to cells using adeno-associated virus (AAV) vectors and the miRNAs are expressed in the liver, the site of HCV replication and assembly. AAV-HCV-miR-Cluster 5 inhibited bona fide HCV replication in vitro by up to 95% within 2 days, and the spread of HCV to uninfected cells was prevented by continuous expression of the anti-HCV miRNAs. Furthermore, the number of cells harboring HCV RNA replicons decreased dramatically by sustained expression of the anti-HCV miRNAs, suggesting that the vector is capable of curing cells of HCV. Delivery of AAV-HCV-miR-Cluster 5 to mice resulted in efficient transfer of the miRNA gene cluster and expression of all five miRNAs in liver tissue, at levels up to 1,300 copies/cell. These levels achieved up to 98% gene silencing of cognate HCV sequences, and no liver toxicity was observed, supporting the safety of this approach. Therefore, AAV-HCV-miR-Cluster 5 represents a different paradigm for the treatment of HCV infection. PMID:23295950

  19. Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage.

    PubMed

    Lopes, Katia de Paiva; Vinasco-Sandoval, Tatiana; Vialle, Ricardo Assunção; Paschoal, Fernando Mendes; Bastos, Vanessa Albuquerque P Aviz; Bor-Seng-Shu, Edson; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Pinto, Pablo; Vidal, Amanda Ferreira; Ribeiro-Dos-Santos, Arthur; Moreira, Fabiano; Santos, Sidney; Paschoal, Eric Homero Albuquerque; Ribeiro-Dos-Santos, Ândrea

    2018-06-08

    The molecular mechanisms behind aneurysmal subarachnoid haemorrhage (aSAH) are still poorly understood. Expression patterns of miRNAs may help elucidate the post-transcriptional gene expression in aSAH. Here, we evaluate the global miRNAs expression profile (miRnome) of patients with aSAH to identify potential biomarkers. We collected 33 peripheral blood samples (27 patients with cerebral aneurysm, collected 7 to 10 days after the haemorrhage, when usually is the cerebral vasospasm risk peak, and six controls). Then, were performed small RNA sequencing using an Illumina Next Generation Sequencing (NGS) platform. Differential expression analysis identified eight differentially expressed miRNAs. Among them, three were identified being up-regulated, and five down-regulated. miR-486-5p was the most abundant expressed and is associated with poor neurological admission status. In silico miRNA gene target prediction showed 148 genes associated with at least two differentially expressed miRNAs. Among these, THBS1 and VEGFA, known to be related to thrombospondin and vascular endothelial growth factor. Moreover, MYC gene was found to be regulated by four miRNAs, suggesting an important role in aneurysmal subarachnoid haemorrhage. Additionally, 15 novel miRNAs were predicted being expressed only in aSAH, suggesting possible involvement in aneurysm pathogenesis. These findings may help the identification of novel biomarkers of clinical interest.

  20. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model.

    PubMed

    Aryankalayil, Molykutty J; Chopra, Sunita; Makinde, Adeola; Eke, Iris; Levin, Joel; Shankavaram, Uma; MacMillan, Laurel; Vanpouille-Box, Claire; Demaria, Sandra; Coleman, C Norman

    2018-06-19

    Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals. To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice. Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature. We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates. Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.

  1. Analysis of miRNA expression profile based on SVM algorithm

    NASA Astrophysics Data System (ADS)

    Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian

    2018-05-01

    Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.

  2. MiRNAs in β-Cell Development, Identity, and Disease

    PubMed Central

    Martinez-Sanchez, Aida; Rutter, Guy A.; Latreille, Mathieu

    2017-01-01

    Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D. PMID:28123396

  3. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    PubMed

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P < 0.05) when transfected with one or two viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P < 0.05) when transfected with one or two viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P < 0.05) when viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P < 0.05) when viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  4. Hippo signaling regulates Microprocessor and links cell density-dependent miRNA biogenesis to cancer

    PubMed Central

    Mori, Masaki; Triboulet, Robinson; Mohseni, Morvarid; Schlegelmilch, Karin; Shrestha, Kriti; Camargo, Fernando D.; Gregory, Richard I.

    2014-01-01

    SUMMARY Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here we show that YAP, the downstream target of the tumor-suppressive Hippo signaling pathway regulates miRNA biogenesis in a cell density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding post-transcriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer. PMID:24581491

  5. Possible involvement of miRNAs in tropism of Parvovirus B19.

    PubMed

    Anbarlou, Azadeh; AkhavanRahnama, Mahshid; Atashi, Amir; Soleimani, Masoud; Arefian, Ehsan; Gallinella, Giorgio

    2016-03-01

    Human Parvovirus B19 (PVB19) is one of the most important pathogens that targets erythroid lineage. Many factors were mentioned for restriction to erythroid progenitor cells (EPCs). Previous studies showed that in non-permissive cells VP1 and VP2 (structural proteins) mRNAs were detected but could not translate to proteins. A bioinformatics study showed that this inhibition might be due to specific microRNAs (miRNAs) present in non-permissive cells but not in permissive EPCs. To confirm the hypothesis, we evaluated the effect of miRNAs on VP expression. CD34(+) HSCs were separated from cord blood. Then, CD34(+) cells were treated with differentiation medium to obtain CD36(+) EPCs. To evaluate the effect of miRNAs on VP expression in MCF7 and HEK-293 cell lines (non-permissive cells) and CD36(+) EPCs, dual luciferase assay was performed in presence of shRNAs against Dicer and Drosha to disrupt miRNA biogenesis. QRT-PCR was performed to check down-regulation of Dicer and Drosha after transfection. All measurements were done in triplicate. Data means were compared using one-way ANOVAs. MicroRNA prediction was done by the online microRNA prediction tools. No significant difference was shown in luciferase activity of CD36(+) EPCs after co-transfection with shRNAs, while it was significant in non-permissive cells. Our study revealed that miRNAs may be involved in inhibition of VP expression in non-permissive cells, although further studies are required to demonstrate which miRNAs exactly are involved in regulation of PVB19 replication.

  6. Quantification of Plasma miRNAs by Digital PCR for Cancer Diagnosis

    PubMed Central

    Ma, Jie; Li, Ning; Guarnera, Maria; Jiang, Feng

    2013-01-01

    Analysis of plasma microRNAs (miRNAs) by quantitative polymerase chain reaction (qPCR) provides a potential approach for cancer diagnosis. However, absolutely quantifying low abundant plasma miRNAs is challenging with qPCR. Digital PCR offers a unique means for assessment of nucleic acids presenting at low levels in plasma. This study aimed to evaluate the efficacy of digital PCR for quantification of plasma miRNAs and the potential utility of this technique for cancer diagnosis. We used digital PCR to quantify the copy number of plasma microRNA-21-5p (miR-21–5p) and microRNA-335–3p (miR-335–3p) in 36 lung cancer patients and 38 controls. Digital PCR showed a high degree of linearity and quantitative correlation with miRNAs in a dynamic range from 1 to 10,000 copies/μL of input, with high reproducibility. qPCR exhibited a dynamic range from 100 to 1×107 copies/μL of input. Digital PCR had a higher sensitivity to detect copy number of the miRNAs compared with qPCR. In plasma, digital PCR could detect copy number of both miR-21–5p and miR-335–3p, whereas qPCR was only able to assess miR-21–5p. Quantification of the plasma miRNAs by digital PCR provided 71.8% sensitivity and 80.6% specificity in distinguishing lung cancer patients from cancer-free subjects. PMID:24277982

  7. Regulation of Isoflavone Biosynthesis by miRNAs in Two Contrasting Soybean Genotypes at Different Seed Developmental Stages.

    PubMed

    Gupta, Om P; Nigam, Deepti; Dahuja, Anil; Kumar, Sanjeev; Vinutha, T; Sachdev, Archana; Praveen, Shelly

    2017-01-01

    Owing to the presence of nutritionally important, health-promoting bioactive compounds, especially isoflavones, soybean has acquired the status of a functional food. miRNAs are tiny riboregulator of gene expression by either decreasing and/or increasing the expression of their corresponding target genes. Despite several works on identification and functional characterization of plant miRNAs, the role of miRNAs in the regulation of isoflavones metabolism is still a virgin field. In the present study, we identified a total of 31 new miRNAs along with their 245 putative target genes from soybean seed-specific ESTs using computational approach. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates metabolism and genetic information processing. Out of that, a total of 5 miRNAs ( Gma -miRNA12, Gma -miRNA24, Gma -miRNA26, Gma -miRNA28, and Gma -miRNA29) were predicted and validated for their probable role during isoflavone biosynthesis. We also validated their five target genes using RA-PCR, which is as good as 5'RLM-RACE. Temporal regulation [35 days after flowering, 45, 55, and 65 DAF] of miRNAs and their targets showed differential expression schema. Differential expression of Gma -miR26 and Gma -miRNA28 along with their corresponding target genes ( Glyma.10G197900 and Glyma.09G127200 ) showed a direct relationship with the total isoflavone content. Therefore, understanding the miRNA-based genetic regulation of isoflavone pathway would assist in selection and manipulation to get high-performing soybean genotypes with better isoflavone yield.

  8. Downregulation of miRNAs during Delayed Wound Healing in Diabetes: Role of Dicer

    PubMed Central

    Bhattacharya, Sushant; Aggarwal, Rangoli; Singh, Vijay Pal; Ramachandran, Srinivasan; Datta, Malabika

    2015-01-01

    Delayed wound healing is a major complication associated with diabetes and is a result of a complex interplay among diverse deregulated cellular parameters. Although several genes and pathways have been identified to be mediating impaired wound closure, the role of microRNAs (miRNAs) in these events is not very well understood. Here, we identify an altered miRNA signature in the prolonged inflammatory phase in a wound during diabetes, with increased infiltration of inflammatory cells in the basal layer of the epidermis. Nineteen miRNAs were downregulated in diabetic rat wounds (as compared with normal rat wound, d 7 postwounding) together with inhibited levels of the central miRNA biosynthesis enzyme, Dicer, suggesting that in wounds of diabetic rats, the decreased levels of Dicer are presumably responsible for miRNA downregulation. Compared with unwounded skin, Dicer levels were significantly upregulated 12 d postwounding in normal rats, and this result was notably absent in diabetic rats that showed impaired wound closure. In a wound-healing specific quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) array, 10 genes were significantly altered in the diabetic rat wound and included growth factors and collagens. Network analyses demonstrated significant interactions and correlations between the miRNA predicted targets (regulators) and the 10 wound-healing specific genes, suggesting altered miRNAs might fine-tune the levels of these genes that determine wound closure. Dicer inhibition prevented HaCaT cell migration and affected wound closure. Altered levels of Dicer and miRNAs are critical during delayed wound closure and offer promising targets to address the issue of impaired wound healing. PMID:26602065

  9. Sensing miRNA: Signal Amplification by Cognate RISC for Intracellular Detection of miRNA in Live Cells.

    PubMed

    Kavishwar, Amol; Medarova, Zdravka

    2016-01-01

    The ability to detect miRNA expression in live cells would leave these cells available for further manipulation or culture. Here, we describe the design of a miRNA sensor oligonucleotide whose sequence mimics the target mRNA. The sensor has a fluorescent label on one end of the oligo and a quencher on the other. When inside the cell, the sensor is recognized by its cognate miRNA-RISC and gets cleaved, setting the fluorophore free from its quencher. This results in fluorescence "turn on." Since cleavage by the RISC complex is an enzymatic process, the described approach has a very high level of sensitivity (nM). The rate of nonspecific cleavage of the sensor is very slow permitting the collection of meaningful signal over a long period of time.

  10. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa).

    PubMed

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-12-31

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA-mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset

    PubMed Central

    Lipps, David; Devineni, Sree

    2016-01-01

    MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in gene expression regulation. The biogenesis of miRNAs is largely determined by the sequence and structural features of their parental RNA molecules. Based on these features, multiple computational tools have been developed to predict if RNA transcripts contain miRNAs or not. Although being very successful, these predictors started to face multiple challenges in recent years. Many predictors were optimized using datasets of hundreds of miRNA samples. The sizes of these datasets are much smaller than the number of known miRNAs. Consequently, the prediction accuracy of these predictors in large dataset becomes unknown and needs to be re-tested. In addition, many predictors were optimized for either high sensitivity or high specificity. These optimization strategies may bring in serious limitations in applications. Moreover, to meet continuously raised expectations on these computational tools, improving the prediction accuracy becomes extremely important. In this study, a meta-predictor mirMeta was developed by integrating a set of non-linear transformations with meta-strategy. More specifically, the outputs of five individual predictors were first preprocessed using non-linear transformations, and then fed into an artificial neural network to make the meta-prediction. The prediction accuracy of meta-predictor was validated using both multi-fold cross-validation and independent dataset. The final accuracy of meta-predictor in newly-designed large dataset is improved by 7% to 93%. The meta-predictor is also proved to be less dependent on datasets, as well as has refined balance between sensitivity and specificity. This study has two folds of importance: First, it shows that the combination of non-linear transformations and artificial neural networks improves the prediction accuracy of individual predictors. Second, a new miRNA predictor with significantly improved prediction accuracy

  12. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples.

    PubMed

    Andreu, Zoraida; Rivas, Eva; Sanguino-Pascual, Aitana; Lamana, Amalia; Marazuela, Mónica; González-Alvaro, Isidoro; Sánchez-Madrid, Francisco; de la Fuente, Hortensia; Yáñez-Mó, María

    2016-01-01

    Extracellular vesicles (EVs) are emerging as potent non-invasive biomarkers. However, current methodologies are time consuming and difficult to translate to clinical practice. To analyse EV-encapsulated circulating miRNA, we searched for a quick, easy and economic method to enrich frozen human serum samples for EV. We compared the efficiency of several protocols and commercial kits to isolate EVs. Different methods based on precipitation, columns or filter systems were tested and compared with ultracentrifugation, which is the most classical protocol to isolate EVs. EV samples were assessed for purity and quantity by nanoparticle tracking analysis and western blot or cytometry against major EV protein markers. For biomarker validation, levels of a set of miRNAs were determined in EV fractions and compared with their levels in total serum. EVs isolated with precipitation-based methods were enriched for a subgroup of miRNAs that corresponded to miRNAs described to be encapsulated into EVs (miR-126, miR-30c and miR-143), while the detection of miR-21, miR-16-5p and miR-19a was very low compared with total serum. Our results point to precipitation using polyethylene glycol (PEG) as a suitable method for an easy and cheap enrichment of serum EVs for miRNA analyses. The overall performance of PEG was very similar, or better than other commercial precipitating reagents, in both protein and miRNA yield, but in comparison to them PEG is much cheaper. Other methods presented poorer results, mostly when assessing miRNA by qPCR analyses. Using PEG precipitation in a longitudinal study with human samples, we demonstrated that miRNA could be assessed in frozen samples up to 8 years of storage. We report a method based on a cut-off value of mean of fold EV detection versus serum that provides an estimate of the degree of encapsulation of a given miRNA.

  13. MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features.

    PubMed

    Xu, Juan; Li, Chuan-Xing; Li, Yong-Sheng; Lv, Jun-Ying; Ma, Ye; Shao, Ting-Ting; Xu, Liang-De; Wang, Ying-Ying; Du, Lei; Zhang, Yun-Peng; Jiang, Wei; Li, Chun-Quan; Xiao, Yun; Li, Xia

    2011-02-01

    Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA-miRNA synergistic network from a new view. Here, we constructed a miRNA-miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets.

  14. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae-induced mastitis.

    PubMed

    Pu, Junhua; Li, Rui; Zhang, Chenglong; Chen, Dan; Liao, Xiangxiang; Zhu, Yihui; Geng, Xiaohan; Ji, Dejun; Mao, Yongjiang; Gong, Yunchen; Yang, Zhangping

    2017-08-01

    This study aimed to describe the expression profiles of microRNAs (miRNAs) from mammary gland tissues collected from dairy cows with Streptococcus agalactiae-induced mastitis and to identify differentially expressed miRNAs related to mastitis. The mammary glands of Chinese Holstein cows were challenged with Streptococcus agalactiae to induce mastitis. Small RNAs were isolated from the mammary tissues of the test and control groups and then sequenced using the Solexa sequencing technology to construct two small RNA libraries. Potential target genes of these differentially expressed miRNAs were predicted using the RNAhybrid software, and KEGG pathways associated with these genes were analysed. A total of 18 555 913 and 20 847 000 effective reads were obtained from the test and control groups, respectively. In total, 373 known and 399 novel miRNAs were detected in the test group, and 358 known and 232 novel miRNAs were uncovered in the control group. A total of 35 differentially expressed miRNAs were identified in the test group compared to the control group, including 10 up-regulated miRNAs and 25 down-regulated miRNAs. Of these miRNAs, miR-223 exhibited the highest degree of up-regulation with an approximately 3-fold increase in expression, whereas miR-26a exhibited the most decreased expression level (more than 2-fold). The RNAhybrid software predicted 18 801 genes as potential targets of these 35 miRNAs. Furthermore, several immune response and signal transduction pathways, including the RIG-I-like receptor signalling pathway, cytosolic DNA sensing pathway and Notch signal pathway, were enriched in these predicted targets. In summary, this study provided experimental evidence for the mechanism underlying the regulation of bovine mastitis by miRNAs and showed that miRNAs might be involved in signal pathways during S. agalactiae-induced mastitis.

  15. Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers

    PubMed Central

    Ouyang, Hongjia; He, Xiaomei; Li, Guihuan; Xu, Haiping; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth. PMID:26193261

  16. Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers.

    PubMed

    Ouyang, Hongjia; He, Xiaomei; Li, Guihuan; Xu, Haiping; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan

    2015-07-17

    Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth.

  17. miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study.

    PubMed

    Muth, Dillon C; Powell, Bonita H; Zhao, Zezhou; Witwer, Kenneth W

    2018-05-04

    We wished to re-assess the relative stability of microRNAs (miRNAs) as compared with other RNA molecules, which has been confirmed in many contexts. When bound to Argonaute proteins, miRNAs are protected from degradation, even when released into the extracellular space in ribonucleoprotein complexes, and with or without the protection of membranes in extracellular vesicles. Purified miRNAs also appear to present less of a target for degradation than other RNAs. Although miRNAs are by no means immune to degradation, biological samples subjected to prolonged incubation at room temperature, multiple freeze/thaws, or collection in the presence of inhibitors like heparin, can typically be remediated or used directly for miRNA measurements. Here, we provide additional confirmation of early, well validated findings on miRNA stability and detectability. Our data also suggest that inadequate depletion of platelets from plasma may explain the occasional report that freeze-thaw cycles can adversely affect plasma miRNA levels. Overall, the repeated observation of miRNA stability is again confirmed.

  18. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing

    PubMed Central

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation. PMID:27446103

  19. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing.

    PubMed

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation.

  20. Silencing of Stress-Regulated miRNAs in Plants by Short Tandem Target Mimic (STTM) Approach.

    PubMed

    Teotia, Sachin; Tang, Guiliang

    2017-01-01

    In plants, microRNAs (miRNAs) regulate more than hundred target genes comprising largely transcription factors that control growth and development as well as stress responses. However, the exact functions of miRNA families could not be deciphered because each miRNA family has multiple loci in the genome, thus are functionally redundant. Therefore, an ideal approach to study the function of a miRNA family is to silence the expression of all members simultaneously, which is a daunting task. However, this can be partly overcome by Target Mimic (TM) approach that can knockdown an entire miRNA family. STTM is a modification of TM approach and complements it. STTMs have been successfully used in monocots and dicots to block miRNA functions. miR159 has been shown to be differentially regulated by various abiotic stresses including ABA in various plant species. Here, we describe in detail the protocol for designing STTM construct to block miR159 functions in Arabidopsis, with the potential to apply this technique on a number of other stress-regulated miRNAs in plants.

  1. Employing machine learning for reliable miRNA target identification in plants.

    PubMed

    Jha, Ashwani; Shankar, Ravi

    2011-12-29

    miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions. In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like Arabidopsis, Medicago, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version. A machine learning multivariate feature tool has been implemented in parallel and

  2. Integrated analysis of miRNA and mRNA expression data identifies multiple miRNAs regulatory networks for the tumorigenesis of colorectal cancer.

    PubMed

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-06-15

    Investigating the potential biological function of differential changed genes through integrating multiple omics data including miRNA and mRNA expression profiles, is always hot topic. However, how to evaluate the repression effect on target genes integrating miRNA and mRNA expression profiles are not fully solved. In this study, we provide an analyzing method by integrating both miRNAs and mRNAs expression data simultaneously. Difference analysis was adopted based on the repression score, then significantly repressed mRNAs were screened out by DEGseq. Pathway analysis for the significantly repressed mRNAs shows that multiple pathways such as MAPK signaling pathway, TGF-beta signaling pathway and so on, may correlated to the colorectal cancer(CRC). Focusing on the MAPK signaling pathway, a miRNA-mRNA network that centering the cell fate genes was constructed. Finally, the miRNA-mRNAs that potentially important in the CRC carcinogenesis were screened out and scored by impact index. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Identification of MicroRNA as Sepsis Biomarker Based on miRNAs Regulatory Network Analysis

    PubMed Central

    Huang, Jie; Sun, Zhandong; Yan, Wenying; Zhu, Yujie; Lin, Yuxin; Chen, Jiajai; Shen, Bairong

    2014-01-01

    Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers. PMID:24809055

  4. The therapeutic potential of miRNAs in cardiac fibrosis: where do we stand?

    PubMed

    Wijnen, Wino J; Pinto, Yigal M; Creemers, Esther E

    2013-12-01

    Recent developments in basic and clinical science have turned the spotlight to miRNAs for their potential therapeutic efficacy. Since their discovery in 1993, it has become clear that miRNAs act as posttranscriptional regulators of protein expression. Their clinical potential was further highlighted by the results of miRNA-based interventions in small laboratory animals. More importantly, their therapeutic effectiveness has been shown recently in phase 2a clinical studies in patients with hepatitis C virus infection, where inhibition of miRNA-122 showed prolonged and dose-dependent viral suppression. A recent study surprisingly revealed the presence of plant-derived miRNAs in the blood of healthy humans. This finding opens up the possibility to explore miRNA-mediated therapeutics derived from (genetically modified) food. Having arrived at this point in our understanding of miRNAs, we provide an overview of current evidence and future potential of miRNA-based therapeutics, focusing on their application in cardiac fibrosis.

  5. Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.

    PubMed

    Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu

    2016-08-02

    Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.

  6. Soil metabarcoding identifies season indicators and differentiators of pig and Agrostis/Festuca spp. decomposition.

    PubMed

    Olakanye, Ayodeji O; Ralebitso-Senior, T Komang

    2018-04-15

    To gain a better understanding of how environmental microbiota respond to cadaver decomposition, a forensic ecogenomic study was made with soil only control and 4g each of Sus scrofa domesticus and plant litter (Agrostis/Festuca spp.) buried individually in a sandy clay loam (80g) in sealed but perforated triplicate microcosms. The next-generation sequencing (Illumina Miseq) of the soil bacteria (16S rRNA gene) clade revealed seasonal taxomonic shifts at genus-level for the pig and plant litter microcosms compared to the non-burial controls. In particular, numerical abundances of Sphingobacterium (5.9%) and Pedobacter (24.1%) for the pig microcosms, and Rhodanobacter (18.1%) and Shinella (4.6%) for the plant litter microcosms, identified bacterial genera that could be tracked to establish a (seasonal) subsurface postmortem microbial clock. Also, family-level resolution revealed members that were unique to the control, grass and pig soils after 365 days. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Analysis of plant-derived miRNAs in animal small RNA datasets

    PubMed Central

    2012-01-01

    Background Plants contain significant quantities of small RNAs (sRNAs) derived from various sRNA biogenesis pathways. Many of these sRNAs play regulatory roles in plants. Previous analysis revealed that numerous sRNAs in corn, rice and soybean seeds have high sequence similarity to animal genes. However, exogenous RNA is considered to be unstable within the gastrointestinal tract of many animals, thus limiting potential for any adverse effects from consumption of dietary RNA. A recent paper reported that putative plant miRNAs were detected in animal plasma and serum, presumably acquired through ingestion, and may have a functional impact in the consuming organisms. Results To address the question of how common this phenomenon could be, we searched for plant miRNAs sequences in public sRNA datasets from various tissues of mammals, chicken and insects. Our analyses revealed that plant miRNAs were present in the animal sRNA datasets, and significantly miR168 was extremely over-represented. Furthermore, all or nearly all (>96%) miR168 sequences were monocot derived for most datasets, including datasets for two insects reared on dicot plants in their respective experiments. To investigate if plant-derived miRNAs, including miR168, could accumulate and move systemically in insects, we conducted insect feeding studies for three insects including corn rootworm, which has been shown to be responsive to plant-produced long double-stranded RNAs. Conclusions Our analyses suggest that the observed plant miRNAs in animal sRNA datasets can originate in the process of sequencing, and that accumulation of plant miRNAs via dietary exposure is not universal in animals. PMID:22873950

  8. Plasma levels of miRNA-155 as a powerful diagnostic marker for dedifferentiated liposarcoma

    PubMed Central

    Boro, Aleksandar; Bauer, David; Born, Walter; Fuchs, Bruno

    2016-01-01

    Atypic lipomatous tumors (ALT) and dedifferentiated liposarcomas (DDLS) are closely related liposarcoma subtypes, often difficult to distinguish but they exhibit an entirely different clinical outcome. Recently discovered regulatory functions of miRNAs in liposarcoma progression prompted us to investigate miRNAs as potential diagnostic biomarkers in liposarcoma with a main focus on circulating miRNAs for fast and reliable differential diagnosis. Tumor and blood samples of 35 patients with lipomatous lesions collected between June 2011 and September 2014 were analyzed by qRT-PCR. They included 10 lipomas, 7 ALT, 5 DDLS and 13 myxoid liposarcomas (MLS). Ten samples of normal fat tissue and blood from 20 healthy volunteers were used as controls. A meta-analysis of public data on miRNA expression in liposarcoma revealed 9 miRNAs with potential diagnostic power. Out of these, miRNA-155 was found significantly elevated in the circulation of DDLS patients as compared to the plasma levels detected in all other liposarcoma subtypes and in healthy subjects. miRNA-155 levels in the plasma samples correlated significantly (r=0.41, p=0.02) with those in corresponding tumor extracts. This correlation was even more pronounced in an analysis of plasma and tumor extracts of malignant liposarcoma subtypes alone (r=0.51, p=0.02). Receiver operating characteristic analysis indicated that plasma miRNA-155 levels have a high diagnostic accuracy for distinguishing DDLS from healthy subjects (AUC=0.91, p=0.005) and from lipomas (AUC=0.86, p=0.02), MLS (AUC=0.92, p=0.006) and most importantly ALT (AUC=0.91, p=0.01) patients. In conclusion, this study identified miRNA-155 as a first blood biomarker for the differential diagnosis of DDLS. PMID:27186423

  9. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    PubMed

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro . The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  10. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA

    PubMed Central

    James, Amanda Marie; Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples. PMID:28255356

  11. Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan.

    PubMed

    Nithin, Chandran; Thomas, Amal; Basak, Jolly; Bahadur, Ranjit Prasad

    2017-11-15

    Non-coding RNAs (ncRNAs) are important players in the post transcriptional regulation of gene expression (PTGR). On one hand, microRNAs (miRNAs) are an abundant class of small ncRNAs (~22nt long) that negatively regulate gene expression at the levels of messenger RNAs stability and translation inhibition, on the other hand, long ncRNAs (lncRNAs) are a large and diverse class of transcribed non-protein coding RNA molecules (> 200nt) that play both up-regulatory as well as down-regulatory roles at the transcriptional level. Cajanus cajan, a leguminosae pulse crop grown in tropical and subtropical areas of the world, is a source of high value protein to vegetarians or very poor populations globally. Hence, genome-wide identification of miRNAs and lncRNAs in C. cajan is extremely important to understand their role in PTGR with a possible implication to generate improve variety of crops. We have identified 616 mature miRNAs in C. cajan belonging to 118 families, of which 578 are novel and not reported in MirBase21. A total of 1373 target sequences were identified for 180 miRNAs. Of these, 298 targets were characterized at the protein level. Besides, we have also predicted 3919 lncRNAs. Additionally, we have identified 87 of the predicted lncRNAs to be targeted by 66 miRNAs. miRNA and lncRNAs in plants are known to control a variety of traits including yield, quality and stress tolerance. Owing to its agricultural importance and medicinal value, the identified miRNA, lncRNA and their targets in C. cajan may be useful for genome editing to improve better quality crop. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of C. cajan agricultural traits.

  12. Normalization matters: tracking the best strategy for sperm miRNA quantification.

    PubMed

    Corral-Vazquez, Celia; Blanco, Joan; Salas-Huetos, Albert; Vidal, Francesca; Anton, Ester

    2017-01-01

    What is the most reliable normalization strategy for sperm microRNA (miRNA) quantitative Reverse Transcription Polymerase Chain Reactions (qRT-PCR) using singleplex assays? The use of the average expression of hsa-miR-100-5p and hsa-miR-30a-5p as sperm miRNA qRT-PCR data normalizer is suggested as an optimal strategy. Mean-centering methods are the most reliable normalization strategies for miRNA high-throughput expression analyses. Nevertheless, specific trustworthy reference controls must be established in singleplex sperm miRNA qRT-PCRs. Cycle threshold (Ct) values from previously published sperm miRNA expression profiles were normalized using four approaches: (i) Mean-Centering Restricted (MCR) method (taken as the reference strategy); (ii) expression of the small nuclear RNA RNU6B; (iii) expression of four miRNAs selected by the Concordance Correlation Restricted (CCR) algorithm: hsa-miR-100-5p, hsa-miR-146b-5p, hsa-miR-92a-3p and hsa-miR-30a-5p; (iv) the combination of two of these miRNAs that achieved the highest proximity to MCR. Expression profile data from 736 sperm miRNAs were taken from previously published studies performed in fertile donors (n = 10) and infertile patients (n = 38). For each tested normalizer molecule, expression ubiquity and uniformity across the different samples and populations were assessed as indispensable requirements for being considered as valid candidates. The reliability of the different normalizing strategies was compared to MCR based on the set of differentially expressed miRNAs (DE-miRNAs) detected between populations, the corresponding predicted targets and the associated enriched biological processes. All tested normalizers were found to be ubiquitous and non-differentially expressed between populations. RNU6B was the least uniformly expressed candidate across samples. Data normalization through RNU6B led to dramatically misguided results when compared to MCR outputs, with a null prediction of target genes and enriched

  13. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    PubMed

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses

  14. Altered expression of miRNAs in the uterus from a letrozole-induced rat PCOS model.

    PubMed

    Li, Chunjin; Chen, Lu; Zhao, Yun; Chen, Shuxiong; Fu, Lulu; Jiang, Yanwen; Gao, Shan; Liu, Zhuo; Wang, Fengge; Zhu, Xiaoling; Rao, Jiahui; Zhang, Jing; Zhou, Xu

    2017-01-20

    Polycystic ovary syndrome (PCOS) causes female subfertility with ovarian disorders and may be associated with increased rate of early-pregnancy failure. Rat PCOS models were established using letrozole to understand the uterine pathogenesis of PCOS. The differential expression of microRNAs (miRNAs) was observed in rat uterus with PCOS. After estrous cycles were disrupted, significantly abnormal ovarian morphology and hormone level were observed in rats with PCOS. A total of 148 miRNAs differentially expressed were identified in the uterus from the letrozole-induced rat model compared with the control. These miRNAs included 111 upregulated miRNAs and 37 downregulated miRNAs. The differential expression of miR-484, miR-375-3p, miR-324-5p, and miR-223-3p was further confirmed by quantitative reverse transcription polymerase chain reaction. Bioinformatic analysis showed that these four miRNAs were predicted to regulate a large number of genes with different functions. Pathway analysis supported that target genes of miRNAs were involved in insulin secretion and signaling pathways, such as wnt, AMPK, PI3K-Akt, and Ras. These data indicated that miRNAs differentially expressed in rat uterus with PCOS may be associated with PCOS pathogenesis in the uterus. Our findings can help clarify the mechanism of uterine defects in PCOS. Copyright © 2016. Published by Elsevier B.V.

  15. miRNA studies in in vitro and in vivo activated hepatic stellate cells

    PubMed Central

    Maubach, Gunter; Lim, Michelle Chin Chia; Chen, Jinmiao; Yang, Henry; Zhuo, Lang

    2011-01-01

    AIM: To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation. METHODS: We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated. RESULTS: We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs. Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type I transcription. CONCLUSION: Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA. PMID:21734783

  16. Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis.

    PubMed

    Giudice, Aldo; D'Arena, Giovanni; Crispo, Anna; Tecce, Mario Felice; Nocerino, Flavia; Grimaldi, Maria; Rotondo, Emanuela; D'Ursi, Anna Maria; Scrima, Mario; Galdiero, Massimiliano; Ciliberto, Gennaro; Capunzo, Mario; Franci, Gianluigi; Barbieri, Antonio; Bimonte, Sabrina; Montella, Maurizio

    2016-01-01

    MicroRNAs are short (21-23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.

  17. Profiling circulating miRNAs in serum from pigs infected with the porcine whipworm, Trichuris suis.

    PubMed

    Hansen, Eline Palm; Kringel, Helene; Thamsborg, Stig Milan; Jex, Aaron; Nejsum, Peter

    2016-06-15

    microRNAs (miRNAs) are recently discovered as key regulators of gene translation and are becoming increasingly recognized for their involvement in various diseases. This study investigates the miRNA profile in pig serum during the course of an infection with the gastrointestinal parasite, Trichuris suis. Of this panel, the expression of selected miRNAs in serum from T. suis infected and uninfected pigs were determined by quantitative real time PCR using Exiqon Human Panel assays at 0, 2, 4, 6, 8 and 10 weeks post first infection (wpi). One miRNA, ssc-let-7d-3p, was significantly up-regulated in infected pigs 8 wpi. Interestingly, ssc-let-7d-3p shows high complementary to tsu-let-7a, which is the most highly transcribed miRNA in T. suis. The let-7 family miRNAs have been shown to post-transcriptionally regulate the translation of the helminth-controlling cytokine, IL-13, in a murine model for asthma and we hypothesize possible interactions between these host- and parasite-derived miRNAs and their immunomodulating roles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    PubMed

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  19. Signs of embryo-maternal communication: miRNAs in the maternal serum of pregnant pigs.

    PubMed

    Reliszko, Z P; Gajewski, Z; Kaczmarek, M M

    2017-09-01

    Circulating miRNAs were proposed to be indicators of normal or complicated pregnancies. Based on this knowledge and our recent transcriptomic approach showing expression of miRNAs in the porcine endometrium, conceptuses and uterine extracellular vesicles during pregnancy, we have hypothesized that signs of ongoing local embryo-maternal crosstalk involving miRNAs can be detected in the circulation of pregnant gilts as early as a few days after maternal recognition of pregnancy. By applying several molecular biology techniques that differ in dynamic range and precision in maternal serum of Day 16 pregnant pigs, we were able to show for the first time increased levels of several miRNAs, previously reported to be expressed in either conceptuses and extracellular vesicles (miR-26a and miR-125b) or pregnant endometrium (miR-23b). Our results clearly showed that real-time RT-PCR and digital PCR are the most reliable methods, being able to detect small-fold changes of low-abundant circulating miRNAs. Further validation in a separate group of gilts confirmed an increase in miR-23b and miR-125b levels. In silico analyses identified pregnancy-related biological processes and pathways affected by these miRNAs. Target prediction analysis revealed hundreds of porcine transcripts with conserved sites for these miRNAs, which were classified into signaling pathways relevant to pregnancy. We conclude that a unique set of miRNAs can already be observed in the circulation of pigs during the first weeks of pregnancy, as a result of the initiation of embryo-maternal communication. © 2017 Society for Reproduction and Fertility.

  20. Global miRNA expression and correlation with mRNA levels in primary human bone cells

    PubMed Central

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas

    2015-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267

  1. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells.

    PubMed

    Aqil, Madeeha; Naqvi, Afsar Raza; Mallik, Saurav; Bandyopadhyay, Sanghamitra; Maulik, Ujjwal; Jameel, Shahid

    2014-01-01

    The HIV Nef protein is a multifunctional virulence factor that perturbs intracellular membranes and signalling and is secreted into exosomes. While Nef-containing exosomes have a distinct proteomic profile, no comprehensive analysis of their miRNA cargo has been carried out. Since Nef functions as a viral suppressor of RNA interference and disturbs the distribution of RNA-induced silencing complex proteins between cells and exosomes, we hypothesized that it might also affect the export of miRNAs into exosomes. Exosomes were purified from human monocytic U937 cells that stably expressed HIV-1 Nef. The RNA from cells and exosomes was profiled for 667 miRNAs using a Taqman Low Density Array. Selected miRNAs and their mRNA targets were validated by quantitative RT-PCR. Bioinformatics analyses were used to identify targets and predict pathways. Nef expression affected a significant fraction of miRNAs in U937 cells. Our analysis showed 47 miRNAs to be selectively secreted into Nef exosomes and 2 miRNAs to be selectively retained in Nef-expressing cells. The exosomal miRNAs were predicted to target several cellular genes in inflammatory cytokine and other pathways important for HIV pathogenesis, and an overwhelming majority had targets within the HIV genome. This is the first study to report miRnome analysis of HIV Nef expressing monocytes and exosomes. Our results demonstrate that Nef causes large-scale dysregulation of cellular miRNAs, including their secretion through exosomes. We suggest this to be a novel viral strategy to affect pathogenesis and to limit the effects of RNA interference on viral replication and persistence.

  2. Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants

    PubMed Central

    Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.

    2016-01-01

    Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585

  3. Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition

    PubMed Central

    Bosson, Andrew D.; Zamudio, Jesse R.; Sharp, Phillip A.

    2016-01-01

    SUMMARY Target competition (ceRNA crosstalk) within miRNA-regulated gene networks has been proposed to influence biological systems. To assess target competition, we characterize and quantitate miRNA networks in two cell types. Argonaute iCLIP reveals that hierarchical binding of high- to low-affinity miRNA targets is a key characteristic of in vivo activity. Quantification of cellular miRNA and mRNA/ncRNA target pool levels indicates that miRNA:target pool ratios and an affinity partitioned target pool accurately predict in vivo Ago binding profiles and miRNA susceptibility to target competition. Using single-cell reporters, we directly test predictions and estimate that ~3,000 additional high-affinity target sites can affect active miRNA families with low endogenous miRNA:target ratios, such as miR-92/25. In contrast, the highly expressed miR-294 and let-7 families are not susceptible to increases of nearly 10,000 sites. These results show differential susceptibility based on endogenous miRNA:target pool ratios and provide a physiological context for ceRNA competition in vivo. PMID:25449132

  4. Identification of circulating miRNA involved in meat yield of Korean cattle.

    PubMed

    Lee, Surim; Park, Seung-Ju; Cheong, Jae-Kyoung; Ko, Jong-Youl; Bong, Jinjong; Baik, Myunggi

    2017-07-01

    Cattle plays an important role in providing essential nutrients through meat production. Thus, we focused on epigenetic factors associated with meat yield. To investigate circulating miRNAs that are involved with meat yield and connect biofluids and longissimus dorsi (LD) muscle in Korean cattle, we performed analyses of the carcass characteristics, miRNA array, qPCR, and bioinformatics. Carcass characteristics relative to the yield grade (YG) showed that the yield index and rib eye area were the highest, whereas the backfat thickness was the lowest for YG A (equal to high YG) cattle among the three YGs. miRNA array sorted the circulating miRNAs that connect biofluids and LD muscle. miRNA qPCR showed that miR-15a (r = 0.84), miR-26b (r = 0.91), and miR-29c (r = 0.92) had positive relationships with biofluids and LD muscle. In YG A cattle, miR-26b was considered to be a circulating miRNA connecting biofluids and LD muscle because the target genes of miR-26b were more involved with myogenesis. Then, miR-26b-targeted genes, DIAPH3 and YOD1, were downregulated in YG A cattle. Our results suggest that miR-15a, miR-26b, and miR-29c are upregulated in biofluids and LD muscle, whereas DIAPH3 and YOD1 are downregulated in the LD muscle of finishing cattle steers. © 2017 International Federation for Cell Biology.

  5. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays

    USDA-ARS?s Scientific Manuscript database

    To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and ...

  6. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae.

    PubMed

    Picone, Barbara; Rhode, Clint; Roodt-Wilding, Rouvay

    2017-02-01

    Aquatic animal diseases are one of the most important limitations to the growth of aquaculture. miRNAs represent an important class of small ncRNAs able to modulate host immune and stress responses. In Mollusca, a large phylum of invertebrates, miRNAs have been identified in several species. The current preliminary study identified known miRNAs from the South African abalone, Haliotis midae. The economic and ecological importance of abalone makes this species a suitable model for studying and understanding stress response in marine gastropods. Furthermore, the identification of miRNA, represents an alternative and powerful tool to combat infectious disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases.

    PubMed

    Rieger, Jessica K; Bodan, Denis A; Zanger, Ulrich M

    2011-01-01

    MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3'-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp.

  8. MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases

    PubMed Central

    Rieger, Jessica K.; Bodan, Denis A.; Zanger, Ulrich M.

    2011-01-01

    MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3′-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp PMID:22303335

  9. Employing machine learning for reliable miRNA target identification in plants

    PubMed Central

    2011-01-01

    Background miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions. Result In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like Arabidopsis, Medicago, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version. Conclusion A machine learning multivariate feature tool has been

  10. Human Milk Cells Contain Numerous miRNAs that May Change with Milk Removal and Regulate Multiple Physiological Processes

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) is a complex biofluid conferring nutritional, protective and developmental components for optimal infant growth. Amongst these are maternal cells, which change in response to feeding and were recently shown to be a rich source of miRNAs. We used next generation sequencing to characterize the cellular miRNA profile of HM collected before and after feeding. HM cells conserved higher miRNA content than the lipid and skim HM fractions or other body fluids, in accordance with previous studies. In total, 1467 known mature and 1996 novel miRNAs were identified, with 89 high-confidence novel miRNAs. HM cell content was higher post-feeding (p < 0.05), and was positively associated with total miRNA content (p = 0.014) and species number (p < 0.001). This coincided with upregulation of 29 known and 2 novel miRNAs, and downregulation of 4 known and 1 novel miRNAs post-feeding, but no statistically significant change in expression was found for the remaining miRNAs. These findings suggest that feeding may influence the miRNA content of HM cells. The most highly and differentially expressed miRNAs were key regulators of milk components, with potential diagnostic value in lactation performance. They are also involved in the control of body fluid balance, thirst, appetite, immune response, and development, implicating their functional significance for the infant. PMID:27322254

  11. miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132

    PubMed Central

    Jimenez-Mateos, Eva M.; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C.; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A.; Simon, Roger P.; Stallings, Raymond L.; Henshall, David C.

    2011-01-01

    When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. PMID:21945804

  12. Computational identification of miRNAs, their targets and functions in three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Chaturvedi, Anurag; Raeymaekers, Joost A M; Volckaert, Filip A M

    2014-07-01

    An intriguing question in biology is how the evolution of gene regulation is shaped by natural selection in natural populations. Among the many known regulatory mechanisms, regulation of gene expression by microRNAs (miRNAs) is of critical importance. However, our understanding of their evolution in natural populations is limited. Studying the role of miRNAs in three-spined stickleback, an important natural model for speciation research, may provide new insights into adaptive polymorphisms. However, lack of annotation of miRNA genes in its genome is a bottleneck. To fill this research gap, we used the genome of three-spined stickleback to predict miRNAs and their targets. We predicted 1486 mature miRNAs using the homology-based miRNA prediction approach. We then performed functional annotation and enrichment analysis of these targets, which identified over-represented motifs. Further, a database resource (GAmiRdb) has been developed for dynamically searching miRNAs and their targets exclusively in three-spined stickleback. Finally, the database was used in two case studies focusing on freshwater adaptation in natural populations. In the first study, we found 44 genomic regions overlapping with predicted miRNA targets. In the second study, we identified two SNPs altering the MRE seed site of sperm-specific glyceraldehyde-3-phosphate gene. These findings highlight the importance of the GAmiRdb knowledge base in understanding adaptive evolution. © 2014 John Wiley & Sons Ltd.

  13. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity.

    PubMed

    Maloyan, Alina; Muralimanoharan, Sribalasubashini; Huffman, Steven; Cox, Laura A; Nathanielsz, Peter W; Myatt, Leslie; Nijland, Mark J

    2013-10-01

    Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.

  14. High-Throughput Sequencing Reveals Differential Expression of miRNAs in Intestine from Sea Cucumber during Aestivation

    PubMed Central

    Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B.

    2013-01-01

    The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179

  15. An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers

    PubMed Central

    Ma, Lina; Huang, Yanyan; Zhu, Wangyu; Zhou, Shiquan; Zhou, Jihang; Zeng, Fang; Liu, Xiaoguang; Zhang, Yongkui; Yu, Jun

    2011-01-01

    Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC) tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs. In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands, which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression. PMID:22046296

  16. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases

    PubMed Central

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia

    2018-01-01

    Abstract The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3′-UTRs, collectively called ‘miRSNPs’, represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. PMID:29106642

  17. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases.

    PubMed

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia; Zhang, Yunpeng; Ning, Shangwei; Li, Xia

    2018-01-04

    The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3'-UTRs, collectively called 'miRSNPs', represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Dacarbazine inhibits proliferation of melanoma FEMX-1 cells by up-regulating expression of miRNA-200.

    PubMed

    Chen, Y-N

    2017-03-01

    Melanoma is a highly aggressive tumour, and treatment efficacy depends on the stage of the tumour. Early stage cutaneous melanoma is efficiently treated by surgical excision. In contrast, late-stage melanoma requires chemotherapy with dacarbazine (DTIC). Unfortunately, advanced melanoma can often be resistant to DTIC. The mechanisms of anti-melanoma effects of DTIC are still poorly understood, which hinders development of more potent therapies. In this study, we examined the effects of DTIC on growth inhibition of FEMX-1 melanoma cell line, expression of apoptosis-related proteins, and expression of micro (mi)RNA-200 (miRNA-200a, miRNA-200b, miRNA-200c, and miRNA-141). DTIC was used at 50 (low dose) or 100 (high dose) mg/ml. Cell growth inhibition was documented by MTT assay. Cell apoptosis was quantified by propidium iodide staining and caspase 3-8 activity assay. Expression of apoptosis-related proteins Bim, Bak, BAX, and Bad were documented by Western blot analysis, while expression of miRNA-200 by PCR. DTIC dose-dependently inhibited growth of FEMX-1 melanoma cell line, induced cell apoptosis, modulated the levels of apoptosis-related proteins, and up-regulated expression of miRNA-200 family members. DTIC inhibits the growth of melanoma cells by up-regulating expression of miRNA-200.

  19. Identification of Differentially Expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say)) Exposed to Imidacloprid.

    PubMed

    Morin, Mathieu D; Lyons, Pierre J; Crapoulet, Nicolas; Boquel, Sébastien; Morin, Pier Jr

    2017-12-16

    The Colorado potato beetle ( Leptinotarsa decemlineata (Say)) is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs) are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata . In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata . This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.

  20. Altered miRNA expression in aniline-mediated cell cycle progression in rat spleen.

    PubMed

    Wang, Gangduo; Wang, Jianling; Khan, M Firoze

    2017-09-01

    Aniline exposure is associated with toxicity to the spleen, however, early molecular events in aniline-induced cell cycle progression in the spleen remain unknown. MicroRNAs (miRNAs) have been implicated in tumor development by modulating key cell cycle regulators and controlling cell proliferation. This study was, therefore, undertaken on the expression of miRNAs, regulation of cyclins and cyclin-dependent kinases (CDKs) in an experimental condition that precedes a tumorigenic response. Male SD rats were treated with aniline (1 mmol/kg/day by gavage) for 7 days, and expression of miRNAs, cyclins and CDKs in rat spleens were analyzed. Microarray and/or qPCR analyses showed that aniline exposure led to significantly decreased miRNA expression of let-7a, miR-24, miR-34c, miR-100, miR-125b, and greatly increased miR-181a. The aberrant expression of miRNAs was associated with significantly increased protein expression of cyclins A, B1, D3 and E. Furthermore, remarkably enhanced expression of CDKs like CDK1, CDK2, CDK4, CDK6, especially p-CDK1 and p-CDK2 as well as alternations in the expression of pRB, p27, and CDC25A in the spleens of aniline-treated rats was also observed. The data suggest that aniline exposure leads to aberrant expression of miRNAs in the spleen which could be important in the regulation of cell cycle proteins. Our findings, thus, provide new insight into the role of miRNAs in cell cycle progression, which may contribute to aniline-induced tumorigenic response in the spleen.

  1. miRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples

    PubMed Central

    Braicu, Ovidiu-Leonard; Budisan, Liviuta; Buiga, Rares; Jurj, Ancuta; Achimas-Cadariu, Patriciu; Pop, Laura Ancuta; Braicu, Cornelia; Irimie, Alexandru; Berindan-Neagoe, Ioana

    2017-01-01

    Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most

  2. [Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts].

    PubMed

    Zeng, Zongyue; Hu, Ping; Tang, Xi; Zhang, Hailong; Du, Yane; Wen, Siyang; Liu, Manran

    2014-10-01

    To investigate the difference of miRNA expression levels of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) in human breast cancer microenvironment and its effect on the biological features of CAFs. Collagenase-1 was used to digest the cancer and adjacent tissues to isolate CAFs and NFs. The isolated cells were cultured and characterized in purity and biological features. The expression of fibroblast secretory protein (FSP) in CAFs and NFs was detected by immunofluorescence staining and Western blotting. Transwell(TM) assay was adopted to compare the invasion ability of CAFs and NFs. The different expressions of miRNAs in CAFs versus NFs were detected by miRNA microarray and analyzed by Significance Analysis of Microarrays (SAM). The differences in miR-205 and miR-221 expressions were verified by real-time quantitative PCR (qRT-PCR). The common target genes of the miRNAs were predicted using multi-bioinformatics tools. The pathway analysis was conducted through the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7. The secreting products of TGF-β or IL-6 signaling pathway, matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 were analyzed by ELISA. The primary CAFs and NFs were isolated from breast cancer patients with a purity of over 95%. Compared with NFs, the expression of FSP was obviously elevated in CAFs, and the invasion ability of CAFs was enhanced. The miRNA microarray results showed that there were 10 miRNA genes dysregulated in CAFs, including 3 up-regulated (miR-221-5p, miR-31-3p, miR-221-3p) and 7 down-regulated genes (miR-205, miR-200b , miR-200c, miR-141, miR-101, miR-342-3p, let-7g). The common targets genes of the dysregulated miRNAs were mainly focused on HGF, chemokine signaling, insulin signaling, MAPK signaling, tight junction signaling, adherence junction signaling, EGF1 signaling, androgen-receptor signaling, Wnt and IL-7 signaling. In addition, dysregulated miR-200b/c and miR-141 et al. affect TGF

  3. In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma

    PubMed Central

    Ronchetti, Domenica; Manzoni, Martina; Todoerti, Katia; Neri, Antonino; Agnelli, Luca

    2016-01-01

    The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNA (ceRNA) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed a significant correlation between lncRNA and miRNA expression levels, we identified 11 lncRNA–miRNA relationships suggestive of a novel ceRNA network with relevance in MM. PMID:27916857

  4. Fuzzy mutual information based grouping and new fitness function for PSO in selection of miRNAs in cancer.

    PubMed

    Pal, Jayanta Kumar; Ray, Shubhra Sankar; Pal, Sankar K

    2017-10-01

    MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups. Both the steps viz., ranking of miRNAs and selection of the most relevant group of miRNAs, are performed using FMI. Here the number of groups is automatically determined by the grouping method. After the selection process, redundant miRNAs are removed from the selected set of miRNAs as per user's necessity. In a part of the investigation we proposed a FMI based particle swarm optimization (PSO) method for selecting relevant miRNAs, where FMI is used as a fitness function to determine the fitness of the particles. The effectiveness of FMIGS and FMI based PSO is tested on five data sets and their efficiency in selecting relevant miRNAs are demonstrated. The superior performance of FMIGS to some existing methods are established and the biological significance of the selected miRNAs is observed by the findings of the biological investigation and publicly available pathway analysis tools. The source code related to our investigation is available at http://www.jayanta.droppages.com/FMIGS.html. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application.

    PubMed

    Pan, Chao-Yu; Kuo, Wei-Ting; Chiu, Chien-Yuan; Lin, Wen-Chang

    2017-01-01

    MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  6. Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density

    PubMed Central

    Coronnello, Claudia; Hartmaier, Ryan; Arora, Arshi; Huleihel, Luai; Pandit, Kusum V.; Bais, Abha S.; Butterworth, Michael; Kaminski, Naftali; Stormo, Gary D.; Oesterreich, Steffi; Benos, Panayiotis V.

    2012-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for mi

  7. Improving power to detect changes in blood miRNA expression by accounting for sources of variability in experimental designs.

    PubMed

    Daniels, Sarah I; Sillé, Fenna C M; Goldbaum, Audrey; Yee, Brenda; Key, Ellen F; Zhang, Luoping; Smith, Martyn T; Thomas, Reuben

    2014-12-01

    Blood miRNAs are a new promising area of disease research, but variability in miRNA measurements may limit detection of true-positive findings. Here, we measured sources of miRNA variability and determine whether repeated measures can improve power to detect fold-change differences between comparison groups. Blood from healthy volunteers (N = 12) was collected at three time points. The miRNAs were extracted by a method predetermined to give the highest miRNA yield. Nine different miRNAs were quantified using different qPCR assays and analyzed using mixed models to identify sources of variability. A larger number of miRNAs from a publicly available blood miRNA microarray dataset with repeated measures were used for a bootstrapping procedure to investigate effects of repeated measures on power to detect fold changes in miRNA expression for a theoretical case-control study. Technical variability in qPCR replicates was identified as a significant source of variability (P < 0.05) for all nine miRNAs tested. Variability was larger in the TaqMan qPCR assays (SD = 0.15-0.61) versus the qScript qPCR assays (SD = 0.08-0.14). Inter- and intraindividual and extraction variability also contributed significantly for two miRNAs. The bootstrapping procedure demonstrated that repeated measures (20%-50% of N) increased detection of a 2-fold change for approximately 10% to 45% more miRNAs. Statistical power to detect small fold changes in blood miRNAs can be improved by accounting for sources of variability using repeated measures and choosing appropriate methods to minimize variability in miRNA quantification. This study demonstrates the importance of including repeated measures in experimental designs for blood miRNA research. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." ©2014 American Association for Cancer Research.

  8. microRNA analysis of Taenia crassiceps cysticerci under praziquantel treatment and genome-wide identification of Taenia solium miRNAs.

    PubMed

    Pérez, Matías Gastón; Macchiaroli, Natalia; Lichtenstein, Gabriel; Conti, Gabriela; Asurmendi, Sebastián; Milone, Diego Humberto; Stegmayer, Georgina; Kamenetzky, Laura; Cucher, Marcela; Rosenzvit, Mara Cecilia

    2017-09-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression and perform critical functions in development and disease. In spite of the increased interest in miRNAs from helminth parasites, no information is available on miRNAs from Taenia solium, the causative agent of cysticercosis, a neglected disease affecting millions of people worldwide. Here we performed a comprehensive analysis of miRNAs from Taenia crassiceps, a laboratory model for T. solium studies, and identified miRNAs in the T. solium genome. Moreover, we analysed the effect of praziquantel, one of the two main drugs used for cysticercosis treatment, on the miRNA expression profile of T. crassiceps cysticerci. Using small RNA-seq and two independent algorithms for miRNA prediction, as well as northern blot validation, we found transcriptional evidence of 39 miRNA loci in T. crassiceps. Since miRNAs were mapped to the T. solium genome, these miRNAs are considered common to both parasites. The miRNA expression profile of T. crassiceps was biased to the same set of highly expressed miRNAs reported in other cestodes. We found a significant altered expression of miR-7b under praziquantel treatment. In addition, we searched for miRNAs predicted to target genes related to drug response. We performed a detailed target prediction for miR-7b and found genes related to drug action. We report an initial approach to study the effect of sub-lethal drug treatment on miRNA expression in a cestode parasite, which provides a platform for further studies of miRNA involvement in drug effects. The results of our work could be applied to drug development and provide basic knowledge of cysticercosis and other neglected helminth infections. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Validation of miRNA genes suitable as reference genes in qPCR analyses of miRNA gene expression in Atlantic salmon (Salmo salar).

    PubMed

    Johansen, Ilona; Andreassen, Rune

    2014-12-23

    MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the post-transcriptional level. They play important roles by regulating genes that control multiple biological processes, and recent years there has been an increased interest in studying miRNA genes and miRNA gene expression. The most common method applied to study gene expression of single genes is quantitative PCR (qPCR). However, before expression of mature miRNAs can be studied robust qPCR methods (miRNA-qPCR) must be developed. This includes identification and validation of suitable reference genes. We are particularly interested in Atlantic salmon (Salmo salar). This is an economically important aquaculture species, but no reference genes dedicated for use in miRNA-qPCR methods has been validated for this species. Our aim was, therefore, to identify suitable reference genes for miRNA-qPCR methods in Salmo salar. We used a systematic approach where we utilized similar studies in other species, some biological criteria, results from deep sequencing of small RNAs and, finally, experimental validation of candidate reference genes by qPCR to identify the most suitable reference genes. Ssa-miR-25-3p was identified as most suitable single reference gene. The best combinations of two reference genes were ssa-miR-25-3p and ssa-miR-455-5p. These two genes were constitutively and stably expressed across many different tissues. Furthermore, infectious salmon anaemia did not seem to affect their expression levels. These genes were amplified with high specificity, good efficiency and the qPCR assays showed a good linearity when applying a simple cybergreen miRNA-PCR method using miRNA gene specific forward primers. We have identified suitable reference genes for miRNA-qPCR in Atlantic salmon. These results will greatly facilitate further studies on miRNA genes in this species. The reference genes identified are conserved genes that are identical in their mature

  10. A quantitative framework for the forward design of synthetic miRNA circuits.

    PubMed

    Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D

    2014-11-01

    Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.

  11. Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival

    PubMed Central

    Kozlowski, Elyse; Matsuura, Kori Y.; Ferrari, Joseph D.; Morris, Samantha A.; Powers, John T.; Daley, George Q.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression. PMID:23209448

  12. Dysregulation of Placental miRNA in Maternal Obesity Is Associated With Pre- and Postnatal Growth.

    PubMed

    Carreras-Badosa, Gemma; Bonmatí, Alexandra; Ortega, Francisco-Jose; Mercader, Josep-Maria; Guindo-Martínez, Marta; Torrents, David; Prats-Puig, Anna; Martinez-Calcerrada, Jose-Maria; de Zegher, Francis; Ibáñez, Lourdes; Fernandez-Real, Jose-Manuel; Lopez-Bermejo, Abel; Bassols, Judit

    2017-07-01

    Human placenta exhibits a specific microRNA (miRNA) expression pattern. Some of these miRNAs are dysregulated in pregnancy disorders such as preeclampsia and intrauterine growth restriction and are potential biomarkers for these pathologies. To study the placental miRNA profile in pregnant women with pregestational overweight/obesity (preOB) or gestational obesity (gestOB) and explore the associations between placental miRNAs dysregulated in maternal obesity and prenatal and postnatal growth. TaqMan Low Density Arrays and real-time polymerase chain reaction were used to profile the placental miRNAs in 70 pregnant women (20 preOB, 25 gestOB, and 25 control). Placentas and newborns were weighed at delivery, and infants were weighed at 1, 4, and 12 months of age. Eight miRNAs were decreased in placentas from preOB or gestOB (miR-100, miR-1269, miR-1285, miR-181, miR-185, miR-214, miR-296, and miR-487) (all P < 0.05). Among them, miR-100, miR-1285, miR-296, and miR-487 were associated with maternal metabolic parameters (all P < 0.05) and were predictors of lower birth weight (all P < 0.05; R2 > 30%) and increased postnatal weight gain (all P < 0.05; R2 > 20%). In silico analysis showed that these miRNAs were related to cell proliferation and insulin signaling pathways. miR-296 was also present in plasma samples and associated with placental expression and prenatal and postnatal growth parameters (all P < 0.05). We identified a specific placental miRNA profile in maternal obesity. Placental miRNAs dysregulated in maternal obesity may be involved in mediation of growth-promoting effects of maternal obesity on offspring and could be used as early markers of prenatal and postnatal growth. Copyright © 2017 Endocrine Society

  13. An oyster species-specific miRNA scaffold42648_5080 modulates haemocyte migration by targeting integrin pathway.

    PubMed

    Chen, Hao; Wang, Hao; Jiang, Shuai; Xu, Jiachao; Wang, Lingling; Qiu, Limei; Song, Linsheng

    2016-10-01

    miRNAs are important gene regulators at post-transcriptional level and can modulate diverse biological processes, including immune response. Dozens of species-specific miRNAs have been identified in oyster Crassostrea gigas while their functions remain largely unknown. In the present study, an oyster species-specific miRNA scaffold42648_5080 was found responsive to LPS stimulation and might target a total of 31 oyster genes possibly involved in cell communication, cellular localization and cellular response to stimulus. Besides, in gain-of-function assay of scaffold42648_5080 in vivo, the phagocytosis (30.90% in miRNA group verse 23.20% in miRNA control group), apoptosis (3.10% in miRNA group verse 5.30% in miRNA control group) and migration rate (13.88% in miRNA group verse 21.03% in miRNA control group) of oyster haemocytes were found significantly altered after the injection of scaffold42648_5080 mimics. Among the target genes, integrin-linked kinase (CgILK) was considered crucial in cell migration and its interaction with scaffold42648_5080 was then verified both in vitro and in vivo. Consequently, a significant decrease of relative luciferase ratio was observed in CgILK 3'-UTR luciferase reporter assay after transfection of scaffold42648_5080 mimics (0.70-fold of that in blank group, p < 0.01). Meanwhile, when scaffold42648_5080 was overexpressed in vivo (5.41-fold of miRNA control group, p < 0.01), the expression of CgILK declined significantly to 0.25-fold of miRNA control group (p < 0.01). Comparatively, a significant decrease of the haemocyte migration rate (19.76% verse 34.82% in siEGFP control group, p < 0.01) was observed after knock-down of CgILK in vivo. The present study, as far as we know, for the first time revealed the immunomodulation role of an oyster species-specific miRNA, which might provide new insights into miRNA-mediated adaptation mechanism of oysters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research

    Cancer.gov

    microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies have shown that the levels of cellular miRNAs can be altered in diseased tissues, and these changes potentially could be used for diagnosis or disease monitoring.

  15. miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132.

    PubMed

    Jimenez-Mateos, Eva M; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A; Simon, Roger P; Stallings, Raymond L; Henshall, David C

    2011-11-01

    When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Hemispherical platinum : silver core : shell nanoparticles for miRNA detection.

    PubMed

    Spain, Elaine; Adamson, Kellie; Elshahawy, Mohammad; Bray, Isabella; Keyes, Tia E; Stallings, Raymond L; Forster, Robert J

    2017-02-27

    Defects within a self-assembled monolayer (SAM) of dodecanethiol on gold have been used as nucleation sites for the electrodeposition of mushroom shaped platinum nanoparticles (PtNPs). The top surfaces of these PtNPs were then decorated with a layer of silver creating a hemispherical - platinum : silver core : shell nanoparticle (Pt-AgNP). Thiolated probe strand miRNA was then immobilised onto the upper silver surface. These regioselectively modified particles were desorbed by applying a current jump to yield nanoparticles capable of hybridising to a complementary miRNA target with electrocatalysis occurring on the non-functionalized lower surface. A second electrode was functionalized with single stranded capture miRNA that has a sequence that is complementary to an miRNA, miR-132, associated with the childhood cancer, Neuroblastoma but leaves a section of the target available to bind the nucleic acid sequence on the core : shell Pt-AgNPs. Following hybridization of the target and capture strands the surface was exposed to the miRNA labelled electrocatalytic Pt-AgNPs. The concentration of the target was then determined by monitoring the current associated with the reduction of hydrogen peroxide in a solution of H 2 SO 4 . Calibration plots of the log[miRNA] vs. faradaic current were linear from 1 aM to 1 μM and aM concentrations could be detected without the need for chemical amplification of the target, e.g., using PCR or NASBA. The regioselectively modified particles were also immobilised within the interior of gold microcavity arrays via miRNA hybridisation and their Raman properties investigated.

  17. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers.

    PubMed

    Wu, Hua-Hsi; Lin, Wen-chang; Tsai, Kuo-Wang

    2014-01-23

    Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.

  18. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs.

    PubMed

    Sethuraman, Sunantha; Thomas, Merin; Gay, Lauren A; Renne, Rolf

    2018-05-29

    Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi's Sarcoma-associated herpes virus (KSHV) and Epstein-Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA-miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA-lncRNA interactions broadly contribute to the regulation of gene expression.

  19. Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis

    PubMed Central

    Chen, Jian; Li, Kai; Pang, Qianqian; Yang, Chao; Zhang, Hongyu; Wu, Feng; Cao, Hongqing; Liu, Hongju; Wan, Yumin; Xia, Weibo; Wang, Jinfu; Dai, Zhongquan; Li, Yinghui

    2016-01-01

    Our objective was to identify suitable reference genes in serum miRNA for normalization and screen potential new biomarkers for osteoporosis diagnosis by a systematic study. Two types of osteoporosis models were used like as mechanical unloading and estrogen deficiency. Through a large-scale screening using microarray, qPCR validation and statistical algorithms, we first identified miR-25-3p as a suitable reference gene for both type of osteoporosis, which also showed stability during the differentiation processes of osteoblast and osteoclast. Then 15 serum miRNAs with differential expression in OVX rats were identified by microarray and qPCR validation. We further detected these 15 miRNAs in postmenopausal women and bedrest rhesus monkeys and evaluated their diagnostic value by ROC analysis. Among these miRNAs, miR-30b-5p was significantly down-regulated in postmenopausal women with osteopenia or osteoporosis; miR-103-3p, miR-142-3p, miR-328-3p were only significantly decreased in osteoporosis. They all showed positive correlations with BMD. Except miR328-3p, the other three miRNAs were also declined in the rhesus monkeys after long-duration bedrest. Their AUC values (all >0.75) proved the diagnostic potential. Our results provided a reliable normalization reference gene and verified a group of circulating miRNAs as non-invasive biomarkers in the detection of postmenopausal- and mechanical unloading- osteoporosis. PMID:27821865

  20. SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data.

    PubMed

    Cava, Claudia; Colaprico, Antonio; Bertoli, Gloria; Graudenzi, Alex; Silva, Tiago C; Olsen, Catharina; Noushmehr, Houtan; Bontempi, Gianluca; Mauri, Giancarlo; Castiglioni, Isabella

    2017-01-27

    Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates this information with differentially expressed genes obtained from The Cancer Genome Atlas. Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain miRNA-gene-gene and miRNA-protein-protein interactions, and to analyze miRNA GRNs in order to identify miRNA-gene communities; and (iii) graphically visualize the results of the analyses. These analyses can be performed through a single interface and without the need for any downloads. The full data sets are then rapidly integrated and processed locally.

  1. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea

    PubMed Central

    Sasidharan, Vidyanand; Lu, Yi-Chien; Bansal, Dhiru; Dasari, Pranavi; Poduval, Deepak; Seshasayee, Aswin; Resch, Alissa M.; Graveley, Brenton R.; Palakodeti, Dasaradhi

    2013-01-01

    In recent years, the planarian Schmidtea mediterranea has emerged as a tractable model system to study stem cell biology and regeneration. MicroRNAs are small RNA species that control gene expression by modulating translational repression and mRNA stability and have been implicated in the regulation of various cellular processes. Though recent studies have identified several miRNAs in S. mediterranea, their expression in neoblast subpopulations and during regeneration has not been examined. Here, we identify several miRNAs whose expression is enriched in different neoblast subpopulations and in regenerating tissue at different time points in S. mediterranea. Some of these miRNAs were enriched within 3 h post-amputation and may, therefore, play a role in wound healing and/or neoblast migration. Our results also revealed miRNAs, such as sme-miR-2d-3p and the sme-miR-124 family, whose expression is enriched in the cephalic ganglia, are also expressed in the brain primordium during CNS regeneration. These results provide new insight into the potential biological functions of miRNAs in neoblasts and regeneration in planarians. PMID:23974438

  2. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects.

    PubMed

    Kappel, Andreas; Keller, Andreas

    2017-05-01

    microRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression in eukaryotes. Their differential abundance is indicative or even causative for a variety of pathological processes including cancer or cardiovascular disorders. Due to their important biological function, miRNAs represent a promising class of novel biomarkers that may be used to diagnose life-threatening diseases, and to monitor disease progression. Further, they may guide treatment selection or dosage of drugs. miRNAs from blood or derived fractions are particularly interesting candidates for routine laboratory applications, as they can be measured in most clinical laboratories already today. This assures a good accessibility of respective tests. Albeit their great potential, miRNA-based diagnostic tests have not made their way yet into the clinical routine, and hence no standardized workflows have been established to measure miRNAs for patients' benefit. In this review we summarize the detection technologies and workflow options that exist to measure miRNAs, and we describe the advantages and disadvantages of each of these options. Moreover, we also provide a perspective on data analysis aspects that are vital for translation of raw data into actionable diagnostic test results.

  3. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Sonika; Vaz, Candida; Gupta, Vipin

    2008-08-08

    microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filteringmore » systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)« less

  4. Delivery and detection of dietary plant-based miRNAs in animal tissues

    USDA-ARS?s Scientific Manuscript database

    It has been proposed that genetic material, namely microRNAs (miRNAs), consumed in plant-based diets can affect animal gene expression. Though deep sequencing reveals the low-level presence of plant miRNAs in animal tissues, many groups have been thus far unable to replicate the finding that a rice ...

  5. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797

  6. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    PubMed

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  7. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome.

    PubMed

    Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan

    2018-03-01

    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.

  8. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.

    PubMed

    Pavel, Ana B; Campbell, Joshua D; Liu, Gang; Elashoff, David; Dubinett, Steven; Smith, Kate; Whitney, Duncan; Lenburg, Marc E; Spira, Avrum

    2017-11-01

    We have previously shown that gene expression alterations in normal-appearing bronchial epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that miRNAs regulate airway gene expression responses to smoking, we evaluated whether miRNA expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung cancer (as part of the AEGIS-1/2 clinical trials), we profiled miRNA expression via small-RNA sequencing from 347 current and former smokers for which gene expression data were also available. Patients were followed for one year postbronchoscopy until a final diagnosis of lung cancer ( n = 194) or benign disease ( n = 153) was made. Following removal of 6 low-quality samples, we used 138 patients (AEGIS-1) as a discovery set to identify four miRNAs (miR-146a-5p, miR-324-5p, miR-223-3p, and miR-223-5p) that were downregulated in the bronchial airway of lung cancer patients (ANOVA P < 0.002, FDR < 0.2). The expression of these miRNAs is significantly more negatively correlated with the expression of their mRNA targets than with the expression of other nontarget genes (K-S P < 0.05). Furthermore, these mRNA targets are enriched among genes whose expression is elevated in cancer patients (GSEA FDR < 0.001). Finally, we found that the addition of miR-146a-5p to an existing mRNA biomarker for lung cancer significantly improves its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong P < 0.05). Our findings suggest that there are miRNAs whose expression is altered in the cytologically normal bronchial epithelium of smokers with lung cancer, and that they may regulate cancer-associated gene expression differences. Cancer Prev Res; 10(11); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. MiRNA-124 is a link between measles virus persistent infection and cell division of human neuroblastoma cells.

    PubMed

    Naaman, Hila; Rall, Glenn; Matullo, Christine; Veksler-Lublinsky, Isana; Shemer-Avni, Yonat; Gopas, Jacob

    2017-01-01

    Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.

  10. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors.

    PubMed

    Tahiri, Andliena; Leivonen, Suvi-Katri; Lüders, Torben; Steinfeld, Israel; Ragle Aure, Miriam; Geisler, Jürgen; Mäkelä, Rami; Nord, Silje; Riis, Margit L H; Yakhini, Zohar; Kleivi Sahlberg, Kristine; Børresen-Dale, Anne-Lise; Perälä, Merja; Bukholm, Ida R K; Kristensen, Vessela N

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.

  11. Ago2 and Dicer1 are involved in METH-induced locomotor sensitization in mice via biogenesis of miRNA.

    PubMed

    Liu, Dan; Zhu, Li; Ni, Tong; Guan, Fang-Lin; Chen, Yan-Jiong; Ma, Dong-Liang; Goh, Eyleen L K; Chen, Teng

    2018-03-08

    microRNA (miRNA) play important roles in drug addiction and act as a post-transcriptional regulator of gene expression. We previously reported extensive downregulation of miRNAs in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice. However, the regulatory mechanism of this METH-induced downregulation of miRNAs has yet to be elucidated. Thus, we examined METH-induced changes in the expression of miRNAs and their precursors, as well as the expression levels of mRNA and the proteins involved in miRNA biogenesis such as Dicer1 and Ago2, in the nucleus accumbens of METH-induced locomotor sensitized mice. miRNAs and Ago2 were significantly downregulated, while the expression of miRNA precursors remained unchanged or upregulated, which suggests that the downregulation of miRNAs was likely due to a reduction in Ago2-mediated splicing but unlikely to be regulated at the transcription level. Interestingly, the expression level of Dicer1, which is a potential target of METH-induced decreased miRNAs, such as miR-124, miR-212 and miR-29b, was significantly increased. In conclusion, this study indicates that miRNA biogenesis (such as Ago2 and Dicer1) and their miRNA products may have a role in the development of METH addiction. © 2018 Society for the Study of Addiction.

  12. A meta-analytic review of the association between two common SNPs in miRNAs and lung cancer susceptibility.

    PubMed

    Xiao, Sha; Sun, Songzan; Long, Wenfang; Kuang, Shicheng; Liu, Yunru; Huang, Hairong; Zhou, Jing; Zhou, Yongjiang; Lu, Xiaobo

    2018-01-01

    MicroRNAs (miRNAs) are involved in many biological processes, including tumor suppression. Multiple studies have shown an association between the miRNA-196a2 rs11614913 and miRNA-146a rs2910164 polymorphisms and cancer risk. However, the implications of the reported data are debatable and inconclusive. Relevant articles were retrieved from the PubMed, EMBASE, China National Knowledge Infrastructure, and WanFang databases from January 1, 2007, to April 30, 2017. Studies were assessed based on designated inclusion and exclusion criteria, and data were manually extracted from relevant studies by two investigators. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to explore the association between two single-nucleotide polymorphisms (SNPs) in miRNAs and lung cancer susceptibility. Nine eligible articles were included, consisting of 3,101 cancer cases and 3,234 controls for miRNA-196a2 rs11614913, and 3,483 cases and 3,578 controls for miRNA-146a rs2910164. For studies evaluating miRNA-196a2 rs11614913, significant associations with lung cancer risk were discovered. Overall, the pooled analysis showed that miRNA-196a2 rs11614913 was associated with a decreased cancer risk (CC vs TT: OR = 1.25, 95% CI: 1.09-1.44; CT vs TT: OR = 1.26, 95% CI: 1.03-1.53). For miRNA-146a rs2910164, only the CC genotype was found to be associated with high lung cancer risk (OR = 1.30, 95% CI: 1.13-1.49). Subgroup analyses based on ethnicity, source of control group, and country indicated that there were strong associations between miRNA-146a rs2910164 and cancer risk. The results indicated that lung cancer risk was significantly associated with miRNA-196a2 rs11614913 and miRNA-146a rs2910164. These two common SNPs in miRNAs may be potential biomarkers of lung cancer.

  13. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy.

    PubMed

    Hossain, Md Munir; Tesfaye, Dawit; Salilew-Wondim, Dessie; Held, Eva; Pröll, Maren J; Rings, Franca; Kirfel, Gregor; Looft, Christian; Tholen, Ernst; Uddin, Jasim; Schellander, Karl; Hoelker, Michael

    2014-01-18

    Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.

  14. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy

    PubMed Central

    2014-01-01

    Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674

  15. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury.

    PubMed

    Sanjay, Sukumaran; Girish, Chandrashekaran

    2017-04-01

    MicroRNAs (miRNA or miR) are the most abundant and stable class of small RNA. Unlike the typical RNA molecules present in the cell, they do not encode proteins but can control translation. and Hhence, they are found to play a major role in the regulation of cellular processes. miRNAs have been shown to differentially regulate various genes, and the expression levels of some miRNAs changes several fold in liver and serum, during drug- induced toxicity. This review summarises some of the latest findings about the biological functions of miRNA and its potential use as diagnostic biomarkers in drug- induced liver injury. The information presented in this article is taken from published literature, both original work and reviews on mechanisms of drug- induced liver injury, miRNA in liver pathophysiology, and studies exploring the use of miRNA as biomarker in drug- induced liver injury. Literature search was done using search engines:- PUBMED, Google scholar, and relevant journal sites. Recent research provides insight into the ability of miRNA to regulate various pathways in diseased and nondiseased states of liver. They also lay a foundation for development of diagnostic tests utilizing the potential of miRNAs that can not only be used for early detection of DILI but also to differentiate between different types of DILI. More studies on biological functions of miRNA and standardisation of protocol between research laboratories can lead to further advancement in this field. Considering the therapeutic and diagnostic potential of miRNA, the major challenge would be to integrate these findings to clinical settings where it can be used for the treatment of cases with DILI.

  16. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways.

    PubMed

    Singh, Noopur; Sharma, Ashok

    Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  17. [Expression profiles of the exosomal miRNAs in the chronic hepatitis B patients with persistently normal ALT].

    PubMed

    Li, Ronghua; Fu, Xiaoyu; Tang, Yujing; Fu, Lei; Tan, Deming; Ouyang, Yi; Peng, Shifang

    2018-05-28

    To investigate expression profiles of the plasma exosomal miRNAs of the chronic hepatitis B (CHB) patients with persistently normal alamine aminotransferase (PNALT) for the first time and try to find exosomal miRNAs which could reflect liver inflammation better. 
 Methods: Five CHB patients with liver tissue inflammation grade ≥A2 of PNALT and 5 CHB patients with liver tissue inflammation grade miRNAs were extracted and sent for high throughput sequencing, and the expression of exosomal miRNAs in the 2 groups of patients was analyzed.
 Results: Under the electron microscope, exosomes were small membranous vesicles with 30-100 nm in diameter. The peak value of particle size ranged from 10 to 100 nm. High throughput sequencing showed that there were 591 differentially expressed exosomal miRNAs between the 2 groups. Compared with the control group, 18 exosomal miRNAs were up-regulated and 6 exosomal miRNAs were down-regulated in PNALT patients with the liver tissue inflammation grade≥A2.
 Conclusion: Exosomal miRNAs in the CHB patients with PNALT who have the different grades of liver inflammation are differently expressed. Some of the differently expressed exosomal miRNAs are expected to be sensitive biomarkers for timely assessment of liver inflammation in the CHB patients with PNALT.

  18. Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs.

    PubMed

    Fehlmann, Tobias; Backes, Christina; Kahraman, Mustafa; Haas, Jan; Ludwig, Nicole; Posch, Andreas E; Würstle, Maximilian L; Hübenthal, Matthias; Franke, Andre; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2017-09-06

    The analysis of small RNA NGS data together with the discovery of new small RNAs is among the foremost challenges in life science. For the analysis of raw high-throughput sequencing data we implemented the fast, accurate and comprehensive web-based tool miRMaster. Our toolbox provides a wide range of modules for quantification of miRNAs and other non-coding RNAs, discovering new miRNAs, isomiRs, mutations, exogenous RNAs and motifs. Use-cases comprising hundreds of samples are processed in less than 5 h with an accuracy of 99.4%. An integrative analysis of small RNAs from 1836 data sets (20 billion reads) indicated that context-specific miRNAs (e.g. miRNAs present only in one or few different tissues / cell types) still remain to be discovered while broadly expressed miRNAs appear to be largely known. In total, our analysis of known and novel miRNAs indicated nearly 22 000 candidates of precursors with one or two mature forms. Based on these, we designed a custom microarray comprising 11 872 potential mature miRNAs to assess the quality of our prediction. MiRMaster is a convenient-to-use tool for the comprehensive and fast analysis of miRNA NGS data. In addition, our predicted miRNA candidates provided as custom array will allow researchers to perform in depth validation of candidates interesting to them. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  20. Trehalose significantly enhances the recovery of serum and serum exosomal miRNA from a paper-based matrix.

    PubMed

    Neo, Shu Hui; Chung, Ka Yan; Quek, Jia Min; Too, Heng-Phon

    2017-11-30

    The preservation of nucleic acids from clinical samples is critical to facilitate accurate molecular diagnosis. The use of a paper matrix, Flinders Technology Associates (FTA) Elute cards, to archive DNA and viral RNA is well-documented. However, the feasibility of FTA Elute cards for archiving serum and serum exosomal microRNAs (miRNAs) remains unclear. Here, we performed a comprehensive evaluation of FTA Elute cards for miRNA storage and recovery in different pre-analytical conditions. The recovery of serum miRNA dry-spotted on FTA Elute cards by direct elution with water at high temperature was poor. However, serum miRNAs dry-spotted on the cards were isolated with about 40% yield when using QIAzol lysis reagent and recovery was improved remarkably (>80%) upon extraction from cards pre-treated with trehalose. miRNAs stored on the cards remained stable at room temperature and can be kept for prolonged periods. Furthermore, miRNAs could be similarly recovered from serum exosomes dry-spotted on the cards. Importantly, when using sera from gastric cancer (GC) patients, the miRNAs were efficiently recovered from trehalose pre-treated cards without affecting their representation. Collectively, we have demonstrated the potential of FTA Elute cards to archive serum and serum exosomal miRNAs, making it useful for biomarker discovery and diagnostics.

  1. Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality.

    PubMed

    Wang, Xuehui; Zhang, Li; Jin, Jing; Xia, Anting; Wang, Chunmei; Cui, Yingjun; Qu, Bo; Li, Qingzhang; Sheng, Chunyan

    2018-04-19

    miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.

  2. Application of miRNAs as Biomarkers of Exposure and Effects in Risk Evaluation

    EPA Science Inventory

    Of the known epigenetic mechanisms, non-coding RNA and more specifically, microRNA (miRNA), offer the most immediate promise for risk assessment applications because these molecules can serve as excellent biomarkers of toxicity. The advantages of miRNA versus more classical prot...

  3. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors

    PubMed Central

    Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan

    2015-01-01

    Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827

  4. miRNAFold: a web server for fast miRNA precursor prediction in genomes.

    PubMed

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-07-08

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Identification of miRNA from Bouteloua gracilis, a drought tolerant grass, by deep sequencing and their in silico analysis.

    PubMed

    Ordóñez-Baquera, Perla Lucía; González-Rodríguez, Everardo; Aguado-Santacruz, Gerardo Armando; Rascón-Cruz, Quintín; Conesa, Ana; Moreno-Brito, Verónica; Echavarria, Raquel; Dominguez-Viveros, Joel

    2017-02-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate signal transduction, development, metabolism, and stress responses in plants through post-transcriptional degradation and/or translational repression of target mRNAs. Several studies have addressed the role of miRNAs in model plant species, but miRNA expression and function in economically important forage crops, such as Bouteloua gracilis (Poaceae), a high-quality and drought-resistant grass distributed in semiarid regions of the United States and northern Mexico remain unknown. We applied high-throughput sequencing technology and bioinformatics analysis and identified 31 conserved miRNA families and 53 novel putative miRNAs with different abundance of reads in chlorophyllic cell cultures derived from B. gracilis. Some conserved miRNA families were highly abundant and possessed predicted targets involved in metabolism, plant growth and development, and stress responses. We also predicted additional identified novel miRNAs with specific targets, including B. gracilis ESTs, which were detected under drought stress conditions. Here we report 31 conserved miRNA families and 53 putative novel miRNAs in B. gracilis. Our results suggested the presence of regulatory miRNAs involved in modulating physiological and stress responses in this grass species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  7. The MiRNA Journey from Theory to Practice as a CNS Biomarker.

    PubMed

    Stoicea, Nicoleta; Du, Amy; Lakis, D Christie; Tipton, Courtney; Arias-Morales, Carlos E; Bergese, Sergio D

    2016-01-01

    MicroRNAs (miRNAs), small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer's disease, multiple sclerosis, traumatic brain injuries, Parkinson's disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders.

  8. The MiRNA Journey from Theory to Practice as a CNS Biomarker

    PubMed Central

    Stoicea, Nicoleta; Du, Amy; Lakis, D. Christie; Tipton, Courtney; Arias-Morales, Carlos E.; Bergese, Sergio D.

    2016-01-01

    MicroRNAs (miRNAs), small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer's disease, multiple sclerosis, traumatic brain injuries, Parkinson's disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders. PMID:26904099

  9. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions Anciently acquired miRNAs

  10. Changes in miRNA expression profile of space-flown Caenorhabditis elegans during Shenzhou-8 mission

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Gao, Ying; Huang, Lei; Sun, Yeqing

    2014-04-01

    Recent advances in the field of molecular biology have demonstrated that small non-coding microRNAs (miRNAs) have a broad effect on gene expression networks and play a key role in biological responses to environmental stressors. However, little is known about how space radiation exposure and altered gravity affect miRNA expression. The "International Space Biological Experiments" project was carried out in November 2011 by an international collaboration between China and Germany during the Shenzhou-8 (SZ-8) mission. To study the effects of spaceflight on Caenorhabditis elegans (C. elegans), we explored the expression profile miRNA changes in space-flown C. elegans. Dauer C. elegans larvae were taken by SZ-8 spacecraft and experienced the 16.5-day shuttle spaceflight. We performed miRNA microarray analysis, and the results showed that 23 miRNAs were altered in a complex space environment and different expression patterns were observed in the space synthetic and radiation environments. Most putative target genes of the altered miRNAs in the space synthetic environment were predicted to be involved in developmental processes instead of in the regulation of transcription, and the enrichment of these genes was due to space radiation. Furthermore, integration analysis of the miRNA and mRNA expression profiles confirmed that twelve genes were differently regulated by seven miRNAs. These genes may be involved in embryonic development, reproduction, transcription factor activity, oviposition in a space synthetic environment, positive regulation of growth and body morphogenesis in a space radiation environment. Specifically, we found that cel-miR-52, -55, and -56 of the miR-51 family were sensitive to space environmental stressors and could regulate biological behavioural responses and neprilysin activity through the different isoforms of T01C4.1 and F18A12.8. These findings suggest that C. elegans responded to spaceflight by altering the expression of miRNAs and some target

  11. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

    PubMed

    Geng, Meijuan; Li, Hui; Jin, Chuan; Liu, Qian; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2014-02-01

    MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.

  13. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    PubMed

    Xiong, Xiao-Peng; Vogler, Georg; Kurthkoti, Krishna; Samsonova, Anastasia; Zhou, Rui

    2015-08-01

    microRNAs (miRNAs) are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs) that contain Argonaute (AGO) family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP) implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be evolutionarily

  14. Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.)

    PubMed Central

    2013-01-01

    Background Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). Several factors may affect the balance between such developmental phase-transition processes. Among them are the microRNA (miRNA), being gene-expression regulators that have been found to be involved as key determinants in several physiological processes. Results Six olive (Olea europaea L. cv. Ayvalik variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves (”on year” and ”off year” leaves in July and in November, respectively) and sequenced by high-throughput Illumina sequencing. The RNA was retrotranscribed and sequenced using the high-throughput Illumina platform. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in the olive. In addition, 38 putative novel miRNAs were discovered in the datasets. Expression of olive tree miRNAs varied greatly among the six libraries, indicating the contribution of diverse miRNA in balancing between reproductive and vegetative phases. Predicted targets of miRNA were categorized into 108 process ontology groups with significance abundance. Among those, potential alternate bearing-associated processes were found, such as development, hormone-mediated signaling and organ morphogenesis. The KEGG analyses revealed that the miRNA-targeted genes are involved in seven main pathways, belonging to carbohydrate metabolism and hormone signal-transduction pathways. Conclusion A comprehensive study on olive miRNA related to alternate bearing was performed. Regulation of miRNA under different developmental phases and tissues indicated that control of nutrition and hormone, together with flowering processes had a noteworthy impact on the olive tree alternate bearing. Our results also provide significant data

  15. Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility.

    PubMed

    Wu, Chin-San; Liao, Hsin-Tzu

    2017-01-01

    The structural, mechanical, antioxidant, and cytocompatibility properties of membranes prepared from the polyhydroxyalkanoate (PHA) and arrowroot (Maranta arundinacea) starch powder (ASP) blend (PHA/ASP) were studied. The acrylic acid-grafted PHA (PHA-g-AA) and the coupling agent treated ASP (TASP) were used to enhance the desired characteristics of these membranes. The PHA-g-AA/TASP membranes had better mechanical properties than the PHA/ASP membrane. This effect was attributed to greater compatibility between the grafted PHA and TASP. The water resistance of the PHA-g-AA/TASP membranes was greater than that of the PHA/ASP membranes, and a cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, both ASP and TASP enhanced the polyphenol content and antioxidant properties of the membranes. PHA-g-AA/TASP and PHA/ASP membranes had better antioxidant activity than the control group. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy

    PubMed Central

    Mori, Marcelo A.; Thomou, Thomas; Boucher, Jeremie; Lee, Kevin Y.; Lallukka, Susanna; Kim, Jason K.; Torriani, Martin; Yki-Järvinen, Hannele; Grinspoon, Steven K.; Cypess, Aaron M.; Kahn, C. Ronald

    2014-01-01

    miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. The endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and “whitening” of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte–like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy. PMID:24983316

  17. Discovery and characterization of miRNA genes in atlantic salmon (Salmo salar) by use of a deep sequencing approach

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the posttranscriptional level. They play important roles in multiple biological processes by regulating genes that control developmental timing, growth, stem cell division and apoptosis by binding to the mRNA of target genes. Despite the position Atlantic salmon (Salmo salar) has as an economically important domesticated animal, there has been little research on miRNAs in this species. Knowledge about miRNAs and their target genes may be used to control health and to improve performance of economically important traits. However, before their biological function can be unravelled they must be identified and annotated. The aims of this study were to identify and characterize miRNA genes in Atlantic salmon by deep sequencing analysis of small RNA libraries from nine different tissues. Results A total of 180 distinct mature miRNAs belonging to 106 families of evolutionary conserved miRNAs, and 13 distinct novel mature miRNAs were discovered and characterized. The mature miRNAs corresponded to 521 putative precursor sequences located at unique genome locations. About 40% of these precursors were part of gene clusters, and the majority of the Salmo salar gene clusters discovered were conserved across species. Comparison of expression levels in samples from different tissues applying DESeq indicated that there were tissue specific expression differences in three conserved and one novel miRNA. Ssa-miR 736 was detected in heart tissue only, while two other clustered miRNAs (ssa-miR 212 and132) seems to be at a higher expression level in brain tissue. These observations correlate well with their expected functions as regulators of signal pathways in cardiac and neuronal cells, respectively. Ssa-miR 8163 is one of the novel miRNAs discovered and its function remains unknown. However, differential expression analysis using DESeq suggests that this miRNA is

  18. Analysis of the miRNA Profiles of Melanoma Exosomes Derived Under Normoxic and Hypoxic Culture Conditions.

    PubMed

    Wozniak, Michal; Peczek, Lukasz; Czernek, Liliana; Düchler, Markus

    2017-12-01

    MicroRNAs (miRNAs) transported in melanoma-derived exosomes function as intercellular messengers supporting tumor survival and progression. Hypoxia increases melanoma phenotypic plasticity, drug resistance, and metastasis. We determined the miRNA profiles in exosomes derived from melanoma cells grown under hypoxic and normoxic conditions by microarray analyses and reverse transcription-polymerase chain reaction (RT-PCR) in order to analyze the potential influence of vesicle-transported miRNAs on cancer-related pathways and transcriptional programs. Despite phenotypical differences of the four cell lines used, their exosomes shared the majority of miRNAs. The levels of three miRNAs were higher in normoxic exosomes, whereas 15 miRNAs were significantly more abundant under hypoxic conditions. Pathway analysis pointed at several cellular processes contributing to proliferation, drug resistance, and modification of the tumor microenvironment, including immunosuppression. The miRNA-expression profiles of exosomes from patient-derived melanoma cells are modified by oxygen concentration and reflect the phenotypic changes of melanoma cells under different growth conditions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Combination of Mass Signal Amplification and Isotope-Labeled Alkanethiols for the Multiplexed Detection of miRNAs.

    PubMed

    Kang, Hyunook; Hong, Seol-Hye; Sung, Jiha; Yeo, Woon-Seok

    2017-08-04

    We report a fast and sensitive method for the multiplexed detection of miRNAs by combining mass signal amplification and isotope-labeled signal reporter molecules. In our strategy, target miRNAs are captured specifically by immobilized DNAs on gold nanoparticles (AuNPs), which carry a large number of small molecules, called amplification tags (Am-tags), as the reporter for the detection of target miRNAs. For multiplexed detection, we designed and synthesized four Am-tags containing 0, 4, 8, 12 isotopes so that they had same molecular properties but different molecular weights. By observing the mass signals of the Am-tags on AuNPs decorated along with different probe DNAs, four types of miRNAs in a sample could be easily discriminated, and the relative amounts of these miRNAs could be quantified. The practicability of our strategy was further verified by measuring the expression levels of two miRNAs in HUVECs in response to different CuSO 4 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuan; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093; Wang, Hui

    2015-08-15

    Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through themore » regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.« less

  1. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers.

    PubMed

    Lopez, Juan Pablo; Fiori, Laura M; Gross, Jeffrey A; Labonte, Benoit; Yerko, Volodymyr; Mechawar, Naguib; Turecki, Gustavo

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in the post-transcriptional regulation of mRNA. These molecules have been the subject of growing interest as they are believed to control the regulation of a large number of genes, including those expressed in the brain. Evidence suggests that miRNAs could be involved in the pathogenesis of neuropsychiatric disorders. Alterations in metabolic enzymes of the polyamine system have been reported to play a role in predisposition to suicidal behaviour. We have previously shown the expression of the polyamine genes SAT1 and SMOX to be down-regulated in the brains of suicide completers. In this study, we hypothesized that the dysregulation of these genes in depressed suicide completers could be influenced by miRNA post-transcriptional regulation. Using a stringent target prediction analysis, we identified several miRNAs that target the 3'UTR of SAT1 and SMOX. We profiled the expression of 10 miRNAs in the prefrontal cortex (BA44) of suicide completers (N = 15) and controls (N = 16) using qRT-PCR. We found that several miRNAs showed significant up-regulation in the prefrontal cortex of suicide completers compared to psychiatric healthy controls. Furthermore, we demonstrated a significant correlation between these miRNAs and the expression levels of both SAT1 and SMOX. Our results suggest a relationship between miRNAs and polyamine gene expression in the suicide brain, and postulate a mechanism for SAT1 and SMOX down-regulation by post-transcriptional activity of miRNAs.

  2. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    PubMed

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  3. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

    PubMed

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C

    2016-04-30

    The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

  4. A systemic identification approach for primary transcription start site of Arabidopsis miRNAs from multidimensional omics data.

    PubMed

    You, Qi; Yan, Hengyu; Liu, Yue; Yi, Xin; Zhang, Kang; Xu, Wenying; Su, Zhen

    2017-05-01

    The 22-nucleotide non-coding microRNAs (miRNAs) are mostly transcribed by RNA polymerase II and are similar to protein-coding genes. Unlike the clear process from stem-loop precursors to mature miRNAs, the primary transcriptional regulation of miRNA, especially in plants, still needs to be further clarified, including the original transcription start site, functional cis-elements and primary transcript structures. Due to several well-characterized transcription signals in the promoter region, we proposed a systemic approach integrating multidimensional "omics" (including genomics, transcriptomics, and epigenomics) data to improve the genome-wide identification of primary miRNA transcripts. Here, we used the model plant Arabidopsis thaliana to improve the ability to identify candidate promoter locations in intergenic miRNAs and to determine rules for identifying primary transcription start sites of miRNAs by integrating high-throughput omics data, such as the DNase I hypersensitive sites, chromatin immunoprecipitation-sequencing of polymerase II and H3K4me3, as well as high throughput transcriptomic data. As a result, 93% of refined primary transcripts could be confirmed by the primer pairs from a previous study. Cis-element and secondary structure analyses also supported the feasibility of our results. This work will contribute to the primary transcriptional regulatory analysis of miRNAs, and the conserved regulatory pattern may be a suitable miRNA characteristic in other plant species.

  5. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC).

    PubMed

    Song, Mi-Kyung; Ryu, Jae-Chun

    2015-10-01

    To date, there is still shortage of highly sensitive and specific minimally invasive biomarkers for assessment of environmental toxicants exposure. Because of the significance of microRNA (miRNA) in various diseases, circulating miRNAs in blood may be unique biomarkers for minimally invasive prediction of toxicants exposure. We identified and validated characteristic miRNA expression profiles of human whole blood in workers exposed to volatile organic compounds (VOCs) and compared the usefulness of miRNA indicator of VOCs with the effectiveness of the already used urinary biomarkers of occupational exposure. Using a microarray based approach we screened and detected deregulated miRNAs in their expression in workers exposed to VOCs (toluene [TOL], xylene [XYL] and ethylbenzene [EBZ]). Total 169 workers from four dockyards were enrolled in current study, and 50 subjects of them were used for miRNA microarray analysis. We identified 467 miRNAs for TOL, 211 miRNAs for XYL, and 695 miRNAs for XYL as characteristic discernible exposure indicator, which could discerned each VOC from the control group with higher accuracy, sensitivity, and specificity than urinary biomarkers. Current observations from this study point out that the altered levels of circulating miRNAs can be a reliable novel, minimally invasive biological indicator of occupational exposure to VOCs. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Expression in Whole Blood Samples of miRNA-191 and miRNA-455-3p in Patients with AAA and Their Relationship to Clinical Outcomes after Endovascular Repair.

    PubMed

    Tenorio, Emanuel Junio Ramos; Braga, Andre Felipe Farias; Tirapelli, Daniela Pretti Da Cunha; Ribeiro, Mauricio Serra; Piccinato, Carlos Eli; Joviliano, Edwaldo Edner

    2018-03-05

    The purpose of this study was to quantify and evaluate the expression response of miRNA-191 and miRNA-455-3p endovascular repair of abdominal aortic aneurysm (AAA) based in whole blood samples. This report describes a prospective study of a single center of 30 patients with AAA who underwent endovascular repair. Blood samples were collected preoperatively and 6 months postoperatively. The differential expression of the miRNAs was performed by the real-time polymerase chain reaction method, after extraction of the RNA from the blood samples at the 2 moments. In addition, bioinformatic tools were used to determine pathophysiological pathways related to AAA. The miR-191 and miR-455-3p were overexpressed preoperatively. After 6 months postoperatively, miR-191 (median 0.98, IQR 0.5-2.1, P < 0.0001) and miR-455-3p (median 1.4, IQR 0.6-3.1, P = 0.0003) presented a significant reduction in their expressions. There was no correlation between the diameter of the aneurysm and the expression of the miRNAs studied. In addition, analysis of the influence of the various types of devices used for the endovascular treatment of AAA showed no significant differences in the expression of miR-191 and miR-455-3p. Exclusion of the aneurysmal sac after endovascular treatment induces a decrease in the expression of the studied miRNAs in whole blood samples, which suggests a possible use of them as biomarkers of therapeutic success. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy

    PubMed Central

    Akin, Danny E.; Amos, Henry E.

    1975-01-01

    The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017

  8. Effect of ozone on diverse tall fescue germplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, W.J.; Dickens, R.; Haaland, R.L.

    Six tall fescue (Festuca arundinacea Schreb.) genotypes of diverse origin (Algeria, Australia, France, Netherlands, Morocco, and a Kentucky 31 type) were evaluated for O/sub 3/ tolerance under controlled environmental conditions. In two tests on clonal parent material, (1) O/sub 3/ constant 0.3 ppm and exposure varied 0-12 hr and (2) O/sub 3/ concentration varied 0-0.5 ppm and exposure varied 1-3 hr, the Australian and Kentucky 31 selections were superior to all others in O/sub 3/ tolerance. Sixteen-day old polycross progeny of the six selections were exposed to 0.5 ppm O/sub 3/ for 0, 3, or 6 hr. Progeny of themore » Australian and Kentucky 31 selections were superior to some, but not all other selections. Increased duration of exposure increased damage only slightly. It would appear that O/sub 3/ tolerance is a heritable characteristic that can be easily detected and selected for in tall fescue.« less

  9. Fate of pyrene in the rhizosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.; Banks, M.K.; Schwab, A.P.

    The objective of this research is to investigate the impact of vegetation on the fate of toxic and recalcitrant pyrene in soil as well as the influence of different plant species (alfalfa (Meticago sativa) and fescue (Festuca arundinacea)). The effect of vegetation will be evaluated by determining the distribution of {sup 14}C among soil, plant tissue, leachate, and CO{sub 2} evolved in planted and unplanted soils using highly controlled plant growth chambers during a 6-month experiment. The influence of plant species on the fate of pyrene will be estimated by comparing the dissipation rate of the {sup 14}C-target compound betweenmore » alfalfa and fescue. These data will be analyzed to ascertain if there are differences between vegetated and nonvegetated soils, also between plant species with regard to leaching, degradation, plant uptake, mineralization of the {sup 14}C-labelled pyrene. The beneficial effects of vegetation planted in soil contaminated by pyrene is anticipated.« less

  10. Inheritance of ozone resistance in tall fescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, W.J.; Haaland, R.L.; Dickens, R.

    Ozone is considered the most important air pollutant affecting vegetation. With progressive urbanization, ozone levels have steadily escalated. Reports suggest that ozone tolerance is a highly heritable characteristic and that the selection of resistant plants and breeding for ozone resistance should be possible. This study was undertaken to gain information on the inheritance of ozone resistance in tall fescue (Festuca arundinacea Schreb.).Progenies from a diallel among six tall fescue genotypes of diverse origin were evaluated for ozone resistance in a fumigation-chamber. Sixteen-day-old seedlings were exposed to 0.5 ppm ozone for 3 hours and scored for injury after 3 days. Generalmore » combining ability (GCA) and reciprocal effects were both highly significant; however, GCA constituted a major portion of the genotypic variation. Specific combining ability was not significant. The predominance of additive genetic variance observed indicates that breeding for ozone resistance in this tall fescue population should be possible.« less

  11. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    PubMed

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Human Milk Cells and Lipids Conserve Numerous Known and Novel miRNAs, Some of Which Are Differentially Expressed during Lactation

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) is rich in miRNAs, which are thought to contribute to infant protection and development. We used deep sequencing to profile miRNAs in the cell and lipid fractions of HM obtained post-feeding from 10 lactating women in months 2, 4, and 6 postpartum. In both HM fractions, 1,195 mature known miRNAs were identified, which were positively associated with the cell (p = 0.048) and lipid (p = 0.010) content of HM. An additional 5,167 novel miRNA species were predicted, of which 235 were high-confidence miRNAs. HM cells contained more known miRNAs than HM lipids (1,136 and 835 respectively, p<0.001). Although the profile of the novel miRNAs was very different between cells and lipids, with the majority conserved in the cell fraction and being mother-specific, 2/3 of the known miRNAs common between cells and lipids were similarly expressed (p>0.05). Great similarities between the two HM fractions were also found in the profile of the top 20 known miRNAs. These were largely similar also between the three lactation stages examined, as were the total miRNA concentration, and the number and expression of the known miRNAs common between cells and lipids (p>0.05). Yet, approximately a third of all known miRNAs were differentially expressed during the first 6 months of lactation (p<0.05), with more pronounced miRNA upregulation seen in month 4. These findings indicate that although the total miRNA concentration of HM cells and lipids provided to the infant does not change in first 6 months of lactation, the miRNA composition is altered, particularly in month 4 compared to months 2 and 6. This may reflect the remodeling of the gland in response to infant feeding patterns, which usually change after exclusive breastfeeding, suggesting adaptation to the infant’s needs. PMID:27074017

  13. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    PubMed

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant

  14. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing

    PubMed Central

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant

  15. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction.

    PubMed

    Dhahbi, Joseph M; Spindler, Stephen R; Atamna, Hani; Yamakawa, Amy; Guerrero, Noel; Boffelli, Dario; Mote, Patricia; Martin, David I K

    2013-02-01

    MicroRNAs (miRNAs) function to modulate gene expression, and through this property they regulate a broad spectrum of cellular processes. They can circulate in blood and thereby mediate cell-to-cell communication. Aging involves changes in many cellular processes that are potentially regulated by miRNAs, and some evidence has implicated circulating miRNAs in the aging process. In order to initiate a comprehensive assessment of the role of circulating miRNAs in aging, we have used deep sequencing to characterize circulating miRNAs in the serum of young mice, old mice, and old mice maintained on calorie restriction (CR). Deep sequencing identifies a set of novel miRNAs, and also accurately measures all known miRNAs present in serum. This analysis demonstrates that the levels of many miRNAs circulating in the mouse are increased with age, and that the increases can be antagonized by CR. The genes targeted by this set of age-modulated miRNAs are predicted to regulate biological processes directly relevant to the manifestations of aging including metabolic changes, and the miRNAs themselves have been linked to diseases associated with old age. This finding implicates circulating miRNAs in the aging process, raising questions about their tissues of origin, their cellular targets, and their functional role in metabolic changes that occur with aging.

  16. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    PubMed Central

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  17. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells.

    PubMed

    Kitchen, Mark O; Yacqub-Usman, Kiren; Emes, Richard D; Richardson, Alan; Clayton, Richard N; Farrell, William E

    2015-10-01

    Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.

  18. Mechanistically linked serum miRNAs distinguish between drug induced and fatty liver disease of different grades.

    PubMed

    Liu, Zhichao; Wang, Yuping; Borlak, Jürgen; Tong, Weida

    2016-04-05

    Hepatic steatosis is characterised by excessive triglyceride accumulation in the form of lipid droplets (LD); however, mechanisms differ in drug induced (DIS) and/or non-alcoholic fatty liver disease (NAFLD). Here we hypothesized distinct molecular circuits of microRNA/LD-associated target genes and searched for mechanistically linked serum and tissue biomarkers that would distinguish between DIS and human NAFLD of different grades. We analysed >800 rat hepatic whole genome data for 17 steatotic drugs and identified 157 distinct miRNAs targeting 77 DIS regulated genes. Subsequently, genomic data of N = 105 cases of human NAFLD and N = 32 healthy controls were compared to serum miRNA profiles of N = 167 NAFLD patients. This revealed N = 195 tissue-specific miRNAs being mechanistically linked to LD-coding genes and 24 and 9 miRNAs were commonly regulated in serum and tissue of advanced and mild NAFLD, respectively. The NASH serum regulated miRNAs informed on hepatic inflammation, adipocytokine and insulin signalling, ER-and caveolae associated activities and altered glycerolipid metabolism. Conversely, serum miRNAs associated with blunt steatosis specifically highlighted activity of FOXO1&HNF4α on CPT2, the lipid droplet and ER-lipid-raft associated PLIN3 and Erlin1. Altogether, serum miRNAs informed on the molecular pathophysiology of NAFLD and permitted differentiation between DIS and NAFLD of different grades.

  19. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure.

    PubMed

    Rogers, Sarah; de Souza, Angela Rico; Zago, Michela; Iu, Matthew; Guerrina, Necola; Gomez, Alvin; Matthews, Jason; Baglole, Carolyn J

    2017-01-12

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr -/- and Ahr +/- mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr -/- mice compared to Ahr +/- mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease.

  20. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression

    PubMed Central

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-01-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, −206 and −1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications. PMID:24013565

  1. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression.

    PubMed

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-11-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, -206 and -1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications.

  2. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage.

    PubMed

    Yang, Lijun; Cui, Hong; Cao, Ting

    2014-03-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioinformatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups: control group; oxygen-glucose deprivation group (treatment with 8% O2 + 92% N2 and sugar-free medium for 60 minutes); transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligodendrocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.

  3. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance

    PubMed Central

    Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari

    2013-01-01

    Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861

  4. Circulating miRNAs in Pediatric Pulmonary Hypertension Show Promise as Biomarkers of Vascular Function

    PubMed Central

    Sucharov, Carmen C.; Truong, Uyen; Dunning, Jamie; Ivy, Dunbar; Miyamoto, Shelley; Shandas, Robin

    2017-01-01

    Background/Objectives The objective of this study was to evaluate the utility of circulating miRNAs as biomarkers of vascular function in pediatric pulmonary hypertension. Method Fourteen pediatric pulmonary arterial hypertension patients underwent simultaneous right heart catheterization (RHC) and blood biochemical analysis. Univariate and stepwise multivariate linear regression was used to identify and correlate measures of reactive and resistive afterload with circulating miRNA levels. Furthermore, circulating miRNA candidates that classified patients according to a 20% decrease in resistive afterload in response to oxygen (O2) or inhaled nitric oxide (iNO) were identified using receiver-operating curves. Results Thirty-two circulating miRNAs correlated with the pulmonary vascular resistance index (PVRi), pulmonary arterial distensibility, and PVRi decrease in response to O2 and/or iNO. Multivariate models, combining the predictive capability of multiple promising miRNA candidates, revealed a good correlation with resistive (r = 0.97, P2−tailed < 0.0001) and reactive (r = 0.86, P2−tailed < 0.005) afterloads. Bland-Altman plots showed that 95% of the differences between multivariate models and RHC would fall within 0.13 (mmHg−min/L)m2 and 0.0085/mmHg for resistive and reactive afterloads, respectively. Circulating miR-663 proved to be a good classifier for vascular responsiveness to acute O2 and iNO challenges. Conclusion This study suggests that circulating miRNAs may be biomarkers to phenotype vascular function in pediatric PAH. PMID:28819545

  5. MiRNA-181d Expression Significantly Affects Treatment Responses to Carmustine Wafer Implantation.

    PubMed

    Sippl, Christoph; Ketter, Ralf; Bohr, Lisa; Kim, Yoo Jin; List, Markus; Oertel, Joachim; Urbschat, Steffi

    2018-05-26

    Standard therapeutic protocols for glioblastoma, the most aggressive type of brain cancer, include surgery followed by chemoradiotherapy. Additionally, carmustine-eluting wafers can be implanted locally into the resection cavity. To evaluate microRNA (miRNA)-181d as a prognostic marker of responses to carmustine wafer implantation. A total of 80 glioblastoma patients (40/group) were included in a matched pair analysis. One group (carmustine wafer group) received concomitant chemoradiotherapy with carmustine wafer implantation (Stupp protocol). The second group (control group) received only concomitant chemoradiotherapy. All tumor specimens were subjected to evaluations of miRNA-181d expression, results were correlated with further individual clinical data. The Cancer Genome Atlas (TCGA) dataset of 149 patients was used as an independent cohort to validate the results. Patients in the carmustine wafer group with low miRNA-181d expression had significantly longer overall (hazard ratio [HR], 35.03, [95% confidence interval (CI): 3.50-350.23], P = .002) and progression-free survival (HR, 20.23, [95% CI: 2.19-186.86], P = .008) than patients of the same group with a high miRNA-181d expression. These correlations were not observed in the control group. The nonsignificance in the control group was confirmed in the independent TCGA dataset. The carmustine wafer group patients with low miRNA-181d expression also had a significantly longer progression-free (P = .049) and overall survival (OS) (P = .034), compared with control group patients. Gross total resection correlated significantly with longer OS (P = .023). MiRNA-181d expression significantly affects treatment responses to carmustine wafer implantation.

  6. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    PubMed

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  7. High-throughput identification of miRNAs of Taenia ovis, a cestode threatening sheep industry.

    PubMed

    Zheng, Yadong

    2017-07-01

    Taenia ovis is a tapeworm that is mainly transmitted between dogs and sheep or goats and has an adverse effect on sheep industry. miRNAs are short regulatory non-coding RNAs, involved in parasite development and growth as well as parasite infection. The miRNA profile of T. ovis remains to be established. Herein, 33 known miRNAs belonging to 23 different families were identified in T. ovis metacestodes using deep sequencing approach. Of them, expression of some miRNAs such as tov-miR-10 and -let-7 was absolutely predominant. Moreover, comparative analysis revealed the presence of a miR-71/2b/2c cluster in T. ovis, which was also completely conserved in other 6 cestodes. The study provides rich data for further understandings of T. ovis biology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA).

    PubMed

    Smith-Vikos, Thalyana; Liu, Zuyun; Parsons, Christine; Gorospe, Myriam; Ferrucci, Luigi; Gill, Thomas M; Slack, Frank J

    2016-11-07

    In C. elegans , miRNAs are genetic biomarkers of aging. Similarly, multiple miRNAs are differentially expressed between younger and older persons, suggesting that miRNA-regulated biological mechanisms affecting aging are evolutionarily conserved. Previous human studies have not considered participants' lifespans, a key factor in identifying biomarkers of aging. Using PCR arrays, we measured miRNA levels from serum samples obtained longitudinally at ages 50, 55, and 60 from 16 non-Hispanic males who had documented lifespans from 58 to 92. Numerous miRNAs showed significant changes in expression levels. At age 50, 24 miRNAs were significantly upregulated, and 73 were significantly downregulated in the long-lived subgroup (76-92 years) as compared with the short-lived subgroup (58-75 years). In long-lived participants, the most upregulated was miR-373-5p, while the most downregulated was miR-15b-5p. Longitudinally, significant Pearson correlations were observed between lifespan and expression of nine miRNAs (p value<0.05). Six of these nine miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) were also significantly up- or downregulated when comparing long-lived and short-lived participants. Twenty-four validated targets of these miRNAs encoded aging-associated proteins, including PARP1, IGF1R, and IGF2R. We propose that the expression profiles of the six miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, and 1225-3p) may be useful biomarkers of aging.

  9. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA)

    PubMed Central

    Parsons, Christine; Gorospe, Myriam; Ferrucci, Luigi; Gill, Thomas M.; Slack, Frank J.

    2016-01-01

    In C. elegans, miRNAs are genetic biomarkers of aging. Similarly, multiple miRNAs are differentially expressed between younger and older persons, suggesting that miRNA-regulated biological mechanisms affecting aging are evolutionarily conserved. Previous human studies have not considered participants' lifespans, a key factor in identifying biomarkers of aging. Using PCR arrays, we measured miRNA levels from serum samples obtained longitudinally at ages 50, 55, and 60 from 16 non-Hispanic males who had documented lifespans from 58 to 92. Numerous miRNAs showed significant changes in expression levels. At age 50, 24 miRNAs were significantly upregulated, and 73 were significantly downregulated in the long-lived subgroup (76-92 years) as compared with the short-lived subgroup (58-75 years). In long-lived participants, the most upregulated was miR-373-5p, while the most downregulated was miR-15b-5p. Longitudinally, significant Pearson correlations were observed between lifespan and expression of nine miRNAs (p value<0.05). Six of these nine miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) were also significantly up- or downregulated when comparing long-lived and short-lived participants. Twenty-four validated targets of these miRNAs encoded aging-associated proteins, including PARP1, IGF1R, and IGF2R. We propose that the expression profiles of the six miRNAs (miR-211-5p, 374a-5p, 340-3p, 376c-3p, 5095, and 1225-3p) may be useful biomarkers of aging. PMID:27824314

  10. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine1[OPEN

    PubMed Central

    Vitali, Marco; Vitulo, Nicola; Incarbone, Marco

    2017-01-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought. PMID:28235889

  11. Comprehensive profiling and characterization of cellular miRNAs in response to hepatitis A virus infection in human fibroblasts.

    PubMed

    Shi, Jiandong; Sun, Jing; Wu, Meini; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2016-11-01

    Hepatitis A virus (HAV), the causative agent of acute hepatitis, grows slowly without causing any cytopathic effect (CPE) and lead to a persistent infection in the fibroblasts in vitro. miRNAs play a key role in the viral pathogenesis and virus-host interactions. In this study, the comprehensive miRNA expression profiles of HAV-infected and uninfected fibroblasts were investigated by sRNA-seq and validated by RT-qPCR. The results showed that a total of 94 miRNAs were differentially expressed during HAV infection, including 11 up-regulated miRNAs and 83 down-regulated miRNAs. RT-qPCR analysis showed the expression levels of specific miRNAs were consistent with sRNA-seq data. Further, target prediction analysis showed 729 putative target genes that included many immune-related transcripts were revealed. The GO enrichment analysis and the KEGG pathway analysis of the target genes showed that various biological pathways, including JAK-STAT cascade, type I interferon signaling pathway could be affected by HAV infection by the alteration of host miRNAs. The core regulatory relationship between miRNAs and their targets were revealed by miRNA-gene-network. Collectively, this study provides an overall analysis of miRNA profile in cell culture infected with HAV. The present results imply the alteration of miRNAs expression induced by HAV infection which may be related to the establishment of persistent HAV infection and might provide new clues for understanding the persistent HAV infections in vitro and the unique biological characteristics associated with HAV during infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus Under Hypoxia Stress.

    PubMed

    Huo, Da; Sun, Lina; Li, Xiaoni; Ru, Xiaoshang; Liu, Shilin; Zhang, Libin; Xing, Lili; Yang, Hongsheng

    2017-11-06

    The sea cucumber, an important economic species, has encountered high mortality since 2013 in northern China because of seasonal environmental stress such as hypoxia, high temperature, and low salinity. MicroRNAs (miRNAs) are important in regulating gene expression in marine organisms in response to environmental change. In this study, high-throughput sequencing was used to investigate alterations in miRNA expression in the sea cucumber under different levels of dissolved oxygen (DO). Nine small RNA libraries were constructed from the sea cucumber respiratory trees. A total of 26 differentially expressed miRNAs, including 12 upregulated and 14 downregulated miRNAs, were observed in severe hypoxia (DO 2 mg/L) compared with mild hypoxia (DO 4 mg/L) and normoxic conditions (DO 8 mg/L). Twelve differentially expressed miRNAs were clustered in severe hypoxia. In addition, real-time PCR revealed that 14 randomly selected differentially expressed miRNAs showed significantly increased expressions in severe hypoxia and the expressions of nine miRNAs, including key miRNAs such as Aja-miR-1, Aja-miR-2008, and Aja-miR-184, were consistent with the sequencing results. Moreover, gene ontology and pathway analyses of putative target genes suggest that these miRNAs are important in redox, transport, transcription, and hydrolysis under hypoxia stress. Notably, novel-miR-1, novel-miR-2, and novel-miR-3 were specifically clustered and upregulated in severe hypoxia, which may provide new insights into novel "hypoxamiR" identification. These results will provide a basis for future studies of miRNA regulation and molecular adaptive mechanisms in sea cucumbers under hypoxia stress. Copyright © 2017 Huo et al.

  13. Alternative Polyadenylation Allows Differential Negative Feedback of Human miRNA miR-579 on Its Host Gene ZFR

    PubMed Central

    Hinske, Ludwig Christian; Galante, Pedro A. F.; Limbeck, Elisabeth; Möhnle, Patrick; Parmigiani, Raphael B.; Ohno-Machado, Lucila; Camargo, Anamaria A.; Kreth, Simone

    2015-01-01

    About half of the known miRNA genes are located within protein-coding host genes, and are thus subject to co-transcription. Accumulating data indicate that this coupling may be an intrinsic mechanism to directly regulate the host gene’s expression, constituting a negative feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to regulate this control mechanism. We propose APA as one possible mechanism by which negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico analyses, we found that host genes that contain seed matching sites for their intronic miRNAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of polyadenylation signals differed significantly between these host genes and host genes of miRNAs that do not contain potential miRNA binding sites. We then transferred these in-silico results to a biological example and investigated the relationship between ZFR and its intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intronic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously associated with alternative polyadenylation signal recognition, might be linked to intronic miRNA negative feedback by altering polyadenylation signal utilization. PMID:25799583

  14. Characterization of microsatellite loci in Festuca gautieri (Poaceae) and transferability to F. eskia and F. xpicoeuropeana.

    PubMed

    Segarra-Moragues, José Gabriel; Catalán, Pilar

    2011-12-01

    Enriched genomic libraries were used to isolate and characterize microsatellite loci in Festuca gautieri, an important plant component of subalpine calcareous grasslands of the eastern Iberian Peninsula, the Pyrenees, and the Cantabrian Mountains. Microsatellites were required to investigate landscape genetics across its distribution range and at a narrower geographical scale within the Ordesa y Monte Perdido, Aigüestortes, and Picos de Europa Spanish national parks. Ten polymorphic microsatellite loci were characterized. They amplified a total of 116 alleles in a sample of 30 individuals of F. gautieri, showing high levels of genetic diversity (expected heterozygosity = 0.821). Cross-species transferability to two other close congeners, F. eskia and F ×picoeuropeana, increased the total number of alleles to 137. These taxa showed lower numbers of alleles but similar levels of genetic diversity to F. gautieri. These microsatellite primers will be useful in population and landscape genetics and in establishing conservation strategies for these characteristic elements of subalpine pastures.

  15. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation

    PubMed Central

    Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda

    2008-01-01

    Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network. PMID:19034270

  16. ASR5 is involved in the regulation of miRNA expression in rice.

    PubMed

    Neto, Lauro Bücker; Arenhart, Rafael Augusto; de Oliveira, Luiz Felipe Valter; de Lima, Júlio Cesar; Bodanese-Zanettini, Maria Helena; Margis, Rogerio; Margis-Pinheiro, Márcia

    2015-11-01

    The work describes an ASR knockdown transcriptomic analysis by deep sequencing of rice root seedlings and the transactivation of ASR cis-acting elements in the upstream region of a MIR gene. MicroRNAs are key regulators of gene expression that guide post-transcriptional control of plant development and responses to environmental stresses. ASR (ABA, Stress and Ripening) proteins are plant-specific transcription factors with key roles in different biological processes. In rice, ASR proteins have been suggested to participate in the regulation of stress response genes. This work describes the transcriptomic analysis by deep sequencing two libraries, comparing miRNA abundance from the roots of transgenic ASR5 knockdown rice seedlings with that of the roots of wild-type non-transformed rice seedlings. Members of 59 miRNA families were detected, and 276 mature miRNAs were identified. Our analysis detected 112 miRNAs that were differentially expressed between the two libraries. A predicted inverse correlation between miR167abc and its target gene (LOC_Os07g29820) was confirmed using RT-qPCR. Protoplast transactivation assays showed that ASR5 is able to recognize binding sites upstream of the MIR167a gene and drive its expression in vivo. Together, our data establish a comparative study of miRNAome profiles and is the first study to suggest the involvement of ASR proteins in miRNA gene regulation.

  17. miRNA-556-3p promotes human bladder cancer proliferation, migration and invasion by negatively regulating DAB2IP expression.

    PubMed

    Feng, Chen; Sun, Ping; Hu, Jing; Feng, Hua; Li, Mingqiu; Liu, Guibo; Pan, Yanming; Feng, Ying; Xu, Yongliang; Feng, Kejian; Feng, Yukuan

    2017-06-01

    MicroRNAs (miRNAs) play critical roles in tumorigenesis and metastasis by negatively regulating gene expression through complementary binding to the 3'-untranslated region of target mRNAs. The role of miRNAs in expression of the tumor suppressor DAB2IP in bladder cancer (BC) remains unknown. The aim of the present study was to identify miRNAs targeting DAB2IP and determine their expression and function in BC. We predicted candidate miRNAs targeting DAB2IP using TargetScan software. Dual-luciferase reporter assays confirmed that miRNA-556-3p directly regulated DAB2IP expression. Quantitative RT-PCR and RNase protection assays showed that endogenous miRNA-556-3p expression was significantly upregulated in clinical samples of BC patients and BC cell lines and western blot analysis indicated that DAB2IP expression in BC tissues and BC cell lines was concurrently downregulated. Gain or loss of function studies showed that upregulation of miRNA-556-3p promoted proliferation, invasion, migration and colony formation of BC cells, whereas downregulation resulted in opposite effects. Importantly, restoration of DAB2IP expression rescued the effects induced by miRNA-556-3p. Overexpression of miRNA-556-3p in BC cells not only decreased DAB2IP expression, but also markedly increased Ras GTPase activity and ERK1/2 phosphorylation level. These findings suggest that DAB2IP is a direct target of miRNA-556-3p, and endogenous miRNA-556-3p expression shows inverse correlation with simultaneous DAB2IP expression in BC tissues and cells. miRNA-556-3p functions as a tumor promoter in tumorigenesis and metastasis of BC by targeting DAB2IP. Moreover, miRNA-556-3p-mediated DAB2IP suppression plays an oncogenic role by partial activation of the Ras-ERK pathway.

  18. Small RNA profiling reveals important roles for miRNAs in Arabidopsis response to Bacillus velezensis FZB42.

    PubMed

    Xie, Shanshan; Jiang, Haiyang; Xu, Zhilan; Xu, Qianqian; Cheng, Beijiu

    2017-09-20

    Bacillus velezensis FZB42 (previously classified as Bacillus amyloliquefaciens FZB42) has been confirmed to successfully colonize plant roots and enhance defense response against pathogen infection. This study indicated that FZB42 inoculation enhanced Arabidopsis defense response against Pseudomonas syringae DC3000 through inducing the expression of PR1, PDF1.2 and stomata closure. To further clarify the induced defense response at miRNA level, sRNA libraries from Arabidopsis roots inoculated with FZB42 and control were constructed and sequenced. The reads of 21nt and 24nt in length were the most abundant groups in FZB42-treated library and control library, respectively. 234 known miRNAs and 16 novel miRNAs were identified. Among them, 11 known miRNAs and 4 novel miRNAs were differentially expressed after FZB42 inoculation. Moreover cis-elements (TC-rich repeats, TCA-element and CGTCA-motif) associated with plant defense were also found in the promoters of these miRNAs. Additionally, 141 mRNAs were predicted as potential targets of these differentially expressed miRNAs. GO annotations of the target genes indicated their potential roles in polyamine biosynthetic process and intracellular protein transport biological process, which may contribute to increased defense response. Our findings indicated that Bacillus velezensis FZB42 inoculation altered the expression of Arabidopsis miRNAs and their target genes, which were associated with defense response. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. MicroRNA-like RNAs from the same miRNA precursors play a role in cassava chilling responses.

    PubMed

    Zeng, Changying; Xia, Jing; Chen, Xin; Zhou, Yufei; Peng, Ming; Zhang, Weixiong

    2017-12-07

    MicroRNAs (miRNAs) are known to play important roles in various cellular processes and stress responses. MiRNAs can be identified by analyzing reads from high-throughput deep sequencing. The reads realigned to miRNA precursors besides canonical miRNAs were initially considered as sequencing noise and ignored from further analysis. Here we reported a small-RNA species of phased and half-phased miRNA-like RNAs different from canonical miRNAs from cassava miRNA precursors detected under four distinct chilling conditions. They can form abundant multiple small RNAs arranged along precursors in a tandem and phased or half-phased fashion. Some of these miRNA-like RNAs were experimentally confirmed by re-amplification and re-sequencing, and have a similar qRT-PCR detection ratio as their cognate canonical miRNAs. The target genes of those phased and half-phased miRNA-like RNAs function in process of cell growth metabolism and play roles in protein kinase. Half-phased miR171d.3 was confirmed to have cleavage activities on its target gene P-glycoprotein 11, a broad substrate efflux pump across cellular membranes, which is thought to provide protection for tropical cassava during sharp temperature decease. Our results showed that the RNAs from miRNA precursors are miRNA-like small RNAs that are viable negative gene regulators and may have potential functions in cassava chilling responses.

  20. Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network.

    PubMed

    Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C

    2015-08-27

    The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology

    PubMed Central

    Busch, Albert; Busch, Martin; Scholz, Claus-Jürgen; Kellersmann, Richard; Otto, Christoph; Chernogubova, Ekaterina; Maegdefessel, Lars; Zernecke, Alma; Lorenz, Udo

    2016-01-01

    Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways. PMID:26771601

  2. Determining causal miRNAs and their signaling cascade in diseases using an influence diffusion model.

    PubMed

    Nalluri, Joseph J; Rana, Pratip; Barh, Debmalya; Azevedo, Vasco; Dinh, Thang N; Vladimirov, Vladimir; Ghosh, Preetam

    2017-08-15

    In recent studies, miRNAs have been found to be extremely influential in many of the essential biological processes. They exhibit a self-regulatory mechanism through which they act as positive/negative regulators of expression of genes and other miRNAs. This has direct implications in the regulation of various pathophysiological conditions, signaling pathways and different types of cancers. Studying miRNA-disease associations has been an extensive area of research; however deciphering miRNA-miRNA network regulatory patterns in several diseases remains a challenge. In this study, we use information diffusion theory to quantify the influence diffusion in a miRNA-miRNA regulation network across multiple disease categories. Our proposed methodology determines the critical disease specific miRNAs which play a causal role in their signaling cascade and hence may regulate disease progression. We extensively validate our framework using existing computational tools from the literature. Furthermore, we implement our framework on a comprehensive miRNA expression data set for alcohol dependence and identify the causal miRNAs for alcohol-dependency in patients which were validated by the phase-shift in their expression scores towards the early stages of the disease. Finally, our computational framework for identifying causal miRNAs implicated in diseases is available as a free online tool for the greater scientific community.

  3. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs.

    PubMed

    Wang, Peng; Zhi, Hui; Zhang, Yunpeng; Liu, Yue; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Ning, Shangwei; Li, Xia

    2015-01-01

    In this study, we describe miRSponge, a manually curated database, which aims at providing an experimentally supported resource for microRNA (miRNA) sponges. Recent evidence suggests that miRNAs are themselves regulated by competing endogenous RNAs (ceRNAs) or 'miRNA sponges' that contain miRNA binding sites. These competitive molecules can sequester miRNAs to prevent them interacting with their natural targets to play critical roles in various biological and pathological processes. It has become increasingly important to develop a high quality database to record and store ceRNA data to support future studies. To this end, we have established the experimentally supported miRSponge database that contains data on 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species following manual curating from nearly 1200 published articles. Database classes include endogenously generated molecules including coding genes, pseudogenes, long non-coding RNAs and circular RNAs, along with exogenously introduced molecules including viral RNAs and artificial engineered sponges. Approximately 70% of the interactions were identified experimentally in disease states. miRSponge provides a user-friendly interface for convenient browsing, retrieval and downloading of dataset. A submission page is also included to allow researchers to submit newly validated miRNA sponge data. Database URL: http://www.bio-bigdata.net/miRSponge. © The Author(s) 2015. Published by Oxford University Press.

  4. Genome-Wide Identification of miRNAs Responsive to Drought in Peach (Prunus persica) by High-Throughput Deep Sequencing

    PubMed Central

    Eldem, Vahap; Çelikkol Akçay, Ufuk; Ozhuner, Esma; Bakır, Yakup; Uranbey, Serkan; Unver, Turgay

    2012-01-01

    Peach (Prunus persica L.) is one of the most important worldwide fresh fruits. Since fruit growth largely depends on adequate water supply, drought stress is considered as the most important abiotic stress limiting fleshy fruit production and quality in peach. Plant responses to drought stress are regulated both at transcriptional and post-transcriptional level. As post-transcriptional gene regulators, miRNAs (miRNAs) are small (19–25 nucleotides in length), endogenous, non-coding RNAs. Recent studies indicate that miRNAs are involved in plant responses to drought. Therefore, Illumina deep sequencing technology was used for genome-wide identification of miRNAs and their expression profile in response to drought in peach. In this study, four sRNA libraries were constructed from leaf control (LC), leaf stress (LS), root control (RC) and root stress (RS) samples. We identified a total of 531, 471, 535 and 487 known mature miRNAs in LC, LS, RC and RS libraries, respectively. The expression level of 262 (104 up-regulated, 158 down-regulated) of the 453 miRNAs changed significantly in leaf tissue, whereas 368 (221 up-regulated, 147 down-regulated) of the 465 miRNAs had expression levels that changed significantly in root tissue upon drought stress. Additionally, a total of 197, 221, 238 and 265 novel miRNA precursor candidates were identified from LC, LS, RC and RS libraries, respectively. Target transcripts (137 for LC, 133 for LS, 148 for RC and 153 for RS) generated significant Gene Ontology (GO) terms related to DNA binding and catalytic activites. Genome-wide miRNA expression analysis of peach by deep sequencing approach helped to expand our understanding of miRNA function in response to drought stress in peach and Rosaceae. A set of differentially expressed miRNAs could pave the way for developing new strategies to alleviate the adverse effects of drought stress on plant growth and development. PMID:23227166

  5. miRNAs involved in the development and differentiation of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri.

    PubMed

    Li, Weixing; He, Zhichong; Zhang, Li; Lu, Zhaogeng; Xu, Jing; Cui, Jiawen; Wang, Li; Jin, Biao

    2017-10-13

    Sterile and fertile flowers are important evolutionary developmental phenotypes in angiosperm flowers. The development of floral organs, critical in angiosperm reproduction, is regulated by microRNAs (miRNAs). However, the mechanisms underpinning the miRNA regulation of the differentiation and development of sterile and fertile flowers remain unclear. Here, based on investigations of the morphological differences between fertile and sterile flowers, we used high-throughput sequencing to characterize the miRNAs in the differentiated floral organs of Viburnum macrocephalum f. keteleeri. We identified 49 known miRNAs and 67 novel miRNAs by small RNA (sRNA) sequencing and bioinformatics analysis, and 17 of these known and novel miRNA precursors were validated by polymerase chain reaction (PCR) and Sanger sequencing. Furthermore, by comparing the sequencing results of two sRNA libraries, we found that 30 known and 39 novel miRNA sequences were differentially expressed, and 35 were upregulated and 34 downregulated in sterile compared with fertile flowers. Combined with their predicted targets, the potential roles of miRNAs in V. macrocephalum f. keteleeri flowers include involvement in floral organogenesis, cell proliferation, hormonal pathways, and stress responses. miRNA precursors and targets were further validated by quantitative real-time PCR (qRT-PCR). Specifically, miR156a-5p, miR156g, and miR156j expression levels were significantly higher in fertile flowers than in sterile flowers, while SPL genes displayed the opposite expression pattern. Considering that the targets of miR156 are predicted to be SPL genes, we propose that miR156 may be involved in the regulation of stamen development in V. macrocephalum f. keteleeri. We identified miRNAs differentially expressed between fertile and sterile flowers in V. macrocephalum f. keteleeri and provided new insights into the important regulatory roles of miRNAs in the differentiation and development of fertile and

  6. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure

    PubMed Central

    Rogers, Sarah; de Souza, Angela Rico; Zago, Michela; Iu, Matthew; Guerrina, Necola; Gomez, Alvin; Matthews, Jason; Baglole, Carolyn J.

    2017-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for its toxic responses to man-made pollutants such as dioxin. More recently, the AhR has emerged as a suppressor of inflammation, oxidative stress and apoptosis from cigarette smoke by mechanisms that may involve the regulation of microRNA. However, little is known about the AhR regulation of miRNA expression in the lung in response to inhaled toxicants. Therefore, we exposed Ahr−/− and Ahr+/− mice to cigarette smoke for 4 weeks and evaluated lung miRNA expression by PCR array. There was a dramatic regulation of lung miRNA by the AhR in the absence of exogenous ligand. In response to cigarette smoke, there were more up-regulated miRNA in Ahr−/− mice compared to Ahr+/− mice, including the cancer-associated miRNA miR-96. There was no significant change in the expression of the AhR regulated proteins HuR and cyclooxygenase-2 (COX-2). There were significant increases in the anti-oxidant gene sulfiredoxin 1 (Srxn1) and FOXO3a- predicted targets of miR-96. Collectively, these data support a prominent role for the AhR in regulating lung miRNA expression. Further studies to elucidate a role for these miRNA may further uncover novel biological function for the AhR in respiratory health and disease. PMID:28079158

  7. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis.

    PubMed

    Dlouha, Dana; Blaha, Milan; Blaha, Vladimir; Fatorova, Ilona; Hubacek, Jaroslav A; Stavek, Petr; Lanska, Vera; Parikova, Alena; Pitha, Jan

    2017-11-01

    LDL/Lp(a) apheresis therapy is a well-established method of aggressively lowering LDL and Lp(a). Recently, miRNAs have been discussed as markers of vascular status including atherosclerosis. MiRNAs inhibit post-transcriptional processes through RNA duplex formation resulting in gene silencing or regulation of gene expression. We measured a profile of 175 plasma-circulating miRNAs using pre-defined Serum/Plasma Focus Human microRNA PCR Panels in pooled samples of 11 subjects with familial hypercholesterolaemia under long-term apheresis treatment. Subsequently we analysed expressions of ten pre-selected miRNAs potentially involved in lipid homeostasis in the same group of subjects. We compared plasma-circulating miRNA levels isolated from peripheral blood collected immediately before and after apheresis. The greatest differences in plasma levels were found in miR-451a, miR-16, miR-19a/b, miR-223 and miR-185. In subsequent individual miRNA assay we detected a significant increase in miR-33b levels after apheresis (P < 0.05). Additionally, correlations between plasma lipids and miR-33a (P < 0.04) and miR-122 (P < 0.01) have been determined. Moreover, miR-122 levels in LDLR homozygotes were higher compared to heterozygotes after, but not before, apheresis treatment (P < 0.04). LDL/Lp(a) apheresis has an impact on miRNAs associated with lipid homeostasis and vascular status. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer

    PubMed Central

    Bhardwaj, Anjana; Singh, Harpreet; Rajapakshe, Kimal; Tachibana, Kazunoshin; Ganesan, Nivetha; Pan, Yinghong; Gunaratne, Preethi H.; Coarfa, Cristian; Bedrosian, Isabelle

    2017-01-01

    Little is understood about the early molecular drivers of triple-negative breast cancer (TNBC), making the identification of women at risk and development of targeted therapy for prevention significant challenges. By sequencing a TNBC cell line-based breast cancer progression model we have found that miRNA-29c is progressively lost during TNBC tumorigenesis. In support of the tumor suppressive role of miRNA 29c, we found that low levels predict poor overall patient survival and, conversely, that ectopic expression of miRNA-29c in preneoplastic cell models inhibits growth. miRNA-29c exerts its growth inhibitory effects through direct binding and regulation of TGFB-induced factor homeobox 2 (TGIF2), CAMP-responsive element binding protein 5 (CREB5), and V-Akt murine thymoma viral oncogene homolog 3 (AKT3). miRNA-29c regulation of these gene targets seems to be functionally relevant, as TGIF2, CREB5, and AKT3 were able to rescue the inhibition of cell proliferation and colony formation caused by ectopic expression of miRNA-29c in preneoplastic cells. AKT3 is an oncogene of known relevance in breast cancer, and as a proof of principle we show that inhibition of phosphoinositide 3-kinase (PI3K) activity, a protein upstream of AKT3, suppressed proliferation in TNBC preneoplastic cells. We explored additional opportunities for prevention of TNBC by studying the regulation of miRNA-29c and identified DNA methylation to have a role in the inhibition of miRNA-29c during TNBC tumorigenesis. Consistent with these observations, we found 5 aza-cytadine to relieve the suppression of miRNA-29c. Together, these results demonstrate that miRNA-29c loss plays a key role in the early development of TNBC. PMID:28160548

  9. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets

    PubMed Central

    Pinto, Yishay; Buchumenski, Ilana

    2018-01-01

    Abstract A-to-I RNA editing is an important post-transcriptional modification, known to be altered in tumors. It targets dozens of sites within miRNAs, some of which impact miRNA biogenesis and function, as well as many miRNA recognition sites. However, the full extent of the effect of editing on regulation by miRNAs and its behavior in human cancers is still unknown. Here we systematically characterized miRNA editing in 10 593 human samples across 32 cancer types and normal controls. We find that the majority of previously reported sites show little to no evidence for editing in this dataset, compile a list of 58 reliable miRNA editing sites, and study them across normal and cancer samples. Edited miRNA versions tend to suppress expression of known oncogenes, and, consistently, we observe a clear global tendency for hypo-editing in tumors, in strike contrast to the behavior for mRNA editing, allowing an accurate classification of normal/tumor samples based on their miRNA editing profile. In many cancers this profile correlates with patients' survival. Finally, thousands of miRNA binding sites are differentially edited in cancer. Our study thus establishes the important effect of RNA editing on miRNA-regulation in the tumor cell, with prospects for diagnostic and prognostic applications. PMID:29165639

  10. Integrative Analysis of miRNA and mRNA Profiles in Response to Ethylene in Rose Petals during Flower Opening

    PubMed Central

    Pei, Haixia; Ma, Nan; Chen, Jiwei; Zheng, Yi; Tian, Ji; Li, Jing; Zhang, Shuai; Fei, Zhangjun; Gao, Junping

    2013-01-01

    MicroRNAs play an important role in plant development and plant responses to various biotic and abiotic stimuli. As one of the most important ornamental crops, rose (Rosa hybrida) possesses several specific morphological and physiological features, including recurrent flowering, highly divergent flower shapes, colors and volatiles. Ethylene plays an important role in regulating petal cell expansion during rose flower opening. Here, we report the population and expression profiles of miRNAs in rose petals during flower opening and in response to ethylene based on high throughput sequencing. We identified a total of 33 conserved miRNAs, as well as 47 putative novel miRNAs were identified from rose petals. The conserved and novel targets to those miRNAs were predicted using the rose floral transcriptome database. Expression profiling revealed that expression of 28 known (84.8% of known miRNAs) and 39 novel (83.0% of novel miRNAs) miRNAs was substantially changed in rose petals during the earlier opening period. We also found that 28 known and 22 novel miRNAs showed expression changes in response to ethylene treatment. Furthermore, we performed integrative analysis of expression profiles of miRNAs and their targets. We found that ethylene-caused expression changes of five miRNAs (miR156, miR164, miR166, miR5139 and rhy-miRC1) were inversely correlated to those of their seven target genes. These results indicate that these miRNA/target modules might be regulated by ethylene and were involved in ethylene-regulated petal growth. PMID:23696879

  11. ARMOUR - A Rice miRNA: mRNA Interaction Resource.

    PubMed

    Sanan-Mishra, Neeti; Tripathi, Anita; Goswami, Kavita; Shukla, Rohit N; Vasudevan, Madavan; Goswami, Hitesh

    2018-01-01

    ARMOUR was developed as A Rice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  12. In-silico and in-vivo analyses of EST databases unveil conserved miRNAs from Carthamus tinctorius and Cynara cardunculus

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are small RNAs (21-24 bp) providing an RNA-based system of gene regulation highly conserved in plants and animals. In plants, miRNAs control mRNA degradation or restrain translation, affecting development and responses to stresses. Plant miRNAs show imperfect but extensive complementarity to mRNA targets, making their computational prediction possible, useful when data mining is applied on different species. In this study we used a comparative approach to identify both miRNAs and their targets, in artichoke and safflower. Results Two complete expressed sequence tags (ESTs) datasets from artichoke (3.6·104 entries) and safflower (4.2·104), were analysed with a bioinformatic pipeline and in vitro experiments, identifying 17 potential miRNAs. For each EST, using RNAhybrid program and 953 non redundant miRNA mature sequences, available in mirBase as reference, we searched matching putative targets. 8730 out of 42011 ESTs from safflower and 7145 of 36323 ESTs from artichoke showed at least one predicted miRNA target. BLAST analysis showed that 75% of all ESTs shared at least a common homologous region (E-value < 10-4) and about 50% of these displayed 400 bp or longer aligned sequences as conserved homologous/orthologous (COS) regions. 960 and 890 ESTs of safflower and artichoke organized in COS shared 79 different miRNA targets, considered functionally conserved, and statistically significant when compared with random sequences (signal to noise ratio > 2 and specificity ≥ 0.85). Four highly significant miRNAs selected from in silico data were experimentally validated in globe artichoke leaves. Conclusions Mature miRNAs and targets were predicted within EST sequences of safflower and artichoke. Most of the miRNA targets appeared highly/moderately conserved, highlighting an important and conserved function. In this study we introduce a stringent parameter for the comparative sequence analysis, represented by the identification of the same

  13. Regulation of cancer immune escape: The roles of miRNAs in immune checkpoint proteins.

    PubMed

    Yang, Qin; Cao, Wenjie; Wang, Zi; Zhang, Bin; Liu, Jing

    2018-09-01

    Immune checkpoint proteins (ICPs) are regulators of immune system. The ICP dysregulation silences the host immune response to cancer-specific antigens, contributing to the occurrence and progress of various cancers. MiRNAs are regulatory molecules and function in mRNA silencing and post-transcriptional regulation of gene expression. MiRNAs that modulate the immunity via ICPs have received increasing attention. Many studies have shown that the expressions of ICPs are directly or indirectly repressed by miRNAs in multiple types of cancers. MiRNAs are also subject to regulation by ICPs. In this review, recent studies of the relationship between miRNAs and ICPs (including the PD-1, PD-L1, CTLA-4, ICOS, B7-1, B7-2, B7-H2, B7-H3, CD27, CD70, CD40, and CD40L) in cancer immune escape are comprehensively discussed, which provide critical detailed mechanistic insights into the functions of the miRNA-ICP axes and their effects on immune escape, and will be beneficial for the potential applications of immune checkpoint therapy and miRNA-based guidance for personalized medicine as well as for predicting the prognosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure.

    PubMed

    Zhou, Yongyong; Huang, Hannian; Zhang, Kai; Ding, Xianfeng; Jia, Longlue; Yu, Liang; Zhu, Guonian; Guo, Jiangfeng

    2016-07-01

    MicroRNA (miRNA) can regulate the expression of its target gene by mediating mRNA cleavage or by translational repression at a post-transcriptional level. Usually, one miRNA may regulate many genes as its targets, while one gene may also be targeted by many miRNAs. We previously demonstrated that cyb561d2, whose protein product is involved in cell defense, and chemical stress, is targeted by miR-155 in adult zebrafish (Danio rerio) when exposed to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile). Microcosm Targets prediction showed that the cyb561d2 gene is also highly possibly targeted by miR-194a, miR-216b, miR-429, and miR-499. These interactions need to be further validated experimentally. In this study, we evaluated the effects of fipronil on miR-194a, miR-216b, miR-429, miR-499 and cyb561d2 in zebrafish and investigated whether these four miRNAs could regulate the expression of cyb561d2 in both mRNA and protein levels. The expression of cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil, and miR-216b and miR-499 were downregulated concurrently, whereas there was no significant changes were observed in the expression level of miR-194a and miR-429. The dual luciferase report assay demonstrated that miR-216b and miR-499 interacted with cyb561d2 3'-untranslated regions (3'-UTR), miR-194a and miR-429 did not stimulate degradation of cyb561d2 mRNA. The expression of cyb561d2 was reduced in both mRNA and protein level when ZF4 cells were transfected with miR-499 mimic, whereas expression level of both mRNA and protein was increased when endogenous miR-499 was inhibited by transfection with miR-499 inhibitor. Likewise, the mRNA and protein level of cyb561d2 was affected by treatment with the mimics and the inhibitor of miR-216b. In contrast, when ZF4 cells were transfected with a mimic of miR-194a or miR-429, the expression of cyb561d2

  15. Soil ecosystem function under native and exotic plant assemblages as alternative states of successional grasslands

    NASA Astrophysics Data System (ADS)

    Spirito, Florencia; Yahdjian, Laura; Tognetti, Pedro M.; Chaneton, Enrique J.

    2014-01-01

    Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.

  16. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.

    PubMed

    Zhang, Yalin; Kim, Min Soo; Jia, Baosen; Yan, Jingqi; Zuniga-Hertz, Juan Pablo; Han, Cheng; Cai, Dongsheng

    2017-08-03

    It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan. Conversely, ageing retardation and lifespan extension were achieved in mid-aged mice that were locally implanted with healthy hypothalamic stem/progenitor cells that had been genetically engineered to survive in the ageing-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells contributed greatly to exosomal microRNAs (miRNAs) in the cerebrospinal fluid, and these exosomal miRNAs declined during ageing, whereas central treatment with healthy hypothalamic stem/progenitor cell-secreted exosomes led to the slowing of ageing. In conclusion, ageing speed is substantially controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs.

  17. Comprehensive identification and profiling of host miRNAs in response to Singapore grouper iridovirus (SGIV) infection in grouper (Epinephelus coioides).

    PubMed

    Guo, Chuanyu; Cui, Huachun; Ni, Songwei; Yan, Yang; Qin, Qiwei

    2015-10-01

    microRNAs (miRNAs) are an evolutionarily conserved class of non-coding RNA molecules that participate in various biological processes. Employment of high-throughput screening strategies greatly prompts the investigation and profiling of miRNAs in diverse species. In recent years, grouper (Epinephelus spp.) aquaculture was severely affected by iridoviral diseases. However, knowledge regarding the host immune responses to viral infection, especially the miRNA-mediated immune regulatory roles, is rather limited. In this study, by employing Solexa deep sequencing approach, we identified 116 grouper miRNAs from grouper spleen-derived cells (GS). As expected, these miRNAs shared high sequence similarity with miRNAs identified in zebrafish (Danio rerio), pufferfish (Fugu rubripes), and other higher vertebrates. In the process of Singapore grouper iridovirus (SGIV) infection, 45 and 43 miRNAs with altered expression (>1.5-fold) were identified by miRNA microarray assays in grouper spleen tissues and GS cells, respectively. Furthermore, target prediction revealed 189 putative targets of these grouper miRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation.

    PubMed

    Xu, Xiao-Min; Zhang, Hong-Jie

    2016-02-21

    Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn's disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3'-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD.

  19. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches.

    PubMed

    Jiang, Hanlun; Zhu, Lizhe; Héliou, Amélie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2017-01-01

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  20. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia.

    PubMed

    Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L; Hallek, Michael; Wendtner, Clemens-Martin

    2009-10-08

    MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3' untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis.

  1. miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia

    PubMed Central

    Pallasch, Christian Philipp; Patz, Michaela; Park, Yoon Jung; Hagist, Susanne; Eggle, Daniela; Claus, Rainer; Debey-Pascher, Svenja; Schulz, Alexandra; Frenzel, Lukas P.; Claasen, Julia; Kutsch, Nadine; Krause, Günter; Mayr, Christine; Rosenwald, Andreas; Plass, Christoph; Schultze, Joachim L.; Hallek, Michael

    2009-01-01

    MicroRNAs (miRNA) play a key role in cellular regulation and, if deregulated, in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). RNAs from primary cells of 50 treatment-naive CLL patients and peripheral B cells of 14 healthy donors were applied to miRNA expression profiling using bead chip technology. In CLL cells, a set of 7 up- and 19 down-regulated miRNAs was identified. Among the miRNAs down-regulated in CLL cells, 6 of 10 miRNA promoters examined showed gain of methylation compared with normal B-cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3′ untranslated region of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site-directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107, and miR-424. Although expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells compared with the levels in healthy donor B cells. In summary, we could demonstrate disruption of miRNA-mediated translational control, partly due to epigenetic transcriptional silencing of miRNAs, with subsequent overexpression of the oncogenic transcription factor PLAG1 as a putative novel mechanism of CLL pathogenesis. PMID:19692702

  2. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice.

    PubMed

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-11-12

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin(-) cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin(-)c-Kit⁺ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.

  3. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach

    PubMed Central

    Tsamou, Maria; Vrijens, Karen; Madhloum, Narjes; Lefebvre, Wouter; Vanpoucke, Charlotte; Nawrot, Tim S

    2018-01-01

    ABSTRACT Particulate matter (PM) exposure during in utero life may entail adverse health outcomes in later-life. Air pollution's adverse effects are known to alter gene expression profiles, which can be regulated by microRNAs (miRNAs). We investigate the potential influence of air pollution exposure in prenatal life on placental miRNA expression. Within the framework of the ENVIRONAGE birth cohort, we measured the expression of six candidate miRNAs in placental tissue from 210 mother-newborn pairs by qRT-PCR. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Multiple regression models were used to study miRNA expression and in utero exposure to PM2.5 over various time windows during pregnancy. The placental expression of miR-21 (−33.7%, 95% CI: −53.2 to −6.2, P = 0.022), miR-146a (−30.9%, 95% CI: −48.0 to −8.1, P = 0.012) and miR-222 (−25.4%, 95% CI: −43.0 to −2.4, P = 0.034) was inversely associated with PM2.5 exposure during the 2nd trimester of pregnancy, while placental expression of miR-20a and miR-21 was positively associated with 1st trimester exposure. Tumor suppressor phosphatase and tensin homolog (PTEN) was identified as a common target of the miRNAs significantly associated with PM exposure. Placental PTEN expression was strongly and positively associated (+59.6% per 5 µg/m³ increment, 95% CI: 26.9 to 100.7, P < 0.0001) with 3rd trimester PM2.5 exposure. Further research is required to establish the role these early miRNA and mRNA expression changes might play in PM-induced health effects. We provide molecular evidence showing that in utero PM2.5 exposure affects miRNAs expression as well as its downstream target PTEN. PMID:27104955

  4. Screening of miRNA profiles and construction of regulation networks in early and late lactation of dairy goat mammary glands.

    PubMed

    Ji, Zhibin; Liu, Zhaohua; Chao, Tianle; Hou, Lei; Fan, Rui; He, Rongyan; Wang, Guizhi; Wang, Jianmin

    2017-09-20

    In recent years, studies related to the expression profiles of miRNAs in the dairy goat mammary gland were performed, but regulatory mechanisms in the physiological environment and the dynamic homeostasis of mammary gland development and lactation are not clear. In the present study, sequencing data analysis of early and late lactation uncovered a total of 1,487 unique miRNAs, including 45 novel miRNA candidates and 1,442 known and conserved miRNAs, of which 758 miRNAs were co-expressed and 378 differentially expressed with P < 0.05. Moreover, 76 non-redundant target genes were annotated in 347 GO consortiums, with 3,143 candidate target genes grouped into 33 pathways. Additionally, 18 predicted target genes of 214 miRNAs were directly annotated in mammary gland development and used to construct regulatory networks based on GO annotation and the KEGG pathway. The expression levels of seven known miRNAs and three novel miRNAs were examined using quantitative real-time PCR. The results showed that miRNAs might play important roles in early and late lactation during dairy goat mammary gland development, which will be helpful to obtain a better understanding of the genetic control of mammary gland lactation and development.

  5. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer

    PubMed Central

    da Silva Oliveira, Kelly Cristina; Thomaz Araújo, Taíssa Maíra; Albuquerque, Camila Inagaki; Barata, Gabriela Alcantara; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Rodrigues Mello Junior, Fernando Augusto; Khayat, André Salim; de Assumpção, Paulo Pimentel; Rodriguez Burbano, Rommel Mário; Smith, Marília Cardoso; Calcagno, Danielle Queiroz

    2016-01-01

    Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity. PMID:27672290

  6. The Role of ADAR1 and ADAR2 in the Regulation of miRNA-21 in Idiopathic Pulmonary Fibrosis.

    PubMed

    Díaz-Piña, Gabriela; Ordoñez-Razo, Rosa Ma; Montes, Eduardo; Páramo, Ignacio; Becerril, Carina; Salgado, Alfonso; Santibañez-Salgado, J Alfredo; Maldonado, Mariel; Ruiz, Victor

    2018-04-10

    microRNAs (miRNAs) are small non-coding 1RNAs that post-transcriptionally regulate gene expression. Recent evidence shows that adenosine deaminases that act on RNA (ADAR) can edit miRNAs. miRNAs are involved in the development of different diseases, such as idiopathic pulmonary fibrosis (IPF). In IPF, about 40% of the miRNAs are differentially expressed with respect to controls. Among these miRNAs, miRNA-21 has been found over-expressed in IPF and its targets are anti-fibrosing molecules such as PELI1 and SPRY2. The objective of this study is to determine the role of ADAR1 and 2 on the expression of miRNA-21 in human lung fibroblasts trough quantification of gene expression, protein levels, and overexpression of ADAR1 and 2. Six control and six fibrotic primary fibroblast cell cultures were used for RNA extraction, ADAR1, ADAR2, PELI1, SPRY2, miRNA-21, and pri-miRNA-21 expression was measured. Subsequently, two fibrotic fibroblast cultures were used for overexpression of ADAR1 and ADAR2, and they were stimulated with TGFβ1. Real-time PCR and Western blot were performed. ADAR1 is significantly downregulated in IPF fibroblasts; the overexpression of ADAR1 and ADAR2 reestablishes the expression levels of miRNA-21, PELI1, and SPRY2 in fibroblasts of patients with IPF. These changes in the processing of miRNAs have great value in pathology diagnosis, including lung diseases, and play an important role in the understanding of molecular mechanisms involved in the development of different pathologies, as well as representing new therapeutic targets.

  7. Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types.

    PubMed

    Ylla, Guillem; Piulachs, Maria-Dolors; Belles, Xavier

    2017-10-11

    Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0-6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode.

  8. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing

    PubMed Central

    Hou, Yanming; Zhai, Lulu; Li, Xuyan; Xue, Yu; Wang, Jingjing; Yang, Pengjie; Cao, Chunmei; Li, Hongxue; Cui, Yuhai; Bian, Shaomin

    2017-01-01

    MicroRNAs (miRNAs) play vital roles in the regulation of fruit development and ripening. Blueberry is an important small berry fruit crop with economical and nutritional value. However, nothing is known about the miRNAs and their targets involved in blueberry fruit ripening. In this study, using high-throughput sequencing of small RNAs, 84 known miRNAs belonging to 28 families and 16 novel miRNAs were identified in white fruit (WF) and blue fruit (BF) libraries, which represent fruit ripening onset and in progress, respectively. Among them, 41 miRNAs were shown to be differentially expressed during fruit maturation, and 16 miRNAs representing 16 families were further chosen to validate the sRNA sequencing data by stem-loop qRT-PCR. Meanwhile, 178 targets were identified for 41 known and 7 novel miRNAs in WF and BF libraries using degradome sequencing, and targets of miR160 were validated using RLM-RACE (RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends) approach. Moreover, the expression patterns of 6 miRNAs and their targets were examined during fruit development and ripening. Finally, integrative analysis of miRNAs and their targets revealed a complex miRNA-mRNA regulatory network involving a wide variety of biological processes. The findings will facilitate future investigations of the miRNA-mediated mechanisms that regulate fruit development and ripening in blueberry. PMID:29257112

  9. miRNA-29a targets COL3A1 to regulate the level of type III collagen in pig.

    PubMed

    Chuan-Hao, Li; Wei, Chen; Jia-Qing, Hu; Yan-Dong, Wang; Shou-Dong, Wang; Yong-Qing, Zeng; Hui, Wang

    2016-10-30

    COL3A1 encodes the protein, collagen type III alpha 1, which is an important component of collagen. Collagen can have a considerable effect on the processing quality of meat, and is nutritious. Bioinformatic analysis using Targetscan showed that COL3A1 could be a target gene of miRNA-29a. Moreover, we found that Laiwu pigs have higher levels of type III collagen and lower levels of miRNA-29a than Landrace pigs. Therefore, we hypothesized that miRNA-29a suppresses the expression of COL3A1 by targeting its 3'-UTR. miRNA-29a appears to play an inhibitory role in the regulation of COL3A1 in PK15 cells because of the following: (1) overexpression of miRNA-29a resulted in a significant down-regulation of COL3A1 protein levels (2) overexpression of miRNA-29a significantly decreased the level of COL3A1 mRNA. (3) The activity of a COL3A1 luciferase reporter was significant reduced by miRNA-29a. Furthermore, the levels of miRNA-29a and collagen type III in four tissues in Laiwu and Landrace pigs were consistent with the above observations. In this study, we identified COL3A1 as a direct target for miRNA-29a, which will inform further studies of meat quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer’s Disease (AD)-Novel and Unique Pathological Features

    PubMed Central

    Zhao, Yuhai; Pogue, Aileen I.; Lukiw, Walter J.

    2015-01-01

    Of the approximately ~2.65 × 103 mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS. PMID:26694372

  11. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  12. EBV‐encoded miRNAs target ATM‐mediated response in nasopharyngeal carcinoma

    PubMed Central

    Lung, Raymond W‐M; Hau, Pok‐Man; Yu, Ken H‐O; Yip, Kevin Y; Tong, Joanna H‐M; Chak, Wing‐Po; Chan, Anthony W‐H; Lam, Ka‐Hei; Lo, Angela Kwok‐Fung; Tin, Edith K‐Y; Chau, Shuk‐Ling; Pang, Jesse C‐S; Kwan, Johnny S‐H; Busson, Pierre; Young, Lawrence S; Yap, Lee‐Fah; Tsao, Sai‐Wah

    2018-01-01

    Abstract Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein–Barr virus (EBV) infection. In NPC, miR‐BARTs, the EBV‐encoded miRNAs derived from BamH1‐A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV‐encoded miRNAs in a panel of NPC patient‐derived xenografts and an EBV‐positive NPC cell line by small RNA sequencing. Among the 40 miR‐BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV‐miRNAs, BART5‐5p, BART7‐3p, BART9‐3p, and BART14‐3p could negatively regulate the expression of a key DNA double‐strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'‐UTR. Notably, the expression of these four miR‐BARTs represented more than 10% of all EBV‐encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT‐PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5‐5p, BART7‐3p, BART9‐3p, and BART14‐3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR‐BARTs in EBV‐positive NPC cells, we further demonstrated the novel function of miR‐BARTs in inhibiting Zta‐induced lytic reactivation. These findings imply that the four viral miRNAs work co‐operatively to modulate ATM activity in response to DNA damage and to maintain viral latency

  13. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma.

    PubMed

    Lung, Raymond W-M; Hau, Pok-Man; Yu, Ken H-O; Yip, Kevin Y; Tong, Joanna H-M; Chak, Wing-Po; Chan, Anthony W-H; Lam, Ka-Hei; Lo, Angela Kwok-Fung; Tin, Edith K-Y; Chau, Shuk-Ling; Pang, Jesse C-S; Kwan, Johnny S-H; Busson, Pierre; Young, Lawrence S; Yap, Lee-Fah; Tsao, Sai-Wah; To, Ka-Fai; Lo, Kwok-Wai

    2018-04-01

    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors

  14. Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research

    Cancer.gov

    microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies

  15. miRNAs as Circulating Biomarkers for Alzheimer's Disease and Parkinson's Disease.

    PubMed

    Mushtaq, Gohar; Greig, Nigel H; Anwar, Firoz; Zamzami, Mazin A; Choudhry, Hani; Shaik, Munvar M; Tamargo, Ian A; Kamal, Mohammad A

    2016-01-01

    Detection of biomarkers for neurodegenerative disorders (NDDs) within brain tissues of Alzheimer's disease (AD) and Parkinson's disease (PD) patients has always been hampered by our inability to access and biopsy tissue of key brain regions implicated in disease occurrence and progression. Currently, diagnosis of NDDs is principally based on clinical observations of symptoms that present at later stages of disease progression, followed by neuroimaging and, possibly, CSF evaluation. One way to potentially detect and diagnose NDDs at a far earlier stage is to screen for abnormal levels of specific disease markers within the peripheral circulation of patients with NDDs. Increasing evidence suggests that there is dysregulation of microRNAs (miRNAs) in NDDs. Peripheral blood mononuclear cells, as well as biofluids, such as plasma, serum, urine and cerebrospinal fluid, contain miRNAs that can be identified and quantified. Circulating miRNAs within blood and other biofluids may thus be characterized and used as non-invasive, diagnostic biomarkers that facilitate the early detection of disease and potentially the continual monitoring of disease progression for NDDs such as AD and PD. Plainly, such a screen is only possible with a clear understanding of which miRNAs change with disease, and when these changes occur during the progression of AD and PD. Such information is becoming increasingly available and, in the near future, may not only support disease diagnosis, but provide the opportunity to evaluate therapeutic interventions earlier in the disease process.

  16. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women

    PubMed Central

    Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L.; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J.; Ribeiro, Enilze M.; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R.

    2016-01-01

    Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature. PMID:27813494

  17. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women.

    PubMed

    Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J; Ribeiro, Enilze M; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R

    2016-11-29

    Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78-0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.

  18. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: Application for prostate cancer diagnostic.

    PubMed

    Samsonov, Roman; Shtam, Tatiana; Burdakov, Vladimir; Glotov, Andrey; Tsyrlina, Evgenia; Berstein, Lev; Nosov, Alexander; Evtushenko, Vladimir; Filatov, Michael; Malek, Anastasia

    2016-01-01

    Prostate cancer is the most common cancer in men. Prostate-specific antigen has, however, insufficient diagnostic specificity. Novel complementary diagnostic approaches are greatly needed. MiRNAs are small regulatory RNAs which play an important role in tumorogenesis and are being investigated as a cancer biomarker. In addition to their intracellular regulatory functions, miRNAs are secreted into the extracellular space and can be found in various body fluids, including urine. The stability of extracellular miRNAs is defined by association with proteins, lipoprotein particles, and membrane vesicles. Among the known forms of miRNA packaging, tumour-derived exosome-enclosed miRNAs is thought to reflect the vital activity of cancer cells. The assessment of the exosomal fraction of urinary miRNA may present a new and highly specific method for prostate cancer diagnostics; however, this is challenged by the absence of reliable and inexpensive methods for isolation of exosomes. Prostate cancer (PC) cell lines and urine samples collected from 35 PC patients and 35 healthy donors were used in the study. Lectins, phytohemagglutinin, and concanavalin A were used to induce agglutination of exosomes. The efficiency of isolation process was evaluated by AFM and DLS assays. The protein content of isolated exosomes was analysed by western blotting. Exosomal RNA was assayed by automated electrophoresis and expression level of selected miRNAs was evaluated by RT-qPCR. The diagnostic potency of the urinary exosomal miRNA assessment was estimated by the ROC method. The formation of multi-vesicular agglutinates in urine can be induced by incubation with lectin at a final concentration of 2 mg/ml. These agglutinates contain urinary exosomes and may be pelleted by centrifugation with a relatively low G-force. The analysis of PC-related miRNA in urinary exosomes revealed significant up-regulation of miR-574-3p, miR-141-5p, and miR-21-5p associated with PC. Lectin-induced aggregation is a

  19. The polysaccharides from fermented Ganoderma lucidum mycelia induced miRNAs regulation in suppressed HepG2 cells.

    PubMed

    Shen, Jie; Park, Hyeon-soo; Xia, Yong-mei; Kim, Gon-sup; Cui, Steve W

    2014-03-15

    Medicinal mushroom polysaccharides such as Ganoderma lucidum polysaccharides (GLPs) have been commonly hypothesized to suppress tumor cells proliferation through immune effects. To verify this hypothesis through investigating comprehensive miRNA expression in polysaccharide treated cancer cells, an anticancer mycelia GLP was employed to disclose miRNA differential expression of human hepatocarcinoma cells (HepG2), by using a miRNA microarray assay based on Sanger miR-Base Release 16. The experiment and the analysis result indicates that among the 61 differential expressed miRNAs (p ≤ 0.01), 17 of them were regulated significantly. GLP can inhibit HepG2 cells directly through regulation of hepatocarcinoma genes. A newly found miR-3131 exhibited the strongest upregulation (92-folds, Log2 = 6.53, p = 0.000016). The miRNAs responded synergistically in both hepatocarcinoma and immune-related aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Defining Transcriptional Regulatory Mechanisms for Primary let-7 miRNAs

    PubMed Central

    Gaeta, Xavier; Le, Luat; Lin, Ying; Xie, Yuan; Lowry, William E.

    2017-01-01

    The let-7 family of miRNAs have been shown to control developmental timing in organisms from C. elegans to humans; their function in several essential cell processes throughout development is also well conserved. Numerous studies have defined several steps of post-transcriptional regulation of let-7 production; from pri-miRNA through pre-miRNA, to the mature miRNA that targets endogenous mRNAs for degradation or translational inhibition. Less-well defined are modes of transcriptional regulation of the pri-miRNAs for let-7. let-7 pri-miRNAs are expressed in polycistronic fashion, in long transcripts newly annotated based on chromatin-associated RNA-sequencing. Upon differentiation, we found that some let-7 pri-miRNAs are regulated at the transcriptional level, while others appear to be constitutively transcribed. Using the Epigenetic Roadmap database, we further annotated regulatory elements of each polycistron identified putative promoters and enhancers. Probing these regulatory elements for transcription factor binding sites identified factors that regulate transcription of let-7 in both promoter and enhancer regions, and identified novel regulatory mechanisms for this important class of miRNAs. PMID:28052101