NASA Astrophysics Data System (ADS)
Hansen, John T.; Sladek, John R.
1989-11-01
This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.
Dunford, Louise J; Sinclair, Kevin D; Kwong, Wing Y; Sturrock, Craig; Clifford, Bethan L; Giles, Tom C; Gardner, David S
2014-11-01
This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet. © FASEB.
Gaining Insight of Fetal Brain Development with Diffusion MRI and Histology
Huang, Hao; Vasung, Lana
2013-01-01
Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic level. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. PMID:23796901
Fetal Neurobehavioral Development and the Role of Maternal Nutrient Intake and Psychological Health
ERIC Educational Resources Information Center
Spann, Marisa; Smerling, Jennifer; Gustafsson, Hanna C.; Foss, Sophie; Monk, Catherine
2014-01-01
Measuring and understanding fetal neurodevelopment provides insight regarding the developing brain. Maternal nutrient intake and psychological stress during pregnancy each impact fetal neurodevelopment and influence childhood outcomes and are thus important factors to consider when studying fetal neurobehavioral development. The authors provide an…
McPherson, Nicole O.; Bakos, Hassan W.; Owens, Julie A.; Setchell, Brian P.; Lane, Michelle
2013-01-01
Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health. PMID:23977045
Gaining insight of fetal brain development with diffusion MRI and histology.
Huang, Hao; Vasung, Lana
2014-02-01
Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic levels. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.
Maternal high-fat diet is associated with impaired fetal lung development
Mayor, Reina S.; Finch, Katelyn E.; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D.; Frank, Aaron P.; Hahner, Lisa D.; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F.; Rosenfeld, Charles R.; Savani, Rashmin C.
2015-01-01
Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997
STUDIES IN FETAL BEHAVIOR: REVISITED, RENEWED, AND REIMAGINED.
DiPietro, Janet A; Costigan, Kathleen A; Voegtline, Kristin M
2015-09-01
Among the earliest volumes of this monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodrmal activity and fetal heartrate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include:within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physio-logical processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship.We pose a number of open questions for future research. Although the human fetus remains just out of reach, new technologies portend an era of accelerated discovery of the earliest period of development
Studies in Fetal Behavior: Revisited, Renewed, and Reimagined
DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.
2016-01-01
Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new technologies portend an era of accelerated discovery of the earliest period of development. PMID:26303396
Tracking fetal development through molecular analysis of maternal biofluids☆
Edlow, Andrea G.; Bianchi, Diana W.
2015-01-01
Current monitoring of fetal development includes fetal ultrasonography, chorionic villus sampling or amniocentesis for chromosome analysis, and maternal serum biochemical screening for analytes associated with aneuploidy and open neural tube defects. Over the last 15 years, significant advances in noninvasive prenatal diagnosis (NIPD) via cell-free fetal (cff) nucleic acids in maternal plasma have resulted in the ability to determine fetal sex, RhD genotype, and aneuploidy. Cff nucleic acids in the maternal circulation originate primarily from the placenta. This contrasts with cff nucleic acids in amniotic fluid, which derive from the fetus, and are present in significantly higher concentrations than in maternal blood. The fetal origin of cff nucleic acids in the amniotic fluid permits the acquisition of real-time information about fetal development and gene expression. This review seeks to provide a comprehensive summary of the molecular analysis of cff nucleic acids in maternal biofluids to elucidate mechanisms of fetal development, physiology, and pathology. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. PMID:22542507
Saleem, Sahar N
2013-07-01
Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.
Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M
2018-04-01
Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function. Copyright © 2018 Elsevier Inc. All rights reserved.
Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman's Sleep at Home.
Nishihara, Kyoko; Ohki, Noboru; Kamata, Hideo; Ryo, Eiji; Horiuchi, Shigeko
2015-01-01
Fetal movement is an important biological index of fetal well-being. Since 2008, we have been developing an original capacitive acceleration sensor and device that a pregnant woman can easily use to record fetal movement by herself at home during sleep. In this study, we report a newly developed automated software system for analyzing recorded fetal movement. This study will introduce the system and compare its results to those of a manual analysis of the same fetal movement signals (Experiment I). We will also demonstrate an appropriate way to use the system (Experiment II). In Experiment I, fetal movement data reported previously for six pregnant women at 28-38 gestational weeks were used. We evaluated the agreement of the manual and automated analyses for the same 10-sec epochs using prevalence-adjusted bias-adjusted kappa (PABAK) including quantitative indicators for prevalence and bias. The mean PABAK value was 0.83, which can be considered almost perfect. In Experiment II, twelve pregnant women at 24-36 gestational weeks recorded fetal movement at night once every four weeks. Overall, mean fetal movement counts per hour during maternal sleep significantly decreased along with gestational weeks, though individual differences in fetal development were noted. This newly developed automated analysis system can provide important data throughout late pregnancy.
Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman’s Sleep at Home
Nishihara, Kyoko; Ohki, Noboru; Kamata, Hideo; Ryo, Eiji; Horiuchi, Shigeko
2015-01-01
Fetal movement is an important biological index of fetal well-being. Since 2008, we have been developing an original capacitive acceleration sensor and device that a pregnant woman can easily use to record fetal movement by herself at home during sleep. In this study, we report a newly developed automated software system for analyzing recorded fetal movement. This study will introduce the system and compare its results to those of a manual analysis of the same fetal movement signals (Experiment I). We will also demonstrate an appropriate way to use the system (Experiment II). In Experiment I, fetal movement data reported previously for six pregnant women at 28-38 gestational weeks were used. We evaluated the agreement of the manual and automated analyses for the same 10-sec epochs using prevalence-adjusted bias-adjusted kappa (PABAK) including quantitative indicators for prevalence and bias. The mean PABAK value was 0.83, which can be considered almost perfect. In Experiment II, twelve pregnant women at 24-36 gestational weeks recorded fetal movement at night once every four weeks. Overall, mean fetal movement counts per hour during maternal sleep significantly decreased along with gestational weeks, though individual differences in fetal development were noted. This newly developed automated analysis system can provide important data throughout late pregnancy. PMID:26083422
Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun
2016-01-01
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
Epidemiology of fetal alcohol syndrome in a South African community in the Western Cape Province.
May, P A; Brooke, L; Gossage, J P; Croxford, J; Adnams, C; Jones, K L; Robinson, L; Viljoen, D
2000-01-01
OBJECTIVES: This study determined the characteristics of fetal alcohol syndrome in a South African community, and methodology was designed for the multidisciplinary study of fetal alcohol syndrome in developing societies. METHODS: An active case ascertainment, 2-tier methodology was used among 992 first-grade pupils. A case-control design, using measures of growth, development, dysmorphology, and maternal risk, delineated characteristics of children with fetal alcohol syndrome. RESULTS: A high rate of fetal alcohol syndrome was found in the schools--40.5 to 46.4 per 1000 children aged 5 to 9 years--and age-specific community rates (ages 6-7) were 39.2 to 42.9. These rates are 18 to 141 times greater than in the United States. Rural residents had significantly more fetal alcohol syndrome. After control for ethnic variation, children with fetal alcohol syndrome had traits similar to those elsewhere: poor growth and development, congruent dysmorphology, and lower intellectual functioning. CONCLUSIONS: This study documented the highest fetal alcohol syndrome rate to date in an overall community population. Fetal alcohol syndrome initiatives that incorporate innovative sampling and active case ascertainment methods can be used to obtain timely and accurate data among developing populations. PMID:11111264
[Fetal growth and activity at 20 to 24 weeks of gestation (preliminary study)].
Conde, Ana; Figueiredo, Bárbara; Tendais, Iva; Pereira, Ana F; Afonso, Elisa; Nogueira, Raúl
2008-01-01
Recent researches show that psychological development begins much before birth and prenatal influences can explain a significant part of the future variability in infants' behaviour and development. The aim of this study was to characterize the fetal development between 20 and 24 weeks of gestation, related to the measures of fetal growth-- iparietal diameter, abdominal circumference, head circumference, femur length and fetal weight-- and fetal activity--fetal heart rate and fetal movements. We also tried to establish if there are any differences in these measures related to the mothers' and fetus' sociodemographic features, obstetrical conditions and exposure to drugs. The sample of this study involved 48 fetus (52.1% female and 47.9% male) with an estimated gestational age (GA) between 20-24 weeks (Mean = 21 weeks and 1 day), whose mothers had appointments at the Obstetric and Gynaecological medical consultation of Júlio Dinis Maternity Hospital (MJD, Oporto). A video tape of the fetal behaviour was made and ultrasound biometry measurements were collected from the morphological ultrasound report. A statistical analysis of fetal data, after gestational age control, showed differences in fetal growth measures related to mothers' occupational status [F(1,41) = 7.28; p = .000], marital status [F(1,41) = 2.61; p = .04], household arrangements [F(1,41) = 2.91; p = .03] and coffee consumption [F(1,40) = 2.55; p = .05]. Differences in fetal activity measures (fetal heart rate) associated to fetus gender [F(1,16) = 5.84; p = .009] were also found. We can conclude about the sensibility of fetal development to prenatal factors related to the mothers' and fetus' sociodemographic features and exposure to drugs.
Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.
Cooke, Gerard M
2014-01-01
The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.
Epigenetic approaches for the detection of fetal DNA in maternal plasma
Tsui, Dana WY; Chiu, Rossa WK
2010-01-01
The presence of fetal DNA in the plasma of pregnant women has opened up new possibilities for noninvasive prenatal diagnosis. Over the past decades, different types of fetal markers have been developed, initially based on discriminative genetic markers such as male-specific signals or paternally-inherited polymorphisms, and gradually evolved to the detection of fetal-specific transcripts or epigenetic signatures. This development has extended the coverage of the application of cell-free fetal DNA to essentially all pregnancies, regardless of the gender of the fetus or its polymorphic status. In this review, we present an overview of the development of noninvasive prenatal diagnosis through epigenetics. We introduce the basis of how fetal DNA could be detected from a large background of maternal DNA in maternal plasma based on fetal-specific DNA methylation patterns. We evaluate the methodologies involved and discuss the factors that affect the robustness of the detection. We review the progress in adopting fetal epigenetic markers for noninvasive prenatal assessment of fetal chromosomal aneuploidies and pregnancy-associated disorders. We conclude with comments on the future directions regarding the search for new fetal epigenetic markers and the clinical implementation of epigenetic approaches for noninvasive prenatal diagnosis. PMID:21327153
Digital atlas of fetal brain MRI.
Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I
2010-02-01
Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.
Fetal Brain Behavior and Cognitive Development.
ERIC Educational Resources Information Center
Joseph, R.
2000-01-01
Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…
Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.
2013-01-01
Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471
Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru
2009-03-01
Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.
Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy
Ames, EG; Lawson, MJ; Mackey, AJ; Holmes, JW
2013-01-01
Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are reexpressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy. We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. We find a striking degree of overlap between the isoforms expressed differentially in fetal and pressure-overloaded hearts compared to control: forty-four percent of the isoforms with significantly altered expression in TAC hearts are also expressed at significantly different levels in fetal hearts compared to control (P < 0.001). The isoforms that are shared between hypertrophy and fetal heart development are significantly enriched for genes involved in cytoskeletal organization, RNA processing, developmental processes, and metabolic enzymes. Our data strongly support the concept that mRNA splicing patterns normally associated with heart development recur as part of the hypertrophic response to pressure overload. These findings suggest that cardiac hypertrophy shares post-transcriptional as well as transcriptional regulatory mechanisms with fetal heart development. PMID:23688780
Warmerdam, G; Vullings, R; Van Pul, C; Andriessen, P; Oei, S G; Wijn, P
2013-01-01
Non-invasive fetal electrocardiography (ECG) can be used for prolonged monitoring of the fetal heart rate (FHR). However, the signal-to-noise-ratio (SNR) of non-invasive ECG recordings is often insufficient for reliable detection of the FHR. To overcome this problem, source separation techniques can be used to enhance the fetal ECG. This study uses a physiology-based source separation (PBSS) technique that has already been demonstrated to outperform widely used blind source separation techniques. Despite the relatively good performance of PBSS in enhancing the fetal ECG, PBSS is still susceptible to artifacts. In this study an augmented PBSS technique is developed to reduce the influence of artifacts. The performance of the developed method is compared to PBSS on multi-channel non-invasive fetal ECG recordings. Based on this comparison, the developed method is shown to outperform PBSS for the enhancement of the fetal ECG.
Abbott, Barbara D.; Wood, Carmen R.; Watkins, Andrew M.; Das, Kaberi P.; Lau, Christopher S.
2010-01-01
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARα, β, and γ mRNA and protein in human fetal tissues. With increasing fetal age, mRNA expression of PPARα and β increased in liver, but PPARβ decreased in heart and intestine, and PPARγ decreased in adrenal. Adult and fetal mean expression of PPARα, β, and γ mRNA did not differ in intestine, but expression was lower in fetal stomach and heart. PPARα and β mRNA in kidney and spleen, and PPARγ mRNA in lung and adrenal were lower in fetal versus adult. PPARγ in liver and PPARβ mRNA in thymus were higher in fetal versus adult. PPARα protein increased with fetal age in intestine and decreased in lung, kidney, and adrenal. PPARβ protein in adrenal and PPARγ in kidney decreased with fetal age. This study provides new information on expression of PPAR subtypes during human development and will be important in evaluating the potential for the developing human to respond to PPAR environmental or pharmaceutical agonists. PMID:20706641
Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei
2006-12-01
Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P < .01). In addition, alpha-phenyl-N-t-butylnitrone significantly reversed lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation. However, aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, had little effect. Furthermore, lipopolysaccharide-induced intrauterine fetal death, intrauterine fetal growth restriction, and skeletal development retardation were associated with lipid peroxidation and glutathione depletion in maternal liver, placenta, and fetal liver. Alpha-phenyl-N-t-butylnitrone significantly attenuated lipopolysaccharide-induced lipid peroxidation and glutathione depletion in maternal liver, placenta, and fetal liver. Maternal lipopolysaccharide exposure at late gestational stages results in intrauterine fetal growth restriction and skeletal development retardation in mice. Reactive oxygen species might be, at least in part, involved in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation.
Kondo, Tomohiro; Kitano-Amahori, Yoko; Nagai, Hiroaki; Mino, Masaki; Takeshita, Ai; Kusakabe, Ken Takeshi; Okada, Toshiya
2015-11-01
The present study was designed to explore if maternal subtotal (5/6) nephrectomy affects the development of fetal rat kidneys using morphometric methods and examining whether there are any apoptotic changes in the fetal kidney. To generate 5/6 nephrectomized model rats, animals underwent 2/3 left nephrectomy on gestation day (GD) 5 and total right nephrectomy on GD 12. The fetal kidneys were examined on GDs 16 and 22. A significant decrease in fetal body weight resulting from maternal 5/6 nephrectomy was observed on GD 16, and a significant decrease in fetal renal weight and fetal body weight caused by maternal nephrectomy was observed on GD 22. Maternal 5/6 nephrectomy induced a significant increase in glomerular number, proximal tubular length, and total proximal tubular volume of fetuses on GD 22. Maternal 5/6 nephrectomy resulted in an increase in the number of apoptotic cells in the metanephric mesenchyme of the kidney on GD 16, and in the collecting tubules on GD 22. These findings suggest that maternal 5/6 nephrectomy stimulates the development of the fetal kidney while suppressing fetal growth. © 2015 Japanese Teratology Society.
Effects of prenatal maternal stress on serotonin and fetal development.
St-Pierre, Joey; Laurent, Laetitia; King, Suzanne; Vaillancourt, Cathy
2016-12-01
Fetuses are exposed to many environmental perturbations that can influence their development. These factors can be easily identifiable such as drugs, chronic diseases or prenatal maternal stress. Recently, it has been demonstrated that the serotonin synthetized by the placenta was crucial for fetal brain development. Moreover, many studies show the involvement of serotonin system alteration in psychiatric disease during childhood and adulthood. This review summarizes existing studies showing that prenatal maternal stress, which induces alteration of serotonin systems (placenta and fetal brain) during a critical window of early development, could lead to alteration of fetal development and increase risks of psychiatric diseases later in life. This phenomenon, termed fetal programming, could be moderated by the sex of the fetus. This review highlights the need to better understand the modification of the maternal, placental and fetal serotonin systems induced by prenatal maternal stress in order to find early biomarkers of psychiatric disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun
2016-06-01
G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Proinflammatory cytokines: a link between chorioamnionitis and fetal brain injury.
Patrick, Lindsay A; Smith, Graeme N
2002-09-01
To review the etiology of impaired fetal neurodevelopment - in particular, the relationship between chorioamnionitis, cytokines, and cerebral palsy. A MEDLINE search was performed for all clinical and basic science studies published in the English literature from 1966 to 2002. Key words or phrases used were chorioamnionitis, cerebral palsy, fetal brain damage, fetal CNS injury, infection in pregnancy, proinflammatory cytokines in pregnancy, proinflammatory cytokines in infection, and preterm labour or birth. All relevant human and animal studies were included. Fetal brain injury remains a major cause of lifelong morbidity, incurring significant societal and health care costs. It has been postulated that chorioamnionitis stimulates maternal/fetal proinflammatory cytokine release, which is damaging to the developing fetal nervous system. Elevated cytokine concentrations may interfere with glial cell development and proliferation in the late second trimester of pregnancy, when the central nervous system is most vulnerable. Increasing numbers of epidemiological and basic science studies found through MEDLINE searches support this hypothesis. Treatment options aimed at etiologic factors may lead to improved neurodevelopmental outcomes. Clearly, some relationship exists between chorioamnionitis, cytokines, and the development of cerebral palsy, but the severity and duration of exposure required to produce fetal damage remains unknown. Future research addressing these issues may aid in clinical decision-making. As well, the elucidation of mechanisms of cytokine action may aid in early treatment options to prevent or limit development of fetal brain injury.
Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B
2016-02-05
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Electronic fetal monitoring: family medicine obstetrics.
Rodney, John R M; Huntley, Benjamin J F; Rodney, Wm Macmillan
2012-03-01
Electronic fetal monitoring assesses fetal health during the prenatal and intrapartum process. Intermittent auscultation does not detect key elements of fetal risk, such as beat-to-beat variability. Family medicine obstetric fellowships have contributed new knowledge to this process by articulating a method of analysis that builds on evidence-based recommendations from the American College of Obstetrics and Gynecology as well as the National Institute of Child Health and Development. This article summarizes the development, interpretation, and management of electronic fetal heart rate patterns and tracings. Copyright © 2012 Elsevier Inc. All rights reserved.
Merialdi, Mario; Widmer, Mariana; Gülmezoglu, Ahmet Metin; Abdel-Aleem, Hany; Bega, George; Benachi, Alexandra; Carroli, Guillermo; Cecatti, Jose Guilherme; Diemert, Anke; Gonzalez, Rogelio; Hecher, Kurt; Jensen, Lisa N; Johnsen, Synnøve L; Kiserud, Torvid; Kriplani, Alka; Lumbiganon, Pisake; Tabor, Ann; Talegawkar, Sameera A; Tshefu, Antoinette; Wojdyla, Daniel; Platt, Lawrence
2014-05-02
In 2006 WHO presented the infant and child growth charts suggested for universal application. However, major determinants for perinatal outcomes and postnatal growth are laid down during antenatal development. Accordingly, monitoring fetal growth in utero by ultrasonography is important both for clinical and scientific reasons. The currently used fetal growth references are derived mainly from North American and European population and may be inappropriate for international use, given possible variances in the growth rates of fetuses from different ethnic population groups. WHO has, therefore, made it a high priority to establish charts of optimal fetal growth that can be recommended worldwide. This is a multi-national study for the development of fetal growth standards for international application by assessing fetal growth in populations of different ethnic and geographic backgrounds. The study will select pregnant women of high-middle socioeconomic status with no obvious environmental constraints on growth (adequate nutritional status, non-smoking), and normal pregnancy history with no complications likely to affect fetal growth. The study will be conducted in centres from ten developing and industrialized countries: Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand. At each centre, 140 pregnant women will be recruited between 8 + 0 and 12 + 6 weeks of gestation. Subsequently, visits for fetal biometry will be scheduled at 14, 18, 24, 28, 32, 36, and 40 weeks (+/- 1 week) to be performed by trained ultrasonographers.The main outcome of the proposed study will be the development of fetal growth standards (either global or population specific) for international applications. The data from this study will be incorporated into obstetric practice and national health policies at country level in coordination with the activities presently conducted by WHO to implement the use of the Child Growth Standards.
Li, S; Sloboda, D M; Moss, T J M; Nitsos, I; Polglase, G R; Doherty, D A; Newnham, J P; Challis, J R G; Braun, T
2013-04-01
Antenatal corticosteroids are used to augment fetal lung maturity in human pregnancy. Dexamethasone (DEX) is also used to treat congenital adrenal hyperplasia of the fetus in early pregnancy. We previously reported effects of synthetic corticosteroids given to sheep in early or late gestation on pregnancy length and fetal cortisol levels and glucocorticoids alter plasma insulin-like growth factor (IGF) and insulin-like growth factor binding protein (IGFBP) concentrations in late pregnancy and reduce fetal weight. The effects of administering DEX in early pregnancy on fetal organ weights and betamethasone (BET) given in late gestation on weights of fetal brain regions or organ development have not been reported. We hypothesized that BET or DEX administration at either stage of pregnancy would have deleterious effects on fetal development and associated hormones. In early pregnancy, DEX was administered as four injections at 12-hourly intervals over 48 h commencing at 40-42 days of gestation (dG). There was no consistent effect on fetal weight, or individual fetal organ weights, except in females at 7 months postnatal age. When BET was administered at 104, 111 and 118 dG, the previously reported reduction in total fetal weight was associated with significant reductions in weights of fetal brain, cerebellum, heart, kidney and liver. Fetal plasma insulin, leptin and triiodothyronine were also reduced at different times in fetal and postnatal life. We conclude that at the amounts given, the sheep fetus is sensitive to maternal administration of synthetic glucocorticoid in late gestation, with effects on growth and metabolic hormones that may persist into postnatal life.
Fetal body weight and the development of the control of the cardiovascular system in fetal sheep.
Frasch, M G; Müller, T; Wicher, C; Weiss, C; Löhle, M; Schwab, K; Schubert, H; Nathanielsz, P W; Witte, O W; Schwab, M
2007-03-15
Reduced birth weight predisposes to cardiovascular diseases in later life. We examined in fetal sheep at 0.76 (n = 18) and 0.87 (n = 17) gestation whether spontaneously occurring variations in fetal weight affect maturation of autonomic control of cardiovascular function. Fetal weights at both gestational ages were grouped statistically in low (LW) and normal weights (NW) (P < 0.01). LW fetuses were within the normal weight span showing minor growth dysproportionality at 0.76 gestation favouring heart and brain, with a primary growth of carcass between 0.76 and 0.87 gestation (P < 0.05). While twins largely contributed to LW fetuses, weight differences between singletons and twins were absent at 0.76 and modest at 0.87 gestation, underscoring the fact that twins belong to normality in fetal sheep not constituting a major malnutritive condition. Mean fetal blood pressure (FBP) of all fetuses was negatively correlated to fetal weight at 0.76 but not 0.87 gestation (P < 0.05). At this age, FBP and baroreceptor reflex sensitivity were increased in LW fetuses (P < 0.05), suggesting increased sympathetic activity and immaturity of circulatory control. Development of vagal modulation of fetal heart rate depended on fetal weight (P < 0.01). These functional associations were largely independent of twin pregnancies. We conclude, low fetal weight within the normal weight span is accompanied by a different trajectory of development of sympathetic blood pressure and vagal heart rate control. This may contribute to the development of elevated blood pressure in later life. Examination of the underlying mechanisms and consequences may contribute to the understanding of programming of cardiovascular diseases.
USDA-ARS?s Scientific Manuscript database
Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep which are fatter. We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene e...
Brown, Rebecca; Johnstone, Edward D; Heazell, Alexander E P
2016-01-01
Continuous longer-term fetal monitoring has been proposed to address limitations of current technologies in the detection of fetal compromise. We aimed to assess professionals' views regarding current fetal-monitoring techniques and proposed longer-term continuous fetal monitoring. A questionnaire was designed and validated to assess obstetricians' and midwives' use of current fetal-monitoring techniques and their views towards continuous monitoring. 125 of 173 received responses (72% obstetricians, 28% midwives) were analysed. Professionals had the strongest views about supporting evidence for the most commonly employed fetal-monitoring techniques (maternal awareness of fetal movements, ultrasound assessment of fetal growth and umbilical artery Doppler). 45.1% of professionals agreed that a continuous monitoring device would be beneficial (versus 28.7% who disagreed); this perceived benefit was not influenced by professionals' views regarding current techniques or professional background. Professionals have limited experience of continuous fetal monitoring, but most respondents believed that it would increase maternal anxiety (64.3%) and would have concerns with its use in clinical practice (81.7%). Continuous fetal monitoring would be acceptable to the majority of professionals. However, development of these technologies must be accompanied by extended examination of professionals' and women's views to determine barriers to its introduction.
Evidence for altered placental blood flow and vascularity in compromised pregnancies
Reynolds, Lawrence P; Caton, Joel S; Redmer, Dale A; Grazul-Bilska, Anna T; Vonnahme, Kimberly A; Borowicz, Pawel P; Luther, Justin S; Wallace, Jacqueline M; Wu, Guoyao; Spencer, Thomas E
2006-01-01
The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can ‘rescue’ fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies. PMID:16469783
Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy
Özdemir, Mucize Eriç; Uzun, Işıl; Karahasanoğlu, Ayşe; Aygün, Mehmet; Akın, Hale; Yazıcıoğlu, Fehmi
2014-01-01
Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm) = y = (1.348 X gestational age)−12.265), where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001). Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements. PMID:25667783
Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P
2012-06-15
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.
Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P
2012-01-01
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961
Henrichs, Jens; Schenk, Jacqueline J; Barendregt, Charlotte S; Schmidt, Henk G; Steegers, Eric Ap; Hofman, Albert; Jaddoe, Vincent W V; Moll, Henriette A; Verhulst, Frank C; Tiemeier, Henning
2010-07-01
The aim of this study was to investigate within a population-based cohort of 4384 infants (2182 males, 2202 females) whether fetal growth from early pregnancy onwards is related to infant development and whether this potential relationship is independent of postnatal growth. Ultrasound measurements were performed in early, mid-, and late pregnancy. Estimated fetal weight was calculated using head and abdominal circumference and femur length. Infant development was measured with the Minnesota Infant Development Inventory at 12 months (SD 1.1mo, range 10-17mo). Information on postnatal head size and body weight at 7 months was obtained from medical records. After adjusting for potential confounders and for postnatal growth, faster fetal weight gain from mid- to late pregnancy predicted a reduced risk of delayed social development (odds ratio [OR] 0.82; 95% confidence interval [CI] 0.71-0.95, p=0.008), self-help abilities (OR 0.84; 95% CI 0.73-0.98, p=0.023), and overall infant development (OR 0.65; 95% CI 0.49-0.87, p=0.003). Similar findings were observed for fetal head growth from mid- to late pregnancy. Faster fetal growth predicts a lower risk of delayed infant development independent of postnatal growth. These results suggest that reduced fetal growth between mid- and late pregnancy may determine subsequent developmental outcomes.
Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C
2018-02-01
Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
Fetal Urinary Tract Anomalies: Review of Pathophysiology, Imaging, and Management.
Mileto, Achille; Itani, Malak; Katz, Douglas S; Siebert, Joseph R; Dighe, Manjiri K; Dubinsky, Theodore J; Moshiri, Mariam
2018-05-01
Common fetal anomalies of the kidneys and urinary tract encompass a complex spectrum of abnormalities that can be detected prenatally by ultrasound. Common fetal anomalies of the kidneys and urinary tract can affect amniotic fluid volume production with the development of oligohydramnios or anhydramnios, resulting in fetal pulmonary hypoplasia and, potentially, abnormal development of other fetal structures. We provide an overview of common fetal anomalies of the kidneys and urinary tract with an emphasis on sonographic patterns as well as pathologic and postnatal correlation, along with brief recommendations for postnatal management. Of note, we render an updated classification of fetal abnormalities of the kidneys and urinary tract based on the presence or absence of associated urinary tract dilation. In addition, we review the 2014 classification of urinary tract dilation based on the Linthicum multidisciplinary consensus panel.
Maternal salivary testosterone in pregnancy and fetal neuromaturation.
Voegtline, Kristin M; Costigan, Kathleen A; DiPietro, Janet A
2017-11-01
Testosterone exposure during pregnancy has been hypothesized as a mechanism for sex differences in brain and behavioral development observed in the postnatal period. The current study documents the natural history of maternal salivary testosterone from 18 weeks gestation of pregnancy to 6 months postpartum, and investigates associations with fetal heart rate, motor activity, and their integration. Findings indicate maternal salivary testosterone increases with advancing gestation though no differences by fetal sex were detected. High intra-individual stability in prenatal testosterone levels extend into the postnatal period, particularly for pregnancies with male fetuses. With respect to fetal development, by 36 weeks gestation higher maternal prenatal salivary testosterone was significantly associated with faster fetal heart rate and less optimal somatic-cardiac integration. Measurement of testosterone in saliva is a useful tool for repeated-measures studies of hormonal concomitants of pregnancy. Moreover, higher maternal testosterone levels are associated with modest interference to fetal neurobehavioral development. © 2017 Wiley Periodicals, Inc.
Biomimetics of fetal alveolar flow phenomena using microfluidics.
Tenenbaum-Katan, Janna; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josué
2015-01-01
At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.
Examiner's finger-mounted fetal tissue oximetry.
Kanayama, Naohiro; Niwayama, Masatsugu
2014-06-01
The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO₂) with the new tissue oximeter. Neonatal StO₂ was measured at any position of the head regardless of amount of hair. Neonatal StO₂ was found to be around 77%. Fetal StO₂ was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO₂ without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO₂ in any condition of the fetus.
Examiner's finger-mounted fetal tissue oximetry
NASA Astrophysics Data System (ADS)
Kanayama, Naohiro; Niwayama, Masatsugu
2014-06-01
The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO2) with the new tissue oximeter. Neonatal StO was measured at any position of the head regardless of amount of hair. Neonatal StO was found to be around 77%. Fetal StO was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO in any condition of the fetus.
The role of pleiotrophin and β-catenin in fetal lung development
2010-01-01
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved in fibroblast and epithelial cell communication during fetal lung development. PMID:20565841
Studholme, Colin
2011-08-15
The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.
Hypoxia: From Placental Development to Fetal Programming.
Fajersztajn, Lais; Veras, Mariana Matera
2017-10-16
Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cross-hemispheric functional connectivity in the human fetal brain.
Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto
2013-02-20
Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.
Bunch, T D; Panter, K E; James, L F
1992-05-01
Ingestion of locoweed (Astragalus spp. and Oxytropis spp.) by pregnant livestock may result in fetal malformations, delayed placentation, reduced placental and uterine vascular development, hydrops amnii, hydrops allantois, abnormal cotyledonary development, interruption of fetal fluid balance, and abortion. Ultrasonography of pregnant sheep fed locoweed demonstrated that abortion was first preceded by changes in fetal heart rate and strength of contraction and structural changes of the cotyledons, followed by increased accumulation of fetal fluid within the placental membranes and death of the fetus. During pregnancy the toxic agent in locoweed (swainsonine) apparently passes through the placental barrier to the fetus and during lactation through the milk to the neonate. Poison-hemlock (Conium maculatum), wild tree tobacco (Nicotiana glauca), and lunara lupine (Lupinus formosus) all contain piperidine alkaloids and induce fetal malformations, including multiple congenital contractures and cleft palate in livestock. Ultrasonography studies of pregnant sheep and goats gavaged with these plants during 30 to 60 d of gestation suggests that the primary cause of multiple congenital contractures and cleft palate is the degree and the duration of the alkaloid-induced fetal immobilization.
Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F
2010-10-01
Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.
Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla
Liu, Feng; Garland, Marianne; Duan, Yunsuo; Stark, Raymond I.; Xu, Dongrong; Dong, Zhengchao; Bansal, Ravi; Peterson, Bradley S.; Kangarlu, Alayar
2008-01-01
Direct observational data on the development of the brains of human and nonhuman primates is on remarkably scant, and most of our understanding of primate brain development is extrapolated from findings in rodent models. Magnetic resonance imaging (MRI) is a promising tool for the noninvasive, longitudinal study of the developing primate brain. We devised a protocol to scan pregnant baboons serially at 3 T for up to 3 h per session. Seven baboons were scanned 1–6 times, beginning as early as 56 days post-conceptional age, and as late as 185 days (term ~185 days). Successful scanning of the fetal baboon required careful animal preparation and anesthesia, in addition to optimization of the scanning protocol. We successfully acquired maps of relaxation times (T1 and T2) and high-resolution anatomical images of the brains of fetal baboons at multiple time points during the course of gestation. These images demonstrated the convergence of gray and white matter contrast near term, and furthermore demonstrated that the loss of contrast at that age is a consequence of the continuous change in relaxation times during fetal brain development. These data furthermore demonstrate that maps of relaxation times have clear advantages over the relaxation time weighted images for the tracking of the changes in brain structure during fetal development. This protocol for in utero MRI of fetal baboon brains will help to advance the use of nonhuman primate models to study fetal brain development longitudinally. PMID:18155925
2014-01-01
Background In 2006 WHO presented the infant and child growth charts suggested for universal application. However, major determinants for perinatal outcomes and postnatal growth are laid down during antenatal development. Accordingly, monitoring fetal growth in utero by ultrasonography is important both for clinical and scientific reasons. The currently used fetal growth references are derived mainly from North American and European population and may be inappropriate for international use, given possible variances in the growth rates of fetuses from different ethnic population groups. WHO has, therefore, made it a high priority to establish charts of optimal fetal growth that can be recommended worldwide. Methods This is a multi-national study for the development of fetal growth standards for international application by assessing fetal growth in populations of different ethnic and geographic backgrounds. The study will select pregnant women of high-middle socioeconomic status with no obvious environmental constraints on growth (adequate nutritional status, non-smoking), and normal pregnancy history with no complications likely to affect fetal growth. The study will be conducted in centres from ten developing and industrialized countries: Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand. At each centre, 140 pregnant women will be recruited between 8 + 0 and 12 + 6 weeks of gestation. Subsequently, visits for fetal biometry will be scheduled at 14, 18, 24, 28, 32, 36, and 40 weeks (+/− 1 week) to be performed by trained ultrasonographers. The main outcome of the proposed study will be the development of fetal growth standards (either global or population specific) for international applications. Discussion The data from this study will be incorporated into obstetric practice and national health policies at country level in coordination with the activities presently conducted by WHO to implement the use of the Child Growth Standards. PMID:24886101
Darby, Jack R T; McMillen, I Caroline; Morrison, Janna L
2018-06-01
This study investigates the impact of decreased fetal plasma glucose concentrations on the developing heart in late gestation, by subjecting pregnant ewes to a 50% global nutrient restriction. Late gestation undernutrition (LGUN) decreased fetal plasma glucose concentrations whilst maintaining a normoxemic blood gas status. LGUN increased the mRNA expression of IGF2 and IGF2R. Fetal plasma glucose concentrations, but not fetal blood pressure, were significantly correlated with IGF2 expression and the activation of CAMKII in the fetal right ventricle. LGUN increased interstitial collagen deposition and altered the protein abundance of phospho-PLB and phospho-troponin I, regulators of cardiac contractility and relaxation. This study shows that a decrease in fetal plasma glucose concentrations may play a role in the development of detrimental changes in the right ventricle in early life, highlighting CAMKII as a potential target for the development of intervention strategies. Exposure of the fetus to a range of environmental stressors, including maternal undernutrition, is associated with an increased risk of death from cardiovascular disease in adult life. This study aimed to determine the effect of maternal nutrient restriction in late gestation on the molecular mechanisms that regulate cardiac growth and development of the fetal heart. Maternal undernutrition resulted in a decrease in fetal glucose concentrations across late gestation, whilst fetal arterial PO2 remained unchanged between the control and late gestation undernutrition (LGUN) groups. There was evidence of an up-regulation of IGF2/IGF2R signalling through the CAMKII pathway in the fetal right ventricle in the LGUN group, suggesting an increase in hypertrophic signalling. LGUN also resulted in an increased mRNA expression of COL1A, TIMP1 and TIMP3 in the right ventricle of the fetal heart. In addition, there was an inverse relationship between fetal glucose concentrations and COL1A expression. The presence of interstitial fibrosis in the heart of the LGUN group was confirmed through the quantification of picrosirius red-stained sections of the right ventricle. We have therefore shown that maternal undernutrition in late gestation may drive the onset of myocardial remodelling in the fetal right ventricle and thus has negative implications for right ventricle function and cardiac health in later life. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Human Fetal Behavior: 100 Years of Study.
ERIC Educational Resources Information Center
Kisilevsky, B. S.; Low, J. A.
1998-01-01
Reviews literature on human fetal behavior. Includes descriptions of coupling of body movements and fetal heart rate and behavior maturation from conception to term. Discusses use of stimulus-induced behavior to examine sensory and cognitive development, and spontaneous and stimulus-induced behavior to assess fetal well-being. Notes research focus…
Fetal Alcohol Syndrome and Fetal Alcohol Effects in Child Development.
ERIC Educational Resources Information Center
Pancratz, Diane R.
This literature review defines Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) and considers their causes, diagnoses, prevalence, and educational ramifications. Effects of alcohol during each of the trimesters of pregnancy are summarized. Specific diagnostic characteristics of FAS are listed: (1) growth deficiency, (2) a…
Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization
USDA-ARS?s Scientific Manuscript database
The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...
Jaleco, A C; Blom, B; Res, P; Weijer, K; Lanier, L L; Phillips, J H; Spits, H
1997-07-15
The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.
Sonographic study of the development of fetal corpus callosum in a Chinese population.
Zhang, Hai-chun; Yang, Jie; Chen, Zhong-ping; Ma, Xiao-yan
2009-02-01
The observation of fetal corpus callosum (CC) is important for the prenatal sonographic assessment of fetal central nervous system development. The aim of this study was to investigate the development of normal Chinese fetal CC. CC measurements were performed using high-resolution transabdominal sonography on 622 Chinese fetuses between 16 and 39 weeks' gestation. The correlation between CC size and gestational age was investigated. The fetal CC length increased in a linear fashion during pregnancy. The length of the CC as a function of gestational age was expressed by the following regression equation: length (mm) = -9.567 + 1.495 x gestational age (weeks) (r = 0.932, p < 0.001). Knowledge of normal CC appearance may help identify developmental anomalies and enable accurate prenatal counseling. (c) 2008 Wiley Periodicals, Inc.
Fetal Neurobehavioral Development: A Tale of Two Cities.
ERIC Educational Resources Information Center
DiPietro, Janet A.; Caulfield, Laura; Costigan, Kathleen A.; Merialdi, Mario; Nguyen, Ruby H. N.; Zavaleta, Nelly; Gurewitsch, Edith D.
2004-01-01
Longitudinal neurobehavioral development was examined in 237 fetuses of low-risk pregnancies from 2 distinct populations-Baltimore, Maryland, and Lima, Peru-at 20, 24, 28, 32, 36, and 38 weeks gestation. Data were based on digitized Doppler-based fetal heart rate (FHR) and fetal movement (FM). In both groups, FHR declined while variability,…
MYSTERIES OF THE HUMAN FETUS REVEALED.
Sandman, Curt A
2015-09-01
The impressive program of research from the DiPietro laboratory succeeds in its aim to document the ontogeny of human fetal neurobehavioral development. From studies of great depth and breadth, and wielding creative methods of assessment, DiPietro et al. open a window into the largely inaccessible developing human fetal brain. This commentary, with reference to the seminal cardiovascular studies of the Laceys, supports the measures of the fetal heart to index fetal well-being and to provide evidence of stimulus processing. A separate case is made that the DiPietro program provides unique and invaluable information for assessing the influential Developmental Origins of Health and Disease or Fetal Programming Models. The goal of these models, to predict or understand the influences of early experience or response patterns on later postnatal life, is identical to the ultimate goal of the DiPietro program. Because human fetal behavior is uncontaminated by socialization or parenting or peers, it may be the best reflection of fetal exposures. The remarkable neurobehavioral profiles generated by the DiPietro program can make a critical contribution to the Fetal Programming Model in terms of sensitive and critical periods of nervous system vulnerability and to specify gestational periods of neurobehavioral risk. © 2015 The Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Vishnoi, Gargi; Hielscher, Andreas H.; Ramanujam, Nirmala; Chance, Britton
2000-04-01
In this work experimental tissue phantoms and numerical models were developed to estimate photon migration through the fetal head in utero. The tissue phantoms incorporate a fetal head within an amniotic fluid sac surrounded by a maternal tissue layer. A continuous wave, dual-wavelength ((lambda) equals 760 and 850 nm) spectrometer was employed to make near-infrared measurements on the tissue phantoms for various source-detector separations, fetal-head positions, and fetal-head optical properties. In addition, numerical simulations of photon propagation were performed with finite-difference algorithms that provide solutions to the equation of radiative transfer as well as the diffusion equation. The simulations were compared with measurements on tissue phantoms to determine the best numerical model to describe photon migration through the fetal head in utero. Evaluation of the results indicates that tissue phantoms in which the contact between fetal head and uterine wall is uniform best simulates the fetal head in utero for near-term pregnancies. Furthermore, we found that maximum sensitivity to the head can be achieved if the source of the probe is positioned directly above the fetal head. By optimizing the source-detector separation, this signal originating from photons that have traveled through the fetal head can drastically be increased.
Maternal exercise, season and sex modify the daily fetal heart rate rhythm.
Sletten, J; Cornelissen, G; Assmus, J; Kiserud, T; Albrechtsen, S; Kessler, J
2018-05-13
The knowledge on biological rhythms is rapidly expanding. We aimed to define the longitudinal development of the daily (24-hour) fetal heart rate rhythm in an unrestricted, out-of-hospital setting and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Daily rhythms in fetal heart rate and fetal heart rate variation were detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant daily rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (P < .001) and nonlinearly in males (quadratic function, P = .001). At 32 and 36 weeks, interindividual rhythm diversity was found in male fetuses during higher maternal physical activity and during the summer season. The dynamic development of the daily fetal heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Placental angiogenesis in sheep models of compromised pregnancy
Reynolds, Lawrence P; Borowicz, Pawel P; Vonnahme, Kimberly A; Johnson, Mary Lynn; Grazul-Bilska, Anna T; Redmer, Dale A; Caton, Joel S
2005-01-01
Because the placenta is the organ that transports nutrients, respiratory gases and wastes between the maternal and fetal systems, development of its vascular beds is essential to normal placental function, and thus in supporting normal fetal growth. Compromised fetal growth and development have adverse health consequences during the neonatal period and throughout adult life. To establish the role of placental angiogenesis in compromised pregnancies, we first evaluated the pattern of placental angiogenesis and expression of angiogenic factors throughout normal pregnancy. In addition, we and others have established a variety of sheep models to evaluate the effects on fetal growth of various factors including maternal nutrient excess or deprivation and specific nutrients, maternal age, maternal and fetal genotype, increased numbers of fetuses, environmental thermal stress, and high altitude (hypobaric) conditions. Although placental angiogenesis is altered in each of these models in which fetal growth is adversely affected, the specific effect on placental angiogenesis depends on the type of ‘stress’ to which the pregnancy is subjected, and also differs between the fetal and maternal systems and between genotypes. We believe that the models of compromised pregnancy and the methods described in this review will enable us to develop a much better understanding of the mechanisms responsible for alterations in placental vascular development. PMID:15760944
Wright, Elane C; Miles, Jeremy R; Lents, Clay A; Rempel, Lea A
2016-01-01
Insufficient placenta development is one of the primary causes of fetal death and reduced fetal growth after 35 days of gestation. Between day 22 and 42 the placenta consists of a central highly vascular placenta (HVP), adjacent to the fetus, a less vascular placenta (LVP), on either side of the fetus, and necrotic tips (NT). The objective of this study was to comprehensively evaluate uterine-placenta characteristics during early gestation in the gilt and determine time points and physiological changes. Gilts (n=25) were artificially inseminated at first detection of estrus (day 0) and 24h later, and harvested at 22, 27, 32, 37 or 42 days of gestation. Litter size, 12.1±3.4, was similar for all days of gestation. Fetal and placenta weight increased with day of gestation. The greatest increase in placenta weight occurred between 37 and 42 days of gestation. The LVP zones had no measurable fold formation until day 27. Necrotic tips became apparent after 27 days of gestation. Unoccupied areas of the uterus developed folds with changes in endometrial cell size and morphology from day 32 to 42 of gestation. Limited changes occurred in either fetal growth or placenta weight from day 27 through 32 of gestation; however, significant morphological changes occur at the maternal-fetal interface, demonstrating the dynamic architecture of the developing porcine placenta during early gestation. This work establishes fundamental time points in placenta development corresponding to fetal growth and microfold formation that may influence fetal growth and impact fetal survival. Published by Elsevier B.V.
Rice, H E; Skarsgard, E D; Emani, V R; Zanjani, E D; Harrison, M R; Flake, A W
1994-12-01
The transplantation of human fetal tissue has the potential to cure a variety of life-threatening diseases. The strategy for procurement, quality control, and functional assessment of human fetal liver HSC may prove useful for the transplantation of other fetal tissues. In addition to technical limitations, there are ethical and legal issues which need to be resolved before widespread use of fetal tissue. Further development of regulatory standards for the acquisition and distribution of fetal tissues will foster the application of this novel technology.
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela
2016-01-01
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344
Iodine-Induced Fetal Hypothyroidism: Diagnosis and Treatment with Intra-Amniotic Levothyroxine.
Hardley, Macy T; Chon, Andrew H; Mestman, Jorge; Nguyen, Caroline T; Geffner, Mitchell E; Chmait, Ramen H
2018-05-23
Iodine is necessary for fetal thyroid development. Excess maternal intake of iodine can cause fetal hypothyroidism due to the inability to escape from the Wolff-Chaikoff effect in utero. We report a case of fetal hypothyroid goiter secondary to inadvertent excess maternal iodine ingestion from infertility supplements. The fetus was successfully treated with intra-amniotic levothyroxine injections. Serial fetal blood sampling confirmed fetal escape from the Wolff-Chaikoff effect in the mid third trimester. Early hearing test and neurodevelopmental milestones were normal. Intra-amniotic treatment of fetal hypothyroidism may decrease the rate of impaired neurodevelopment and sensorineural hearing loss. © 2018 S. Karger AG, Basel.
Fetal bladder catheterization in severe obstructive uropathy before the 24th week of pregnancy.
Szaflik, K; Kozarzewski, M; Adamczewski, D
1998-01-01
Fetal obstructive uropathy is simple to diagnose before the 24th week of life. Drainage of the pathologically enlarged fetal bladder avoids development of hydronephrosis and destruction of kidneys and, obviously, prevents development of secondary oligohydramnios and pulmonary hypoplasia. The aim of our study was to evaluate the usefulness of a fetal bladder shunt in cases of obstructive uropathy before the 24th week of gestation. From January 1997 we diagnosed 6 cases of fetal obstructive uropathy before the 24th week of gestation. In all cases oligohydramnios or ahydramnios was also observed. After evaluation of the renal function on the basis of fetal urine samples, we shunted 5 fetuses. After routine preparation of the operative field, a special puncture needle was inserted through the abdominal wall of mother and fetus into the fetal bladder. Through the needle a fetal bladder catheter was inserted between the fetal bladder and the amniotic sac. After shunt placement, fetal urine fills the amniotic sac and the fetal bladder is decompressed. After the procedure, the patients were hospitalized and serial sonographic examinations were performed to evaluate shunt function. Bladder size, presence and size of hydronephrosis, and volume of amniotic fluid were evaluated. The Rocket Medical catheters have an excellent 'shape memory'. All but 1 newborns had a good perinatal outcome. Mean Apgar score was 8 at 1 min, weight at delivery was between 1,700 and 3,100 g. No pulmonary hypoplasia was observed. All deliveries were after the 33rd week of gestation (range 33-38 weeks). The minimum drainage time was 11 weeks, maximum 18 weeks. In 2 cases premature delivery occurred because of premature rupture of the membranes. One newborn died of respiratory distress syndrome. Early bladder drainage (before the 24th week of gestation) enables delivery of newborns with a good perinatal outcome, without pulmonary hypoplasia. This method of therapy limits renal damage and allows time for normal development of the fetal lungs.
Prediction of fetal compromise in labor.
Prior, Tomas; Mullins, Edward; Bennett, Phillip; Kumar, Sailesh
2014-06-01
The majority of intrapartum fetal hypoxia occurs in uncomplicated pregnancies. Current intrapartum monitoring techniques have not resulted in a reduction in the incidence of cerebral palsy in term neonates. We report the development of a composite risk score to allow risk stratification of normal pregnancies before labor. Six hundred one women were recruited to this prospective observational study. All women underwent an ultrasound examination before active labor, during which fetal biometry and fetal Doppler flow resistance indices were measured. A composite risk score, amalgamating data from the umbilical artery, middle cerebral artery, and umbilical vein, was then developed and correlated with intrapartum outcomes. In cases with the highest composite risk scores, the incidence of fetal compromise (the primary outcome) was 80.0% compared with just 15.3% in cases with the lowest risk scores (relative risk 5.2, 95% confidence interval 2.7-10.1). These cases were also at increased risk of cesarean delivery (53.3% compared with 3.4%, P<.001) and of developing a fetal heart rate pattern considered pathologic by National Institute for Health and Clinical Excellence criteria (P=.003). No significant variation in Apgar scores or umbilical artery pH was observed. Intrapartum fetal compromise remains a significant global health issue. The composite risk score reported here can identify fetuses at both high risk and low risk of a subsequent diagnosis of intrapartum fetal compromise. This may enable more judicious use of current intrapartum fetal monitoring techniques, which are hampered by low specificity. II.
Bioinformatics Approaches for Fetal DNA Fraction Estimation in Noninvasive Prenatal Testing
Peng, Xianlu Laura; Jiang, Peiyong
2017-01-01
The discovery of cell-free fetal DNA molecules in plasma of pregnant women has created a paradigm shift in noninvasive prenatal testing (NIPT). Circulating cell-free DNA in maternal plasma has been increasingly recognized as an important proxy to detect fetal abnormalities in a noninvasive manner. A variety of approaches for NIPT using next-generation sequencing have been developed, which have been rapidly transforming clinical practices nowadays. In such approaches, the fetal DNA fraction is a pivotal parameter governing the overall performance and guaranteeing the proper clinical interpretation of testing results. In this review, we describe the current bioinformatics approaches developed for estimating the fetal DNA fraction and discuss their pros and cons. PMID:28230760
Bioinformatics Approaches for Fetal DNA Fraction Estimation in Noninvasive Prenatal Testing.
Peng, Xianlu Laura; Jiang, Peiyong
2017-02-20
The discovery of cell-free fetal DNA molecules in plasma of pregnant women has created a paradigm shift in noninvasive prenatal testing (NIPT). Circulating cell-free DNA in maternal plasma has been increasingly recognized as an important proxy to detect fetal abnormalities in a noninvasive manner. A variety of approaches for NIPT using next-generation sequencing have been developed, which have been rapidly transforming clinical practices nowadays. In such approaches, the fetal DNA fraction is a pivotal parameter governing the overall performance and guaranteeing the proper clinical interpretation of testing results. In this review, we describe the current bioinformatics approaches developed for estimating the fetal DNA fraction and discuss their pros and cons.
Sarkar, Dipak K
2015-01-01
The idea that exposure to adverse environmental conditions and lifestyle choices during pregnancy can result in fetal programming that underlies disease susceptibility in adulthood is now widely accepted. Fetal alcohol exposed offspring displays many behavioral and physiological abnormalities including neuroendocrine-immune functions, which often carry over into their adult life. Since the neuroendocrine-immune system plays an important role in controlling tumor surveillance, fetal alcohol exposed offspring can be vulnerable to develop cancer. Animal studies have recently showed increased cancer growth and progression in various tissues of fetal alcohol exposed offspring. I will detail in this chapter the recent evidence for increased prostate carcinogenesis in fetal alcohol exposed rats. I will also provide evidence for a role of excessive estrogenization during prostatic development in the increased incidence of prostatic carcinoma in these animals. Furthermore, I will discuss the additional possibility of the involvement of impaired stress regulation and resulting immune incompetence in the increased prostatic neoplasia in the fetal alcohol exposed offspring.
Cell-free fetal nucleic acid testing: a review of the technology and its applications.
Sayres, Lauren C; Cho, Mildred K
2011-07-01
Cell-free fetal nucleic acids circulating in the blood of pregnant women afford the opportunity for early, noninvasive prenatal genetic testing. The predominance of admixed maternal genetic material in circulation demands innovative means for identification and analysis of cell-free fetal DNA and RNA. Techniques using polymerase chain reaction, mass spectrometry, and sequencing have been developed for the purposes of detecting fetal-specific sequences, such as paternally inherited or de novo mutations, or determining allelic balance or chromosome dosage. Clinical applications of these methods include fetal sex determination and blood group typing, which are currently available commercially although not offered routinely in the United States. Other uses of cell-free fetal DNA and RNA being explored are the detection of single-gene disorders, chromosomal abnormalities, and inheritance of parental polymorphisms across the whole fetal genome. The concentration of cell-free fetal DNA may also provide predictive capabilities for pregnancy-associated complications. The roles that cell-free fetal nucleic acid testing assume in the existing framework of prenatal screening and invasive diagnostic testing will depend on factors such as costs, clinical validity and utility, and perceived benefit-risk ratios for different applications. As cell-free fetal DNA and RNA testing continues to be developed and translated, significant ethical, legal, and social questions will arise that will need to be addressed by those with a stake in the use of this technology. Obstetricians & Gynecologists and Family Physicians Learning Objectives: After participating in this activity, physicians should be better able to evaluate techniques and tools for analyzing cell-free fetal nucleic acids, assess clinical applications of prenatal testing, using cell-free fetal nucleic acids and barriers to implementation, and distinguish between relevant clinical features of cell-free fetal nucleic acid testing and existing prenatal genetic screening and diagnostic procedures.
Maternal perception of fetal movements in the third trimester: A qualitative description.
Bradford, Billie; Maude, Robyn
2017-12-26
Decreased fetal movements is a common reason for unscheduled antenatal assessment and is associated with adverse pregnancy outcome. Fetal movement counting has not been proven to reduce stillbirths in high-quality studies. The aim was to explore a qualitative account of fetal movements in the third trimester as perceived by pregnant women themselves. Using qualitative descriptive methodology, interviews were conducted with 19 women experiencing an uncomplicated first pregnancy, at two timepoints in their third trimester. Interview transcripts were later analysed using qualitative content analysis. Pregnant women described a sustained increase in strength, frequency and variation in types of fetal movements from quickening until 28-32 weeks. Patterns of fetal movement were consistently described as involving increased movement later in the day and as having an inverse relationship to the women's own activity and rest. At term, the most notable feature was increased strength. Kicking and jolting movements decreased whilst pushing and rolling movements increased. Maternal descriptions of fetal activity in this study were consistent with other qualitative studies and with ultrasound studies of fetal development. Pregnant women observe a complex range of fetal movement patterns, actions and responses that are likely to be consistent with normal development. Maternal perception of a qualitative change in fetal movements may be clinically important and should take precedence over any numeric definition of decreased fetal movement. Midwives may inform women that it is normal to perceive more fetal movement in the evening and increasingly strong movements as pregnancy advances. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Piperidine, pyridine alkaloid inhibition of fetal movement in a day 40 pregnant goat model.
Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E
2013-08-01
Inhibition of fetal movement is one mechanism behind the development of multiple congenital contracture-type defects in developing fetuses of humans and animals. We tested the alkaloids anabasine, lobeline, and myosmine for agonist actions, and sensitivity to alpha conotoxins EI and GI blockade at fetal muscle-type nicotinic acetylcholine receptors (nAChR) expressed by TE-671 cells. We also determined if the alkaloids decreased fetal movement in an IV dosed, day 40 pregnant goat model. In TE-671 cells, all three alkaloids elicited concentration-dependent changes in membrane potential sensing dye fluorescence. 1.0 μM alpha conotoxin GI shifted the concentration-effect curves of anabasine and myosmine to the right, and decreased maximal responses. Neither of the conotoxins blocked the actions of lobeline in TE-671 cells. In the day 40 pregnant goats, 0.8 mg/kg anabasine abolished fetal movement at 30 and 60 min after dosing and fetal movement was reduced by lobeline and myosmine. The blockade of anabasine and myosmine actions in TE-671 cells by alpha conotoxin GI indicates that they are agonists at fetal muscle-type nAChR. All three alkaloids did significantly decrease fetal movement in the day 40 pregnant goat model suggesting a potential for these alkaloids to cause multiple congenital contracture-type defects in developing fetuses. Published by Elsevier Ltd.
High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.
Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice
2013-07-01
Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.
El-Ashmawy, Ibrahim M; Bayad, Aida E
2016-12-01
Azathioprine (AZA) is an important drug commonly used in the therapy of the autoimmune system disorders. It induces many hazard effects that restrict its use. The present study was designed to investigate the influence of AZA on the fetal development and renal function and its co-administration with either folic acid (FA) or grape seed extract (GSE). The effects of administration of GSE or FA on AZA toxicity by gavage simultaneously for 4 weeks were studied by determining the changes in kidney histology, the glutathione level (GSH), and lipid per oxidation content as malondialdehyde in the kidney tissue. Additionally, their effects on the fetal development were investigated. Azathioprine induced a renal damage as indicated from the pronounced changes in histological structure, a significant increase in serum urea and creatinine, and malondialdehyde content in the kidney tissue. Meanwhile, the GSH activity was significantly decreased. Co-treatment with GSE significantly minimized the previously mentioned hazard effects of AZA by ameliorating the antioxidant activity. At this point, FA induced a nonsignificant protective activity. The results also revealed that administration of FA or GSE at 6th to 15th day of gestation did not altered fetal development. While, AZA administration clearly disturbed fetal development as indicated from a significant decrease in fetal weights. Furthermore, co-administration of both drugs significantly minimized similarly the hazards of AZA on the fetal development. It may be concluded that GSE and FA are a useful remedies. Maternal administrations of either both are protective agents against AZA-induced fetal malformations. Grape seed extract was more active than FA in potentiating the antioxidative defenses for controlling AZA-induced oxidative renal damages. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
STAPLETON, Phoebe A.; MINARCHICK, Ms. Valerie C.; YI, Jinghai; ENGELS, Mr. Kevin; McBRIDE, Mr. Carroll R.; NURKIEWICZ, Timothy R.
2013-01-01
Objective The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. While the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding “special” circulations is the enhanced maternal system to support fetal development. The “Barker Hypothesis” proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity. Therefore, the objective of this study was two-fold: 1) to determine if maternal ENM exposure alters uterine and/or fetal microvascular function and 2) test the Barker Hypothesis at the microvascular level. Study Design Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (11.3±0.039 (mg/m3)*hour, 5 hours/day, 8.2±0.85 days) to evaluate the maternal and fetal microvascular consequences of maternal exposure. Microvascular tissue isolation (gestation day 20) and arteriolar reactivity studies (<150μm passive diameter) of the uterine premyometrial and fetal tail arteries were conducted. Results ENM exposures led to significant maternal and fetal microvascular dysfunction which presented as robustly compromised endothelium-dependent and -independent reactivity to pharmacologic and mechanical stimuli. Isolated maternal uterine arteriolar reactivity was consistent with a metabolically impaired profile and hostile gestational environment, impacting fetal weight. The fetal microvessels isolated from exposed dams demonstrate significant impairments to signals of vasodilation specific to mechanistic signaling and shear stress. Conclusion To our knowledge, this is the first report providing evidence that maternal ENM inhalation is capable of influencing fetal health, thereby supporting that the Barker Hypothesis is applicable at the microvascular level. PMID:23643573
Visentin, Silvia; Londero, Ambrogio P; Camerin, Martina; Grisan, Enrico; Cosmi, Erich
2017-01-01
The aim was to determine the predictive role of combined screening for late-onset gestational hypertension by fetal ultrasound measurements, third trimester uterine arteries (UtAs) Doppler imaging, and maternal history. This prospective study on singleton pregnancies was conducted at the tertiary center of Maternal and Fetal Medicine of the University of Padua during the period between January 2012 and December 2014. Ultrasound examination (fetal biometry, fetal wellbeing, maternal Doppler study, fetal abdominal aorta intima-media thickness [aIMT], and fetal kidney volumes), clinical data (mother age, prepregnancy body mass index [BMI], and parity), and pregnancy outcomes were collected. The P value <0.05 was defined significant considering a 2-sided alternative hypothesis. The distribution normality of variables were assessed using Kolmogorov-Smirnoff test. Data were presented by mean (±standard deviation), median and interquartile range, or percentage and absolute values. We considered data from 1381 ultrasound examinations at 29 to 32 weeks' gestation, and in 73 cases late gestational hypertension developed after 34 weeks' gestation. The final multivariate model found that fetal aIMT as well as fetal umbilical artery pulsatility index (PI), maternal age, maternal prepregnacy BMI, parity, and mean PI of maternal UtAs, assessed at ultrasound examination of 29 to 32 weeks' gestation, were significant and independent predictors for the development of gestational hypertension after 34 weeks' gestation. The area under the curve of the model was 81.07% (95% confidence interval, 75.83%-86.32%). A nomogram was developed starting from multivariate logistic regression coefficients. Late-gestational hypertension could be independently predicted by fetal aIMT assessment at 29 to 32 weeks' gestation, ultrasound Doppler waveforms, and maternal clinical parameters.
USDA-ARS?s Scientific Manuscript database
The early to mid-gestational period (days 28-78) in sheep is the period of most rapid placental development. Maternal nutrient restriction (MNR) in this phase has negative consequences on fetal growth and development, predisposing the fetus to disease in adult life. The influence of MNR on fetal tis...
Bendectin and fetal development. A study of Boston City Hospital.
Morelock, S; Hingson, R; Kayne, H; Dooling, E; Zuckerman, B; Day, N; Alpert, J J; Flowerdew, G
1982-01-15
As part of a prospective study investigating maternal characteristics and habits during pregnancy and their impact on fetal development, 1,690 mother/infant pairs were studied. Of the mothers, 375 reported using Bendectin during pregnancy. Multivariate analyses examining birth weight, length, head circumference, gestational age, and congenital malformations as dependent variables demonstrated no associations between Bendectin exposure and adverse fetal outcome.
Tinelli, Andrea; Bochicchio, Mario Alessandro; Vaira, Lucia; Malvasi, Antonio
2014-01-01
Clear guidance on fetal growth assessment is important because of the strong links between growth restriction or macrosomia and adverse perinatal outcome in order to reduce associated morbidity and mortality. Fetal growth curves are extensively adopted to track fetal sizes from the early phases of pregnancy up to delivery. In the literature, a large variety of reference charts are reported but they are mostly up to five decades old. Furthermore, they do not address several variables and factors (e.g., ethnicity, foods, lifestyle, smoke, and physiological and pathological variables), which are very important for a correct evaluation of the fetal well-being. Therefore, currently adopted fetal growth charts are inadequate to support the melting pot of ethnic groups and lifestyles of our society. Customized fetal growth charts are needed to provide an accurate fetal assessment and to avoid unnecessary obstetric interventions at the time of delivery. Starting from the development of a growth chart purposely built for a specific population, in the paper, authors quantify and analyse the impact of the adoption of wrong growth charts on fetal diagnoses. These results come from a preliminary evaluation of a new open service developed to produce personalized growth charts for specific ethnicity, lifestyle, and other parameters.
In utero exposure to chloroquine alters sexual development in the male fetal rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clewell, Rebecca A.; Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709; Pluta, Linda
Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenancemore » doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.« less
Ishimoto, Hitoshi
2011-01-01
Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591
From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges
Bianchi, Diana W
2015-01-01
Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment. PMID:22772565
Fetal Magnetic Resonance Imaging Findings in Prenatal Zika Virus Infection.
Sanín-Blair, José Enrique; Gutiérrez-Márquez, Carolina; Herrera, Diego A; Vossough, Arastoo
2017-01-01
Brain lesions and malformations have been described on ultrasonography of prenatal Zika infection; however, there are scarce reports about fetal magnetic resonance (MR) findings. We report 3 cases of fetuses with confirmed intrauterine Zika virus infection evaluated by ultrasound and fetal MR. Various morphometric measurements were assessed and brain maturation was calculated with the fetal total maturation score. Fetuses with prenatal Zika virus infection showed retardation in brain maturation indexes evaluated by fetal MR. Brain calcifications were demonstrated by neurosonography in all cases, while fetal MR characterized the specific type of cortical development malformation. © 2017 S. Karger AG, Basel.
Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy.
Lei, Jun; Calvo, Pilar; Vigh, Richard; Burd, Irina
2018-01-01
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Deficient maternal zinc intake-but not folate-is associated with lower fetal heart rate variability.
Spann, Marisa N; Smerling, Jennifer; Gustafsson, Hanna; Foss, Sophie; Altemus, Margaret; Monk, Catherine
2015-03-01
Few studies of maternal prenatal diet and child development examine micronutrient status in relation to fetal assessment. Twenty-four-hour dietary recall of zinc and folate and 20min of fetal heart rate were collected from 3rd trimester pregnant adolescents. Deficient zinc was associated with less fetal heart rate variability. Deficient folate had no associations with HRV. Neither deficient zinc nor deficient folate was related to fetal heart rate. These findings, from naturalistic observation, are consistent with emerging data on prenatal zinc supplementation using a randomized control design. Taken together, the findings suggest that maternal prenatal zinc intake is an important and novel factor for understanding child ANS development. Copyright © 2015. Published by Elsevier Ireland Ltd.
Roles of Melatonin in Fetal Programming in Compromised Pregnancies
Chen, Yu-Chieh; Sheen, Jiunn-Ming; Tiao, Miao-Meng; Tain, You-Lin; Huang, Li-Tung
2013-01-01
Compromised pregnancies such as those associated with gestational diabetes mellitus, intrauterine growth retardation, preeclampsia, maternal undernutrition, and maternal stress may negatively affect fetal development. Such pregnancies may induce oxidative stress to the fetus and alter fetal development through the epigenetic process that may affect development at a later stage. Melatonin is an oxidant scavenger that reverses oxidative stress during the prenatal period. Moreover, the role of melatonin in epigenetic modifications in the field of developmental programming has been studied extensively. Here, we describe the physiological function of melatonin in pregnancy and discuss the roles of melatonin in fetal programming in compromised pregnancies, focusing on its involvement in redox and epigenetic mechanisms. PMID:23466884
Kellogg, Carol K.; Kenjarski, Thomas P.; Pleger, Gloria L.; Frye, Cheryl A.
2013-01-01
Fetal exposure to diazepam (DZ), a positive modulator of GABAA receptors and an agonist at mitochondrial benzodiazine receptors, induces long-term neural and behavioral effects. This study evaluated whether the early manipulation influenced the normal development of brain levels of neurosteroids or altered steroid action at GABAA receptors. Pregnant dams were injected over gestation days 14 through 20 with DZ (2.5 mg/kg) or the vehicle. Male and female offspring were analyzed at five postnatal ages. The levels of progesterone (P), dihydroprogesterone (DHP), 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP), testosterone (T), dihydrotestosterone, and 5α-androstan-3α,17β diol were measured in the cerebral cortex and diencephalon. The results indicated that development of brain steroid levels and the impact of fetal DZ exposure were region- and sex-specific. Age-related changes in brain steroids did not mirror associated changes in circulating P and T. Age regulated the levels of all 3 progestins in the cerebral cortex, and fetal DZ exposure interacted with the development of P and DHP. The development of 3α,5α-THP in the cortex was markedly influenced by sex, with levels in males decreasing over postnatal development whereas they increased over postpubertal development in females. An adolescent surge in T levels was observed in male cortex and fetal DZ exposure prevented that surge. Steroid levels in the diencephalon were altered by age mainly in females, and DZ exposure had little effect in this region. The data support region-specific regulation of brain steroid synthesis. Only in the cerebral cortex are relevant mechanisms readily modifiable by fetal DZ exposure. However, neither sex nor fetal DZ exposure altered the response of GABAA receptors in adult cortex to neurosteroid. PMID:16376310
1981-09-01
Change = 2311 (257) Teaching - Diabetic = 2313 (258) Labor Room Examination and Preparation, Routine = 2434 (259) Fetal Heart Tones, Manual = 2412 (260... Fetal Heart Tones, Doppler = 2413 (261) Dilatation and Effecement Assessment = 2403 (262) Dilatation and Effacement Assessment, Assisting Physician...Ultrasonic Transducer/Tocotransducer = 2435 (270) Monitoring Fetal Heart Tones, Ultrasonic Transducer = 2436 (271) Monitoring Fetal Heart Tones, Ultrasonic
MYSTERIES OF THE HUMAN FETUS REVEALED
SANDMAN, CURT A
2015-01-01
The impressive program of research from the DiPietro laboratory succeeds in its aim to document the ontogeny of human fetal neurobehavioral development. From studies of great depth and breadth, and wielding creative methods of assessment, DiPietro et al open a window into the largely inaccessible developing human fetal brain. This commentary, with reference to the seminal cardiovascular studies of the Lacey's, supports the measures of the fetal heart to index fetal well-being and to provide evidence of stimulus processing. A separate case is made that the DiPietro program provides unique and invaluable information for assessing the influential Developmental Origins of Health and Disease or Fetal Programming Models. The goal of these models, to predict or understand the influences of early experience or response patterns on later postnatal life, is identical to the ultimate goal of the DiPietro program. Because human fetal behavior is uncontaminated by socialization or parenting or peers, it may be the best reflection of fetal exposures. The remarkable neurobehavioral profiles generated by the DiPietro program can make a critical contribution to the Fetal Programming Model in terms of sensitive and critical periods of nervous system vulnerability and to specify gestational periods of neurobehavioral risk.. PMID:26303720
Morphological effects of chronic bilateral phrenectomy or vagotomy in the fetal lamb lung.
Alcorn, D; Adamson, T M; Maloney, J E; Robinson, P M
1980-01-01
The relationship between fetal espiratory activity and fetal lung development has been studied at the cellular level using two experimental models. Chronic bilateral phrenectomy over a period of 20-28 days during the last trimester of the fetal lamb resulted in hypoplastic lungs, although cellular maturity, as indicated by the presence of alveolar epithelial Type II cells, was present. In the lungs from fetal lambs undergoing sham operations for a similar time course there was evidence of enhanced alveolar proliferation when compared with lungs from normal fetal sheep of a similar gastational age, most probably as a result of operative stress. Following chronic bilateral vagotomy no changes in size or histology of the fetal lamb lungs were detected. At an ultrastructural level, however, inclusions of Type II cells consistently showed the loss of the typical osmiophilic lamellated appearance. These results indicate the importance of the fetal breathing apparatus in maintaining a volume of lung liquid which is adequate for normal pulmonary development, particularly during the phase in which alveoli are formed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7429961
Auriault, F; Thollon, L; Pérès, J; Behr, M
2016-12-01
This study documents the development of adverse fetal outcome predictors dedicated to the analysis of road accidents involving pregnant women. To do so, a pre-existing whole body finite element model representative of a 50th percentile 26 weeks pregnant woman was used. A total of 8 accident scenarios were simulated with the model positioned on a sled. Each of these scenarios was associated to a risk of adverse fetal outcome based on results from real car crash investigations involving pregnant women from the literature. The use of airbags and accidents involving unbelted occupants were not considered in this study. Several adverse fetal outcome potential predictors were then evaluated with regard to their correlation to this risk of fetal injuries. Three predictors appeared strongly correlated to the risk of adverse fetal outcome: (1) the intra uterine pressure at the placenta fetal side area (r=0.92), (2) the fetal head acceleration (HIC) (r=0.99) and (3) area of utero-placental interface over a strain threshold (r=0.90). Finally, sensitivity analysis against slight variations of the simulation parameters was performed and assess robustness of these criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
McGee, Meghan; Bainbridge, Shannon; Fontaine-Bisson, Bénédicte
2018-06-01
The fetal origins of health and disease framework has identified extremes in fetal growth and birth weight as factors associated with the lifelong generation of chronic diseases such as obesity, diabetes, cardiovascular disease, and hypertension. Maternal nutrition plays a critical role in fetal and placental development, in part by providing the methyl groups required to establish the fetus's genome structure and function, notably through DNA methylation. The goal of this narrative review is to describe the role of maternal dietary methyl donor (methionine, folate, and choline) and cofactor (zinc and vitamins B2, B6, and B12) intake in one-carbon metabolism and DNA methylation in the fetus and placenta, as well as their impacts on fetal growth and lifelong health outcomes, with specific examples in animals and humans. Based on the available evidence, it is concluded that intake of different amounts of dietary methyl donors and cofactors during pregnancy may alter fetal growth and development, thus establishing a major link between early environmental exposure and disease development in the offspring later in life.
Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth
Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao
2017-01-01
Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage. PMID:29081731
Mandal, Chanchal; Halder, Debasish; Jung, Kyoung Hwa; Chai, Young Gyu
2017-01-01
Ethanol is well known for its teratogenic effects during fetal development. Maternal alcohol consumption allows the developing fetus to experience the detrimental effects of alcohol exposure. Alcohol-mediated teratogenic effects can vary based on the dosage and the length of exposure. The specific mechanism of action behind this teratogenic effect is still unknown. Previous reports demonstrated that alcohol participates in epigenetic alterations, especially histone modifications during fetal development. Additional research is necessary to understand the correlation between major epigenetic events and alcohol-mediated teratogenesis such as that observed in fetal alcohol spectrum disorder (FASD). Here, we attempted to collect all the available information concerning alcohol-mediated histone modifications during gestational fetal development. We hope that this review will aid researchers to further examine the issues associated with ethanol exposure. PMID:29104501
Kenna, Kelly; De Matteo, Robert; Hanita, Takushi; Rees, Sandra; Sozo, Foula; Stokes, Victoria; Walker, David; Bocking, Alan; Brien, James; Harding, Richard
2011-10-01
High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ∼145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (∼0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.
Safe fetal platelet genotyping: new developments.
Le Toriellec, Emilie; Chenet, Christophe; Kaplan, Cecile
2013-08-01
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is due to maternal alloimmunization against fetal platelet (PLT) antigens. Antenatal management strategies have been developed to avoid complications such as intracranial hemorrhage. The aim of this study was to set up two reliable, noninvasive fetal genotyping assays to determine the fetal risk in pregnancies in which the father is heterozygous for the offending antigen. This study focused on human PLT antigen (HPA)-1, the most frequently implicated antigen in FNAIT in Caucasians. Two assays based on cell-free fetal DNA extracted from maternal blood samples and on real-time polymerase chain reaction (QPCR) were developed: an allele-specific QPCR specifically targeting the polymorphic sequence in HPA-1 and the study of the variation in the high-resolution melting curve of amplicons containing the polymorphic region. All results from the 49 samples obtained from 29 pregnant women were consistent with expectations. Six women were compatible with their fetuses (three HPA-1aa women and three HPA-1bb women), 41 HPA-1bb women were incompatible with their fetuses, as were two HPA-1aa women. Two fetal PLT genotyping assays on maternal blood samples proved to be reliable as of 15 weeks of gestation, thereby avoiding invasive techniques such as amniocentesis. © 2012 American Association of Blood Banks.
Noninvasive monitoring of fetal growth and development in the Siberian polecat (Mustela eversmanni)
Wimsatt, Jeffrey; Johnson, Jay D.; Wrigley, Robert H.; Biggins, Dean E.; Godbey, Jerry L.
1998-01-01
The Siberian polecat (Mustela eversmanni) is the preferred species to assess procedures and establish normative values for application in the related and endangered black-footed ferret (Mustela nigripes). This study was undertaken to physically, ultrasonographically, and radiographically evaluate fetal development in a spontaneously breeding captive Siberian polecat population. Ultrasonographically, fetal sac enlargement allowed presumptive preg nancy detection as early as 12 days of gestation, the fetal pole was the first definitive sign of pregnancy at about 18 days of gestation, when the fetal heart beat also appeared, and definitive pregnancy detection by ultrasound was essentially 100% accurate after 18 days. The estimation of fetal number by ultrasound was less reliable than by radiography, as it is in other litter-bearing species. Crown-rump growth, organ differentiation, and calcification patterns resembled those of domestic carnivores except that comparable developmental stages in polecats occurred at dispro portionately later times, suggesting that young Siberian polecats are delivered in a less developed state. Careful palpation permitted detection of pregnancy after day 17 but with less certainty than with ultrasound. Radiographic evaluation was insensitive and of limited value for pregnancy detection until near term. Litter number and fetal detail were difficult to assess until ossification could be observed, 3-6 days before parturition.
Noninvasive monitoring of fetal growth and development in the Siberian polecat (Mustela eversmanni).
Wimsatt, J; Johnson, J D; Wrigley, R H; Biggins, D E; Godbey, J L
1998-12-01
The Siberian polecat (Mustela eversmanni) is the preferred species to assess procedures and establish normative values for application in the related and endangered black-footed ferret (Mustela nigripes). This study was undertaken to physically, ultrasonographically, and radiographically evaluate fetal development in a spontaneously breeding captive Siberian polecat population. Ultrasonographically, fetal sac enlargement allowed presumptive pregnancy detection as early as 12 days of gestation, the fetal pole was the first definitive sign of pregnancy at about 18 days of gestation, when the fetal heart beat also appeared, and definitive pregnancy detection by ultrasound was essentially 100% accurate after 18 days. The estimation of fetal number by ultrasound was less reliable than by radiography, as it is in other litter-bearing species. Crown-rump growth, organ differentiation, and calcification patterns resembled those of domestic carnivores except that comparable developmental stages in polecats occurred at disproportionately later times, suggesting that young Siberian polecats are delivered in a less developed state. Careful palpation permitted detection of pregnancy after day 17 but with less certainty than with ultrasound. Radiographic evaluation was insensitive and of limited value for pregnancy detection until near term. Litter number and fetal detail were difficult to assess until ossification could be observed, 3-6 days before parturition.
Su, Pu-Yu; Huang, Kun; Hao, Jia-Hu; Xu, Ye-Qin; Yan, Shuang-Qin; Li, Tao; Xu, Yuan-Hong; Tao, Fang-Biao
2011-10-01
There are a few prospective population-based cohort studies evaluating the effects of maternal thyroid dysfunctions on fetal and infant developments, but they are inconsistent. The objective of the study was to investigate the effects of maternal thyroid dysfunction on fetal and infant development. The study was nested within a prospective population-based China-Anhui Birth Defects and Child Development study. A total of 1017 women with singleton pregnancies participated in this study. Maternal serum samples in the first 20 wk of pregnancy were tested for thyroid hormones (TSH and free T(4)). Pregnant women were classified by hormone status into percentile categories based on laboratory assay and were compared accordingly. Outcomes included fetal loss, malformation, birth weight, preterm delivery, fetal stress, neonatal death, and infant development. Clinical hypothyroidism was associated with increased fetal loss, low birth weight, and congenital circulation system malformations; the adjusted odds ratios [95% confidence interval (CI)] were 13.45 (2.54-71.20), 9.05 (1.01-80.90), and 10.44 (1.15-94.62), respectively. Subclinical hypothyroidism was associated with increased fetal distress, preterm delivery, poor vision development, and neurodevelopmental delay; the adjusted odds ratios (95% CI) were 3.65 (1.44-9.26), 3.32 (1.22-9.05), 5.34 (1.09-26.16), and 10.49 (1.01-119.19), respectively. Isolated hypothyroxinemia was related to fetal distress, small for gestational age, and musculoskeletal malformations; the adjusted odds ratios (95% CI) were 2.95 (1.08-8.05), 3.55 (1.01-12.83), and 9.12 (1.67-49.70), respectively. Isolated hyperthyroxinemia was associated with spontaneous abortion; the adjusted odds ratio (95% CI) was 6.02 (1.25-28.96). Clinical hyperthyroidism was associated with hearing dysplasia; the adjusted odds ratio (95% CI) was 12.14 (1.22-120.70). Thyroid dysfunction in the first 20 wk of pregnancy may result in fetal loss and dysplasia and some congenital malformations.
Placenta: chronicle of intrauterine growth restriction.
Dicke, Jeffrey M
2010-09-23
The foundation for adult health is laid in utero and requires a healthy placenta. A common manifestation of abnormal placental development is impaired fetal growth. While placental pathology is the final common denominator in many cases of fetal growth restriction, a variety of discreet lesions have been described involving both the maternal and fetal circulations at their confluence in the placenta. Detailed examination of the placenta provides a means of elucidating the pathophysiology of poor fetal growth. This is an essential step in developing effective strategies for the prediction, prevention, and possible treatment of the growth restricted fetus.
Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors.
Fu, Binqing; Zhou, Yonggang; Ni, Xiang; Tong, Xianhong; Xu, Xiuxiu; Dong, Zhongjun; Sun, Rui; Tian, Zhigang; Wei, Haiming
2017-12-19
Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a + Eomes + subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a + Eomes + NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin
2009-10-09
The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.
ACR Appropriateness Criteria® growth disturbances - risk of intrauterine growth restriction.
Zelop, Carolyn M; Javitt, Marcia C; Glanc, Phyllis; Dubinsky, Theodore; Harisinghani, Mukesh G; Harris, Robert D; Khati, Nadia J; Mitchell, Donald G; Pandharipande, Pari V; Pannu, Harpreet K; Podrasky, Ann E; Shipp, Thomas D; Siegel, Cary Lynn; Simpson, Lynn; Wall, Darci J; Wong-You-Cheong, Jade J
2013-09-01
Fetal growth disturbances include fetuses at risk for intrauterine growth restriction. These fetuses may have an estimated fetal weight at less than the 10% or demonstrate a plateau of fetal growth with an estimated fetal growth greater than the 10%. Uteroplacental insufficiency may play a major role in the etiology of intrauterine growth restriction. Fetuses at risk for intrauterine fetal growth restriction are susceptible to the potential hostility of the intrauterine environment leading to fetal hypoxia and fetal acidosis. Fetal well-being can be assessed using biophysical profile, Doppler velocimetry, fetal heart rate monitoring, and fetal movement counting.Fetal growth disturbances include fetuses at risk for intrauterine growth restriction. These fetuses may have an estimated fetal weight at less than the 10% or demonstrate a plateau of fetal growth with an estimated fetal growth greater than the 10%. Uteroplacental insufficiency may play a major role in the etiology of intrauterine growth restriction. Fetuses at risk for intrauterine fetal growth restriction are susceptible to the potential hostility of the intrauterine environment leading to fetal hypoxia and fetal acidosis. Fetal well-being can be assessed using biophysical profile, Doppler velocimetry, fetal heart rate monitoring, and fetal movement counting.The ACR Appropriateness Criteria® are evidence-based guidelines for specific clinical conditions that are reviewed every two years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Prenatal Antecedents of Newborn Neurological Maturation
DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Rubin, Suzanne E.; Shiffler, Dorothy E.; Henderson, Janice L.; Pillion, Joseph P.
2009-01-01
Fetal neurobehavioral development was modeled longitudinally using data collected at weekly intervals from 24- to -38 weeks gestation in a sample of 112 healthy pregnancies. Predictive associations between 3 measures of fetal neurobehavioral functioning and their developmental trajectories to neurological maturation in the 1st weeks after birth were examined. Prenatal measures included fetal heart rate variability, fetal movement, and coupling between fetal motor activity and heart rate patterning; neonatal outcomes include a standard neurologic examination (n = 97) and brainstem auditory evoked potential (BAEP; n = 47). Optimality in newborn motor activity and reflexes was predicted by fetal motor activity; fetal heart rate variability and somatic-cardiac coupling predicted BAEP parameters. Maternal pregnancy-specific psychological stress was associated with accelerated neurologic maturation. PMID:20331657
Gyamfi Bannerman, Cynthia; Grobman, William A; Antoniewicz, Leah; Hutchinson, Maria; Blackwell, Sean
2011-09-01
In 2008, a National Institute of Child Health and Human Development/Society for Maternal-Fetal Medicine-sponsored workshop on electronic fetal monitoring recommended a new fetal heart tracing interpretation system. Comparison of this 3-tier system with other systems is lacking. Our purpose was to determine the relationships between fetal heart rate categories for the 3 existing systems. Three Maternal-Fetal Medicine specialists reviewed 120 fetal heart rates. All tracings were from term, singleton pregnancies with known umbilical artery pH. The fetal heart rates were classified by a 2-tier, 3-tier, and 5-tier system. Each Maternal-Fetal Medicine examiner reviewed 120 fetal heart rate segments. When compared with the 2-tier system, 0%, 54%, and 100% tracings in categories 1, 2, and 3 were "nonreassuring." There was strong concordance between category 1 and "green" as well as category 3 and "red" tracings. The 3-tier and 5-tier systems were similar in fetal heart rate interpretations for tracings that were either very normal or very abnormal. Whether one system is superior to the others in predicting fetal acidemia remains unknown. Copyright © 2011 Mosby, Inc. All rights reserved.
Larsen, Karen B
2017-01-01
Human fetal brain development is a complex process which is vulnerable to disruption at many stages. Although histogenesis is well-documented, only a few studies have quantified cell numbers across normal human fetal brain growth. Due to the present lack of normative data it is difficult to gauge abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples are unreliable due to unpredictable shrinking artifacts, and the fragility of the fetal brain requires particular care in handling and processing. The optical fractionator design offers a direct and robust estimate of total cell numbers in the fetal brain with a minimum of handling of the tissue. Bearing this in mind, we have used the optical fractionator to quantify the growth of total cell numbers as a function of fetal age. We discovered a two-phased development in total cell numbers in the human fetal forebrain consisting of an initial steep rise in total cell numbers between 13 and 20 weeks of gestation, followed by a slower linear phase extending from mid-gestation to 40 weeks of gestation. Furthermore, we have demonstrated a reduced total cell number in the forebrain in fetuses with Down syndome at midgestation and in intrauterine growth-restricted fetuses during the third trimester.
Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C
1997-10-01
In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.
Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A
1992-12-01
The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.
Fetal programming of infant neuromotor development: the generation R study.
van Batenburg-Eddes, Tamara; de Groot, Laila; Steegers, Eric A P; Hofman, Albert; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning
2010-02-01
The objective of the study was to examine whether infant neuromotor development is determined by fetal size and body symmetry in the general population. This study was embedded within the Generation R Study, a population-based cohort in Rotterdam. In 2965 fetuses, growth parameters were measured in mid-pregnancy and late pregnancy. After birth, at age 9 to 15 wks, neuromotor development was assessed with an adapted version of Touwen's Neurodevelopmental Examination. Less optimal neuromotor development was defined as a score in the highest tertile. We found that higher fetal weight was beneficial to infant neurodevelopment. A fetus with a 1-SD score higher weight in mid-pregnancy had an 11% lower risk of less optimal neuromotor development (OR: 0.89; 95% CI: 0.82-0.97). Similarly, a fetus with a 1-SD score larger abdominal-to-head circumference (AC/HC) ratio had a 13% lower risk of less optimal neuromotor development (OR: 0.87; 95% CI: 0.79-0.96). These associations were also present in late pregnancy. Our findings show that fetal size and body symmetry in pregnancy are associated with infant neuromotor development. These results suggest that differences in infant neuromotor development, a marker of behavioral and cognitive problems, are at least partly caused by processes occurring early in fetal life.
Fetal effects of psychoactive drugs.
Salisbury, Amy L; Ponder, Kathryn L; Padbury, James F; Lester, Barry M
2009-09-01
Psychoactive drug use by pregnant women has the potential to effect fetal development; the effects are often thought to be drug-specific and gestational age dependent. This article describes the effects of three drugs with similar molecular targets that involve monoaminergic transmitter systems: cocaine, methamphetamine, and selective serotonin re-uptake inhibitors (SSRIs) used to treat maternal depression during pregnancy. We propose a possible common epigenetic mechanism for their potential effects on the developing child. We suggest that exposure to these substances acts as a stressor that affects fetal programming, disrupts fetal placental monoamine transporter expression and alters neuroendocrine and neurotransmitter system development. We also discuss neurobehavioral techniques that may be useful in the early detection of the effects of in utero drug exposure.
Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).
Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E
2014-08-01
The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.
Hernandez-Medrano, Juan H; Copping, Katrina J; Hoare, Andrew; Wapanaar, Wendela; Grivell, Rosalie; Kuchel, Tim; Miguel-Pacheco, Giuliana; McMillen, I Caroline; Rodgers, Raymond J; Perry, Viv E A
2015-01-01
The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14 mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60 d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98 dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36 dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60 d up to 23 dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system.
A possible new approach in the prediction of late gestational hypertension
Visentin, Silvia; Londero, Ambrogio P.; Camerin, Martina; Grisan, Enrico; Cosmi, Erich
2017-01-01
Abstract The aim was to determine the predictive role of combined screening for late-onset gestational hypertension by fetal ultrasound measurements, third trimester uterine arteries (UtAs) Doppler imaging, and maternal history. This prospective study on singleton pregnancies was conducted at the tertiary center of Maternal and Fetal Medicine of the University of Padua during the period between January 2012 and December 2014. Ultrasound examination (fetal biometry, fetal wellbeing, maternal Doppler study, fetal abdominal aorta intima-media thickness [aIMT], and fetal kidney volumes), clinical data (mother age, prepregnancy body mass index [BMI], and parity), and pregnancy outcomes were collected. The P value <0.05 was defined significant considering a 2-sided alternative hypothesis. The distribution normality of variables were assessed using Kolmogorov–Smirnoff test. Data were presented by mean (±standard deviation), median and interquartile range, or percentage and absolute values. We considered data from 1381 ultrasound examinations at 29 to 32 weeks’ gestation, and in 73 cases late gestational hypertension developed after 34 weeks’ gestation. The final multivariate model found that fetal aIMT as well as fetal umbilical artery pulsatility index (PI), maternal age, maternal prepregnacy BMI, parity, and mean PI of maternal UtAs, assessed at ultrasound examination of 29 to 32 weeks’ gestation, were significant and independent predictors for the development of gestational hypertension after 34 weeks’ gestation. The area under the curve of the model was 81.07% (95% confidence interval, 75.83%–86.32%). A nomogram was developed starting from multivariate logistic regression coefficients. Late-gestational hypertension could be independently predicted by fetal aIMT assessment at 29 to 32 weeks’ gestation, ultrasound Doppler waveforms, and maternal clinical parameters. PMID:28079791
Implantable ultra-low pulmonary pressure monitoring system for fetal surgery.
Etemadi, Mozziyar; Heller, J Alex; Schecter, Samuel C; Shue, Eveline H; Miniati, Doug; Roy, Shuvo
2012-11-01
Congenital pulmonary hypoplasia is a devastating condition affecting fetal and newborn pulmonary physiology, resulting in great morbidity and mortality. The fetal lung develops in a fluid-filled environment. In this work, we describe a novel, implantable pressure sensing and recording device which we use to study the pressures present in the fetal pulmonary tree throughout gestation. The system achieves 0.18 cm H2O resolution and can record for twenty one days continuously at 256 Hz. Sample tracings of in vivo fetal lamb recordings are shown.
Laberge, Jean-Martin
1986-01-01
Fetal surgery has come of age. For decades experimental fetal surgery proved essential in studying normal fetal physiology and development, and pathophysiology of congenital defects. Clinical fetal surgery started in the 1960s with intrauterine transfusions. In the 1970s, the advent of ultrasonography revolutionized fetal diagnosis and created a therapeutic vacuum. Fetal treatment, medical and surgical, is slowly trying to fill the gap. Most defects detected are best treated after birth, some requiring a modification in the time, mode and place of delivery for optimal obstetrical and neonatal care. Surgical intervention in utero should be considered for malformations that cause progressive damage to the fetus, leading to death or severe morbidity; that can be corrected or palliated in utero with a reasonable expectation of normal postnatal development; that cannot wait to be corrected after birth, even considering pre-term delivery; that are not accompanied by chromosomal or other major anomalies. At present, congenital hydronephrosis is the most common indication for fetal surgery, followed by obstructive hydrocephalus. Congenital diaphragmatic hernia also fulfills the criteria, but its correction poses more problems, and no clinical attempts have been reported so far. In the future many other malformations or diseases may become best treated in utero. The ethical and moral issues are complex and need to be discussed as clinical and experimental progress is made. PMID:21267309
Fetal brain volumetry through MRI volumetric reconstruction and segmentation
Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.
2013-01-01
Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848
Towards a new era in fetal medicine in the Nordic countries.
Sitras, Vasilis
2016-08-01
Fetal medicine is a subspecialty of obstetrics investigating the development, growth and disease of the human fetus. The advances in fetal imaging (ultrasonography, MRI) and molecular diagnostic techniques, together with the possibility of intervention in utero, make fetal medicine an important, rapidly developing field within women's healthcare. Therefore, a variety of specialists, such as neonatologists, pediatric cardiologists, medical geneticists, radiologists and pediatric surgeons, are necessary to adjunct in the diagnosis and treatment of the fetus as a patient. In this commentary, we provide a description of some organizational and educational aspects of fetal medicine in the Nordic countries, using examples of the management of specific conditions such as aneuploidy screening, red cell allo-immunization and fetal interventions. Clearly, there are several cultural, legal, organizational and practical differences between the Nordic countries; these are not necessarily negative, given the high standards of care in all Nordic countries. The scope of the newly founded Nordic Network of Fetal Medicine is to enhance cooperation in clinical practice, education and research between the participant countries. Hopefully, this initiative will find the necessary political and economic support from the national authorities and bring a new era in the field of fetal medicine in the Nordic region. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
De Kleer, Ismé; Henri, Sandrine; Post, Sijranke; Vanhoutte, Leen; De Prijck, Sofie; Deswarte, Kim; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N.
2013-01-01
Tissue-resident macrophages can develop from circulating adult monocytes or from primitive yolk sac–derived macrophages. The precise ontogeny of alveolar macrophages (AMFs) is unknown. By performing BrdU labeling and parabiosis experiments in adult mice, we found that circulating monocytes contributed minimally to the steady-state AMF pool. Mature AMFs were undetectable before birth and only fully colonized the alveolar space by 3 d after birth. Before birth, F4/80hiCD11blo primitive macrophages and Ly6ChiCD11bhi fetal monocytes sequentially colonized the developing lung around E12.5 and E16.5, respectively. The first signs of AMF differentiation appeared around the saccular stage of lung development (E18.5). Adoptive transfer identified fetal monocytes, and not primitive macrophages, as the main precursors of AMFs. Fetal monocytes transferred to the lung of neonatal mice acquired an AMF phenotype via defined developmental stages over the course of one week, and persisted for at least three months. Early AMF commitment from fetal monocytes was absent in GM-CSF–deficient mice, whereas short-term perinatal intrapulmonary GM-CSF therapy rescued AMF development for weeks, although the resulting AMFs displayed an immature phenotype. This demonstrates that tissue-resident macrophages can also develop from fetal monocytes that adopt a stable phenotype shortly after birth in response to instructive cytokines, and then self-maintain throughout life. PMID:24043763
Fetal Neurobehavioral Development.
ERIC Educational Resources Information Center
DiPietro, Janet A.; And Others
1996-01-01
Investigated the ontogeny of fetal autonomic, motoric, state, and interactive functioning in 31 healthy fetuses from 20 weeks through term. Found that male fetuses were more active than female fetuses, and that greater maternal stress appraisal was associated with reduced fetal heart rate variability. Found that an apparent period of…
Educating Health Professionals about Fetal Alcohol Spectrum Disorders
ERIC Educational Resources Information Center
American Journal of Health Education, 2007
2007-01-01
Prenatal exposure to alcohol is a leading preventable cause of birth defects and developmental disabilities. Individuals exposed to alcohol during fetal development can have physical, mental, behavioral, and learning disabilities, with lifelong implications. These conditions are known as fetal alcohol spectrum disorders (FASDs). Health care…
Deprest, Jan; Vercauteren, Tom; Ourselin, Sebastien; David, Anna L.
2015-01-01
Abstract Fetal surgery has become a clinical reality, with interventions for twin‐to‐twin transfusion syndrome (TTTS) and spina bifida demonstrated to improve outcome. Fetal imaging is evolving, with the use of 3D ultrasound and fetal MRI becoming more common in clinical practise. Medical imaging analysis is also changing, with technology being developed to assist surgeons by creating 3D virtual models that improve understanding of complex anatomy, and prove powerful tools in surgical planning and intraoperative guidance. We introduce the concept of computer‐assisted surgical planning, and present the results of a systematic review of image reconstruction for fetal surgical planning that identified six articles using such technology. Indications from other specialities suggest a benefit of surgical planning and guidance to improve outcomes. There is therefore an urgent need to develop fetal‐specific technology in order to improve fetal surgical outcome. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd. PMID:26235960
Prototype of a wearable system for remote fetal monitoring during pregnancy.
Fanelli, Andrea; Ferrario, Manuela; Piccini, Luca; Andreoni, Giuseppe; Matrone, Giulia; Magenes, Giovanni; Signorini, Maria G
2010-01-01
Fetal Heart Rate (FHR) monitoring gives important information about the fetus health state during pregnancy. This paper presents a new prototype for remote fetal monitoring. The device will allow to monitor FHR in a domiciliary context and to send fetal ECG traces to a hospital facility, where clinicians can interpret them. In this way the mother could receive prompt feedback about fetal wellbeing. The system is characterized by two units: (i) a wearable unit endowed with textile electrodes for abdominal ECG recordings and with a Field Programmable Gate Array (FPGA) board for fetal heart rate (FHR) extraction; (ii) a dock station for the transmission of the data through the telephone line. The system will allow to reduce costs in fetal monitoring, improving the assessment of fetal conditions. The device is actually in development state. In this paper, the most crucial aspects behind its fulfillment are discussed.
The effect of Ramadan fasting on fetal development.
Karateke, Atilla; Kaplanoglu, Mustafa; Avci, Fazil; Kurt, Raziye Keskin; Baloglu, Ali
2015-01-01
To evaluate the effects of Ramadan fasting on fetal development and outcomes of pregnancy. We performed this study in Antakya State Hospital of Obstetrics and Child Care, between 28 June 2014 and 27 July 2014 (during the month of Ramadan). A total of two hundred forty healthy pregnant women who were fasting during Ramadan, were included in the groups. The three groups were divided according to the trimesters. The each group was consisted of 40 healthy pregnant women with fasting and 40 healthy pregnant women without fasting. For evaluating the effects of Ramadan on fetus, ultrasonography was performed on all pregnant women in the beginning and the end of Ramadan. We used the essential parameters for the following measurements: increase of fetal biparietal diameter (BPD), increase of fetal femur length (FL), increase of estimated fetal body weight (EFBW), fetal biophysical profile (BPP), amniotic fluid index (AFI), and umbilical artery systole/diastole (S/D) ratio. No significant difference was found between the two groups for the fetal age, maternal weight gain (kilogram), estimated fetal weight gain (EFWG), fetal BPP, AFI, and umbilical artery S/D ratio. On the other hand, a statistically significant increase was observed in maternal weight in the second and third trimesters and a significant increase was observed in the amniotic fluid index in second trimester. In Ramadan there was no bad fetal outcome between pregnant women with fasting and pregnant women without fasting. Pregnant women who want to be with fast, should be examined by doctors, adequately get breakfast before starting to fast and after the fasting take essential calori and hydration. More comprehensive randomized studies are needed to explain the effects of fasting on the pregnancy and fetal outcomes.
Monitoring fetal maturation—objectives, techniques and indices of autonomic function*
Hoyer, Dirk; Żebrowski, Jan; Cysarz, Dirk; Gonçalves, Hernâni; Pytlik, Adelina; Amorim-Costa, Célia; Bernardes, João; Ayres-de-Campos, Diogo; Witte, Otto W; Schleußner, Ekkehard; Stroux, Lisa; Redman, Christopher; Georgieva, Antoniya; Payne, Stephen; Clifford, Gari; Signorini, Maria G; Magenes, Giovanni; Andreotti, Fernando; Malberg, Hagen; Zaunseder, Sebastian; Lakhno, Igor; Schneider, Uwe
2017-01-01
Objective Monitoring the fetal behavior does not only have implications for acute care but also for identifying developmental disturbances that burden the entire later life. The concept, of ‘fetal programming’, also known as ‘developmental origins of adult disease hypothesis’, e.g. applies for cardiovascular, metabolic, hyperkinetic, cognitive disorders. Since the autonomic nervous system is involved in all of those systems, cardiac autonomic control may provide relevant functional diagnostic and prognostic information. Approach The fetal heart rate patterns (HRP) are one of the few functional signals in the prenatal period that relate to autonomic control and, therefore, is key to fetal autonomic assessment. The development of sensitive markers of fetal maturation and its disturbances requires the consideration of physiological fundamentals, recording technology and HRP parameters of autonomic control. Main Results Based on the ESGCO2016 special session on monitoring the fetal maturation we herein report the most recent results on: (i) functional fetal autonomic brain age score (fABAS), Recurrence Quantitative Analysis and Binary Symbolic Dynamics of complex HRP resolve specific maturation periods, (ii) magnetocardiography (MCG) based fABAS was validated for cardiotocography (CTG), (iii) 30 min recordings are sufficient for obtaining episodes of high variability, important for intrauterine growth restriction (IUGR) detection in handheld Doppler, (iv) novel parameters from PRSA to identify Intra IUGR fetuses, (v) evaluation of fetal electrocardiographic (ECG) recordings, (vi) correlation between maternal and fetal HRV is disturbed in pre-eclampsia. Significance The reported novel developments significantly extend the possibilities for the established CTG methodology. Novel HRP indices improve the accuracy of assessment due to their more appropriate consideration of complex autonomic processes across the recording technologies (CTG, handheld Doppler, MCG, ECG). The ultimate objective is their dissemination into routine practice and studies of fetal developmental disturbances with implications for programming of adult diseases. PMID:28186000
Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure.
Kloss, Olena; Eskin, N A Michael; Suh, Miyoung
2018-04-01
Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.
Buczinski, Sébastien M.C.; Fecteau, Gilles; Lefebvre, Réjean C.; Smith, Lawrence C.
2007-01-01
Cloning technology is associated with multiple losses throughout pregnancy and in the neonatal period. Any maternal or fetal disease can compromise pregnancy. A paucity of data are available on bovine fetal well-being in late pregnancy; development of well-being assessment methods might augment early diagnosis of abnormal pregnancy or fetal distress, allowing early intervention. This review presents the current knowledge on fetal well-being based on bovine, ovine, equine, and human studies, as well as interesting research parameters that have been studied in other species and not yet investigated in cattle. Transabdominal ultrasonography allows for diagnosis of large placentomes and hydrallantois that frequently accompany clone pregnancies. Fetal inactivity or large hyperechoic particles imaged within the fetal annexes are associated with fetal distress or death, and should be reassessed to confirm compromised pregnancy. Measurements of different fetal parameters (thoracic aorta, metacarpal or metatarsal thickness) could be reliable tools for early detection of the large offspring syndrome commonly found in cloned calves. PMID:17334032
Li, Yong; Gonzalez, Pablo; Zhang, Lubo
2012-01-01
Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492
Lemley, C O; Vonnahme, K A
2017-05-01
Compromised placental function can result in fetal growth restriction which is associated with greater risk of neonatal morbidity and mortality. Large increases in transplacental nutrient and waste exchange, which support the exponential increase in fetal growth during the last half of gestation, are dependent primarily on the rapid growth and vascularization of the uteroplacenta. The amplitude of melatonin secretion has been associated with improved oxidative status and altered cardiovascular function in several mammalian species; however, melatonin mediated alterations of uteroplacental capacity in sheep and cattle are lacking. Therefore, our laboratories are examining uteroplacental blood flow and fetal development during maternal melatonin supplementation. Using a mid- to late-gestation ovine model of intrauterine growth restriction, we examined uteroplacental blood flow and fetal growth during supplementation with 5 mg/d of dietary melatonin. Maternal nutrient restriction decreased uterine arterial blood flow, while melatonin supplementation increased umbilical arterial blood flow compared with non-supplemented controls. Although melatonin treatment did not rescue fetal weight in nutrient restricted ewes; we observed disproportionate fetal size and fetal organ development. Elevated fetal concentrations of melatonin may result in altered blood flow distribution during important time points of development. These melatonin specific responses on umbilical arterial hemodynamics and fetal development may be partially mediated through vascular melatonin receptors. Recently, we examined the effects of supplementing Holstein heifers with 20 mg/d of dietary melatonin during the last third of gestation. Uterine arterial blood flow was increased by 25% and total serum antioxidant capacity was increased by 43% in melatonin supplemented heifers vs. non-supplemented controls. In addition, peripheral concentrations of progesterone were decreased in melatonin supplemented heifers vs. non-supplemented controls. Using an in vitro model, melatonin treatment increased the activity of cytochrome P450 2C, a progesterone inactivating enzyme, which was blocked by treatment with the melatonin receptor antagonist, luzindole. Elucidating the consequences of specific hormonal supplements on the continual plasticity of placental function will allow us to determine important endogenous mediators of offspring growth and development.
Schmidt, Alexander; Schukat-Talamazzini, Ernst G; Zöllkau, Janine; Pytlik, Adelina; Leibl, Sophia; Kumm, Kathrin; Bode, Franziska; Kynass, Isabelle; Witte, Otto W; Schleussner, Ekkehard; Schneider, Uwe; Hoyer, Dirk
2018-07-01
Adverse prenatal environmental influences to the developing fetus are associated with mental and cardiovascular disease in later life. Universal developmental characteristics such as self-organization, pattern formation, and adaptation in the growing information processing system have not yet been sufficiently analyzed with respect to description of normal fetal development and identification of developmental disturbances. Fetal heart rate patterns are the only non-invasive order parameter of the developing autonomic brain available with respect to the developing complex organ system. The objective of the present study was to investigate whether universal indices, known from evolution and phylogeny, describe the ontogenetic fetal development from 20 weeks of gestation onwards. By means of a 10-fold cross-validated data-driven multivariate regression modeling procedure, relevant indices of heart rate variability (HRV) were explored using 552 fetal heart rate recordings, each lasting over 30 min. We found that models which included HRV indices of increasing fluctuation amplitude, complexity and fractal long-range dependencies largely estimated the maturation age (coefficients of determination 0.61-0.66). Consideration of these characteristics in prenatal care may not only have implications for early identification of developmental disturbances, but also for the development of system-theory-based therapeutic strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
Child health and the environment: the INMA Spanish Study.
Ribas-Fitó, Núria; Ramón, Rosa; Ballester, Ferran; Grimalt, Joan; Marco, Alfredo; Olea, Nicolás; Posada, Manuel; Rebagliato, Marisa; Tardón, Adonina; Torrent, Maties; Sunyer, Jordi
2006-09-01
The INMA (INfancia y Medio Ambiente [Environment and Childhood]) is a population-based cohort study in different Spanish cities, that focuses on prenatal environmental exposures and growth, development and health from early fetal life until childhood. The study focuses on five primary areas of research: (1) growth and physical development; (2) behavioural and cognitive development; (3) asthma and allergies; (4) sexual and reproductive development; and (5) environmental exposure pathways. The general aims of the project are: (1) to describe the degree of individual prenatal exposure to environmental pollutants, and the internal dose of chemicals during pregnancy, at birth and during childhood in Spain; (2) to evaluate the impact of the exposure to different contaminants on fetal and infant growth, health and development; (3) to evaluate the role of diet on fetal and infant growth, health and development; and (4) to evaluate the interaction between persistent pollutants, nutrients and genetic determinants on fetal and infant growth, health and development. Extensive assessments will be carried out on 3100 pregnant women and children. Data will be collected by physical examinations, questionnaires, interviews, ultrasound and biological samples. Pregnant women are being assessed at 12, 20 and 32 weeks of gestation to collect information about environmental exposures and fetal growth. The children will be followed until the age of 4 years.
The quality of fetal arm movements as indicators of fetal stress.
Reissland, Nadja; Francis, Brian
2010-12-01
Although a number of studies have found that maternal stress affects the fetus, it is unclear whether jerky fetal movements observed on ultrasound scans are indicative of fetal stress, or whether they are part of normal development. The present study was designed to examine the relationship between jerky fetal arm movements in relation to fetal age and stress. Video recordings were made of routine ultrasound scans of 57 fetuses (age range 8 to 33 weeks) classified into three age groups: 1st trimester (8-12 weeks, N=9), 2nd trimester (13-24 weeks, N=38), and 3rd trimester (26-33 weeks, N=10). Following previous research on stress behaviour in neonates, a fetal index of stress was derived from frequency of hiccup, back arch and rhythmical mouthing. Results indicated that while stress level was unrelated to fetal age, jerkiness of arm movements was significantly associated with the fetal stress index but not age. Our findings suggest that jerky arm movements in fetuses are suggestive of fetal stress. Copyright © 2010 Elsevier Ltd. All rights reserved.
Molecular genetics in fetal neurology.
Huang, Jin; Wah, Isabella Y M; Pooh, Ritsuko K; Choy, Kwong Wai
2012-12-01
Brain malformations, particularly related to early brain development, are a clinically and genetically heterogeneous group of fetal neurological disorders. Fetal cerebral malformation, predominantly of impaired prosencephalic development namely agenesis of the corpus callosum and septo-optic dysplasia, is the main pathological feature in fetus, and causes prominent neurodevelopmental retardation, and associated with congenital facial anomalies and visual disorders. Differential diagnosis of brain malformations can be extremely difficult even through magnetic resonance imaging. Advances in genomic and molecular genetics technologies have led to the identification of the sonic hedgehog pathways and genes critical to the normal brain development. Molecular cytogenetic and genetic studies have identified numeric and structural chromosomal abnormalities as well as mutations in genes important for the etiology of fetal neurological disorders. In this review, we update the molecular genetics findings of three common fetal neurological abnormalities, holoprosencephaly, lissencephaly and agenesis of the corpus callosum, in an attempt to assist in perinatal and prenatal diagnosis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry
NASA Astrophysics Data System (ADS)
Zourabian, Anna; Siegel, Andrew M.; Chance, Britton; Ramanujam, Nirmala; Rode, Martha; Boas, David A.
2000-10-01
Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both the fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are the first in the range of 670 - 720 nm and the second in the range of 825 - 925 nm. Further, we discuss the possible systematic errors during our measurements and their contribution to the obtained saturation results. We present feasibility studies for fetal pulse oximetry, monitored noninvasively through the maternal abdomen. Our preliminary experiments show that the fetal pulse can be discriminated from the maternal pulse and thus, in principle, the fetal arterial oxygen saturation can be obtained. We present the methodology for obtaining these data, and discuss the dependence of our measurements on the fetal position with respect to the optode assembly.
Jabbar, Shaima; Reuhl, Kenneth; Sarkar, Dipak K
2018-05-16
Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue. Pituitary tumors of fetal alcohol-exposed rats produced higher levels of hemorrhage-associated genes and proteins and multipotency genes and proteins. Cells of pituitary tumor of fetal alcohol exposed rat grew into tumor spheres in ultra-low attachment plate, expressed multipotency genes, formed an increased number of colonies, showed enhanced cell migration, and induced solid tumors following inoculation in immunodeficient mice. These data suggest that fetal alcohol exposure programs the pituitary to develop aggressive prolactinoma after estrogen treatment possibly due to increase in stem cell niche within the tumor microenvironment.
Kiessig, R; Wolf, G; Dietzmann, K
1983-05-01
Neurophysin was detected immunohistochemically in the hypothalamo-neurohypophysial system of Wistar rats not before fetal day 18. Formerly, neurophysin was identified on day 16 of intrauterine life using another breeding stock of Wistar rats, but the same immunohistochemical reagents. In pregnant rats, experimentally induced hypo/hyperthyroidism beginning with day 13 of gestation failed to show any evident influence on the first appearance of immunohistochemically detectable neurophysin during the fetal development. Otherwise, significant effects on fetal body growth and other external features as well as the fetal thyroid state and histochemically demonstrable thyroid peroxidase activity were shown. The influence of thiamazol on the fetal thyroid peroxidase points out a primary effect and indicates the permeability of the placenta to this antithyroid drug.
Fetal growth restriction is a major underlying cause of infant mortality worldwide. Unfortunately little is known about the mechanisms that drive compromised growth and the role of placental maladaptation on fetal development. In the current study placentas from male and female r...
Lo, Jamie O; Schabel, Matthias C; Roberts, Victoria H J; Wang, Xiaojie; Lewandowski, Katherine S; Grant, Kathleen A; Frias, Antonio E; Kroenke, Christopher D
2017-03-01
Prenatal alcohol exposure leads to impaired fetal growth, brain development, and stillbirth. Placental impairment likely contributes to these adverse outcomes, but the mechanisms and specific vasoactive effects of alcohol that links altered placental function to impaired fetal development remain areas of active research. Recently, we developed magnetic resonance imaging techniques in nonhuman primates to characterize placental blood oxygenation through measurements of T 2 * and perfusion using dynamic contrast-enhanced magnetic resonance imaging. The objective of this study was to evaluate the effects of first-trimester alcohol exposure on macaque placental function and to characterize fetal brain development in vivo. Timed-pregnant Rhesus macaques (n=12) were divided into 2 groups: control (n=6) and ethanol exposed (n=6). Animals were trained to self-administer orally either 1.5 g/kg/d of a 4% ethanol solution (equivalent to 6 drinks/d) or an isocaloric control fluid from preconception until gestational day 60 (term is G168). All animals underwent Doppler ultrasound scanning followed by magnetic resonance imaging that consisted of T 2 * and dynamic contrast-enhanced measurements. Doppler ultrasound scanning was used to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. After noninvasive imaging, animals underwent cesarean delivery for placenta collection and fetal necropsy at gestational day 110 (n=6) or 135 (n=6). Fetal weight and biparietal diameter were significantly smaller in ethanol-exposed animals compared with control animals at gestational day 110. By Doppler ultrasound scanning, placental volume blood flow was significantly lower (P=.04) at gestational day 110 in ethanol-exposed vs control animals. A significant reduction in placental blood flow was evident by dynamic contrast-enhanced magnetic resonance imaging. As we demonstrated recently, T 2 * values vary throughout the placenta and reveal gradients in blood deoxyhemoglobin concentration that range from highly oxygenated blood (long T 2 *) proximal to spiral arteries to highly deoxygenated blood (short T 2 *). Distributions of T 2 *throughout the placenta show significant global reduction in T 2 * (and hence high blood deoxyhemoglobin concentration) in ethanol-exposed vs control animals at gestational day 110 (P=.02). Fetal brain measurements indicated impaired growth and development at gestational day 110, but less so at gestational day 135 in ethanol-exposed vs control animals. Chronic first-trimester ethanol exposure significantly reduces placental perfusion and oxygen supply to the fetal vasculature later in pregnancy. These perturbations of placental function are associated with fetal growth impairments. However, differences between ethanol-exposed and control animals in placental function and fetal developmental outcomes were smaller at gestational day 135 than at gestational day 110. These findings are consistent with placental adaptation to early perturbations that allow for compensated placental function and maintenance of fetal growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome
Hatzirodos, Nicholas; Bayne, Rosemary A.; Irving-Rodgers, Helen F.; Hummitzsch, Katja; Sabatier, Laetitia; Lee, Sam; Bonner, Wendy; Gibson, Mark A.; Rainey, William E.; Carr, Bruce R.; Mason, Helen D.; Reinhardt, Dieter P.; Anderson, Richard A.; Rodgers, Raymond J.
2011-01-01
Although not often discussed, the ovaries of women with polycystic ovary syndrome (PCOS) show all the hallmarks of increased TGF-β activity, with increased amounts of fibrous tissue and collagen in the ovarian capsule or tunica albuginea and ovarian stroma. Recent studies suggest that PCOS could have fetal origins. Genetic studies of PCOS have also found linkage with a microsatellite located in intron 55 of the extracellular matrix protein fibrillin 3. Fibrillins regulate TGF-β bioactivity in tissues by binding latent TGF-β binding proteins. We therefore examined expression of fibrillins 1–3, latent TGF-β binding proteins 1–4, and TGF-β 1–3 in bovine and human fetal ovaries at different stages of gestation and in adult ovaries. We also immunolocalized fibrillins 1 and 3. The results indicate that TGF-β pathways operate during ovarian fetal development, but most important, we show fibrillin 3 is present in the stromal compartments of fetal ovaries and is highly expressed at a critical stage early in developing human and bovine fetal ovaries when stroma is expanding and follicles are forming. These changes in expression of fibrillin 3 in the fetal ovary could lead to a predisposition to develop PCOS in later life.—Hatzirodos, N., Bayne, R. A., Irving-Rodgers, H. F., Hummitzsch, K., Sabatier, L., Lee, S., Bonner, W., Gibson, M. A., Rainey, W. E., Carr, B. R., Mason, H. D., Reinhardt, D. P., Anderson, R. A., Rodgers, R. J. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. PMID:21411746
Fetal growth and risk of childhood asthma and allergic disease
Tedner, S G; Örtqvist, A K; Almqvist, C
2012-01-01
Introduction Early genetic and environmental factors have been discussed as potential causes for the high prevalence of asthma and allergic disease in the western world, and knowledge on fetal growth and its consequence on future health and disease development is emerging. Objective This review article is an attempt to summarize research on fetal growth and risk of asthma and allergic disease. Current knowledge and novel findings will be reviewed and open research questions identified, to give basic scientists, immunologists and clinicians an overview of an emerging research field. Methods PubMed-search on pre-defined terms and cross-references. Results Several studies have shown a correlation between low birth weight and/or gestational age and asthma and high birth weight and/or gestational age and atopy. The exact mechanism is not yet clear but both environmental and genetic factors seem to contribute to fetal growth. Some of these factors are confounders that can be adjusted for, and twin studies have been very helpful in this context. Suggested mechanisms behind fetal growth are often linked to the feto-maternal circulation, including the development of placenta and umbilical cord. However, the causal link between fetal growth restriction and subsequent asthma and allergic disease remains unexplained. New research regarding the catch-up growth following growth restriction has posited an alternative theory that diseases later on in life result from rapid catch-up growth rather than intrauterine growth restriction per se. Several studies have found a correlation between a rapid weight gain after birth and development of asthma or wheezing in childhood. Conclusion and clinical relevance Asthma and allergic disease are multifactorial. Several mechanisms seem to influence their development. Additional studies are needed before we fully understand the causal links between fetal growth and development of asthma and allergic diseases. PMID:22994341
[Time perception, maternal tasks, and maternal role behavior among pregnant Japanese women].
Yamamoto, A
1996-01-01
The relationship of time perception, maternal tasks, and maternal role behavior was examined in 140 pregnant Japanese women with a short-term longitudinal design. A model developed by Rubin provided the conceptual framework for this research. The Time Perception Scale. Time Production Method, and the Prefatory Maternal Response measured the study variables. Study results revealed significant differences in duration of time, time production, maternal-fetal attachment, and maternal role behavior before and after quickening(fetal movement)occurred. Medium to strong positive relationships among time orientation, maternal-fetal attachment, gratification, and maternal role behavior were found before and after movement. After quickening, a weak relationship between time orientation and duration was found. After controlling maternal-fetal attachment and gratification in pregnancy and maternal role, orientation in time perception accounted for significant amounts of variance in maternal role behavior before and after fetal movement. Results show that the process of becoming a mother, which started before quickening, increased in magnitude after fetal movement. The function of fetal movement is important in developing motherhood. In the process of becoming a mother, cognitive, emotional, and behavioral aspects in becoming a mother are inseparable from each other. Future orientation of time perception contributes to development of maternal role behavior. Having a future orientation during pregnancy may indicate hope or positive expectation. Based on these findings, several recommendations were proposed: (a)to study further the general process of becoming a mother and the role of time perception in developing motherhood, (b)to disseminate information to the general public about the process in development of motherhood, (c)to construct theory to explain the process of becoming a mother, and(d)to conduct future research to clarify the construct of time perception and attachment.
Exogenous peripheral blood mononuclear cells affect the healing process of deep-degree burns
Yu, Guanying; Li, Yaonan; Ye, Lan; Wang, Xinglei; Zhang, Jixun; Dong, Zhengxue; Jiang, Duyin
2017-01-01
The regenerative repair of deep-degree (second degree) burned skin remains a notable challenge in the treatment of burn injury, despite improvements being made with regards to treatment modality and the emergence of novel therapies. Fetal skin constitutes an attractive target for investigating scarless healing of burned skin. To investigate the inflammatory response during scarless healing of burned fetal skin, the present study developed a nude mouse model, which was implanted with normal human fetal skin and burned fetal skin. Subsequently, human peripheral blood mononuclear cells (PBMCs) were used to treat the nude mouse model carrying the burned fetal skin. The expression levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 were investigated during this process. In the present study, fetal skin was subcutaneously implanted into the nude mice to establish the murine model. Hematoxylin and eosin staining was used to detect alterations in the skin during the development of fetal skin and during the healing process of deep-degree burned fetal skin. The expression levels of MMP-9 and TIMP-1 were determined using immunochemical staining, and their staining intensity was evaluated by mean optical density. The results demonstrated that fetal skin subcutaneously implanted into the dorsal skin flap of nude mice developed similarly to the normal growth process in the womb. In addition, the scarless healing process was clearly observed in the mice carrying the burned fetal skin. A total of 2 weeks was required to complete scarless healing. Following treatment with PBMCs, the burned fetal skin generated inflammatory factors and enhanced the inflammatory response, which consequently resulted in a reduction in the speed of healing and in the formation of scars. Therefore, exogenous PBMCs may alter the lowered immune response environment, which is required for scarless healing, resulting in scar formation. In conclusion, the present study indicated that the involvement of inflammatory cells is important during the healing process of deep-degree burned skin, and MMP-9 and TIMP-1 may serve important roles in the process of scar formation. PMID:28990101
Effects of Fetal Exposure to Asian Sand Dust on Development and Reproduction in Male Offspring.
Yoshida, Seiichi; Ichinose, Takamichi; Arashidani, Keiichi; He, Miao; Takano, Hirohisa; Shibamoto, Takayuki
2016-11-23
In recent experimental studies, we reported the aggravating effects of Asian sand dust (ASD) on male reproduction in mice. However, the effects of fetal ASD exposure on male reproduction have not been investigated. The present study investigated the effects of fetal ASD exposure on reproduction in male offspring. Using pregnant CD-1 mice, ASD was administered intratracheally on days 7 and 14 of gestation, and the reproduction of male offspring was determined at 5, 10, and 15 weeks after birth. The secondary sex ratio was significantly lower in the fetal ASD-exposed mice than in the controls. Histologic examination showed partial vacuolation of seminiferous tubules in immature mice. Moreover, daily sperm production (DSP) was significantly less in the fetal ASD-exposed mice than in the controls. DSP in the fetal ASD-exposed mice was approximately 10% less than the controls at both 5 and 10 weeks. However, both the histologic changes and the DSP decrease were reversed as the mice matured. These findings suggest that ASD exposure affects both the fetal development and the reproduction of male offspring. In the future, it will be necessary to clarify the onset mechanisms of ASD-induced male fetus death and male reproductive disorders.
EFFECTS OF ENDOCRINE DISRUPTING CHEMICALS (EDCS) ON FETAL TESTES HORMONE PRODUCTION
Effects of Endocrine Disrupting Chemicals (EDCs) on Fetal Testes Hormone Production
CS Lambright, VS Wilson, JR Furr, CJ Wolf, N Noriega, LE Gray, Jr
US EPA, ORD/NHEERL/RTD, RTP, NC 27711
Exposure to EDCs during critical periods of fetal sexual development can have...
Sonography in Fetal Birth Weight Estimation
ERIC Educational Resources Information Center
Akinola, R. A.; Akinola, O. I.; Oyekan, O. O.
2009-01-01
The estimation of fetal birth weight is an important factor in the management of high risk pregnancies. The information and knowledge gained through this study, comparing a combination of various fetal parameters using computer assisted analysis, will help the obstetrician to screen the high risk pregnancies, monitor the growth and development,…
Signal separation by nonlinear projections: The fetal electrocardiogram
NASA Astrophysics Data System (ADS)
Schreiber, Thomas; Kaplan, Daniel T.
1996-05-01
We apply a locally linear projection technique which has been developed for noise reduction in deterministically chaotic signals to extract the fetal component from scalar maternal electrocardiographic (ECG) recordings. Although we do not expect the maternal ECG to be deterministic chaotic, typical signals are effectively confined to a lower-dimensional manifold when embedded in delay space. The method is capable of extracting fetal heart rate even when the fetal component and the noise are of comparable amplitude. If the noise is small, more details of the fetal ECG, like P and T waves, can be recovered.
NASA Astrophysics Data System (ADS)
Zourabian, Anna; Boas, David A.
2001-06-01
Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are: the first in the range of 670-720nm and the second in the range of 825-925nm. Further we discuss the possible systematic errors during our measurements, and their contribution to the obtained saturation results.
Fetal myosin immunoreactivity in human dystrophic muscle.
Schiaffino, S; Gorza, L; Dones, I; Cornelio, F; Sartore, S
1986-01-01
We report immunofluorescence observations on normal and dystrophic human muscle using an antibody (anti-bF) raised against bovine fetal myosin and specific for fetal myosin heavy chains. In rat skeletal muscle, anti-bF was previously found to react selectively with myosin isoforms expressed during fetal and early postnatal development and in regenerating muscles. Anti-bF stained most fibers in human fetal and neonatal muscle, whereas only nuclear chain fibers of muscle spindles were labeled in normal adult muscle. In muscle biopsies from patients with Duchenne's muscular dystrophy, numerous extrafusal fibers were stained: some were small regenerating fibers, others were larger fibers presumably resulting from previous regenerative events. Fetal myosin immunoreactivity in Duchenne's dystrophy appears to reflect the reexpression of fetal-specific myosin isoforms and provides a new valuable tool for identifying regenerating fibers and following their destiny in dystrophic muscle.
USDA-ARS?s Scientific Manuscript database
Placental development is important for fetal development and nutrient and waste transport. The pig, a litter bearing animal, has an epitheliochorial placenta that forms a noninvasive attachment with the uterine endometrium. Insufficient placental development is one of the primary causes of fetal dea...
Murase, Harutaka; Endo, Yoshiro; Tsuchiya, Takeru; Kotoyori, Yasumitsu; Shikichi, Mitsumori; Ito, Katsumi; Sato, Fumio; Nambo, Yasuo
2014-07-01
It has not been common to perform regular ultrasound examination of the fetus in equine practice, due to the increasing volume of the uterus caused by fetal development. The convex three-dimensional transducer is bulb-shaped and is able to observe wide areas. In addition, its operation is simple, making it easy to create appropriate angles for various indices using a transrectal approach. The aim of this study was to measure Thoroughbred fetal growth indices throughout gestation using a convex transducer and to clarify the detectable period of some indices for clinical use. We demonstrated changes in fetal indices, such as crown rump length (CRL), fetal heart rate (FHR), fetal eye and kidney and the combined thickness of uterus and placenta (CTUP). CTUP increased from 30 weeks of gestation, and FHR peaked at 8 weeks and then decreased to term. CRL could be observed until 13 weeks due to its wide angle, longer than in previous reports. Fetal eye and kidney could be observed from 10 and 28 weeks, respectively, and these increased with pregnancy progress. The present results showed the advantage of transrectal examination using a convex transducer for evaluation of normal fetal development. Although ultrasonographic examination in mid- to late-gestation is not common in equine reproductive practice, our comprehensive results would be a useful basis for equine pregnancy examination.
Signore, Caroline; Freeman, Roger K; Spong, Catherine Y
2009-03-01
In August 2007, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institutes of Health Office of Rare Diseases, the American College of Obstetricians and Gynecologists, and the American Academy of Pediatrics cosponsored a 2-day workshop to reassess the body of evidence supporting antepartum assessment of fetal well-being, identify key gaps in the evidence, and formulate recommendations for further research. Participants included experts in obstetrics and fetal physiology and representatives from relevant stakeholder groups and organizations. This article is a summary of the discussions at the workshop, including synopses of oral presentations on the epidemiology of stillbirth and fetal neurological injury, fetal physiology, techniques for antenatal monitoring, and maternal and fetal indications for monitoring. Finally, a synthesis of recommendations for further research compiled from three breakout workgroups is presented.
Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte
2013-01-01
Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651
Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.
2014-01-01
ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354
Lee, Kwang Jin; Lee, Boreom
2016-01-01
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR. PMID:27376296
Lee, Kwang Jin; Lee, Boreom
2016-07-01
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR.
Matsumoto, Tadashi; Miyakoshi, Kei; Saisho, Yoshifumi; Ishii, Tomohiro; Ikenoue, Satoru; Kasuga, Yoshifumi; Kadohira, Ikuko; Sato, Seiji; Momotani, Naoko; Minegishi, Kazuhiro; Yoshimura, Yasunori
2013-01-01
High titer of maternal thyroid-stimulating hormone receptor antibody (TRAb) in patients with Graves' disease could cause fetal hyperthyroidism during pregnancy. Clinical features of fetal hyperthyroidism include tachycardia, goiter, growth restriction, advanced bone maturation, cardiomegaly, and fetal death. The recognition and treatment of fetal hyperthyroidism are believed to be important to optimize growth and intellectual development in affected fetuses. We herein report a case of fetal treatment in two successive siblings showing in utero hyperthyroid status in a woman with a history of ablative treatment for Graves' disease. The fetuses were considered in hyperthyroid status based on high levels of maternal TRAb, a goiter, and persistent tachycardia. In particular, cardiac failure was observed in the second fetus. With intrauterine treatment using potassium iodine and propylthiouracil, fetal cardiac function improved. A high level of TRAb was detected in the both neonates. To the best of our knowledge, this is the first report on the changes of fetal cardiac function in response to fetal treatment in two siblings showing in utero hyperthyroid status. This case report illustrates the impact of prenatal medication via the maternal circulation for fetal hyperthyroidism and cardiac failure.
Registration of 3D fetal neurosonography and MRI☆
Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.
2013-01-01
We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169
NASA Astrophysics Data System (ADS)
Habas, Piotr A.; Kim, Kio; Chandramohan, Dharshan; Rousseau, Francois; Glenn, Orit A.; Studholme, Colin
2009-02-01
Recent advances in MR and image analysis allow for reconstruction of high-resolution 3D images from clinical in utero scans of the human fetal brain. Automated segmentation of tissue types from MR images (MRI) is a key step in the quantitative analysis of brain development. Conventional atlas-based methods for adult brain segmentation are limited in their ability to accurately delineate complex structures of developing tissues from fetal MRI. In this paper, we formulate a novel geometric representation of the fetal brain aimed at capturing the laminar structure of developing anatomy. The proposed model uses a depth-based encoding of tissue occurrence within the fetal brain and provides an additional anatomical constraint in a form of a laminar prior that can be incorporated into conventional atlas-based EM segmentation. Validation experiments are performed using clinical in utero scans of 5 fetal subjects at gestational ages ranging from 20.5 to 22.5 weeks. Experimental results are evaluated against reference manual segmentations and quantified in terms of Dice similarity coefficient (DSC). The study demonstrates that the use of laminar depth-encoded tissue priors improves both the overall accuracy and precision of fetal brain segmentation. Particular refinement is observed in regions of the parietal and occipital lobes where the DSC index is improved from 0.81 to 0.82 for cortical grey matter, from 0.71 to 0.73 for the germinal matrix, and from 0.81 to 0.87 for white matter.
Placental hormones, nutrition, and fetal development.
Mulay, S; Browne, C A; Varma, D R; Solomon, S
1980-02-01
Fetal growth retardation due to maternal malnutrition is widespread especially in the Third World. Little is known about the mechanisms that regulate the growth of the fetus and placenta during protein malnutrition. It is known that the placental size and levels of circulating placental hormones such as human chorionic gonadotrophins (hCG), human placental lactogen (hPL), and estrogens are affected by the nutritional status of the mother. There is suggestive evidence that during malnutrition, hPL may increase lipolysis and exert a glucose sparing effect in the mother, thereby promoting glucose availability to the fetus. We have studied the influence of dietary protein deficiency on the binding of dexamethasone to the specific cytosol receptors in adult and fetal tissues. A low protein diet in adult male rats is associated with a decrease in dexamethasone binding to liver cytosol receptors. On the other hand, protein deprivation in pregnant female rats leads to an increase in dexamethasone binding to liver cytosol receptors of both the mother and fetus. However, the influences of maternal protein deprivation on dexamethasone receptors in the fetal liver and lungs are not similar. At 21 days gestation the binding of dexamethasone to fetal lung receptors of protein-deficient mothers is lower than that in the controls. These differences at a critical time in the fetal lung development indicate that a fall in receptors for dexamethasone may lead to impaired phospholipid synthesis in fetuses of protein-deficient mothers and point to the importance of nutritional factors in the biochemistry of fetal development.
Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.
Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi
2007-05-01
Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.
Effects of chronic carbon monoxide exposure on fetal growth and development in mice
2011-01-01
Background Carbon monoxide (CO) is produced endogenously, and can also be acquired from many exogenous sources: ie. cigarette smoking, automobile exhaust. Although toxic at high levels, low level production or exposure lends to normal physiologic functions: smooth muscle cell relaxation, control of vascular tone, platelet aggregation, anti- inflammatory and anti-apoptotic events. In pregnancy, it is unclear at what level maternal CO exposure becomes toxic to the fetus. In this study, we hypothesized that CO would be embryotoxic, and we sought to determine at what level of chronic CO exposure in pregnancy embryo/fetotoxic effects are observed. Methods Pregnant CD1 mice were exposed to continuous levels of CO (0 to 400 ppm) from conception to gestation day 17. The effect on fetal/placental growth and development, and fetal/maternal CO concentrations were determined. Results Maternal and fetal CO blood concentrations ranged from 1.12- 15.6 percent carboxyhemoglobin (%COHb) and 1.0- 28.6%COHb, respectively. No significant difference was observed in placental histological morphology or in placental mass with any CO exposure. At 400 ppm CO vs. control, decreased litter size and fetal mass (p < 0.05), increased fetal early/late gestational deaths (p < 0.05), and increased CO content in the placenta and the maternal spleen, heart, liver, kidney and lung (p < 0.05) were observed. Conclusions Exposure to levels at or below 300 ppm CO throughout pregnancy has little demonstrable effect on fetal growth and development in the mouse. PMID:22168775
Baler, Ruben D.; Volkow, Nora D.; Fowler, Joanna S.; Benveniste, Helene
2008-01-01
Smoking is the leading cause of preventable illness in the world today. Prenatal cigarette smoke exposure (PCSE) is a particularly insidious form because so many of its associated health effects befall the unborn child and produce behavioural outcomes that manifest themselves only years later. Among these are the associations between PCSE and conduct disorders, which have been mostly ascribed to the deleterious effects of nicotine on the fetal brain. Here we hypothesize that inhibition of brain monoamine oxidase (MAO) during fetal brain development, secondary to maternal cigarette smoking and in addition to nicotine, is a likely contributor to this association. MAOs play a central role in monoaminergic balance in the brain, and their inhibition during fetal development — but not during adult life — is known to result in an aggressive phenotype in laboratory animals. This paper provides theoretical and experimental support for the notion that cigarette smoke–induced inhibition of MAO in the fetal brain, particularly when it occurs in combination with polymorphisms in the MAOA gene that lead to lower enzyme concentration in the brain, may result in brain morphologic and functional changes that enhance the risk of irritability, poor self-control and aggression in the offspring. It also encourages research to evaluate whether the interaction of smoking exposure during fetal development and MAOA genotype increases the risk for conduct disorder over that incurred by mere fetal exposure to tobacco smoke. PMID:18592036
Up Front, in Hope: The Value of Early Intervention for Children with Fetal Alcohol Syndrome.
ERIC Educational Resources Information Center
Harwood, Maureen; Kleinfeld, Judith Smilg
2002-01-01
Differentiates fetal alcohol syndrome (FAS) from fetal alcohol effects (FAE) and discusses difficulties in diagnosing these conditions. Describes the effects of FAS/FAE on young children, detailing impact on sensory processing, focusing attention, and cognitive development in infants, toddlers, and preschoolers. Presents suggestions for caregivers…
ERIC Educational Resources Information Center
Gahagan, Sheila; Sharpe, Tanya Telfair; Brimacombe, Michael; Fry-Johnson, Yvonne; Levine, Robert; Mengel, Mark; O'Connor, Mary; Paley, Blair; Adubato, Susan; Brenneman, George
2007-01-01
Objectives: Prenatal exposure to alcohol interferes with fetal development and is the leading preventable cause of birth defects and developmental disabilities. The purpose of this study was to identify current knowledge, diagnosis, prevention, and intervention practices related to fetal alcohol syndrome and related conditions by members of the…
Prenatal diagnosis of fetal encephalomalacia after maternal diabetic ketoacidosis.
Love, Rozalyn; Lee, Amy; Matiasek, April; Carter, William; Ylagan, Marissa
2014-11-01
Introduction Encephalomalacia in a developing fetus is a rare and devastating neurological finding on radiologic imaging. Maternal diabetic ketoacidosis (DKA) can lead to metabolic and vascular derangements which can cause fetal encephalomalacia. Case We report the case of a 27-year-old pregnant woman with White's Class C diabetes mellitus who presented in the 25th week of gestation with DKA. Four weeks after her discharge, marked fetal cerebral ventriculomegaly was noted on ultrasound. A subsequent fetal magnetic resonance imaging (MRI) demonstrated extensive, symmetric cystic encephalomalacia, primarily involving both cerebral hemispheres. The pregnancy was continued with close fetal and maternal surveillance. The patient underwent a repeat cesarean delivery in her 37th week. The infant had a 1 month neonatal intensive care unit stay with care rendered by a multiple disciplinary team of pediatric subspecialists. The postnatal course was complicated by global hypotonia, poor feeding, delayed development and ultimately required anticonvulsants for recurrent seizures. He died at the age of 9 months from aspiration during a seizure. Discussion Although the maternal mortality from DKA has declined, DKA still confers significant neurological fetal morbidity to its survivors.
Prenatal Diagnosis of Fetal Encephalomalacia after Maternal Diabetic Ketoacidosis
Love, Rozalyn; Lee, Amy; Matiasek, April; Carter, William; Ylagan, Marissa
2014-01-01
Introduction Encephalomalacia in a developing fetus is a rare and devastating neurological finding on radiologic imaging. Maternal diabetic ketoacidosis (DKA) can lead to metabolic and vascular derangements which can cause fetal encephalomalacia. Case We report the case of a 27-year-old pregnant woman with White's Class C diabetes mellitus who presented in the 25th week of gestation with DKA. Four weeks after her discharge, marked fetal cerebral ventriculomegaly was noted on ultrasound. A subsequent fetal magnetic resonance imaging (MRI) demonstrated extensive, symmetric cystic encephalomalacia, primarily involving both cerebral hemispheres. The pregnancy was continued with close fetal and maternal surveillance. The patient underwent a repeat cesarean delivery in her 37th week. The infant had a 1 month neonatal intensive care unit stay with care rendered by a multiple disciplinary team of pediatric subspecialists. The postnatal course was complicated by global hypotonia, poor feeding, delayed development and ultimately required anticonvulsants for recurrent seizures. He died at the age of 9 months from aspiration during a seizure. Discussion Although the maternal mortality from DKA has declined, DKA still confers significant neurological fetal morbidity to its survivors. PMID:25452892
Acute behavioral effects of intrapleural OK-432 (Picibanil) administration in preterm fetal sheep.
Cowie, Rosalind V; Stone, Peter R; Parry, Emma; Jensen, Ellen C; Gunn, Alistair J; Bennet, Laura
2009-01-01
To develop a model to study the fetal effects of intrapleural infusion of OK-432 (Picibanil), a pleurodesis agent derived from killed Gram-positive streptococci. OK-432 (0.1 mg, n = 5), or normal saline (n = 5) were infused over 20 min into the pleural space of chronically instrumented preterm fetal sheep at 0.7 gestation. Fetal physiological parameters, including breathing and nuchal activity were monitored in utero from 6 h before infusion until 12 h afterward, and fetuses were killed after 7 days recovery. OK-432 was associated with transient suppression of fetal EEG activity, breathing and body movements from 3-6 h after infusion. Hypotension and hypoxia did not occur. At postmortem, local pleural adhesions were seen around the site of OK-432 infusion but not in saline treated fetuses. Intrapleural administration of OK-432 is associated with marked but transient fetal behavioral effects. This model will enable preclinical investigation of the neural and cardiovascular safety of OK-432 at a clinical relevant stage of development. Copyright 2009 S. Karger AG, Basel.
Newby, Elizabeth A.; Myers, Dean A.
2015-01-01
In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus. PMID:26173460
Progesterone from maternal circulation binds to progestin receptors in fetal brain.
Wagner, Christine K; Quadros-Mennella, Princy
2017-06-01
Steroid hormones activate nuclear receptors which, as transcription factors, can regulate critical aspects of neural development. Many regions of the rat forebrain, midbrain and hindbrain express progestin receptors (PR) during perinatal life, suggesting that progesterone may play an important role in the development of the brain. An immunohistochemical approach using two antibodies with differential recognition of ligand-bound PR was used to examine whether fetuses are exposed to maternal progesterone during pregnancy and whether progesterone from maternal circulation can bind to PR within the fetal brain. Findings demonstrate that maternal and fetal serum progesterone levels are positively correlated at the end of gestation, suggesting a common source of progesterone in mothers and fetuses (e.g., the maternal ovary). Additional findings suggest that administration of exogenous progesterone to mothers not only increases fetal serum progesterone levels within 2 h, but appears to increase ligand-bound PR in fetal brain. These findings suggest that progesterone of maternal origin may play a previously overlooked role in neural development. In addition, there are implications for the ongoing prophylactic use of synthetic progestins in pregnant women for the prevention of premature birth. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 767-774, 2017. © 2016 Wiley Periodicals, Inc.
STORY AND HISTORY IN FETAL BEHAVIOR RESEARCH.
Brakke, Karen
2015-09-01
In their monograph, DiPietro, Costigan, and Voegtline present an important and thoughtful portrait of low-risk fetal development during the last trimester of gestation, and they also pay tribute to the Fels Longitudinal Study investigators' early work in this area. In this commentary, the history and legacy of the Fels Institute is further explored within the broader context of fetal research, and DiPietro et al.'s findings are placed in alignment with contemporary dynamic systems' theoretical approaches that emphasize longitudinal analysis of emergent behavior and process during early development. The commentary puts forth the assertion that the work reported by DiPietro and her colleagues tells a story that sets the stage for a new generation of technology-enhanced and culturally expanded investigations of fetal behavior. © 2015 The Society for Research in Child Development, Inc.
Wang, Yan; Fu, Wei; Liu, Jing
2016-01-01
Intrauterine growth restriction (IUGR) is associated with higher rates of fetal, perinatal, and neonatal morbidity and mortality. The consequences of IUGR include short-term metabolic, hematological and thermal disturbances that lead to metabolic syndrome in children and adults. Additionally, IUGR severely affects short- and long-term fetal brain development and brain function (including motor, cognitive and executive function) and neurobehavior, especially neuropsychology. This review details the adverse effects of IUGR on fetal brain development and discusses intervention strategies.
Influence of ECG sampling rate in fetal heart rate variability analysis.
De Jonckheere, J; Garabedian, C; Charlier, P; Champion, C; Servan-Schreiber, E; Storme, L; Debarge, V; Jeanne, M; Logier, R
2017-07-01
Fetal hypoxia results in a fetal blood acidosis (pH<;7.10). In such a situation, the fetus develops several adaptation mechanisms regulated by the autonomic nervous system. Many studies demonstrated significant changes in heart rate variability in hypoxic fetuses. So, fetal heart rate variability analysis could be of precious help for fetal hypoxia prediction. Commonly used fetal heart rate variability analysis methods have been shown to be sensitive to the ECG signal sampling rate. Indeed, a low sampling rate could induce variability in the heart beat detection which will alter the heart rate variability estimation. In this paper, we introduce an original fetal heart rate variability analysis method. We hypothesize that this method will be less sensitive to ECG sampling frequency changes than common heart rate variability analysis methods. We then compared the results of this new heart rate variability analysis method with two different sampling frequencies (250-1000 Hz).
Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease.
Coffey, Lark L; Keesler, Rebekah I; Pesavento, Patricia A; Woolard, Kevin; Singapuri, Anil; Watanabe, Jennifer; Cruzen, Christina; Christe, Kari L; Usachenko, Jodie; Yee, JoAnn; Heng, Victoria A; Bliss-Moreau, Eliza; Reader, J Rachel; von Morgenland, Wilhelm; Gibbons, Anne M; Jackson, Kenneth; Ardeshir, Amir; Heimsath, Holly; Permar, Sallie; Senthamaraikannan, Paranthaman; Presicce, Pietro; Kallapur, Suhas G; Linnen, Jeffrey M; Gao, Kui; Orr, Robert; MacGill, Tracy; McClure, Michelle; McFarland, Richard; Morrison, John H; Van Rompay, Koen K A
2018-06-20
Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.
Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities
Wilber, Andrew; Nienhuis, Arthur W.
2011-01-01
In humans, embryonic, fetal, and adult hemoglobins are sequentially expressed in developing erythroblasts during ontogeny. For the past 40 years, this process has been the subject of intensive study because of its value to enlighten the biology of developmental gene regulation and because fetal hemoglobin can significantly ameliorate the clinical manifestations of both sickle cell disease and β-thalassemia. Understanding the normal process of loss of fetal globin expression and activation of adult globin expression could potentially lead to new therapeutic approaches for these hemoglobin disorders. Herein, we briefly review the history of the study of hemoglobin switching and then focus on recent discoveries in the field that now make new therapeutic approaches seem feasible in the future. Erythroid-specific knockdown of fetal gene repressors or enforced expression of fetal gene activators may provide clinically applicable approaches for genetic treatment of hemoglobin disorders that would benefit from increased fetal hemoglobin levels. PMID:21321359
Effect of fetal alcohol exposure on adult symptoms of nicotine, alcohol, and drug dependence.
Yates, W R; Cadoret, R J; Troughton, E P; Stewart, M; Giunta, T S
1998-06-01
The objective of this study is to examine the effect of fetal alcohol exposure on later substance dependence using an adoption study method. One hundred ninety-seven adoptees were interviewed for substance abuse disorders, including nicotine, alcohol, and drug dependence. Twenty-one adoptees had mothers who drank during pregnancy. Adoptees with fetal alcohol exposure were compared with those without fetal alcohol exposure for symptoms of adult nicotine, alcohol, and drug dependence. Adoptee symptom counts for alcohol, drug, and nicotine dependence were higher for those exposed to alcohol in utero. The effect of fetal alcohol exposure remained after controlling for gender, biological parent alcohol dependence diagnosis, birth weight, gestational age and other environmental variables. Fetal alcohol exposure may produce increased risk for later nicotine, alcohol, and drug dependence. Possible effects of fetal alcohol exposure on development of adult substance use patterns needs attention in genetic studies of substance abuse.
Spyridou, K; Chouvarda, I; Hadjileontiadis, L; Maglaveras, N
2018-01-30
This work aims to investigate the impact of gestational age and fetal gender on fetal heart rate (FHR) tracings. Different linear and nonlinear parameters indicating correlation or complexity were used to study the influence of fetal age and gender on FHR tracings. The signals were recorded from 99 normal pregnant women in a singleton pregnancy at gestational ages from 28 to 40 weeks, before the onset of labor. There were 56 female fetuses and 43 male. Analysis of FHR shows that the means as well as measures of irregularity of FHR, such as approximate entropy and algorithmic complexity, decrease as gestation progresses. There were also indications that mutual information and multiscale entropy were lower in male fetuses in early pregnancy. Fetal age and gender seem to influence FHR tracings. Taking this into consideration would improve the interpretation of FHR monitoring.
Hypoxia and fetal heart development.
Patterson, A J; Zhang, L
2010-10-01
Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.
ACR Appropriateness Criteria Assessment of Fetal Well-Being.
Simpson, Lynn; Khati, Nadia J; Deshmukh, Sandeep P; Dudiak, Kika M; Harisinghani, Mukesh G; Henrichsen, Tara L; Meyer, Benjamin J; Nyberg, David A; Poder, Liina; Shipp, Thomas D; Zelop, Carolyn M; Glanc, Phyllis
2016-12-01
Although there is limited evidence that antepartum testing decreases the risk for fetal death in low-risk pregnancies, women with high-risk factors for stillbirth should undergo antenatal fetal surveillance. The strongest evidence supporting antepartum testing pertains to pregnancies complicated by intrauterine fetal growth restriction secondary to uteroplacental insufficiency. The main ultrasound-based modalities to determine fetal health are the biophysical profile, modified biophysical profile, and duplex Doppler velocimetry. In patients at risk for cardiovascular compromise, fetal echocardiography may also be indicated to ensure fetal well-being. Although no single antenatal test has been shown to be superior, all have high negative predictive values. Weekly or twice-weekly fetal testing has become the standard practice in high-risk pregnancies. The timing for the initiation of assessments of fetal well-being should be tailored on the basis of the risk for stillbirth and the likelihood of survival with intervention. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (the RAND/UCLA Appropriateness Method and the Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Gastrointestinal and pancreatic hormones in the human fetus and mother at 18-21 weeks of gestation.
Adrian, T E; Soltesz, G; MacKenzie, I Z; Bloom, S R; Aynsley-Green, A
1995-01-01
Several gastrointestinal hormones appear to play an important developmental role in the newborn, particularly in preterm neonates. Although the cells producing these peptides develop towards the end of the first trimester, fetal secretion of these regulatory peptides has not hitherto been demonstrated. Using samples collected by fetoscopy at 19-21 weeks of gestation we have measured concentrations of several gastrointestinal and pancreatic hormones. Maternal venous and amniotic fluid hormone concentrations were measured simultaneously. Concentrations of the pancreatic hormones, insulin, glucagon and pancreatic polypeptide (PP) were similar in fetal and maternal blood. Gastrin and motilin were present in the fetal circulation but at about 30% (p < 0.05) and 60% (p < 0.01) of the maternal levels, respectively. In contrast, enteroglucagon concentrations were more than twofold higher in the fetal circulation compared with maternal levels (p < 0.05). Concentrations of gastric inhibitory polypeptide (GIP) in fetal blood were higher than levels in maternal blood but not significantly. Concentrations of GIP (p < 0.001) were higher in the amniotic fluid than the fetal circulation. Gastrin and glucagon levels were similar in amniotic fluid and fetal blood. In contrast, PP and motilin were present in amniotic fluid, but at lower concentrations than in fetal blood. Enteroglucagon was not detectable in amniotic fluid. In conclusion, several alimentary hormones are secreted in the fetus at midterm. Since these peptides have trophic, secretory and motor effects on the gut, it is likely that these regulatory peptides are involved in the functional development of the fetal intestine.
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
Camp, J. Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A.; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B.; Treutlein, Barbara
2015-01-01
Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. PMID:26644564
Fetal programming of appetite and obesity.
Breier, B H; Vickers, M H; Ikenasio, B A; Chan, K Y; Wong, W P
2001-12-20
Obesity and related metabolic disorders are prevalent health issues in modern society and are commonly attributed to lifestyle and dietary factors. However, the mechanisms by which environmental factors modulate the physiological systems that control weight regulation and the aetiology of metabolic disorders, which manifest in adult life, may have their roots before birth. The 'fetal origins' or 'fetal programming' paradigm is based on the observation that environmental changes can reset the developmental path during intrauterine development leading to obesity and cardiovascular and metabolic disorders later in life. The pathogenesis is not based on genetic defects but on altered genetic expression as a consequence of an adaptation to environmental changes during fetal development. While many endocrine systems can be affected by fetal programming recent experimental studies suggest that leptin and insulin resistance are critical endocrine defects in the pathogenesis of programming-induced obesity and metabolic disorders. However, it remains to be determined whether postnatal obesity is a consequence of programming of appetite regulation and whether hyperphagia is the main underlying cause of the increased adiposity and the development of metabolic disorders.
von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T
2016-02-01
The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.
2015-01-01
Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506
Gallaher, B W; Breier, B H; Keven, C L; Harding, J E; Gluckman, P D
1998-12-01
It has been demonstrated in several animal models that undernutrition in utero has significant long lasting effects on subsequent fetal and postnatal development. To address the hypothesis that the insulin-like growth factors (IGFs) may mediate such effects, our study examined whether a period of periconceptual maternal undernutrition could have a lasting influence on the IGF axis in the fetal sheep. Ewes were either allowed to feed ad libitum or kept undernourished from day 60 prior to mating until day 30 after conception, and then both groups were allowed to feed ad libitum. These groups were further divided at day 105 of gestation, either being fed ad libitum or undernourished until day 115 of gestation. Fetal and maternal blood samples were obtained at both day 105 and 115 of gestation. We describe the development of a specific homologous RIA to measure ovine IGF-binding protein-3 (IGFBP-3) in fetal and maternal sheep plasma. Fetal plasma IGFBP-3 and IGF-I concentrations were significantly (P<0.05) reduced at day 115 of gestation after maternal undernutrition. The fetal plasma IGFBP-2 levels were unchanged. The degree of reduction in fetal plasma IGFBP-3 and IGF-I between day 105 and 115 of gestation as a response to acute maternal undernutrition was significantly greater (P<0.05) in fetuses of mothers receiving low periconceptual nutrition. The response of maternal plasma IGFBP-3 and IGF-I to undernutrition did not depend on the level of periconceptual nutrition. Western blot data indicate that changes in either maternal or fetal plasma IGFBP-3 concentrations were not the result of increased proteolytic activity. These results suggest that exposure to maternal periconceptual undernutrition reprograms IGFBP-3 and IGF-I regulation in the developing sheep fetus, altering its response to undernutrition in late gestation.
Bertolaccini, Maria Laura; Contento, Gregorio; Lennen, Ross; Sanna, Giovanni; Blower, Philip J; Ma, Michelle T; Sunassee, Kavitha; Girardi, Guillermina
2016-12-01
Placental ischemic disease and adverse pregnancy outcomes are frequently observed in patients with antiphospholipid syndrome (APS). Despite the administration of conventional antithrombotic treatment a significant number of women continue to experience adverse pregnancy outcomes, with uncertain prevention and management. Efforts to develop effective pharmacological strategies for refractory obstetric APS cases will be of significant clinical benefit for both mothers and fetuses. Although the antimalarial drug, hydroxychloroquine (HCQ) is increasingly used to treat pregnant women with APS, little is known about its efficacy and mechanism of action of HCQ. Because complement activation plays a crucial and causative role in placental ischemia and abnormal fetal brain development in APS we hypothesised that HCQ prevents these pregnancy complications through inhibition of complement activation. Using a mouse model of obstetric APS that closely resembles the clinical condition, we found that HCQ prevented fetal death and the placental metabolic changes -measured by proton magnetic resonance spectroscopy in APS-mice. Using 111 In labelled antiphospholipid antibodies (aPL) we identified the placenta and the fetal brain as the main organ targets in APS-mice. Using this same method, we found that HCQ does not inhibit aPL binding to tissues as was previously suggested from in vitro studies. While HCQ did not affect aPL binding to fetal brain it prevented fetal brain abnormal cortical development. HCQ prevented complement activation in vivo and in vitro. Complement C5a levels in serum samples from APS patients and APS-mice were lower after treatment with HCQ while the antibodies titres remained unchanged. HCQ prevented not only placental insufficiency but also abnormal fetal brain development in APS. By inhibiting complement activation, HCQ might also be an effective antithrombotic therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geneser, S; Paulsson, A; Sneed, P
Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to themore » thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.« less
Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta
Brett, Kendra Elizabeth; Ferraro, Zachary Michael; Yockell-Lelievre, Julien; Gruslin, Andrée; Adamo, Kristi Bree
2014-01-01
Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth. PMID:25222554
Interdisciplinary Team Huddles for Fetal Heart Rate Tracing Review.
Thompson, Lisa; Krening, Cynthia; Parrett, Dolores
2018-06-01
To address an increase in unexpected poor outcomes in term neonates, our team developed a goal of high reliability and improved fetal safety in the culture of the Labor and Delivery nursing department. We implemented interdisciplinary reviews of fetal heart rate, along with a Category II fetal heart rate management algorithm and a fetal heart rate assessment rapid response alert to call for unscheduled reviews when needed. Enhanced communication between nurses and other clinicians supported an interdisciplinary approach to fetal safety, and we observed an improvement in health outcomes for term neonates. We share our experience with the intention of making our methods available to any labor and delivery unit team committed to safe, high-quality care and service excellence. Copyright © 2018 AWHONN. Published by Elsevier Inc. All rights reserved.
PE are a large family of compounds used in a wide array of products from medical tubing to pharmaceuticals to cables. Studies have shown that in utero treatment with PE such as diethyl hexyl phthalate (DEHP) during the critical period of fetal reproductive development produced ma...
ERIC Educational Resources Information Center
Salisbury, Amy L.; Fallone, Melissa Duncan; Lester, Barry
2005-01-01
This review provides an overview and definition of the concept of neurobehavior in human development. Two neurobehavioral assessments used by the authors in current fetal and infant research are discussed: the NICU Network Neurobehavioral Assessment Scale and the Fetal Neurobehavior Coding System. This review will present how the two assessments…
Fetal in vivo continuous cardiovascular function during chronic hypoxia
Allison, B. J.; Brain, K. L.; Niu, Y.; Kane, A. D.; Herrera, E. A.; Thakor, A. S.; Botting, K. J.; Cross, C. M.; Itani, N.; Skeffington, K. L.; Beck, C.
2016-01-01
Key points The in vivo fetal cardiovascular defence to chronic hypoxia has remained by and large an enigma because no technology has been available to induce significant and prolonged fetal hypoxia whilst recording longitudinal changes in fetal regional blood flow as the hypoxic pregnancy is developing.We introduce a new technique able to maintain chronically instrumented maternal and fetal sheep preparations under isobaric chronic hypoxia for most of gestation, beyond levels that can be achieved by high altitude and of relevance in magnitude to the human intrauterine growth‐restricted fetus.This technology permits wireless recording in free‐moving animals of longitudinal maternal and fetal cardiovascular function, including beat‐to‐beat alterations in pressure and blood flow signals in regional circulations.The relevance and utility of the technique is presented by testing the hypotheses that the fetal circulatory brain sparing response persists during chronic fetal hypoxia and that an increase in reactive oxygen species in the fetal circulation is an involved mechanism. Abstract Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean PaO2 levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l−1, P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase‐derived reactive oxygen species. PMID:26926316
Lafeber, H N; Rolph, T P; Jones, C T
1984-12-01
The effects of reduced maternal placental blood flow on the growth and development of the fetal guinea pig have been studied by unilateral ligation of the uterine artery at day 30 of pregnancy. Fetal guinea pigs were investigated about 20 or 30 days later. In about one-third of cases fetal death occurred, in another third fetuses less than 60% of normal weight were observed and in the remainder all fetuses were in the normal weight range. In the growth retarded fetuses prenatal growth occurred at about 50% of the rate in control. There was no postnatal 'catch up' as growth still remained lower than in controls. Restricted fetal growth affected particularly development of the visceral tissues in which case size declined in proportion to body weight. Brain and adrenal by comparison were less affected as their contribution to total body weight increased, but even so in the severely retarded fetuses the mass of both fell. The responses of the liver were in general consistent with a delay in the pattern of development. Thus DNA, RNA, protein and haematopoietic cell content changes occurred later than normal. In contrast an enhanced deposition of glycogen was apparent in the liver of the growth-retarded fetus. The results indicate some of the ways in which nutritional deprivation of the fetuses leads to reprogramming of growth and maturation of selected fetal tissues to allow non-essential changes to await more favourable times.
Sutha, P; Jayanthi, V E
2017-12-08
Birth defect-related demise is mainly due to congenital heart defects. In the earlier stage of pregnancy, fetus problem can be identified by finding information about the fetus to avoid stillbirths. The gold standard used to monitor the health status of the fetus is by Cardiotachography(CTG), cannot be used for long durations and continuous monitoring. There is a need for continuous and long duration monitoring of fetal ECG signals to study the progressive health status of the fetus using portable devices. The non-invasive method of electrocardiogram recording is one of the best method used to diagnose fetal cardiac problem rather than the invasive methods.The monitoring of the fECG requires development of a miniaturized hardware and a efficient signal processing algorithms to extract the fECG embedded in the mother ECG. The paper discusses a prototype hardware developed to monitor and record the raw mother ECG signal containing the fECG and a signal processing algorithm to extract the fetal Electro Cardiogram signal. We have proposed two methods of signal processing, first is based on the Least Mean Square (LMS) Adaptive Noise Cancellation technique and the other method is based on the Wavelet Transformation technique. A prototype hardware was designed and developed to acquire the raw ECG signal containing the mother and fetal ECG and the signal processing techniques were used to eliminate the noises and extract the fetal ECG and the fetal Heart Rate Variability was studied. Both the methods were evaluated with the signal acquired from a fetal ECG simulator, from the Physionet database and that acquired from the subject. Both the methods are evaluated by finding heart rate and its variability, amplitude spectrum and mean value of extracted fetal ECG. Also the accuracy, sensitivity and positive predictive value are also determined for fetal QRS detection technique. In this paper adaptive filtering technique uses Sign-sign LMS algorithm and wavelet techniques with Daubechies wavelet, employed along with de noising techniques for the extraction of fetal Electrocardiogram.Both the methods are having good sensitivity and accuracy. In adaptive method the sensitivity is 96.83, accuracy 89.87, wavelet sensitivity is 95.97 and accuracy is 88.5. Additionally, time domain parameters from the plot of heart rate variability of mother and fetus are analyzed.
Fetal and post-natal lung defects reveal a novel and required role for Fgf8 in lung development
Yu, Shibin; Poe, Bryan; Schwarz, Margaret; Elliot, Sarah; Albertine, Kurt H.; Fenton, Stephen; Garg, Vidu; Moon, Anne M.
2016-01-01
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound. PMID:20727874
Role of catecholamines in maternal-fetal stress transfer in sheep.
Rakers, Florian; Bischoff, Sabine; Schiffner, Rene; Haase, Michelle; Rupprecht, Sven; Kiehntopf, Michael; Kühn-Velten, W Nikolaus; Schubert, Harald; Witte, Otto W; Nijland, Mark J; Nathanielsz, Peter W; Schwab, Matthias
2015-11-01
We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P < .05). Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P < .05). Fetuses developed a delayed and prolonged shift toward anaerobic metabolism in the presence of an unaltered oxygen supply. Adrenergic blockade prevented the stress-induced UBF decrease and, consequently, the fetal NE and blood pressure increase and the shift toward anaerobic metabolism. We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited. Copyright © 2015 Elsevier Inc. All rights reserved.
McKinney, David; Boyd, Heather; Langager, Amanda; Oswald, Michael; Pfister, Abbey; Warshak, Carri R
2016-03-01
Fetal growth restriction is a common complication of preeclampsia. Expectant management for qualifying patients has been found to have acceptable maternal safety while improving neonatal outcomes. Whether fetal growth restriction influences the duration of latency during expectant management of preeclampsia is unknown. The objective of the study was to determine whether fetal growth restriction is associated with a reduced interval to delivery in women with preeclampsia being expectantly managed prior to 34 weeks. We performed a retrospective cohort of singleton, live-born, nonanomalous deliveries at the University of Cincinnati Medical Center between 2008 and 2013. Patients were included in our analysis if they were diagnosed with preeclampsia prior to 34 completed weeks and if the initial management plan was to pursue expectant management beyond administration of steroids for fetal lung maturity. Two study groups were determined based on the presence or absence of fetal growth restriction. Patients were delivered when they developed persistent neurological symptoms, severe hypertension refractory to medical therapy, renal insufficiency, nonreassuring fetal status, pulmonary edema, or hemolysis elevated liver low platelet syndrome or when they reached 37 weeks if they remained stable without any other indication for delivery. Our primary outcome was the interval from diagnosis of preeclampsia to delivery, measured in days. Secondary outcomes included indications for delivery, rates of induction and cesarean delivery, development of severe morbidities of preeclampsia, and select neonatal outcomes. We performed a multivariate logistic regression analysis comparing those with fetal growth restriction with those with normally grown fetuses to determine whether there is an association between fetal growth restriction and a shortened interval to delivery, neonatal intensive care unit admission, prolonged neonatal stay, and neonatal mortality. A total of 851 patients met the criteria for preeclampsia, of which 199 met inclusion criteria, 139 (69%) with normal growth, and 60 (31%) with fetal growth restriction. Interval to delivery was significantly shorter in women with fetal growth restriction, median (interquartile range) of 3 (1.6) days vs normal growth, 5 (2.12) days, P < .001. The association between fetal growth restriction and latency less than 7 days remained significant, even after post hoc analysis controlling for confounding variables (adjusted odds ratio, 1.66 [95% confidence interval, 1.12-2.47]). There were no differences in the development of severe disease (85.9 vs 91.7%, P = .26), need for intravenous antihypertensive medications (47.1 vs 46.7%, P = .96), and the development of severe complications of preeclampsia (51.1 vs 42.9%, P = .30) in normally grown and growth-restricted fetuses, respectively. Fewer women with fetal growth restriction attained their scheduled delivery date, 3 of 60 (5.0%), compared with normally grown fetuses,12 of 139 (15.7%), P = .03. Admission to the neonatal intensive care unit, neonatal length of stay, and neonatal mortality were higher when there was fetal growth restriction; however, after a logistic regression analysis, these associations were no longer significant. Fetal growth restriction is associated with a shortened interval to delivery in women undergoing expectant management of preeclampsia when disease is diagnosed prior to 34 weeks. These data may be helpful in counseling patients regarding the expected duration of pregnancy, guiding decision making regarding administration of steroids and determining the need for maternal transport. Copyright © 2016 Elsevier Inc. All rights reserved.
Fetal MRI: A Technical Update with Educational Aspirations
Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.
2015-01-01
Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129
Fetal motion estimation from noninvasive cardiac signal recordings.
Biglari, Hadis; Sameni, Reza
2016-11-01
Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.
Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao
2014-01-01
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329
Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E
2014-08-01
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.
Santos, Ana Paula Caires Dos; Couto, Ricardo David
2018-05-16
Several changes occur in lipid metabolism during gestation due to hormonal and metabolic changes, which are essential to satisfy the nutritional demands of the maternal-fetal unit development. The gestation shows two distinct periods that begin with fat accumulation, mainly in maternal adipose tissue, and the late phase, characterized by accelerated catabolism, with the increase of fatty acids in the circulation that causes hyperlipidemia, especially the one characterized as hypertriglyceridemia. Maternal hyperlipidemia may be associated with the development of maternal-fetal complications (preterm birth, preeclampsia, vascular complications) and the development of long-term cardiovascular disease. The cardiovascular risk may not only be related to lipoproteins cholesterol content, but also to the number and functionality of circulating lipoprotein particles. This review reports the major changes that occur in lipoprotein metabolism during pregnancy and that are associated with the development of dyslipidemias, lipoprotein atherogenic phenotype, and maternal-fetal unit complications. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.
Thyroid hormones and fetal brain development.
Pemberton, H N; Franklyn, J A; Kilby, M D
2005-08-01
Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.
The Fetal Care Team: Care for Pregnant Women Carrying a Fetus with a Serious Diagnosis.
Loyet, Margaret; McLean, Amy; Graham, Karen; Antoine, Cheryl; Fossick, Kathy
Women carrying a fetus with a suspected or known fetal anomaly have complex needs such as emotional and informational support and help with the logistical aspects of arranging care and treatment from numerous specialists. IMPROVEMENT IN QUALITY OF CARE FOR WOMEN CARRYING A FETUS WITH A SUSPECTED OR KNOWN FETAL ANOMALY:: Our fetal care team was initiated in 2012 to meet the needs of this high-risk pregnant population. The fetal care team nurse coordinator supports the woman and her family through all aspects of care during the pregnancy and neonatal period including scheduling appointments with multiple specialists, being there with her as a support person, keeping her updated, making sure she has accurate information about the fetal diagnosis, and helping her to navigate the complex healthcare system. Since the program was started, the number of women enrolled has nearly doubled. Women overwhelmingly are satisfied with the various services and care provided by the nurse coordinators and believe the fetal care team has value for them. We present the development and operations of our fetal care team with a focus on the role of the fetal care team nurse coordinator.
Design and Testing of a Transcutaneous RF Recharging System for a Fetal Micropacemaker.
Vest, Adriana N; Zhou, Li; Huang, Xuechen; Norekyan, Viktoria; Bar-Cohen, Yaniv; Chmait, Ramen H; Loeb, Gerald Eli
2017-04-01
We have developed a rechargeable fetal micropacemaker in order to treat severe fetal bradycardia with comorbid hydrops fetalis. The necessarily small form factor of the device, small patient population, and fetal anatomy put unique constraints on the design of the recharging system. To overcome these constraints, a custom high power field generator was built and the recharging process was controlled by utilizing pacing rate as a measure of battery state, a feature of the relaxation oscillator used to generate stimuli. The design and in vitro and in vivo verification of the recharging system is presented here, showing successful generation of recharging current in a fetal lamb model.
Design and Testing of a Transcutaneous RF Recharging System for a Fetal Micropacemaker
Vest, Adriana N.; Zhou, Li; Huang, Xuechen; Norekyan, Viktoria; Bar-Cohen, Yaniv; Chmait, Ramen H.; Loeb, Gerald Eli
2017-01-01
We have developed a rechargeable fetal micropacemaker in order to treat severe fetal bradycardia with comorbid hydrops fetalis. The necessarily small form factor of the device, small patient population, and fetal anatomy put unique constraints on the design of the recharging system. To overcome these constraints, a custom high power field generator was built and the recharging process was controlled by utilizing pacing rate as a measure of battery state, a feature of the relaxation oscillator used to generate stimuli. The design and in vitro and in vivo verification of the recharging system is presented here, showing successful generation of recharging current in a fetal lamb model. PMID:28212097
First and second trimester screening for fetal structural anomalies.
Edwards, Lindsay; Hui, Lisa
2018-04-01
Fetal structural anomalies are found in up to 3% of all pregnancies and ultrasound-based screening has been an integral part of routine prenatal care for decades. The prenatal detection of fetal anomalies allows for optimal perinatal management, providing expectant parents with opportunities for additional imaging, genetic testing, and the provision of information regarding prognosis and management options. Approximately one-half of all major structural anomalies can now be detected in the first trimester, including acrania/anencephaly, abdominal wall defects, holoprosencephaly and cystic hygromata. Due to the ongoing development of some organ systems however, some anomalies will not be evident until later in the pregnancy. To this extent, the second trimester anatomy is recommended by professional societies as the standard investigation for the detection of fetal structural anomalies. The reported detection rates of structural anomalies vary according to the organ system being examined, and are also dependent upon factors such as the equipment settings and sonographer experience. Technological advances over the past two decades continue to support the role of ultrasound as the primary imaging modality in pregnancy, and the safety of ultrasound for the developing fetus is well established. With increasing capabilities and experience, detailed examination of the central nervous system and cardiovascular system is possible, with dedicated examinations such as the fetal neurosonogram and the fetal echocardiogram now widely performed in tertiary centers. Magnetic resonance imaging (MRI) is well recognized for its role in the assessment of fetal brain anomalies; other potential indications for fetal MRI include lung volume measurement (in cases of congenital diaphragmatic hernia), and pre-surgical planning prior to fetal spina bifida repair. When a major structural abnormality is detected prenatally, genetic testing with chromosomal microarray is recommended over routine karyotype due to its higher genomic resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cousins, Roderick; Wood, Charles E.
2010-01-01
Development and maturation of the fetal brain is critical for homeostasis in utero, responsiveness to fetal stress and, in ruminants, control of the timing of birth. In the sheep, as in the human, the placenta secretes estrogen and other signaling molecules into both the fetal and maternal blood, molecules whose entry or exit across the blood-brain barrier is likely to be facilitated by transporters. The purpose of this study was to test the hypothesis that the ovine fetal brain expresses organic anion transporters, and that the expression of these transporters varies as a function of brain region and fetal gestational age. Brains and pituitaries were collected at the time of sacrifice from fetal and newborn sheep at 80, 100, 120, 130, 145 days gestation and on the first day of postnatal life (parturition in sheep is at approximately 147 days gestation). Hypothalamus, medullary brainstem, cerebellum, and pituitary were processed for mRNA extraction and synthesis of cDNA (4–5/group). Real-time PCR analysis of OAT1 and OAT3 expression revealed significant expression of both genes in all of the tissues tested. In hypothalamus and cerebellum, there were statistically significant increases in the expression of one or both genes towards the end of gestation. In medullary brainstem and pituitary, the levels of expression were relatively unchanged as there were no statistically significant changes with developmental age. We conclude that the ovine fetal brain expresses both OAT1 and OAT3, that the pattern of expression suggests an increasing role for these transporters in the physiology of the developing fetal brain as the fetus nears the time of spontaneous parturition. PMID:20708067
Ji, Yamei; Yang, Xin; Su, Huixia
2018-02-01
The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Busso, Dolores; Mascareño, Lilian; Salas, Francisca; Berkowitz, Loni; Santander, Nicolás; Quiroz, Alonso; Amigo, Ludwig; Valdés, Gloria; Rigotti, Attilio
2014-01-01
The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22–24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition. PMID:25295255
Fowler, Paul A.; Dorà, Natalie J.; McFerran, Helen; Amezaga, Maria R.; Miller, David W.; Lea, Richard G.; Cash, Phillip; McNeilly, Alan S.; Evans, Neil P.; Cotinot, Corinne; Sharpe, Richard M.; Rhind, Stewart M.
2008-01-01
Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome. PMID:18436539
Buss, Claudia; Davis, Elysia Poggi; Class, Quetzal A; Gierczak, Matt; Pattillo, Carol; Glynn, Laura M; Sandman, Curt A
2009-10-01
Despite the evidence for early fetal experience exerting programming influences on later neurological development and health risk, very few prospective studies of human fetal behavior have been reported. In a prospective longitudinal study, fetal nervous system maturation was serially assessed by monitoring fetal heart rate (FHR) responses to vibroacoustic stimulation (VAS) in 191 maternal/fetal dyads. Responses were not detected at 26 weeks gestational age (GA). Sex-specific, age-characteristic changes in the FHR response to VAS were observed by 31 weeks' GA. Males showed larger responses and continued to exhibit maturational changes until 37 weeks' GA, females however, presented with a mature FHR startle response by 31 weeks' GA. The results indicate that there are different rates of maturation in the male and female fetuses that may have implications for sex-specific programming influences.
Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques.
Magnani, Diogo M; Rogers, Thomas F; Maness, Nicholas J; Grubaugh, Nathan D; Beutler, Nathan; Bailey, Varian K; Gonzalez-Nieto, Lucas; Gutman, Martin J; Pedreño-Lopez, Núria; Kwal, Jaclyn M; Ricciardi, Michael J; Myers, Tereance A; Julander, Justin G; Bohm, Rudolf P; Gilbert, Margaret H; Schiro, Faith; Aye, Pyone P; Blair, Robert V; Martins, Mauricio A; Falkenstein, Kathrine P; Kaur, Amitinder; Curry, Christine L; Kallas, Esper G; Desrosiers, Ronald C; Goldschmidt-Clermont, Pascal J; Whitehead, Stephen S; Andersen, Kristian G; Bonaldo, Myrna C; Lackner, Andrew A; Panganiban, Antonito T; Burton, Dennis R; Watkins, David I
2018-04-24
Zika virus (ZIKV) infection of pregnant women is associated with pathologic complications of fetal development. Here, we infect pregnant rhesus macaques (Macaca mulatta) with a minimally passaged ZIKV isolate from Rio de Janeiro, where a high rate of fetal development complications was observed. The infection of pregnant macaques with this virus results in maternal viremia, virus crossing into the amniotic fluid (AF), and in utero fetal deaths. We also treated three additional ZIKV-infected pregnant macaques with a cocktail of ZIKV-neutralizing human monoclonal antibodies (nmAbs) at peak viremia. While the nmAbs can be effective in clearing the virus from the maternal sera of treated monkeys, it is not sufficient to clear ZIKV from AF. Our report suggests that ZIKV from Brazil causes fetal demise in non-human primates (NHPs) without additional mutations or confounding co-factors. Treatment with a neutralizing anti-ZIKV nmAb cocktail is insufficient to fully stop vertical transmission.
A phantom with pulsating artificial vessels for non-invasive fetal pulse oximetry.
Laqua, Daniel; Pollnow, Stefan; Fischer, Jan; Ley, Sebastian; Husar, Peter
2014-01-01
Arterial oxygen saturation of the fetus is an important parameter for monitoring its physical condition. During labor and delivery the transabdominal non-invasive fetal pulse oximetry could minimize the risk for mother and fetus, compared to other existing invasive examination methods. In this contribution, we developed a physical-like phantom to investigate new sensor circuits and algorithms of a non-invasive diagnostic method for fetal pulse oximetry. Hence, the developed artificial vascular system consists of two independent tube systems representing the maternal and fetal vessel system. The arterial blood pressure is reproduced with a pre-pressure and an artificial vascular system. Each pulse wave can be reproduced, by digital control of a proportional valve, adjustable viscoelastic elements, and resistances. The measurements are performed by pressure transducers, optical sensor units, and a coplanar capacitive sensor. Transmission and reflection measurements have shown that the fetal and maternal pulse waves can be reproduced qualitatively. The measured light represents the transabdominal modulated signal on an abdomen of a pregnant woman.
Stereological study of developing glomerular forms during human fetal kidney development.
Dakovic Bjelakovic, Marija; Vlajkovic, Slobodan; Petrovic, Aleksandar; Bjelakovic, Marko; Antic, Milorad
2018-05-01
Human fetal kidney development is a complex and stepwise process. The number, shape, size and distribution of glomeruli provide important information on kidney organization. The aim of this study was to quantify glomerular developing forms during human fetal kidney development using stereological methods. Kidney tissue specimens of 40 human fetuses with gestational ages ranging from 9 to 40 weeks were analyzed. Specimens were divided into eight groups based on gestational age, each corresponding to 1 lunar month. Stereological methods were used at the light microscopy level to estimate volume, surface and numerical density of the glomerular developing forms. During gestation, nephrogenesis continually advanced, and the number of nephrons increased. Volume, surface and numerical densities of vesicular forms and S-shaped bodies decreased gradually in parallel with gradual increases in estimated stereological parameters for vascularized glomeruli. Volume density and surface density of vascularized glomeruli increased gradually during fetal kidney development, and numerical density increased until the seventh lunar month. A relative decrease in vascularized glomeruli per unit volume of cortex occurred during the last 3 lunar months. Nephrogenesis began to taper off by 32 weeks and was completed by 36 weeks of gestation. The last sample in which we observed vesicles was from a fetus aged 32 weeks, and the last sample with S-shaped bodies was from a fetus aged 36 weeks. The present study is one of few quantitative studies conducted on human kidney development. Knowledge of normal human kidney morphogenesis during development could be important for future medical practice. Events occurring during fetal life may have significant consequences later in life.
Nageotte, Michael P
2015-06-01
Electronic fetal heart rate monitoring is a widely utilized means of assessment of fetal status during labor. Whereas little evidence exists regarding efficacy, this modality continues to be used extensively in every modern labor and delivery unit in developed countries. It is of importance that all providers of health care to the woman in labor and her newborn have a clear understanding of the basic pathophysiology of fetal heart rate monitoring and an appreciation for labor course and concerns as they arise in order to optimize outcomes and patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
This study was designed to develop and validate a short-term in vivo protocol termed the Fetal Phthalate Screen (FPS) to detect phthalate esters (PEs) and other chemicals that disrupt fetal testosterone synthesis and testis gene expression in rats. We propose that the FPS can be ...
Kodituwakku, Piyadasa W; Kodituwakku, E Louise
2011-06-01
Since fetal alcohol syndrome was first described over 35 years ago, considerable progress has been made in the delineation of the neurocognitive profile in children with prenatal alcohol exposure. Preclinical investigators have made impressive strides in elucidating the mechanisms of alcohol teratogenesis and in testing the effectiveness of pharmacological agents and dietary supplementation in the amelioration of alcohol-induced deficits. Despite these advances, only limited progress has been made in the development of evidence-based comprehensive interventions for functional impairment in alcohol-exposed children. Having performed a search in PubMed and PsycINFO using key words, interventions, treatment, fetal alcohol syndrome, prenatal alcohol exposure, and fetal alcohol spectrum disorders, we found only 12 papers on empirically-based interventions. Only two of these interventions had been replicated and none met the criteria of "well-established," as defined by Chambless and Hollon (Journal of Consulting and Clinical Psychology 66(1):7-18, 1998). There has been only limited cross-fertilization of ideas between preclinical and clinical research with regard to the development of interventions. Therefore, we propose a framework that allows integrating data from preclinical and clinical investigations to develop comprehensive intervention programs for children with fetal alcohol spectrum disorders. This framework underscores the importance of multi-level evaluations and interventions.
Fetal programming and environmental exposures ...
Fetal programming is an enormously complex process that relies on numerous environmental inputs from uterine tissue, the placenta, the maternal blood supply, and other sources. Recent evidence has made clear that the process is not based entirely on genetics, but rather on a delicate series of interactions between genes and the environment. It is likely that epigenctic (“above the genome”) changes are responsible for modifying gene expression in the developing fetus, and these modifications can have long-lasting health impacts. Determining which epigenetic regulators are most vital in embryonic development will improve pregnancy outcomes and our ability to treat and prevent disorders that emerge later in life. “Fetal Programming and Environmental Exposures: Implications for Prenatal Care and Preterm Birth’ began with a keynote address by Frederick vom Saal, who explained that low-level exposure to endocrine disrupting chemicals (EDCs) perturbs hormone systems in utero and can have negative effects on fetal development. vom Saal presented data on the LOC bisphenol A (BPA), an estrogen-mimicking compound found in many plastics. He suggested that low-dose exposure to LOCs can alter the development process and enhance chances of acquiring adult diseases, such as breastcancer, diabetes, and even developmental disorders such as attention deficit disorder (ADHD).’ Fetal programming is an enormously complex process that relies on numerous environmental inputs
Adjustable fetal phantom for pulse oximetry
NASA Astrophysics Data System (ADS)
Stubán, Norbert; Niwayama, Masatsugu
2009-05-01
As the measuring head of a fetal pulse oximeter must be attached to the head of the fetus inside the mother's uterus during labor, testing, and developing of fetal pulse oximeters in real environment have several difficulties. A fetal phantom could enable evaluation of pulse oximeters in a simulated environment without the restrictions and difficultness of medical experiments in the labor room. Based on anatomic data we developed an adjustable fetal head phantom with three different tissue layers and artificial arteries. The phantom consisted of two arteries with an inner diameter of 0.2 and 0.4 mm. An electronically controlled pump produced pulse waves in the arteries. With the phantom we investigated the sensitivity of a custom-designed wireless pulse oximeter at different pulsation intensity and artery diameters. The results showed that the oximeter was capable of identifying 4% and 2% changes in diameter between the diastolic and systolic point in arteries of over 0.2 and 0.4 mm inner diameter, respectively. As the structure of the phantom is based on reported anatomic values, the results predict that the investigated custom-designed wireless pulse oximeter has sufficient sensitivity to detect the pulse waves and to calculate the R rate on the fetal head.
Fetal Health Locus of Control Scale: Development and Validation.
ERIC Educational Resources Information Center
Labs, Sharon M.; Wurtele, Sandy K.
1986-01-01
Describes development of the Fetal Health Locus of Control scale, the scale's utility in predicting maternal health-related behavior during pregnancy, normative data, and information on factor structure and internal consistency. Reports that cigarette and caffeine consumption during pregnancy, and women's intentions to participate in prepared…
Adverse Maternal Environment Increases Fetal Liver Hydroxymethylation and Alters the Transcriptome
USDA-ARS?s Scientific Manuscript database
Suboptimal maternal nutrition during fetal liver development can alter the offspring’s ability to metabolize excess fats and increases obesity in offspring. We developed a model of adverse maternal environment (AME) which overlays maternal prenatal stress with chronic exposure to a western diet. O...
Androgen signaling by fetal Leydig cells is critical in the proper development of the male reproductive tract. As cholesterol is a precursor for hormone biosynthesis,inhibition of the cholesterol pathway during sex differentiation may reduce testosterone {T). We hypothesized tha...
CHARACTERIZATION OF THE PERIOD OF SENSITIVITY OF FETAL MALE SEXUAL DEVELOPMENT TO VINCLOZOLIN
Characterization of the period of sensitivity of fetal male sexual development to vinclozolin.
Wolf CJ, LeBlanc GA, Ostby JS, Gray LE Jr.
Endocrinology Branch, MD 72, Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U....
USDA-ARS?s Scientific Manuscript database
The pig, a litter bearing animal, has an epitheliochorial placenta that forms a noninvasive attachment with the uterine endometrium. Insufficient placental development is one of the primary causes of fetal death and reduced fetal growth after 35 d of gestation. Necrotic tips develop at the distal en...
NASA Astrophysics Data System (ADS)
Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.
2013-02-01
The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.
Ciaravino, Vic; Coronado, Dina; Lanphear, Cheryl; Hoberman, Alan; Chanda, Sanjay
2016-09-01
Tavaborole is a topical antifungal agent approved by the US Food and Drug Administration for the treatment of toenail onychomycosis. As part of the nonclinical development program, reproductive and developmental toxicity studies were conducted (rat oral fertility and early embryonic development, rat (oral) and rabbit (dermal) embryo-fetal development). There were no effects on fertility or reproductive performance at doses up to 300 mg/kg/d (107 times the maximum recommended human dose [MRHD] based on mean area under the plasma concentration-time curve comparisons). In the rat embryo-fetal development toxicity studies, teratogenicity was not observed at doses up to 100 mg/kg/d (29 times the MRHD). However, several treatment-related skeletal malformations and variations were observed at 300 mg/kg/d (570 times the MRHD). In rabbit embryo-fetal development toxicity studies dosed via oral or dermal administration, the no observable adverse effect level for maternal toxicity and embryo-fetal toxicity was 50 mg/kg/d (16 times the MRHD) and 5% (26 times the MRHD), respectively. © The Author(s) 2016.
Roberts, Llinos A; Ling, Hua Zen; Poon, Liona; Nicolaides, Kypros H; Kametas, Nikos A
2018-04-01
To assess whether in a cohort of patients with small for gestational age (SGA) foetuses with estimated fetal weight ≤10 th percentile, maternal hemodynamics, fetal biometry and Dopplers at presentation, can predict the subsequent development of abnormal fetal Dopplers or delivery with birthweight <3 rd percentile. The study population comprised of 86 singleton pregnancies with SGA fetuses presenting at a median gestational age of 32 (range 26-35) weeks. We measured maternal cardiac function with a non-invasive transthoracic bioreactance monitor (NICOM, Cheetah), mean arterial pressure, fetal biometry, umbilical artery (UA), middle cerebral artery (MCA) and uterine artery (UT) pulsatility index (PI) and the deepest vertical pool (DVP) of amniotic fluid. Z-scores of these variables were calculated based on reported reference ranges and the values were compared between those with evidence of abnormal fetal Dopplers at presentation (group 1), those that developed abnormal Dopplers in subsequent visits (group 2) and those who did not develop abnormal Dopplers throughout pregnancy (group 3). Abnormal fetal Dopplers were defined as UAPI >95 th percentile, or MCA PI <5 th percentile. Differences in measured variables at presentation were also compared between pregnancies delivering a baby with birthweight <3 rd and ≥3 rd percentile. Multivariate logistic regression analysis was used to determine significant predictors of birthweight <3 rd percentile and evolution from normal fetal Dopplers to abnormal fetal Dopplers in groups 2 and 3. In the study population 14 (16%) cases were in group 1, 19 (22%) in group 2 and 53 (62%) in group 3. The birthweight was <3 rd percentile in 39 (45%) cases and ≥3 rd percentile in 47 (55%). In the study groups, compared to normal populations, there was decreased cardiac output and stroke volume and increased peripheral vascular resistance and mean arterial pressure (MAP) and the deviations from normal were most marked in group 1. Pregnancies with a birthweight <3 rd , compared to those ≥3 rd percentile, had higher deviations from normal in fetal biometry, maternal cardiac output, stroke volume, heart rate and peripheral vascular resistance and UT-PI. Multivariate logistic regression analysis demonstrated that in the prediction of birth weight ≤3 rd percentile, maternal hemodynamics provided significant improvement to the prediction provided by maternal demographics, fetal biometry and UT-PI, UA-PI and MCA-PI (difference between AUCs 0.18, 95% CI 0.06-0.29, p=0.002). In contrast, there was no significant independent contribution from maternal hemodynamics in the prediction of subsequent abnormal fetal Dopplers. In pregnancies with SGA fetuses there is decreased maternal cardiac output and stroke volume and increased peripheral vascular resistance and MAP and the deviations from normal are most marked in cases of redistribution in the fetal circulation and reduced amniotic fluid volume. This article is protected by copyright. All rights reserved.
Understanding fetal physiology and second line monitoring during labor.
Garabedian, C; De Jonckheere, J; Butruille, L; Deruelle, P; Storme, L; Houfflin-Debarge, V
2017-02-01
Cardiotocography (CTG) is a technique used to monitor intrapartum fetal condition and is one of the most common obstetric procedures. Second line methods of fetal monitoring have been developed in an attempt to reduce unnecessary interventions due to continuous cardiotocography and to better identify fetuses at risk of intrapartum asphyxia. The acid-base balance of the fetus is evaluated by fetal blood scalp samples, the modification of the myocardial oxygenation by the fetal ECG ST-segment analysis (STAN) and the autonomic nervous system by the power spectral analysis of the fetal heart variability. To correctly interpret the features observed on CTG traces or second line methods, it seems important to understand normal physiology during labor and the compensatory mechanisms of the fetus in case of hypoxemia. Therefore, the aim of this review is first to describe fetal physiology during labor and then to explain the modification of the second line monitoring during labor. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Concise Review: Fetal Membranes in Regenerative Medicine: New Tricks from an Old Dog?
2017-01-01
Abstract The clinical application of the fetal membranes dates back to nearly a century. Their use has ranged from superficial skin dressings to surgical wound closure. The applications of the fetal membranes are constantly evolving, and key to this is the uncovering of multiple populations of stem and stem‐like cells, each with unique properties that can be exploited for regenerative medicine. In addition to pro‐angiogenic and immunomodulatory properties of the stem and stem‐like cells arising from the fetal membranes, the dehydrated and/or decellularized forms of the fetal membranes have been used to support the growth and function of other cells and tissues, including adipose‐derived mesenchymal stem cells. This concise review explores the biological origin of the fetal membranes, a history of their use in medicine, and recent developments in the use of fetal membranes and their derived stem and stem‐like cells in regenerative medicine. Stem Cells Translational Medicine 2017;6:1767–1776 PMID:28834402
Hanson, Jessica D; Winberg, Austin; Elliott, Amy
2012-11-01
Alcohol-exposed pregnancies are especially of concern for American Indians. The Indian Health Service reported that 47% to 56% of pregnant patients admitted to drinking alcohol during their pregnancy. In addition, rates of Fetal Alcohol Syndrome are estimated to be as high as 3.9 to 9.0 per 1,000 live births among American Indians in the Northern Plains, making prevention of alcohol-exposed pregnancies an important public health effort for this population. The goal of this article is to add to the literature on universal prevention of Fetal Alcohol Spectrum disorders by describing the development, dissemination, and evaluation of a media campaign on Fetal Alcohol Spectrum Disorders that was created by and for American Indian communities in the Northern Plains.
Soncini, Emanuele; Paganelli, Simone; Vezzani, Cristina; Gargano, Giancarlo; Giovanni Battista, La Sala
2014-09-01
To assess the ability of the intrapartum fetal heart rate interpretation system developed in 2008 by the National Institute of Child Health and Human Development (NICHD) to predict fetal metabolic acidosis at delivery and neonatal neurological morbidity. We analyzed the intrapartum fetal heart rate tracings of 314 singleton fetuses at ≥ 37 weeks using the NICHD three-tier system of interpretation: Category I (normal), Category II (indeterminate) and Category III (abnormal). Category II was further divided into Category IIA, with moderate fetal heart rate variability or accelerations, and Category IIB, with minimal/absent fetal heart rate variability and no accelerations. The presence and duration of the different patterns were compared with several clinical neonatal outcomes and with umbilical artery acid-base balance at birth. The mean values of pH and base excess decreased proportionally as tracings worsened (p < 0.001). The duration of at least 30 min for Category III tracings was highly predictive of a pH <7.00 and a base excess ≤-12 mmol/L. The same was true for the duration of Category IIB tracings that lasted for at least 50 min. Our study demonstrates that the interpretation of fetal heart rate tracings based on a strictly standardized system is closely associated with umbilical artery acid-base status at delivery.
Ferguson, David J P; Bowker, Colene; Jeffery, Katie J M; Chamberlain, Paul; Squier, Waney
2013-01-01
Congenital toxoplasmosis is a serious condition but little is known of the natural history of parasite development and associated fetal tissue destruction. Two cases identified by ultrasound underwent induced abortion at 21 and 30 weeks' gestation. At autopsy, the placenta and fetal organs were examined by histology and immunocytochemistry employing anti-Toxoplasma stage-specific antibodies to confirm diagnosis and also provide information on the stage of parasite development. In both cases, maternal serology prior to termination showed both specific immunoglobulin M (IgM) and immunoglobulin G (IgG), whereas retrospective analysis of an earlier sample (12-14 weeks' gestation) showed only IgM reactivity consistent with infection occurring in the first trimester. The finding of a number of tissue cysts but few or no tachyzoites within the placenta and fetal adrenal and heart is characteristic of a chronic infection. However, in contrast, there were still areas of the fetal brain with large numbers of actively dividing, tissue-destructive tachyzoites. These observations show that continued parasite proliferation and tissue destruction can occur within the fetal brain even when there is a marked maternal immune response including maternal IgG. This finding strongly suggests that there may be benefits from treating cases of recently acquired congenital infection to destroy any remaining proliferating parasites located in immunologically protected sites such as the fetal brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muczynski, V.; CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses; INSERM, Unité 967, F-92265, Fontenay aux Roses
The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation andmore » cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.« less
Maternal obesity induces fibrosis in fetal myocardium of sheep
Huang, Yan; Yan, Xu; Zhao, Jun X.; Zhu, Mei J.; McCormick, Richard J.; Ford, Stephen P.; Nathanielsz, Peter W.; Ren, Jun
2010-01-01
Maternal obesity (MO) has harmful effects on both fetal development and subsequent offspring health. The impact of MO on fetal myocardium development has received little attention. Fibrogenesis is regulated by the transforming growth factor-β (TGF-β)/p38 signaling pathway. Using the well-established model of MO in pregnant sheep, we evaluated the effect of MO on TGF-β/p38 and collagen accumulation in fetal myocardium. Nonpregnant ewes were assigned to a control diet [Con, fed 100% of National Research Council (NRC) nutrient recommendations] or obesogenic diet (OB, fed 150% of NRC recommendations) from 60 days before conception. Fetal ventricular muscle was sampled at 75 and 135 days of gestation (dG). At 75 dG, the expression of precursor TGF-β was 39.9 ± 9.9% higher (P < 0.05) in OB than Con fetal myocardium, consistent with the higher content of phosphorylated Smad3 in OB myocardium. The phosphorylation of p38 tended to be higher in OB myocardium (P = 0.08). In addition, enhanced Smad complexes were bound to Smad-binding elements in 75 dG OB fetal myocardium measured by DNA mobility shift assay (130.2 ± 26.0% higher, P < 0.05). Similar elevation of TGF-β signaling was observed in OB fetal myocardium at 135 dG. Total collagen concentration in OB was greater than Con fetal myocardium (2.42 ± 0.16 vs. 1.87 ± 0.04%, P < 0.05). Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 were higher in the Con group compared with OB sheep (43.86 ± 16.01 and 37.23 ± 7.97% respectively, P < 0.05). In summary, MO results in greater fetal heart connective tissue accumulation associated with an upregulated TGF-β/p38 signaling pathway at late gestation; such changes would be expected to negatively impact offspring heart function. PMID:20876759
Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism
Molehin, Deborah
2016-01-01
Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557
Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice.
Hong, Fashui; Zhou, Yingjun; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling
2017-01-01
Although nanoscale titanium dioxide (nano-TiO 2 ) has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO 2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO 2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO 2 -exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown-rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO 2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO 2 can cross the blood-fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO 2 during the prenatal period. Therefore, the application of nano-TiO 2 should be carried out with caution.
Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice
Hong, Fashui; Zhou, Yingjun; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling
2017-01-01
Although nanoscale titanium dioxide (nano-TiO2) has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown–rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood–fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO2 during the prenatal period. Therefore, the application of nano-TiO2 should be carried out with caution. PMID:28883729
Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J
2017-06-01
Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
The short-term effect of smoking on fetal ECG.
Péterfi, István; Kellényi, Lóránd; Péterfi, Lehel; Szilágyi, András
2017-10-26
The number of women who smoke during pregnancy is significant even today. The harmful effects of smoking during pregnancy are well known but there are no data on the effects of smoking on fetal electrocardiography (ECG). The lack of data is in connection with the difficulties of recording fetal ECG through the maternal abdomen. Third trimester pregnant women who were not able to give up the harmful passion of smoking despite repeated attempts of persuasion were recruited in the study on voluntary basis. The fetal ECG was recorded non-invasively through the maternal abdomen before, during and after smoking, then the data were processed offline. The electrophysiological measurements were performed by a self developed ECG device, which allowed the examination of the morphological differences in "true-to-form" fetal ECG in addition to studying the variability of fetal heart rate. The study involved nine pregnant women. The observed changes are presented through case studies of those pregnant women who showed the most significant anomalies. Compared with the resting state fetal heart rate was increased during smoking. The short-term variability of fetal heart rate was narrowed, while the mother's heart rate did not change significantly - which was an indication of direct fetal stress. No explicit ischemic signs were detected in fetal ECG during smoking, however, in the increasing period of the fetal heart rate, the T wave morphology changed slightly, then it returned to normal. Demonstrable by the electrophysiological methods, smoking has a direct effect on fetal cardiac function. The fetal heart rate variability shows a pattern during smoking which is a typical sign of stress conditions among adults. The results may have educational consequences as well. Understanding those, hopefully will help pregnant women give up this harmful addiction.
Effect of uterine contractions on fetal heart rate in pregnancy: a prospective observational study.
Sletten, Julie; Kiserud, Torvid; Kessler, Jörg
2016-10-01
The new Holter monitoring technology enables long-term electrocardiographic recording of the fetal heart rate without discomfort for the mother. The aim of the study was to assess the feasibility of a fetal Holter monitor. This technology was further used to study fetal heart rate outside the hospital setting during normal daily activities and to test the hypothesis that uterine activity during pregnancy influences fetal heart rate. Prospective observational study including 12 healthy pregnant women at 20-40 weeks of gestation. Data were collected using the Monica AN24 system. Outcome measures were fetal heart rate, maternal heart rate, and uterine activity categorized according to the strength of the electrohysterographic signal. The recordings had a median length of 18.8 h, and fetal heart rate and maternal heart rate were obtained with success rates of 73.1 and 99.9%, respectively. Uterine activity was found to affect fetal heart rate in all participants. Compared with the basal tone and mild levels of uterine activity, moderate and strong levels of uterine activity were associated with increases in fetal heart rate of 4.0 and 5.7 beats/min, respectively. At night, the corresponding increases were 4.9 and 7.6 beats/min. Linear correlations were found between maternal heart rate and fetal heart rate in 11 of the 12 cases, with a mean coefficient beta of 0.189. Both maternal heart rate and fetal heart rate exhibited a diurnal pattern, with lower heart rates being recorded at night. Uterine activity during pregnancy is associated with a graded response in fetal heart rate and may represent a physiological challenge for the development and adaptation of the fetal cardiovascular system. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
Barjaktarovic, Mirjana; Korevaar, Tim I M; Jaddoe, Vincent W V; de Rijke, Yolanda B; Visser, Theo J; Peeters, Robin P; Steegers, Eric A P
2017-02-01
Human chorionic gonadotropin (hCG) is a pregnancy-specific hormone that regulates placental development. hCG concentrations vary widely throughout gestation and differ based on fetal sex. Abnormal hCG concentrations are associated with adverse pregnancy outcomes including fetal growth restriction. We studied the association of hCG concentrations with fetal growth and birth weight. In addition, we investigated effect modification by gestational age of hCG measurement and fetal sex. Total serum hCG (median 14.4 weeks, 95 % range 10.1-26.2), estimated fetal weight (measured by ultrasound during 18-25th weeks and >25th weeks) and birth weight were measured in 7987 mother-child pairs from the Generation R cohort and used to establish fetal growth. Small for gestational age (SGA) was defined as a standardized birth weight lower than the 10th percentile of the study population. There was a non-linear association of hCG with birth weight (P = 0.009). However, only low hCG concentrations measured during the late first trimester (11th and 12th week) were associated with birth weight and SGA. Low hCG concentrations measured in the late first trimester were also associated with decreased fetal growth (P = 0.0002). This was the case for both male and female fetuses. In contrast, high hCG concentrations during the late first trimester were associated with increased fetal growth amongst female, but not male fetuses. Low hCG in the late first trimester is associated with lower birth weight due to a decrease in fetal growth. Fetal sex differences exist in the association of hCG concentrations with fetal growth.
Leptin does not influence surfactant synthesis in fetal sheep and mice lungs
Sato, Atsuyasu; Schehr, Angelica
2011-01-01
In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122–124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment. PMID:21216976
Fetal Testosterone, Socio-Emotional Engagement and Language Development
ERIC Educational Resources Information Center
Farrant, Brad M.; Mattes, Eugen; Keelan, Jeff A.; Hickey, Martha; Whitehouse, Andrew J. O.
2013-01-01
The present study investigated the relations among fetal testosterone, child socio-emotional engagement and language development in a sample of 467 children (235 boys) from the Western Australian Pregnancy Cohort (Raine) Study. Bioavailable testosterone concentration measured in umbilical cord blood taken at birth was found to be significantly…
USDA-ARS?s Scientific Manuscript database
The placenta serves as the definitive maternal-fetal interface and mediates exchange of nutrients, gases, and waste between mother and the developing fetus. The placenta integrates signals from both mother and baby, coordinating maternal nutrient supply with fetal demand and development. In epidemio...
Prenatal Foundations: Fetal Programming of Health and Development
ERIC Educational Resources Information Center
Davis, Elysia Poggi; Thompson, Ross A.
2014-01-01
The fetal programming and developmental origins of disease models suggest that experiences that occur before birth can have consequences for physical and mental health that persist across the lifespan. Development is more rapid during the prenatal period as compared to any other stage of life. This introductory article considers evidence that…
Piperidine, pyridine alkaloid inhibition of fetal movement in a day 40 pregnant goat model
USDA-ARS?s Scientific Manuscript database
The inhibition of fetal movement is one mechanism behind the development of multiple congenital contracture-type defects and cleft palate in developing fetuses of humans and animals. In this study, we tested the alkaloids anabasine, lobeline, and myosmine for agonist actions, and sensitivity to alp...
In mammals, abnormal increases in fetal androgens disrupt normal development of the female phenotype. Due to the recent concern regarding environmental androgen-active chemicals, there is a need to identify sources of fetal androgen variation and sensitive developmental markers f...
hyroid hormones (THs) are involved in multiple biological processes and are critical modulators of fetal development. Even moderate changes in maternal or fetal TH levels can produce irreversible neurological deficits in children, such as lower IQ. The enzyme thyroperoxidase (TPO...
Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M
2017-07-25
Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or enhance the development of more selectively targeted fetal drug treatments.
Characterization of cell types during rat liver development.
Fiegel, Henning C; Park, Jonas J h; Lioznov, Michael V; Martin, Andreas; Jaeschke-Melli, Stefan; Kaufmann, Peter M; Fehse, Boris; Zander, Axel R; Kluth, Dietrich
2003-01-01
Hepatic stem cells have been identified in adult liver. Recently, the origin of hepatic progenitors and hepatocytes from bone marrow was demonstrated. Hematopoietic and hepatic stem cells share the markers CD 34, c-kit, and Thy1. Little is known about liver stem cells during liver development. In this study, we investigated the potential stem cell marker Thy1 and hepatocytic marker CK-18 during liver development to identify putative fetal liver stem cell candidates. Livers were harvested from embryonic and fetal day (ED) 16, ED 18, ED 20, and neonatal ED 22 stage rat fetuses from Sprague-Dawley rats. Fetal livers were digested by collagenase-DNAse solution and purified by percoll centrifugation. Magnetic cell sorting (MACS) depletion of fetal liver cells was performed using OX43 and OX44 antibodies. Cells were characterized by immunocytochemistry for Thy1, CK-18, and proliferating cell antigen Ki-67 and double labeling for Thy1 and CK-18. Thy1 expression was found at all stages of liver development before and after MACS in immunocytochemistry. Thy1 positive cells were enriched after MACS only in early developmental stages. An enrichment of CK-18 positive cells was found after MACS at all developmental stages. Cells coexpressing Thy1 and CK-18 were identified by double labeling of fetal liver cell isolates. In conclusion, hepatic progenitor cells (CK-18 positive) in fetal rat liver express Thy1. Other progenitors express only CK-18. This indicates the coexistence of different hepatic cell compartments. Isolation and further characterization of such cells is needed to demonstrate their biologic properties.
Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers.
Gaccioli, Francesca; Aye, Irving L M H; Sovio, Ulla; Charnock-Jones, D Stephen; Smith, Gordon C S
2018-02-01
Fetal growth restriction is a major determinant of perinatal morbidity and mortality. Screening for fetal growth restriction is a key element of prenatal care but it is recognized to be problematic. Screening using clinical risk assessment and targeting ultrasound to high-risk women is the standard of care in the United States and United Kingdom, but the approach is known to have low sensitivity. Systematic reviews of randomized controlled trials do not demonstrate any benefit from universal ultrasound screening for fetal growth restriction in the third trimester, but the evidence base is not strong. Implementation of universal ultrasound screening in low-risk women in France failed to reduce the risk of complications among small-for-gestational-age infants but did appear to cause iatrogenic harm to false positives. One strategy to making progress is to improve screening by developing more sensitive and specific tests with the key goal of differentiating between healthy small fetuses and those that are small through fetal growth restriction. As abnormal placentation is thought to be the major cause of fetal growth restriction, one approach is to combine fetal biometry with an indicator of placental dysfunction. In the past, these indicators were generally ultrasonic measurements, such as Doppler flow velocimetry of the uteroplacental circulation. However, another promising approach is to combine ultrasonic suspicion of small-for-gestational-age infant with a blood test indicating placental dysfunction. Thus far, much of the research on maternal serum biomarkers for fetal growth restriction has involved the secondary analysis of tests performed for other indications, such as fetal aneuploidies. An exemplar of this is pregnancy-associated plasma protein A. This blood test is performed primarily to assess the risk of Down syndrome, but women with low first-trimester levels are now serially scanned in later pregnancy due to associations with placental causes of stillbirth, including fetal growth restriction. The development of "omic" technologies presents a huge opportunity to identify novel biomarkers for fetal growth restriction. The hope is that when such markers are measured alongside ultrasonic fetal biometry, the combination would have strong predictive power for fetal growth restriction and its related complications. However, a series of important methodological considerations in assessing the diagnostic effectiveness of new tests will have to be addressed. The challenge thereafter will be to identify novel disease-modifying interventions, which are the essential partner to an effective screening test to achieve clinically effective population-based screening. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alem, Orang; Sander, Tilmann H.; Mhaskar, Rahul; LeBlanc, John; Eswaran, Hari; Steinhoff, Uwe; Okada, Yoshio; Kitching, John; Trahms, Lutz; Knappe, Svenja
2015-06-01
Following the rapid progress in the development of optically pumped magnetometer (OPM) technology for the measurement of magnetic fields in the femtotesla range, a successful assembly of individual sensors into an array of nearly identical sensors is within reach. Here, 25 microfabricated OPMs with footprints of 1 cm3 were assembled into a conformal array. The individual sensors were inserted into three flexible belt-shaped holders and connected to their respective light sources and electronics, which reside outside a magnetically shielded room, through long optical and electrical cables. With this setup the fetal magnetocardiogram of a pregnant woman was measured by placing two sensor belts over her abdomen and one belt over her chest. The fetal magnetocardiogram recorded over the abdomen is usually dominated by contributions from the maternal magnetocardiogram, since the maternal heart generates a much stronger signal than the fetal heart. Therefore, signal processing methods have to be applied to obtain the pure fetal magnetocardiogram: orthogonal projection and independent component analysis. The resulting spatial distributions of fetal cardiac activity are in good agreement with each other. In a further exemplary step, the fetal heart rate was extracted from the fetal magnetocardiogram. Its variability suggests fetal activity. We conclude that microfabricated optically pumped magnetometers operating at room temperature are capable of complementing or in the future even replacing superconducting sensors for fetal magnetocardiography measurements.
Hirata, Go; Aoki, Shigeru; Sakamaki, Kentaro; Takahashi, Tsuneo; Hirahara, Fumiki; Ishikawa, Hiroshi
2016-01-01
To investigate clinical features of mirror syndrome. We retrospectively reviewed 71 cases of fetal hydrops with or without mirror syndrome, and compared with respect to maternal age, the body mass index, the primipara rate, the gestational age at delivery, the timing of fetal hydrops onset, the severity of fetal edema, placental swelling, the laboratory data and the fetal mortality. The data are expressed as the medians. Mirror syndrome developed in 29% (10/35) of the cases with fetal hydrops. In mirror group, the onset time of fetal hydrops was significantly earlier (29 weeks versus 31 weeks, p = 0.011), and the severity of fetal hydrops (fetal edema/biparietal diameter) was significantly higher than non-mirror group (0.23 versus 0.16, p < 0.001). There was significantly higher serum human chorionic gonadotropin (hCG) (453,000 IU/L versus 80,000 IU/L, p < 0.001) and lower hemoglobin (8.9 g/dL versus 10.1 g/dL, p =0.002), hypoalbuminemia (2.3 mg/dL versus 2.7 mg/dL, p = 0.007), hyperuricemia (6.4 mg/dL versus 5.0 mg/dL, p = 0.043) in mirror group. Mirror syndrome is occurred frequently in early and severe fetal hydrops and cause hemodilution and elevation of serum hCG.
Uauy, R; Casanello, P; Krause, B; Kuzanovic, J P; Corvalan, C
2013-09-01
Healthy growth in utero and after birth is fundamental for lifelong health and wellbeing. The World Health Organization (WHO) recently published standards for healthy growth from birth to 6 years of age; analogous standards for healthy fetal growth are not currently available. Current fetal growth charts in use are not true standards, since they are based on cross-sectional measurements of attained size under conditions that do not accurately reflect normal growth. In most cases, the pregnant populations and environments studied are far from ideal; thus the data are unlikely to reflect optimal fetal growth. A true standard should reflect how fetuses and newborns 'should' grow under ideal environmental conditions. The development of prescriptive intrauterine and newborn growth standards derived from the INTERGROWTH-21(st) Project provides the data that will allow us for the first time to establish what is 'normal' fetal growth. The INTERGROWTH-21(st) study centres provide the data set obtained under pre-established standardised criteria, and details of the methods used are also published. Multicentre study with sites in all major geographical regions of the world using a standard evaluation protocol. These standards will assess risk of abnormal size at birth and serve to evaluate potentially effective interventions to promote optimal growth beyond securing survival. The new normative standards have the potential to impact perinatal and neonatal survival and beyond, particularly in developing countries where fetal growth restriction is most prevalent. They will help us identify intrauterine growth restriction at earlier stages of development, when preventive or corrective strategies might be more effective than at present. These growth standards will take us one step closer to effective action in preventing and potentially reversing abnormal intrauterine growth. Achieving 'optimal' fetal growth requires that we act not only during pregnancy but that we optimize the maternal uterine environment from the time before conception, through embryonic development until fetal growth is complete. The remaining challenge is how 'early' will we be able to act, now that we can better monitor fetal growth. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.
Che, Long; Wang, Dingyue; Yang, Zhenguo; Zhang, Pan; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Chen, Daiwen; Wu, De
2015-01-01
Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis) analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins) and molecular functions (enzyme regulator activity). We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP) may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be responsible for the low reproductive efficiency reported in other obese breeds. The ovarian developmental potential was found to be greater in Meishan pigs than in Yorkshire pigs. PMID:26305539
Roman, Sabiniano; Bullock, Anthony J; Anumba, Dilly O; MacNeil, Sheila
2016-02-01
Preterm premature rupture of fetal membranes is a very common condition leading to premature labour of a non viable fetus. Significant morbidities may occur when preterm premature rupture of fetal membranes management is attempted to prolong the pregnancy for fetal maturation. Reducing the rate of loss of amniotic fluid and providing a barrier to bacterial entry may allow the pregnancy to continue to term, avoiding complications. Our aim is to develop a synthetic biocompatible membrane to form a distensible barrier for cervical closure which acts to reduce fluid loss and provide a surface for epithelial ingrowth to help repair the damaged membranes. Therefore, a bilayer membrane was developed using an electrospinning technique of combining two FDA-approved polymers, poly-L-lactic acid (PLA) and polyurethane (Z3) polymer. This was compared to a plain electrospun Z3 membrane. The physical and mechanical properties were assessed using scanning electron microscope images and a BOSE tensiometer, respectively, and compared to native fetal membranes. The performance of the membranes in preventing fluid loss was assessed by measuring their ability to support a column of water. Finally the ability of the membranes to support cell ingrowth was assessed by culturing adipose-derived stem cells on the membranes for two weeks and assessing metabolic activity after 7 and 14 days. The physical properties of the bilayer were similar to that of the native fetal membranes and it was resistant to fluid penetration. This bilayer membrane presented mechanical properties close to those for fetal membranes and showed elastic distention, which may be crucial for progress of the pregnancy. The membrane was also able to retain surgical sutures. In addition, it also supported the attachment and growth of adipose-derived stem cells for two weeks. In conclusion, this membrane may prove a useful approach in the treatment of preterm premature rupture of fetal membranes and now merits further investigation. © The Author(s) 2015.
Fetal size in mid- and late pregnancy is related to infant alertness: the generation R study.
Henrichs, Jens; Schenk, Jacqueline J; Schmidt, Henk G; Arends, Lidia R; Steegers, Eric A P; Hofman, Albert; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning
2009-03-01
The vulnerability for behavioral problems is partly shaped in fetal life. Numerous studies have related indicators of intrauterine growth, for example, birth weight and body size, to behavioral development. We investigated whether fetal size in mid- and late pregnancy is related to infant irritability and alertness. In a population-based birth cohort of 4,255 singleton full-term infants ultrasound measurements of fetal head and abdominal circumference in mid- and late pregnancy were performed. Infant irritability and alertness scores were obtained by the Mother and Baby Scales at 3 months and z-standardized. Multiple linear regression analyses revealed curvilinear associations (inverted J-shape) of measures of fetal size in both mid- and late pregnancy with infant alertness. Fetal size characteristics were not associated with infant irritability. These results suggest that alterations of intrauterine growth affecting infant alertness are already detectable from mid-pregnancy onwards.
Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence
We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Enzyme markers of maternal malnutrition in fetal rat brain.
Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R
1987-01-01
The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.
Performance of a wearable acoustic system for fetal movement discrimination
Lai, Jonathan; Woodward, Richard; Alexandrov, Yuriy; ain Munnee, Qurratul; Lees, Christoph C.
2018-01-01
Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body ‘startle’ movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements. PMID:29734344
Performance of a wearable acoustic system for fetal movement discrimination.
Lai, Jonathan; Woodward, Richard; Alexandrov, Yuriy; Ain Munnee, Qurratul; Lees, Christoph C; Vaidyanathan, Ravi; Nowlan, Niamh C
2018-01-01
Fetal movements (FM) are a key factor in clinical management of high-risk pregnancies such as fetal growth restriction. While maternal perception of reduced FM can trigger self-referral to obstetric services, maternal sensation is highly subjective. Objective, reliable monitoring of fetal movement patterns outside clinical environs is not currently possible. A wearable and non-transmitting system capable of sensing fetal movements over extended periods of time would be extremely valuable, not only for monitoring individual fetal health, but also for establishing normal levels of movement in the population at large. Wearable monitors based on accelerometers have previously been proposed as a means of tracking FM, but such systems have difficulty separating maternal and fetal activity and have not matured to the level of clinical use. We introduce a new wearable system based on a novel combination of accelerometers and bespoke acoustic sensors as well as an advanced signal processing architecture to identify and discriminate between types of fetal movements. We validate the system with concurrent ultrasound tests on a cohort of 44 pregnant women and demonstrate that the garment is capable of both detecting and discriminating the vigorous, whole-body 'startle' movements of a fetus. These results demonstrate the promise of multimodal sensing for the development of a low-cost, non-transmitting wearable monitor for fetal movements.
Koumbaris, George; Kypri, Elena; Tsangaras, Kyriakos; Achilleos, Achilleas; Mina, Petros; Neofytou, Maria; Velissariou, Voula; Christopoulou, Georgia; Kallikas, Ioannis; González-Liñán, Alicia; Benusiene, Egle; Latos-Bielenska, Anna; Marek, Pietryga; Santana, Alfredo; Nagy, Nikoletta; Széll, Márta; Laudanski, Piotr; Papageorgiou, Elisavet A; Ioannides, Marios; Patsalis, Philippos C
2016-06-01
There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%-100%) cases of trisomy 21, 16/16 (95% CI, 79.4%-100%) cases of trisomy 18, 5/5 (95% CI, 47.8%-100%) cases of trisomy 13, and 538/538 (95% CI, 99.3%-100%) normal cases. The test also correctly identified fetal sex in all cases (95% CI, 99.4%-100%). One sample failed prespecified assay quality control criteria, and 19 samples were nonreportable because of low fetal fraction. The extent to which free fetal DNA testing can be applied as a universal screening tool for trisomy 21, 18, and 13 depends mainly on assay accuracy and cost. Cell-free DNA analysis of targeted genomic regions in maternal plasma enables accurate and cost-effective noninvasive fetal aneuploidy detection, which is critical for widespread adoption of NIPT. © 2016 American Association for Clinical Chemistry.
Fetal programming in meat production.
Du, Min; Wang, Bo; Fu, Xing; Yang, Qiyuan; Zhu, Mei-Jun
2015-11-01
Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gorczynski, R M; Alexander, C; Brandenburg, K; Chen, Z; Heini, A; Neumann, D; Mach, J P; Rietschel, E T; Tersikh, A; Ulmer, A J; Yu, Kai; Zahringer, U; Khatri, I
2017-09-01
C5BL/6 female mice receiving dextran sodium sulfate in their drinking water develop an acute inflammatory colitis within 7d, with weight loss, histopathologic signs of inflammation, and colonic expression of inflammatory cytokines. In previous studies we have reported that increased inflammatory cytokine expression in aged mice can be attenuated by oral gavage of a crude fetal extract containing glutathione (GSH), MPLA and fetal hemoglobin, or more specifically by injection of a combination of these purified reagents. We speculated that this combination led to an altered tissue redox environment in which the immune response developed, thus regulating inflammation. Accordingly, we used wild-type (WT) C57BL/6 mice, or mice lacking either murine beta Hemoglobin major (Hgbβ ma KO) or minor (Hgbβ mi KO) as recipients of DSS in their drinking water, and followed development of colitis both clinically and by inflammatory cytokine production, before/after oral treatment of mice with a crude fetal liver extract. Mice lacking an intact fetal hemoglobin chain (Hgbβ mi KO) developed severe colitis, with enhanced colonic expression of inflammatory cytokines, which could not be rescued by extract, unlike WT and Hgbβ ma KO animals. Moreover, disease in both WT and Hgbβ ma KO animals could also be attenuated by exposure to 5-hydroxymethyl furfural (5HMF), hydroxyurea or rapamycin. The former has been used as an alternative means of stabilizing the conformation of adult hemoglobin in a manner which mimicks the oxygen-affinity of fetal hemoglobin, while we show that both hydroxyurea and rapamycin augment expression of murine fetal hemoglobin chains. Our data suggests there may be a clinical value in exploring agents which alter local REDOX environments as an adjunctive treatment for colitis and attenuating inflammatory cytokine production. Copyright © 2017 Elsevier B.V. All rights reserved.
Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia
2016-01-01
Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts in human fetal hearts. Hypoxia further increased the number of human fetal and rat neonatal myofibroblasts. However, chronically administered UDCA reduced the number of myofibroblasts and prevented hypoxia-induced depolarisation. In conclusion, our results show that the protective effect of UDCA involves both the reduction of fibroblast differentiation into myofibroblasts, and hyperpolarisation of myofibroblasts, most likely through the stimulation of potassium channels, i.e. KATP channels. This could be important in validating UDCA as an antifibrotic and antiarrhythmic drug for treatment of failing hearts and fetal arrhythmia. Copyright © 2016. Published by Elsevier Ltd.
Instrumentation of Near-term Fetal Sheep for Multivariate Chronic Non-anesthetized Recordings
Burns, Patrick; Liu, Hai Lun; Kuthiala, Shikha; Fecteau, Gilles; Desrochers, André; Durosier, Lucien Daniel; Cao, Mingju; Frasch, Martin G.
2015-01-01
The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli such as endotoxins, bacteria, umbilical cord occlusions, hypoxia and various pharmacological treatments. The life-saving clinical practices of glucocorticoid treatment in fetuses at risk of premature birth and the therapeutic hypothermia have been developed in this model. This is due to the unique amenability of the non-anesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation and in vivo organ imaging. Here we describe the surgical instrumentation procedure required to achieve a stable chronically instrumented non-anesthetized fetal sheep model including characterization of the post-operative recovery from blood gas, metabolic and inflammation standpoints. PMID:26555084
Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar
2016-01-01
Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart rate has an important influence on the pharmacokinetics of propofol during pregnancy. Much lower propofol concentration in the fetus compared to maternal concentrations explain limited placental transfer in in-vivo paired model, and less direct fetal cardiac depression we observed earlier with propofol supplemented inhalational anesthesia compared to higher dose inhalational anesthesia in humans and sheep. PMID:26752560
Maternal aldehyde elimination during pregnancy preserves the fetal genome.
Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J
2014-09-18
Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome
Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.
2014-01-01
Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611
What do we know about maternal-fetal attachment?
Shieh, C; Kravitz, M; Wang, H H
2001-09-01
A review of the literature suggests that there are three critical attributes related to the concept of maternal-fetal attachment, including cognitive, affective, and altruistic attachment. Cognitive attachment is the desire to know the baby. Affective attachment is the pleasure associated with thoughts of or interaction with the fetus. Altruistic attachment refers to a desire to protect the unborn child. Existing measurements on maternal-fetal attachment are developed based on low-risk and white pregnant women and previous research has not yet resulted in a consistent theoretical model. Future research should focus on development of culturally sensitive instruments and combining qualitative and quantitative measures to broaden theoretical understanding of the concept. Nursing assessment of maternal-fetal attachment is an on-going process. The nurse's role is to reassure those who have developed attachment to their fetuses and to motivate those who are unaware of or unconcerned about their attachment to their fetuses. Collecting data from different attributes of attachment helps nurses identify each woman's attachment patterns and areas of concern.
ERIC Educational Resources Information Center
Zeskind, Philip Sanford; Ramey, Craig T.
1981-01-01
Presents longitudinal data regarding detrimental effects through 36 months of age on intellectual, behavioral, and social-interactional development in a nonsupportive caregiving environment, and the continuing amelioration of those effects in a supportive caregiving environment. Suggests that mothers of fetally malnourished infants may have had…
An ecologically relevant guinea pig model of fetal behavior.
Bellinger, S A; Lucas, D; Kleven, G A
2015-04-15
The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multicolored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To ensure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. Copyright © 2015 Elsevier B.V. All rights reserved.
An ecologically relevant guinea pig model of fetal behavior
Bellinger, S. A.; Lucas, D.; Kleven, G. A.
2015-01-01
The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multi-colored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To insure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. PMID:25655512
Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang
2014-10-01
Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.
Uterine Contraction Modeling and Simulation
NASA Technical Reports Server (NTRS)
Liu, Miao; Belfore, Lee A.; Shen, Yuzhong; Scerbo, Mark W.
2010-01-01
Building a training system for medical personnel to properly interpret fetal heart rate tracing requires developing accurate models that can relate various signal patterns to certain pathologies. In addition to modeling the fetal heart rate signal itself, the change of uterine pressure that bears strong relation to fetal heart rate and provides indications of maternal and fetal status should also be considered. In this work, we have developed a group of parametric models to simulate uterine contractions during labor and delivery. Through analysis of real patient records, we propose to model uterine contraction signals by three major components: regular contractions, impulsive noise caused by fetal movements, and low amplitude noise invoked by maternal breathing and measuring apparatus. The regular contractions are modeled by an asymmetric generalized Gaussian function and least squares estimation is used to compute the parameter values of the asymmetric generalized Gaussian function based on uterine contractions of real patients. Regular contractions are detected based on thresholding and derivative analysis of uterine contractions. Impulsive noise caused by fetal movements and low amplitude noise by maternal breathing and measuring apparatus are modeled by rational polynomial functions and Perlin noise, respectively. Experiment results show the synthesized uterine contractions can mimic the real uterine contractions realistically, demonstrating the effectiveness of the proposed algorithm.
Maternal and fetal response to fetal persistent infection with bovine viral diarrhea virus.
Hansen, Thomas R; Smirnova, Natalia P; Van Campen, Hana; Shoemaker, Megan L; Ptitsyn, Andrey A; Bielefeldt-Ohmann, Helle
2010-10-01
Infection of naïve pregnant cows with non-cytopathic (ncp) bovine viral diarrhea virus (BVDV) results in transplacental infection of the fetus. Infection of the pregnant cow with ncp BVDV late in gestation (after day 150) results in transient infection (TI), as both the dam and fetus can mount an immune response to the virus. In contrast, if the fetus is infected with ncp BVDV early in gestation (before day 150), the fetal immune system is undeveloped and unable to recognize the virus as foreign. This results in induction of immune tolerance to the infecting BVDV strain and persistent infection (PI). Infection of naïve pregnant heifers with ncp BVDV2 on day 75 was hypothesized to induce differential gene expression in white blood cells of the dams and their fetuses, adversely affecting development and antiviral immune responses in PI fetuses. Gene expression differed in maternal blood cells in the presence of PI versus uninfected fetuses. PI adversely affected fetal development and antiviral responses, despite protective immune responses in the dam. Fetal PI with BVDV alters maternal immune function, compromises fetal growth and immune responses, and results in expression of maternal blood biomarkers that can be used to identify cows carrying PI fetuses.
Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni
2014-01-01
Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.
Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.
Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira
2016-01-01
The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.
The influence of maternal smoking on transferrin sialylation and fetal biometric parameters.
Wrześniak, Marta; Królik, Małgorzata; Kepinska, Marta; Milnerowicz, Halina
2016-10-01
Transferrin is a glycosylated protein responsible for transporting iron, an essential metal responsible for proper fetal development. Tobacco is a heavily used xenobiotic having a negative impact on the human body and pregnancy outcomes. Aims of this study was to examine the influence of tobacco smoking on transferrin sialic acid residues and their connection with fetal biometric parameters in women with iron-deficiency. The study involved 173 samples from pregnant women, smokers and non-smokers, iron deficient and not. Transferrin sialylation was determined by capillary electrophoresis. The cadmium (Cd) level was measured by atomic absorption and the sialic acid concentration by the resorcinol method. Women with iron deficiencies who smoked gave birth earlier than non-smoking, non-iron-deficient women. The Cd level, but not the cotinine level, was positively correlated with transferrin sialylation in the blood of iron-deficient women who smoked; 3-, 4-, 5- and 6-sialoTf correlated negatively with fetal biometric parameters in the same group. It has been shown the relationship between Cd from tobacco smoking and fetal biometric parameters observed only in the iron deficient group suggests an additive effect of these two factors, and indicate that mothers with anemia may be more susceptible to Cd toxicity and disturbed fetal development. Copyright © 2016 Elsevier B.V. All rights reserved.
A health priority for developing countries: the prevention of chronic fetal malnutrition.
Villar, J; Altobelli, L; Kestler, E; Beliźan, J
1986-01-01
A prospective study of 3557 consecutively born neonates from a lower middle class district in Guatemala City documented a 23.8% incidence of intrauterine growth retardation due to fetal malnutrition. Those infants whose weights are below the 10th percentile of a sex- and race-specific birthweight and gestational age distribution, based on a developed country population, were considered to manifest intrauterine growth retardation. Ponderal index values were then used to further classify this population as having chronic fetal malnutrition (above the 10th percentile of the standard distribution) or subacute fetal malnutrition (below the 10th percentile); the incidences of these conditions were 79.1% and 20.8%, respectively. The results of numerous studies carried out in various populations suggest that developing countries have a higher incidence of chronically malnourished infants within the intrauterine growth retardation population, while subacute fetal malnutrition is more prevalent in developed countries. Moreover, it has been shown that chronically malnourished infants do not recover from their intrauterine damage and score the lowest in mental development tests even up to school age. They remain lighter, shorter, and with a smaller head circumference until at least 3 years of age. Based on the incidence rates ascertained in this study, it can be estimated that at least 2 million infants born each year in Latin America are at risk of chronic intrauterine growth retardation. Screening programs are needed to identify at-risk mothers early in pregnancy so that medical and nutritional interventions can be implemented.
Watkins, Adam J; Sirovica, Slobodan; Stokes, Ben; Isaacs, Mark; Addison, Owen; Martin, Richard A
2017-06-01
Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development is largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
Pasqualini, Jorge R; Chetrite, Gérard S
2016-07-01
The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.
Rogawski, Elizabeth T; Chaluluka, Ebbie; Molyneux, Malcolm E; Feng, Gaoqian; Rogerson, Stephen J; Meshnick, Steven R
2012-10-01
Fetal anemia is common in malarious areas and is a risk factor for infant morbidity and mortality. Malaria during pregnancy may cause decreased cord hemoglobin (Hb) and fetal anemia among newborns. Intermittent preventive treatment during pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is protective against malaria but may also affect hematopoiesis and contribute to fetal anemia. Peripheral, placental, and cord blood were examined for malaria parasitemia and Hb concentration in a cross-section of 3848 mothers and infants delivered at Queen Elizabeth Central Hospital in Blantyre, Malawi between 1997 and 2006. Unconditional linear and logistic regressions were performed with multiple imputation for missing covariates to assess the associations between malaria, IPTp with SP, and fetal anemia. The overall prevalence of fetal anemia was 7.9% (n = 304). Malaria parasitemia at delivery was associated with an adjusted decrease in cord Hb of -0.24 g/dL (95% confidence interval [CI], -.42 to -.05). The adjusted prevalence odds ratio for the effect of malaria on fetal anemia was 1.41 (95% CI, 1.05-1.90). Primigravidae who did not take IPTp had infants at highest risk for fetal anemia, and density of parasitemia was correlated with the decrease in cord Hb. There was no significant association between SP use and cord Hb or fetal anemia. Malaria during pregnancy, but not IPTp, decreases cord Hb and is a risk factor for fetal anemia in Malawi. Intermittent preventive treatment during pregnancy with SP may continue to be safe and effective in preventing malaria during pregnancy and fetal anemia despite development of SP resistance.
Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang
2011-01-01
Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747
Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys
NASA Astrophysics Data System (ADS)
Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.
1988-11-01
Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.
Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches?
Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R
2014-10-15
Ultrasonography is a safe and efficient technique for monitoring fetal development and viability. One of the most important and widely used parameters to verify fetal viability is the fetal heart rate (HR). In human medicine, the fetal HR normally oscillates during labor in transient accelerations and decelerations associated with uterine contractions. The present study investigated whether these variations also occur in canine fetuses and its relationship to parturition. A cohort study was conducted in 15 pregnant bitches undergoing two-dimensional high-resolution ultrasonographic examination during the 8th and 9th week of gestation. Fetal HR was assessed in M-mode for 5 minutes in each fetus in all bitches. In addition, the bitches were monitored for clinical signs of imminent parturition. Associations between the HR, antepartum time, and delivery characteristics were evaluated with a Poisson regression model. Fetal HR acceleration and deceleration occurred in canine fetuses and predicted the optimal time of parturition. These findings can help veterinarians and sonographers better understand this phenomenon in canine fetuses. Copyright © 2014 Elsevier Inc. All rights reserved.
Biomedical Instruments for Fetal and Neonatal Surveillance
NASA Astrophysics Data System (ADS)
Rolfe, P.; Scopesi, F.; Serra, G.
2006-10-01
Specialised instruments have been developed to aid the care of the fetus and the newborn baby. Miniature sensors using optical, electrical, chemical, mechanical and magnetic principles have been produced for capturing key measurands. These include temperature, pressure, flow and dimension, as well as several specific molecules such as glucose, oxygen and carbon dioxide. During pregnancy ultrasound imaging and blood flow techniques provide valuable information concerning fetal abnormalities, fetal growth, fetal breathing and fetal heart rate. Signal processing and pattern recognition can be useful for deriving indicators of fetal distress and clinical status, based on biopotentials as well as ultrasound signals. Fetal pH measurement is a critical requirement during labour and delivery. The intensive care of ill preterm babies involves provision of an optimal thermal environment and respiratory support. Monitoring of blood gas and acid-base status is essential, and this involves both blood sampling for in vitro analysis as well as the use of invasive or non-invasive sensors. For the future it will be vital that the technologies used are subjected to controlled trials to establish benefit or otherwise.
Detection and Processing Techniques of FECG Signal for Fetal Monitoring
2009-01-01
Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system. PMID:19495912
Interleukin-7 negatively regulates the development of mature T cells in fetal thymus organ cultures.
DeLuca, Dominick; Clark, Dawn R
2002-05-01
We added antibody specific for interleukin-7 (IL-7) to chimeric fetal thymus organ cultures (FTOC) to investigate the involvement of this cytokine at distinct stages of T cell development. We report that the neutralization of IL-7 early in fetal T cell development results in a decrease in the production of mature CD4 or CD8 ('single positive', SP) or CD4/8 negative ('double negative', DN) T cell phenotypes, as defined by their expression of CD3. This loss of T cell development was not complete, but it did include the development of gammadelta T cells. However, if IL-7 was neutralized at later stages of FTOC, the production of CD4/8 positive ('double positive', DP) T cells was increased, and if the addition of the antibody was delayed further, the production of mature SP T cells was increased. This last result could be extended to both alphabeta and gammadelta T cells. These data suggested that IL-7 played a negative regulatory role in the development of progressively mature T cells. Tissue sections of FTOC showed that IL-7 was expressed in the subcapsular region of the tissue where immature T cells reside. However, IL-7 was not detected in the medullary region where mature T cells are located. These data suggest that IL-7 not only supports the development of immature fetal T cells, but it may inhibit the development of mature T cells. The production of mature fetal T cells may, therefore, be delayed until their precursors enter the medullary microenvironment, where IL-7 production is low. In this way, T cells may be prevented from maturing until negative selection or anergy events eliminate or inactivate autoreactive clones.
Posobiec, Lorraine M; Cox, Estella M; Solomon, Howard M; Lewis, Elise M; Wang, Kai-fen; Stanislaus, Dinesh
2016-04-01
Embryo-fetal development (EFD) studies, typically in pregnant rats and rabbits, are conducted prior to enrolling females of reproductive age in clinical trials. Common rabbit strains used are the New Zealand White (NZW) and Dutch Belted (DB). As fetal abnormalities can occur in all groups, including controls, Historical Control Data (HCD) is compiled using data from control groups of EFD studies, and is used along with each study's concurrent control group to help determine whether fetal abnormalities are caused by the test article or are part of background incidences. A probability analysis was conducted on 2014 HCD collected at Charles River Inc., Horsham PA on Covance NZW, Covance DB, and Charles River (CR) NZW rabbits. The analysis was designed to determine the probability of 2 or 3 out of a group of 22 does aborting their litter or of having a fetal abnormality by chance. Results demonstrate that pregnancy parameters and fetal observations differ not only between strains, but between sources of rabbits of the same strain. As a result the probability of these observations occurring by chance in two or three litters was drastically different. Although no one single strain is perfect, this analysis highlights the need to appreciate the inherent differences in pregnancy and fetal abnormalities between strains, and points out that an apparent isolated increased incidence of an observation in one strain will not necessarily be test-article related in another strain. A robust HCD is critical for interpretation of EFD rabbit studies, regardless of the rabbit strain used. © 2016 Wiley Periodicals, Inc.
Diagnosis of fetal syndromes by three- and four-dimensional ultrasound: is there any improvement?
Barišić, Lara Spalldi; Stanojević, Milan; Kurjak, Asim; Porović, Selma; Gaber, Ghalia
2017-08-28
With all of our present knowledge, high technology diagnostic equipment, electronic databases and other available supporting resources, detection of fetal syndromes is still a challenge for healthcare providers in prenatal as well as in the postnatal period. Prenatal diagnosis of fetal syndromes is not straightforward, and it is a difficult puzzle that needs to be assembled and solved. Detection of one anomaly should always raise a suspicion of the existence of more anomalies, and can be a trigger to investigate further and raise awareness of possible syndromes. Highly specialized software systems for three- and four-dimensional ultrasound (3D/4D US) enabled detailed depiction of fetal anatomy and assessment of the dynamics of fetal structural and functional development in real time. With recent advances in 3D/4D US technology, antenatal diagnosis of fetal anomalies and syndromes shifted from the 2nd to the 1st trimester of pregnancy. It is questionable what can and should be done after the prenatal diagnosis of fetal syndrome. The 3D and 4D US techniques improved detection accuracy of fetal abnormalities and syndromes from early pregnancy onwards. It is not easy to make prenatal diagnosis of fetal syndromes, so tools which help like online integrated databases are needed to increase diagnostic precision. The aim of this paper is to present the possibilities of different US techniques in the detection of some fetal syndromes prenatally.
Antenatal Testing – A Reevaluation
Signore, Caroline; Freeman, Roger K.; Spong, Catherine Y.
2009-01-01
In August 2007, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institutes of Health Office of Rare Diseases, the American College of Obstetricians and Gynecologists, and the American Academy of Pediatrics cosponsored a 2-day workshop to reassess the body of evidence supporting antepartum assessment of fetal well-being, identify key gaps in the evidence, and formulate recommendations for further research. Participants included experts in obstetrics and fetal physiology, and representatives from relevant stakeholder groups and organizations. This article is a summary of the discussions at the workshop, including synopses of oral presentations on the epidemiology of stillbirth and fetal neurological injury, fetal physiology, techniques for antenatal monitoring, and maternal and fetal indications for monitoring. Finally, a synthesis of recommendations for further research compiled from three breakout workgroups is presented. PMID:19300336
Signal processing methodologies for an acoustic fetal heart rate monitor
NASA Technical Reports Server (NTRS)
Pretlow, Robert A., III; Stoughton, John W.
1992-01-01
Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Wang, Hua; Xu, Zhong Mei
The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of bloodmore » vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER stress might be involved in Cd-induced placental impairments. ► ROS-mediated ER stress might be involved in Cd-induced fetal malformations.« less
McKinnell, Chris; Mitchell, Rod T.; Walker, Marion; Morris, Keith; Kelnar, Chris J.H.; Wallace, W. Hamish; Sharpe, Richard M.
2009-01-01
BACKGROUND Fetal exposure of male rats to some phthalates induces reproductive abnormalities, raising concerns for similar effects in humans. In order to address this in a more appropriate animal model, the aim of the present studies was to investigate the effect of fetal/neonatal exposure to monobutyl phthalate (MBP) in a non-human primate, the marmoset. In particular, to determine if exposure resulted in effects at birth, or in adulthood, similar to those in male rats, and whether there was evidence for induction of carcinoma-in-situ (CIS) or testicular germ cell tumours (TGCT). METHODS Pregnant female marmosets were dosed from ∼7–15 weeks gestation with 500 mg/kg/day MBP and male offspring studied at birth (1–5 days; n = 6) or in adulthood (n = 5). In another study, newborn males (n = 5 co-twins) were dosed with 500 mg/kg/day MBP for 14 days, commencing at ∼4 days of age. RESULTS Fetal exposure of marmosets to MBP did not affect gross testicular morphology, reproductive tract development or testosterone levels at birth, nor were germ cell number and proliferation, Sertoli cell number or germ:Sertoli cell ratio affected. In two of six MBP-exposed animals, unusual clusters of undifferentiated germ cells were found, but their significance is unclear. Neonatal MBP treatment did not affect germ cell numbers or differentiation. Fetal exposure to MBP did not affect testis size/morphology, germ cell numbers or fertility in adulthood. There was no evidence for CIS or TGCT. CONCLUSIONS Fetal exposure of marmosets to MBP does not measurably affect testis development/function or cause testicular dysgenesis, and no effects emerge by adulthood. Some effects on germ cell development were found, but these were inconsistent and of uncertain significance. PMID:19491204
Esplugues, Ana; Fernández-Patier, Rosalía; Aguilera, Inma; Iñíguez, Carmen; García Dos Santos, Saúl; Aguirre Alfaro, Amelia; Lacasaña, Marina; Estarlich, Marisa; Grimalt, Joan O; Fernández, Marieta; Rebagliato, Marisa; Sala, María; Tardón, Adonina; Torrent, Maties; Martínez, María Dolores; Ribas-Fitó, Núria; Sunyer, Jordi; Ballester, Ferran
2007-01-01
The INMA (INfancia y Medio Ambiente [Spanish for Environment and Childhood]) project is a cooperative research network. This project aims to study the effects of environment and diet on fetal and early childhood development. This article aims to present the air pollutant exposure protocol during pregnancy and fetal and early childhood development of the INMA project. The information to assess air pollutant exposure during pregnancy is based on outdoor measurement of air pollutants (nitrogen dioxide [NO2], volatile organic compounds [VOC], ozone, particulate matter [PM10, PM2,5 ] and of their composition [polycyclic aromatic hydrocarbons]); measurement of indoor and personal exposure (VOC and NO2); urinary measurement of a biological marker of hydrocarbon exposure (1-hydroxypyrene); and data gathered by questionnaires and geographic information systems. These data allow individual air pollutant exposure indexes to be developed, which can then be used to analyze the possible effects of exposure on fetal development and child health. This protocol and the type of study allow an approximation to individual air pollutant exposure to be obtained. Finally, the large number of participants (N = 4,000), as well as their geographic and social diversity, increases the study's potential.
A new customized fetal growth standard for African American women: the PRB/NICHD Detroit Study
Tarca, Adi L.; Romero, Roberto; Gudicha, Dereje W.; Erez, Offer; Hernandez-Andrade, Edgar; Yeo, Lami; Bhatti, Gaurav; Pacora, Percy; Maymon, Eli; Hassan, Sonia S.
2018-01-01
Background The assessment of fetal growth disorders requires a standard. Current nomograms for the assessment of fetal growth in African American women have been derived either from neonatal (rather than fetal) biometry data or have not been customized for maternal ethnicity, weight, height, parity, and fetal sex. Objective We sought to 1) develop a new customized fetal growth standard for African American mothers; and 2) compare such a standard to three existing standards for the classification of fetuses as small (SGA) or large (LGA) for gestational age. Study Design A retrospective cohort study included 4,183 women (4,001 African American and 182 Caucasian) from the Detroit metropolitan area who underwent ultrasound examinations between 14 and 40 weeks of gestation (the median number of scans per pregnancy was 5, interquartile range 3-7) and for whom relevant covariate data were available. Longitudinal quantile regression was used to build models defining the “normal” estimated fetal weight (EFW) centiles for gestational age in African American women, adjusted for maternal height, weight, parity, and fetal sex, and excluding pathologic factors with a significant effect on fetal weight. The resulting Perinatology Research Branch/Eunice Kennedy Shriver National Institute of Child Health and Human Development (hereinafter, PRB/NICHD) growth standard was compared to 3 other existing standards—the customized gestation-related optimal weight (GROW) standard; the Eunice Kennedy Shriver National Institute of Child Health and Human Development (hereinafter, NICHD) African American standard; and the multinational World Health Organization (WHO) standard—utilized to screen fetuses for SGA (<10th centile) or LGA (>90th centile) based on the last available ultrasound examination for each pregnancy. Results 1) First, the mean birthweight at 40 weeks was 133g higher for neonates born to Caucasian than to African American mothers and 150g higher for male than female neonates; maternal weight, height, and parity had a positive effect on birthweight.Second, analysis of longitudinal EFW revealed the following features of fetal growth: (1) all weight centiles were about 2% higher for male than for female fetuses; (2) maternal height had a positive effect on EFW, with larger fetuses being affected more (2% increase in the 95th centile of weight for each 10-cm increase in height); and (3) maternal weight and parity had a positive effect on EFW that increased with gestation and varied among the weight centiles. Third, the screen-positive rate for SGA was 7.2% for the NICHD African American standard, 12.3% for the GROW standard, 13% for the WHO standard customized by fetal sex, and 14.4% for the PRB/NICHD customized standard. For all standards, the screen-positive rate for SGA was at least two-fold higher among fetuses delivered preterm than at term.Fourth, the screen-positive rate for LGA was 8.7% for the GROW standard, 9.2% for the PRB/NICHD customized standard, 10.8% for the WHO standard customized by fetal sex, and 12.3% for the NICHD African American standard. Finally, the highest overall agreement among standards was between the GROW and PRB/NICHD customized standards (Cohen’s inter-rater agreement, kappa=0.85). Conclusions We developed a novel customized PRB/NICHD fetal growth standard from fetal data in an African American population without assuming proportionality of the effects of covariates and also without assuming that these effects are equal on all centiles of weight; we also provide an easy-to-use centile calculator. This standard classified more fetuses as being at risk for SGA compared to existing standards, especially among fetuses delivered preterm, but classified about the same number of LGA fetuses. The comparison among the four growth standards also revealed that the most important factor determining agreement among standards is whether they account for the same factors known to affect fetal growth. PMID:29422207
Connolly, Fiona; Rae, Michael T.; Späth, Katharina; Boswell, Lyndsey; McNeilly, Alan S.; Duncan, W. Colin
2015-01-01
Increased maternal androgen exposure during pregnancy programmes a polycystic ovary syndrome (PCOS)-like condition, with metabolic dysfunction, in adult female offspring. Other in utero exposures associated with the development of insulin resistance, such as intrauterine growth restriction and exposure to prenatal glucocorticoids, are associated with altered fetal gluconeogenesis. We therefore aimed to assess the effect of maternal androgenisation on the expression of PEPCK and G6PC in the ovine fetus. Pregnant Scottish Greyface sheep were treated with twice weekly testosterone propionate (TP; 100mg) or vehicle control from day 62 to day102 of gestation. At day 90 and day 112 fetal plasma and liver and kidney tissue was collected for analysis. PEPCK and G6PC expression were analysed by quantitative RT-PCR, immunohistochemistry and western blotting. PEPCK and G6PC were localised to fetal hepatocytes but maternal androgens had no effect on female or male fetuses. PEPCK and G6PC were also localised to the renal tubules and renal PEPCK (P<0.01) and G6PC (P = 0.057) were lower in females after prenatal androgenisation with no change in male fetuses. These tissue and sex specific observations could not be explained by alterations in fetal insulin or cortisol. The sexual dimorphism may be related to the increase in circulating estrogen (P<0.01) and testosterone (P<0.001) in females but not males. The tissue specific effects may be related to the increased expression of ESR1 (P<0.01) and AR (P<0.05) in the kidney when compared to the fetal liver. After discontinuation of maternal androgenisation female fetal kidney PEPCK expression normalised. These data further highlight the fetal and sexual dimorphic effects of maternal androgenisation, an antecedent to adult disease and the plasticity of fetal development. PMID:26148093
Tsuboi, Hiroto; Sumida, Takayuki; Noma, Hisashi; Yamagishi, Kazumasa; Anami, Ai; Fukushima, Kotaro; Horigome, Hitoshi; Maeno, Yasuki; Kishimoto, Mitsumasa; Takasaki, Yoshinari; Nakayama, Masahiro; Waguri, Masako; Sago, Haruhiko; Murashima, Atsuko
2016-07-01
To determine the maternal predictive factors for fetal congenital heart block (CHB) in pregnancy in mothers positive for anti-SS-A antibodies. The Research Team for Surveillance of Autoantibody-Exposed Fetuses and Treatment of Neonatal Lupus Erythematosus, the Research Program of the Japan Ministry of Health, Labor and Welfare, performed a national survey on pregnancy of mothers positive for anti-SS-A antibodies. We analyzed 635 pregnant mothers who tested positive for anti-SS-A antibodies before conception but had no previous history of fetal CHB. We performed univariate and multivariate analysis (models 1, 2, and 3 using different set of independent variables) investigated the relation between risk of fetal CHB and maternal clinical features. Of the 635 pregnant mothers, fetal CHB was detected in 16. Univariate analysis showed that fetal CHB associated with use of corticosteroids before conception (OR 3.72, p = 0.04), and negatively with use of corticosteroids (equivalent doses of prednisolone (PSL), at ≥10 mg/day) after conception before 16-week gestation (OR 0.17, p = 0.03). In multivariate analysis, model 1 identified the use of corticosteroids before conception (OR 4.28, p = 0.04) and high titer of anti-SS-A antibodies (OR 3.58, p = 0.02) as independent and significant risk factors, and model 3 identified use of corticosteroids (equivalent doses of PSL, at ≥10 mg/day) after conception before 16-week gestation as independent protective factor against the development of fetal CHB (OR 0.16, p = 0.03). Other maternal clinical features did not influence the development of fetal CHB. The results identified high titers of anti-SS-A antibodies and use of corticosteroids before conception as independent risk factors, and use of corticosteroids (equivalent doses of PSL, at ≥10 mg/day) after conception before 16-week gestation as an independent protective factor for fetal CHB.
USDA-ARS?s Scientific Manuscript database
Maternal obesity affects offspring weight, body composition and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high energy diet on fetal pancreatic development. Sixty days prior to breeding. ewes were assigned to control (C, 100% of N...
Fetal Alcohol Effects in Children: Cognitive, Educational, and Behavioral Considerations.
ERIC Educational Resources Information Center
Horowitz, Sheldon
The effects of alcohol on the developing fetus are examined. Noted is the existence of both structural problems (such as microcephaly and cardiac anomalies) and behavioral problems (such as mental retardation and speech and language deficits). The potential damage of alcohol at a very early stage of fetal development is discussed. It is thought…
Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity.
Odorizzi, Pamela M; Feeney, Margaret E
2016-10-01
Pregnancy-associated malaria, including placental malaria, causes significant morbidity and mortality worldwide. Recently, it has been suggested that in utero exposure of the fetus to malaria antigens may negatively impact the developing immune system and result in tolerance to malaria. Here, we review our current knowledge of fetal immunity to malaria, focusing on the dynamic interactions between maternal malaria infection, placental development, and the fetal immune system. A better understanding of the long-term impact of in utero malaria exposure on the development of natural immunity to malaria, immune responses to other childhood pathogens, and vaccine immunogenicity is urgently needed. This may guide the implementation of novel chemoprevention strategies during pregnancy and facilitate the push toward malaria vaccines. Published by Elsevier Ltd.
Evaluation of the fetal cerebellum by magnetic resonance imaging.
Llorens Salvador, R; Viegas Sainz, A; Montoya Filardi, A; Montoliu Fornas, G; Menor Serrano, F
Obstetric protocols dictate that the fetal cerebellum should always be assessed during sonograms during pregnancy. For various reasons, including technical limitations or inconclusive sonographic findings, suspicion of cerebellar abnormalities is one of the most common indications for prenatal magnetic resonance imaging (MRI). Although sonography is the imaging technique of choice to assess the cerebellum, MRI shows the anatomy of the posterior fossa and abnormalities in the development of the fetal cerebellum in greater detail and thus enables a more accurate prenatal diagnosis. We describe and illustrate the normal anatomy of the fetal cerebellum on MRI as well as the different diseases that can affect its development. Moreover, we review the most appropriate terminology to define developmental abnormalities, their differential diagnoses, and the role of MRI in the prenatal evaluation of the posterior fossa. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Lorente-Pozo, Sheila; Parra-Llorca, Anna; Torres, Begoña; Torres-Cuevas, Isabel; Nuñez-Ramiro, Antonio; Cernada, María; García-Robles, Ana; Vento, Maximo
2018-01-01
Fetal sex is associated with striking differences during in utero development, fetal-to-neonatal transition, and postnatal morbidity and mortality. Male sex fetuses are apparently protected while in utero resulting in a higher secondary sex rate for males than for females. However, during fetal-to-neonatal transition and thereafter in the newborn period, female exhibits a greater degree of maturation that translates into a better capacity to stabilize, less incidence of prematurity and prematurity-associated morbidities, and better long-term outcomes. The present review addresses the influence of sex during gestation and postnatal adaptation that includes the establishment of an adult-type circulation, the initiation of breathing, endurance when confronted with perinatal hypoxia ischemia, and a gender-related different response to drugs. The intrinsic mechanisms explaining these differences in the perinatal period remain elusive and further experimental and clinical research are therefore stringently needed if an individual oriented therapy is to be developed.
Maulik, Dev; Nanda, Navin C; Maulik, Devika; Vilchez, Gustavo
2017-12-01
Congenital heart disease (CHD), the most common congenital malformation, is associated with adverse outcome. Development of fetal echocardiography has made prenatal diagnosis of CHD a reality, and in the process revolutionized its management. This historical review briefly narrates this development over the decades focusing on the emergence of the primary modalities of fetal echocardiography comprised of the time-motion mode, two-dimensional B-mode, spectral Doppler, color Doppler, and three- and four-dimensional cardiac imaging. Collaboration between clinicians and engineers has been central to these advances. Also discussed are the accuracy and impact of fetal echocardiography on the management of CHD, and especially its role in the prenatal diagnosis of critical CHD in individualizing the management and improving the outcome. Despite these advances, most cases of CHD are not identified prenatally, emphasizing the continuing need for further technological and educational innovation and improvement. © 2017, Wiley Periodicals, Inc.
Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.
1993-01-01
A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.
Dündar Yenilmez, Ebru; Kökbaş, Umut; Kartlaşmış, Kezban; Kayrın, Levent; Tuli, Abdullah
2018-01-01
Prenatal detection of the fetal RHD status can be useful in the management of RhD incompatibility to identify fetuses at risk of hemolytic disease. Hemolytic disease causes morbidity and mortality of the fetus in the neonatal period. The routine use of antenatal and postnatal anti-D prophylaxis has reduced the incidence of hemolytic disease of the fetus and newborn. This study describe the detection of fetal RhD antigens in blood of RhD negative pregnant women using a nanopolymer coated electrochemical biosensor for medical diagnosis. Cell free fetal DNA in maternal plasma was also used to genotyping fetal RHD status using multiplex real-time PCR. Twenty-six RhD negative pregnant women in different gestational ages were included in the study. RhD positive fetal antibodies detected with a developed biosensor in maternal blood of RhD negative mothers. The electrochemical measurements were performed on a PalmSens potentiostat, and corundum ceramic based screen printed gold electrode combined with the reference Ag/AgCl electrode, and the auxiliary Au/Pd (98/2%) electrode. Fetal RHD genotyping performed using fluorescence-based multiplex real-time PCR exons 5 and 7 of the RHD gene. The fetal RHD status of 26 RhD negative cases were detected 21 as RhD positive and 5 as RhD negative with electrochemical biosensor. Fetal RHD status confirmed with extracted fetal DNA in maternal plasma using multiplex real-time PCR RHD genotyping and by serological test after delivery. The new method for fetal RhD detection in early pregnancy is useful and can be carry out rapidly in clinical diagnosis. Using automated biosensors are reproducible, quick and results can be generated within a few minutes compared to noninvasive fetal RHD genotyping from maternal plasma with real-time PCR-based techniques. We suggest the biosensor techniques could become an alternative part of fetal RHD genotyping from maternal plasma as a prenatal screening in the management of RhD incompatibility.
Huebner, Shane M; Blohowiak, Sharon E; Kling, Pamela J; Smith, Susan M
2016-01-01
Background: Prenatal alcohol exposure (PAE) causes neurodevelopmental disabilities, and gestational iron deficiency (ID) selectively worsens learning and neuroanatomical and growth impairments in PAE. It is unknown why ID worsens outcomes in alcohol-exposed offspring. Objective: We hypothesized that PAE alters maternal-fetal iron distribution or its regulation. Methods: Nulliparous, 10-wk-old, Long-Evans rats were mated and then fed iron-sufficient (100 mg Fe/kg) or iron-deficient (≤4 mg Fe/kg) diets. On gestational days 13.5–19.5, dams received either 5.0 g ethanol/kg body weight (PAE) or isocaloric maltodextrin by oral gavage. On gestational day 20.5, maternal and fetal clinical blood counts, tissue mineral and iron transport protein concentrations, and hepatic hepcidin mRNA expression were determined. Results: In fetal brain and liver (P < 0.001) and in maternal liver (P < 0.005), ID decreased iron (total and nonheme) and ferritin content by nearly 200%. PAE reduced fetal bodyweight (P < 0.001) and interacted with ID (P < 0.001) to reduce it by an additional 20%. Independent of maternal iron status, PAE increased fetal liver iron (30–60%, P < 0.001) and decreased brain iron content (total and nonheme, 15–20%, P ≤ 0.050). ID-PAE brains had lower ferritin, transferrin, and transferrin receptor content (P ≤ 0.002) than ID-maltodextrin brains. PAE reduced fetal hematocrit, hemoglobin, and red blood cell numbers (P < 0.003) independently of iron status. Unexpectedly, and also independent of iron status, PAE increased maternal and fetal hepatic hepcidin mRNA expression >300% (P < 0.001). Conclusions: PAE altered fetal iron distribution independent of maternal iron status in rats. The elevated iron content of fetal liver suggests that PAE may have limited iron availability for fetal erythropoiesis and brain development. Altered fetal iron distribution may partly explain why maternal ID substantially worsens growth and behavioral outcomes in PAE. PMID:27146918
Altfeld, Marcus; Bunders, Madeleine J
2016-11-01
Adaptation of the maternal immune system to establish maternal/fetal equilibrium is required for a successful pregnancy. Viral infections, including HIV-1 infection, can alter this maternal/fetal equilibrium, with significant consequences for pregnancy outcome, including miscarriages, impaired fetal growth, and premature delivery. Furthermore, maternal HIV-1 infection has been shown to have a long-term impact on the developing fetal immune system also when the infant is not infected with the virus. In this review, we discuss the consequences of maternal HIV-1 infection and antiretroviral therapy on pregnancy outcome and the health of the uninfected HIV-1-exposed infant.
Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma.
Lim, Ji Hyae; Kim, Mee Jin; Kim, Shin Young; Kim, Hye Ok; Song, Mee Jin; Kim, Min Hyoung; Park, So Yeon; Yang, Jae Hyug; Ryu, Hyun Mee
2011-02-01
To perform a reliable non-invasive detection of the fetal achondroplasia using maternal plasma. We developed a quantitative fluorescent-polymerase chain reaction (QF-PCR) method suitable for detection of the FGFR3 mutation (G1138A) causing achondroplasia. This method was applied in a non-invasive detection of the fetal achondroplasia using circulating fetal-DNA (cf-DNA) in maternal plasma. Maternal plasmas were obtained at 27 weeks of gestational age from women carrying an achondroplasia fetus or a normal fetus. Two percent or less achondroplasia DNA was reliably detected by QF-PCR. In a woman carrying a normal fetus, analysis of cf-DNA showed only one peak of the wild-type G allele. In a woman expected an achondroplasia fetus, analysis of cf-DNA showed the two peaks of wild-type G allele and mutant-type A allele and accurately detected the fetal achondroplasia. The non-invasive method using maternal plasma and QF-PCR may be useful for diagnosis of the fetal achondroplasia.
Hewitt, Amy J; Knuff, Amber L; Jefkins, Matthew J; Collier, Christine P; Reynolds, James N; Brien, James F
2011-05-01
Chronic ethanol exposure (CEE) can produce developmental abnormalities in the CNS of the embryo and developing fetus. Folic acid (FA) is an important nutrient during pregnancy and low folate status exacerbates ethanol-induced teratogenicity. This study tested the hypotheses that (1) CEE depletes folate stores in the mother and fetus; and (2) maternal FA supplementation maintains folate stores. CEE decreased fetal body, brain, hippocampus weights, and brain to body weight ratio but not hippocampus to body weight ratio. These effects of CEE were not mitigated by maternal FA administration. The FA regimen prevented the CEE-induced decrease of term fetal liver folate. However, it did not affect maternal liver folate or fetal RBC folate at term, and did not mitigate the nutritional deficit-induced decrease of term fetal hippocampus folate. This study suggests that maternal FA supplementation may have differential effects on folate status in the mother and the fetus. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.
2014-08-01
Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.
Structural correlates of affinity in fetal versus adult endplate nicotinic receptors
NASA Astrophysics Data System (ADS)
Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony
2016-04-01
Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.
Prenatal Imaging: Ultrasonography and Magnetic Resonance Imaging
Reddy, Uma M.; Filly, Roy A.; Copel, Joshua A.
2009-01-01
The Eunice Kennedy Shriver National Institute of Child Health and Human Development held a workshop on September 18–19, 2006, to summarize the available evidence on the role and performance of current fetal imaging technology and to establish a research agenda. Ultrasonography is the imaging modality of choice for pregnancy evaluation due to its relatively low cost, real-time capability, safety, and operator comfort and experience. First-trimester ultrasonography extends the available window for fetal observation and raises the possibility of performing an early anatomic survey. Three-dimensional ultrasonography has the potential to expand the clinical application of ultrasonography by permitting local acquisition of volumes and remote review and interpretation at specialized centers. New advances allow performance of fetal magnetic resonance imaging (MRI) without maternal or fetal sedation, with improved characterization and prediction of prognosis of certain fetal central nervous system anomalies such as ventriculomegaly when compared with ultrasonography. Fewer data exist on the usefulness of fetal MRI for non–central nervous system anomalies. PMID:18591320
Link, Daphna; Braginsky, Michael B; Joskowicz, Leo; Ben Sira, Liat; Harel, Shaul; Many, Ariel; Tarrasch, Ricardo; Malinger, Gustavo; Artzi, Moran; Kapoor, Cassandra; Miller, Elka; Ben Bashat, Dafna
2018-01-01
Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). The developed method showed high correlation with manual segmentation (r2 = 0.9183, p < 0.001) as well as mean volume and volume overlap differences of 4.77 and 18.13%, respectively. New reference data on 199 normal fetuses were created, and all 9 IUGR fetuses were at or below the third percentile of the normal growth chart. The proposed method is fast, accurate, reproducible, user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. © 2017 S. Karger AG, Basel.
Ramadan fasting and pregnancy: implications for fetal development in summer season.
Sakar, Mehmet Nafi; Gultekin, Huseyin; Demir, Bulent; Bakir, Vuslat Lale; Balsak, Deniz; Vuruskan, Erkut; Acar, Hicran; Yucel, Oguz; Yayla, Murat
2015-05-01
In the Islamic religion, Ramadan is a month in the year that is passed by fasting. Healthy adult individuals are prohibited to eat, drink, and smoke from sunrise to sunset. In the present study, our aim was to assess the relation of Ramadan fasting with fetal development and maternal-fetal Doppler indices in pregnant women. This is a prospective case-control study carried out in the month of Ramadan in 2013 (9 July-7 August). One hundred and six pregnant women at the second and third trimesters of pregnancy were enrolled into the study. The sample size of the fasting group was 83 and the non-fasting group sample size was also 83. Fetal biometric measurements, such as biparietal diameter, head circumference, abdominal circumference, femur length, estimated fetal weight, amniotic fluid index, and Doppler indices of both uterine and umbilical arteries were evaluated by gray scala and color Doppler ultrasound at the beginning and end of Ramadan. At the end of the Ramadan, increase in biparietal diameter, head circumference, and femur length showed a statistically significant difference from initial measurements (P<0.05). When fasting and non-fasting groups were compared separately, an increase in amniotic fluid index was statistically significant in the non-fasting group (P<0.05). We demonstrated some adverse effects of Ramadan fasting on fetal development. In the Islamic religion, pregnant individuals have the privilege of not fasting; therefore, they should consider postponing fasting to the postpartum period, especially in the summer season. If they are willing to do so, an appropriate nutritional program should be recommended.
Gaillard, Romy; Steegers, Eric A P; Tiemeier, Henning; Hofman, Albert; Jaddoe, Vincent W V
2013-11-12
Suboptimal fetal nutrition may influence early growth and cardiovascular development. We examined whether umbilical and uterine artery resistance indices, as measures of feto-placental and utero-placental vascular function, respectively, are associated with fetal and childhood growth and cardiovascular development. This study was embedded in a population-based prospective cohort study among 6716 mothers and their children. Umbilical artery pulsatility index and uterine artery resistance index and fetal growth were measured in third trimester. Childhood growth was repeatedly assessed from birth to the age of 6 years. We measured body fat distribution, left ventricular mass, and blood pressure at the age of 6 years. Higher third trimester umbilical and uterine artery vascular resistance were associated with lower fetal length and weight growth in third trimester resulting in a smaller size at birth among boys and girls (P values < 0.05). These differences in length and weight growth became smaller from the age of 6 months onwards, but were still present at the age of 6 years. Higher third trimester umbilical artery vascular resistance, but not uterine artery vascular resistance, was associated with higher childhood body mass index, total fat mass, android/gynoid fat mass ratio, and systolic blood pressure, and with a lower left ventricular mass (P values<0.05). These associations were not explained by birth weight. Stronger associations tended to be present among girls as compared with boys. Higher third trimester feto-placental vascular resistance, but not utero-placental vascular resistance, was associated with slower fetal growth rates and cardiovascular adaptations in childhood.
Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A
2010-08-01
Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.
Guilty as charged: all available evidence implicates complement's role in fetal demise.
Girardi, Guillermina
2008-03-01
Appropriate complement inhibition is an absolute requirement for normal pregancy. Uncontrolled complement activation in the maternal-fetal interface leads to fetal death. Here we show that complement activation is a crucial and early mediator of pregnancy loss in two different mouse models of pregnancy loss. Using a mouse model of fetal loss and growth restriction (IUGR) induced by antiphospholipid antibodies (aPL), we examined the role of complement activation in fetal loss and IUGR. We found that C5a-C5aR interaction and neutrophils are key mediators of fetal injury. Treatment with heparin, the standard therapy for pregnant patients with aPL, prevents complement activation and protects mice from pregnancy complications induced by aPL, and anticoagulants that do not inhibit complement do not protect pregnancies. In an antibody-independent mouse model of spontaneous miscarriage and IUGR (CBA/JxDBA/2) we also identified C5a as an essential mediator. Complement activation caused dysregulation of the angiogenic factors required for normal placental development. In CBA/JxDBA/2 mice, we observed inflammatory infiltrates in placentas, functional deficiency of free vascular endothelial growth factor (VEGF), elevated levels of soluble VEGF receptor-1 (sVEGFR-1, also known as sFlt-1; a potent anti-angiogenic molecule), and defective placental development. Inhibition of complement activation blocked the increase in sVEGFR-1 and rescued pregnancies. Our studies in antibody-dependent and antibody-independent models of pregnancy complications identified complement activation as the key mediator of damage and will allow development of new interventions to prevent pregnancy loss and IUGR.
Tang, Dong-ling; Li, Yan; Zhou, Xin; Li, Xia; Zheng, Fang
2009-05-01
To develop a fluorescent polymerase chain reaction (PCR) assay for the detection of circulating fetal DNA in maternal plasma and use the established multiplex in noninvasive prenatal genetic diagnosis and its further applications in forensic casework. The DNA template was extracted from 47 pregnant women and the whole blood samples from the stated biological fathers were used to detect genotype. Using multiplex fluorescent PCR at 16 different polymorphic short tandem repeat (STR) loci, maternal DNA extracted from plasma samples at early pregnancy, medium pregnancy and late pregnancy were used to detect genotype. Their husbands' DNA was also used for fetal genotype ascertainment. Multiplex fluorescent PCR with 16 polymorphic short tandem repeats revealed the presence of fetal DNA in all cases. Every pregnant women/husband pair was informative in at least 3 of 16 loci. The chances of detecting paternally inherited fetal alleles ranged from 66.67 to 94.12%. They are 66.67% in early pregnancy, 85.71% in medium pregnancy and 94.12% in late pregnancy. The accuracy of Multiplex PCR assay to detect fetal DNA was 100%. Circulating fetal DNA analysis can be used as a possible alternative tool in routine laboratory prenatal diagnosis in the near future; this highly polymorphic STR multiplex has greatly improved the chances of detecting paternally inherited fetal alleles compared with other fetal DNA detection systems that use fetus-derived Y sequences to detect only male fetal DNA in maternal plasma. Our proposed technique can be applied to both female and male fetuses, which provides a sensitive, accurate and efficient method for noninvasive prenatal genetic diagnosis and forensic casework.
Maternal exposure to hurricane destruction and fetal mortality.
Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W
2014-08-01
The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Terry, Claire; Millar, Neil S; Zablotny, Carol L; Gibb, Alasdair; Marshall, Valerie; Collins, Toby; Carney, Edward W; Billington, Richard
2012-06-01
Sulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies. The weight of evidence from these studies supported a novel MoA where sulfoxaflor is an agonist to the fetal, but not adult, rat muscle nAChR and that prolonged agonism on this receptor in fetal/neonatal rats causes sustained striated muscle contracture resulting in concomitant reduction in muscle responsiveness to physiological nerve stimulation. Fetal effects were inducible with as little as 1 day of exposure at the end of gestation, but were rapidly reversible after birth, consistent with a pharmacological MoA. With respect to human relevance, sulfoxaflor was shown to have no agonism on human fetal or adult muscle nAChRs. Taken together, the data support the hypothesis that the developmental effects of sulfoxaflor in rats are mediated via sustained agonism on the fetal muscle nAChR during late fetal development and are considered not relevant to humans.
Instrumenting a Fetal Membrane on a Chip as Emerging Technology for Preterm Birth Research.
Gnecco, Juan S; Anders, Anjali P; Cliffel, David; Pensabene, Virginia; Rogers, Lisa M; Osteen, Kevin; Aronoff, David M
2017-01-01
Preterm birth (PTB) is clinically defined as process of giving birth before 37 weeks of gestation and is a leading cause of death among neonates and children under the age of five. Prematurity remains a critical issue in developed countries, yet our understanding of the pathophysiology of PTB remains largely unknown. Among pregnancy complications, subclinical infections such as chorioamnionitis (CAM) are implicated in up to 70% of PTB cases. Specifically, CAM is characterized by the infection of the fetal membranes that surround the developing fetus and extend from the placenta, and is often associated with preterm, premature rupture of the fetal membranes (PPROM). The fetal membrane plays a key structural role in maintaining the fetal and maternal compartments of the gravid uterus. However, our understanding of the mechanisms of PPROM and the spatio-temporal progress of CAM remains vastly unknown. A lack of human-derived models have hindered our understanding of the mechanism that govern spontaneous PTB. Thus, in this short review, we discuss the emerging microfabrication technologies, specifically, organ-on-chip (OoCs) models, that seek to recapitulate the cellular and molecular context of the gestational membranes in vitro. These models show promise to facilitate the investigation of pathologic mechanisms that drive these disease conditions by mimicking the interactive contribution of the major cell types that make up the microenvironment of the fetal membrane and enable high throughput screening. Herein, we histologically characterize the microenvironment of the fetal membrane as a metric for scaling to recapitulate the functional components of the human fetal membrane. We review the current OoC models of the gravid uterus and conceptualize an "Instrumented Fetal Membrane on a Chip" (IFMOC) design as a prototype for PPROM and CAM research. Lastly, we discuss further applications of these OoC models for toxicological or pharmacological screening and personalized medicine. Fetal membrane OoCs offer an innovative and valuable platform to explore complex interactions between multiple drug types, toxic substances, and/or pathogenic microbes and their potential impacts on pregnancy outcomes. Further work will be required by integrating technological and analytical capabilities in order to characterize the fetal membrane microenvironment for preterm birth research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pisapia, Jared M; Akbari, Hamed; Rozycki, Martin; Goldstein, Hannah; Bakas, Spyridon; Rathore, Saima; Moldenhauer, Julie S; Storm, Phillip B; Zarnow, Deborah M; Anderson, Richard C E; Heuer, Gregory G; Davatzikos, Christos
2018-02-01
Which children with fetal ventriculomegaly, or enlargement of the cerebral ventricles in utero, will develop hydrocephalus requiring treatment after birth is unclear. To determine whether extraction of multiple imaging features from fetal magnetic resonance imaging (MRI) and integration using machine learning techniques can predict which patients require postnatal cerebrospinal fluid (CSF) diversion after birth. This retrospective case-control study used an institutional database of 253 patients with fetal ventriculomegaly from January 1, 2008, through December 31, 2014, to generate a predictive model. Data were analyzed from January 1, 2008, through December 31, 2015. All 25 patients who required postnatal CSF diversion were selected and matched by gestational age with 25 patients with fetal ventriculomegaly who did not require CSF diversion (discovery cohort). The model was applied to a sample of 24 consecutive patients with fetal ventriculomegaly who underwent evaluation at a separate institution (replication cohort) from January 1, 1998, through December 31, 2007. Data were analyzed from January 1, 1998, through December 31, 2009. To generate the model, linear measurements, area, volume, and morphologic features were extracted from the fetal MRI, and a machine learning algorithm analyzed multiple features simultaneously to find the combination that was most predictive of the need for postnatal CSF diversion. Accuracy, sensitivity, and specificity of the model in correctly classifying patients requiring postnatal CSF diversion. A total of 74 patients (41 girls [55%] and 33 boys [45%]; mean [SD] gestational age, 27.0 [5.6] months) were included from both cohorts. In the discovery cohort, median time to CSF diversion was 6 days (interquartile range [IQR], 2-51 days), and patients with fetal ventriculomegaly who did not develop symptoms were followed up for a median of 29 months (IQR, 9-46 months). The model correctly classified patients who required CSF diversion with 82% accuracy, 80% sensitivity, and 84% specificity. In the replication cohort, the model achieved 91% accuracy, 75% sensitivity, and 95% specificity. Image analysis and machine learning can be applied to fetal MRI findings to predict the need for postnatal CSF diversion. The model provides prognostic information that may guide clinical management and select candidates for potential fetal surgical intervention.
Prenatal Diagnosis of a Segmental Small Bowel Volvulus with Threatened Premature Labor
Mottet, Nicolas; Ramanah, Rajeev; Riethmuller, Didier
2017-01-01
Fetal primary small bowel volvulus is extremely rare but represents a serious life-threatening condition needing emergency neonatal surgical management to avoid severe digestive consequences. We report a case of primary small bowel volvulus with meconium peritonitis prenatally diagnosed at 27 weeks and 4 days of gestation during threatened premature labor with reduced fetal movements. Ultrasound showed a small bowel mildly dilated with thickened and hyperechogenic intestinal wall, with a typical whirlpool configuration. Normal fetal development allowed continuation of pregnancy with ultrasound follow-up. Induction of labor was decided at 37 weeks and 2 days of gestation because of a significant aggravation of intestinal dilatation appearing more extensive with peritoneal calcifications leading to the suspicion of meconium peritonitis, associated with reduced fetal movements and reduced fetal heart rate variability, for neonatal surgical management with a good outcome. PMID:29230337
Impacts of maternal dietary protein intake on fetal survival, growth, and development.
Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao
2018-03-01
Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new, effective means to improve embryonic/fetal survival and growth in mammals.
Deleterious effects of polynuclear aromatic hydrocarbon on blood vascular system of the rat fetus.
Sanyal, Mrinal K; Li, You-Lan
2007-10-01
Polynuclear aromatic hydrocarbons (PAH), benzo[alpha]pyrene (B[alpha]P) and 7,12-dimethylbenz[alpha]anthracene (DMBA) are toxic environmental agents distributed widely. The relative deleterious effects of these agents on growth and blood vasculature of fetus and placental tissues of the rat were studied. Pregnant rats (Day 1 sperm positive) with implantation sites confirmed by laparotomy were treated intraperitoneally (i.p.) on Pregnancy Days 10, 12, and 14 with these agents dissolved in corn oil at cumulated total doses 50, 100, and 200 mg/kg/rat, and control with corn oil only (3-20 dams/group). Fetal growth, tissue hemorrhage, and placental pathology were evaluated by different parameters on Pregnancy Day (PD) 20 in treated and control rats. DMBA was relatively more deleterious compared to B[alpha]P indicated by increased lethality and progressive reduction of body weight of the mother with increasing doses. At 200 mg/kg/rat doses of these agents, maternal survival was 45% and 100% and body weight reduced 24% and 52% of controls, respectively. The fetal survival rates in live mothers were similar to that of controls. They induced marked fetal growth retardation and necrosis of placental tissues. B[alpha]P and DMBA produced significant toxicity to differentiating fetal blood vascular system as exhibited by rupture of blood vessels and hemorrhage, especially in the skin, cranial, and brain tissues. Maternal PAH exposure induced placental toxicity and associated adverse fetal development and hemorrhage in different parts of the fetal body, in particular, marked intradermal and cranial hemorrhage, showing that developing fetal blood vasculature is a target of PAH toxicity.
Xita, Nectaria; Tsatsoulis, Agathocles
2006-05-01
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of premenopausal women, characterized by hyperandrogenism, polycystic ovaries, and chronic anovulation along with insulin resistance and abdominal obesity as frequent metabolic traits. Although PCOS manifests clinically during adolescence, emerging data suggest that the natural history of PCOS may originate in intrauterine life. Evidence from experimental, clinical, and genetic research supporting the hypothesis for the fetal origins of PCOS has been analyzed. Female primates, exposed in utero to androgen excess, exhibit the phenotypic features of PCOS during adult life. Clinical observations also support a potential fetal origin of PCOS. Women with fetal androgen excess disorders, including congenital 21-hydroxylase deficiency and congenital adrenal virilizing tumors, develop features characteristic of PCOS during adulthood despite the normalization of androgen excess after birth. The potential mechanisms of fetal androgen excess leading to a PCOS phenotype in humans are not clearly understood. However, maternal and/or fetal hyperandrogenism can provide a plausible mechanism for fetal programing of PCOS, and this, in part, may be genetically determined. Thus, genetic association studies have indicated that common polymorphic variants of genes determining androgen activity or genes that influence the availability of androgens to target tissues are associated with PCOS and increased androgen levels. These genomic variants may provide the genetic link to prenatal androgenization in human PCOS. Prenatal androgenization of the female fetus induced by genetic and environmental factors, or the interaction of both, may program differentiating target tissues toward the development of PCOS phenotype in adult life.
Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana
2015-01-01
Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T.; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A.; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W.; Malik, Hassan; Kitteringham, Neil R.; Goldring, Chris E.; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A.
2015-01-01
Background & Aims Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. PMID:25457200
Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle.
Tong, Jun F; Yan, Xu; Zhu, Mei J; Ford, Stephen P; Nathanielsz, Peter W; Du, Min
2009-04-01
Skeletal muscle is one of the primary tissues responsible for insulin resistance and type 2 diabetes (T2D). The fetal stage is crucial for skeletal muscle development. Obesity induces inflammatory responses, which might regulate myogenesis through Wnt/beta-catenin signaling. This study evaluated the effects of maternal obesity (>30% increase in body mass index) during pregnancy on myogenesis and the Wnt/beta-catenin and IKK/NF-kappaB pathways in fetal skeletal muscle using an obese pregnant sheep model. Nonpregnant ewes were assigned to a control group (C; fed 100% of National Research Council recommendations; n=5) or obesogenic (OB; fed 150% of National Research Council recommendations; n=5) diet from 60 days before to 75 days after conception (term approximately 148 days) when fetal semitendenosus skeletal muscle was sampled for analyses. Myogenic markers including MyoD, myogenin, and desmin contents were reduced in OB compared with C fetal semitendenosus, indicating the downregulation of myogenesis. The diameter of primary muscle fibers was smaller in OB fetal muscle. Phosphorylation of GSK3beta was reduced in OB compared with C fetal semitendenosus. Although the beta-catenin level was lower in OB than C fetal muscle, more beta-catenin was associated with FOXO3a in the OB fetuses. Moreover, we found phosphorylation levels of IKKbeta and RelA/p65 were both increased in OB fetal muscle. In conclusion, our data showed that myogenesis and the Wnt/beta-catenin signaling pathway were downregulated, which might be due to the upregulation of inflammatory IKK/NF-kappaB signaling pathways in fetal muscle of obese mothers.
Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption
Heger, Nicholas E; Hall, Susan J; Sandrof, Moses A; McDonnell, Elizabeth V; Hensley, Janan B; McDowell, Erin N; Martin, Kayla A; Gaido, Kevin W; Johnson, Kamin J
2012-01-01
Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis. PMID:22511013
Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S.; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S.; Evans, Alan C.; Kostovic, Ivica
2016-01-01
The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13–40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the transformation of embryonic cortical columns, dendritic differentiation, and ingrowth of axons. These results provide a quantitative description of transient human fetal brain compartments observable with MRI. Moreover, they will improve understanding of structural-functional relationships during brain development, will enable correlation between in vitro/in vivo imaging and fine structural histological studies, and will serve as a reference for study of perinatal brain injuries. PMID:26941612
Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition.
Franke, Katja; Clarke, Geoffrey D; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W
2017-01-01
Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4-7 years; human equivalent 14-24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years ( p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans.
Piairo, Paulina; Moura, Rute S; Baptista, Maria João; Correia-Pinto, Jorge; Nogueira-Silva, Cristina
2018-01-01
Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH. © 2018 The Author(s). Published by S. Karger AG, Basel.
Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition
Franke, Katja; Clarke, Geoffrey D.; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H.; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W.
2017-01-01
Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4–7 years; human equivalent 14–24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years (p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans. PMID:28443017
Altered vestibular function in fetal and newborn rats gestated in space
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Alberts, J. R.
1997-01-01
Researchers evaluated vestibular development and function in rat pups flown during gestation on the NASA-NIH R1 and R2 missions. Fetal and postnatal vestibular function were examined. Altered vestibular-mediated responses in the experimental fetal pups are attributed to either direct effect of gravity on the vestibular system or indirect effects of microgravity transduced through the mother. The postnatal tests confirmed the hypothesis that the vestibular system continually adapts and responds to tonic stimulation.
Qiu, Caihong; Olivier, Emmanuel N; Velho, Michelle; Bouhassira, Eric E
2008-02-15
We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II, the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature, fetal liver-like erythroblasts, that are smaller, express mostly fetal hemoglobin, and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated, and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary, because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.
Decidual Cox2 inhibition improves fetal and maternal outcomes in a preeclampsia-like mouse model
Sones, Jenny L.; Cha, Jeeyeon; Woods, Ashley K.; Bartos, Amanda; Heyward, Christa Y.; Lob, Heinrich E.; Isroff, Catherine E.; Butler, Scott D.; Shapiro, Stephanie E.; Dey, Sudhansu K.; Davisson, Robin L.
2016-01-01
Preeclampsia (PE) is a disorder of pregnancy that manifests as late gestational maternal hypertension and proteinuria and can be life-threatening to both the mother and baby. It is believed that abnormal placentation is responsible for the cascade of events leading to the maternal syndrome. Embryo implantation is critical to establishing a healthy pregnancy. Defective implantation can cause adverse “ripple effects,” leading to abnormal decidualization and placentation, retarded fetal development, and poor pregnancy outcomes, such as PE and fetal growth restriction. The precise mechanism(s) of implantation defects that lead to PE remain elusive. BPH/5 mice, which spontaneously develop the cardinal features of PE, show peri-implantation defects including upregulation of Cox2 and IL-15 at the maternal-fetal interface. This was associated with decreased decidual natural killer (dNK) cells, which have important roles in establishing placental perfusion. Interestingly, a single administration of a Cox2 inhibitor (celecoxib) during decidualization restrained Cox2 and IL-15 expression, restored dNK cell numbers, improved fetal growth, and attenuated late gestational hypertension in BPH/5 female mice. This study provides evidence that decidual overexpression of Cox2 and IL-15 may trigger the adverse pregnancy outcomes reflected in the preeclamptic syndrome, underscoring the idea that Cox2 inhibitor treatment is an effective strategy for the prevention of PE-associated fetal and maternal morbidity and mortality. PMID:27159542
Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age.
Geng, Fengji; Mai, Xiaoqin; Zhan, Jianying; Xu, Lin; Zhao, Zhengyan; Georgieff, Michael; Shao, Jie; Lozoff, Betsy
2015-12-01
To assess the effects of fetal-neonatal iron deficiency on recognition memory in early infancy. Perinatal iron deficiency delays or disrupts hippocampal development in animal models and thus may impair related neural functions in human infants, such as recognition memory. Event-related potentials were used in an auditory recognition memory task to compare 2-month-old Chinese infants with iron sufficiency or deficiency at birth. Fetal-neonatal iron deficiency was defined 2 ways: high zinc protoporphyrin/heme ratio (ZPP/H > 118 μmol/mol) or low serum ferritin (<75 μg/L) in cord blood. Late slow wave was used to measure infant recognition of mother's voice. Event related potentials patterns differed significantly for fetal-neonatal iron deficiency as defined by high cord ZPP/H but not low ferritin. Comparing 35 infants with iron deficiency (ZPP/H > 118 μmol/mol) to 92 with lower ZPP/H (iron-sufficient), only infants with iron sufficiency showed larger late slow wave amplitude for stranger's voice than mother's voice in frontal-central and parietal-occipital locations, indicating the recognition of mother's voice. Infants with iron sufficiency showed electrophysiological evidence of recognizing their mother's voice, whereas infants with fetal-neonatal iron deficiency did not. Their poorer auditory recognition memory at 2 months of age is consistent with effects of fetal-neonatal iron deficiency on the developing hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.
Prenatal choline and the development of schizophrenia
FREEDMAN, Robert; ROSS, Randal G.
2015-01-01
Background The primary prevention of illness at the population level, the ultimate aim of medicine, seems out of reach for schizophrenia. Schizophrenia has a strong genetic component, and its pathogenesis begins long before the emergence of psychosis, as early as fetal brain development. Cholinergic neurotransmission at nicotinic receptors is a pathophysiological mechanism related to one aspect of this genetic risk. Choline activates these nicotinic receptors during fetal brain development. Dietary supplementation of maternal choline thus emerges as a possible intervention in pregnancy to alter the earliest developmental course of the illness. Aim Review available literature on the relationship of choline supplementation or choline levels during pregnancy and fetal brain development. Methods A Medline search was used to identify studies assessing effects of choline in human fetal development. Studies of other prenatal risk factors for schizophrenia and the role of cholinergic neurotransmission in its pathophysiology were also identified. Results Dietary requirements for choline are high during pregnancy because of its several uses, including membrane biosynthesis, one-carbon metabolism, and cholinergic neurotransmission. Its ability to act directly at high concentrations as a nicotinic agonist is critical for normal brain circuit development. Dietary supplementation in the second and third trimesters with phosphatidyl-choline supports these functions and is associated generally with better fetal outcome. Improvement in inhibitory neuronal functions whose deficit is associated with schizophrenia and attention deficit disorder has been observed. Conclusion Prenatal dietary supplementation with phosphatidyl-choline and promotion of diets rich in choline-containing foods (meats, soybeans, and eggs) are possible interventions to promote fetal brain development and thereby decrease the risk of subsequent mental illnesses. The low risk and short (sixmonth) duration of the intervention makes it especially conducive to population-wide adoption. Similar findings with folate for the prevention of cleft palate led to recommendations for prenatal pharmacological supplementation and dietary improvement. However, definitive proof of the efficacy of prenatal choline supplementation will not be available for decades (because of the 20-year lag until the onset of schizophrenia), so public health officials need to decide whether or not promoting choline supplementation is justified based on the limited information available. PMID:26120259
Malformations in gubernacular ligament development induced by DEHP, DBP, and BBP are associated with decreases in insl3 gene expression in the fetal rat testis.
Vickie S.Wilson, Christy Lambright, Johnathan Furr, Carmen Wood, Gary Held, L. Earl Gray Jr. U.S. EPA, ORD, NHEER...
COMBINED ENDOCRINE EFFECTS OF IN UTERO EXPOSURE TO THE ANTIANDROGENS BUTYLBENZYL PHTHALATE (BBP) AND LINURON (Lin) ON FETAL TESTOSTERONE (T) SYNTHESIS AND REPRODUCTIVE TRACT DEVELOPMENT
Parks LG , Hotchkiss AK, Ostby J, Lambright C and Gray LE, Jr.
Lin and BBP are toxic...
ERIC Educational Resources Information Center
Kjellmer, Liselotte; Olswang, Lesley B.
2013-01-01
Purpose: In this study, the authors examined how variability in classroom social communication performance differed between children with fetal alcohol spectrum disorders (FASD) and pair-matched, typically developing peers. Method: Twelve pairs of children were observed in their classrooms, 40 min per day (20 min per child) for 4 days over a…
ERIC Educational Resources Information Center
Olswang, Lesley B.; Svensson, Liselotte; Astley, Susan
2010-01-01
Purpose: In this research, the authors examined how social communication profiles during classroom activities differed between children with fetal alcohol spectrum disorders (FASD) and typically developing pair-matched peers. Method: Twelve pairs of children were observed in their classrooms 20 min a day for 4 days across 2 weeks. Coders…
Zhang, Yanli; Wu, Junrong; Feng, Xiaoli; Wang, Ruolan; Chen, Aijie; Shao, Longquan
2017-12-01
With the broad use of nanotechnology, the number and variety of nanoparticles that humans can be exposed to has further increased. Consequently, there is growing concern about the potential effect of maternal exposure to various nanoparticles during pregnancy on a fetus. However, the nature of this risk is not fully known. Areas covered: In this review, materno-fetal transfer of nanoparticles through the placenta is described. Both prenatal and postnatal adverse effects, such as fetal resorption, malformation and injury to various organs in mice exposed to nanoparticles are reviewed. The potential mechanisms of toxicity are also discussed. Expert opinion: The toxicology and safe application of recently developed nanoparticles has attracted much attention in the past few years. Although many studies have demonstrated the toxicology of nanoparticles in various species, only a small number of studies have examined the effect on a fetus after maternal exposure to nanoparticles. This is particularly important, because the developing fetus is especially vulnerable to the toxic effects of nanoparticles during fetal development due to the unique physical stage of the fetus. Nanoparticles may directly or indirectly impair fetal development and growth after maternal exposure to nanoparticles.
Judaš, Miloš; Šimić, Goran; Petanjek, Zdravko; Jovanov-Milošević, Nataša; Pletikos, Mihovil; Vasung, Lana; Vukšić, Mario; Kostović, Ivica
2011-05-01
The Zagreb Collection of developing and adult human brains was founded in 1974 by Ivica Kostović and consists of 1,278 developing and adult human brains, including 610 fetal, 317 children, and 359 adult brains. It is one of the largest collections of developing human brains. The collection serves as a key resource for many focused research projects and has led to several seminal contributions on mammalian cortical development, such as the discovery of the transient fetal subplate zone and of early bilaminar synaptogenesis in the embryonic and fetal human cerebral cortex, and the first description of growing afferent pathways in the human fetal telencephalon. The Zagreb Collection also serves as a core resource for ever-growing networks of international collaboration and represents the starting point for many young investigators who now pursue independent research careers at leading international institutions. The Zagreb Collection, however, remains underexploited owing to a lack of adequate funding in Croatia. Funding could establish an online catalog of the collection and modern virtual microscopy scanning methods to make the collection internationally more accessible. © 2011 New York Academy of Sciences.
4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy
Tomasovic, Sanja; Predojevic, Maja
2011-01-01
Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage. PMID:23407920
[The role of oxidative stress in placental-related diseases of pregnancy].
Jauniaux, E; Burton, G J
2016-10-01
In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Miranda, Joana O; Ramalho, Carla; Henriques-Coelho, Tiago; Areias, José Carlos
2017-11-01
Epidemiologic and experimental evidence suggests that adverse stimuli during critical periods in utero permanently alters organ structure and function and may have persistent consequences for the long-term health of the offspring. Fetal hypoxia, maternal malnutrition, or ventricular overloading are among the major adverse conditions that can compromise cardiovascular development in early life. With the heart as a central organ in fetal adaptive mechanisms, a deeper understanding of the fetal cardiovascular physiology and of the echocardiographic tools to assess both normal and stressed pregnancies would give precious information on fetal well-being and hopefully may help in early identification of special risk groups for cardiovascular diseases later in life. Assessment of cardiac function in the fetus represents an additional challenge when comparing to children and adults, requiring advanced training and a critical approach to properly acquire and interpret functional parameters. This review summarizes the basic fetal cardiovascular physiology and the main differences from the mature postnatal circulation, provides an overview of the particularities of echocardiographic evaluation in the fetus, and finally proposes an integrated view of in utero programming of cardiovascular diseases later in life, highlighting priorities for future clinical research.
Tumor-homing peptides as tools for targeted delivery of payloads to the placenta
King, Anna; Ndifon, Cornelia; Lui, Sylvia; Widdows, Kate; Kotamraju, Venkata R.; Agemy, Lilach; Teesalu, Tambet; Glazier, Jocelyn D.; Cellesi, Francesco; Tirelli, Nicola; Aplin, John D.; Ruoslahti, Erkki; Harris, Lynda K.
2016-01-01
The availability of therapeutics to treat pregnancy complications is severely lacking mainly because of the risk of causing harm to the fetus. As enhancement of placental growth and function can alleviate maternal symptoms and improve fetal growth in animal models, we have developed a method for targeted delivery of payloads to the placenta. We show that the tumor-homing peptide sequences CGKRK and iRGD bind selectively to the placental surface of humans and mice and do not interfere with normal development. Peptide-coated nanoparticles intravenously injected into pregnant mice accumulated within the mouse placenta, whereas control nanoparticles exhibited reduced binding and/or fetal transfer. We used targeted liposomes to efficiently deliver cargoes of carboxyfluorescein and insulin-like growth factor 2 to the mouse placenta; the latter significantly increased mean placental weight when administered to healthy animals and significantly improved fetal weight distribution in a well-characterized model of fetal growth restriction. These data provide proof of principle for targeted delivery of drugs to the placenta and provide a novel platform for the development of placenta-specific therapeutics. PMID:27386551
Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G
2013-01-01
The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized medicine.
Clark, Steven L; Hamilton, Emily F; Garite, Thomas J; Timmins, Audra; Warrick, Philip A; Smith, Samuel
2017-02-01
Despite intensive efforts directed at initial training in fetal heart rate interpretation, continuing medical education, board certification/recertification, team training, and the development of specific protocols for the management of abnormal fetal heart rate patterns, the goals of consistently preventing hypoxia-induced fetal metabolic acidemia and neurologic injury remain elusive. The purpose of this study was to validate a recently published algorithm for the management of category II fetal heart rate tracings, to examine reasons for the birth of infants with significant metabolic acidemia despite the use of electronic fetal heart rate monitoring, and to examine critically the limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. The potential performance of electronic fetal heart rate monitoring under ideal circumstances was evaluated in an outcomes-blinded examination fetal heart rate tracing of infants with metabolic acidemia at birth (base deficit, >12) and matched control infants (base deficit, <8) under the following conditions: (1) expert primary interpretation, (2) use of a published algorithm that was developed and endorsed by a large group of national experts, (3) assumption of a 30-minute period of evaluation for noncritical category II fetal heart rate tracings, followed by delivery within 30 minutes, (4) evaluation without the need to provide patient care simultaneously, and (5) comparison of results under these circumstances with those achieved in actual clinical practice. During the study period, 120 infants were identified with an arterial cord blood base deficit of >12 mM/L. Matched control infants were not demographically different from subjects. In actual practice, operative intervention on the basis of an abnormal fetal heart rate tracings occurred in 36 of 120 fetuses (30.0%) with metabolic acidemia. Based on expert, algorithm-assisted reviews, 55 of 120 patients with acidemia (45.8%) were judged to need operative intervention for abnormal fetal heart rate tracings. This difference was significant (P=.016). In infants who were born with a base deficit of >12 mM/L in which blinded, algorithm-assisted expert review indicated the need for operative delivery, the decision for delivery would have been made an average of 131 minutes before the actual delivery. The rate of expert intervention for fetal heart rate concerns in the nonacidemic control group (22/120; 18.3%) was similar to the actual intervention rate (23/120; 19.2%; P=1.0) Expert review did not mandate earlier delivery in 65 of 120 patients with metabolic acidemia. The primary features of these 65 cases included the occurrence of sentinel events with prolonged deceleration just before delivery, the rapid deterioration of nonemergent category II fetal heart rate tracings before realistic time frames for recognition and intervention, and the failure of recognized fetal heart rate patterns such as variability to identify metabolic acidemia. Expert, algorithm-assisted fetal heart rate interpretation has the potential to improve standard clinical performance by facilitating significantly earlier recognition of some tracings that are associated with metabolic acidemia without increasing the rate of operative intervention. However, this improvement is modest. Of infants who are born with metabolic acidemia, only approximately one-half potentially could be identified and have delivery expedited even under ideal circumstances, which are probably not realistic in current US practice. This represents the limits of electronic fetal heart rate monitoring performance. Additional technologies will be necessary if the goal of the prevention of neonatal metabolic acidemia is to be realized. Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of own fetal growth on reported hypertension in parous women aged 33.
Hennessy, E; Alberman, E
1997-06-01
Data from the study of the British 1958 birth cohort, National Child Development Study (NCDS), has allowed wider investigation of the relationship between retarded fetal growth and risk of adult hypertension. A history of self-reported hypertension was related to fetal growth in 3308 parous cohort members. Fetal growth, the measure used, is the difference in actual birthweight from that expected for the gestational age and subsequent adult height. The relationships were investigated both linearly and non-linearly adjusting for potential confounders. After adjustment for confounding factors, including adult weight for height, retarded fetal growth was associated with reported hypertension particularly when not confined to pregnancy. The latter was also associated with accelerated fetal growth, moderate or severe hypertension in the mother when pregnant with the cohort member, being relatively taller than your mother, and lack of educational qualifications. Hypertension confined to pregnancy was more likely among women who were themselves firstborn or older at childbirth. Neither maternal smoking during cohort's gestation nor cohort member's gestational age had a significant effect. The results are consistent with previous reports that fetal growth effects are less marked if gestation is short. The relationships between fetal growth and subsequent hypertension are extremely complex and variable, and need to be studied allowing for deviations from growth potential. Adult weight for height remains the strongest predictor of hypertension. The results suggest that losing weight is likely to have the same proportional benefit in women with and without a history of retarded fetal growth.
NASA Astrophysics Data System (ADS)
Ribes, S.; Voicu, I.; Girault, J. M.; Fournier, M.; Perrotin, F.; Tranquart, F.; Kouamé, D.
2011-03-01
Electronic fetal monitoring may be required during the whole pregnancy to closely monitor specific fetal and maternal disorders. Currently used methods suffer from many limitations and are not sufficient to evaluate fetal asphyxia. Fetal activity parameters such as movements, heart rate and associated parameters are essential indicators of the fetus well being, and no current device gives a simultaneous and sufficient estimation of all these parameters to evaluate the fetus well-being. We built for this purpose, a multi-transducer-multi-gate Doppler system and developed dedicated signal processing techniques for fetal activity parameter extraction in order to investigate fetus's asphyxia or well-being through fetal activity parameters. To reach this goal, this paper shows preliminary feasibility of separating normal and compromised fetuses using our system. To do so, data set consisting of two groups of fetal signals (normal and compromised) has been established and provided by physicians. From estimated parameters an instantaneous Manning-like score, referred to as ultrasonic score was introduced and was used together with movements, heart rate and associated parameters in a classification process using Support Vector Machines (SVM) method. The influence of the fetal activity parameters and the performance of the SVM were evaluated using the computation of sensibility, specificity, percentage of support vectors and total classification accuracy. We showed our ability to separate the data into two sets : normal fetuses and compromised fetuses and obtained an excellent matching with the clinical classification performed by physician.
Gangisetty, Omkaram; Wynne, Olivia; Jabbar, Shaima; Nasello, Cara; Sarkar, Dipak K.
2015-01-01
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells. PMID:26509893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng
Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreasedmore » steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine ingestion inhibits the expression of SR-BI. • Prenatal caffeine ingestion induces increased DNA methylation of SR-BI promoter.« less
Putting intelligent structured intermittent auscultation (ISIA) into practice.
Maude, Robyn M; Skinner, Joan P; Foureur, Maralyn J
2016-06-01
Fetal monitoring guidelines recommend intermittent auscultation for the monitoring of fetal wellbeing during labour for low-risk women. However, these guidelines are not being translated into practice and low-risk women birthing in institutional maternity units are increasingly exposed to continuous cardiotocographic monitoring, both on admission to hospital and during labour. When continuous fetal monitoring becomes routinised, midwives and obstetricians lose practical skills around intermittent auscultation. To support clinical practice and decision-making around auscultation modality, the intelligent structured intermittent auscultation (ISIA) framework was developed. The purpose of this discussion paper is to describe the application of intelligent structured intermittent auscultation in practice. The intelligent structured intermittent auscultation decision-making framework is a knowledge translation tool that supports the implementation of evidence into practice around the use of intermittent auscultation for fetal heart monitoring for low-risk women during labour. An understanding of the physiology of the materno-utero-placental unit and control of the fetal heart underpin the development of the framework. Intelligent structured intermittent auscultation provides midwives with a robust means of demonstrating their critical thinking and clinical reasoning and supports their understanding of normal physiological birth. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Programming of endocrine mechanisms of cardiovascular control and growth.
Green, L R
2001-01-01
Several epidemiologic studies have linked size at birth to health in adult life. One school of thought centers on the part that periconceptual or intrauterine events play in this relationship. The idea is that an event, or several events, during critical periods of development can program, or permanently alter, fetal physiology resulting in altered size at birth and subsequent adult disease, including that of the cardiovascular system. Maternal diet or body composition at the time of conception can influence placental development and subsequent transfer of nutrients and substrates to the fetus. Alterations to the maternal diet or body composition throughout gestation are then seen as challenges that are superimposed on this backdrop of periconceptual events. One task is to find an animal model that replicates the major features of the epidemiologic data: for adult cardiovascular disease this would be altered fetal size and the development of postnatal hypertension. In addition, a critical issue is to investigate the mechanisms underlying this Fetal Origins of Adult Disease hypothesis. The multiple mechanisms that constitute fetal cardiovascular responses to hypoxia in late gestation at neuronal, endocrine, and local tissue levels have been studied extensively, and there is evidence from several different experimental paradigms that these control mechanisms can be programmed by intrauterine challenges. This review synthesizes the current knowledge in this area and considers how the programming of cardiovascular control relates to fetal growth.
Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge
2006-04-01
Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.
Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.
Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela
2016-03-15
Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.
Hara, Kaori; Kinoshita, Mari; Kin, Takane; Arimitsu, Takeshi; Matsuzaki, Yohei; Ikeda, Kazushige; Tomita, Hiroshi; Fujino, Akihiro; Kuroda, Tatsuo
2015-01-01
Intestinal volvulus without malrotation is a rare disease that causes volvulus of the small intestine despite normal intestinal rotation and fixation. We encountered a neonate with this disease who developed early jaundice and was suspected to have a fetal onset. This patient was characterized by early jaundice complicating intestinal volvulus without malrotation and is considered to have exhibited reduced fetal movement and early jaundice as a result of volvulus, necrosis, and hemorrhage of the small intestine in the fetal period. If abdominal distention accompanied by early jaundice is noted in a neonate, intestinal volvulus without malrotation and associated intraabdominal hemorrhage should be suspected and promptly treated.
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad
Kinnell, Hazel L.; Anderson, Richard A.; Saunders, Philippa T. K.
2011-01-01
The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis. PMID:21674038
The importance of fetal gender in intrauterine growth restriction
Radulescu, L; Ferechide, D; Popa, F
2013-01-01
One of the most important causes of perinatal mortality and morbidity complicating significant percentage pregnancies is intrauterine growth restriction (IUGR). Fetal growth restriction is the main cause of intrauterine fetal death and the second leading cause of death in the neonatal period. Numerous studies in different populations reveal an association between intrauterine growth restriction and perinatal and postnatal developments, which differ according to the sex of newborns with intrauterine growth restriction. However, the mechanisms of intrauterine programming, the critical time necessary to cause injury and involvement of other factors are unclear and although several authors’ opinions differ, it seems that females are more likely to develop intrauterine growth restriction. Abbreviations: IUGR=intrauterine growth restriction PMID:23599816
Chin, Hui-Lin; Lee, Le Ye; Koh, Pei Lin
2018-04-17
We report a rare case of severe congenital dyserythropoietic anemia type 1 with fetal onset. Our patient presented with fetal hydrops from 19 weeks of gestation, requiring multiple intrauterine transfusions. At birth, she had severe hemolytic anemia with severe jaundice, and was subsequently transfusion dependent. She eventually developed severe iron overload and fulminant liver failure before her demise at 5 months of age. Genetic testing revealed a novel mutation in CDAN1.
Fetal Alcohol Syndrome: Research Review and Implications.
ERIC Educational Resources Information Center
Griesbach, Linda Sue; Polloway, Edward A.
Research on fetal alcohol syndrome is reviewed, with particular emphasis on the implications of the syndrome for the development of mental retardation and other handicapping conditions. Attention is given to historical aspects; epidemiology; physiological and behavioral characteristics; and concerns related to diagnosis, prevention, and…
Non-invasive prenatal diagnosis.
Meaney, Cathy; Norbury, Gail
2011-01-01
The discovery of cell-free fetal DNA in the maternal plasma of pregnant women has facilitated the development of non-invasive prenatal diagnosis (NIPD). This has been successfully implemented in diagnostic laboratories for Rhesus typing and fetal sex determination for X-linked disorders and congenital adrenal hyperplasia (CAH) from 7 weeks gestation. Using real-time PCR, fluorescently labelled target gene specific probes can identify and quantify low copy number fetal-specific sequences in a high background of maternal DNA in the cell-free DNA extracted from maternal plasma.NIPD to detect specific fetal mutations in single gene disorders, currently by standard PCR techniques, can only be undertaken for paternally derived or de novo mutations because of the background maternal DNA. For routine use, this testing is limited by the large amounts of cell-free maternal DNA in the sample, the lack of universal fetal markers, and appropriate reference materials.
Transfer entropy analysis of maternal and fetal heart rate coupling.
Marzbanrad, Faezeh; Kimura, Yoshitaka; Endo, Miyuki; Palaniswami, Marimuthu; Khandoker, Ahsan H
2015-01-01
Although evidence of the short term relationship between maternal and fetal heart rates has been found in previous model-based studies, knowledge about the mechanism and patterns of the coupling during gestation is still limited. In this study, a model-free method based on Transfer Entropy (TE) was applied to quantify the maternal-fetal heart rate couplings in both directions. Furthermore, analysis of the lag at which TE was maximum and its changes throughout gestation, provided more information about the mechanism of coupling and its latency. Experimental results based on fetal electrocardiograms (fECGs) and maternal ECG showed the evidence of coupling for 62 out of 65 healthy mothers and fetuses in each direction, by statistically validating against the surrogate pairs. The fetuses were divided into three gestational age groups: early (16-25 weeks), mid (26-31 weeks) and late (32-41 weeks) gestation. The maximum TE from maternal to fetal heart rate significantly increased from early to mid gestation, while the coupling delay on both directions decreased significantly from mid to late gestation. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. In conclusion, the application of TE with delays revealed detailed information about the changes in fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being.
Bovine maternal, fetal and neonatal responses to bovine viral diarrhea virus infections.
Kelling, Clayton L; Topliff, Christina L
2013-01-01
Due to the affinity of BVDV for the fetus and for cells of lymphatic organs of infected cattle, reproductive failure or immunosuppression, respectively, are likely consequences of BVDV infections of susceptible cattle. Infection of susceptible pregnant cattle with noncytopathic (ncp) BVDV results in transplacental infection with induction of maternal and fetal innate and adaptive immune responses. Differences in maternal innate and adaptive immune responses are evident in late gestation between cows carrying fetuses persistently-infected (PI) with BVDV and cows with fetuses transiently-infected with BVDV. Fetal innate and adaptive immune responses to ncp BVDV infection are defined by fetal age and developmental stage of the fetal immune system. Since a functional fetal adaptive immune response does not occur in the early fetus, immunotolerance to ncp BVDV is established, virus replicates unrestricted in fetal tissues and calves are born immunotolerant and PI with the virus. In the last trimester of gestation, the fetal immune system is adequately developed to respond in an efficacious manner, most commonly resulting in the birth of a clinically normal calf with pre-colostral antibodies. Immunosuppression due to postnatal acute ncp BVDV infections of susceptible calves may contribute to the occurrence and severity of multi-factorial respiratory tract and enteric diseases. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection
Stewart, Laurel M.; Koenig, Michelle; Semler, Matthew; Breitbach, Meghan E.; Zeng, Xiankun; Weiler, Andrea M.; Barry, Gabrielle L.; Thoong, Troy H.; Wiepz, Gregory J.; Dudley, Dawn M.; Simmons, Heather A.; Mejia, Andres; Morgan, Terry K.; Salamat, M. Shahriar; Kohn, Sarah; Antony, Kathleen M.; Mohns, Mariel S.; Hayes, Jennifer M.; Schultz-Darken, Nancy; Schotzko, Michele L.; Peterson, Eric; Capuano, Saverio; Osorio, Jorge E.; O’Connor, Shelby L.; O’Connor, David H.; Golos, Thaddeus G.
2018-01-01
Congenital Zika virus (ZIKV) infection impacts fetal development and pregnancy outcomes. We infected a pregnant rhesus macaque with a Puerto Rican ZIKV isolate in the first trimester. The pregnancy was complicated by preterm premature rupture of membranes (PPROM), intraamniotic bacterial infection and fetal demise 49 days post infection (gestational day 95). Significant pathology at the maternal-fetal interface included acute chorioamnionitis, placental infarcts, and leukocytoclastic vasculitis of the myometrial radial arteries. ZIKV RNA was disseminated throughout fetal tissues and maternal immune system tissues at necropsy, as assessed by quantitative RT-PCR for viral RNA. Replicating ZIKV was identified in fetal tissues, maternal uterus, and maternal spleen by fluorescent in situ hybridization for viral replication intermediates. Fetal ocular pathology included a choroidal coloboma, suspected anterior segment dysgenesis, and a dysplastic retina. This is the first report of ocular pathology and prolonged viral replication in both maternal and fetal tissues following congenital ZIKV infection in a rhesus macaque. PPROM followed by fetal demise and severe pathology of the visual system have not been described in macaque congenital ZIKV infection previously. While this case of ZIKV infection during pregnancy was complicated by bacterial infection with PPROM, the role of ZIKV on this outcome cannot be precisely defined, and further nonhuman primate studies will determine if increased risk for PPROM or other adverse pregnancy outcomes are associated with congenital ZIKV infection. PMID:29381706
Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries.
Bastian, Nicole A; Bayne, Rosemary A; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy M; Hartanti, Monica D; Irving-Rodgers, Helen F; Anderson, Richard A; Rodgers, Raymond J
2016-08-01
Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFβ activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFβ-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFβ family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFβ signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFβ signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro. © 2016 Society for Reproduction and Fertility.
IGF2 DNA methylation is a modulator of newborn's fetal growth and development.
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-10-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.
IGF2 DNA methylation is a modulator of newborn’s fetal growth and development
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-01-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity. PMID:22907587
Cellular and molecular maturation in fetal and adult ovine calcaneal tendons
Russo, Valentina; Mauro, Annunziata; Martelli, Alessandra; Di Giacinto, Oriana; Di Marcantonio, Lisa; Nardinocchi, Delia; Berardinelli, Paolo; Barboni, Barbara
2015-01-01
Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2 months of pregnancy: 14 cm of length) and late fetal (4 months: 40 cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models. PMID:25546075
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A
2015-03-01
Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy.
Marzbanrad, Faezeh; Kimura, Yoshitaka; Palaniswami, Marimuthu; Khandoker, Ahsan H
2015-01-01
Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26-31 weeks) and late (32-41 weeks) gestation compared to early (16-25 weeks) gestation (Mann Whitney Wilcoxon (MWW) p<0.05). TE further increased from mid to late, for the fetuses with RMSSD of fetal heart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being.
Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy
Marzbanrad, Faezeh; Kimura, Yoshitaka; Palaniswami, Marimuthu; Khandoker, Ahsan H.
2015-01-01
Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26–31 weeks) and late (32–41 weeks) gestation compared to early (16–25 weeks) gestation (Mann Whitney Wilcoxon (MWW) p<0.05). TE further increased from mid to late, for the fetuses with RMSSD of fetal heart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being. PMID:26701122
Dreiling, Michelle; Schiffner, Rene; Bischoff, Sabine; Rupprecht, Sven; Kroegel, Nasim; Schubert, Harald; Witte, Otto W; Schwab, Matthias; Rakers, Florian
2018-01-01
Acute stress-induced reduction of uterine blood flow (UBF) is an indirect mechanism of maternal-fetal stress transfer during late gestation. Effects of chronic psychosocial maternal stress (CMS) during early gestation, as may be experienced by many working women, on this stress signaling mechanism are unclear. We hypothesized that CMS in sheep during early gestation augments later acute stress-induced decreases of UBF, and aggravates the fetal hormonal, cardiovascular, and metabolic stress responses during later development. Six pregnant ewes underwent repeated isolation stress (CMS) between 30 and 100 days of gestation (dGA, term: 150 dGA) and seven pregnant ewes served as controls. At 110 dGA, ewes were chronically instrumented and underwent acute isolation stress. The acute stress decreased UBF by 19% in both the CMS and control groups (p < .05), but this was prolonged in CMS versus control ewes (74 vs. 30 min, p < .05). CMS increased fetal circulating baseline and stress-induced cortisol and norepinephrine concentrations indicating a hyperactive hypothalamus-pituitary-adrenal (HPA)-axis and sympathetic-adrenal-medullary system. Increased fetal norepinephrine is endogenous as maternal catecholamines do not cross the placenta. Cortisol in the control but not in the CMS fetuses was correlated with maternal cortisol blood concentrations; these findings indicate: (1) no increased maternal-fetal cortisol transfer with CMS, (2) cortisol production in CMS fetuses when the HPA-axis is normally inactive, due to early maturation of the fetal HPA-axis. CMS fetuses were better oxygenated, without shift towards acidosis compared to the controls, potentially reflecting adaptation to repeated stress. Hence, CMS enhances maternal-fetal stress transfer by prolonged reduction in UBF and increased fetal HPA responsiveness.
Fetal and maternal dose assessment for diagnostic scans during pregnancy
NASA Astrophysics Data System (ADS)
Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie
2016-05-01
Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.
Satterfield, M Carey; Bazer, Fuller W; Spencer, Thomas E; Wu, Guoyao
2010-02-01
Adequate placental blood flow is essential for the optimal delivery of nutrients from mother to fetus for conceptus growth. Restricted fetal development results from pathophysiological and environmental factors that alter utero-placental blood flow, placental function, and, therefore, nutrient availability in the fetus. To test this hypothesis, 0, 75, or 150 mg/d sildenafil citrate (Viagra) was administered subcutaneously from d 28 to 115 of gestation to either nutrient-restricted [50% of NRC requirements) or adequately-fed ewes (100% of NRC requirements). On d 115, maternal, fetal, and placental tissues and fluids were collected. Concentrations of total amino acids and polyamines in uterine venous and arterial sera, amniotic and allantoic fluids, and fetal umbilical venous serum were lower (P < 0.05) in nutrient-restricted ewes than in adequately fed ewes, as were the ratios of total amino acids in fetal umbilical venous serum to uterine arterial serum. Sildenafil citrate dose-dependently increased (P < 0.05) total amino acids and polyamines in amniotic fluid, allantoic fluid, and fetal serum without affecting values in maternal serum. Fetal weight was lower (P < 0.05) in nutrient-restricted ewes on d 115. Sildenafil citrate treatment dose-dependently increased (P < 0.05) fetal weight in both nutrient-restricted and adequately fed ewes. This study supports the hypothesis that long-term sildenafil citrate treatment enhances fetal growth, at least in part, by increasing the availability of amino acids in the conceptus. These findings may lead to the clinical use of sildenafil citrate in human pregnancies suspected to be at risk for intrauterine fetal growth retardation.
Chen, Ze; Zhao, Zhe; Li, Yunzepeng; Zhang, Xingyu; Li, Bin; Chen, Liaobin; Wang, Hui
2018-04-01
Dexamethasone, a synthetic long-acting glucocorticoid, is routinely used for treating mothers at risk for preterm delivery. However, intrauterine overexposure to glucocorticoids induces low birth weight and cartilage dysplasia in offspring. Also, the "critical window" and safe dose of this treatment are largely unknown. This study investigated the course-, dose-, and stage-dependent toxic effects and the possible mechanisms of prenatal dexamethasone exposure (PDE) on fetal development and articular cartilage development. Pregnant mice (C57BL/6) received subcutaneous injection of dexamethasone (0.8 mg/kg d) once on gestational day (GD) 15 or once a day from GD 15 to 17, or received various doses of dexamethasone (0, 0.2, 0.8, and 1.2 mg/kg d) on GD 15-17, or received dexamethasone (0.8 mg/kg d) at early stage (GD 12-14) or late stage of pregnancy (GD 15-17). Offspring's knee joints were harvested at birth for morphological analyses and detection of gene expression. Repeated PDE significantly suppressed fetal and articular cartilage development, which were characterized by decreased body weight and body length, coarse articular cartilage surfaces, and reduced gene and protein expression of Col2a1 and aggrecan. For those newborns treated with repeated PDE at different doses, the toxic effects on fetal and articular cartilage development were observed at doses of 0.8 and 1.2 mg/kg d, whereas no obvious toxic effects were observed at the dose of 0.2 mg/kg d. Moreover, PDE at 0.8 mg/kg d during the early embryonic stage induced stronger toxic effects on fetal and articular cartilage development, compared with PDE during the late embryonic stage. Detection of gene expression showed that the TGFβ signaling pathway in the articular cartilage was down-regulated after PDE. Taken together, PDE induces fetal developmental toxicity and articular cartilage developmental toxicity in a course-, dose-, and stage-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.
Kurtz, M; Capobianco, E; Careaga, V; Martinez, N; Mazzucco, M B; Maier, M; Jawerbaum, A
2014-03-01
Maternal diabetes impairs fetal lung development. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors relevant in lipid homeostasis and lung development. This study aims to evaluate the effect of in vivo activation of PPARs on lipid homeostasis in fetal lungs of diabetic rats. To this end, we studied lipid concentrations, expression of lipid metabolizing enzymes and fatty acid composition in fetal lungs of control and diabetic rats i) after injections of the fetuses with Leukotriene B4 (LTB4, PPARα ligand) or 15deoxyΔ(12,14)prostaglandin J2 (15dPGJ2, PPARγ ligand) and ii) fed during pregnancy with 6% olive oil- or 6% safflower oil-supplemented diets, enriched with PPAR ligands were studied. Maternal diabetes increased triglyceride concentrations and decreased expression of lipid-oxidizing enzymes in fetal lungs of diabetic rats, an expression further decreased by LTB4 and partially restored by 15dPGJ2 in lungs of male fetuses in the diabetic group. In lungs of female fetuses in the diabetic group, maternal diets enriched with olive oil increased triglyceride concentrations and fatty acid synthase expression, while those enriched with safflower oil increased triglyceride concentrations and fatty acid transporter expression. Both olive oil- and safflower oil-supplemented diets decreased cholesterol and cholesteryl ester concentrations and increased the expression of the reverse cholesterol transporter ATP-binding cassette A1 in fetal lungs of female fetuses of diabetic rats. In fetal lungs of control and diabetic rats, the proportion of polyunsaturated fatty acids increased with the maternal diets enriched with olive and safflower oils. Our results revealed important changes in lipid metabolism in fetal lungs of diabetic rats, and in the ability of PPAR ligands to modulate the composition of lipid species relevant in the lung during the perinatal period.
Chan, Shiao Y; Andrews, Marcus H; Lingas, Rania; McCabe, Chris J; Franklyn, Jayne A; Kilby, Mark D; Matthews, Stephen G
2005-01-01
Thyroid hormone deprivation during fetal life has been implicated in neurodevelopmental morbidity. In humans, poor growth in utero is also associated with fetal hypothyroxinaemia. In guinea pigs, a short period (48 h) of maternal nutrient deprivation at gestational day (gd) 50 results in fetuses with hypothyroxinaemia and increased brain/body weight ratios. Thyroid hormone action is mediated by nuclear thyroid hormone receptors (TRs) and is dependent upon the prereceptor regulation of supply of triiodothyronine (T3) by deiodinase enzymes. Examination of fetal guinea pig brains using in situ hybridization demonstrated widespread expression of mRNAs encoding TRα1, α2 and β1, with regional colocalization of deiodinase type 2 (D2) mRNA in the developing forebrain, limbic structures, brainstem and cerebellum at gd52. With maternal nutrient deprivation, TRα1 and β1 mRNA expression was significantly increased in the male, but decreased in the female fetal hippocampus and cerebellum and other areas showing high TR expression under euthyroid conditions. Maternal nutrient deprivation resulted in elevated D2 mRNA expression in males and females. Deiodinase type 3 (D3) mRNA expression was confined to the shell of the nucleus accumbens, the posterior amygdalohippocampal area, brainstem and cerebellum, and did not change with maternal nutrient deprivation. In conclusion, maternal nutrient deprivation resulted in sex-specific changes in TR mRNA expression and a generalized increase in D2 mRNAs within the fetal brain. These changes may represent a protective mechanism to maintain appropriate thyroid hormone action in the face of fetal hypothyroxinaemia in order to optimize brain development. PMID:15878952
Novakovic, Predrag; Detmer, Susan E; Suleman, Muhammad; Malgarin, Carol M; MacPhee, Daniel J; Harding, John C S
2018-07-01
The placenta is a vital organ providing the developing fetus with nutrient and gas exchange, thermoregulation, and waste elimination necessary for fetal development, as well as producing hormones to maintain pregnancy. It is hypothesized that fetal pig death in porcine reproductive and respiratory syndrome may be attributed to pathology of the maternal-fetal interface leading to premature placental separation. This study was designed to evaluate the chronologic progression of porcine reproductive and respiratory syndrome virus (PRRSV)-induced lesions at the maternal-fetal interface, with particular focus on placental separation in experimentally challenged third-trimester gilts. Fifteen gilts were inoculated with a virulent strain of PRRSV-2 on gestation day 86 ± 0.4. On multiple days postinoculation, 3 gilts along with 1 sham-inoculated control per time point were euthanized, and uterine and fetal placental tissues corresponding to each fetus were collected for histopathologic evaluation. The presence of any fetal lesion was 23 times more likely in compromised (meconium-stained and decomposed) compared with viable fetuses ( P < .001). In PRRSV-infected gilts, endometritis was more severe than placentitis, and the severity of endometrial inflammation and vasculitis increased progressively from 2 to 14 days postinoculation. Neither placental vasculitis nor a chronologic progression in the severity of placental detachment was observed. Severe placental detachment was more frequently present in PRRSV-infected compared with noninfected samples and was most significantly associated with placental inflammation, compared with other uterine lesions, viral load, or termination day. The results of this study suggest that placental separation by itself is not sufficient to significantly compromise fetal viability in reproductive porcine reproductive and respiratory syndrome.
Lieben, L; Stockmans, I; Moermans, K; Carmeliet, G
2013-11-01
Pregnancy challenges maternal calcium handling because sufficient calcium has to be transferred to the fetus to ensure fetal bone mass acquisition. 1,25(OH)2 vitamin D [1,25(OH)2D] is an important regulator of calcium homeostasis during adulthood, yet its role seems redundant for the maternal adaptations to pregnancy as well as during fetal development. However, not only deficiency but also excess of 1,25(OH)2D can be harmful and we therefore questioned whether high maternal 1,25(OH)2D levels may injure fetal development or neonatal outcome, as maternal-fetal transport of 1,25(OH)2D has been largely disputed. To this end, vitamin D receptor (VDR) null (Vdr(-/-)) females, displaying high 1,25(OH)2D levels, were mated with Vdr(+/-) males to obtain pregnancies with fetuses that are responsive (Vdr(+/-)) or resistant (Vdr(-/-)) to 1,25(OH)2D. Surprisingly, most of the Vdr(+/-) neonates died shortly after birth, whereas none of the Vdr(-/-). Mechanistically, we noticed that in Vdr(+/-) embryos, serum calcium levels were normal, but that skeletal calcium storage was reduced as evidenced by decreased mineralized bone mass as well as bone mineral content. More precisely, bone formation was decreased and the level of bone mineralization inhibitors was increased. This decreased fetal skeletal calcium storage may severely compromise calcium balance and survival at birth. In conclusion, these data indicate that high maternal 1,25(OH)2D levels are transferred across the placental barrier and adversely affect the total amount of calcium stored in fetal bones which is accompanied by neonatal death. © 2013 Elsevier Inc. All rights reserved.
The neural and vascular effects of killed Su-Streptococcus pyogenes (OK-432) in preterm fetal sheep
Cowie, R. V.; Stone, P. R.; Barrett, R.; Naylor, A. S.; Blood, A. B.; Gunn, A. J.
2010-01-01
Fetal exposure to inflammatory mediators is associated with a greater risk of brain injury and may cause endothelial dysfunction; however, nearly all the evidence is derived from gram-negative bacteria. Intrapleural injections of OK-432, a killed Su-strain of Streptococcus pyogenes, has been used to treat fetal chylothorax. In this study, we evaluated the neural and cardiovascular effects of OK-432 in preterm fetal sheep (104 ± 1 days, term 147 days). OK-432 (0.1 mg, n = 6) or saline vehicle (n = 7) was infused in the fetal pleura, and fetuses were monitored for 7 days. Blood samples were taken routinely for plasma nitrite measurement. Fetal brains were taken for histological assessment at the end of the experiment. Between 3 and 7 h postinjection, OK-432 administration was associated with transient suppression of fetal body and breathing movements and electtroencephalogram activity (P < 0.05), increased carotid and femoral vascular resistance (P < 0.05), but no change in blood pressure. Brain activity and behavior then returned to normal except in one fetus that developed seizures. OK-432 fetuses showed progressive, sustained vasodilatation (P < 0.05), with lower blood pressure after 4 days (P < 0.05), but normal heart rate. There were no changes in plasma nitrite levels. Histological studies showed bilateral infarction in the dorsal limb of the hippocampus of the fetus that developed seizures, but no injury in other fetuses. We conclude that a single low-dose injection of OK-432 can be associated with risk of focal cerebral injury in the preterm fetus and chronic central and peripheral vasodilatation that does not appear to be mediated by nitric oxide. PMID:20484698
The neural and vascular effects of killed Su-Streptococcus pyogenes (OK-432) in preterm fetal sheep.
Bennet, L; Cowie, R V; Stone, P R; Barrett, R; Naylor, A S; Blood, A B; Gunn, A J
2010-08-01
Fetal exposure to inflammatory mediators is associated with a greater risk of brain injury and may cause endothelial dysfunction; however, nearly all the evidence is derived from gram-negative bacteria. Intrapleural injections of OK-432, a killed Su-strain of Streptococcus pyogenes, has been used to treat fetal chylothorax. In this study, we evaluated the neural and cardiovascular effects of OK-432 in preterm fetal sheep (104 +/- 1 days, term 147 days). OK-432 (0.1 mg, n = 6) or saline vehicle (n = 7) was infused in the fetal pleura, and fetuses were monitored for 7 days. Blood samples were taken routinely for plasma nitrite measurement. Fetal brains were taken for histological assessment at the end of the experiment. Between 3 and 7 h postinjection, OK-432 administration was associated with transient suppression of fetal body and breathing movements and electtroencephalogram activity (P < 0.05), increased carotid and femoral vascular resistance (P < 0.05), but no change in blood pressure. Brain activity and behavior then returned to normal except in one fetus that developed seizures. OK-432 fetuses showed progressive, sustained vasodilatation (P < 0.05), with lower blood pressure after 4 days (P < 0.05), but normal heart rate. There were no changes in plasma nitrite levels. Histological studies showed bilateral infarction in the dorsal limb of the hippocampus of the fetus that developed seizures, but no injury in other fetuses. We conclude that a single low-dose injection of OK-432 can be associated with risk of focal cerebral injury in the preterm fetus and chronic central and peripheral vasodilatation that does not appear to be mediated by nitric oxide.
DiPietro, Janet A.; Davis, Meghan F.; Costigan, Kathleen A; Barr, Dana Boyd
2015-01-01
Contemporaneous associations between circulating maternal organochlorines and measures of fetal heart rate and motor activity were evaluated. A panel of 47 organochlorines (OCs), including pesticides and polychlorinated biphenyls (PCBs), was analyzed from serum of 50 pregnant women at 36 weeks gestation. Data were empirically reduced into four factors and six individual compounds. All participants had detectable concentrations of at least one-quarter of the assayed OCs and, in general, higher socioeconomic level was associated with higher OC concentrations. Fetal heart rate measures were not consistently associated with maternal OCs. In contrast, one or more indicators of greater fetal motor activity were significantly associated with higher levels of the DDT and low chlorinated OC factors and five of the six individual compounds (heptachlor epoxide, trans nonachlor, oxychlordane, and PCBs 18 and 52). This preliminary demonstration of associations between fetal motor activity and maternal concentrations of persistent and pervasive environmental contaminants suggests that fetal assessment may be useful in ascertaining the potential early effects of these compounds on development. PMID:23591698
Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.
Nilsson, Eric E; Skinner, Michael K
2009-12-10
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice.
Progesterone Regulation of Primordial Follicle Assembly In Bovine Fetal Ovaries
Nilsson, Eric E.; Skinner, Michael K.
2009-01-01
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice. PMID:19747959
Prenatal Antecedents of Newborn Neurological Maturation
ERIC Educational Resources Information Center
DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Rubin, Suzanne E.; Shiffler, Dorothy E.; Henderson, Janice L.; Pillion, Joseph P.
2010-01-01
Fetal neurobehavioral development was modeled longitudinally using data collected at weekly intervals from 24 to 38 weeks gestation in a sample of 112 healthy pregnancies. Predictive associations between 3 measures of fetal neurobehavioral functioning and their developmental trajectories to neurological maturation in the first weeks after birth…
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...
Neuroimaging and Fetal Alcohol Spectrum Disorders
ERIC Educational Resources Information Center
Norman, Andria L.; Crocker, Nicole; Mattson, Sarah N.; Riley, Edward P.
2009-01-01
The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and…
Exposure to DIHP, a commercial phthalate ester plasticizer used in flooring manufacturing, during the fetal period of sexual differentiation disrupts male reproductive development resulting in reproductive malformations and reduced androgen-dependent reproductive tissue weights i...
Evolution and development of fetal membranes and placentation in amniote vertebrates.
Ferner, Kirsten; Mess, Andrea
2011-08-31
We review aspects of fetal membrane evolution and patterns of placentation within amniotes, the most successful land vertebrates. Special reference is given to embryonic gas supply. The evolution of fetal membranes is a prerequisite for reproduction independent from aquatic environments. Starting from a basically similar repertoire of fetal membranes - the amnion, chorion, allantois and yolk sac, which form the cleidoic egg - different structural solutions for embryonic development have evolved. In oviparous amniotes the chorioallantoic membrane is the major site for the exchange of respiratory gases between fetus and outer environment. The richly vascularised yolk sac and allantois in concert with the chorion play an important role in the evolution of placentation in various viviparous amniotes. Highly complex placentas have evolved independently among squamate sauropsids and in marsupial and placental mammals. In conclusion, there seems to be a natural force to improve gas exchange processes in intrauterine environments by reducing the barrier between the blood systems and optimising the exchange areas. Copyright © 2011 Elsevier B.V. All rights reserved.
Lowe, David E; Robbins, Jennifer R; Bakardjiev, Anna I
2018-06-01
Intrauterine infections lead to serious complications for mother and fetus, including preterm birth, maternal and fetal death, and neurological sequelae in the surviving offspring. Improving maternal and child heath is a global priority. Yet, the development of strategies to prevent and treat pregnancy-related diseases has lagged behind progress made in other medical fields. One of the challenges is finding tractable model systems that replicate the human maternal-fetal interface. Animal models offer the ability to study pathogenesis and host defenses in vivo However, the anatomy of the maternal-fetal interface is highly divergent across species. While many tools are available to study host responses in the pregnant mouse model, other animals have placentas that are more similar to that of humans. Here we describe new developments in animal and human tissue models to investigate the pathogenesis of listeriosis at the maternal-fetal interface. We highlight gaps in existing knowledge and make recommendations on how they can be filled. Copyright © 2018 American Society for Microbiology.
Goldstein, JM; Handa, RJ; Tobet, SA
2014-01-01
Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics. PMID:24355523
Fetal programming by maternal stress: Insights from a conflict perspective.
Del Giudice, Marco
2012-10-01
Maternal stress during pregnancy has pervasive effects on the offspring's physiology and behavior, including the development of anxious, reactive temperament and increased stress responsivity. These outcomes can be seen as the result of adaptive developmental plasticity: maternal stress hormones carry useful information about the state of the external world, which can be used by the developing fetus to match its phenotype to the predicted environment. This account, however, neglects the inherent conflict of interest between mother and fetus about the outcomes of fetal programming. The aim of this paper is to extend the adaptive model of prenatal stress by framing mother-fetus interactions in an evolutionary conflict perspective. In the paper, I show how a conflict perspective provides many new insights in the functions and mechanisms of fetal programming, with particular emphasis on human pregnancy. I then take advantage of those insights to make sense of some puzzling features of maternal and fetal physiology and generate novel empirical predictions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Autism-specific maternal anti-fetal brain autoantibodies are associated with metabolic conditions
Krakowiak, Paula; Walker, Cheryl K.; Tancredi, Daniel; Hertz-Picciotto, Irva; Van de Water, Judy
2016-01-01
Lay Abstract Approximately 23% of mothers of children with autism spectrum disorder (ASD) produce specific patterns of antibodies to fetal brain tissue that have been detected in only 1% of mothers of typically developing children. However, it is unknown what causes these ASD-specific anti-fetal antibodies to be produced. We examined the relationship between ASD-specific anti-fetal antibodies and metabolic conditions during pregnancy in 227 mothers of 2–5 year old children with ASD, enrolled in the CHARGE (Childhood Autism Risk from Genetics and the Environment) Study, and who had blood samples measured for these anti-fetal brain antibodies after study enrollment. Metabolic conditions included diabetes, hypertensive disorders, and prepregnancy obesity or overweight. The presence of ASD-specific anti-fetal brain antibody patterns was more common among mothers diagnosed with diabetes, hypertensive disorders, or overweight during pregnancy compared to healthy mothers, but these differences did not reach statistical significance. In a subset of 145 mothers whose children exhibited severe ASD symptoms, those diagnosed with type 2 or gestational diabetes were nearly 3 times more likely to have ASD-specific anti-fetal antibodies compared to healthy mothers. Further, those diagnosed with gestational diabetes specifically were over 3 times more likely to have these anti-fetal brain antibodies. In this exploratory study, mothers whose children had severe ASD and who were diagnosed with diabetes were more likely to have anti-fetal brain autoantibodies 2–5 years later. Scientific Abstract Approximately 23% of mothers of children with autism spectrum disorder (ASD) produce specific patterns of autoantibodies to fetal brain proteins that have been detected in only 1% of mothers of typically developing children. The biological mechanisms underlying the development of ASD-specific maternal autoantibodies are poorly understood. We sought to determine whether ASD-specific maternal autoantibodies identified postnatally were associated with metabolic conditions (MCs) during gestation. Participants were 227 mothers of 2–5 year old children with confirmed ASD, enrolled in CHARGE (Childhood Autism Risk from Genetics and the Environment) between January 2003 and April 2008, and from whom blood samples were collected and analyzed for anti-fetal brain autoantibodies (Ab+). MCs included diabetes, hypertensive disorders, and prepregnancy obesity or overweight, ascertained from medical records or structured telephone interviews. Log-linear regression models were performed to estimate prevalence ratios (PR) and 95% confidence intervals (CI) based on robust standard errors. Fifty-six (25%) mothers were Ab+. Ab+ prevalence was higher among mothers with diabetes, hypertensive disorders, or overweight compared to healthy mothers, but differences were not statistically significant. In a subset of 145 mothers whose children exhibited severe ASD (31 Ab+), those diagnosed with type 2 or gestational diabetes were 2.7-fold more likely to be Ab+ (95% CI 1.1, 6.6), controlling for delivery payer and smoking. Gestational diabetes specifically was associated with a 3.2-fold increased Ab+ prevalence (95% CI 1.2, 8.6). In this exploratory study, mothers whose children had severe ASD and who experienced diabetes were more likely to have anti-fetal brain autoantibodies 2–5 years later. PMID:27312731
Pepe, Gerald J.; Lynch, Terrie J.; Albrecht, Eugene D.
2013-01-01
ABSTRACT Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen. PMID:24132960
Pepe, Gerald J; Lynch, Terrie J; Albrecht, Eugene D
2013-12-01
Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen.
Animal models for clinical and gestational diabetes: maternal and fetal outcomes.
Kiss, Ana Ci; Lima, Paula Ho; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza Vc; Damasceno, Débora C
2009-10-19
Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women presenting uncontrolled clinical diabetes. On the other hand, the mild diabetes model caused mild hyperglycemia during pregnancy, although it was not enough to reproduce the increased rate of macrosomic fetuses seen in women with gestational diabetes.
Akers, Katherine G; Kushner, Steven A; Leslie, Ana T; Clarke, Laura; van der Kooy, Derek; Lerch, Jason P; Frankland, Paul W
2011-07-07
Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development.
Miranda, Rajesh C.; Kable, Julie; Reynolds, James N.; Valenzuela, C. Fernando
2013-01-01
The 2012 meeting of the Fetal Alcohol Spectrum Disorders Study Group (FASDSG) focused on the development and ethics of biomarkers for fetal alcohol exposure. This one-day international conference brought students and trainees together with clinicians and researchers to discuss the latest research on FASD. One keynote speaker discussed the value of profiling epigenetic modifications in readily available fetal tissues to diagnose fetal exposure to environmental agents, while the second speaker discussed the ethics of biomarker development within the context of core principles of justice, autonomy, beneficence and non-maleficence. Three sessions of short data talks informed the audience of research advances with particular emphasis on the diagnosis of FASD. Other activities included updates on FASD-related activities by representatives of government agencies, a report on the implementation FASD-related diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual (DSM-5) of the American Psychiatric Association and a networking lunch, and the presentation of the “Merit Award” to Dr. Nathan Muraski for his work on behavioural outcomes of fetal alcohol exposure. The capstone of the meeting was the presentation of the “Henri Rosett” award to Dr. Denis Viljoen, in recognition of his role in raising awareness about the incidence of FASD in South Africa and in promoting FASD prevention and treatment programs as chairperson and chief executive officer of the Foundation for Alcohol Related Research (FARR). PMID:24183101
Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease
Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.
2018-01-01
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698
Morphology, development, and evolution of fetal membranes and placentation in squamate reptiles.
Blackburn, Daniel G; Flemming, Alexander F
2009-09-15
Current studies on fetal membranes of reptiles are providing insight into three major historical transformations: evolution of the amniote egg, evolution of viviparity, and evolution of placentotrophy. Squamates (lizards and snakes) are ideal for such studies because their fetal membranes sustain embryos in oviparous species and contribute to placentas in viviparous species. Ultrastructure of the fetal membranes in oviparous corn snakes (Pituophis guttatus) shows that the chorioallantois is specialized for gas exchange and the omphalopleure, for water absorption. Transmission and scanning electron microscopic studies of viviparous thamnophine snakes (Thamnophis, Storeria) have revealed morphological specializations for gas exchange and absorption in the intra-uterine environment that represent modifications of features found in oviparous species. Thus, fetal membranes in oviparous species show morphological differentiation for distinct functions that have been recruited and enhanced under viviparous conditions. The ultimate in specialization of fetal membranes is found in viviparous skinks of South America (Mabuya) and Africa (Trachylepis, Eumecia), in which placentotrophy accounts for nearly all of the nutrients for development. Ongoing research on these lizards has revealed morphological specializations of the chorioallantoic placenta through which nutrient transfer is accomplished. In addition, African Trachylepis show an invasive form of implantation, in which uterine epithelium is replaced by invading chorionic cells. Ongoing analysis of these lizards shows how integration of multiple lines of evidence can provide insight into the evolution of developmental and reproductive specializations once thought to be confined to eutherian mammals.
Effect of Dietary Iron on Fetal Growth in Pregnant Mice
Hubbard, Andrea C; Bandyopadhyay, Sheila; Wojczyk, Boguslaw S; Spitalnik, Steven L; Hod, Eldad A; Prestia, Kevin A
2013-01-01
Iron deficiency is the most common nutritional disorder. Children and pregnant women are at highest risk for developing iron deficiency because of their increased iron requirements. Iron-deficiency anemia during pregnancy is associated with adverse effects on fetal development, including low birth weight, growth retardation, hypertension, intrauterine fetal death, neurologic impairment, and premature birth. We hypothesized that pregnant mice fed an iron-deficient diet would have a similar outcome regarding fetal growth to that of humans. To this end, we randomly assigned female C57BL/6 mice to consume 1 of 4 diets (high-iron–low-bioavailability, high-iron–high-bioavailability, iron-replete, and iron-deficient) for 4 wk before breeding, followed by euthanasia on day 17 to 18 of gestation. Compared with all other groups, dams fed the high-iron–high-bioavailability diet had significantly higher liver iron. Hct and Hgb levels in dams fed the iron-deficient diet were decreased by at least 2.5 g/dL as compared with those of all other groups. In addition, the percentage of viable pups among dams fed the iron-deficient diet was lower than that of all other groups. Finally, compared with all other groups, fetuses from dams fed the iron-deficient diet had lower fetal brain iron levels, shorter crown–rump lengths, and lower weights. In summary, mice fed an iron-deficient diet had similar hematologic values and fetal outcomes as those of iron-deficient humans, making this a useful model for studying iron-deficiency anemia during pregnancy. PMID:23582419
Kummer, Lawrence W.; Lanthier, Paula; Kim, In-Jeong; Kuki, Atsuo; Thomas, Stephen J.
2018-01-01
Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis. PMID:29634758
Avitan, Tehila; Sanders, Ari; Brain, Ursula; Rurak, Dan; Oberlander, Tim F; Lim, Ken
2018-05-01
To determine if there are changes in maternal uterine blood flow, fetal brain blood flow, fetal heart rate variability, and umbilical blood flow between morning (AM) and afternoon (PM) in healthy, uncomplicated pregnancies. In this prospective study, 68 uncomplicated singleton pregnancies (mean 35 + 0.7 weeks gestation) underwent a standard observational protocol at both 08:00 (AM) and 13:30 (PM) of the same day. This protocol included Doppler measurements of uterine, umbilical, and fetal middle cerebral artery (MCA) volume flow parameters (flow, HR, peak systolic velocity [PSV], PI, and RI) followed by computerized cardiotocography. Standard descriptive statistics, χ 2 and t tests were used where appropriate. P < .05 was considered significant. A significant increase in MCA flow and MCA PSV was observed in the PM compared to the AM. This was accompanied by a fall in MCA resistance. Higher umbilical artery resistance indices were also observed in the PM compared to AM. In contrast, fetal heart rate characteristics, maternal uterine artery Doppler flow and resistance indices did not vary significantly between the AM and PM. In normal pregnancies, variations in fetal cerebral and umbilical blood flow parameters were observed between AM and PM independent of other fetal movements or baseline fetal heart rate. In contrast, uterine flow parameters remained stable across the day. These findings may have implications for the use of serial Doppler parameters used to guide clinical management in high-risk pregnancies. © 2017 Wiley Periodicals, Inc.
Morin, E C; Schleger, F; Preissl, H; Braendle, J; Eswaran, H; Abele, H; Brucker, S; Kiefer-Schmidt, I
2015-08-01
Fetal magnetoencephalography records fetal brain activity non-invasively. Delayed brain responses were reported for fetuses weighing below the tenth percentile. To investigate whether this delay indicates delayed brain maturation resulting from placental insufficiency, this study distinguished two groups of fetuses below the tenth percentile: growth-restricted fetuses with abnormal umbilical artery Doppler velocity (IUGR) and constitutionally small-for-gestational-age fetuses with normal umbilical artery Doppler findings (SGA) were compared with fetuses of adequate weight for gestational age (AGA), matched for age and behavioural state. A case-control study of matched pairs. Fetal magnetoencephalography-Center at the University Hospital of Tuebingen. Fourteen IUGR fetuses and 23 SGA fetuses were matched for gestational age and fetal behavioural state with 37 healthy, normal-sized fetuses. A 156-channel fetal magentoencephalography system was used to record fetal brain activity. Light flashes as visual stimulation were applied to the fetus. The Student's t-test for paired groups was performed. Latency of fetal visual evoked magnetic responses (VER). The IUGR fetuses showed delayed VERs compared with controls (IUGR, 233.1 ms; controls, 184.6 ms; P = 0.032). SGA fetuses had similar evoked response latencies compared with controls (SGA, 216.1 ms; controls, 219.9 ms; P = 0.828). Behavioural states were similarly distributed. Visual evoked responses are delayed in IUGR fetuses, but not in SGA. Fetal behavioural state as an influencing factor of brain response latency was accounted for in the comparison. This reinforces that delayed brain maturation is the result of placental insufficiency. © 2015 Royal College of Obstetricians and Gynaecologists.
Fetal tissue research: an ongoing story of professionally responsible success.
Gelber, Shari E; McCullough, Laurence B; Chervenak, Frank A
2015-12-01
Therapies derived from fetal tissue research are some of the greatest success stories in medicine. Research using fetal tissue has allowed for development of vaccines for numerous diseases including polio, rubella, and measles. These vaccines have saved countless lives, improved quality of life, and decreased the need for induced abortion secondary to congenital infection. Research using cell lines derived from fetal tissue has assisted in better understanding disease pathogenesis and has served to produce human proteins as research reagents and therapies. Ongoing research points to the potential for fetal tissue to be used to cure debilitating diseases such as Parkinson disease. These scientific and medical advances are dependent on the use of fetal tissue from aborted fetuses. While the practice of induced abortion despite societal benefit may be theologically objectionable to some, these practices are professionally responsible. Federal regulations exist to discourage patients from being influenced by the societal benefit of fetal research in arriving at the decision to terminate as well as to prevent researchers from influencing a patient's decision. After a patient has chosen termination of pregnancy, it is consistent with professional responsibility to allow her to choose the disposition of the cadaveric fetal tissue. While some may view induced abortion and societal benefit from this practice as an ethical burden, the principle of justice makes it ethically obligatory to bear this ethical burden. The success story of cadaveric fetal tissue research and treatment should continue unhindered, to fulfill professional responsibility to current and future patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Commercialization and Industrial Development for the Fetal Hear Rate Monitor
NASA Technical Reports Server (NTRS)
Zahorian, Stephen
2000-01-01
The primary objectives for this task were to continue the development and testing of the NASA/ODU passive acoustic fetal heart rate monitor, with the goal of transferring the technology to the commercial sector. Areas of work included: 1. To assist in the development of a new hardware front end electronics box for the fetal heart rate monitor, so as to reduce the size of the electronics box, and also to provide for a "low-frequency" and "high-frequency" mode of operation. To make necessary changes in the operating software to support the two modes of operation. 2. To provide an option for a strip chart recording for the system, so that medical personnel could more easily make comparisons with ultra sound strip chart recordings. and 3. To help with continued testing of the system.
Barrett, Angela N; Xiong, Li; Tan, Tuan Z; Advani, Henna V; Hua, Rui; Laureano-Asibal, Cecille; Soong, Richie; Biswas, Arijit; Nagarajan, Niranjan; Choolani, Mahesh
2017-01-01
Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction. A multiplex panel of primers was designed for 35 indels plus a ZFX/ZFY amplicon. cfDNA was extracted from plasma from 157 pregnant women, and maternal genomic DNA was extracted for 20 of these samples for panel validation. Sixty-one samples from pregnancies with a male fetus were subjected to whole genome sequencing on the Ion Proton sequencing platform, and fetal fraction derived from Y chromosome counts was compared to fetal fraction measured using the indel panel. A total of 157 cell-free DNA samples were sequenced using the indel panel, and informativity was assessed, along with the proportion of fetal DNA. Using gDNA we optimised the indel panel, removing amplicons giving rise to PCR bias. Good correlation was found between fetal fraction using indels and using whole genome sequencing of the Y chromosome (Spearmans r = 0.69). A median of 12 indels were informative per sample. The indel panel was informative in 157/157 cases (mean fetal fraction 14.4% (±0.58%)). Using our targeted next generation sequencing panel we can readily assess the fetal DNA percentage in male and female pregnancies.
Xiong, Li; Tan, Tuan Z.; Advani, Henna V.; Hua, Rui; Laureano-Asibal, Cecille; Soong, Richie; Biswas, Arijit; Nagarajan, Niranjan; Choolani, Mahesh
2017-01-01
Objective Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction. Methods A multiplex panel of primers was designed for 35 indels plus a ZFX/ZFY amplicon. cfDNA was extracted from plasma from 157 pregnant women, and maternal genomic DNA was extracted for 20 of these samples for panel validation. Sixty-one samples from pregnancies with a male fetus were subjected to whole genome sequencing on the Ion Proton sequencing platform, and fetal fraction derived from Y chromosome counts was compared to fetal fraction measured using the indel panel. A total of 157 cell-free DNA samples were sequenced using the indel panel, and informativity was assessed, along with the proportion of fetal DNA. Results Using gDNA we optimised the indel panel, removing amplicons giving rise to PCR bias. Good correlation was found between fetal fraction using indels and using whole genome sequencing of the Y chromosome (Spearmans r = 0.69). A median of 12 indels were informative per sample. The indel panel was informative in 157/157 cases (mean fetal fraction 14.4% (±0.58%)). Conclusions Using our targeted next generation sequencing panel we can readily assess the fetal DNA percentage in male and female pregnancies. PMID:29084245
Development of customized fetal growth charts in twins.
Ghi, Tullio; Prefumo, Federico; Fichera, Anna; Lanna, Mariano; Periti, Enrico; Persico, Nicola; Viora, Elsa; Rizzo, Giuseppe
2017-05-01
Twin gestations are at significantly higher risk of fetal growth restriction in comparison with singletons. Using fetal biometric charts customized for obstetrical and parental characteristics may facilitate an accurate assessment of fetal growth. The objective of the study was to construct reference charts for the gestation of fetal biometric parameters stratified by chorionicity and customized for obstetrical and parental characteristics. Fetal biometric measurements obtained from serial ultrasound examinations in uncomplicated twin pregnancies delivering after 36 weeks of gestation were collected by 19 Italian fetal medicine units under the auspices of the Società Italiana di Ecografia Ostetrica e Ginecologica. The measurements acquired in each fetus at each examination included biparietal diameter, head circumference, abdominal circumference, and femur length. Multilevel linear regression models were used to adjust for the serial ultrasonographic measurements obtained and the clustering of each fetus in twin pregnancy. The impact of maternal and paternal characteristics (height, weight, ethnicity), parity, fetal sex, and mode of conception was also considered. Models for each parameter were stratified by fetal chorionicity and compared with our previously constructed growth curves for singletons. The data set included 1781 twin pregnancies (dichorionic, n = 1289; monochorionic diamniotic, n = 492) with 8923 ultrasonographic examinations with a median of 5 (range, 2-8) observations per pregnancy in dichorionic and 6 in (range, 2-11) monochorionic pregnancies. Growth curves of twin pregnancies differed from those of singletons, and differences were more marked in monochorionic twins and during the third trimester. A significant influence of parental characteristics was found. Curves of fetal biometric measurements in twins are influenced by parental characteristics. There is a reduction in the growth rate during the third trimester. The reference limits for gestation constructed in this study may provide a useful tool for a more accurate assessment of fetal growth in twin pregnancies. Copyright © 2017 Elsevier Inc. All rights reserved.
Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L
2016-01-01
The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.
IGF-I and NEFA concentrations in fetal fluids of term pregnancy dogs.
Meloni, Tea; Comin, Antonella; Rota, Alessandro; Peric, Tanja; Contri, Alberto; Veronesi, Maria Cristina
2014-06-01
Insulin-like growth factor-I (IGF-I) and non-esterified fatty acids (NEFA) play an essential role in fetal growth and development. To date, fetal fluids IGF-I and NEFA levels at term canine pregnancy are unknown and could be related to the neonatal development and breed size. For these reasons, the aims of the present study were as follows: (1) to evaluate IGF-I and NEFA concentrations in fetal fluids collected from normally developed and viable newborn puppies born at term of normal pregnancies; (2) to assess possible differences between IGF-I and NEFA levels in amniotic compared with allantoic fluid; (3) to detect possible relationship between breed body size and IGF-I and NEFA amniotic and allantoic concentrations; (4) to evaluate possible differences in IGF-I fetal fluids levels between male and female puppies; and (5) to assess possible correlations between the two hormones in each type of fluid. The study enrolled 25 pure breed bitches submitted to elective Cesarean section at term because of the high risk of dystocia or previous troubles at parturition. At surgery, amniotic and allantoic fluids were collected and assayed for IGF-I and NEFA. IGF-I and NEFA amounts in both amniotic and allantoic fluids of different breed size bitches (small: ≤10 kg; medium: 11-25 kg; large: 26-40 kg) were detected, as well as the effect of gender on IGF-I levels. On a total of 73 amniotic and 76 allantoic samples collected by normal, viable, and mature newborns, the mean IGF-I concentration was significantly higher in amniotic than in allantoic fluid in all three groups, but the amniotic IGF-I levels were significantly lower in small and medium size bitches when compared with large ones. No significant differences were found in allantoic IGF-I concentrations among size groups. A significant effect of the puppy gender on IGF-I content in both fetal fluids was not reported. Regarding NEFA, in all the three groups, the mean NEFA concentration did not significantly differ between amnion and allantois, but in both fetal fluids, higher NEFA levels were detected in samples belonging to small breeds when compared with medium and large. These data strongly indicated that, also in the dog, a relation between fetal fluids IGF-I and NEFA concentrations and breed size exists. Further research is needed to elucidate the possible role of IGF-I and NEFA in the pathologic conditions related to canine fetal growth. Copyright © 2014 Elsevier Inc. All rights reserved.
Certain phthalate esters (PE) cause reproductive malformations in male rats when exposure occurs during sexual differentiation in utero. Reductions in fetal testosterone levels are causally linked to the induction of these malformations. While reproductive development studies on ...
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...
The Prenatal Development Effects of Carbon Dioxide (CO2) Exposure in Rats (Rattus Norvegicus)
2012-10-12
Group Mean Litter Basis: #Non- Viable Fetuses+ Resorptions (early or late) Postimplantation Loss/Litter= d # Gravi Females 2. Proportional Litter...late)/ Litter · Postimplantation -. -(%) = d xlOO Lztter # Gravi Females 3.12.2. Fetal Morphological Examination Fetal examinations were conducted
Reddy, Uma M; Abuhamad, Alfred Z; Levine, Deborah; Saade, George R
2014-05-01
Given that practice variation exists in the frequency and performance of ultrasound and magnetic resonance imaging in pregnancy, the Eunice Kennedy Shriver National Institute of Child Health and Human Development hosted a workshop to address indications for ultrasound and magnetic resonance imaging in pregnancy, to discuss when and how often these studies should be performed, to consider recommendations for optimizing yield and cost-effectiveness and to identify research opportunities. This article is the executive summary of the workshop. Published by Mosby, Inc.
Reddy, Uma M; Abuhamad, Alfred Z; Levine, Deborah; Saade, George R
2014-05-01
Given that practice variation exists in the frequency and performance of ultrasound and magnetic resonance imaging (MRI) in pregnancy, the Eunice Kennedy Shriver National Institute of Child Health and Human Development hosted a workshop to address indications for ultrasound and MRI in pregnancy, to discuss when and how often these studies should be performed, to consider recommendations for optimizing yield and cost effectiveness, and to identify research opportunities. This article is the executive summary of the workshop.
Reddy, Uma M; Abuhamad, Alfred Z; Levine, Deborah; Saade, George R
2014-05-01
Given that practice variation exists in the frequency and performance of ultrasound and magnetic resonance imaging (MRI) in pregnancy, the Eunice Kennedy Shriver National Institute of Child Health and Human Development hosted a workshop to address indications for ultrasound and MRI in pregnancy, to discuss when and how often these studies should be performed, to consider recommendations for optimizing yield and cost effectiveness, and to identify research opportunities. This article is the executive summary of the workshop.
Development of fetal yawn compared with non-yawn mouth openings from 24-36 weeks gestation.
Reissland, Nadja; Francis, Brian; Mason, James
2012-01-01
Although some research suggests that fetuses yawn, others disagree arguing that is it simple mouth opening. Furthermore there is no developmental account of fetal yawning compared with simple mouth opening. The aim of the present study was to establish in a repeated measures design the development of fetal yawning compared with simple mouth opening. Video recordings were made of the fetal face and upper torso visualized by means of 4D full frontal or facial profile ultrasound recordings. Fifteen healthy fetuses were scanned four times at 24, 28, 32 and 36 weeks gestation. Yawning was distinguished from non-yawning in terms of the length of time it took to reach the apex of the mouth stretch, with yawns being defined as more than 50% of the total time observed. To assess changes in frequency, a Poisson mixed effects model was fitted to the count of number of yawn and simple mouth opening events with age and gender as fixed effects, and person as a random effect. For both yawns and simple mouth openings a smooth varying age effect was significant. The number of yawns observed declined with age from 28 weeks gestation, whereas simple mouth openings were less frequent and the decline was observed from 24 weeks. Gender was not significant either for yawn and simple mouth openings. Yawning can be reliably distinguished from other forms of mouth opening with the potential of using yawning as an index of fetal healthy development.
Body composition during fetal development and infancy through the age of 5 years
Toro-Ramos, T; Paley, C; Pi-Sunyer, FX; Gallagher, D
2015-01-01
Fetal body composition is an important determinant of body composition at birth, and it is likely to be an important determinant at later stages in life. The purpose of this work is to provide a comprehensive overview by presenting data from previously published studies that report on body composition during fetal development in newborns and the infant/child through 5 years of age. Understanding the changes in body composition that occur both in utero and during infancy and childhood, and how they may be related, may help inform evidence-based practice during pregnancy and childhood. We describe body composition measurement techniques from the in utero period to 5 years of age, and identify gaps in knowledge to direct future research efforts. Available literature on chemical and cadaver analyses of fetal studies during gestation is presented to show the timing and accretion rates of adipose and lean tissues. Quantitative and qualitative aspects of fetal lean and fat mass accretion could be especially useful in the clinical setting for diagnostic purposes. The practicality of different pediatric body composition measurement methods in the clinical setting is discussed by presenting the assumptions and limitations associated with each method that may assist the clinician in characterizing the health and nutritional status of the fetus, infant and child. It is our hope that this review will help guide future research efforts directed at increasing the understanding of how body composition in early development may be associated with chronic diseases in later life. PMID:26242725
Viteri, Oscar A; Soto, Eleazar E; Bahado-Singh, Ray O; Christensen, Carl W; Chauhan, Suneet P; Sibai, Baha M
2015-04-01
Substance abuse in pregnancy remains a major public health problem. Fetal teratogenicity results from the effect of these substances during fetal development, particularly when used in combination. This review will focus on and attempt to clarify the existing literature regarding the association of substance abuse on the development of congenital anomalies and the long-term implications in exposed offspring. Systematic review of available English literature using the PubMed database of all peer-reviewed articles on the subject. A total of 128 articles were included in this review. Alcohol was the most common substance associated with fetal anomalies, particularly facial dysmorphisms and alterations in the central nervous system development. Adverse maternal environments associated with risky behaviors and lack of adequate prenatal care precludes the timely detection of fetal anomalies, confounding most studies linking causality. In addition, although methodological differences and limited availability of well-designed trials exist, substance abuse in pregnancy has been associated with adverse long-term outcomes in infant growth, behavior, cognition, language and achievement. The literature summarized in this review suggests that drug exposure during pregnancy may increase the risk of congenital anomalies and long-term adverse effects in exposed children and adolescents. These conclusions must be tempered by the many confounders associated with drug use. A multidisciplinary approach is paramount for appropriate counseling regarding the known immediate and long-term risks of substance abuse in pregnancy. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Altered autonomic control of heart rate variability in the chronically hypoxic fetus.
Shaw, C J; Allison, B J; Itani, N; Botting, K J; Niu, Y; Lees, C C; Giussani, D A
2018-03-31
Fetal heart rate variability (FHRV) has long been recognised as a powerful predictor of fetal wellbeing, and a decrease in FHRV is associated with fetal compromise. However, the mechanisms by which FHRV is reduced in the chronically hypoxic fetus have yet to be established. The sympathetic and parasympathetic influences on heart rate mature at different rates throughout fetal life, and can be assessed by time domain and power spectral analysis of FHRV. In this study of chronically instrumented fetal sheep in late gestation, we analysed FHRV daily over a 16 day period towards term, and compared changes between fetuses of control and chronically hypoxic pregnancy. We show that FHRV in sheep is reduced by chronic hypoxia, predominantly due to dysregulation of the sympathetic control of the fetal heart rate. This presents a potential mechanism by which a reduction in indices of FHRV predicts fetuses at increased risk of neonatal morbidity and mortality in humans. Reduction in overall FHRV may therefore provide a biomarker that autonomic dysregulation of fetal heart rate control has taken place in a fetus where uteroplacental dysfunction is suspected. Although fetal heart rate variability (FHRV) has long been recognised as a powerful predictor of fetal wellbeing, the mechanisms by which it is reduced in the chronically hypoxic fetus have yet to be established. In particular, the physiological mechanism underlying the reduction of short term variation (STV) in fetal compromise remains unclear. In this study, we present a longitudinal study of the development of autonomic control of FHRV, assessed by indirect indices, time domain and power spectral analysis, in normoxic and chronically hypoxic, chronically catheterised, singleton fetal sheep over the last third of gestation. We used isobaric chambers able to maintain pregnant sheep for prolonged periods in hypoxic conditions (stable fetal femoral arterial PO2 10-12 mmHg), and a customised wireless data acquisition system to record beat-to-beat variation in the fetal heart rate. We determined in vivo longitudinal changes in overall FHRV and the sympathetic and parasympathetic contribution to FHRV in hypoxic (n = 6) and normoxic (n = 6) ovine fetuses with advancing gestational age. Normoxic fetuses show gestational age-related increases in overall indices of FHRV, and in the sympathetic nervous system contribution to FHRV (P < 0.001). Conversely, gestational age-related increases in overall FHRV were impaired by exposure to chronic hypoxia, and there was evidence of suppression of the sympathetic nervous system control of FHRV after 72 h of exposure to hypoxia (P < 0.001). This demonstrates that exposure to late gestation isolated chronic fetal hypoxia has the potential to alter the development of the autonomic nervous system control of FHRV in sheep. This presents a potential mechanism by which a reduction in indices of FHRV in human fetuses affected by uteroplacental dysfunction can predict fetuses at increased risk. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction
Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.
2012-01-01
The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434
Prenatal diagnosis of chromosome disorders in Tunisian population.
Chaabouni, H; Chaabouni, M; Maazoul, F; M'Rad, R; Jemaa, L B; Smaoui, N; Terras, K; Kammoun, H; Belghith, N; Ridene, H; Oueslati, B; Zouari, F
2001-01-01
Cytogenetic prenatal diagnosis (PND) is under national health program in most developed countries, while it concerns a small part of population at risk in developing countries. Finance is common reason of absence of PND development, but socio-cultural believes play an important role in Arab Muslim countries. In this paper we report results of 3110 fetal karyotypes carried out in a Tunisian population, by cultured amniocytes analysis. It is the largest report in a Muslim Arab country in our Knowledge. Abnormal karyotypes rate was 4.18% classified in two groups: bad prognosis (3.05%) and good prognosis (1.13%). Common amniocentesis indication was maternal age. The highest predictive value was observed in balanced karyotype and fetal ultrasound findings indications. Maternal serum markers were not commonly used for trisomy 21 screening. Pregnancy termination that is permitted by legal and religious authorities was accepted by 94,74% parents. Information about PND outcomes was given by genetic counselling prior to fetal sampling, pregnancy interruption was discussed with parents at cytogenetic result announcement. The authors conclude that in order to prevent mental and physical handicap related to cytogenetic disorders we have to promote PND by education for population, genetic counselling and fetal ultrasound screening; all three methods available in Tunisia.
Maternal influences on fetal microbial colonization and immune development
Romano-Keeler, Joann; Weitkamp, Jörn-Hendrik
2014-01-01
While critical for normal development, the exact timing of establishment of the intestinal microbiome is unknown. For example, although preterm labor and birth have been associated with bacterial colonization of the amniotic cavity and fetal membranes for many years, the prevailing dogma of a sterile intrauterine environment during normal term pregnancies has been challenged more recently. While found to be a key contributor of evolution in the animal kingdom, maternal transmission of commensal bacteria may also constitute a critical process during healthy pregnancies in humans with yet unclear developmental importance. Metagenomic sequencing has elucidated a rich placental microbiome in normal term pregnancies likely providing important metabolic and immune contributions to the growing fetus. Conversely, an altered microbial composition during pregnancy may produce aberrant metabolites impairing fetal brain development and life-long neurological outcomes. Here we review the current understanding of microbial colonization at the feto-maternal interface and explain how normal gut colonization drives a balanced neonatal mucosal immune system, while dysbiosis contributes to aberrant immune function early in life and beyond. We discuss how maternal genetics, diet, medications, and probiotics inform the fetal microbiome in preparation for perinatal and postnatal bacterial colonization. PMID:25310759
Hamelmann, Paul; Vullings, Rik; Schmitt, Lars; Kolen, Alexander F; Mischi, Massimo; van Laar, Judith O E H; Bergmans, Jan W M
2017-09-21
Doppler ultrasound (US) is the most commonly applied method to measure the fetal heart rate (fHR). When the fetal heart is not properly located within the ultrasonic beam, fHR measurements often fail. As a consequence, clinical staff need to reposition the US transducer on the maternal abdomen, which can be a time consuming and tedious task. In this article, a method is presented to aid clinicians with the positioning of the US transducer to produce robust fHR measurements. A maximum likelihood estimation (MLE) algorithm is developed, which provides information on fetal heart location using the power of the Doppler signals received in the individual elements of a standard US transducer for fHR recordings. The performance of the algorithm is evaluated with simulations and in vitro experiments performed on a beating-heart setup. Both the experiments and the simulations show that the heart location can be accurately determined with an error of less than 7 mm within the measurement volume of the employed US transducer. The results show that the developed algorithm can be used to provide accurate feedback on fetal heart location for improved positioning of the US transducer, which may lead to improved measurements of the fHR.
Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon
2017-10-01
The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P < .001) and significant correlations also with abdominal circumference and estimated fetal weight (Pearson r = 0.829 and 0.812, respectively; P < .001). Modeled pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.
Noninvasive Fetal ECG: the PhysioNet/Computing in Cardiology Challenge 2013.
Silva, Ikaro; Behar, Joachim; Sameni, Reza; Zhu, Tingting; Oster, Julien; Clifford, Gari D; Moody, George B
2013-03-01
The PhysioNet/CinC 2013 Challenge aimed to stimulate rapid development and improvement of software for estimating fetal heart rate (FHR), fetal interbeat intervals (FRR), and fetal QT intervals (FQT), from multichannel recordings made using electrodes placed on the mother's abdomen. For the challenge, five data collections from a variety of sources were used to compile a large standardized database, which was divided into training, open test, and hidden test subsets. Gold-standard fetal QRS and QT interval annotations were developed using a novel crowd-sourcing framework. The challenge organizers used the hidden test subset to evaluate 91 open-source software entries submitted by 53 international teams of participants in three challenge events, estimating FHR, FRR, and FQT using the hidden test subset, which was not available for study by participants. Two additional events required only user-submitted QRS annotations to evaluate FHR and FRR estimation accuracy using the open test subset available to participants. The challenge yielded a total of 91 open-source software entries. The best of these achieved average estimation errors of 187bpm 2 for FHR, 20.9 ms for FRR, and 152.7 ms for FQT. The open data sets, scoring software, and open-source entries are available at PhysioNet for researchers interested on working on these problems.
BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.
Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin
2017-01-16
The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.
Walker, Christie L; Merriam, Audrey A; Ohuma, Eric O; Dighe, Manjiri K; Gale, Michael; Rajagopal, Lakshmi; Papageorghiou, Aris T; Gyamfi-Bannerman, Cynthia; Adams Waldorf, Kristina M
2018-05-05
Zika virus is a mosquito-transmitted flavivirus, which can induce fetal brain injury and growth restriction following maternal infection during pregnancy. Prenatal diagnosis of Zika virus-associated fetal injury in the absence of microcephaly is challenging due to an incomplete understanding of how maternal Zika virus infection affects fetal growth and the use of different sonographic reference standards around the world. We hypothesized that skeletal growth is unaffected by Zika virus infection and that the femur length can represent an internal standard to detect growth deceleration of the fetal head and/or abdomen by ultrasound. We sought to determine if maternal Zika virus infection is associated with a femur-sparing pattern of intrauterine growth restriction through analysis of fetal biometric measures and/or body ratios using the 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project and World Health Organization Fetal Growth Chart sonographic references. Pregnant women diagnosed with a possible recent Zika virus infection at Columbia University Medical Center after traveling to an endemic area were retrospectively identified and included if a fetal ultrasound was performed. Data were collected regarding Zika virus testing, fetal biometry, pregnancy, and neonatal outcomes. The 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project and World Health Organization Fetal Growth Chart sonographic standards were applied to obtain Z-scores and/or percentiles for fetal head circumference, abdominal circumference, and femur length specific for each gestational week. A novel 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project standard was also developed to generate Z-scores for fetal body ratios with respect to femur length (head circumference:femur length, abdominal circumference:femur length). Data were then grouped within clinically relevant gestational age strata (<24, 24-27 6/7, 28-33 6/7, >34 weeks) to analyze time-dependent effects of Zika virus infection on fetal size. Statistical analysis was performed using Wilcoxon signed-rank test on paired data, comparing either abdominal circumference or head circumference to femur length. A total of 56 pregnant women were included in the study with laboratory evidence of a confirmed or possible recent Zika virus infection. Based on the Centers for Disease Control and Prevention definition for microcephaly after congenital Zika virus exposure, microcephaly was diagnosed in 5% (3/56) by both the 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project and World Health Organization Fetal Growth Chart standards (head circumference Z-score ≤-2 or ≤2.3%). Using 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project, intrauterine fetal growth restriction was diagnosed in 18% of pregnancies (10/56; abdominal circumference Z-score ≤-1.3, <10%). Analysis of fetal size using the last ultrasound scan for all subjects revealed a significantly abnormal skewing of fetal biometrics with a smaller abdominal circumference vs femur length by either 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project or World Health Organization Fetal Growth Chart (P < .001 for both). A difference in distribution of fetal abdominal circumference compared to femur length was first apparent in the 24-27 6/7 week strata (2014 International Fetal and Newborn Growth Consortium for the 21st Century Project, P = .002; World Health Organization Fetal Growth Chart, P = .001). A significantly smaller head circumference compared to femur length was also observed by 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project as early as the 28-33 6/7 week strata (2014 International Fetal and Newborn Growth Consortium for the 21st Century Project, P = .007). Overall, a femur-sparing pattern of growth restriction was detected in 52% of pregnancies with either head circumference:femur length or abdominal circumference:femur length fetal body ratio <10th percentile (2014 International Fetal and Newborn Growth Consortium for the 21st Century Project Z-score ≤-1.3). An unusual femur-sparing pattern of fetal growth restriction was detected in the majority of fetuses with congenital Zika virus exposure. Fetal body ratios may represent a more sensitive ultrasound biomarker to detect viral injury in nonmicrocephalic fetuses that could impart long-term risk for complications of congenital Zika virus infection. Copyright © 2018 Elsevier Inc. All rights reserved.
Thyroid Hormone Economy in the Perinatal Mouse Brain: Implications for Cerebral Cortex Development.
Bárez-López, Soledad; Obregon, Maria Jesus; Bernal, Juan; Guadaño-Ferraz, Ana
2018-05-01
Thyroid hormones (THs, T4 and the transcriptionally active hormone T3) play an essential role in neurodevelopment; however, the mechanisms underlying T3 brain delivery during mice fetal development are not well known. This work has explored the sources of brain T3 during mice fetal development using biochemical, anatomical, and molecular approaches. The findings revealed that during late gestation, a large amount of fetal brain T4 is of maternal origin. Also, in the developing mouse brain, fetal T3 content is regulated through the conversion of T4 into T3 by type-2 deiodinase (D2) activity, which is present from earlier prenatal stages. Additionally, D2 activity was found to be essential to mediate expression of T3-dependent genes in the cerebral cortex, and also necessary to generate the transient cerebral cortex hyperthyroidism present in mice lacking the TH transporter Monocarboxylate transporter 8. Notably, the gene encoding for D2 (Dio2) was mainly expressed at the blood-cerebrospinal fluid barrier (BCSFB). Overall, these data signify that T4 deiodinated by D2 may be the only source of T3 during neocortical development. We therefore propose that D2 activity at the BCSFB converts the T4 transported across the choroid plexus into T3, thus supplying the brain with active hormone to maintain TH homeostasis.
Panin, M; Corain, L; Montelli, S; Cozzi, B; Peruffo, A
2015-02-01
Steroid hormones intervene in the structural and functional regulation of neuronal processes during development and thus determine brain differentiation. The effects of estrogens are mediated by two transcription factors, namely estrogen receptor α (ER-α) and estrogen receptor β (ER-β), that regulate the expression of target genes through their binding to specific DNA target sequences. We describe the mRNA expression of ER-α and ER-β in the hypothalamus of developing male and female bovines as revealed by quantitative real-time polymerase chain reaction, and the distribution of the two ERs in hypothalamic sections of all fetal stages as shown by immunohistochemistry. The expression profiles of the mRNAs of both ERs are mutually correlated throughout the gestation period, and their levels increase significantly in the last stages of gestation. No sexual differences in the mRNA expression of either ER-α or ER-β have been found in our fetal specimens. The use of specific antisera against ER-α and ER-β has allowed us to characterize and confirm the distribution of these receptors in the hypothalami of all fetal stages considered. Our results offer detailed information concerning the distribution of ER-α and ER-β in the developing bovine hypothalamus and provide additional insights into the processes involved in the hypothalamic development of a mammal with a long gestation and a highly gyrencephalic brain.
Oxidative stress damage as a detrimental factor in preterm birth pathology.
Menon, Ramkumar
2014-01-01
Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.
Oxidative Stress Damage as a Detrimental Factor in Preterm Birth Pathology
Menon, Ramkumar
2014-01-01
Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal–fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways. PMID:25429290
Physiological reactivity of pregnant women to evoked fetal startle
DiPietro, Janet A.; Voegtline, Kristin M.; Costigan, Kathleen A.; Aguirre, Frank; Kivlighan, Katie; Chen, Ping
2013-01-01
Objective The bidirectional nature of mother-child interaction is widely acknowledged during infancy and childhood. Prevailing models during pregnancy focus on unidirectional influences exerted by the pregnant woman on the developing fetus. Prior work has indicated that the fetus also affects the pregnant woman. Our objective was to determine whether a maternal psychophysiological response to stimulation of the fetus could be isolated. Methods Using a longitudinal design, an airborne auditory stimulus was used to elicit a fetal heart rate and motor response at 24 (n = 47) and 36 weeks (n = 45) gestation. Women were blind to condition (stimulus versus sham). Maternal parameters included cardiac (heart rate) and electrodermal (skin conductance) responses. Multilevel modeling of repeated measures with 5 data points per second was used to examine fetal and maternal responses. Results As expected, compared to a sham condition, the stimulus generated a fetal motor response at both gestational ages, consistent with a mild fetal startle. Fetal stimulation was associated with significant, transient slowing of maternal heart rate coupled with increased skin conductance within 10 s of the stimulus at both gestational ages. Nulliparous women showed greater electrodermal responsiveness. The magnitude of the fetal motor response significantly corresponded to the maternal skin conductance response at 5, 10, 15, and 30 s following stimulation. Conclusion Elicited fetal movement exerts an independent influence on the maternal autonomic nervous system. This finding contributes to current models of the dyadic relationship during pregnancy between fetus and pregnant woman. PMID:24119937
Cypryk, Katarzyna; Bartyzel, Lukasz; Zurawska-Klis, Monika; Mlynarski, Wojciech; Szadkowska, Agnieszka; Wilczynski, Jan; Nowakowska, Dorota; Wozniak, Lucyna A; Fendler, Wojciech
2015-09-01
Much evidence has shown that pregnancies in women with preexisting diabetes are affected by an increased risk of maternal and fetal adverse outcomes, probably linked to poor glycemic control. Despite great progress in medical care, the rate of stillbirths remains much higher in diabetes patients than in the general population. Recent technological advances in the field of glucose monitoring and noninvasive fetal heart rate monitoring made it possible to observe the fetal-maternal dependencies in a continuous manner. Fourteen type 1 diabetes patients were involved into the study and fitted with a blinded continuous glucose monitoring (CGM) recorder. Fetal electrocardiogram data were recorded using the Monica AN24™ device (Monica Healthcare Ltd., Nottingham, United Kingdom), the recordings of which were matched with CGM data. Statistical analysis was performed using a generalized mixed-effect logistic regression to account for individual factors. The mean number of paired data points per patient was 254±106, representing an observation period of 21.2±8.8 h. Mean glycemia equaled 5.64±0.68 mmol/L, and mean fetal heart rate was 135±6 beats/min. Higher glycemia correlated with fetal heart rate (R=0.32; P<0.0001) and was associated with higher odds of the fetus developing small accelerations (odds ratio=1.05; 95% confidence interval, 1.00-1.10; P=0.04). Elevated maternal glycemia of mothers with diabetes is associated with accelerations of fetal heart rate.
Tocolysis for in utero Surgery: Atosiban Performs Distinctly Better than Magnesium Sulfate.
Ochsenbein-Kölble, Nicole; Krähenmann, Franziska; Hüsler, Margret; Meuli, Martin; Moehrlen, Ueli; Mazzone, Lucca; Biro, Peter; Zimmermann, Roland
2017-08-17
To compare tocolysis with magnesium sulfate versus atosiban regarding the occurrence of short-term preterm labor and maternal side effects during and after open fetal myelomeningocele (MMC) repair. A prospective nonrandomized cohort study was performed including 30 fetal MMC cases. The first 15 cases (group 1) received magnesium sulfate according to the MOMS protocol. In the following 15 cases (group 2), magnesium sulfate was substituted by atosiban. Chorioamniotic membrane separation (CMS), premature prelabor rupture of the fetal membranes (PPROM), preterm delivery <3 weeks after fetal MMC repair, and maternal complications due to the tocolytic medication were the major endpoints. In both groups, one CMS but no PPROM was diagnosed <3 weeks after fetal MMC repair. One patient of group 2 delivered <3 weeks after fetal MMC repair because of an intraoperative placental abruption at 25 weeks. All women of group 1 showed an electrolyte imbalance during magnesium sulfate administration. One woman of group 1 developed several episodes of a third-degree atrioventricular block within the first 3 days after fetal surgery. Lethargy was found in all women during magnesium sulfate therapy. No maternal side effects were found under atosiban. The use of atosiban resulted in an almost identical short-term uterine outcome without any serious maternal complications as seen when magnesium sulfate was given. Thus, the authors suggest using atosiban instead of magnesium sulfate in the context of open fetal surgery. © 2017 S. Karger AG, Basel.
Anderson, Debra F.; Cheung, Cecilia Y.
2014-01-01
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112
Prins, Jelmer R; Eskandar, Sharon; Eggen, Bart J L; Scherjon, Sicco A
2018-04-01
Disturbances in fetal neurodevelopment have extensively been related to neurodevelopmental disorders in early and later life. Fetal neurodevelopment is dependent on adequate functioning of the fetal immune system. During pregnancy, the maternal immune system is challenged to both tolerate the semi-allogenic fetus and to protect the mother and fetus from microbes. The fetal immune system is influenced by maternal immune disturbances; therefore, perturbations in maternal immunity likely do not only alter pregnancy outcome but also alter fetal neurodevelopment. A possible common pathway could be modulating the functioning of tissue macrophages in the placenta and brain. Maternal immune tolerance towards the fetus involves several complex adaptations. In this active maternal immune state, the fetus develops its own immunity. As cytokines and other players of the immune system -which can pass the placenta- are involved in neurodevelopment, disruptions in immune balance influence fetal neurodevelopment. Several studies reported an association between maternal immune activation, complications of pregnancy as preeclampsia, and altered neonatal neurodevelopment. A possible pathway involves dysfunctioning of microglia cells, the immune cells of the brain. Functionality of microglia cells during normal pregnancy is, however, poorly understood. The recent outbreak of ZIKA virus (ZKV), but also the literature on virus infections in general and its consequences on microglial cell function and fetal neurodevelopment show the devastating effects a virus infection during pregnancy can have. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Triplet ultrasound growth parameters.
Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David
2006-03-01
To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.
Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome.
Spong, C Y; Abebe, D T; Gozes, I; Brenneman, D E; Hill, J M
2001-05-01
Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [(3)H]NAPVSIPQ indicated that 39% of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.
Spreading the Clinical Window for Diagnosing Fetal-Onset Hypogonadism in Boys
Grinspon, Romina P.; Loreti, Nazareth; Braslavsky, Débora; Valeri, Clara; Schteingart, Helena; Ballerini, María Gabriela; Bedecarrás, Patricia; Ambao, Verónica; Gottlieb, Silvia; Ropelato, María Gabriela; Bergadá, Ignacio; Campo, Stella M.; Rey, Rodolfo A.
2014-01-01
In early fetal development, the testis secretes – independent of pituitary gonadotropins – androgens and anti-Müllerian hormone (AMH) that are essential for male sex differentiation. In the second half of fetal life, the hypothalamic–pituitary axis gains control of testicular hormone secretion. Follicle-stimulating hormone (FSH) controls Sertoli cell proliferation, responsible for testis volume increase and AMH and inhibin B secretion, whereas luteinizing hormone (LH) regulates Leydig cell androgen and INSL3 secretion, involved in the growth and trophism of male external genitalia and in testis descent. This differential regulation of testicular function between early and late fetal periods underlies the distinct clinical presentations of fetal-onset hypogonadism in the newborn male: primary hypogonadism results in ambiguous or female genitalia when early fetal-onset, whereas it becomes clinically undistinguishable from central hypogonadism when established later in fetal life. The assessment of the hypothalamic–pituitary–gonadal axis in male has classically relied on the measurement of gonadotropin and testosterone levels in serum. These hormone levels normally decline 3–6 months after birth, thus constraining the clinical evaluation window for diagnosing male hypogonadism. The advent of new markers of gonadal function has spread this clinical window beyond the first 6 months of life. In this review, we discuss the advantages and limitations of old and new markers used for the functional assessment of the hypothalamic–pituitary–testicular axis in boys suspected of fetal-onset hypogonadism. PMID:24847309
Primary cultures of astrocytes from fetal bovine brain.
Ballarin, Cristina; Peruffo, Antonella
2012-01-01
We describe here a method to obtain primary cell cultures from the cerebral cortex and the hypothalamus of bovine fetuses. We report how tissue origin, developmental stages, and culture medium conditions influence cell differentiation and the prevalence of glial cells vs. neurons. We compare explants from early, middle, and late stages of development and two different fetal calf serum concentrations (1 and 10%) to identify the best conditions to obtain and grow viable astrocytes in culture. In addition, we describe how to cryopreserve and obtain viable cortical astrocytes from frozen fetal bovine brain samples.
Body size at birth and blood pressure among children in developing countries.
Law, C M; Egger, P; Dada, O; Delgado, H; Kylberg, E; Lavin, P; Tang, G H; von Hertzen, H; Shiell, A W; Barker, D J
2001-02-01
Studies in developed countries have shown that reduced fetal growth is related to raised blood pressure in childhood and adult life. Little is known about this association in developing countries, where fetal growth retardation is common. In 1994-1995, we measured blood pressure in 1570 3-6-year-old children living in China, Guatemala, Chile, Nigeria and Sweden. We related their blood pressure to patterns of fetal growth, as measured by body proportions at birth. The children were all born after 37 weeks gestation and weighed more than 2.5 kg at birth. In each country, blood pressure was positively related to the child's current weight. After adjusting for this and gender, systolic pressure was inversely related to size at birth in all countries except Nigeria. In Chile, China and Guatemala, children who were proportionately small at birth had raised systolic pressure. For example, in Chile, systolic pressure adjusted for current weight increased by 4.9 mmHg (95% CI : 2.1, 7.7) for every kilogram decrease in birthweight, by 1 mmHg (95% CI : 0.4, 1.6) for every centimetre decrease in birth length, and by 1.3 mmHg (95% CI : 0.4, 2.2) for every centimetre decrease in head circumference at birth. In Sweden, systolic pressure was higher in children who were disproportionately small, that is thin, at birth. Systolic pressure increased by 0.3 mmHg (95% CI : 0.0, 0.6) for every unit (kg/m3) decrease in ponderal index at birth. These associations were independent of the duration of gestation. Raised blood pressure among children in three samples from China, Central and South America is related to proportionate reduction in body size at birth, which results from reduced growth throughout gestation. The relation between fetal growth and blood pressure may be different in African populations. Proportionately reduced fetal growth is the prevalent pattern of fetal growth retardation in developing countries, and is associated with chronic undernutrition among women. Improvement in the nutrition and health of girls and young women may be important in preventing cardiovascular disease in developing countries.
Maternal Stress and Affect Influence Fetal Neurobehavioral Development.
ERIC Educational Resources Information Center
DiPietro, Janet A.; Hilton, Sterling C.; Hawkins, Melissa; Costigan, Kathleen A.; Pressman, Eva K.
2002-01-01
Investigated associations between maternal psychological and fetal neurobehavioral functioning with data provided at 24, 30, and 36 weeks gestation. Found that fetuses of women who were more affectively intense, appraised their lives as more stressful, and reported more pregnancy-specific hassles were more active across gestation. Fetuses of women…
MARKERS OF INDIVIDUAL SUSCEPTIBILITY AND OUTCOME RELATED TO FETAL AND INFANT GROWTH AND DEVELOPMENT
To evaluate whether exposures to environmental toxins and psychological stress were related to impaired fetal growth or other adverse pregnancy outcomes, we established a prospective epidemiologic study of 187 women who were pregnant and at or near the World Trade Center (...
USDA-ARS?s Scientific Manuscript database
The efficiency of the placenta in transferring nutrients and wastes among the maternal and fetal circulations is vital to ensuring proper fetal development. This articles summarizes previous research from our laboratory examining umbilical and uterine blood flow during dietary melatonin supplementat...
Supporting Individuals with Fetal Alcohol Spectrum Disorders:a Summary of Effective Practices
ERIC Educational Resources Information Center
Riggie, Jennifer; Xu, Tingting
2013-01-01
Fetal alcohol spectrum disorder (FASD) is a lifelong condition that significantly affects the individual's learning, development, behavior, family, and quality of life. Diagnosing children with this condition and providing effective supports is challenging for professionals because little intervention research has been performed with the…
Perinatal Mortality in the United States, 1950-81.
ERIC Educational Resources Information Center
Powell-Griner, Eve
1986-01-01
This report describes long-term trends in perinatal mortality in the United States in three basic parts: development of perinatal mortality measures, components of fetal and infant mortality, and trends and differentials in perinatal mortality. Perinatal deaths refer to the sum of spontaneous fetal deaths occurring after 20 weeks gestation plus…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalousek, D.K.; Fitch, N.; Paradice, B.
Topics covered in this book include a general review of normal embryonic and fetal development; abortion and the basic approach to the examination of aborted embryos and fetuses; and pathologic findings detected on examination of products of conception. The authors illustrate specific morphologic lesions and the variable expression of genetic syndromes in the embryonic and fetal periods.
Fetal Alcohol Syndrome Resource Guide.
ERIC Educational Resources Information Center
All Indian Pueblo Council, Albuquerque, NM.
The guide was developed to assist professionals working with American Indian people as a resource in obtaining printed and non-printed materials on Fetal Alcohol Syndrome. The resource guide is divided into the following sections: films (4), books (5), bibliographies (2), pamphlets (16), posters (5), slides (2), training curriculum (3), and…
Fetal Alcohol Syndrome and the Developing Socio-Emotional Brain
ERIC Educational Resources Information Center
Niccols, Alison
2007-01-01
Fetal alcohol syndrome (FAS) is currently recognized as the most common known cause of mental retardation, affecting from 1 to 7 per 1000 live-born infants. Individuals with FAS suffer from changes in brain structure, cognitive impairments, and behavior problems. Researchers investigating neuropsychological functioning have identified deficits in…
Fetal Origins of Child Non-Right-Handedness and Mental Health
ERIC Educational Resources Information Center
Rodriguez, Alina; Waldenstrom, Ulla
2008-01-01
Background: Environmental risk during fetal development for non-right-handedness, an index of brain asymmetry, and its relevance for child mental health is not fully understood. Methods: A Swedish population-based prospective pregnancy-offspring cohort was followed-up when children were five years old (N = 1714). Prenatal environmental risk…
Exposure to air pollutants during gestation have been epidemiologically linked to adverse pregnancy outcomes and impaired fetal growth. Despite this, limited experimental evidence exists on the toxicological impacts of ozone in pregnancy and fetal development. Pregnant Long-Evans...
Exposure to air pollutants during gestation have been epidemiologically linked to adverse pregnancy outcomes and impaired fetal growth. Despite this, limited experimental evidence exists on the toxicological impacts of ozone in pregnancy and fetal development. Pregnant Long-Evans...
Clients' reasons for prenatal ultrasonography in Ibadan, South West of Nigeria
Enakpene, Christopher A; Morhason-Bello, Imran O; Marinho, Anthony O; Adedokun, Babatunde O; Kalejaiye, Adegoke O; Sogo, Kayode; Gbadamosi, Sikiru A; Awoyinka, Babatunde S; Enabor, Obehi O
2009-01-01
Background Prenatal ultrasonography has remained a universal tool but little is known especially from developing countries on clients' reasons for desiring it. Then aim was to determine the reasons why pregnant women will desire a prenatal ultrasound. Methods It was a cross-sectional survey of consecutive 222 women at 2 different ultrasonography facilities in Ibadan, South-west Nigeria. Results The mean age of the respondents was 30.1 ± 4.5 years. The commonest reason for requesting for prenatal ultrasound scans was to check for fetal viability in 144 women (64.7%) of the respondents, followed by fetal gender determination in 50 women (22.6%. Other reasons were to check for number of fetuses, fetal age and placental location. Factors such as younger age, artisans profession and low level of education significantly influenced the decision to check for fetal viability on bivariate analysis but all were not significant on multivariate analysis. Concerning fetal gender determination, older age, Christianity, occupation and gravidity were significant on bivariate analysis, however, only gravidity and occupation remained significant independent predictor on logistic regression model. Women with less than 3 previous pregnancies were about 4 times more likely to request for fetal sex determination than women with more than 3 previous pregnancies, (OR 3.8 95%CI 1.52 – 9.44). The professionals were 7 times more likely than the artisans to request to find out about their fetal sex, (OR 7.0 95%CI 1.47 – 333.20). Conclusion This study shows that Nigerian pregnant women desired prenatal ultrasonography mostly for fetal viability, followed by fetal gender determination. These preferences were influenced by their biosocial variables. PMID:19426518
Uterine artery blood flow, fetal hypoxia and fetal growth
Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.
2015-01-01
Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072
Pecks, Ulrich; Wölter, Manja; Borchers, Christoph; Smith, Derek; Maass, Nicolai; Glocker, Michael; Rath, Werner
2013-04-01
Fetal umbilical cord HDL concentration is lower in IUGR neonates as compared to gestational age matched controls (CTRL). The causes by now are unknown. A full apolipoprotein analysis of cord blood might help in understanding the changes in lipid metabolism seen in IUGR. To characterize cord blood apolipoprotein profile of IUGR neonates. Serum of venous umbilical cord blood (15 IUGR vs. 15 CTRL) was analyzed by Multiple Reaction Monitoring (MRM). 15 different known apolipoproteins were profiled. HDL and LDL were measured by colorimetric methods in fetal cord blood and their corresponding mothers. Fetal HDL (p<0.0001), ApoC1 (p<0.0001), and ApoE (p=0.0001) levels were lower in IUGR as compared to CTRL. Fetal HDL levels were positive correlated to ApoE, ApoC1, and ApoA2 (r=0.79, r=0.74, r=0.56). Fetal LDL levels were positive correlated to ApoB, ApoE, ApoA2, and ApoC3 (r=0.74, r=0.67, r=0.57, r=0.55). Maternal LDL concentrations correlated positive to fetal ApoC1, ApoC2, and LCAT-concentration (r=0.54, r=0.52, r=0.52). The results underlines the relevance of ApoE in fetal development. Moreover, we speculate that maternal lipid profile has an impact on fetal lipid metabolisms as evidenced by the association of maternal LDL levels and fetal ApoC1, ApoC2, and LCAT concentrations. This observation requires further confirmation and is worth to be analyzed since it provides a mechanistic link for therapeutic options. Copyright © 2013. Published by Elsevier B.V.
Brossard-Racine, M; du Plessis, A; Vezina, G; Robertson, R; Donofrio, M; Tworetzky, W; Limperopoulos, C
2016-07-01
Brain injury in neonates with congenital heart disease is an important predictor of adverse neurodevelopmental outcome. Impaired brain development in congenital heart disease may have a prenatal origin, but the sensitivity and specificity of fetal brain MR imaging for predicting neonatal brain lesions are currently unknown. We sought to determine the value of conventional fetal MR imaging for predicting abnormal findings on neonatal preoperative MR imaging in neonates with complex congenital heart disease. MR imaging studies were performed in 103 fetuses with confirmed congenital heart disease (mean gestational age, 31.57 ± 3.86 weeks) and were repeated postnatally before cardiac surgery (mean age, 6.8 ± 12.2 days). Each MR imaging study was read by a pediatric neuroradiologist. Brain abnormalities were detected in 17/103 (16%) fetuses by fetal MR imaging and in 33/103 (32%) neonates by neonatal MR imaging. Only 9/33 studies with abnormal neonatal findings were preceded by abnormal findings on fetal MR imaging. The sensitivity and specificity of conventional fetal brain MR imaging for predicting neonatal brain abnormalities were 27% and 89%, respectively. Brain abnormalities detected by in utero MR imaging in fetuses with congenital heart disease are associated with higher risk of postnatal preoperative brain injury. However, a substantial proportion of anomalies on postnatal MR imaging were not present on fetal MR imaging; this result is likely due to the limitations of conventional fetal MR imaging and the emergence of new lesions that occurred after the fetal studies. Postnatal brain MR imaging studies are needed to confirm the presence of injury before open heart surgery. © 2016 by American Journal of Neuroradiology.
Maternal nutrition, fetal weight, body composition and disease in later life.
Zadik, Z
2003-09-01
Nutritional and hormonal milieu in utero affect fetal growth. Both parties involved have an independent chance, for the occurrence of a developmental error at any stage of their constant developing system. Studies suggest that pregnancy outcome is associated with fetal demand for nutrients and the materno-placental capacity to meet that demand. Failure of the materno-placental supply line to satisfy fetal nutrient requirements results in a range of fetal adaptations and developmental changes, and may lead to permanent alterations in the body's structure and metabolism, and thereby to cardiovascular and metabolic disease in adult life. Changes in the in-utero homeostasis may lead to programming of endocrine and metabolic systems so that feedback systems and reactions are permanently changed. At the present stage, short- and long-term hazards of intra-uterine growth retardation (IUGR) have been identified, but preventive strategies are still lacking. It is unlikely that a single factor will reduce a multi-causal outcome like IUGR. Appropriate population-specific interventions should be a priority.
Liu, Hai Lun; Garzoni, Luca; Herry, Christophe; Durosier, Lucien Daniel; Cao, Mingju; Burns, Patrick; Fecteau, Gilles; Desrochers, André; Patey, Natalie; Seely, Andrew J E; Faure, Christophe; Frasch, Martin G
2016-04-01
Necrotizing enterocolitis of the neonate is an acute inflammatory intestinal disease that can cause necrosis and sepsis. Chorioamnionitis is a risk factor of necrotizing enterocolitis. The gut represents the biggest vagus-innervated organ. Vagal activity can be measured via fetal heart rate variability. We hypothesized that fetal heart rate variability can detect fetuses with incipient gut inflammation. Prospective animal study. University research laboratory. Chronically instrumented near-term fetal sheep (n = 21). Animals were surgically instrumented with vascular catheters and electrocardiogram to allow manipulation and recording from nonanesthetized animals. In 14 fetal sheep, inflammation was induced with lipopolysaccharide (IV) to mimic chorioamnionitis. Fetal arterial blood samples were drawn at selected time points over 54 hours post lipopolysaccharide for blood gas and cytokines (interleukin-6 and tumor necrosis factor-α enzymelinked immunosorbent assay). Fetal heart rateV was quantified throughout the experiment. The time-matched fetal heart rate variability measures were correlated to the levels of interleukin-6 and tumor necrosis factor-α. Upon necropsy, ionized calcium binding adaptor molecule 1+ (Iba1+), CD11c+ (M1), CD206+ (M2 macrophages), and occludin (leakiness marker) immunofluorescence in the terminal ileum was quantified along with regional Iba1+ signal in the brain (microglia). Interleukin-6 peaked at 3 hours post lipopolysaccharide accompanied by mild cardiovascular signs of sepsis. At 54 hours, we identified an increase in Iba1+ and, specifically, M1 macrophages in the ileum accompanied by increased leakiness, with no change in Iba1 signal in the brain. Preceding this change on tissue level, at 24 hours, a subset of nine fetal heart rate variability measures correlated exclusively to the Iba+ markers of ileal, but not brain, inflammation. An additional fetal heart rate variability measure, mean of the differences of R-R intervals, correlated uniquely to M1 ileum macrophages increasing due to lipopolysaccharide. We identified a unique subset of fetal heart rate variability measures reflecting 1.5 days ahead of time the levels of macrophage activation and increased leakiness in terminal ileum. We propose that such subset of fetal heart rate variability measures reflects brain-gut communication via the vagus nerve. Detecting such noninvasively obtainable organ-specific fetal heart rate variability signature of inflammation would alarm neonatologists about neonates at risk of developing necrotizing enterocolitis and sepsis. Clinical validation studies are required.
Frasch, Martin G; Baier, Carlos J; Antonelli, Marta C; Metz, Gerlinde A S
2018-01-01
Prenatal stress (PS) impacts early behavioral, neuroimmune, and cognitive development. Pregnant rat models have been very valuable in examining the mechanisms of such fetal programming. A newer pregnant sheep model of maternal stress offers the unique advantages of chronic in utero monitoring and manipulation. This chapter presents the techniques used to model single and multigenerational stress exposures and their pleiotropic effects on the offspring.
Damasceno, Débora Cristina; Sinzato, Yuri Karen; Ribeiro, Viviane Maria; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos
2015-01-01
The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control—nondiabetic sedentary rats, control exercised—nondiabetic exercised rats, diabetic—diabetic sedentary rats, and diabetic exercised—diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR. PMID:25361551
Fetal alcohol spectrum disorders: an overview.
Riley, Edward P; Infante, M Alejandra; Warren, Kenneth R
2011-06-01
When fetal alcohol syndrome (FAS) was initially described, diagnosis was based upon physical parameters including facial anomalies and growth retardation, with evidence of developmental delay or mental deficiency. Forty years of research has shown that FAS lies towards the extreme end of what are now termed fetal alcohol spectrum disorders (FASD). The most profound effects of prenatal alcohol exposure are on the developing brain and the cognitive and behavioral effects that ensue. Alcohol exposure affects brain development via numerous pathways at all stages from neurogenesis to myelination. For example, the same processes that give rise to the facial characteristics of FAS also cause abnormal brain development. Behaviors as diverse as executive functioning to motor control are affected. This special issue of Neuropsychology Review addresses these changes in brain and behavior highlighting the relationship between the two. A diagnostic goal is to recognize FAS as a disorder of brain rather than one of physical characteristics.
[Impact on environmental factors on the reproductive system and fetal development].
Dulskiene, Virginija; Maroziene, Ligita
2002-01-01
A literature review discusses the effect of selected environmental factors on women reproductive system, fetal development and growth. According to recent reports, 2-3% of newborns have congenital malformations. These malformations are caused by interaction of genetic and environmental factors. Exposure of paternal or maternal organisms to environmental hazards may damage germ cells or interfere fetal development, resulting in malformation of various organ systems. Since environmental hazards exposures are complex, it is difficult to establish the primary effect of single factor. Factors, that are known to increase the risk of congenital malformations, preterm delivery or spontaneous abortion, are classified into five groups--psychological, social, biological, physical and chemical factors. The governments of most counties recognize the effect of hazardous environmental factors on public health as global problem. World Health Organization encourages researches, aimed at evaluation of various environmental factors impact on health of pregnant women and their offsprings.
Sakamoto, M; Wakabayashi, K; Kakita, A; Hitoshi Takahashi; Adachi, T; Nakano, A
1998-02-16
The neurotoxicity of methylmercury (MeHg) treatment during the postnatal developing phase in rats was studied. Rats on postnatal day 1 were orally administered 5 mg/kg/day methylmercury chloride (MMC) for more than 30 consecutive days. Body weight loss began 26 days after MMC was administered, and severe paralysis of the hind-limbs and unsteadiness appeared subsequently. Histopathologically, the widespread neuronal degeneration was observed in the cerebral neocortex, neostriatum, red nucleus, brainstem, cerebellum and spinal dorsal root ganglia on day 32. The widespread distribution of the lesions was quite similar to that in fetal cases of MeHg intoxication in Minamata, Japan. These findings suggest that MMC treatment during the postnatal development phase in rats produce a good model of fetal-type Minamata disease. Copyright 1998 Elsevier Science B.V.
Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus
Park, Raehee; Moon, Uk Yeol; Park, Jun Young; Hughes, Lucinda J.; Johnson, Randy L.; Cho, Seo-Hee; Kim, Seonhee
2016-01-01
Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury. PMID:26754915
Abnormal Labyrinthine Zone in the Hectd1-null Placenta
Sarkar, Anjali A.; Sabatino, Julia A.; Sugrue, Kelsey F.; Zohn, Irene E.
2016-01-01
Introduction The labyrinthine zone of the placenta is where exchange of nutrients and waste occurs between maternal and fetal circulations. Proper development of the placental labyrinth is essential for successful growth of the developing fetus and abnormalities in placental development are associated with intrauterine growth restriction (IUGR), preeclampsia and fetal demise. Our previous studies demonstrate that Hectd1 is essential for development of the junctional and labyrinthine zones of the placenta. Here we further characterize labyrinthine zone defects in the Hectd1 mutant placenta. Methods The structure of the mutant placenta was compared to wildtype littermates using histological methods. The expression of cell type specific markers was examined by immunohistochemistry and in situ hybridization. Results Hectd1 is expressed in the labyrinthine zone throughout development and the protein is enriched in syncytiotrophoblast layer type I cells (SynT-I) and Sinusoidal Trophoblast Giant cells (S-TGCs) in the mature placenta. Mutation of Hectd1 results in pale placentas with frequent hemorrhages along with gross abnormalities in the structure of the labyrinthine zone including a smaller overall volume and a poorly elaborated fetal vasculature that contain fewer fetal blood cells. Examination of molecular markers of labyrinthine trophoblast cell types reveals increased Dlx3 positive cells and Syna positive SynT-I cells, along with decreased Hand1 and Ctsq positive sinusoidal trophoblast giant cells (S-TGCs). Discussion Together these defects indicate that Hectd1 is required for development of the labyrinthine zone or the mouse placenta. PMID:26907377
Abnormal labyrinthine zone in the Hectd1-null placenta.
Sarkar, Anjali A; Sabatino, Julia A; Sugrue, Kelsey F; Zohn, Irene E
2016-02-01
The labyrinthine zone of the placenta is where exchange of nutrients and waste occurs between maternal and fetal circulations. Proper development of the placental labyrinth is essential for successful growth of the developing fetus and abnormalities in placental development are associated with intrauterine growth restriction (IUGR), preeclampsia and fetal demise. Our previous studies demonstrate that Hectd1 is essential for development of the junctional and labyrinthine zones of the placenta. Here we further characterize labyrinthine zone defects in the Hectd1 mutant placenta. The structure of the mutant placenta was compared to wildtype littermates using histological methods. The expression of cell type specific markers was examined by immunohistochemistry and in situ hybridization. Hectd1 is expressed in the labyrinthine zone throughout development and the protein is enriched in syncytiotrophoblast layer type I cells (SynT-I) and Sinusoidal Trophoblast Giant cells (S-TGCs) in the mature placenta. Mutation of Hectd1 results in pale placentas with frequent hemorrhages along with gross abnormalities in the structure of the labyrinthine zone including a smaller overall volume and a poorly elaborated fetal vasculature that contain fewer fetal blood cells. Examination of molecular markers of labyrinthine trophoblast cell types reveals increased Dlx3 positive cells and Syna positive SynT-I cells, along with decreased Hand1 and Ctsq positive sinusoidal trophoblast giant cells (S-TGCs). Together these defects indicate that Hectd1 is required for development of the labyrinthine zonethe mouse placenta. Copyright © 2015 Elsevier Ltd. All rights reserved.
Unshielded fetal magnetocardiography system using two-dimensional gradiometers
NASA Astrophysics Data System (ADS)
Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio
2008-03-01
We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.
Luria, Oded; Bar, Jacob; Kovo, Michal; Malinger, Gustavo; Golan, Abraham; Barnea, Ofer
2012-04-01
Fetal growth restriction (FGR) elicits hemodynamic compensatory mechanisms in the fetal circulation. These mechanisms are complex and their effect on the cerebral oxygen availability is not fully understood. To quantify the contribution of each compensatory mechanism to the fetal cerebral oxygen availability, a mathematical model of the fetal circulation was developed. The model was based on cardiac-output distribution in the fetal circulation. The compensatory mechanisms of FGR were simulated and their effects on cerebral oxygen availability were analyzed. The mathematical analysis included the effects of cerebral vasodilation, placental resistance to blood flow, degree of blood shunting by the ductus venosus and the effect of maternal-originated placental insufficiency. The model indicated a unimodal dependency between placental blood flow and cerebral oxygen availability. Optimal cerebral oxygen availability was achieved when the placental blood flow was mildly reduced compared to the normal flow. This optimal ratio was found to increase as the hypoxic state of FGR worsens. The model indicated that cerebral oxygen availability is increasingly dependent on the cardiac output distribution as the fetus gains weight. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Pan, Xiaoyu; Zhang, Chunlei; Li, Xuchao; Chen, Shengpei; Ge, Huijuan; Zhang, Yanyan; Chen, Fang; Jiang, Hui; Jiang, Fuman; Zhang, Hongyun; Wang, Wei; Zhang, Xiuqing
2014-12-01
To develop a fetal sex determination method based on maternal plasma sequencing (MPS), assess its performance and potential use in X-linked disorder counseling. 900 cases of MPS data from a previous study were reviewed, in which 100 and 800 cases were used as training and validation set, respectively. The percentage of uniquely mapped sequencing reads on Y chromosome was calculated and used to classify male and female cases. Eight pregnant women who are carriers of Duchenne muscular dystrophy (DMD) mutations were recruited, whose plasma were subjected to multiplex sequencing and fetal sex determination analysis. In the training set, a sensitivity of 96% and false positive rate of 0% for male cases detection were reached in our method. The blinded validation results showed 421 in 423 male cases and 374 in 377 female cases were successfully identified, revealing sensitivity and specificity of 99.53% and 99.20% for fetal sex determination, at as early as 12 gestational weeks. Fetal sex for all eight DMD genetic counseling cases were correctly identified, which were confirmed by amniocentesis. Based on MPS, high accuracy of non-invasive fetal sex determination can be achieved. This method can potentially be used for prenatal genetic counseling.
Huang, Yunlong; Li, Yuju; Zhang, Hainan; Zhao, Runze; Jing, Ran; Xu, Yinghua; He, Miao; Peer, Justin; Kim, Yeong C; Luo, Jiangtao; Tong, Zenghan; Zheng, Jialin
2018-01-01
Zika virus (ZIKV) is a neurotrophic flavivirus that is capable of infecting humans, leading to brain abnormalities during fetal development. The ZIKV infectivity in neural target cells remains poorly understood. Here, we found that ZIKV specifically infected glial fibrillary acidic protein- and S100B-positive primary human astrocytes derived from fetal brains. In contrast, neuron-specific Class III β-tubulin (TuJ1)-positive neurons in the astrocyte cultures and SOX2-positive neural progenitor cells derived from the fetal brains were less susceptible to ZIKV infection compared with astrocytes. The infected astrocytes released competent viral particles and manifested programmed cell death with a progressive cytopathic effect. Interestingly, ZIKV infection in human fetal astrocytes induced a significant increase of extracellular vesicles (EVs). Treatment with GW4869, a specific inhibitor of neutral sphingomyelinase-2, decreased EV levels, suppressed ZIKV propagation, and reduced the release of infectious virions in astrocytes. Therefore, ZIKV infects primary human fetal astrocytes and the infection can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Further investigation into sphingomyelin metabolism and EVs may provide insights to the therapeutic treatment of ZIKV infection.
Perrone, Serafina; Santacroce, Antonino; Picardi, Anna; Buonocore, Giuseppe
2016-05-08
Nowadays metabolic syndrome represents a real outbreak affecting society. Paradoxically, pediatricians must feel involved in fighting this condition because of the latest evidences of developmental origins of adult diseases. Fetal programming occurs when the normal fetal development is disrupted by an abnormal insult applied to a critical point in intrauterine life. Placenta assumes a pivotal role in programming the fetal experience in utero due to the adaptive changes in structure and function. Pregnancy complications such as diabetes, intrauterine growth restriction, pre-eclampsia, and hypoxia are associated with placental dysfunction and programming. Many experimental studies have been conducted to explain the phenotypic consequences of fetal-placental perturbations that predispose to the genesis of metabolic syndrome, obesity, diabetes, hyperinsulinemia, hypertension, and cardiovascular disease in adulthood. In recent years, elucidating the mechanisms involved in such kind of process has become the challenge of scientific research. Oxidative stress may be the general underlying mechanism that links altered placental function to fetal programming. Maternal diabetes, prenatal hypoxic/ischaemic events, inflammatory/infective insults are specific triggers for an acute increase in free radicals generation. Early identification of fetuses and newborns at high risk of oxidative damage may be crucial to decrease infant and adult morbidity.
Rabelo, Kíssila; Souza, Luiz J; Salomão, Natália G; Oliveira, Edson R A; Sentinelli, Lynna de Paula; Lacerda, Marcelle S; Saraquino, Pedro B; Rosman, Fernando C; Basílio-de-Oliveira, Rodrigo; Carvalho, Jorge J; Paes, Marciano V
2018-01-01
Zika virus (ZIKV) is an emerging virus involved in recent outbreaks in Brazil. The association between the virus and Guillain-Barré syndrome (GBS) or congenital disorders has raised a worldwide concern. In this work, we investigated a rare Zika case, which was associated with GBS and spontaneous retained abortion. Using specific anti-ZIKV staining, the virus was identified in placenta (mainly in Hofbauer cells) and in several fetal tissues, such as brain, lungs, kidneys, skin and liver. Histological analyses of the placenta and fetal organs revealed different types of tissue abnormalities, which included inflammation, hemorrhage, edema and necrosis in placenta, as well as tissue disorganization in the fetus. Increased cellularity (Hofbauer cells and TCD8 + lymphocytes), expression of local pro-inflammatory cytokines such as IFN-γ and TNF-α, and other markers, such as RANTES/CCL5 and VEGFR2, supported placental inflammation and dysfunction. The commitment of the maternal-fetal link in association with fetal damage gave rise to a discussion regarding the influence of the maternal immunity toward the fetal development. Findings presented in this work may help understanding the ZIKV immunopathogenesis under the rare contexts of spontaneous abortions in association with GBS.
Santos, Denise CC; Angulo-Barroso, Rosa M; Li, Ming; Bian, Yang; Sturza, Julie; Richards, Blair; Lozoff, Betsy
2017-01-01
BACKGROUND/OBJECTIVES Poorer motor development is reported in infants with iron deficiency (ID). The role of timing, duration and severity is unclear. We assessed relations between ID timing, duration, and severity and gross motor scores, neurological integrity, and motor behavior quality at 9 months. METHODS Iron status was determined at birth and 9 months in otherwise healthy term Chinese infants. The 9-month motor evaluation included the Peabody Developmental Motor Scale (PDMS-2), Infant Neurological International Battery (INFANIB), and motor quality factor. Motor outcomes were analyzed by ID timing (fetal-neonatal, infancy), duration, and severity. For severity, we also considered maternal iron status. RESULTS Data were available for 1194 infants. Iron status was classified as fetal-neonatal and infancy ID (n=253), fetal-neonatal ID (n=256), infancy ID (n=288), and not ID (n=397). Compared with not ID, infants with fetal-neonatal or infancy ID had lower locomotion scores (effect size ds=0.19, 0.18) and those with ID in both periods (longer duration) had lower locomotion and overall PDMS-2 gross motor scores (ds=0.20, 0.18); ID groups did not differ. More severe ID in late pregnancy was associated with lower INFANIB Vestibular function (p=0.01), and total score (p=0.03). More severe ID in infancy was associated with lower scores for locomotion (p=0.03), overall gross motor (p=0.05). CONCLUSIONS Fetal-neonatal and/or infancy ID was associated with lower overall gross motor development and locomotion test scores at 9 months. Associations with ID severity varied by ID timing: more severe ID in late pregnancy, poorer neurological integrity; more severe ID in infancy, poorer gross motor development. PMID:29235557
Adams, M B; McMillen, I C
2000-01-01
We have investigated adrenal mRNA expression of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) following acute hypoxia in fetal sheep before (< 105 days gestation, n = 20) and after (> 125 days gestation, n = 20) the development of adrenal innervation and following pretreatment with the nicotinic receptor anatgonist hexamethonium (n = 12). Total RNA was extracted from fetal adrenal glands collected at specific time points at 3-20 h after the onset of either hypoxia (∼50% reduction in fetal arterial oxygen saturation (SO2) for 30 min), or normoxia. Before 105 days, there was a decrease in adrenal TH mRNA expression at 20 h after hypoxia and adrenal TH mRNA expression was directly related to the changes in arterial PO2 measured during normoxia and hypoxia. After 125 days, adrenal TH mRNA levels were suppressed for up to 12 h following hypoxia. In both age groups, adrenal PNMT mRNA expression increased at 3-5 h after hypoxia and was inversely related to the changes in fetal arterial PO2 during normoxia or hypoxia. After 125 days, the administration of hexamethonium (25 mg kg−1, I. V.) reduced TH mRNA but not PNMT mRNA expression after normoxia. After hexamethonium pretreatment, there was no significant change in either adrenal TH or PNMT mRNA expression following hypoxia. We conclude that acute hypoxia differentially regulates adrenal TH and PNMT mRNA expression in the fetal sheep both before and after the development of adrenal innervation. After the development of adrenal innervation, however, the effect of acute hypoxia upon adrenal TH and PNMT mRNA expression is dependent upon neurogenic input acting via nicotinic receptors. PMID:11118487
2011-01-01
Background Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Conclusions Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development. PMID:21736737
4D ultrasound study of fetal facial expressions in the third trimester of pregnancy.
AboEllail, Mohamed Ahmed Mostafa; Kanenishi, Kenji; Mori, Nobuhiro; Mohamed, Osman Abdel Kareem; Hata, Toshiyuki
2018-07-01
To evaluate the frequencies of fetal facial expressions in the third trimester of pregnancy, when fetal brain maturation and development are progressing in normal healthy fetuses. Four-dimensional (4 D) ultrasound was used to examine the facial expressions of 111 healthy fetuses between 30 and 40 weeks of gestation. The frequencies of seven facial expressions (mouthing, yawning, smiling, tongue expulsion, scowling, sucking, and blinking) during 15-minute recordings were assessed. The fetuses were further divided into three gestational age groups (25 fetuses at 30-31 weeks, 43 at 32-35 weeks, and 43 at ≥36 weeks). Comparison of facial expressions among the three gestational age groups was performed to determine their changes with advancing gestation. Mouthing was the most frequent facial expression at 30-40 weeks of gestation, followed by blinking. Both facial expressions were significantly more frequent than the other expressions (p < .05). The frequency of yawning decreased with the gestational age after 30 weeks of gestation (p = .031). Other facial expressions did not change between 30 and 40 weeks. The frequency of yawning at 30-31 weeks was significantly higher than that at 36-40 weeks (p < .05). There were no significant differences in the other facial expressions among the three gestational age groups. Our results suggest that 4D ultrasound assessment of fetal facial expressions may be a useful modality for evaluating fetal brain maturation and development. The decreasing frequency of fetal yawning after 30 weeks of gestation may explain the emergence of distinct states of arousal.
Secourgeon, J-F
2012-10-01
Electronic fetal monitoring during labor is the most commonly used method to evaluate the fetal status, but it remains exposed to some criticism. By comparison with intermittent auscultation and in the light of the results of the great studies in the last 30 years, it may be accused its failure to improve the neonatal outcome and its responsibility in the increase on operative deliveries. Actually, the electronic fetal monitoring is a tool whose effectiveness is linked to the accuracy of the analysis developed by the clinician. Studies on assessment of the tracing interpretation indicate that there is always a lack of quality, which may be improved through training programs. It also reveals the benefit of the fetal blood sampling to reduce operative deliveries and the generalization of this method, in addition to electronic fetal monitoring, is recommended by referral agencies. More generally, the continuous monitoring is only a part of the patient safety strategy in the labour ward and we are currently observing, in some European countries and in the United States, the development of training programs concerning the management of the adverse outcomes in obstetrics. The good performances related to the quality of care are demonstrated by the findings of the studies performed in the centers that have implemented an active training policy. In France, the professionals directly involved in the field of the perinatology should benefit from such educational programs that could be organized within the care networks under the authority of referral agencies. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Early biometric lag in the prediction of small for gestational age neonates and preeclampsia.
Schwartz, Nadav; Pessel, Cara; Coletta, Jaclyn; Krieger, Abba M; Timor-Tritsch, Ilan E
2011-01-01
An early fetal growth lag may be a marker of future complications. We sought to determine the utility of early biometric variables in predicting adverse pregnancy outcomes. In this retrospective cohort study, the crown-rump length at 11 to 14 weeks and the head circumference, biparietal diameter, abdominal circumference, femur length, humerus length, transverse cerebellar diameter, and estimated fetal weight at 18 to 24 weeks were converted to an estimated gestational age using published regression formulas. Sonographic fetal growth (difference between each biometric gestational age and the crown-rump length gestational age) minus expected fetal growth (number of days elapsed between the two scans) yielded the biometric growth lag. These lags were tested as predictors of small for gestational age (SGA) neonates (≤10th percentile) and preeclampsia. A total of 245 patients were included. Thirty-two (13.1%) delivered an SGA neonate, and 43 (17.6%) had the composite outcome. The head circumference, biparietal diameter, abdominal circumference, and estimated fetal weight lags were identified as significant predictors of SGA neonates after adjusted analyses (P < .05). The addition of either the estimated fetal weight or abdominal circumference lag to maternal characteristics alone significantly improved the performance of the predictive model, achieving areas under the curve of 0.72 and 0.74, respectively. No significant association was found between the biometric lag variables and the development of preeclampsia. Routinely available biometric data can be used to improve the prediction of adverse outcomes such as SGA. These biometric lags should be considered in efforts to develop screening algorithms for adverse outcomes.
A novel modality for intrapartum fetal heart rate monitoring.
Ashwal, Eran; Shinar, Shiri; Aviram, Amir; Orbach, Sharon; Yogev, Yariv; Hiersch, Liran
2017-11-02
Intrapartum fetal heart rate (FHR) monitoring is well recommended during labor to assess fetal wellbeing. Though commonly used, the external Doppler and fetal scalp electrode monitor have significant shortcomings. Lately, non-invasive technologies were developed as possible alternatives. The objective of this study is to compare the accuracy of FHR trace using novel Electronic Uterine Monitoring (EUM) to that of external Doppler and fetal scalp electrode monitor. A comparative study conducted in a single tertiary medical center. Intrapartum FHR trace was recorded simultaneously using three different methods: internal fetal scalp electrode, external Doppler, and EUM. The latter, a multichannel electromyogram (EMG) device acquires a uterine signal and maternal and fetal electrocardiograms. FHR traces obtained from all devices during the first and second stages of labor were analyzed. Positive percent of agreement (PPA) and accuracy (by measuring root means square error between observed and predicted values) of EUM and external Doppler were both compared to internal scalp electrode monitoring. A Bland-Altman agreement plot was used to compare the differences in FHR trace between all modalities. For momentary recordings of fetal heart rate <110 bpm or >160 bpm level of agreement, sensitivity, and specificity were also evaluated. Overall, 712,800 FHR momentary recordings were obtained from 33 parturients. Although both EUM and external Doppler highly correlated with internal scalp electrode monitoring (r 2 = 0.98, p < .001 for both methods), the accuracy of EUM was significantly higher than external Doppler (99.0% versus 96.6%, p < .001). In addition, for fetal heart rate <110 bpm or >160 bpm, the PPA, sensitivity, and specificity of EUM as compared with internal fetal scalp electrode, were significantly greater than those of external Doppler (p < .001). Intrapartum FHR using EUM is both valid and accurate, yielding higher correlations with internal scalp electrode monitoring than external Doppler. As such, it may provide a good framework for non-invasive evaluation of intrapartum FHR.
Kutasy, Balazs; Gosemann, Jan H; Duess, Johannes W; Puri, Prem
2013-01-01
Retinoids play a key role in fetal lung development. It has been suggested that the maternal-fetal retinol transport is disrupted by trophoblastic apoptosis. The mechanism underlying nitrofen-induced apoptosis in placenta is not fully understood. Neutrophil gelatinase-associated lipocalin (NGAL) is expressed in the fetal part of the maternal-fetal interface. NGAL is part of the immune barrier and serves primarily as a transport protein transferring biologically hazardous molecules in a safe and controlled way. It has been shown that over-activation of NGAL induces apoptosis. We hypothesized that increased placental NGAL expression induces trophoblastic apoptosis in the nitrofen model of CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Placenta harvested on D21 and divided into two groups: control and nitrofen with CDH. Immunohistochemistry was performed to evaluate trophoblasts (by cytokeratin expression), NGAL expression, and apoptotic trophoblastic cells (using TUNEL assay). Total RNA was extracted from each placenta and the relative mRNA expression levels of NGAL were analyzed using RT-PCR. Immunohistochemistry showed NGAL immunoreactivity both in control and CDH in the fetal part of the fetal-maternal interface of placenta. Markedly increased NGAL expression was detected in CDH group compared to controls. Relative mRNA expression levels of NGAL gene were significantly increased in the CDH group compared to control in the placenta (5.924 ± 0.93 vs. 1.895 ± 0.54, p < 0.001). Markedly increased numbers of apoptotic trophoblastic cells were seen in the maternal-fetal interface in the CDH group compared to controls. NGAL activation may lead to increased trophoblastic apoptosis in the maternal-fetal interface in the nitrofen model of CDH. These changes may therefore cause disturbance in maternal-fetal retinol transport affecting fetal lung morphogenesis.
Fetal-Maternal Interactions in the Synepitheliochorial Placenta Using the eGFP Cloned Cattle Model
Mess, Andrea; Perecin, Felipe; Bressan, Fabiana Fernandes; Mesquita, Ligia Garcia; Miglino, Maria Angelica; Pimentel, José RodrigoValim; Neto, Paulo Fantinato; Meirelles, Flávio Vieira
2013-01-01
Background To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. PMID:23724045
Fetal-maternal interactions in the synepitheliochorial placenta using the eGFP cloned cattle model.
Pereira, Flavia Thomaz Verechia; Oliveira, Lilian J; Barreto, Rodrigo da Silva Nunes; Mess, Andrea; Perecin, Felipe; Bressan, Fabiana Fernandes; Mesquita, Ligia Garcia; Miglino, Maria Angelica; Pimentel, José RodrigoValim; Fantinato Neto, Paulo; Meirelles, Flávio Vieira
2013-01-01
To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse.
Gonadoblastoma: evidence for a stepwise progression to dysgerminoma in a dysgenetic ovary.
Pauls, Katharina; Franke, Folker E; Büttner, Reinhard; Zhou, Hui
2005-09-01
Gonadoblastomas are neoplasms of dysgenetic gonads which may undergo regression or become overgrown by malignant germ cell tumors (mGCTs). Since little is known about their relationship to normal gonadal development and mGCTs, we studied the phenotype and antigenic profile of gonadoblastomas in comparison with adjacent dysgerminomas and fetal gonads. Three cases of gonadoblastomas and fetal gonads of both sexes were analyzed using oncofetal markers to M2A-antigen (M2A), germ cell alkaline phosphatase (PLAP/GCAP), receptor tyrosine kinase c-kit (c-kit), and somatic angiotensin converting enzyme (sACE) as well as the proliferation marker MIB-1. Morphologically, microfollicular pattern of gonadoblastomas showed a fetal germ cell organization reminiscent of oocytic clusters of fetal ovaries. They contained both cell types, similar to oocytes (M2A-, GCAP-, c-kit+/-, sACE-) and oogonia (M2A+, GCAP+, c-kit+, sACE+). The percentage of germ cells immunoreactive for oncofetal markers and the proliferation index increased from microfollicular over coronary patterns to adjacent dysgerminomas. Supportive cells of gonadoblastomas showed a uniform phenotype (CK18+, vimentin+, sACE+, alpha-inhibin+, M2A-) but in contrast to fetal germ cells lacked a clear equivalence to fetal tissues. Our results show that gonadoblastomas mimic female fetal ovary and exhibit a stepwise progression from follicular pattern to coronary pattern and finally to dysgerminomas.