Science.gov

Sample records for fetal frontal cortex

  1. Fetal frontal cortex transplant (/sup 14/C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    SciTech Connect

    Sharp, F.R.; Gonzalez, M.F.

    1984-10-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The (/sup 14/C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional.

  2. Frontal cortex, timing and memory.

    PubMed

    Olton, D S

    1989-01-01

    Two sets of experiments examine the psychological functions and neural organization of the frontal lobes. The first set investigates the effects of lesions of the frontal cortex (FC) on the ability to perform temporal discriminations, using the techniques and theoretical framework of scalar timing theory. FC lesions changed the reference memory for the expected time of reinforcement, so that rats expected reinforcement later than it actually occurred. These results demonstrate that the FC modulates temporal memory. The second set of experiments examined the behavioral effects of lesions in the nucleus basalis magnocellularis (NBM), an area in the basal forebrain that has a significant projection to the frontal cortex. NBM lesions produced impairments in many different tasks assessing both recent and long-term memory. A comparison of the behavioral and neurochemical effects of different types of lesions in the NBM examines the role of cholinergic and noncholinergic neurotransmitters in these behavioral deficits. These data demonstrate that a "frontal syndrome" can follow selective lesions in the NBM, and indicate that the NBM must have a strong role in frontal lobe function.

  3. The scaling of frontal cortex in primates and carnivores

    PubMed Central

    Bush, Eliot C.; Allman, John M.

    2004-01-01

    Size has a profound effect on the structure of the brain. Many brain structures scale allometrically, that is, their relative size changes systematically as a function of brain size. Here we use independent contrasts analysis to examine the scaling of frontal cortex in 43 species of mammals including 25 primates and 15 carnivores. We find evidence for significant differences in scaling between primates and carnivores. Primate frontal cortex hyperscales relative to the rest of neocortex and the rest of the brain. The slope of frontal cortex contrasts on rest of cortex contrasts is 1.18 (95% confidence interval, 1.06-1.30) for primates, which is significantly greater than isometric. It is also significantly greater than the carnivore value of 0.94 (95% confidence interval, 0.82-1.07). This finding supports the idea that there are substantial differences in frontal cortex structure and development between the two groups. PMID:15007170

  4. Frontal cortex mediates unconsciously triggered inhibitory control.

    PubMed

    van Gaal, Simon; Ridderinkhof, K Richard; Fahrenfort, Johannes J; Scholte, H Steven; Lamme, Victor A F

    2008-08-01

    To further our understanding of the function of conscious experience we need to know which cognitive processes require awareness and which do not. Here, we show that an unconscious stimulus can trigger inhibitory control processes, commonly ascribed to conscious control mechanisms. We combined the metacontrast masking paradigm and the Go/No-Go paradigm to study whether unconscious No-Go signals can actively trigger high-level inhibitory control processes, strongly associated with the prefrontal cortex (PFC). Behaviorally, unconscious No-Go signals sometimes triggered response inhibition to the level of complete response termination and yielded a slow down in the speed of responses that were not inhibited. Electroencephalographic recordings showed that unconscious No-Go signals elicit two neural events: (1) an early occipital event and (2) a frontocentral event somewhat later in time. The first neural event represents the visual encoding of the unconscious No-Go stimulus, and is also present in a control experiment where the masked stimulus has no behavioral relevance. The second event is unique to the Go/No-Go experiment, and shows the subsequent implementation of inhibitory control in the PFC. The size of the frontal activity pattern correlated highly with the impact of unconscious No-Go signals on subsequent behavior. We conclude that unconscious stimuli can influence whether a task will be performed or interrupted, and thus exert a form of cognitive control. These findings challenge traditional views concerning the proposed relationship between awareness and cognitive control and stretch the alleged limits and depth of unconscious information processing. PMID:18685030

  5. The Organization of Dorsal Frontal Cortex in Humans and Macaques

    PubMed Central

    Mars, Rogier B.; Noonan, MaryAnn P.; Neubert, Franz-Xaver; Jbabdi, Saad; O'Reilly, Jill X.; Filippini, Nicola; Thomas, Adam G.; Rushworth, Matthew F.

    2013-01-01

    The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed. PMID:23884933

  6. Causal evidence for frontal cortex organization for perceptual decision making

    PubMed Central

    Nee, Derek Evan; Riddle, Justin; Larson, Alina Sue; D’Esposito, Mark

    2016-01-01

    Although recent research has shown that the frontal cortex has a critical role in perceptual decision making, an overarching theory of frontal functional organization for perception has yet to emerge. Perceptual decision making is temporally organized such that it requires the processes of selection, criterion setting, and evaluation. We hypothesized that exploring this temporal structure would reveal a large-scale frontal organization for perception. A causal intervention with transcranial magnetic stimulation revealed clear specialization along the rostrocaudal axis such that the control of successive stages of perceptual decision making was selectively affected by perturbation of successively rostral areas. Simulations with a dynamic model of decision making suggested distinct computational contributions of each region. Finally, the emergent frontal gradient was further corroborated by functional MRI. These causal results provide an organizational principle for the role of frontal cortex in the control of perceptual decision making and suggest specific mechanistic contributions for its different subregions. PMID:27162349

  7. Mechanisms of spatial attention control in frontal and parietal cortex.

    PubMed

    Szczepanski, Sara M; Konen, Christina S; Kastner, Sabine

    2010-01-01

    Theories of spatial attentional control have been largely based upon studies of patients suffering from visuospatial neglect, resulting from circumscribed lesions of frontal and posterior parietal cortex. In the intact brain, the control of spatial attention has been related to a distributed frontoparietal attention network. Little is known about the nature of the control mechanisms exerted by this network. Here, we used a novel region-of-interest approach to relate activations of the attention network to recently described topographic areas in frontal cortex [frontal eye field (FEF), PreCC/IFS (precentral cortex/inferior frontal sulcus)] and parietal cortex [intraparietal sulcus areas (IPS1-IPS5) and an area in the superior parietal lobule (SPL1)] to examine their spatial attention signals. We found that attention signals in most topographic areas were spatially specific, with stronger responses when attention was directed to the contralateral than to the ipsilateral visual field. Importantly, two hemispheric asymmetries were found. First, a region in only right, but not left SPL1 carried spatial attention signals. Second, left FEF and left posterior parietal cortex (IPS1/2) generated stronger contralateral biasing signals than their counterparts in the right hemisphere. These findings are the first to characterize spatial attention signals in topographic frontal and parietal cortex and provide a neural basis in support of an interhemispheric competition account of spatial attentional control. PMID:20053897

  8. Attentional functions of parietal and frontal cortex.

    PubMed

    Peers, Polly V; Ludwig, Casimir J H; Rorden, Chris; Cusack, Rhodri; Bonfiglioli, Claudia; Bundesen, Claus; Driver, Jon; Antoun, Nagui; Duncan, John

    2005-10-01

    A model of normal attentional function, based on the concept of competitive parallel processing, is used to compare attentional deficits following parietal and frontal lobe lesions. Measurements are obtained for visual processing speed, capacity of visual short-term memory (VSTM), spatial bias (bias to left or right hemifield) and top-down control (selective attention based on task relevance). The results show important differences, but also surprising similarities, in parietal and frontal lobe patients. For processing speed and VSTM, deficits are selectively associated with parietal lesions, in particular lesions of the temporoparietal junction. We discuss explanations based on either grey matter or white matter lesions. In striking contrast, measures of attentional weighting (spatial bias and top-down control) are predicted by simple lesion volume. We suggest that attentional weights reflect competition between broadly distributed object representations. Parietal and frontal mechanisms work together, both in weighting by location and weighting by task context.

  9. Role of Frontal Cortex in Attentional Capture by Singleton Distractors

    ERIC Educational Resources Information Center

    de Fockert, Jan W.; Theeuwes, Jan

    2012-01-01

    The role of frontal cortex in selective attention to visual distractors was examined in an attentional capture task in which participants searched for a unique shape in the presence or absence of an additional colour singleton distractor. The presence of the additional singleton was associated with slower behavioural responses to the shape target,…

  10. Frontal Cortex Neuropathology in Dementia Pugilistica

    PubMed Central

    Saing, Tommy; Dick, Malcolm; Nelson, Peter T.; Kim, Ronald C.; Cribbs, David H.

    2012-01-01

    Abstract Dementia pugilistica (DP) is associated with chronic traumatic brain injury (CTBI), and leads to a “punch drunk” syndrome characterized by impairments in memory and executive function, behavioral changes, and motor signs. Microscopic features include the accumulation of neurofibrillary tangles (NFTs), beta-amyloid (Aβ), and TAR DNA binding protein 43 (TDP-43) pathology. Here we describe detailed clinical and neuropathological data about a 55-year-old retired boxer (ApoE3/4), who presented with executive dysfunction and behavioral impairments. At autopsy, significant Aβ pathology was seen, primarily in the form of diffuse plaques. Tau pathology was extensive and was determined to be of Braak and Braak stage VI. Frontal white matter showed evidence of glial tau inclusions (astrocytes and oligodendroglia). Cerebrovascular pathology was minimal with patchy amyloid angiopathy. Inflammation was another key feature, including microglial activation and significant C1q labeling of neurons, along with NFTs. TDP-43-positive pathology was also observed. Inflammation may be a key inciting as well as propagating feature of DP neuropathology. PMID:22017610

  11. Modulation of Orthographic Decoding by Frontal Cortex

    PubMed Central

    Whaley, Meagan Lee; Kadipasaoglu, Cihan Mehmet; Cox, Steven James

    2016-01-01

    Opinions are divided on whether word reading processes occur in a hierarchical, feedforward fashion or within an interactive framework. To critically evaluate these competing theories, we recorded electrocorticographic (ECoG) data from 15 human patients with intractable epilepsy during a word completion task and evaluated brain network dynamics across individuals. We used a novel technique of analyzing multihuman ECoG recordings to identify cortical regions most relevant to processing lexical information. The mid fusiform gyrus showed the strongest, earliest response after stimulus onset, whereas activity was maximal in frontal, dorsal lateral prefrontal, and sensorimotor regions toward articulation onset. To evaluate interregional functional connectivity, ECoG data from electrodes situated over specific cortical regions of interest were fit into linear multivariate autoregressive (MVAR) models. Spectral characteristics of the MVAR models were used to precisely reveal the timing and the magnitude of information flow between localized brain regions. This is the first application of MVAR for developing a comprehensive account of interregional interactions from a word reading ECoG dataset. Our comprehensive findings revealed both top-down and bottom-up influences between higher-level language areas and the mid fusiform gyrus. Our findings thus challenge strictly hierarchical, feedforward views of word reading and suggest that orthographic processes are modulated by prefrontal and sensorimotor regions via an interactive framework. SIGNIFICANCE STATEMENT Word reading is a critical part of everyday life. When the ability to read is disrupted, it can lead to learning disorders, as well as emotional and academic difficulties. The neural mechanisms underlying word reading are not well understood due to limitations in the spatial and temporal specificity of prior word reading studies. Our research analyzed data recorded from sensors implanted directly from surface of human

  12. FRONTAL AND PARIETAL CORTEX CONTRIBUTIONS TO ACTION MODIFICATION

    PubMed Central

    Mutha, Pratik K.; Stapp, Lee H.; Sainburg, Robert L.; Haaland, Kathleen Y.

    2014-01-01

    Successful achievement of task goals depends critically on the ability to adjust ongoing actions in response to environmental changes. The neural substrates underlying action modification have been a topic of great controversy: both, posterior parietal cortex and frontal regions, particularly prefrontal cortex have been previously identified as crucial in this regard, with most studies arguing in favor of one or the other. We aimed to address this controversy and understand whether frontal and parietal regions might play distinct roles during action modification. We tested ipsilesional arm performance of 27 stroke patients with focal lesions to frontal or parietal regions of the left or right cerebral hemisphere, and left or right arm performance of 18 healthy subjects on the classic double-step task in which a target is unpredictably displaced to a new location, requiring modification of the ongoing action. Only right hemisphere frontal lesions adversely impacted the timing of initiation of the modified response, while only left hemisphere parietal lesions impaired the accuracy of the modified action. Patients with right frontal lesions tended to complete the ongoing action to the initially displayed baseline target and initiated the new movement after a significant delay. In contrast, patients with left parietal damage did not accurately reach the new target location, but compared to the other groups, initiated the new action during an earlier phase of motion, before their baseline action was complete. Our findings thus suggest distinct, hemisphere specific contributions of frontal and parietal regions to action modification, and bring together, for the first time, disparate sets of prior findings about its underlying neural substrates. PMID:24763127

  13. Volition and conflict in human medial frontal cortex.

    PubMed

    Nachev, Parashkev; Rees, Geraint; Parton, Andrew; Kennard, Christopher; Husain, Masud

    2005-01-26

    Controversy surrounds the role of human medial frontal cortex in controlling actions. Although damage to this area leads to severe difficulties in spontaneously initiating actions, the precise mechanisms underlying such "volitional" deficits remain to be established. Previous studies have implicated the medial frontal cortex in conflict monitoring and the control of voluntary action, suggesting that these key processes are functionally related or share neural substrates. Here, we combine a novel behavioral paradigm with functional imaging of the oculomotor system to reveal, for the first time, a functional subdivision of the pre-supplementary motor area (pre-SMA) into anatomically distinct areas that respond exclusively to either volition or conflict. We also demonstrate that activity in the supplementary eye field (SEF) distinguishes between success and failure in changing voluntary action plans during conflict, suggesting a role for the SEF in implementing the resolution of conflicting actions. We propose a functional architecture of human medial frontal cortex that incorporates the generation of action plans and the resolution of conflict.

  14. Learning a New Selection Rule in Visual and Frontal Cortex.

    PubMed

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. PMID:27269960

  15. Learning a New Selection Rule in Visual and Frontal Cortex

    PubMed Central

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R.

    2016-01-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. PMID:27269960

  16. Cascade of neural processing orchestrates cognitive control in human frontal cortex.

    PubMed

    Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2016-01-01

    Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. PMID:26888070

  17. Ventrolateral and dorsomedial frontal cortex lesions impair mnemonic context retrieval

    PubMed Central

    Chapados, Catherine; Petrides, Michael

    2015-01-01

    The prefrontal cortex appears to contribute to the mnemonic retrieval of the context within which stimuli are experienced, but only under certain conditions that remain to be clarified. Patients with lesions to the frontal cortex, the temporal lobe and neurologically intact individuals were tested for context memory retrieval when verbal stimuli (words) had been experienced across multiple (unstable context condition) or unique (stable context condition) contexts; basic recognition memory of these words-in-contexts was also tested. Patients with lesions to the right ventrolateral prefrontal cortex (VLPFC) were impaired on context retrieval only when the words had been seen in multiple contexts, demonstrating that this prefrontal region is critical for active retrieval processing necessary to disambiguate memory items embedded across multiple contexts. Patients with lesions to the left dorsomedial prefrontal region were impaired on both context retrieval conditions, regardless of the stability of the stimulus-to-context associations. Conversely, prefrontal lesions sparing the ventrolateral and dorsomedial regions did not impair context retrieval. Only patients with temporal lobe excisions were impaired on basic recognition memory. The results demonstrate a basic contribution of the left dorsomedial frontal region to mnemonic context retrieval, with the VLPFC engaged, selectively, when contextual relations are unstable and require disambiguation. PMID:25567650

  18. Retained fetal adrenal cortex in a cynomolgus macaque (Macaca fascicularis).

    PubMed

    Radi, Zaher; Evans, Mark

    2014-10-01

    An incidental, bilateral, retained fetal adrenal cortex was detected in a male cynomolgus macaque (age, approximately 2.4 y) used in a 4-week toxicology study. Microscopic examination of the adrenal gland cortex zone revealed the presence of additional solid sheets and columns of cells supported by vascular capillary bed and composed of large polyhedral cells with abundant eosinophilic, slightly finely vacuolated cytoplasm that surrounded the entire circumference of the medulla. Nuclei were vesicular, round to oval with prominent small nucleoli. There was no evidence for inflammation or cellular degeneration. Based on the microscopic examination, a diagnosis of retained fetal cortex of the adrenal gland was made. This morphologic change resembles fetal cortex in human infants. To our knowledge, this case description is the first report of a cynomolgus macaque with the rare entity of retained fetal cortex, which should not be misinterpreted as a test article-related change.

  19. Functional specialization of the primate frontal cortex during decision making.

    PubMed

    Lee, Daeyeol; Rushworth, Matthew F S; Walton, Mark E; Watanabe, Masataka; Sakagami, Masamichi

    2007-08-01

    Economic theories of decision making are based on the principle of utility maximization, and reinforcement-learning theory provides computational algorithms that can be used to estimate the overall reward expected from alternative choices. These formal models not only account for a large range of behavioral observations in human and animal decision makers, but also provide useful tools for investigating the neural basis of decision making. Nevertheless, in reality, decision makers must combine different types of information about the costs and benefits associated with each available option, such as the quality and quantity of expected reward and required work. In this article, we put forward the hypothesis that different subdivisions of the primate frontal cortex may be specialized to focus on different aspects of dynamic decision-making processes. In this hypothesis, the lateral prefrontal cortex is primarily involved in maintaining the state representation necessary to identify optimal actions in a given environment. In contrast, the orbitofrontal cortex and the anterior cingulate cortex might be primarily involved in encoding and updating the utilities associated with different sensory stimuli and alternative actions, respectively. These cortical areas are also likely to contribute to decision making in a social context.

  20. Corticofugal GABAergic projection neurons in the mouse frontal cortex

    PubMed Central

    Tomioka, Ryohei; Sakimura, Kenji; Yanagawa, Yuchio

    2015-01-01

    Cortical projection neurons are classified by hodology in corticocortical, commissural and corticofugal subtypes. Although cortical projection neurons had been regarded as only glutamatergic neurons, recently corticocortical GABAergic projection neurons has been also reported in several species. Here, we demonstrate corticofugal GABAergic projection neurons in the mouse frontal cortex. We employed viral-vector-mediated anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize neocortical GABAergic projection neurons. Injections of the Cre-dependent adeno-associated virus into glutamate decarboxylase 67 (GAD67)-Cre knock-in mice revealed neocortical GABAergic projections widely to the forebrain, including the cerebral cortices, caudate putamen (CPu), ventral pallidum (VP), lateral globus pallidus (LGP), nucleus accumbens, and olfactory tubercle (Tu). Minor GABAergic projections were also found in the mediodorsal thalamic nucleus, diagonal band of Broca, medial globus pallidus, substantial nigra, and dorsal raphe nucleus. Retrograde tracing studies also demonstrated corticofugal GABAergic projection neurons in the mouse frontal cortex. Further immunohistochemical screening with neurochemical markers revealed the majority of corticostriatal GABAergic projection neurons were positive for somatostatin (SS)-immunoreactivity. In contrast, corticothalamic GABAergic projection neurons were not identified by representative neurochemical markers for GABAergic neurons. These findings suggest that corticofugal GABAergic projection neurons are heterogeneous in terms of their neurochemical properties and target nuclei, and provide axonal innervations mainly to the nuclei in the basal ganglia. PMID:26578895

  1. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex.

    PubMed

    Neubert, Franz-Xaver; Mars, Rogier B; Thomas, Adam G; Sallet, Jerome; Rushworth, Matthew F S

    2014-02-01

    Human ventrolateral frontal cortex (vlFC) is identified with cognitive processes such as language and cognitive flexibility. The relationship between it and the vlFC of other primates has therefore been the subject of particular speculation. We used a combination of structural and functional neuroimaging methods to identify key components of human vlFC. We compared how vlFC areas interacted with other brain areas in 25 humans and 25 macaques using the same methods. We identified a core set of 11 vlFC components that interacted in similar ways with similar distributed circuits in both species and, in addition, one distinctively human component in ventrolateral frontal pole. Fundamental differences in interactions with posterior auditory association areas in the two species were also present-these were ubiquitous throughout posterior human vlFC but channeled to different frontal regions in monkeys. Finally, there were some differences in interregional interactions within vlFC in the two species.

  2. Inhibition and the right inferior frontal cortex: one decade on.

    PubMed

    Aron, Adam R; Robbins, Trevor W; Poldrack, Russell A

    2014-04-01

    In our TICS Review in 2004, we proposed that a sector of the right inferior frontal cortex (rIFC) in humans is critical for inhibiting response tendencies. Here we survey new evidence, discuss ongoing controversies, and provide an updated theory. We propose that the rIFC (along with one or more fronto-basal-ganglia networks) is best characterized as a brake. This brake can be turned on in different modes (totally, to outright suppress a response; or partially, to pause), and in different contexts (externally, by stop or salient signals; or internally, by goals). We affirm inhibition as a central component of executive control that relies upon the rIFC and associated networks, and explain why rIFC disruption could generally underpin response control disorders.

  3. Oxidative and glicolytic metabolism of the frontal cortex (latero-frontal) and of the posterior cortex (latero-occipital) in relation with the sexual activity of the rat.

    PubMed

    Menéndez-Patterson, A; Florez-Lozano, J A; Marin, B

    1976-01-01

    The authors of this paper have ascertained the glycolytic metabolism and the oxidative metabolism (intake of QO2), of the frontal and posterior cortex in female rats at different stages of the sexual cycle, as also in ovariectomized animals, by the intake of glucose and the production of lactates. The results indicate a statistically significant increase of the oxidative metabolism of the posterior cortex (latero-occipital) in the estrual and proestrual phases, in comparisons with the diestral phase. The frontal cortex (latero-frontal) did not show any significant difference; moreover, the glycolitic metabolism did not alter in any of the tissues under observation. These findings, seem to suggest possible participation of the posterior cortex (latero-occipital) on the regulation of sexual cycle of the rat. The activation of this cortex occurs through the preponderant imbricantion of the tri-carboxylic acid cycle.

  4. Processing of emotional vocalizations in bilateral inferior frontal cortex.

    PubMed

    Frühholz, Sascha; Grandjean, Didier

    2013-12-01

    A current view proposes that the right inferior frontal cortex (IFC) is particularly responsible for attentive decoding and cognitive evaluation of emotional cues in human vocalizations. Although some studies seem to support this view, an exhaustive review of all recent imaging studies points to an important functional role of both the right and the left IFC in processing vocal emotions. Second, besides a supposed predominant role of the IFC for an attentive processing and evaluation of emotional voices in IFC, these recent studies also point to a possible role of the IFC in preattentive and implicit processing of vocal emotions. The studies specifically provide evidence that both the right and the left IFC show a similar anterior-to-posterior gradient of functional activity in response to emotional vocalizations. This bilateral IFC gradient depends both on the nature or medium of emotional vocalizations (emotional prosody versus nonverbal expressions) and on the level of attentive processing (explicit versus implicit processing), closely resembling the distribution of terminal regions of distinct auditory pathways, which provide either global or dynamic acoustic information. Here we suggest a functional distribution in which several IFC subregions process different acoustic information conveyed by emotional vocalizations. Although the rostro-ventral IFC might categorize emotional vocalizations, the caudo-dorsal IFC might be specifically sensitive to their temporal features.

  5. Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving.

    PubMed

    Tachtsidis, Ilias; Leung, Terence S; Tisdall, Martin M; Devendra, Presheena; Smith, Martin; Delpy, David T; Elwell, Clare E

    2008-01-01

    We have previously reported changes in the concentrations of oxy-(delta[HbO2]) deoxy- (delta[HHb]) and total haemoglobin (delta[HbT] = delta[HbO2] + delta[HHb]) measured using near infrared spectroscopy (NIRS) over the frontal cortex (FC) during an anagram solving task. These changes were associated with a significant increase in both mean blood pressure (MBP) and heart rate (HR). The aim of this study was to investigate whether the changes in MBP previously recorded during an anagram solving task produces associated changes in scalp blood flow (flux) measured by laser Doppler and whether any changes are seen in NIRS haemodynamic measurements over a control region of the brain (motor cortex: MC). During the 4-Letter anagram task significant changes were observed in the delta[HbO2], delta[HHb] and delta[HbT] in both the frontal and motor cortex (n = 11, FC p < 0.01, MC p < 0.01). These changes were accompanied by significant changes in both MBP (n = 11, p < 0.01) and scalp flux (n = 9, p = 0.01). During the 7-Letter anagram task significant changes were observed in the delta[HbO2] and delta[HbT] (n = 11, FC p < 0.01, MC p < 0.01), which were accompanied by significant changes in both MBP (n = 11, p = 0.05) and flux (n = 9, p = 0.05). The task-related changes seen in MBP and flux in this study appear to contribute to the changes in the NIRS signals over both the activated and control regions of the cortex.

  6. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval.

    PubMed

    Lundstrom, Brian Nils; Ingvar, Martin; Petersson, Karl Magnus

    2005-10-01

    The posterior medial parietal cortex and left prefrontal cortex (PFC) have both been implicated in the recollection of past episodes. In a previous study, we found the posterior precuneus and left lateral inferior frontal cortex to be activated during episodic source memory retrieval. This study further examines the role of posterior precuneal and left prefrontal activation during episodic source memory retrieval using a similar source memory paradigm but with longer latency between encoding and retrieval. Our results suggest that both the precuneus and the left inferior PFC are important for regeneration of rich episodic contextual associations and that the precuneus activates in tandem with the left inferior PFC during correct source retrieval. Further, results suggest that the left ventro-lateral frontal region/frontal operculum is involved in searching for task-relevant information (BA 47) and subsequent monitoring or scrutiny (BA 44/45) while regions in the dorsal inferior frontal cortex are important for information selection (BA 45/46).

  7. Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.

    PubMed

    Kolb, B; Cioe, J; Muirhead, D

    1998-03-01

    Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury. PMID:9578447

  8. Plasticity and Functions of the Orbital Frontal Cortex

    ERIC Educational Resources Information Center

    Kolb, Bryan; Pellis, Sergio; Robinson, Terry E.

    2004-01-01

    We compare the effects of psychoactive drugs such as morphine and amphetamine on the synaptic organization of neurons in the orbital frontal (OFC) and medial frontal (mPFC) regions in the rat. Both regions are altered chronically by exposure to intermittent doses of either drug but the effects are area-dependent. For example, whereas morphine…

  9. The functional role of the frontal cortex in pre-attentive auditory change detection.

    PubMed

    Tse, Chun-Yu; Rinne, Teemu; Ng, Kwun Kei; Penney, Trevor B

    2013-12-01

    Accounts of the functional role of the frontal cortex in pre-attentive auditory change detection include attention switching, response inhibition, contrast enhancement, and activation of a predictive model. These accounts assume different sequential activation patterns between the temporal and frontal cortices: Change detection in the auditory areas of the superior temporal cortex (STC) followed by inferior frontal cortex (IFC) activation for attention switching and response inhibition; STC preceded by IFC activation for contrast enhancement; and an IFC-STC-IFC activation sequence for the predictive model. We used the event-related optical signal (EROS), which provides a temporal resolution of milliseconds and a spatial resolution of 5 to 10mm, combined with lagged correlation path modeling to examine the response of the right frontal and temporal cortices to auditory duration deviants of varying magnitude. Event-related potentials (ERPs) were also recorded, as was the slow optical (hemodynamic) brain response. The data analyses revealed temporal-frontal, frontal-temporal-frontal, and temporal-frontal activation patterns when the deviants represented relatively large, medium, and small changes from the standard stimulus, respectively. These results indicate that the degree of deviance modulates spatio-temporal dynamics within the STC-IFC auditory change detection network.

  10. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    SciTech Connect

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  11. Connectivity-based parcellation of the human frontal polar cortex.

    PubMed

    Moayedi, Massieh; Salomons, Tim V; Dunlop, Katharine A M; Downar, Jonathan; Davis, Karen D

    2015-09-01

    The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.

  12. Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein.

    PubMed

    Anderson, B; Harvey, T

    1996-06-01

    Neuronal density, neuron size, and the number of neurons under 1 mm2 of cerebral cortical surface area were measured in the right pre-frontal cortex of Albert Einstein and five elderly control subjects. Measurement of neuronal density used the optical dissector technique on celloidin-embedded cresyl violet-stained sections. The neurons counted provided a systematic random sample for the measurement of cell body cross-sectional area. Einstein's cortex did not differ from the control subjects in the number of neurons under 1 mm2 of cerebral cortex or in mean neuronal size. Because Einstein's cortex was thinner than the controls he had a greater neuronal density.

  13. Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex

    PubMed Central

    Woolgar, Alexandra; Parr, Alice; Cusack, Rhodri; Thompson, Russell; Nimmo-Smith, Ian; Torralva, Teresa; Roca, Maria; Antoun, Nagui; Manes, Facundo; Duncan, John

    2010-01-01

    Tests of fluid intelligence predict success in a wide range of cognitive activities. Much uncertainty has surrounded brain lesions producing deficits in these tests, with standard group comparisons delivering no clear result. Based on findings from functional imaging, we propose that the uncertainty of lesion data may arise from the specificity and complexity of the relevant neural circuit. Fluid intelligence tests give a characteristic pattern of activity in posterolateral frontal, dorsomedial frontal, and midparietal cortex. To test the causal role of these regions, we examined fluid intelligence in 80 patients with focal cortical lesions. Damage to each of the proposed regions predicted fluid intelligence loss, whereas damage outside these regions was not predictive. The results suggest that coarse group comparisons (e.g., frontal vs. posterior) cannot show the neural underpinnings of fluid intelligence tests. Instead, deficits reflect the extent of damage to a restricted but complex brain circuit comprising specific regions within both frontal and posterior cortex. PMID:20679241

  14. Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision.

    PubMed

    Thaiss, Laila; Petrides, Michael

    2003-05-01

    It has been suggested previously that patients with a frontal lobe lesion might have a specific impairment in the retrieval of the source of information despite adequate memory for facts. Patients with an anterior temporal excision are known to have impairments in memory for facts and the question arises as to whether they are also impaired in source memory. The present study compared memory for facts and their source in patients with a unilateral frontal cortical or an anterior temporal excision in a situation in which both types of information were encoded explicitly. Patients with a unilateral frontal cortex or a temporal lobe excision watched videos of a game show and were instructed to attend to both the trivia facts and their source (the identity of the speaker or the relative time of presentation). Patients with a frontal cortex excision were not impaired on either fact or source memory. This was true even when a subgroup of patients with an excision involving the dorsolateral frontal cortex was examined. In contrast, patients with a left temporal lobe excision were impaired in both fact and identity source memory and right temporal lobe patients were impaired in identity source memory. All patients performed similarly to normal controls in temporal source memory. The present results are consistent with the view that source information is part of an associative network of information about an episode and that the medial temporal region is critical for both source and content memory. Furthermore, if source information is encoded explicitly, the frontal cortex does not appear to be necessary for its retrieval. Instead, it is proposed that the frontal cortex plays a metacognitive role in memory retrieval. PMID:12690051

  15. Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision.

    PubMed

    Thaiss, Laila; Petrides, Michael

    2003-05-01

    It has been suggested previously that patients with a frontal lobe lesion might have a specific impairment in the retrieval of the source of information despite adequate memory for facts. Patients with an anterior temporal excision are known to have impairments in memory for facts and the question arises as to whether they are also impaired in source memory. The present study compared memory for facts and their source in patients with a unilateral frontal cortical or an anterior temporal excision in a situation in which both types of information were encoded explicitly. Patients with a unilateral frontal cortex or a temporal lobe excision watched videos of a game show and were instructed to attend to both the trivia facts and their source (the identity of the speaker or the relative time of presentation). Patients with a frontal cortex excision were not impaired on either fact or source memory. This was true even when a subgroup of patients with an excision involving the dorsolateral frontal cortex was examined. In contrast, patients with a left temporal lobe excision were impaired in both fact and identity source memory and right temporal lobe patients were impaired in identity source memory. All patients performed similarly to normal controls in temporal source memory. The present results are consistent with the view that source information is part of an associative network of information about an episode and that the medial temporal region is critical for both source and content memory. Furthermore, if source information is encoded explicitly, the frontal cortex does not appear to be necessary for its retrieval. Instead, it is proposed that the frontal cortex plays a metacognitive role in memory retrieval.

  16. Abstract rule learning: the differential effects of lesions in frontal cortex.

    PubMed

    Kayser, Andrew S; D'Esposito, Mark

    2013-01-01

    Learning progressively more abstract stimulus-response mappings requires progressively more anterior regions of the lateral frontal cortex. Using an individual differences approach, we studied subjects with frontal lesions performing a hierarchical reinforcement-learning task to investigate how frontal cortex contributes to abstract rule learning. We predicted that subjects with lesions of the left pre-premotor (pre-PMd) cortex, a region implicated in abstract rule learning, would demonstrate impaired acquisition of second-order, as opposed to first-order, rules. We found that 4 subjects with such lesions did indeed demonstrate a second-order rule-learning impairment, but that these subjects nonetheless performed better than subjects with other frontal lesions in a second-order rule condition. This finding resulted from both their restricted exploration of the feature space and the task structure of this condition, for which they identified partially representative first-order rules. Significantly, across all subjects, suboptimal but above-chance performance in this condition correlated with increasing disconnection of left pre-PMd from the putative functional hierarchy, defined by reduced functional connectivity between left pre-PMd and adjacent nodes. These findings support the theory that activity within lateral frontal cortex shapes the search for relevant stimulus-response mappings, while emphasizing that the behavioral correlate of impairments depends critically on task structure.

  17. Noradrenaline depletion blocks behavioral sparing and alters cortical morphogenesis after neonatal frontal cortex damage in rats.

    PubMed

    Kolb, B; Sutherland, R J

    1992-06-01

    The possibility that cortical noradrenaline (NA) is necessary for sparing of function that occurs after neonatal frontal cortex damage was examined. Spatial localization by rats with frontal cortex damage on postnatal day 7 (P7) was better than that by rats with similar damage sustained as adults. The sparing was abolished in rats depleted of cortical NA by means of neonatal 6-hydroxydopamine (6HDA) administration. The blockade of sparing in the P7 frontal operates was associated with a smaller brain, thinner cortex, and reduced cortical dendritic branching relative to saline-treated P7 frontal operates. NA depletion alone in unoperated rats did not affect spatial learning but did reduce brain size and dendritic branching. Rats with frontal lesions on P4 did not show sparing of spatial localization, and 6HDA administration had no additional behavioral effect. Overall, these data are consistent with the notion that NA has some general function in maintaining some forms of plasticity in posterior cortex. PMID:1607943

  18. Rule learning enhances structural plasticity of long-range axons in frontal cortex

    PubMed Central

    Johnson, Carolyn M.; Peckler, Hannah; Tai, Lung-Hao; Wilbrecht, Linda

    2016-01-01

    Rules encompass cue-action-outcome associations used to guide decisions and strategies in a specific context. Subregions of the frontal cortex including the orbitofrontal cortex (OFC) and dorsomedial prefrontal cortex (dmPFC) are implicated in rule learning, although changes in structural connectivity underlying rule learning are poorly understood. We imaged OFC axonal projections to dmPFC during training in a multiple choice foraging task and used a reinforcement learning model to quantify explore–exploit strategy use and prediction error magnitude. Here we show that rule training, but not experience of reward alone, enhances OFC bouton plasticity. Baseline bouton density and gains during training correlate with rule exploitation, while bouton loss correlates with exploration and scales with the magnitude of experienced prediction errors. We conclude that rule learning sculpts frontal cortex interconnectivity and adjusts a thermostat for the explore–exploit balance. PMID:26949122

  19. Influence of motivation on control hierarchy in the human frontal cortex.

    PubMed

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands.

  20. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making.

    PubMed

    Cohen, Michael X; Elger, Christian E; Fell, Juergen

    2009-02-01

    Electroencephalogram oscillations recorded both within and over the medial frontal cortex have been linked to a range of cognitive functions, including positive and negative feedback processing. Medial frontal oscillatory characteristics during decision making remain largely unknown. Here, we examined oscillatory activity of the human medial frontal cortex recorded while subjects played a competitive decision-making game. Distinct patterns of power and cross-trial phase coherence in multiple frequency bands were observed during different decision-related processes (e.g., feedback anticipation vs. feedback processing). Decision and feedback processing were accompanied by a broadband increase in cross-trial phase coherence at around 220 msec, and dynamic fluctuations in power. Feedback anticipation was accompanied by a shift in the power spectrum from relatively lower (delta and theta) to higher (alpha and beta) power. Power and cross-trial phase coherence were greater following losses compared to wins in theta, alpha, and beta frequency bands, but were greater following wins compared to losses in the delta band. Finally, we found that oscillation power in alpha and beta frequency bands were synchronized with the phase of delta and theta oscillations ("phase-amplitude coupling"). This synchronization differed between losses and wins, suggesting that phase-amplitude coupling might reflect a mechanism of feedback valence coding in the medial frontal cortex. Our findings link medial frontal oscillations to decision making, with relations among activity in different frequency bands suggesting a phase-utilizing coding of feedback valence information.

  1. Intra- and Interindividual Differences in Lateralized Cognitive Performance and Asymmetrical EEG Activity in the Frontal Cortex

    ERIC Educational Resources Information Center

    Papousek, Ilona; Murhammer, Daniela; Schulter, Gunter

    2011-01-01

    The study shows that changes in relative verbal vs. figural working memory and fluency performance from one session to a second session two to 3 weeks apart covary with spontaneously occurring changes of cortical asymmetry in the lateral frontal and central cortex, measured by electroencephalography (EEG) in resting conditions before the execution…

  2. Tritiated imipramine binding sites are decreased in the frontal cortex of suicides

    SciTech Connect

    Stanley, M.; Virgilio, J.; Gershon, S.

    1982-06-18

    Binding characteristics of tritiated imipramine were determined in the frontal cortex of suicides and well-matched controls. Maximal binding was significantly lower in brains from the suicides. This finding is consistent with reports of decreased tritiated imipramine binding in the platelets of patients diagnosed as having a major affective disorder.

  3. Stimulus Expectancy Modulates Inferior Frontal Gyrus and Premotor Cortex Activity in Auditory Perception

    ERIC Educational Resources Information Center

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-01-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as…

  4. Hierarchical error evaluation: the role of medial-frontal cortex in postural control.

    PubMed

    Hassall, Cameron D; MacLean, Stephane; Krigolson, Olave E

    2014-01-01

    Motor error evaluation appears to be a hierarchically organized process subserved by 2 distinct systems: a higher level system within medial-frontal cortex responsible for movement outcome evaluation (high-level error evaluation) and a lower level posterior system(s) responsible for the mediation of within-movement errors (low-level error evaluation). While a growing body of evidence suggests that a reinforcement learning system within medial-frontal cortex plays a crucial role in the evaluation of high-level errors made during discrete reaching movements and continuous motor tracking, the role of this system in postural control is currently unclear. Participants learned a postural control task via a feedback-driven trial-and-error shaping process. In line with previous findings, electroencephalographic recordings revealed that feedback about movement outcomes elicited a feedback error-related negativity: a component of the human event-related brain potential associated with high-level outcome evaluation within medial-frontal cortex. Thus, the data provide evidence that a high-level error-evaluation system within medial-frontal cortex plays a key role in learning to control our body posture.

  5. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  6. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    NASA Technical Reports Server (NTRS)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  7. The Neural System of Postdecision Evaluation in Rostral Frontal Cortex during Problem-solving Tasks

    PubMed Central

    Wan, Xiaohong; Cheng, Kang

    2016-01-01

    Little attention has been paid to the postdecision processing in fMRI studies with task paradigms in which there was no explicit feedback. Although late-onset BOLD responses were previously observed in the lateral frontopolar cortex after the familiar-novel decision on visually presented words, the nature of neural activations that caused the late-onset BOLD responses remained elusive. We here found, in human experts conducting complicated problem-solving tasks in their expertise domain, that the rostral frontal cortex, including the lateral frontopolar cortex, along with the anterior inferior parietal lobule, was activated only during the postdecision period, although there was no feedback. That is, these areas showed late-onset BOLD responses, and fitting of the BOLD responses with different models indicates that they were caused by neural activations that occurred after the decision. However, there was no response after performing a sensory-motor control task, and the magnitude of postdecision activations was correlated with the degree of uncertainty about the preceding decision, which suggests that the postdecision neural activations were associated with the preceding decision procedure. Furthermore, the same set of areas was more strongly activated when the subject explicitly rethought the preceding problem. These results suggest that the rostral frontal cortex, together with anterior inferior parietal lobule, comprises a network for uncertainty monitoring and exploration of alternative resolutions in postdecision evaluation. The present results thus introduce a new aspect of the functional gradient along the rostrocaudal axis in the frontal cortex. PMID:27595134

  8. The Neural System of Postdecision Evaluation in Rostral Frontal Cortex during Problem-solving Tasks

    PubMed Central

    Wan, Xiaohong; Cheng, Kang

    2016-01-01

    Little attention has been paid to the postdecision processing in fMRI studies with task paradigms in which there was no explicit feedback. Although late-onset BOLD responses were previously observed in the lateral frontopolar cortex after the familiar-novel decision on visually presented words, the nature of neural activations that caused the late-onset BOLD responses remained elusive. We here found, in human experts conducting complicated problem-solving tasks in their expertise domain, that the rostral frontal cortex, including the lateral frontopolar cortex, along with the anterior inferior parietal lobule, was activated only during the postdecision period, although there was no feedback. That is, these areas showed late-onset BOLD responses, and fitting of the BOLD responses with different models indicates that they were caused by neural activations that occurred after the decision. However, there was no response after performing a sensory-motor control task, and the magnitude of postdecision activations was correlated with the degree of uncertainty about the preceding decision, which suggests that the postdecision neural activations were associated with the preceding decision procedure. Furthermore, the same set of areas was more strongly activated when the subject explicitly rethought the preceding problem. These results suggest that the rostral frontal cortex, together with anterior inferior parietal lobule, comprises a network for uncertainty monitoring and exploration of alternative resolutions in postdecision evaluation. The present results thus introduce a new aspect of the functional gradient along the rostrocaudal axis in the frontal cortex.

  9. The Neural System of Postdecision Evaluation in Rostral Frontal Cortex during Problem-solving Tasks.

    PubMed

    Wan, Xiaohong; Cheng, Kang; Tanaka, Keiji

    2016-01-01

    Little attention has been paid to the postdecision processing in fMRI studies with task paradigms in which there was no explicit feedback. Although late-onset BOLD responses were previously observed in the lateral frontopolar cortex after the familiar-novel decision on visually presented words, the nature of neural activations that caused the late-onset BOLD responses remained elusive. We here found, in human experts conducting complicated problem-solving tasks in their expertise domain, that the rostral frontal cortex, including the lateral frontopolar cortex, along with the anterior inferior parietal lobule, was activated only during the postdecision period, although there was no feedback. That is, these areas showed late-onset BOLD responses, and fitting of the BOLD responses with different models indicates that they were caused by neural activations that occurred after the decision. However, there was no response after performing a sensory-motor control task, and the magnitude of postdecision activations was correlated with the degree of uncertainty about the preceding decision, which suggests that the postdecision neural activations were associated with the preceding decision procedure. Furthermore, the same set of areas was more strongly activated when the subject explicitly rethought the preceding problem. These results suggest that the rostral frontal cortex, together with anterior inferior parietal lobule, comprises a network for uncertainty monitoring and exploration of alternative resolutions in postdecision evaluation. The present results thus introduce a new aspect of the functional gradient along the rostrocaudal axis in the frontal cortex. PMID:27595134

  10. Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats.

    PubMed

    Sutton, R L; Hovda, D A; Feeney, D M

    1989-08-01

    Prior work has demonstrated that d-amphetamine hastens recovery of beam-walking ability following unilateral sensorimotor or frontal cortex ablation (Hovda & Feeney, 1984). In this study, after bilateral frontal cortex ablation, cats given injections of d-amphetamine showed an enduring acceleration of recovery of beam-walking ability relative to saline controls. In general, rates of spontaneous and drug-induced recovery in cats with bilateral lesions were similar to those previously reported for cats with unilateral ablations. These results indicate that the bilateral corticostriate and corticothalamic projections from the contralateral homotopic cortex do not mediate the beneficial effects of d-amphetamine on locomotor recovery after unilateral cortical ablation. PMID:2765187

  11. The Rostro-Caudal Axis of Frontal Cortex Is Sensitive to the Domain of Stimulus Information

    PubMed Central

    Bahlmann, Jörg; Blumenfeld, Robert S.; D'Esposito, Mark

    2015-01-01

    Evidence suggests that lateral frontal cortex implements cognitive control processing along its rostro-caudal axis, yet other evidence supports a dorsal–ventral functional organization for processes engaged by different stimulus domains (e.g., spatial vs. nonspatial). This functional magnetic resonance imaging study investigated whether separable dorsolateral and ventrolateral rostro-caudal gradients exist in humans, while participants performed tasks requiring cognitive control at 3 levels of abstraction with language or spatial stimuli. Abstraction was manipulated by using 3 different task sets that varied in relational complexity. Relational complexity refers to the process of manipulating the relationship between task components (e.g., to associate a particular cue with a task) and drawing inferences about that relationship. Tasks using different stimulus domains engaged distinct posterior regions, but within the lateral frontal cortex, we found evidence for a single rostro-caudal gradient that was organized according to the level of abstraction and was independent of processing of the stimulus domain. However, a pattern of dorsal/ventral segregation of processing engaged by domain-specific information was evident in each separable frontal region only within the most rostral region recruited by task demands. These results suggest that increasingly abstract information is represented in the frontal cortex along distinct rostro-caudal gradients that also segregate along a dorsal–ventral axis dependent on task demands. PMID:24451658

  12. Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning.

    PubMed

    Bruchey, A K; Gonzalez-Lima, F

    2008-03-18

    While Pavlovian conditioning alters stimulus-evoked metabolic activity in the cerebral cortex, less is known about the effects of Pavlovian conditioning on neuronal metabolic capacity. Pavlovian conditioning may increase prefrontal cortical metabolic capacity, as suggested by evidence of changes in cortical synaptic strengths, and evidence for a shift in memory initially processed in subcortical regions to more distributed prefrontal cortical circuits. Quantitative cytochrome oxidase histochemistry was used to measure cumulative changes in brain metabolic capacity associated with both cued and contextual Pavlovian conditioning in rats. The cued conditioned group received tone-foot-shock pairings to elicit a conditioned freezing response to the tone conditioned stimulus, while the contextually conditioned group received pseudorandom tone-foot-shock pairings in an excitatory context. Untrained control group was handled daily, but did not receive any tone presentations or foot shocks. The cued conditioned group had higher cytochrome oxidase activity in the infralimbic and anterior cingulate cortex, and lower cytochrome oxidase activity in dorsal hippocampus than the other two groups. A significant increase in cytochrome oxidase activity was found in anterior cortical areas (medial, dorsal and lateral frontal cortex; agranular insular cortex; lateral and medial orbital cortex and prelimbic cortex) in both conditioned groups, as compared with the untrained control group. In addition, no differences in cytochrome oxidase activity in the somatosensory regions and the amygdala were detected among all groups. The findings indicate that cued and contextual Pavlovian conditioning induces sustained increases in frontal cortical neuronal metabolic demand resulting in regional enhancement in the metabolic capacity of anterior cortical regions. Enhanced metabolic capacity of these anterior cortical areas after Pavlovian conditioning suggests that the frontal cortex may play a

  13. The frontal cortex and the criminal justice system.

    PubMed Central

    Sapolsky, Robert M

    2004-01-01

    In recent decades, the general trend in the criminal justice system in the USA has been to narrow the range of insanity defences available, with an increasing dependence solely on the M'Naghten rule. This states that innocence by reason of insanity requires that the perpetrator could not understand the nature of their criminal act, or did not know that the act was wrong, by reason of a mental illness. In this essay, I question the appropriateness of this, in light of contemporary neuroscience. Specifically, I focus on the role of the prefrontal cortex (PFC) in cognition, emotional regulation, control of impulsive behaviour and moral reasoning. I review the consequences of PFC damage on these endpoints, the capacity for factors such as alcohol and stress to transiently impair PFC function, and the remarkably late development of the PFC (in which full myelination may not occur until early adulthood). I also consider how individual variation in PFC function and anatomy, within the normative range, covaries with some of these endpoints. This literature is reviewed because of its relevance to issues of criminal insanity; specifically, damage can produce an individual capable of differentiating right from wrong but who, nonetheless, is organically incapable of appropriately regulating their behaviour. PMID:15590619

  14. The frontal cortex and the criminal justice system.

    PubMed

    Sapolsky, Robert M

    2004-11-29

    In recent decades, the general trend in the criminal justice system in the USA has been to narrow the range of insanity defences available, with an increasing dependence solely on the M'Naghten rule. This states that innocence by reason of insanity requires that the perpetrator could not understand the nature of their criminal act, or did not know that the act was wrong, by reason of a mental illness. In this essay, I question the appropriateness of this, in light of contemporary neuroscience. Specifically, I focus on the role of the prefrontal cortex (PFC) in cognition, emotional regulation, control of impulsive behaviour and moral reasoning. I review the consequences of PFC damage on these endpoints, the capacity for factors such as alcohol and stress to transiently impair PFC function, and the remarkably late development of the PFC (in which full myelination may not occur until early adulthood). I also consider how individual variation in PFC function and anatomy, within the normative range, covaries with some of these endpoints. This literature is reviewed because of its relevance to issues of criminal insanity; specifically, damage can produce an individual capable of differentiating right from wrong but who, nonetheless, is organically incapable of appropriately regulating their behaviour.

  15. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    PubMed Central

    Olulade, O.A.; Flowers, D.L.; Napoliello, E.M.; Eden, G.F.

    2015-01-01

    fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report

  16. Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation.

    PubMed

    Cohen, Michael X; Bour, Lo; Mantione, Mariska; Figee, Martijn; Vink, Matthijs; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; van den Munckhof, Pepijn; Schuurman, P Richard; Denys, Damiaan

    2012-01-01

    The nucleus accumbens and medial frontal cortex (MFC) are part of a loop involved in modulating behavior according to anticipated rewards. However, the precise temporal landscape of their electrophysiological interactions in humans remains unknown because it is not possible to record neural activity from the nucleus accumbens using noninvasive techniques. We recorded electrophysiological activity simultaneously from the nucleus accumbens and cortex (via surface EEG) in humans who had electrodes implanted as part of deep-brain-stimulation treatment for obsessive-compulsive disorder. Patients performed a simple reward motivation task previously shown to activate the ventral striatum. Spectral Granger causality analyses were applied to dissociate "top-down" (cortex → nucleus accumbens)- from "bottom-up" (nucleus accumbens → cortex)-directed synchronization (functional connectivity). "Top-down"-directed synchrony from cortex to nucleus accumbens was maximal over medial frontal sites and was significantly stronger when rewards were anticipated. These findings provide direct electrophysiological evidence for a role of the MFC in modulating nucleus accumbens reward-related processing and may be relevant to understanding the mechanisms of deep-brain stimulation and its beneficial effects on psychiatric conditions. PMID:21547982

  17. Neuroanatomical correlates of personality in chimpanzees (Pan troglodytes): Associations between personality and frontal cortex.

    PubMed

    Latzman, Robert D; Hecht, Lisa K; Freeman, Hani D; Schapiro, Steven J; Hopkins, William D

    2015-12-01

    Converging empirical data suggests that a set of largely consistent personality traits exist in both human and nonhuman primates; despite these similarities, almost nothing is known concerning the neurobiological basis of these traits in nonhuman primates. The current study examined associations between chimpanzee personality traits and the grey matter volume and asymmetry of various frontal cortex regions in 107 captive chimpanzees. Chimpanzees rated as higher on Openness and Extraversion had greater bilateral grey matter volumes in the anterior cingulate cortex. Further, chimpanzee rated as higher on Dominance had larger grey volumes in the left anterior cingulate cortex and right Prefrontal Cortex (PFC). Finally, apes rated higher on Reactivity/Unpredictability had higher grey matter volumes in the right mesial PFC. All associations survived after applying False Discovery Rate (FDR) thresholds. Results are discussed in terms of current neuroscientific models of personality which suggest that the frontal cortex, and asymmetries in this region, play an important role in the neurobiological foundation of broad dispositional traits.

  18. Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex.

    PubMed

    Owen, A M; Stern, C E; Look, R B; Tracey, I; Rosen, B R; Petrides, M

    1998-06-23

    The present study used functional magnetic resonance imaging to demonstrate that performance of visual spatial and visual nonspatial working memory tasks involve the same regions of the lateral prefrontal cortex when all factors unrelated to the type of stimulus material are appropriately controlled. These results provide evidence that spatial and nonspatial working memory may not be mediated, respectively, by mid-dorsolateral and mid-ventrolateral regions of the frontal lobe, as widely assumed, and support the alternative notion that specific regions of the lateral prefrontal cortex make identical executive functional contributions to both spatial and nonspatial working memory.

  19. Enhancement of 18F-Fluorodeoxyglucose Metabolism in Rat Brain Frontal Cortex Using a β3 Adrenoceptor Agonist

    PubMed Central

    Mirbolooki, M. Reza; Schade, Kimberly N.; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar

    2014-01-01

    We report the use of β3-adrenergic receptor mediated activation of rat brain frontal cortex using mirabegron (a selective β3-adrenoceptor agonist), measured by 18F-FDG PET/CT. Another β3-agonis t, CL 316,243, did not have this effect due to impermeability through the blood brain barrier (BBB), while atomoxetine, a norepinephrine transporter blocker, did increase 18F-FDG uptake in the frontal cortex. Mirabegron exhibited a dose-dependent increase in frontal cortex 18F-FDG uptake. These findings suggest a possible use of selective β3-adrenoceptor agonists in reversing regional glucose hypometabolism in the brain. PMID:25347981

  20. Conflict awareness dissociates theta-band neural dynamics of the medial frontal and lateral frontal cortex during trial-by-trial cognitive control.

    PubMed

    Jiang, Jun; Zhang, Qinglin; van Gaal, Simon

    2015-08-01

    Recent findings have refuted the common assumption that executive control functions of the prefrontal cortex exclusively operate consciously, suggesting that many, if not all, cognitive processes could potentially operate unconsciously. However, although many cognitive functions can be launched unconsciously, several theoretical models of consciousness assume that there are crucial qualitative differences between conscious and unconscious processes. We hypothesized that the potential benefit of awareness in cognitive control mechanisms might become apparent when high control has to be maintained across time and requires the interaction between a set of distant frontal brain regions. To test this, we extracted oscillatory power dynamics from electroencephalographic data recorded while participants performed a task in which conflict awareness was manipulated by masking the conflict-inducing stimulus. We observed that instantaneous conflict as well as across trial conflict adaptation mechanisms were associated with medial frontal theta-band power modulations, irrespective of conflict awareness. However, and crucially, across-trial conflict adaptation processes reflected in increased theta-band power over dorsolateral frontal cortex were observed after fully conscious conflict only. This suggests that initial conflict detection and subsequent control adaptation by the medial frontal cortex are automatic and unconscious, whereas the routing of information from the medial frontal cortex to the lateral prefrontal cortex is a unique feature of conscious cognitive control.

  1. A direct GABAergic output from the basal ganglia to frontal cortex

    PubMed Central

    Saunders, Arpiar; Oldenburg, Ian A.; Berezovskii, Vladimir K.; Johnson, Caroline A.; Kingery, Nathan D.; Elliott, Hunter L.; Xie, Tiao; Gerfen, Charles R.; Sabatini, Bernardo L.

    2014-01-01

    The basal ganglia (BG) are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning1. Current models postulate that the BG modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by the BG via direct (dSPNs) and indirect (iSPNs) pathway striatal projection neurons2–4. The BG thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems5. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the BG, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT+ cells, which have been historically identified as an extension of the nucleus basalis (NB), as well as ChAT− cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signaling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the BG to modulate frontal cortices. PMID:25739505

  2. Septum and medial frontal cortex contribution to spatial problem-solving.

    PubMed

    Poucet, B; Herrmann, T

    1990-03-26

    An attempt was made to contrast the effects of lesions to the medial frontal cortex and septum in two spatial tasks. In the fixed-goal (FG) task, the food was located on the same table throughout testing, and the start table was randomly varied from day to day. In the variable-goal (VG) task, the start table remained constant but the food was randomly distributed on one or the other of the two remaining tables. In both tasks, normal animals performed better than frontal and septal rats whose performance, however, improved over days in the FG, but not in the VG, task. In both tasks, significant improvement within days was found in medial frontal animals, but not in septal animals. Additional analyses revealed that septal animals had a general pattern of disrupted exploration and a tendency to use a response strategy (i.e. to repeat the same response both within and between days) which decreased over days in the FG task. In contrast, medial frontal animals did not demonstrate disrupted exploration nor any response tendency. It is concluded that both septal and medial frontal cortical damage produce a common spatial working memory impairment. However, there is some evidence to suggest that this common memory impairment could result from disruption of distinct mechanisms in septal and frontal animals. It is proposed that medial frontal lesions could affect some specific mechanism related either to attentional processes or to the ability to anticipate future events, whereas septal damage would interfere with the building of comprehensive and flexible spatial memories. PMID:2340101

  3. A frontal cortex event-related potential driven by the basal forebrain

    PubMed Central

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  4. Chronic methamphetamine administration reduces histamine-stimulated phosphoinositide hydrolysis in mouse frontal cortex.

    PubMed

    Kitanaka, Junichi; Kitanaka, Nobue; Takemura, Motohiko

    2003-01-24

    In the present study, it was hypothesized that in vivo pretreatment with repeated methamphetamine would alter the agonist-stimulated phosphoinositide hydrolysis in mouse frontal cortical slices. Male ICR mice that received the methamphetamine injection (1.0mg/kg, intraperitoneally) once a day for five consecutive days showed behavioral sensitization to the same dose of methamphetamine 5 days after the last injection of the initial chronic treatment regimen (test day 10). On test day 10, the reduction of histamine (0.1-1.0mM)-stimulated phosphoinositide hydrolysis in the mouse frontal cortex was observed. The reduction was specific to histamine, but not to norepinephrine (10 microM-0.1mM) or L-glutamate (0.1-0.5mM). The reduction occurred without any change in the expression level of histamine H(1) receptor mRNA. The reduction recovered 25 days after the last injection of the initial chronic treatment regimen (test day 30). The direct application to the slices of a pharmacologically effective concentration of methamphetamine in vitro (10 microM) did not alter the histamine signal transduction. The present results suggest that the reduction is probably one of neuroadaptations in the frontal cortex contributing to behavioral sensitization.

  5. [Frontal cerebral cortex and photic epilepsy of the baboon Papio papio (author transl)].

    PubMed

    Ménini, C

    1976-03-01

    It was discovered in 1966 that the senegalese baboon (Papio papio) exhibits a photosensitive epilepsy. This finding has led, among other work, to the neurophysiological study of this epilepsy. Although in some characteristics the baboon's photosensitive epilepsy differs from that of man, it can be considered that this animal presents a real model of essential epilepsy, for the study of the human disease. 2. In the baboon, the EEG disturbances triggered by intermittent light stimulation at 25 Hz appear first at the level of the frontal cortex (area 6). At this level, recordings of single unit discharges show an activation of cortical neurones similar to that observed in human patients with focal epileptic lesions ; at the occipital level, the only modification observed is a change in the resting membrane potentials, in the direction of disinhibition. 3. The analysis of cortical visual evoked responses demonstrated the presence of short latency visual afferents at the frontal cortex level, as well as a high level of hyperexcitability for the visual modality. The most photosensitive animals can be distinguished by a more marked frontal hyperexcitability and by slight differences in the form of both the occipital evoked responses (decrease in amplitude of the early part of the response, frequent absence of wave IV) and the frontal ones (higher amplitude of the later part of the responses). In some of the animals, whether they were photosensitive or not, we found high amplitude frontal visual evoked responses resembling spikes and waves. 4. Certain observations in both man and the photosensitive baboon suggested the possible involvement of periocular somatic afferents in the triggering of paroxysmal manifestations. The study of these cortical projections in the baboon showed that they possess certain specific characteristics which distinguish them from the other somatic projections (short latency, large frontal spread and ipsilateral responses of higher amplitude than

  6. An immunohistochemical localization of neuropeptide Y (NPY) in its amidated form in human frontal cortex.

    PubMed

    Blinkenberg, M; Kruse-Larsen, C; Mikkelsen, J D

    1990-01-01

    The distribution of neuropeptide Y (NPY)-immunoreactive neurons was studied in human frontal cerebral cortex from surgical biopsy specimens by immunohistochemical techniques. NPY-containing neurons were identified in all cortical sublayers except sublayer I. The stained neurons were of the multipolar, bitufted, round or triangular form with dendritic and axonal processes. The immunoreactive neurons were considered to be cortical interneurons, due to their nonpyramidal form, and since their processes could be followed intracortically particularly in direction to superficial cortical layers. The NPY precursor molecule is processed to NPY by a dibasic cleavage, and NPY is further enzymatically amidated before release and receptor activation can be achieved. Antisera raised against Cys-NPY(32-36)amide recognize amidated NPY not cross-reacting with nonamidated NPY. These antisera and immunohistochemistry revealed the presence of a population of NPYamide-immunoreactive cells morphologically indistinguishable from the NPY-immunoreactive cells in the human frontal cortex. By comparing the number of immunoreactive cells in adjacent sections, it appears that the number of NPY-immunoreactive cells was higher than those immunoreactive to NPYamide. Also, the density of NPY fibers was much higher compared with the number stained with NPYamide antiserum. The present immunohistochemical study indicates that NPY in its amidated form is contained in a subpopulation of human cortical NPY-immunoreactive neurons and may participate as an active neurotransmitter/modulator within the human cerebral cortex.

  7. Microcircuitry of Agranular Frontal Cortex: Testing the Generality of the Canonical Cortical Microcircuit

    PubMed Central

    Godlove, David C.; Maier, Alexander; Woodman, Geoffrey F.

    2014-01-01

    We investigated whether a frontal area that lacks granular layer IV, supplementary eye field, exhibits features of laminar circuitry similar to those observed in primary sensory areas. We report, for the first time, visually evoked local field potentials (LFPs) and spiking activity recorded simultaneously across all layers of agranular frontal cortex using linear electrode arrays. We calculated current source density from the LFPs and compared the laminar organization of evolving sinks to those reported in sensory areas. Simultaneous, transient synaptic current sinks appeared first in layers III and V followed by more prolonged current sinks in layers I/II and VI. We also found no variation of single- or multi-unit visual response latency across layers, and putative pyramidal neurons and interneurons displayed similar response latencies. Many units exhibited pronounced discharge suppression that was strongest in superficial relative to deep layers. Maximum discharge suppression also occurred later in superficial than in deep layers. These results are discussed in the context of the canonical cortical microcircuit model originally formulated to describe early sensory cortex. The data indicate that agranular cortex resembles sensory areas in certain respects, but the cortical microcircuit is modified in nontrivial ways. PMID:24719113

  8. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception.

    PubMed

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-04-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as inferior frontal gyrus (IFG) and motor cortices, even in the absence of an explicit task. To investigate this, we applied spectral mixes of a flute sound and either vowels or specific music instrument sounds (e.g. trumpet) in an fMRI study, in combination with three different instructions. The instructions either revealed no information about stimulus features, or explicit information about either the music instrument or the vowel features. The results demonstrated that, besides an involvement of posterior temporal areas, stimulus expectancy modulated in particular a network comprising IFG and premotor cortices during this passive listening task. PMID:22377261

  9. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans

    PubMed Central

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D.; Marslen-Wilson, William D.; Petkov, Christopher I.

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  10. Neurochemical alterations in frontal cortex of the rat after one week of hypobaric hypoxia

    PubMed Central

    Bogdanova, Olena V.; Abdullah, Osama; Kanekar, Shami; Bogdanov, Volodymyr B.; Prescot, Andrew P.; Renshaw, Perry F.

    2015-01-01

    Residing at high altitude may lead to reduced blood oxygen saturation in the brain and altered metabolism in frontal cortical brain areas, probably due to chronic hypobaric hypoxia. These changes may underlie the increased rates of depression and suicidal behavior that have been associated with life at higher altitudes. To test the hypothesis that hypobaric hypoxia is responsible for development of mood disorders due to alterations in neurochemistry, we assessed depression-like behavior in parallel to levels of brain metabolites in rats housed at simulated altitude. 32 female Sprague Dawley rats were housed either in a hypobaric hypoxia chamber at 10,000 ft of simulated altitude for 1 week or at local conditions (4500 ft of elevation in Salt Lake City, Utah). Depression-like behavior was assessed using the forced swim test (FST) and levels of neurometabolites were estimated by in vivo proton magnetic resonance spectroscopy in the frontal cortex, the striatum and the hippocampus at baseline and after a week of exposure to hypobaric hypoxia. After hypoxia exposure the animals demonstrated increased immobility behavior and shortened latency to immobility in the FST. Elevated ratios of myo-inositol, glutamate, and the sum of myo-inositol and glycine to total creatine were observed in the frontal cortex of hypoxia treated rats. A decrease in the ratio of alanine to total creatine was also noted. This study shows that hypoxia induced alterations in frontal lobe brain metabolites, aggravated depression-like behavior and might be a factor in increased rates of psychiatric disorders observed in populations living at high altitudes. PMID:24486259

  11. Neurochemical alterations in frontal cortex of the rat after one week of hypobaric hypoxia.

    PubMed

    Bogdanova, Olena V; Abdullah, Osama; Kanekar, Shami; Bogdanov, Volodymyr B; Prescot, Andrew P; Renshaw, Perry F

    2014-04-15

    Residing at high altitude may lead to reduced blood oxygen saturation in the brain and altered metabolism in frontal cortical brain areas, probably due to chronic hypobaric hypoxia. These changes may underlie the increased rates of depression and suicidal behavior that have been associated with life at higher altitudes. To test the hypothesis that hypobaric hypoxia is responsible for development of mood disorders due to alterations in neurochemistry, we assessed depression-like behavior in parallel to levels of brain metabolites in rats housed at simulated altitude. 32 female Sprague Dawley rats were housed either in a hypobaric hypoxia chamber at 10,000 ft of simulated altitude for 1 week or at local conditions (4500 ft of elevation in Salt Lake City, Utah). Depression-like behavior was assessed using the forced swim test (FST) and levels of neurometabolites were estimated by in vivo proton magnetic resonance spectroscopy in the frontal cortex, the striatum and the hippocampus at baseline and after a week of exposure to hypobaric hypoxia. After hypoxia exposure the animals demonstrated increased immobility behavior and shortened latency to immobility in the FST. Elevated ratios of myo-inositol, glutamate, and the sum of myo-inositol and glycine to total creatine were observed in the frontal cortex of hypoxia treated rats. A decrease in the ratio of alanine to total creatine was also noted. This study shows that hypoxia induced alterations in frontal lobe brain metabolites, aggravated depression-like behavior and might be a factor in increased rates of psychiatric disorders observed in populations living at high altitudes.

  12. Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat.

    PubMed

    Hovda, D A; Fenney, D M

    1984-04-30

    In cats, a single dose of D-amphetamine (AMP) given at 10 days after unilateral frontal cortex ablation produced an immediate and enduring (60 day) acceleration of beam-walking ability compared to saline control animals. Four doses of AMP at 4-day intervals promoted recovery faster than a single dose of AMP. Subjects with no beam-walking experience while under AMP intoxication were not different from saline controls after two doses of AMP. However, after 4 doses these cats recovered significantly faster than saline controls and were comparable to animals that received AMP and experience under the drug. PMID:6722561

  13. Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex.

    PubMed

    Caminiti, R; Genovesio, A; Marconi, B; Mayer, A B; Onorati, P; Ferraina, S; Mitsuda, T; Giannetti, S; Squatrito, S; Maioli, M G; Molinari, M

    1999-09-01

    The ipsilateral association connections of the cortex of the dorsal part of the rostral bank of the parieto-occipital sulcus and of the adjoining posterior part of the superior parietal lobule were studied by using different retrograde fluorescent tracers. Fluoro-Ruby, Fast blue and Diamidino yellow were injected into visual area V6A, and dorso-caudal (PMdc, F2) and dorso-rostral (PMdr, F7) premotor cortex, respectively. The parietal area of injection had been previously characterized physiologically in behaving monkeys, through a variety of oculomotor and visuomanual tasks. Area V6A is mainly linked by reciprocal projections to parietal areas 7m, MIP (medial intraparietal) and PEa, and, to a lesser extent, to frontal areas PMdr (rostral dorsal premotor cortex, F7) and PMdc (F2). All these areas project to that part of the dorsocaudal premotor cortex that has a direct access to primary motor cortex. V6A is also connected to area F5 and, to a lesser extent, to 7a, ventral (VIP) and lateral (LIP) intraparietal areas. This pattern of association connections may explain the presence of visually-related and eye-position signals in premotor cortex, as well as the influence of information concerning arm position and movement direction on V6A neural activity. Area V6A emerges as a potential 'early' node of the distributed network underlying visually-guided reaching. In this network, reciprocal association connections probably impose, through re-entrant signalling, a recursive property to the operations leading to the composition of eye and hand motor commands.

  14. MRI Volume of the Medial Frontal Cortex Predicts Financial Capacity in Patients with Mild Alzheimer’s Disease

    PubMed Central

    Stoeckel, Luke E.; Stewart, Christopher C.; Griffith, H. Randall; Triebel, Kristen; C. Okonkwo, Ozioma; den Hollander, Jan A.; Martin, Roy C.; Belue, Katherine; Copeland, Jacquelynn N.; Harrell, Lindy E.; Brockington, John C.; Clark, David G.; Marson, Daniel C.

    2013-01-01

    Persons with mild Alzheimer’s disease (AD) have significant deficits in financial abilities. This study examined the relationship between brain structure volumes, cognition, and financial capacity in patients with mild AD. Sixteen mild AD patients and 16 older adult comparisons completed the Financial Capacity Instrument (FCI), a psychometric measure of financial abilities, and also underwent magnetic resonance imaging (MRI) to obtain volumes of the bilateral hippocampi, angular gyri, precunei, and medial and dorsolateral frontal cortices. Mild AD patients performed significantly below comparisons on the FCI and had significantly smaller hippocampi. Among mild AD patients, FCI performance was moderately correlated with frontal (medial and dorsolateral frontal cortex) and posterior (angular gyri and precunei) cortical volumes. Stepwise regression demonstrated that medial frontal cortex volume predicted FCI score. The relationship between medial frontal cortex volume and overall FCI score was partially mediated by two measures of simple attention (DRS Attention, DRS Construction). The findings suggest that medial frontal cortex atrophy and associated declines in simple attention play an increasingly important role in declining financial skills in patients with mild AD. PMID:23504597

  15. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  16. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex

    PubMed Central

    Wehrspaun, Claudia C.; Haerty, Wilfried; Ponting, Chris P.

    2015-01-01

    Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis. PMID:26002684

  17. Social attachment in juvenile monkeys with neonatal lesion of the hippocampus, amygdala and orbital frontal cortex.

    PubMed

    Goursaud, Anne-Pierre S; Bachevalier, Jocelyne

    2007-01-10

    Non-human primates, like humans, develop and maintain social relationships and attachments throughout their life. The first and most crucial relationship in a primate life is that with its mother. Yet, in absence of their biological mother, infant primates form attachment to surrogate mothers. Although, this early attachment is critical for the development of normal species-typical social and emotional skills, the neural substrates underlying the formation of social relationships in primates are still unclear. The present study assessed, in infant rhesus monkeys (Macaca mulatta) reared by human caregivers and social interactions with peers, the effects of bilateral neonatal (1-2 weeks of age) ibotenic acid lesions of the amygdala and hippocampus (N=6 in each group), aspiration lesions of the orbital frontal cortex (N=6) or sham lesions (N=5) on the development of a social attachment with the principal human caregiver. A specific preference for the later was assessed at 11 months of age, in a two-choice discrimination task, opposing the principal human caregiver to another familiar human, in a familiar environment. None of the lesions impaired the expression of preferential responses toward the principal human caregiver. Nevertheless, lesions of the orbital frontal cortex led to a weaker preference, suggesting that this structure may play a role in the quality and/or strength of the infant/mother relationships. The present non-human primate findings are discussed in terms of their relevance for autism. PMID:17084912

  18. Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.

    PubMed

    Ester, Edward F; Sprague, Thomas C; Serences, John T

    2015-08-19

    Working memory (WM) enables the storage and manipulation of information in an active state. WM storage has long been associated with sustained increases in activation across a network of frontal and parietal cortical regions. However, recent evidence suggests that these regions primarily encode information related to general task goals rather than feature-selective representations of specific memoranda. These goal-related representations are thought to provide top-down feedback that coordinates the representation of fine-grained details in early sensory areas. Here, we test this model using fMRI-based reconstructions of remembered visual details from region-level activation patterns. We could reconstruct high-fidelity representations of a remembered orientation based on activation patterns in occipital visual cortex and in several sub-regions of frontal and parietal cortex, independent of sustained increases in mean activation. These results challenge models of WM that postulate disjoint frontoparietal "top-down control" and posterior sensory "feature storage" networks. PMID:26257053

  19. What makes the dorsomedial frontal cortex active during reading the mental states of others?

    PubMed Central

    Isoda, Masaki; Noritake, Atsushi

    2013-01-01

    The dorsomedial frontal part of the cerebral cortex is consistently activated when people read the mental states of others, such as their beliefs, desires, and intentions, the ability known as having a theory of mind (ToM) or mentalizing. This ubiquitous finding has led many researchers to conclude that the dorsomedial frontal cortex (DMFC) constitutes a core component in mentalizing networks. Despite this, it remains unclear why the DMFC becomes active during ToM tasks. We argue that key psychological and behavioral aspects in mentalizing are closely associated with DMFC functions. These include executive inhibition, distinction between self and others, prediction under uncertainty, and perception of intentions, all of which are important for predicting others' intention and behavior. We review the literature supporting this claim, ranging in fields from developmental psychology to human neuroimaging and macaque electrophysiology. Because perceiving intentions in others' actions initiates mentalizing and forms the basis of virtually all types of social interaction, the fundamental issue in social neuroscience is to determine the aspects of physical entities that make an observer perceive that they are intentional beings and to clarify the neurobiological underpinnings of the perception of intentionality in others' actions. PMID:24367287

  20. Enoxacin Elevates MicroRNA Levels in Rat Frontal Cortex and Prevents Learned Helplessness.

    PubMed

    Smalheiser, Neil R; Zhang, Hui; Dwivedi, Yogesh

    2014-01-01

    Major depressive disorder (MDD) is a major public health concern. Despite tremendous advancement, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs) are a class of small non-coding RNAs that control gene expression by modulating translation, mRNA degradation or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and that rats exposed to repeated inescapable shock show differential miRNA changes depending on whether they exhibited normal adaptive responses or learned helpless (LH) behavior. Enoxacin, a fluoroquinolone used clinically as an anti-bacterial compound, enhances the production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested as an experimental tool to study the relation of miRNA expression to neural functions or behavior. Treatment of rats with 10 or 25 mg/kg enoxacin for 1 week increased the expression of miRNAs in frontal cortex and decreased the proportion of rats exhibiting LH behavior following inescapable shock. Further studies are warranted to learn whether enoxacin may ameliorate depressive behavior in other rodent paradigms and in human clinical situations, and if so whether its mechanism is due to upregulation of miRNAs.

  1. Developmental protein malnutrition in the rat: effects on single-unit activity in the frontal cortex.

    PubMed

    Stern, W C; Pugh, W W; Resnick, O; Morgane, P J

    1984-07-23

    This study evaluated the effects of developmental protein malnutrition on the spontaneous electrical activity of frontal cortex neurons in the anesthetized rat. Rats were raised prenatally and postnatally on either an 8% or 6% casein diet until adulthood. Compared to the 25% casein controls, both malnourished groups showed a 30-36% decrease in mean discharge rates and a 100-200% increase in the percentage of cells with very slow (less than 1/s) discharge rates. Most of the diet-related changes were confined to a zone 600-1200 micron below the brain surface, approximately cortical layers III, IV and V. A second set of studies in which diet reversals were introduced at birth or in adulthood found that: (a) restoration of a normal 25% casein diet at birth did not appreciably attenuate the effect of prenatal administration of an 8% casein diet; (b) introduction in adulthood of the 8% casein diet to a normally fed rat had no effect; (c) introduction of the 8% diet at birth, however, produced effects in adulthood comparable to those seen when the protein malnutrition was introduced in the prenatal period. Thus, the rat brain is sensitive to both prenatal and postnatal protein malnutrition (starting at birth). Most importantly, the effects of prenatal protein malnutrition on the activity of frontal cortex neurons do not appear to be reversible by restoration of a normal diet in adulthood or at birth.

  2. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex.

    PubMed

    Wehrspaun, Claudia C; Haerty, Wilfried; Ponting, Chris P

    2015-08-01

    Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis.

  3. Developmental Exposure to the Organochlorine Insecticide Endosulfan Alters Expression of Proteins Associated with Neurotransmission in the Frontal Cortex

    PubMed Central

    Wilson, W. Wyatt; Onyenwe, Wellington; Bradner, Joshua M.; Nennig, Sadie E.; Caudle, W. Michael

    2014-01-01

    Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides. PMID:25042905

  4. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  5. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  6. Processing nouns and verbs in the left frontal cortex: a transcranial magnetic stimulation study.

    PubMed

    Cappelletti, Marinella; Fregni, Felipe; Shapiro, Kevin; Pascual-Leone, Alvaro; Caramazza, Alfonso

    2008-04-01

    Neuropsychological and neurophysiological studies suggest that the production of verbs in speech depends on cortical regions in the left frontal lobe. However, the precise topography of these regions, and their functional roles in verb production, remains matters of debate. In an earlier study with repetitive transcranial magnetic stimulation (rTMS), we showed that stimulation to the left anterior midfrontal gyrus disrupted verb production, but not noun production, in a task that required subjects to perform simple morphological alternations. This result raises a number of questions: for example, is the effect of stimulation focal and specific to that brain region? Is the behavioral effect limited to rule-based, regular transformations, or can it be generalized over the grammatical category? In the present study, we used rTMS to suppress the excitability of distinct parts of the left prefrontal cortex to assess their role in producing regular and irregular verbs compared to nouns. We compared rTMS to sham stimulation and to stimulation of homologous areas in the right hemisphere. Response latencies increased for verbs, but were unaffected for nouns, following stimulation to the left anterior midfrontal gyrus. No significant interference specific for verbs resulted after stimulation to two other areas in the left frontal lobe, the posterior midfrontal gyrus and Broca's area. These results therefore reinforce the idea that the left anterior midfrontal cortex is critical for processing verbs. Moreover, none of the regions stimulated was preferentially engaged in the production of regular or irregular inflection, raising questions about the role of the frontal lobes in processing inflectional morphology.

  7. Performance Monitoring Local Field Potentials in the Medial Frontal Cortex of Primates: Anterior Cingulate Cortex

    PubMed Central

    Emeric, Erik E.; Brown, Joshua W.; Leslie, Melanie; Pouget, Pierre; Stuphorn, Veit; Schall, Jeffrey D.

    2009-01-01

    We describe intracranial local field potentials (LFP) recorded in the anterior cingulate cortex (ACC) of macaque monkeys performing a saccade countermanding task. The most prominent feature at ∼70% of sites was greater negative polarity after errors than after rewarded correct trials. This negative polarity was also evoked in unrewarded correct trials. The LFP evoked by the visual target was much less polarized, and the weak presaccadic modulation was insufficient to control the initiation of saccades. When saccades were cancelled, LFP modulation decreased slightly with the magnitude of response conflict that corresponds to the coactivation of gaze-shifting and -holding neurons estimated from the probability of canceling. However, response time adjustments on subsequent trials were not correlated with LFP polarity on individual trials. The results provide clear evidence that error- and feedback-related, but not conflict-related, signals are carried by the LFP in the macaque ACC. Finding performance monitoring field potentials in the ACC of macaque monkeys establishes a bridge between event-related potential and functional brain-imaging studies in humans and neurophysiology studies in non-human primates. PMID:18077665

  8. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    PubMed

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN.

  9. Aged Rats Are Impaired on an Attentional Set-Shifting Task Sensitive to Medial Frontal Cortex Damage in Young Rats

    PubMed Central

    Barense, Morgan D.; Fox, Matthew T.; Baxter, Mark G.

    2002-01-01

    Normal aging is associated with disruption of neural systems that subserve different aspects of cognitive function, particularly in the hippocampus and frontal cortex. Abnormalities in hippocampal function have been well investigated in rodent models of aging, but studies of frontal cortex function in aged rodents are few. We tested young (4–5 mo old) and aged (27–28 mo old) male Long-Evans rats on an attentional set-shifting task modified slightly from previous publication. After training on two problems in which the reward was consistently associated with the same stimulus dimension, and a reversal of one problem, a new problem was presented in which the reward was consistently associated with the previously irrelevant stimulus dimension (extradimensional shift [EDS]). Aged rats as a group were significantly impaired on the EDS, although some individual aged rats performed as well as young rats on this phase. In addition, some aged rats were impaired on the reversal, although a group effect did not reach significance in this phase. Impairment in neither reversal nor EDS was associated with impairments in spatial learning in the Morris water maze. Young rats with neurotoxic lesions of medial frontal cortex are also selectively impaired on the EDS. These results indicate that normal aging in rats is associated with impaired medial frontal cortex function. Furthermore, age-related declines in frontal cortex function are independent of those in hippocampal function. These results provide a possible basis for correlating age-related changes in neurobiological markers in frontal cortex with cognitive decline. PMID:12177232

  10. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex.

    PubMed

    Dumitrescu, Adina; Aberdeen, Graham W; Pepe, Gerald J; Albrecht, Eugene D

    2014-12-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27(Kip1) and p57(Kip2) were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy.

  11. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    PubMed Central

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  12. Early planning activity in frontal and parietal cortex in a simplified task

    PubMed Central

    Andersen, Richard A.

    2015-01-01

    Cortical planning activity has traditionally been probed with visual targets. However, external sensory signals might obscure early correlates of internally generated plans. We devised a nonspatial decision-making task in which the monkey is encouraged to decide randomly whether to reach or saccade in the absence of sensory stimuli. Neurons in frontal and parietal planning areas (in and around the arcuate and intraparietal sulci) showed responses predictive of the monkey's upcoming movement at early stages during the planning process. Neurons predicted the animal's future movements several seconds beforehand, sometimes before the trial even began. These data cast new light on the role of the cerebral cortex in the action planning process, when the animal is free to decide on his own actions in the absence of extraneous sensory cues. PMID:25761951

  13. Self-Other Mergence in the Frontal Cortex during Cooperation and Competition.

    PubMed

    Wittmann, Marco K; Kolling, Nils; Faber, Nadira S; Scholl, Jacqueline; Nelissen, Natalie; Rushworth, Matthew F S

    2016-07-20

    To survive, humans must estimate their own ability and the abilities of others. We found that, although people estimated their abilities on the basis of their own performance in a rational manner, their estimates of themselves were partly merged with the performance of others. Reciprocally, their ability estimates for others also reflected their own, as well as the others', performance. Self-other mergence operated in a context-dependent manner: interacting with high or low performers, respectively, enhanced and diminished own ability estimates in cooperative contexts, but the opposite occurred in competitive contexts. Self-other mergence not only influenced subjective evaluations, it also affected how people subsequently objectively adjusted their performance. Perigenual anterior cingulate cortex tracked one's own performance. Dorsomedial frontal area 9 tracked others' performances, but also integrated contextual and self-related information. Self-other mergence increased with the strength of self and other representations in area 9, suggesting it carries interdependent representations of self and other.

  14. Evaluating self-generated decisions in frontal pole cortex of monkeys.

    PubMed

    Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P

    2010-01-01

    The frontal pole cortex (FPC) expanded markedly during human evolution, but its function remains uncertain in both monkeys and humans. Accordingly, we examined single-cell activity in this area. On every trial, monkeys decided between two response targets on the basis of a 'stay' or 'shift' cue. Feedback followed at a fixed delay. FPC cells did not encode the monkeys' decisions when they were made, but did so later on, as feedback approached. This finding indicates that the FPC is involved in monitoring or evaluating decisions. Using a control task and delayed feedback, we found that decision coding lasted until feedback only when the monkeys combined working memory with sensory cues to 'self-generate' decisions, as opposed to when they simply followed trial-by-trial instructions. A role in monitoring or evaluating self-generated decisions could account for FPC's expansion during human evolution.

  15. Increased serotonin release in mice frontal cortex and hippocampus induced by acute physiological stressors.

    PubMed

    Fujino, Kaoru; Yoshitake, Takashi; Inoue, Osamu; Ibii, Nobuhiro; Kehr, Jan; Ishida, Junichi; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2002-03-01

    The effects of acute physiological stressors (5 s tail pinch, handling and forced swimming at +25 and +5 degrees C for 3 min each) on serotonin (5-HT) release in the mouse brain were investigated using in vivo microdialysis. The extracellular 5-HT levels were determined by a newly developed highly-sensitive and selective high-performance liquid chromatography method based on derivatization with benzylamine and fluorescence detection. The basal levels of 5-HT in 3 min microdialysates from the ventral hippocampus and frontal cortex were 0.68+/-0.21 and 0.75+/-0.28 fmol/6 microl (n=24), respectively. All three stressors caused an immediate, significant and reversible increase (handling: 150%; swimming: 240%) of extracellular 5-HT levels in both brain structures, suggesting a more dynamic role played by the serotonergic system in response to acute stress.

  16. GABAergic Agonists Modulate the Glutamate Release from Frontal Cortex Synaptosomes of Rats with Experimental Autoimmune Encephalomyelitis.

    PubMed

    Fernández Hurst, Nicolás; Chanaday, Natalí L; Roth, German A

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease that mimics many of the clinical and pathological features of multiple sclerosis. We have previously described a significant diminution in the GABAergic regulation of glutamate release from synaptosomes of EAE rats isolated during the acute stage of the disease. In order to explore the possible metabolic pathways responsible for this alteration, in this work we evaluate the direct effect of different GABAergic agonists on the glutamate release and concomitant synapsin I phosphorylation in synaptosomes from the frontal cortex of control and EAE animals. The results show that GABA as well as the GABA receptor agonists Muscimol (GABAA agonist) and Baclofen (GABAB agonist) caused a decrease in glutamate release in control rats paralleled by a similar reduction in synapsin I phosphorylation. Meanwhile synaptosomes from EAE animals are responsive only to Baclofen with respect to nontreated EAE synaptosomes, since glutamate release from the synaptosomes treated with Muscimol was similar to that observed in EAE rat synaptosomes which was already reduced as consequence of the disease. In the case of the benzodiazepines Diazepam and Clonazepam (GABAA allosteric agonists), both of them induced a reduction in glutamate release in synaptosomes from the CFA rats, effect that was only observed in synaptosomes of EAE rats treated with Clonazepam. In all cases both benzodiazepines showed a higher effect on synapsin I phosphorylation than in glutamate release. These results indicate that the extent of GABAergic modulation of presynaptic terminals depends on the type of agonist employed and this regulation is altered in the frontal cortex during the acute phase of EAE with respect to control animals. PMID:26631092

  17. Agrammatic comprehension caused by a glioma in the left frontal cortex.

    PubMed

    Kinno, Ryuta; Muragaki, Yoshihiro; Hori, Tomokatsu; Maruyama, Takashi; Kawamura, Mitsuru; Sakai, Kuniyoshi L

    2009-08-01

    It has been known that lesions in the left inferior frontal gyrus (L. IFG) do not always cause Broca's aphasia, casting doubt upon the specificity of this region. We have previously devised a picture-sentence matching task for a functional magnetic resonance imaging (fMRI) study, and observed that both pars triangularis (L. F3t) of L. IFG (extending to pars opercularis (L. F3op)) and the left lateral premotor cortex (L. LPMC) are selectively involved in syntactic processing. The present study with lesion-symptoms mapping was conducted to examine whether the function of these regions is indeed critical for syntactic comprehension. Using the same picture-sentence matching task, we examined 21 patients with a glioma in the left frontal cortex but with no apparent disability in verbal/written communication or intelligence quotient. This task included three main conditions of sentence types: canonical/subject-initial active sentences, non-canonical/subject-initial passive sentences, and non-canonical/object-initial scrambled sentences. The patients preoperatively underwent a high-resolution 3D-MRI, and voxel-based lesion-symptom mapping was employed for the error rates data. We found that the patients with a lesion in L. F3op/F3t or L. LPMC showed differential patterns of condition-selective deficits in the comprehension of sentences. More specifically, the L. F3op/F3t-damaged patients had more profound deficits in the comprehension of non-canonical sentences, whereas the L. LPMC-damaged patients had more profound deficits in the comprehension of object-initial scrambled sentences. These results establish that a lesion in L. F3op/F3t or L. LPMC is sufficient to cause agrammatic comprehension. PMID:19573900

  18. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex

    PubMed Central

    de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225

  19. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    PubMed

    Lieblein-Boff, Jacqueline C; Johnson, Elizabeth J; Kennedy, Adam D; Lai, Chron-Si; Kuchan, Matthew J

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  20. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  1. The role of the frontal cortex in memory: an investigation of the Von Restorff effect

    PubMed Central

    Elhalal, Anat; Davelaar, Eddy J.; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate “cat” within category members of “fruit”). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two. PMID:25018721

  2. The role of the frontal cortex in memory: an investigation of the Von Restorff effect.

    PubMed

    Elhalal, Anat; Davelaar, Eddy J; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate "cat" within category members of "fruit"). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two.

  3. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus.

    PubMed

    Bhattacharya, S K; Bhattacharya, A; Kumar, A; Ghosal, S

    2000-05-01

    The effect of a standardized extract of Bacopa monniera Linn. was assessed on rat brain frontal cortical, striatal and hippocampal superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities, following administration for 7, 14 or 21 days. The effects induced by this extract (bacoside A content 82% +/- 0.5%), administered in doses of 5 and 10 mg/kg, orally, were compared with the effects induced by (-) deprenyl (2 mg/kg, p. o.) administered for the same time periods. Bacopa monniera (BM) induced a dose-related increase in SOD, CAT and GPX activities, in all the brain regions investigated, after 14 and 21 days of drug administration. On the contrary, deprenyl induced an increase in SOD, CAT and GPX activities in the frontal cortex and striatum, but not in the hippocampus, after treatment for 14 or 21 days. The results suggest that BM, like deprenyl, exhibits a significant antioxidant effect after subchronic administration which, unlike the latter, extends to the hippocampus as well. The results suggest that the increase in oxidative free radical scavenging activity by BM may explain, at least in part, the cognition- facilitating action of BM, recorded in Ayurvedic texts, and demonstrated experimentally and clinically.

  4. An Herbal Nasal Drop Enhanced Frontal and Anterior Cingulate Cortex Activity

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-chun; Sze, Sophia L.; Leung, Winnie W.; Shi, Dejian

    2011-01-01

    The present study examined the neuro-electrophysiological activity of the brain associated with the application of a herbal remedy developed by a Shaolin monk based upon the Chan healing principle of clearing the orifices (i.e., the nasal cavities). A repeated-measures design was used. Fourteen normal adults were administered herbal remedy and saline solution intranasally on separate sessions. Two intervals of eyes-closed resting EEG data were obtained individually before and after each administration. Results showed that only the herbal remedy but not the saline solution induced elevation in cordance, an index correlated with cerebral perfusion, in the anterior brain region. In addition, the activity of the anterior cingulate cortex (ACC), as examined by the LORETA analysis, was also increased after the application of the herbal remedy but not saline solution. The present study provided some preliminary evidence suggesting that the herbal nasal drop enhanced the activity of the frontal lobe and ACC. Implications for the potential clinical application of the herbal remedy to treat patients with frontal lobe disorders were discussed. PMID:19996154

  5. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    PubMed Central

    Hamilton, Derek A.; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24 hours of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior

  6. The role of the medial frontal cortex in the maintenance of emotional states.

    PubMed

    Waugh, Christian E; Lemus, Maria G; Gotlib, Ian H

    2014-12-01

    Evidence is accruing that people can maintain their emotional states, but how they do it and which brain regions are responsible still remains unclear. We examined whether people maintain emotional states 'actively', with explicit elaboration of the emotion, or 'passively', without elaboration. Twenty-four participants completed an emotion maintenance task in which they either maintained the emotional intensity from the first picture of a pair to compare to that of the second picture ('maintain' condition), or only rated their emotional response to the second picture ('non-maintain' condition). Supporting the 'active' maintenance hypothesis, when maintaining vs not maintaining emotion, participants exhibited increased height and width of activation in the dorsal medial frontal cortex (MFC) and lateral prefrontal cortex, regions associated with explicit emotion generation and manipulation of contents in working memory, respectively. Supporting the 'passive' maintenance hypothesis, however, when viewing negative emotional pictures (vs neutral pictures) that were not explicitly maintained, participants exhibited greater duration of activity in the rostral MFC, a region associated with implicit emotion generation. Supported by behavioral findings, this evidence that people maintain emotional states both naturally in the rMFC and strategically in the dMFC may be critical for understanding normal as well as disordered emotion regulation.

  7. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    PubMed Central

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K.; Fröhlich, Flavio

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition. PMID:27025995

  8. Adaptive, behaviorally-gated, persistent encoding of task-relevant auditory information in ferret frontal cortex

    PubMed Central

    Fritz, Jonathan B.; David, Stephen V.; Radtke-Schuller, Susanne; Yin, Pingbo; Shamma, Shihab A.

    2010-01-01

    Top-down signals from frontal cortex (FC) are conjectured to play a critical role in cognitive control of sensory processing. To explore this interaction, we compared activity in ferret FC and primary auditory cortex (A1) during auditory and visual tasks requiring discrimination between classes of reference and target stimuli. FC responses were behaviorally-gated, selectively encoded the timing and invariant behavioral meaning of target stimuli, could be rapid in onset, and sometimes persisted for hours following behavior. This mirrors earlier findings in A1that attention triggered rapid, selective, persistent, task-related changes in spectrotemporal receptive fields. Simultaneously recorded local field potentials (LFPs) revealed behaviorally-gated changes in inter-areal coherence, selectively modulated between FC and focal regions of A1 responsive to target sounds. These results suggest that A1 and FC dynamically establish a functional connection during auditory behavior that shapes the flow of sensory information and maintains a persistent trace of recent task-relevant stimulus features. PMID:20622871

  9. The effects of chronic fluoxetine treatment following injury of medial frontal cortex in mice.

    PubMed

    McAllister, Brendan B; Spanswick, Simon C; Patel, Payal P; Barneto, Alison A; Dyck, Richard H

    2015-09-01

    Injury of the brain is a leading cause of long-term disability. Recent evidence indicates that the selective serotonin reuptake inhibitor drug fluoxetine may be beneficial when administered following brain injury. However, its potential to promote recovery and the mechanisms by which it might do so require further characterization. In the present experiment, fluoxetine was administered to mice for 4 weeks following injury of medial frontal cortex (MFC). MFC injury altered behavior, reducing locomotion, decreasing swim speed in the Morris water task, and decreasing anxiety-like behavior in the elevated plus maze. Fluoxetine treatment did not affect these behavioral alterations, but it did increase the social dominance of the injured mice, as assessed by the tube test. Fluoxetine treatment also hastened learning of a T-maze position discrimination task, independently of lesion condition. Anatomically, fluoxetine failed to decrease lesion size, increase the survival of cells born 1-week post injury in the hippocampal dentate gyrus, or reverse the reduction in spine density in layer II/III pyramidal neurons in cingulate cortex caused by the lesions. Fluoxetine did, however, increase the dendritic arborization of these cells, which was reduced in the mice with lesions. Thus, while not all the effects of MFC injury were ameliorated, the behavioral outcome of mice with MFC injuries was improved, and one of the neuroanatomical sequelae of the lesions counteracted, by chronic fluoxetine, further contributing to the evidence that fluoxetine could be a useful treatment following brain injury. PMID:25956871

  10. Antiamnesic effect of acyl-prolyl-containing dipeptide (GVS-111) in compression-induced damage to frontal cortex.

    PubMed

    Romanova, G A; Mirzoev, T K; Barskov, I V; Victorov, I V; Gudasheva, T A; Ostrovskaya, R U

    2000-09-01

    Antiamnestic effect of acyl-prolyl-containing dipeptide GVS-111 was demonstrated in rats with bilateral compression-induced damage to the frontal cortex. Both intraperitoneal and oral administration of the dipeptide improved retrieval of passive avoidance responses in rats with compression-induced cerebral ischemia compared to untreated controls. PMID:11177261

  11. Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa.

    PubMed

    Kullmann, Stephanie; Giel, Katrin E; Teufel, Martin; Thiel, Ansgar; Zipfel, Stephan; Preissl, Hubert

    2014-01-01

    Neuroimaging studies investigating the neural profile of anorexia nervosa (AN) have revealed a predominant imbalance between the reward and inhibition systems of the brain, which are also hallmark characteristics of the disorder. However, little is known whether these changes can also be determined independent of task condition, using resting-state functional magnetic resonance imaging, in currently ill AN patients. Therefore the aim of our study was to investigate resting-state connectivity in AN patients (n = 12) compared to healthy athlete (n = 12) and non-athlete (n = 14) controls. For this purpose, we used degree centrality to investigate functional connectivity of the whole-brain network and then Granger causality to analyze effective connectivity (EC), to understand directional aspects of potential alterations. We were able to show that the bilateral inferior frontal gyrus (IFG) is a region of special functional importance within the whole-brain network, in AN patients, revealing reduced functional connectivity compared to both healthy control groups. Furthermore, we found decreased EC from the right IFG to the midcingulum and increased EC from the bilateral orbitofrontal gyrus to the right IFG. For the left IFG, we only observed increased EC from the bilateral insula to the left IFG. These results suggest that AN patients have reduced connectivity within the cognitive control system of the brain and increased connectivity within regions important for salience processing. Due to its fundamental role in inhibitory behavior, including motor response, altered integrity of the inferior frontal cortex could contribute to hyperactivity in AN. PMID:24936412

  12. Dissociable Roles of Dorsolateral Prefrontal Cortex and Frontal Eye Fields During Saccadic Eye Movements

    PubMed Central

    Cameron, Ian G. M.; Riddle, Justin M.; D’Esposito, Mark

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) and the frontal eye fields (FEF) have both been implicated in the executive control of saccades, yet possible dissociable roles of each region have not been established. Specifically, both establishing a “task set” as well as suppressing an inappropriate response have been linked to DLPFC and FEF activity, with behavioral outcome measures of these mechanisms mainly being the percentage of pro-saccade errors made on anti-saccade trials. We used continuous theta-burst stimulation (cTBS) to disrupt FEF or DLPFC function in humans during an anti-saccade task to assess the causal role of these regions in these executive control processes, and in programming saccades towards (pro-saccade) or away (anti-saccade) from visual targets. After right FEF cTBS, as compared to control cTBS to the right primary somatosensory cortex (rS1), anti-saccade amplitude of the first saccade decreased and the number of anti-saccades to acquire final position increased; however direction errors to the visual target were not different. In contrast, after left DLPFC cTBS, as compared to left S1 cTBS, subjects displayed greater direction errors for contralateral anti-saccades; however, there were no impairments on the number of saccades or the saccade amplitude. These results are consistent with the notion that DLPFC is necessary for executive control of saccades, whereas FEF is necessary for visuo-motor aspects of anti-saccade programming. PMID:26635572

  13. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    PubMed

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  14. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  15. Sex and the frontal cortex: A developmental CT study in the spotted hyena.

    PubMed

    Arsznov, Bradley M; Lundrigan, Barbara L; Holekamp, Kay E; Sakai, Sharleen T

    2010-01-01

    The purpose of this study was to examine developmental and individual variation in total endocranial volume and regional brain volumes, including the anterior cerebrum, posterior cerebrum and cerebellum/brain stem, in the spotted hyena (Crocuta crocuta). The spotted hyena is a highly gregarious animal noted for living in large, hierarchically organized groups. The social lives of male and female spotted hyenas do not differ until after puberty, when males disperse from the natal group, while females remain philopatric. Here we sought to determine whether the divergent life histories of male and female spotted hyenas are linked to differences in brain size or organization. Three-dimensional virtual endocasts were created using computed tomography from 46 spotted hyenas skulls (23 females, 22 males, 1 unknown sex) ranging in age from 1 day to 18 years. Brain volume and skull length were highly correlated (r = 0.91), and both reached asymptotic values by 34 months of age. Analyses of total endocranial volume (relative to skull length) and cerebellum/brain stem volume (relative to total endocranial volume) revealed no sex differences. However, relative anterior cerebrum volume, comprised mainly of frontal cortex, was significantly greater in adult males than adult females, and relative posterior cerebrum volume was greater in adult females than adult males. We hypothesize that the demands of neural processing underlying enhanced social cognition required for successful male transfer between matriarchical social groups at dispersal may be greater than cognitive demands on philopatric females. PMID:21088374

  16. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    PubMed Central

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  17. Sex and the frontal cortex: A developmental CT study in the spotted hyena.

    PubMed

    Arsznov, Bradley M; Lundrigan, Barbara L; Holekamp, Kay E; Sakai, Sharleen T

    2010-01-01

    The purpose of this study was to examine developmental and individual variation in total endocranial volume and regional brain volumes, including the anterior cerebrum, posterior cerebrum and cerebellum/brain stem, in the spotted hyena (Crocuta crocuta). The spotted hyena is a highly gregarious animal noted for living in large, hierarchically organized groups. The social lives of male and female spotted hyenas do not differ until after puberty, when males disperse from the natal group, while females remain philopatric. Here we sought to determine whether the divergent life histories of male and female spotted hyenas are linked to differences in brain size or organization. Three-dimensional virtual endocasts were created using computed tomography from 46 spotted hyenas skulls (23 females, 22 males, 1 unknown sex) ranging in age from 1 day to 18 years. Brain volume and skull length were highly correlated (r = 0.91), and both reached asymptotic values by 34 months of age. Analyses of total endocranial volume (relative to skull length) and cerebellum/brain stem volume (relative to total endocranial volume) revealed no sex differences. However, relative anterior cerebrum volume, comprised mainly of frontal cortex, was significantly greater in adult males than adult females, and relative posterior cerebrum volume was greater in adult females than adult males. We hypothesize that the demands of neural processing underlying enhanced social cognition required for successful male transfer between matriarchical social groups at dispersal may be greater than cognitive demands on philopatric females.

  18. A causal role for posterior medial frontal cortex in choice-induced preference change.

    PubMed

    Izuma, Keise; Akula, Shyam; Murayama, Kou; Wu, Daw-An; Iacoboni, Marco; Adolphs, Ralph

    2015-02-25

    After a person chooses between two items, preference for the chosen item will increase and preference for the unchosen item will decrease because of the choice made. In other words, we tend to justify or rationalize our past behavior by changing our attitude. This phenomenon of choice-induced preference change has been traditionally explained by cognitive dissonance theory. Choosing something that is disliked or not choosing something that is liked are both cognitively inconsistent and, to reduce this inconsistency, people tend to change their subsequently stated preference in accordance with their past choices. Previously, human neuroimaging studies identified posterior medial frontal cortex (pMFC) as a key brain region involved in cognitive dissonance. However, it remains unknown whether the pMFC plays a causal role in inducing preference change after cognitive dissonance. Here, we demonstrate that 25 min, 1 Hz repetitive transcranial magnetic stimulation applied over the pMFC significantly reduces choice-induced preference change compared with sham stimulation or control stimulation over a different brain region, demonstrating a causal role for the pMFC.

  19. Morphometric gray matter differences of the medial frontal cortex influence the Social Simon Effect.

    PubMed

    Dolk, Thomas; Liepelt, Roman; Villringer, Arno; Prinz, Wolfgang; Ragert, Patrick

    2012-07-16

    Interacting with others plays a fundamental role in human life. Although several brain regions have recently been associated with complex cognitive control processes, surprisingly little is known about the structural correlates underlying cognitive control processes involved in social interactions. In the present study we used gray matter voxel-based morphometry (VBM) to investigate structural brain correlates of individual performance differences in a social Simon task. Here, two people share a Simon task, which requires each participant to respond to only one of two possible stimuli, rendering the paradigm a go-nogo task, so that a Simon effect - known as the Social Simon Effect (SSE) - is observable across both participants. Using a whole brain approach, we found that inter-individual differences in the SSE are negatively correlated with gray matter (GM) volume of the medial frontal cortex (MFC). The present data indicate that individuals with larger MFC GM volume were those with better conflict resolution in a social Simon task and vice versa. This brain-behavior relationship between cognitive control processes and individual GM volume differences might help to improve our understanding of social interactions in joint task performance.

  20. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    PubMed

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  1. VEGF/VEGFR-2 changes in frontal cortex, choroid plexus, and CSF after chronic obstructive hydrocephalus

    PubMed Central

    Yang, Jun; Dombrowski, Stephen M; Deshpande, Abhishek; Krajcir, Natalie; Luciano, Mark G

    2010-01-01

    Chronic Hydrocephalus (CH) is often associated with decreased cerebral blood flow (CBF) and oxygen levels. While the exact pathophysiology is not clear, vascular endothelial growth factor (VEGF) and its receptor-2 (VEGFR-2) may be involved. Because the choroid plexus (CP) is involved in cerebrospinal fluid (CSF) production and secretes numerous growth factors including VEGF, it is important to understand VEGF/VEGFR-2 levels in the CP–CSF circulatory system. Our results showed significant decreases in CBF and VEGFR-2 levels in frontal cortex (FC) in CH compared with SC; there were no significant changes in VEGF levels. CBF change in FC was positively correlated with VEGFR-2 levels (P=0.024). Immunohistochemistry (IHC) showed robust expression of VEGF/VEGFR-2 in CP. After CH induction, ventricular CSF volume and VEGF levels significantly increased. These results suggest that the decreased VEGFR-2 levels in FC may be contributed to decreased CBF and increased ventricular CSF-VEGF levels possibly reflected a hypoxic response and/or accumulation of VEGF from CP secretion after blockage of CSF outlet. Further investigation into CSF-VEGF levels in different sites may provide a better understanding of VEGF/VEGFR-2 modulation in the normal and hydrocephalic brain, and may represent a feasible approach to potential therapeutic options for hydrocephalus. PMID:20619858

  2. Representation of others' action by neurons in monkey medial frontal cortex.

    PubMed

    Yoshida, Kyoko; Saito, Nobuhito; Iriki, Atsushi; Isoda, Masaki

    2011-02-01

    Successful social interaction depends on not only the ability to identify with others but also the ability to distinguish between aspects of self and others. Although there is considerable knowledge of a shared neural substrate between self-action and others' action, it remains unknown where and how in the brain the action of others is uniquely represented. Exploring such agent-specific neural codes is important because one's action and intention can differ between individuals. Moreover, the assignment of social agency breaks down in a range of mental disorders. Here, using two monkeys monitoring each other's action for adaptive behavioral planning, we show that the medial frontal cortex (MFC) contains a group of neurons that selectively encode others' action. These neurons, observed in both dominant and submissive monkeys, were significantly more prevalent in the dorsomedial convexity region of the MFC including the pre-supplementary motor area than in the cingulate sulcus region of the MFC including the rostral cingulate motor area. Further tests revealed that the difference in neuronal activity was not due to gaze direction or muscular activity. We suggest that the MFC is involved in self-other differentiation in the domain of motor action and provides a fundamental neural signal for social learning. PMID:21256015

  3. Near-infrared measurements of hemodynamic and oxygenation changes on the frontal cortex during breath holding, hyperventilation, and natural sleep

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi E.; Kotilahti, Kalle; Toppila, Jussi; Nissila, Ilkka T.; Salmi, Tapani; Kajava, Timo T.; Katila, Toivo E.

    2003-07-01

    We have developed a frequency-domain near-infrared device suitable for physiological studies in human. In this work, a four-channel configuration of the instrument is applied to monitor hemodynamic and oxygenation changes in the frontal cortex of volunteers during different ventilation tasks. We use four different source-receiver separations (2, 3, 4, and 5 cm) and three wavelengths (760, 808, and 830 nm) to test the sensitivity of these parameters to cardiovascular and metabolic changes. Low-frequency oscillations (~ 0.02 Hz) and variations in heart rate during different ventilation tasks are investigated as well. We also study physiological changes during natural sleep using the frequency-domain instrument simultaneously with a polysomnography system containing a pulse oximeter. Our results indicate that hemodynamic and oxygenation changes in the frontal cortex during natural sleep can be detected using near-infrared measurements.

  4. Lipofuscin response to the "aging-reversal" drug centrophenoxine in rat retinal pigment epithelium and frontal cortex.

    PubMed

    Katz, M L; Robison, W G

    1983-09-01

    The effects of centrophenoxine on the lipofuscin contents of the retinal pigment epithelium (RPE) and frontal cortex of the brain were examined in senescent female Fischer rats. Rats (106 weeks old) were injected daily for 11 weeks with centrophenoxine (80 to 120 mg/kg body weight) or saline, and then sacrificed along with untreated 28- and 46-week-old controls. The number of lipofuscin granules seen in the RPE by light microscopy increased by 70% between 28 and 117 weeks of age in control animals. There was a concomitant age-related increase in lipofuscin specific fluorescence in the RPE. Centrophenoxine treatment neither reduced the amount of lipofuscin, nor altered the ultrastructural appearance of lipofuscin granules in the RPE. Between 28 and 117 weeks of age, there was an almost nine-fold increase in the lipofuscin content of the frontal cortex of control animals; centrophenoxine treatment failed to reverse this pigment accumulation.

  5. Perimicrovascular edema in the frontal cortex in a rat model of intraperitoneal sepsis.

    PubMed

    Ari, Ilknur; Kafa, Ilker M; Kurt, M Ayberk

    2006-03-01

    Septic encephalopathy is a complication of sepsis, and it is closely associated with the increased mortality of the sufferers. Pathophysiology of septic encephalopathy is not still completely understood. In an attempt to provide insight into the pathogenesis of septic encephalopathy, a light and electron microscopic investigation has been carried out in a rat model of intraperitoneal sepsis. Experimental fecal peritonitis was induced in Wistar rats which have been monitored for 6 h and sacrificed to harvest the samples of frontal cortex. Vital parameters and morphometric data obtained from investigation of the microvessels were then compared with the sham-operated and unoperated controls. In addition to the discernible drop in the blood pressure and in rectal temperature following initial increases, unstable but usually increased heart rate and marked respiratory failure were recorded. Estimation of the percentage of the microvessel area occupied by edema revealed the presence of significantly more perimicrovascular edema in the experimental fecal peritonitis group compared to both sham-operated and unoperated controls, while no significant difference was present between the latter two groups. Electron microscopic investigation confirmed the presence of distinctive perimicrovascular edema in the fecal peritonitis group although the endothelial cells were linked by tight junctions which appeared morphologically intact. Although it might be premature to draw any strict parallels between the septic encephalopathy in humans and the findings observed in the present model, the results may suggest that the edema observed around the microvessels would bare a role in the pathogenesis of the septic encephalopathy probably by affecting the exchange of oxygen and nutrients with carbon dioxide and waste products between the blood and brain parenchyma.

  6. Transcranial Direct Current Stimulation of Frontal Cortex Decreases Performance on the WAIS-IV Intelligence Test

    PubMed Central

    Sellers, Kristin K.; Mellin, Juliann M.; Lustenberger, Caroline M.; Boyle, Michael R.; Lee, Won Hee; Peterchev, Angel V.; Frohlich, Flavio

    2015-01-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2mA at each anode for 20 minutes) or active sham tDCS (2mA for 40 seconds), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2mA for 20 minutes). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. PMID:25934490

  7. Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling.

    PubMed

    Oberg, Scott A K; Christie, Gregory J; Tata, Matthew S

    2011-11-01

    Problem gambling (PG) is increasingly conceptualized as an addiction akin to substance abuse, rather than an impulse control disorder, however the mechanism of addiction remains unclear. Neuroimaging investigations have supported a "reward deficiency" hypothesis for PG by suggesting a blunted response to gambling, particularly in the striatum. Here we describe electrophysiological evidence of a hypersensitive response to gambling feedback in problem gamblers. Previous research in healthy participants has shown that feedback during gambling tasks triggers stereotypical neural responses including the Feedback-Related Mediofrontal Negativity (FRN), the feedback-related P300, and an increase in induced theta-band (4-8 Hz) power. We tested the theory that abnormal feedback processing characterizes brain activity in problem gamblers while gambling. EEG was recorded from non-gamblers and self-identified gamblers as they engaged in a computerized version of the Iowa Gambling Task. Feedback about valence (win vs. loss) triggered a FRN in both groups, but in gamblers this was preceded by an early-latency hypersensitive fronto-central difference to feedback. This early FRN was correlated with gambling severity and was localized to medial frontal cortex using distributed source imaging (CLARA). Gamblers also differed in responses to risk, showing a blunted P300 component and less EEG power in the theta band. Here we suggest that a more nuanced interpretation of reward deficiency is called for with respect to PG. For certain aspects of brain function, gamblers may exhibit hypersensitivity to reward feedback more akin to drug sensitization than reward deficiency. Our results also suggest that the neurologically normal brain employs dissociable systems in the processing of feedback from tasks involving risky decision making.

  8. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    PubMed

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy.

  9. Frontal association cortex is engaged in stimulus integration during associative learning.

    PubMed

    Nakayama, Daisuke; Baraki, Zohal; Onoue, Kousuke; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi

    2015-01-01

    The frontal association cortex (FrA) is implicated in higher brain function. Aberrant FrA activity is likely to be involved in dementia pathology. However, the functional circuits both within the FrA and with other regions are unclear. A recent study showed that inactivation of the FrA impairs memory consolidation of an auditory fear conditioning in young mice. In addition, dendritic spine remodeling of FrA neurons is sensitive to paired sensory stimuli that produce associative memory. These findings suggest that the FrA is engaged in neural processes critical to associative learning. Here we characterize stimulus integration in the mouse FrA during associative learning. We experimentally separated contextual fear conditioning into context exposure and shock, and found that memory formation requires protein synthesis associated with both context exposure and shock in the FrA. Both context exposure and shock trigger Arc, an activity-dependent immediate-early gene, expression in the FrA, and a subset of FrA neurons was dually activated by both stimuli. In addition, we found that the FrA receives projections from the perirhinal (PRh) and insular (IC) cortices and basolateral amygdala (BLA), which are implicated in context and shock encoding. PRh and IC neurons projecting to the FrA were activated by context exposure and shock, respectively. Arc expression in the FrA associated with context exposure and shock depended on PRh activity and both IC and BLA activities, respectively. These findings indicate that the FrA is engaged in stimulus integration and contributes to memory formation in associative learning. PMID:25496961

  10. New Model of Action for Mood Stabilizers: Phosphoproteome from Rat Pre-Frontal Cortex Synaptoneurosomal Preparations

    PubMed Central

    Corena-McLeod, Maria; Walss-Bass, Consuelo; Oliveros, Alfredo; Gordillo Villegas, Andres; Ceballos, Carolina; Charlesworth, Cristine M.; Madden, Benjamin; Linser, Paul J.; Van Ekeris, Leslie; Smith, Kristin; Richelson, Elliott

    2013-01-01

    Background Mitochondrial short and long-range movements are necessary to generate the energy needed for synaptic signaling and plasticity. Therefore, an effective mechanism to transport and anchor mitochondria to pre- and post-synaptic terminals is as important as functional mitochondria in neuronal firing. Mitochondrial movement range is regulated by phosphorylation of cytoskeletal and motor proteins in addition to changes in mitochondrial membrane potential. Movement direction is regulated by serotonin and dopamine levels. However, data on mitochondrial movement defects and their involvement in defective signaling and neuroplasticity in relationship with mood disorders is scarce. We have previously reported the effects of lithium, valproate and a new antipsychotic, paliperidone on protein expression levels at the synaptic level. Hypothesis Mitochondrial function defects have recently been implicated in schizophrenia and bipolar disorder. We postulate that mood stabilizer treatment has a profound effect on mitochondrial function, synaptic plasticity, mitochondrial migration and direction of movement. Methods Synaptoneurosomal preparations from rat pre-frontal cortex were obtained after 28 daily intraperitoneal injections of lithium, valproate and paliperidone. Phosphorylated proteins were identified using 2D-DIGE and nano LC-ESI tandem mass spectrometry. Results Lithium, valproate and paliperidone had a substantial and common effect on the phosphorylation state of specific actin, tubulin and myosin isoforms as well as other proteins associated with neurofilaments. Furthermore, different subunits from complex III and V of the electron transfer chain were heavily phosphorylated by treatment with these drugs indicating selective phosphorylation. Conclusions Mood stabilizers have an effect on mitochondrial function, mitochondrial movement and the direction of this movement. The implications of these findings will contribute to novel insights regarding clinical

  11. Ethanol modifies differently aspartyl- and glutamyl-aminopeptidase activities in mouse frontal cortex synaptosomes.

    PubMed

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García, María Jesús; Ramírez, Manuel; Martínez-Martos, José Manuel

    2002-01-15

    Aminopeptidase A activity (aspartyl aminopeptidase (AspAP) and glutamyl aminopeptidase (GluAP) exerts angiotensinase activity due to its relation to the metabolism of angiotensins in the regional brain renin-angiotensin system (RAS). This activity may also modify the free amino acid pool through the release of N-terminal acidic amino acids. Ethanol (EtOH) exerts profound effects on the brain, inducing important neurological damages. Our purpose is to study the influence of EtOH on AspAP and GluAP activities on basal and K(+)-stimulated conditions, at the synapse level. We used mouse frontal cortex synaptosomes and their incubation supernatant in a Ca(2+)-containing or Ca(2+)-free artificial cerebrospinal fluid. We evaluate the possible contribution of these enzymatic activities on brain blood pressure regulation through RAS and/or the free acidic amino acid pool. The results obtained are correlated with several parameters of oxidative stress, such as free radical generation, lipid peroxidation, and protein oxidation. Under basal conditions, in synaptosomes, EtOH inhibits AspAP and GluAP activities independently of Ca(2+). In the supernatant, however, EtOH differently modulates the two enzyme activities under the various concentrations. Under K(+)-stimulated conditions, EtOH inhibits the K(+)-stimulated increase on AspAP and GluAP differently depending on the presence or absence of Ca(2+) and the concentration of EtOH used. These results invalidate the idea that excess free acidic amino acids could be released by AspAP and GluAP to induce neurodegeneration. The changes in AspAP and GluAP activities as a consequence of EtOH administration and their role in the brain RAS are discussed.

  12. Conserved Interneuron-Specific ErbB4 Expression in Frontal Cortex of Rodents, Monkeys, and Humans: Implications for Schizophrenia

    PubMed Central

    Neddens, Jörg; Fish, Kenneth N.; Tricoire, Ludovic; Vullhorst, Detlef; Shamir, Alon; Chung, Wonjae; Lewis, David A.; McBain, Chris J.; Buonanno, Andrés

    2016-01-01

    Background Neuregulin-1 and ErbB4 are genetically associated with schizophrenia, and detailed knowledge of the cellular and subcellular localization of ErbB4 is important for understanding how neuregulin-1 regulates neuronal network activity and behavior. Expression of ErbB4 is restricted to interneurons in the rodent hippocampus and cortex. However, controversy remains about the cellular expression pattern in primate brain and its subcellular distribution in postsynaptic somatodendritic locations versus presynaptic terminals. Methods ErbB4 expression was analyzed in pyramidal cells and interneurons in the frontal cortex of five species: C57BL6 mice (n = 3), ErbB4−/− mice (n = 2), Sprague-Dawley rats (n = 3), two macaque species (n = 3 + 2), and humans (normal control subjects, n = 2). We investigated 1) messenger RNA in mice, macaques, and humans; 2) protein expression in all species using highly specific monoclonal antibodies; and 3) specificity tests of several ErbB4 antibodies on brain samples (mouse, macaque, human). Results ErbB4 RNA is restricted to interneurons in the frontal cortex of mice. ErbB4 protein is undetectable in pyramidal cells of rodents, macaques, and human frontal cortex, whereas most interneurons positive for parvalbumin, calretinin, or cholecystokinin, but only a minority of calbindin-positive cells, co-express ErbB4 in macaques. Importantly, no presynaptic ErbB4 expression was detected in any species. Conclusions The interneuron-selective somatodendritic expression of ErbB4 is consistent with a primary role of neuregulin-ErbB4 signaling in the postsynaptic modulation of gamma-aminobutyric acidergic function in rodents and primates. Our data validate the use of rodents to analyze effects of abnormal ErbB4 function as a means to model endophenotypes of psychiatric disorders. PMID:21664604

  13. Effects of Hypothyroidism on Expression of CRMP2B and ARPC5 during Development of the Rat Frontal Cortex

    PubMed Central

    Liu, Chun-rong; Miao, Jun; Zhang, Yong-liang; Liu, Ya-min; Yu, Bao-guo

    2013-01-01

    Congenital hypothyroidism (CH) can lead to irreversible central nervous system (CNS) damage. However, the pathogenesis of the developmental brain disorders caused by CH has not been completely elucidated. ARPC5 and CRMP2 are closely associated with neurite outgrowth in brain development. Thus, the aim of the present study was to determine whether CRMP2B and ARPC5 expression is altered in the developing cerebral cortex of rats with CH. Control rats and rats with hypothyroidism were sacrificed at birth and at 15 days postpartum. We performed qRT-PCR to detect differences in the crmp2B and arpc5 mRNA expression in the right half of the frontal cortex of these rats. Western blotting was then used to detect differences in CRMP2B and ARPC5 protein expression. Furthermore, immunohistochemical analysis was performed on the left half of the frontal cortex to detect abnormal localization of CRMP2B and ARPC5. Results showed increased expression of the nuclear short isoform of CRMP2B and decreased expression of full-length CRMP2B and ARPC5 in cortical neurons of rats with hypothyroidism. These findings demonstrate that reduced levels of thyroid hormones can inhibit the expression of full-length CRMP2B and ARPC5 and promote nuclear transformation of the short isoform of CRMP2B. CRMP2B and ARPC5 may participate in CNS injury mediated by hypothyroidism by inducing neurite outgrowth inhibition and cytoskeletal protein disorganization. PMID:23459330

  14. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  15. Observing accidental and intentional unusual actions is associated with different subregions of the medial frontal cortex.

    PubMed

    Desmet, Charlotte; Brass, Marcel

    2015-11-15

    The literature on action observation revealed contradictory results regarding the activation of different subregions of the medial prefrontal cortex when observing unusual behaviour. Error observation research has shown that the posterior part of the medial prefrontal cortex is more active when observing unusual behaviour compared to usual behaviour while action understanding research has revealed some mixed results concerning the role of the anterior part of the medial prefrontal cortex during the observation of unusual actions. Here, we resolve this discrepancy in the literature by showing that different parts of the medial prefrontal cortex are active depending on whether an observed unusual behaviour is intentional or not. While the posterior medial prefrontal cortex is more active when we observe unusual accidental actions compared to unusual intentional actions, a more anterior part of the medial prefrontal cortex is more active when we observe unusual intentional actions compared to unusual accidental actions.

  16. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  17. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning.

    PubMed

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature (P < 0.05) and higher increase of oxyhemoglobin in both left (P < 0.05) and right (P < 0.05) pre-frontal cortex at the final stage of 45-min leg immersion in the 42 °C condition with unaltered tissue oxygenation index among the three conditions (P > 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left (P = 0.05) and right (P < 0.05) pre-frontal cortex. The findings of this study suggest, first, passive heat exposure increases oxygen delivery in the pre-frontal cortex to maintain pre-frontal cortex oxygenation; second, there is no evidence of passive heat exposure in cognitive functioning in this study; and third, the greater increases of oxyhemoglobin in the pre-frontal cortex during cognitive functioning at the hottest condition suggests a recruitment of available neural resources or greater effort to maintain the same performance at the same level as when they felt thermally comfortable.

  18. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    NASA Astrophysics Data System (ADS)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P < 0.05) and higher increase of oxyhemoglobin in both left ( P < 0.05) and right ( P < 0.05) pre-frontal cortex at the final stage of 45-min leg immersion in the 42 °C condition with unaltered tissue oxygenation index among the three conditions ( P > 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P < 0.05) pre-frontal cortex. The findings of this study suggest, first, passive heat exposure increases oxygen delivery in the pre-frontal cortex to maintain pre-frontal cortex oxygenation; second, there is no evidence of passive heat exposure in cognitive functioning in this study; and third, the greater increases of oxyhemoglobin in the pre-frontal cortex during cognitive functioning at the hottest condition suggests a recruitment of available neural resources or greater effort to maintain the same performance at the same level as when they felt thermally comfortable.

  19. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. PMID:27596931

  20. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  1. Development and Function of the Human Fetal Adrenal Cortex: A Key Component in the Feto-Placental Unit

    PubMed Central

    Ishimoto, Hitoshi

    2011-01-01

    Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591

  2. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    PubMed

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  3. The Galanin Receptor Agonist, Galnon, Attenuates Cocaine-Induced Reinstatement and Dopamine Overflow in the Frontal Cortex

    PubMed Central

    Ogbonmwan, Yvonne E.; Sciolino, Natale R.; Groves-Chapman, Jessica L.; Freeman, Kimberly G.; Schroeder, Jason P.; Edwards, Gaylen L.; Holmes, Philip V.; Weinshenker, David

    2014-01-01

    Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement, and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels, or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex. PMID:25053279

  4. The galanin receptor agonist, galnon, attenuates cocaine-induced reinstatement and dopamine overflow in the frontal cortex.

    PubMed

    Ogbonmwan, Yvonne E; Sciolino, Natale R; Groves-Chapman, Jessica L; Freeman, Kimberly G; Schroeder, Jason P; Edwards, Gaylen L; Holmes, Philip V; Weinshenker, David

    2015-07-01

    Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex. PMID:25053279

  5. The galanin receptor agonist, galnon, attenuates cocaine-induced reinstatement and dopamine overflow in the frontal cortex.

    PubMed

    Ogbonmwan, Yvonne E; Sciolino, Natale R; Groves-Chapman, Jessica L; Freeman, Kimberly G; Schroeder, Jason P; Edwards, Gaylen L; Holmes, Philip V; Weinshenker, David

    2015-07-01

    Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.

  6. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease.

    PubMed

    Fabelo, Noemí; Martín, Virginia; Santpere, Gabriel; Marín, Raquel; Torrent, Laia; Ferrer, Isidre; Díaz, Mario

    2011-01-01

    Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physicochemical microenvironment to promote protein-lipid and protein-protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson's disease (PD) and incidental Parkinson's disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders. PMID:21717034

  7. Anterior and posterior subareas of the dorsolateral frontal cortex in socially relevant decisions based on masked affect expressions

    PubMed Central

    Prochnow, Denise; Brunheim, Sascha; Kossack, Hannes; Eickhoff, Simon B.; Markowitsch, Hans J.; Seitz, Rüdiger J.

    2015-01-01

    Socially-relevant decisions are based on clearly recognizable but also not consciously accessible affective stimuli. We studied the role of the dorsolateral frontal cortex (DLFC) in decision-making on masked affect expressions using functional magnetic resonance imaging. Our paradigm permitted us to capture brain activity during a pre-decision phase when the subjects viewed emotional expressions below the threshold of subjective awareness, and during the decision phase, which was based on verbal descriptions as the choice criterion. Using meta-analytic connectivity modeling, we found that the preparatory phase of the decision was associated with activity in a right-posterior portion of the DLFC featuring co-activations in the left-inferior frontal cortex. During the subsequent decision a right-anterior and more dorsal portion of the DLFC became activated, exhibiting a different co-activation pattern. These results provide evidence for partially independent sub-regions within the DLFC, supporting the notion of dual associative processes in intuitive judgments. PMID:26236464

  8. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    PubMed

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  9. Cushing's syndrome and fetal features resurgence in adrenal cortex-specific Prkar1a knockout mice.

    PubMed

    Sahut-Barnola, Isabelle; de Joussineau, Cyrille; Val, Pierre; Lambert-Langlais, Sarah; Damon, Christelle; Lefrançois-Martinez, Anne-Marie; Pointud, Jean-Christophe; Marceau, Geoffroy; Sapin, Vincent; Tissier, Frédérique; Ragazzon, Bruno; Bertherat, Jérôme; Kirschner, Lawrence S; Stratakis, Constantine A; Martinez, Antoine

    2010-06-01

    Carney complex (CNC) is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD), a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing's syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 alpha-regulatory subunit (R1alpha) of the cAMP-dependent protein kinase (PKA) have been found in 80% of CNC patients with Cushing's syndrome. To demonstrate the implication of R1alpha loss in the initiation and development of PPNAD, we generated mice lacking Prkar1a specifically in the adrenal cortex (AdKO). AdKO mice develop pituitary-independent Cushing's syndrome with increased PKA activity. This leads to autonomous steroidogenic genes expression and deregulated adreno-cortical cells differentiation, increased proliferation and resistance to apoptosis. Unexpectedly, R1alpha loss results in improper maintenance and centrifugal expansion of cortisol-producing fetal adrenocortical cells with concomitant regression of adult cortex. Our data provide the first in vivo evidence that loss of R1alpha is sufficient to induce autonomous adrenal hyper-activity and bilateral hyperplasia, both observed in human PPNAD. Furthermore, this model demonstrates that deregulated PKA activity favors the emergence of a new cell population potentially arising from the fetal adrenal, giving new insight into the mechanisms leading to PPNAD. PMID:20548949

  10. Agrammatic Comprehension Caused by a Glioma in the Left Frontal Cortex

    ERIC Educational Resources Information Center

    Kinno, Ryuta; Muragaki, Yoshihiro; Hori, Tomokatsu; Maruyama, Takashi; Kawamura, Mitsuru; Sakai, Kuniyoshi L.

    2009-01-01

    It has been known that lesions in the left inferior frontal gyrus (L. IFG) do not always cause Broca's aphasia, casting doubt upon the specificity of this region. We have previously devised a picture-sentence matching task for a functional magnetic resonance imaging (fMRI) study, and observed that both pars triangularis (L. F3t) of L. IFG…

  11. Left Inferior Frontal Cortex and Syntax: Function, Structure and Behaviour in Patients with Left Hemisphere Damage

    ERIC Educational Resources Information Center

    Tyler, Lorraine K.; Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.

    2011-01-01

    For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left…

  12. Reduced functional connectivity to the frontal cortex during processing of social cues in autism spectrum disorder.

    PubMed

    Hoffmann, Elgin; Brück, Carolin; Kreifelts, Benjamin; Ethofer, Thomas; Wildgruber, Dirk

    2016-08-01

    People diagnosed with autism spectrum disorder (ASD) characteristically present with severe difficulties in interpreting every-day social signals. Currently it is assumed that these difficulties might have neurobiological correlates in alterations in activation as well as in connectivity in and between regions of the social perception network suggested to govern the processing of social cues. In this study, we conducted functional magnetic resonance imaging (fMRI)-based activation and connectivity analyses focusing on face-, voice-, and audiovisual-processing brain regions as the most important subareas of the social perception network. Results revealed alterations in connectivity among regions involved in the processing of social stimuli in ASD subjects compared to typically developed (TD) controls-specifically, a reduced connectivity between the left temporal voice area (TVA) and the superior and medial frontal gyrus. Alterations in connectivity, moreover, were correlated with the severity of autistic traits: correlation analysis indicated that the connectivity between the left TVA and the limbic lobe, anterior cingulate and the medial frontal gyrus as well as between the right TVA and the frontal lobe, anterior cingulate, limbic lobe and the caudate decreased with increasing symptom severity. As these frontal regions are understood to play an important role in interpreting and mentalizing social signals, the observed underconnectivity might be construed as playing a role in social impairments in ASD. PMID:27094176

  13. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation

    PubMed Central

    Nagarajan, Raman P.; Hogart, Amber R.; Gwye, Ynnez; Martin, Michelle R.; LaSalle, Janine M.

    2007-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are “pervasive developmental disorders” and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism. PMID:17486179

  14. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making.

    PubMed

    Rudebeck, P H; Bannerman, D M; Rushworth, M F S

    2008-12-01

    Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients' emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses. PMID:19033243

  15. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex.

    PubMed

    Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon

    2014-11-01

    Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.

  16. The Involvement of Occipital and Inferior Frontal Cortex in the Phonological Learning of Chinese Characters

    PubMed Central

    Deng, Yuan; Chou, Tai-li; Ding, Guo-sheng; Peng, Dan-ling; Booth, James R.

    2016-01-01

    Neural changes related to the learning of the pronunciation of Chinese characters in English speakers were examined using fMRI. We examined the item-specific learning effects for trained characters and the generalization of phonetic knowledge to novel transfer characters that shared a phonetic radical (part of a character that gives a clue to the whole character’s pronunciation) with trained characters. Behavioral results showed that shared phonetic information improved performance for transfer characters. Neuroimaging results for trained characters over learning found increased activation in the right lingual gyrus, and greater activation enhancement in the left inferior frontal gyrus (Brodmann’s area 44) was correlated with higher accuracy improvement. Moreover, greater activation for transfer characters in these two regions at the late stage of training was correlated with better knowledge of the phonetic radical in a delayed recall test. The current study suggests that the right lingual gyrus and the left inferior frontal gyrus are crucial for the learning of Chinese characters and the generalization of that knowledge to novel characters. Left inferior frontal gyrus is likely involved in phonological segmentation, whereas right lingual gyrus may subserve processing visual–orthographic information. PMID:20807053

  17. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC.

  18. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  19. The Dorsal Medial Frontal Cortex is Sensitive to Time on Task, Not Response Conflict or Error Likelihood

    PubMed Central

    Grinband, Jack; Savitsky, Judith; Wager, Tor D.; Teichert, Tobias; Ferrera, Vincent P.; Hirsch, Joy

    2011-01-01

    The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. PMID:21168515

  20. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress

    PubMed Central

    2014-01-01

    Background The innate immune response is the first line of defence against invading microorganisms and it is also activated in different neurologic/neurodegenerative pathological scenarios. As a result, the family of the innate immune toll-like receptors (TLRs) and, in particular, the genetic/pharmacological manipulation of the TLR-4 signalling pathway emerges as a potential therapeutic strategy. Growing evidence relates stress exposure with altered immune responses, but the precise role of TLR-4 remains partly unknown. Methods The present study aimed to elucidate whether the elements of the TLR-4 signalling pathway are activated after acute stress exposure in rat brain frontal cortex and its role in the regulation of the stress-induced neuroinflammatory response, by means of its pharmacological modulation with the intravenous administration of the TLR-4 specific inhibitor TAK-242. Considering that TLR-4 responds predominantly to lipopolysaccharide from gram-negative bacteria, we checked whether increased intestinal permeability and a resultant bacterial translocation is a potential regulatory mechanism of stress-induced TLR-4 activation. Results Acute restraint stress exposure upregulates TLR-4 expression both at the mRNA and protein level. Stress-induced TLR-4 upregulation is prevented by the protocol of antibiotic intestinal decontamination made to reduce indigenous gastrointestinal microflora, suggesting a role for bacterial translocation on TLR-4 signalling pathway activation. TAK-242 pre-stress administration prevents the accumulation of potentially deleterious inflammatory and oxidative/nitrosative mediators in the brain frontal cortex of rats. Conclusions The use of TAK-242 or other TLR-4 signalling pathway inhibitory compounds could be considered as a potential therapeutic adjuvant strategy to constrain the inflammatory process taking place after stress exposure and in stress-related neuropsychiatric diseases. PMID:24410883

  1. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice.

    PubMed

    Hu, Wen; Zhang, Yaodong; Wu, Wenning; Yin, Yanyan; Huang, Dake; Wang, Yuchan; Li, Weiping; Li, Weizu

    2016-02-01

    Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and depression. Chronic glucocorticoids (GCs) exposure has deleterious effects on the structure and function of neurons and is associated with development and progression of AD. However, little is known about the proinflammatory effects of chronic GCs exposure on neurodegeneration in brain. Therefore, the aim of this study was to evaluate the effects of chronic dexamethasone (DEX) treatment (5mg/kg, s.c. for 7, 14, 21 and 28 days) on behavior, neurodegeneration and neuroinflammatory parameters of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 1 (NLRP-1) inflammasome in male mice. The results showed that DEX treatment for 21 and 28 days significantly reduced the spontaneous motor activity and exploratory behavior of the mice. In addition, these mice showed significant neurodegeneration and a decrease of microtubule-associated protein 2 (MAP2) in the frontal cortex and hippocampus CA3. DEX treatment for 7, 14, 21 and 28 days significantly decreased the mRNA and protein expression of glucocorticoid receptor (GR). Moreover, DEX treatment for 21 and 28 days significantly increased the proteins expression of NLRP-1, Caspase-1, Caspase-5, apoptosis associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), IL-18 and IL-6 in the frontal cortex and hippocampus brain tissue. DEX treatment for 28 days also significantly increased the mRNA expression levels of NLRP-1, Caspase-1, ASC and IL-1β. These results suggest that chronic GCs exposure may increase brain inflammation via NLRP-1 inflammasome activation and induce neurodegeneration.

  2. Immobility behavior during the forced swim test correlates with BNDF levels in the frontal cortex, but not with cognitive impairments.

    PubMed

    Borsoi, Milene; Antonio, Camila Boque; Viana, Alice Fialho; Nardin, Patrícia; Gonçalves, Carlos-Alberto; Rates, Stela Maris Kuze

    2015-03-01

    The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders. PMID:25496978

  3. Prefrontal cortical volume reduction associated with frontal cortex function deficit in 6-week abstinent crack-cocaine dependent men

    PubMed Central

    Fein, George; Di Sclafani, Victoria; Meyerhoff, Dieter J.

    2010-01-01

    Background This study examined regional cortical volumes in 6-week abstinent men dependent on crack-cocaine only (Cr) or on both crack-cocaine and alcohol (CrA). Our goal was to test the a priori hypothesis of prefrontal cortical volume reduction, along with associated impairments in frontal mediated functions, and to look for differences between the Cr and CrA groups. Methods Structural magnetic resonance imaging (MRI) of the brain and neuropsychological assessment were performed on 17 6-week abstinent Cr subjects, 29 six-week abstinent CrA subjects, and 20 normal controls. Cortical volume was quantified in the prefrontal, parietal, temporal and occipital regions. Results Cr and CrA subjects showed comparable reductions in prefrontal gray matter volume compared to controls; this reduction was negatively associated with performance impairments in the executive function domain. Conclusions Dependence on Cr (with or without concomitant alcohol dependence) was associated with reduced prefrontal cortical volume. Cr dependence with concomitant alcohol dependence was not associated with greater prefrontal volume reductions than Cr dependence alone. The existence of these findings at 6-week abstinence indicates that they are not a result of acute cocaine or alcohol exposure. The association of reduced prefrontal cortical volume with cognitive impairments in frontal cortex mediated abilities suggests that this reduced cerebral volume has functional consequences. PMID:12167554

  4. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study.

    PubMed

    Suzuki, Mitsuo; Miyai, Ichiro; Ono, Takeshi; Kubota, Kisou

    2008-01-15

    Neural activities in the primary motor cortex and supplementary motor area increase during the preparation as well as execution of voluntary movements of the hand and foot. However, there are few studies concerning preparatory activities of the brain preceding walking performance. We investigated how a verbal instruction "ready" before walking affected cortical activations and walking performances using a functional near-infrared spectroscopy. Seven healthy subjects performed two locomotor tasks on a treadmill with a verbal instruction "ready" before the treadmill was started (prepared walking; PW) and without it (simple walking; SW). Cadence was smaller and stride length was longer in PW than in SW. Increases of oxygenated hemoglobin (oxyHb) in the frontal regions especially in the prefrontal and premotor cortices were greater in PW than in SW both during the preparation and walking periods. These results suggested that preparation for walking cued by a verbal instruction enhanced frontal activations both during the preparation and execution of walking as well as walking performance. PMID:17950626

  5. Immobility behavior during the forced swim test correlates with BNDF levels in the frontal cortex, but not with cognitive impairments.

    PubMed

    Borsoi, Milene; Antonio, Camila Boque; Viana, Alice Fialho; Nardin, Patrícia; Gonçalves, Carlos-Alberto; Rates, Stela Maris Kuze

    2015-03-01

    The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders.

  6. Neurotransmitter chemistry of lissencephalic cortex induced in ferrets by fetal treatment with methylazoxymethanol acetate.

    PubMed

    Johnston, M V; Haddad, R; Carman-Young, A; Coyle, J T

    1982-07-01

    Treatment of pregnant ferrets with 15 mg/kg of methylazoxymethanol acetate (MAM) at 33 days of fetal gestation results in offspring with cortical hypoplasia and lissencephally. Neurochemical analysis of 5 areas of cortex from 8-week-old offspring of MAM- or vehicle-treated jills indicated an overall enrichment in markers for catecholaminergic (tyrosine hydroxylase, norepinephrine) and cholinergic (choline acetyltransferase, acetylcholine) terminals but minimal change in the concentration of GABAergic markers (glutamate decarboxylase, gamma-aminobutyric acid); however, there did not appear to be a direct, inverse relationship between the concentration of catecholaminergic and cholinergic markers and the degree of hypoplasia in cortical subareas unlike what has been found previously in the rat. PMID:6125249

  7. Liquid-diet with alcohol alters maternal, fetal and placental weights and the expression of molecules involved in integrin signaling in the fetal cerebral cortex.

    PubMed

    Rout, Ujjwal K; Dhossche, Julie M

    2010-11-01

    Maternal alcohol consumption during pregnancy causes wide range of behavioral and structural deficits in children, commonly known as Fetal Alcohol Syndrome (FAS). Children with FAS may suffer behavioral deficits in the absence of obvious malformations. In rodents, the exposure to alcohol during gestation changes brain structures and weights of offspring. The mechanism of FAS is not completely understood. In the present study, an established rat (Long-Evans) model of FAS was used. The litter size and the weights of mothers, fetuses and placentas were examined on gestation days 18 or 20. On gestation day 18, the effects of chronic alcohol on the expression levels of integrin receptor subunits, phospholipase-Cγ and N-cadherin were examined in the fetal cerebral cortices. Presence of alcohol in the liquid-diet reduced the consumption and decreased weights of mothers and fetuses but increased the placental weights. Expression levels of β(1) and α(3) integrin subunits and phospholipase-Cγ(2) were significantly altered in the fetal cerebral cortices of mothers on alcohol containing diet. Results show that alcohol consumption during pregnancy even with protein, mineral and vitamin enriched diet may affect maternal and fetal health, and alter integrin receptor signaling pathways in the fetal cerebral cortex disturbing the development of fetal brains.

  8. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  9. Striatal and frontal cortex binding of 11-C-labelled clozapine visualized by positron emission tomography (PET) in drug-free schizophrenics and healthy volunteers.

    PubMed

    Lundberg, T; Lindström, L H; Hartvig, P; Eckernâs, S A; Ekblom, B; Lundqvist, H; Fasth, K J; Gullberg, P; Långström, B

    1989-01-01

    The binding of 11C-labelled clozapine in the brain was studied in three drug-free schizophrenic patients and in three healthy volunteers. High radioactivities were found in the striatum and in the frontal cortex. The rate constant k3, which is proportional to receptor association rate and the number of receptors, was lower in the frontal cortex compared to the striatum. No obvious difference between the two brain areas was seen for the dissociation rate constant from the receptors (k4). Two schizophrenic patients were reexamined after pretreatment with haloperidol, one after 6 weeks of treatment with a low oral dose, the other one after an IV injection 1 h before 11C-clozapine was given. After haloperidol pretreatment, the binding of 11C-clozapine in striatum and frontal cortex was reduced, more pronounced in the striatum, indicating competition for D-2 dopamine binding sites. Our finding indicates that clozapine has an affinity for a receptor population in the frontal cortex that is predominantly not of the dopamine-D2 type. This feature might be of importance for the unique clinical profile of the drug.

  10. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    ERIC Educational Resources Information Center

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  11. Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin

    PubMed Central

    Harrill, Joshua A; Li, Zhen; Wright, Fred A; Radio, Nicholas M; Mundy, William R; Tornero-Velez, Rogelio; Crofton, Kevin M

    2008-01-01

    Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg) or permethrin (1 – 100 mg/kg) followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM) and isotonic regression (PIR) methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1) was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE) identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25%) in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of gene expression data

  12. Broad domain generality in focal regions of frontal and parietal cortex

    PubMed Central

    Fedorenko, Evelina; Duncan, John; Kanwisher, Nancy

    2013-01-01

    Unlike brain regions that respond selectively to specific kinds of information content, a number of frontal and parietal regions are thought to be domain- and process-general: that is, active during a wide variety of demanding cognitive tasks. However, most previous evidence for this functional generality in humans comes from methods that overestimate activation overlap across tasks. Here we present functional MRI evidence from single-subject analyses for broad functional generality of a specific set of brain regions: the same sets of voxels are engaged across tasks ranging from arithmetic to storing information in working memory, to inhibiting irrelevant information. These regions have a specific topography, often lying directly adjacent to domain-specific regions. Thus, in addition to domain-specific brain regions tailored to solve particular problems of longstanding importance to our species, the human brain also contains a set of functionally general regions that plausibly endow us with the cognitive flexibility necessary to solve novel problems. PMID:24062451

  13. Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback.

    PubMed

    Nieuwenhuis, Sander; Yeung, Nick; Holroyd, Clay B; Schurger, Aaron; Cohen, Jonathan D

    2004-07-01

    A recent study has reported the observation in humans of an event-related brain potential component that is sensitive to the value of outcomes in a gambling task. This component, labeled medial frontal negativity (MFN), was most pronounced following monetary losses as opposed to monetary gains. In this study, we investigate the relationship between the MFN and the error-related negativity (ERN), a component elicited by feedback indicating incorrect choice performance. We argue that the two components can be understood in terms of a recently proposed theory that predicts the occurrence of such scalp negativities following stimuli that indicate that ongoing events are worse than expected. The results from two experiments using a gambling task demonstrate that the sensitivity of the MFN/ERN to the utilitarian and performance aspect of the feedback depends on which aspect is most salient. The results are consistent with the view that the two components are manifestations of the same underlying cognitive and neural process.

  14. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.

    PubMed

    Micheli, Cristiano; Kaping, Daniel; Westendorff, Stephanie; Valiante, Taufik A; Womelsdorf, Thilo

    2015-10-01

    The inferior frontal gyrus (IFG) and the temporo-parietal junction (TPJ) are believed to be core structures of human brain networks that activate when sensory top-down expectancies guide goal directed behavior and attentive perception. But it is unclear how activity in IFG and TPJ coordinates during attention demanding tasks and whether functional interactions between both structures are related to successful attentional performance. Here, we tested these questions in electrocorticographic (ECoG) recordings in human subjects using a visual detection task that required sustained attentional expectancy in order to detect non-salient, near-threshold visual events. We found that during sustained attention the successful visual detection was predicted by increased phase synchronization of band-limited 15-30 Hz beta band activity that was absent prior to misses. Increased beta-band phase alignment during attentional engagement early during the task was restricted to inferior and lateral prefrontal cortex, but with sustained attention it extended to long-range IFG-TPJ phase synchronization and included superior prefrontal areas. In addition to beta, a widely distributed network of brain areas comprising the occipital cortex showed enhanced and reduced alpha band phase synchronization before correct detections. These findings identify long-range phase synchrony in the 15-30 Hz beta band as the mesoscale brain signal that predicts the successful deployment of attentional expectancy of sensory events. We speculate that localized beta coherent states in prefrontal cortex index 'top-down' sensory expectancy whose coupling with TPJ subregions facilitates the gating of relevant visual information. PMID:26119023

  15. Investigation of human frontal cortex under noxious thermal stimulation of temporo-mandibular joint using functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yennu, Amarnath; Rawat, Rohit; Manry, Michael T.; Gatchel, Robert; Liu, Hanli

    2013-03-01

    According to American Academy of Orofacial Pain, 75% of the U.S. population experiences painful symptoms of temporo-mandibular joint and muscle disorder (TMJMD) during their lifetime. Thus, objective assessment of pain is crucial for efficient pain management. We used near infrared spectroscopy (NIRS) as a tool to explore hemodynamic responses in the frontal cortex to noxious thermal stimulation of temporomadibular joint (TMJ). NIRS experiments were performed on 9 healthy volunteers under both low pain stimulation (LPS) and high pain stimulation (HPS), using a temperature-controlled thermal stimulator. To induce thermal pain, a 16X16 mm2 thermode was strapped onto the right TMJ of each subject. Initially, subjects were asked to rate perceived pain on a scale of 0 to 10 for the temperatures from 41°C to 47°C. For the NIRS measurement, two magnitudes of temperatures, one rated as 3 and another rated as 7, were chosen as LPS and HPS, respectively. By analyzing the temporal profiles of changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, we were able to identify several regions of interest (ROI), (e.g., secondary somatosensory cortex and prefrontal cortex), where significant differences (p<0.05) between HbO responses to LPS and HPS are shown. In order to classify these two levels of pain, a neural-network-based classification algorithm was used. With leave-one-out cross validation from 9 subjects, the two levels of pain were identified with 100% mean sensitivity, 98% mean specificity and 99% mean accuracy to high pain. From the receiver operating characteristics curve, 0.99 mean area under curve was observed.

  16. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory.

    PubMed

    Demeter, Elise; Mirdamadi, Jasmine L; Meehan, Sean K; Taylor, Stephan F

    2016-08-01

    Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants' confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function.

  17. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory.

    PubMed

    Demeter, Elise; Mirdamadi, Jasmine L; Meehan, Sean K; Taylor, Stephan F

    2016-08-01

    Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants' confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772

  18. Reinforcement-related brain potentials from medial frontal cortex: origins and functional significance.

    PubMed

    Nieuwenhuis, Sander; Holroyd, Clay B; Mol, Nisan; Coles, Michael G H

    2004-07-01

    The development of the field of cognitive neuroscience has inspired a revival of interest in the brain mechanisms involved in the processing of rewards, punishments, and abstract performance feedback. One fruitful line of research in this area was initiated by the report of an electrophysiological brain potential in humans that was differentially sensitive to negative and positive performance feedback [J. Cogn. Neurosci. 9 (1997) 788]. Here we review current knowledge regarding the neural basis and functional significance of this feedback-evoked 'error-related negativity' (ERN). Our review is organized around a set of predictions derived from a recent theory, which holds that the ERN is associated with the arrival of a negative reward prediction error signal in anterior cingulate cortex.

  19. Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2016-02-01

    High reward sensitivity has been linked with motivational and cognitive disorders related with prefrontal and striatal brain function during inhibitory control. However, few studies have analyzed the interaction among reward sensitivity, task performance and neural activity. Participants (N=57) underwent fMRI while performing a Go/No-go task with Frequent-go (77.5%), Infrequent-go (11.25%) and No-go (11.25%) stimuli. Task-associated activity was found in inhibition-related brain regions, with different activity patterns for right and left inferior frontal gyri (IFG): right IFG responded more strongly to No-go stimuli, while left IFG responded similarly to all infrequent stimuli. Reward sensitivity correlated with omission errors in Go trials and reaction time (RT) variability, and with increased activity in right and left IFG for No-go and Infrequent-go stimuli compared with Frequent-go. Bilateral IFG activity was associated with RT variability, with reward sensitivity mediating this association. These results suggest that reward sensitivity modulates behavior and brain function during executive control.

  20. Developmental changes in the inferior frontal cortex for selecting semantic representations

    PubMed Central

    Lee, Shu-Hui; Booth, James R.; Chen, Shiou-Yuan; Chou, Tai-Li

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was used to examine the neural correlates of semantic judgments to Chinese words in a group of 10–15 year old Chinese children. Two semantic tasks were used: visual–visual versus visual–auditory presentation. The first word was visually presented (i.e. character) and the second word was either visually or auditorily presented, and the participant had to determine if these two words were related in meaning. Different from English, Chinese has many homophones in which each spoken word corresponds to many characters. The visual–auditory task, therefore, required greater engagement of cognitive control for the participants to select a semantically appropriate answer for the second homophonic word. Weaker association pairs produced greater activation in the mid-ventral region of left inferior frontal gyrus (BA 45) for both tasks. However, this effect was stronger for the visual–auditory task than for the visual–visual task and this difference was stronger for older compared to younger children. The findings suggest greater involvement of semantic selection mechanisms in the cross-modal task requiring the access of the appropriate meaning of homophonic spoken words, especially for older children. PMID:22337757

  1. Distinct dynamics of ramping activity in the frontal cortex and caudate nucleus in monkeys

    PubMed Central

    2015-01-01

    The prefronto-striatal network is involved in many cognitive functions, including perceptual decision making and reward-modulated behaviors. For well-trained subjects, neural responses frequently show similar patterns in the prefrontal cortex and striatum, making it difficult to tease apart distinct regional contributions. Here I show that, despite similar mean firing rate patterns, prefrontal and striatal responses differ in other temporal dynamics for both perceptual and reward-based tasks. Compared with simulation results, the temporal dynamics of prefrontal activity are consistent with an accumulation of sensory evidence used to solve a perceptual task but not with an accumulation of reward context-related information used for the development of a reward bias. In contrast, the dynamics of striatal activity is consistent with an accumulation of reward context-related information and with an accumulation of sensory evidence during early stimulus viewing. These results suggest that prefrontal and striatal neurons may have specialized functions for different tasks even with similar average activity. PMID:26224774

  2. Increase of glucose consumption in basal ganglia, thalamus and frontal cortex of patients with spasmodic torticollis

    SciTech Connect

    Grassi, F.; Bressi, S.; Antoni, M.

    1994-05-01

    The pathophysiology of spasmodic torticollis, a focal dystonia involving neck muscles, is still unclear. Positron emission tomography (PET) studies showed either an increase as well as a decrease of regional cerebral metabolic rate of glucose (rCMRglu) in basal ganglia. In the present study, [18F]FDG and PET was used to measure rCMRglu in 10 patients with spasmodic torticollis (mean age 50.37 {plus_minus} 11.47) and 10 age matched controls. All cases with a short disease duration, were untreated. A factorial analysis of variance revealed a significant bilateral increase of glucose consumption in caudate nucleus and pallidum/putamen complex (p>0.004) and in the cerebellum (p>0.001). The rCMRglu increase in the motor/premotor cortex and in the thalamus reached a trend towards significance (p<0.05). These preliminary data show enhanced metabolism in basal ganglia and cerebellum as the functional correlate of focal dystonia. A recently proposed model suggests that dystonia would be the consequence of a putaminal hyperactivity, leading to the breakdown of the pallidal inhibitory control on thalamus and thalamo-cortical projections.

  3. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  4. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice.

    PubMed

    Soumier, Amelie; Sibille, Etienne

    2014-08-01

    Reduced expression of somatostatin (SST) is reported across chronic brain conditions including major depression and normal aging. SST is a signaling neuropeptide and marker of gamma-amino butyric acid (GABA) neurons, which specifically inhibit pyramidal neuron dendrites. Studies in auditory cortex suggest that chronic reduction in dendritic inhibition induces compensatory homeostatic adaptations that oppose the effects of acute inhibition. Whether such mechanisms occur in frontal cortex (FC) and affect behavioral outcome is not known. Here, we used two complementary viral vector strategies to examine the effects of acute vs chronic inhibition of SST-positive neurons on behavioral emotionality in adult mice. SST-IRES-Cre mice were injected in FC (prelimbic/precingulate) with CRE-dependent adeno-associated viral (AAV) vector encoding the engineered Gi/o-coupled human muscarinic M4 designer receptor exclusively activated by a designer drug (DREADD-hM4Di) or a control reporter (AAV-DIO-mCherry) for acute or chronic cellular inhibition. A separate cohort was injected with CRE-dependent AAV vectors expressing diphtheria toxin (DTA) to selectively ablate FC SST neurons. Mice were assessed for anxiety- and depressive-like behaviors (defined as emotionality). Results indicate that acute inhibition of FC SST neurons increased behavioral emotionality, whereas chronic inhibition decreased behavioral emotionality. Furthermore, ablation of FC SST neurons also decreased behavioral emotionality under baseline condition and after chronic stress. Together, our results reveal opposite effects of acute and chronic inhibition of FC SST neurons on behavioral emotionality and suggest the recruitment of homeostatic plasticity mechanisms that have implications for understanding the neurobiology of chronic brain conditions affecting dendritic-targeting inhibitory neurons.

  5. In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition

    PubMed Central

    Nakamura, Motoaki; Niznikiewicz, Margaret; Thompson, Elizabeth; Levitt, James J.; Choate, Victoria; Shenton, Martha E.; McCarley, Robert W.

    2013-01-01

    We examined social cognition in a sample of healthy participants who had prior magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) that was parcellated into three regions: gyrus rectus, middle orbital gyrus and lateral orbital gyrus. These subjects also completed a self-report measure of Machiavelli personality traits, along with psychometric tests of social comprehension and declarative episodic memory, all of which we used as proxy measures to examine various features of social cognition. The data pointed to distinct functional–anatomical relationships highlighted by strong correlations of left lateral orbital gyrus and Machiavellian scores and right middle orbital gyrus with social comprehension and declarative episodic memory. In addition, hierarchical regression analyses revealed statistical evidence of a double dissociation between Machiavellian scores and left lateral orbital gyrus on one hand, and social comprehension with right middle orbital gyrus, on the other hand. To our knowledge, these findings are the first to show evidence linking normal variation in OFC subregions and different aspects of social cognition. PMID:22345366

  6. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  7. [Analysis of Electroencephalogram Sample Entropy Measurement in Frontal Association Cortex Based on Heroin-induced Conditioned Place Preference in Rats].

    PubMed

    Huang, Lei; Pan, Qunwan; Zhu, Zaiman; Li, Jing; Gao, Chunfang; Li, Tian; Xu, Xiaoyan

    2015-04-01

    To explore the relationship between the drug-seeking behavior, motivation of conditioned place preference (CPP) rats and the frontal association cortex (FrA) electroencephalogram (EEG) sample entropy, we in this paper present our studies on the FrA EEG sample entropy of control group rats and CPP group rats, respectively. We invested different behavior in four situations of the rat activities, i. e. rats were staying in black chamber of videoed boxes, those staying in white chamber of videoed boxes, those shuttling between black-white chambers and those shuttling between white-black chambers. The experimental results showed that, compared with the control group rats, the FrA EEG sample entropy of CPP rats staying in black chamber of video box and shuttling between white-black chambers had no significant difference. However, sample entropy is significantly smaller (P < 0.01) when heroin-induced group rats stayed in white chamber of video box and shuttled between black-white chambers. Consequently, the drug-seeking behavior and motivation of CPP rats correlated closely with the EEG sample entropy changes.

  8. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation.

    PubMed

    Hogeveen, Jeremy; Obhi, Sukhvinder S; Banissy, Michael J; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-07-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation-participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation.

  9. Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei).

    PubMed

    Perez, Sylvia E; Sherwood, Chet C; Cranfield, Michael R; Erwin, Joseph M; Mudakikwa, Antoine; Hof, Patrick R; Mufson, Elliott J

    2016-03-01

    Amyloid beta (Aβ) and tau pathology have been described in the brains of captive aged great apes, but the natural progression of these age-related pathologies from wild great apes, including the gorilla, is unknown. In our previous study of Western lowland gorillas (Gorilla gorilla gorilla) who were housed in American Zoos and Aquariums-accredited facilities, we found an age-related increase in Aβ-positive plaques and vasculature, tau-positive astrocytes, oligodendrocyte coiled bodies, and neuritic clusters in the neocortex as well as hippocampus in older animals. Here, we demonstrate that aged wild mountain gorillas (Gorilla beringei beringei), who spent their entire lives in their natural habitat, also display an age-related increase in amyloid precursor protein (APP) and/or Aβ-immunoreactive blood vessels and plaques, but very limited tau pathology, in the frontal cortex. These results indicate that Aβ and tau lesions are age-related events that occur in the brain of gorillas living in captivity and in the wild. PMID:26923416

  10. How Two Brains Make One Synchronized Mind in the Inferior Frontal Cortex: fNIRS-Based Hyperscanning During Cooperative Singing

    PubMed Central

    Osaka, Naoyuki; Minamoto, Takehiro; Yaoi, Ken; Azuma, Miyuki; Shimada, Yohko Minamoto; Osaka, Mariko

    2015-01-01

    One form of communication that is common in all cultures is people singing together. Singing together reflects an index of cognitive synchronization and cooperation of human brains. Little is known about the neural synchronization mechanism, however. Here, we examined how two brains make one synchronized behavior using cooperated singing/humming between two people and hyperscanning, a new brain scanning technique. Hyperscanning allowed us to observe dynamic cooperation between interacting participants. We used functional near-infrared spectroscopy (fNIRS) to simultaneously record the brain activity of two people while they cooperatively sang or hummed a song in face-to-face (FtF) or face-to-wall (FtW) conditions. By calculating the inter-brain wavelet transform coherence between two interacting brains, we found a significant increase in the neural synchronization of the left inferior frontal cortex (IFC) for cooperative singing or humming regardless of FtF or FtW compared with singing or humming alone. On the other hand, the right IFC showed an increase in neural synchronization for humming only, possibly due to more dependence on musical processing. PMID:26635703

  11. D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing.

    PubMed

    Parker, Krystal L; Chen, Kuan-Hua; Kingyon, Johnathan R; Cavanagh, James F; Narayanan, Nandakumar S

    2014-12-10

    Organizing behavior in time is a fundamental process that is highly conserved across species. Here we study the neural basis of timing processes. First, we found that rodents had a burst of stimulus-triggered 4 Hz oscillations in the medial frontal cortex (MFC) during interval timing tasks. Second, rodents with focally disrupted MFC D1 dopamine receptor (D1DR) signaling had impaired interval timing performance and weaker stimulus-triggered oscillations. Prior work has demonstrated that MFC neurons ramp during interval timing, suggesting that they underlie temporal integration. We found that MFC D1DR blockade strongly attenuated ramping activity of MFC neurons that correlated with behavior. These macro- and micro-level phenomena were linked, as we observed that MFC neurons with strong ramping activity tended to be coherent with stimulus-triggered 4 Hz oscillations, and this relationship was diminished with MFC D1DR blockade. These data provide evidence demonstrating how D1DR signaling controls the temporal organization of mammalian behavior. PMID:25505330

  12. Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei).

    PubMed

    Perez, Sylvia E; Sherwood, Chet C; Cranfield, Michael R; Erwin, Joseph M; Mudakikwa, Antoine; Hof, Patrick R; Mufson, Elliott J

    2016-03-01

    Amyloid beta (Aβ) and tau pathology have been described in the brains of captive aged great apes, but the natural progression of these age-related pathologies from wild great apes, including the gorilla, is unknown. In our previous study of Western lowland gorillas (Gorilla gorilla gorilla) who were housed in American Zoos and Aquariums-accredited facilities, we found an age-related increase in Aβ-positive plaques and vasculature, tau-positive astrocytes, oligodendrocyte coiled bodies, and neuritic clusters in the neocortex as well as hippocampus in older animals. Here, we demonstrate that aged wild mountain gorillas (Gorilla beringei beringei), who spent their entire lives in their natural habitat, also display an age-related increase in amyloid precursor protein (APP) and/or Aβ-immunoreactive blood vessels and plaques, but very limited tau pathology, in the frontal cortex. These results indicate that Aβ and tau lesions are age-related events that occur in the brain of gorillas living in captivity and in the wild.

  13. Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner.

    PubMed

    Munhoz, Carolina Demarchi; Sorrells, Shawn F; Caso, Javier R; Scavone, Cristoforo; Sapolsky, Robert M

    2010-10-13

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-κB (nuclear factor κB), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/SAPK (c-Jun N-terminal protein kinase/stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-κB, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/2, p38, SAPK/JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

  14. How Two Brains Make One Synchronized Mind in the Inferior Frontal Cortex: fNIRS-Based Hyperscanning During Cooperative Singing.

    PubMed

    Osaka, Naoyuki; Minamoto, Takehiro; Yaoi, Ken; Azuma, Miyuki; Shimada, Yohko Minamoto; Osaka, Mariko

    2015-01-01

    One form of communication that is common in all cultures is people singing together. Singing together reflects an index of cognitive synchronization and cooperation of human brains. Little is known about the neural synchronization mechanism, however. Here, we examined how two brains make one synchronized behavior using cooperated singing/humming between two people and hyperscanning, a new brain scanning technique. Hyperscanning allowed us to observe dynamic cooperation between interacting participants. We used functional near-infrared spectroscopy (fNIRS) to simultaneously record the brain activity of two people while they cooperatively sang or hummed a song in face-to-face (FtF) or face-to-wall (FtW) conditions. By calculating the inter-brain wavelet transform coherence between two interacting brains, we found a significant increase in the neural synchronization of the left inferior frontal cortex (IFC) for cooperative singing or humming regardless of FtF or FtW compared with singing or humming alone. On the other hand, the right IFC showed an increase in neural synchronization for humming only, possibly due to more dependence on musical processing. PMID:26635703

  15. Differential Gene Expression in the Nucleus Accumbens and Frontal Cortex of Lewis and Fischer 344 Rats Relevant to Drug Addiction

    PubMed Central

    Higuera-Matas, A; Montoya, G. L; Coria, S.M; Miguéns, M; García-Lecumberri, C; Ambrosio, E

    2011-01-01

    Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse. PMID:21886580

  16. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    PubMed Central

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both

  17. Spatiotemporal dynamics of excitation in rat insular cortex: intrinsic corticocortical circuit regulates caudal-rostro excitatory propagation from the insular to frontal cortex.

    PubMed

    Fujita, S; Adachi, K; Koshikawa, N; Kobayashi, M

    2010-01-13

    The insular cortex (IC), composing unique anatomical connections, receives multi-modal sensory inputs including visceral, gustatory and somatosensory information from sensory thalamic nuclei. Axonal projections from the limbic structures, which have a profound influence on induction of epileptic activity, also converge onto the IC. However, functional connectivity underlying the physiological and pathological roles characteristic to the IC still remains unclear. The present study sought to elucidate the spatiotemporal dynamics of excitatory propagation and their cellular mechanisms in the IC using optical recording in urethane-anesthetized rats. Repetitive electrical stimulations of the IC at 50 Hz demonstrated characteristic patterns of excitatory propagation depending on the stimulation sites. Stimulation of the granular zone of the IC (GI) and other surrounding cortices such as the motor/primary sensory/secondary sensory cortices evoked round-shaped excitatory propagations, which often extended over the borders of adjacent areas, whereas excitation of the agranular and dysgranular zones in the IC (AI and DI, respectively) spread along the rostrocaudal axis parallel to the rhinal fissure. Stimulation of AI/DI often evoked excitation in the dorsolateral orbital cortex, which exhibited spatially discontinuous topography of excitatory propagation in the IC. Pharmacological manipulations using 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), a non-NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (D-APV), an NMDA receptor antagonist, and bicuculline methiodide, a GABA(A) receptor antagonist, indicate that excitatory propagation was primarily regulated by non-NMDA and GABA(A) receptors. Microinjection of lidocaine or incision of the supragranular layers of the rostrocaudally middle part of excitatory regions suppressed excitation in the remote regions from the stimulation site, suggesting that the excitatory propagation in the IC is largely mediated by

  18. Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex.

    PubMed

    Park, Hong Geun; Yu, Hyun Sook; Park, Soyoung; Ahn, Yong Min; Kim, Yong Sik; Kim, Se Hyun

    2014-09-01

    The enzymatic activity of histone deacetylases (HDACs) leads to a histone deacetylation-mediated condensed chromatic structure, resulting in transcriptional repression, which has been implicated in the modifications of neural circuits and behaviors. Repeated treatment with electroconvulsive seizure (ECS) induces changes in histone acetylation, expression of various genes, and intrabrain cellular changes, including neurogenesis. In this study, we examined the effects of repeated ECS on the expression of class I HDACs and related changes in histone modifications and gene expression in the rat frontal cortex. Ten days of repeated ECS treatments (E10X) up-regulated HDAC2 expression at the mRNA and protein levels in the rat frontal cortex compared with sham-treated controls; this was evident in the nuclei of neuronal cells in the prefrontal, cingulate, orbital, and insular cortices. Among the known HDAC2 target genes, mRNA expression of N-methyl-d-aspartate (NMDA) receptor signaling-related genes, including early growth response-1 (Egr1), c-Fos, glutamate receptor, ionotropic, N-methyl d-aspartate 2A (Nr2a), Nr2b, neuritin1 (Nrn1), and calcium/calmodulin-dependent protein kinase II alpha (Camk2α), were decreased, and the histone acetylation of H3 and/or H4 proteins was also reduced by E10X. Chromatin immunoprecipitation analysis revealed that HDAC2 occupancy in the promoters of down-regulated genes was increased significantly. Moreover, administration of sodium butyrate, a HDAC inhibitor, during the course of E10X ameliorated the ECS-induced down-regulation of genes in the rat frontal cortex. These findings suggest that induction of HDAC2 by repeated ECS treatment could play an important role in the down-regulation of NMDA receptor signaling-related genes in the rat frontal cortex through histone modification. PMID:24606669

  19. Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats.

    PubMed

    Głombik, Katarzyna; Stachowicz, Aneta; Ślusarczyk, Joanna; Trojan, Ewa; Budziszewska, Bogusława; Suski, Maciej; Kubera, Marta; Lasoń, Władysław; Wędzony, Krzysztof; Olszanecki, Rafał; Basta-Kaim, Agnieszka

    2015-10-01

    Currently, much attention is focused on the influence of mitochondrial disturbances at the onset of depression. The goal of this study was to investigate the impact of prenatal stress (an animal model of depression) on the mitochondrial biogenesis proteins and mitoproteome profile in the frontal cortex and hippocampus of adult 3-month-old male rats following a prenatal stress procedure. Our results show that rats that were exposed to prenatal stress stimuli displayed depression-like behaviors based on the sucrose preference and elevated plus maze tests. It has been found that the level of the PGC-1α protein was reduced in the frontal cortex and hippocampus of the adult offspring after the prenatal stress procedure. Moreover, in the frontal cortex, the level of the pro-apoptotic protein Bax was up-regulated. Two-dimensional electrophoresis coupled with mass spectrometry showed the statistically significant down-regulation of the mitochondrial ribosomal protein L12 (Mrpl12) and mitochondrial NADH dehydrogenase [ubiquinone] flavoprotein 2 (NDUFV2) as well as the up-regulation of the Tubulin Polymerization Promoting Proteins (Tppp/p25) in the frontal cortex. In contrast, in the hippocampus, the mitochondrial pyruvate dehydrogenase E1 component subunit beta, the voltage-dependent anion-selective channel protein 2 (VDAC2), and the GTP-binding nuclear protein RAN (RAN) were down-regulated and the expression of phosphatidylethanolamine-binding protein 1 (PEBP-1) was enhanced. These findings provide new evidence that stress during pregnancy may lead not only to behavioral deficits, but also to disturbances in the brain mitoproteome profile in adult rat offspring.

  20. Changes in regional cerebral blood volume in frontal cortex during mental work with and without caffeine intake: functional monitoring using near-infrared spectroscopy.

    PubMed

    Higashi, Terumasa; Sone, Yukari; Ogawa, Kanta; Kitamura, Yuri T; Saiki, Kayoko; Sagawa, Setsuko; Yanagida, Toshio; Seiyama, Akitoshi

    2004-01-01

    Near-infrared spectroscopy (NIRS) was used to measure frontal regional cerebral blood volume (rCBV) in a person whose brain was under the influence of pharmacological agents while the person was performing a complex task. Fourteen healthy participants were administered Uchida-Kraepelin psychodiagnostic (UKP) tests before and after caffeine intake, and the concentration of caffeine in the urine was measured. The average number of answers and the average number of correct answers given by the participants improved significantly following caffeine intake. During the UKP testing, changes in the rCBV in the inferior frontal cortex were continuously measured using NIRS. The volume during the rest periods decreased as a result of caffeine-induced constriction of the cerebral arteriola. The volume increased during the mental work, but the degree of the increase was the same before and after caffeine intake. Although the performance of the mental work improved following caffeine intake, the improvement was not reflected in the rCBV in the inferior frontal cerebral cortex. These results suggest that caffeine helps to protect the brain from excessive hyperemia in addition to activating the neurons in the prefrontal cortex. PMID:15250767

  1. The enhanced information flow from visual cortex to frontal area facilitates SSVEP response: evidence from model-driven and data-driven causality analysis

    PubMed Central

    Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng

    2015-01-01

    The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches. PMID:26434769

  2. The enhanced information flow from visual cortex to frontal area facilitates SSVEP response: evidence from model-driven and data-driven causality analysis.

    PubMed

    Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng

    2015-10-05

    The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.

  3. The enhanced information flow from visual cortex to frontal area facilitates SSVEP response: evidence from model-driven and data-driven causality analysis

    NASA Astrophysics Data System (ADS)

    Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng

    2015-10-01

    The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.

  4. 5-HT1B Autoreceptors limit the effects of selective serotonin re-uptake inhibitors in mouse hippocampus and frontal cortex.

    PubMed

    Malagié, I; Trillat, A C; Bourin, M; Jacquot, C; Hen, R; Gardier, A M

    2001-02-01

    We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.

  5. Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress.

    PubMed

    Seo, Mi Kyoung; Lee, Chan Hong; Cho, Hye Yeon; You, Young Sun; Lee, Bong Ju; Lee, Jung Goo; Park, Sung Woo; Kim, Young Hoon

    2015-10-30

    The present study examined the effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats with and without immobilization stress. Rats were subjected to immobilization stress 6h/day for 3 weeks. The effects of atypical antipsychotic drugs, olanzapine and aripiprazole, on expression of serine(9)-phosphorylated GSK-3β, β-catenin, BDNF, PSD-95, and synaptophysin were determined by Western blotting. A typical antipsychotic drug, haloperidol, was used for comparison. Immobilization stress significantly decreased the expression of these proteins in the frontal cortex. Chronic administration of olanzapine and aripiprazole significantly attenuated the immobilization stress-induced decrease in the levels of these proteins, whereas haloperidol had no such effect. Additionally, olanzapine and aripiprazole significantly increased levels of phosphorylated GSK-3β under normal conditions without stress, and aripiprazole also increased BDNF levels under this condition. These results indicate that olanzapine and aripiprazole, and, haloperidol, differentially regulate the levels of synapse-associated proteins in the rat frontal cortex. These findings may contribute to explain the neurobiological basis of how olanzapine and aripiprazole up-regulated synapse-associated proteins. PMID:26254796

  6. Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support.

    PubMed

    Giszter, S F; Kargo, W J; Davies, M; Shibayama, M

    1998-12-01

    Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support. J. Neurophysiol. 80: 3021-3030, 1998. Intraspinal transplants of fetal spinal tissue partly alleviate motor deficits caused by spinal cord injury. How transplants modify body representation and muscle recruitment by motor cortex is currently largely unknown. We compared electromyographic responses from motor cortex stimulation in normal adult rats, adult rats that received complete spinal cord transection at the T8-T10 segmental level as neonates (TX rats), and similarly transected rats receiving transplants of embryonic spinal cord (TP rats). Rats were also compared among treatments for level of weight support and motor performance. Sixty percent of TP rats showed unassisted weight-supported locomotion as adults, whereas approximately 30% of TX rats with no intervention showed unassisted weight-supported locomotion. In the weight-supporting animals we found that the transplants enabled motor responses to be evoked by microstimulation of areas of motor cortex that normally represent the lumbar axial muscles in rats. These same regions were silent in all TX rats with transections but no transplants, even those exhibiting locomotion with weight support. In weight-supporting TX rats low axial muscles could be recruited from the rostral cortical axial representation, which normally represents the neck and upper trunk. No operated animal, even those with well-integrated transplants and good weight-supported locomotion, had a hindlimb motor representation in cortex. The data demonstrate that spinal transplants allow the development of some functional interactions between areas of motor cortex and spinal cord that are not available to the rat lacking the intervention. The data also suggest that operated rats that achieve weight support may primarily use the axial muscles to steer the pelvis and hindlimbs indirectly rather than use explicit hindlimb

  7. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test.

    PubMed

    Sellers, Kristin K; Mellin, Juliann M; Lustenberger, Caroline M; Boyle, Michael R; Lee, Won Hee; Peterchev, Angel V; Fröhlich, Flavio

    2015-09-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement.

  8. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    PubMed

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent

  9. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test.

    PubMed

    Sellers, Kristin K; Mellin, Juliann M; Lustenberger, Caroline M; Boyle, Michael R; Lee, Won Hee; Peterchev, Angel V; Fröhlich, Flavio

    2015-09-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. PMID:25934490

  10. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.

  11. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    PubMed Central

    2010-01-01

    Background The Rett Syndrome (RTT) brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1) or are involved in synaptic vesicle cycling (dynamin 1). RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP) analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited. PMID:20420693

  12. Self-regulation therapy increases frontal gray matter in children with fetal alcohol spectrum disorder: evaluation by voxel-based morphometry

    PubMed Central

    Soh, Debra W.; Skocic, Jovanka; Nash, Kelly; Stevens, Sara; Turner, Gary R.; Rovet, Joanne

    2015-01-01

    Children with fetal alcohol spectrum disorder show executive function (EF) deficits, particularly in self-regulation skills, and abnormalities in brain regions critical for these skills. None of the validated EF interventions for these children has been evaluated with regards to impacts on brain structure. Twenty-nine children with FASD were assigned to either an immediate-treatment (TX) or delayed-treatment control (DTC) group (DTC). Nineteen typically developing children served as healthy controls (CT). All received a structural MRI scan and baseline neuropsychological testing, following which the TX group underwent 12 weekly 1.5-h sessions of the Alert Program for Self-Regulation®. After treatment or a period of ~14 weeks, all received a repeat scan and post-intervention testing. Whole-brain and region-of-interest analyses using voxel-based morphometry evaluated group differences and changes over time in gray matter (GM). Exploratory analyses revealed significant group changes: (1) At baseline, combined TX and DTC groups demonstrated global GM reductions compared with the CT group. (2) Region-of-interest analysis using a frontal mask, comparing post-intervention to pre-intervention results, showed significantly increased GM in the left middle frontal gyrus (BA10), right frontal pole (BA11), and right anterior cingulate (BA32) in the TX group. Similar results were not found in the DTC or CT groups. (3) At post-intervention, both TX and CT groups showed larger GM volumes than the DTC group in the left superior frontal gyrus (BA9), which was smaller in the FASD group at baseline. These results suggested that Alert led to improvements in post-intervention testing of self-regulation skills and typical brain development in treated children. PMID:25788884

  13. The profiles of interaction of yohimbine with anxiolytic and putative anxiolytic agents to modify 5-HT release in the frontal cortex of freely-moving rats.

    PubMed Central

    Cheng, C. H.; Costall, B.; Ge, J.; Naylor, R. J.

    1993-01-01

    1. The interaction of yohimbine with anxiolytic and putative anxiolytic agents to modify 5-hydroxytryptamine (5-HT) release in the frontal cortex of the freely-moving rat was assessed using the microdialysis technique. 2. The alpha 2-adrenoceptor antagonist, yohimbine (5.0 mg kg-1, i.p.) increased maximally the extracellular levels of 5-HT in the rat frontal cortex by approximately 230% of the basal levels. 3. The alpha 2-adrenoceptor agonist, clonidine (30-100 micrograms kg-1, i.p.) decreased dose-dependently the extracellular levels of 5-HT in the rat frontal cortex by approximately 0-60% of the basal levels. A 5 min pretreatment with clonidine (50 micrograms kg-1, i.p.) prevented the yohimbine-induced increase in the extracellular 5-HT levels. 4. The benzodiazepine receptor agonist, diazepam (2.5 mg kg-1, i.p.) and the 5-HT3 receptor antagonist, ondansetron (100 micrograms kg-1, i.p.) (5 min pretreatment) completely prevented the yohimbine (5.0 mg kg-1, i.p.)-induced increases in the extracellular levels of 5-HT. The 5-HT1A receptor agonist, 8-OH-DPAT (0.32 mg kg-1, s.c.) partially antagonized the yohimbine response. 5. A 5 min pretreatment with the 5-HT3/5-HT4 receptor ligand R(+)-zacopride (10 micrograms kg-1, i.p.) reversed the yohimbine (5.0 mg kg-1, i.p.)-induced increase in the extracellular levels of 5-HT to approximately 30% below the basal levels. A 5 min pretreatment with S(-)-zacopride (100 micrograms kg-1, i.p.) failed to modify the response to yohimbine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7507776

  14. Cocaine-induced Fos expression is detectable in the frontal cortex and striatum of rats under isoflurane but not α-chloralose anesthesia: implications for FMRI

    PubMed Central

    Kufahl, Peter R.; Pentkowski, Nathan S.; Heintzelman, Krista; Neisewander, Janet L.

    2009-01-01

    The ability of intravenous cocaine to induce Fos protein expression in anesthetized rats was tested. Two anesthetic regimens commonly used for in vivo FMRI of animals, i.v. α-chloralose and gaseous isoflurane, were studied in separate cohorts. The first experiment included three groups that received the following treatments: saline i.v. and no anesthetic; 2 mg/kg cocaine i.v. and no anesthetic; and 2 mg/kg cocaine i.v. under 36 mg/kg/h α-chloralose anesthesia. The second experiment had a factorial design of four groups that were either nonanesthetized or isoflurane-treated and were either given saline or cocaine (2 mg/kg, i.v.). Anesthetized rats were maintained for 2 h under 2.5–3.5% isoflurane anesthesia, while nonanesthetized rats were kept in an alternative environment for the same time period. Rats were given 2 mg/kg cocaine or saline i.v., 30 min into the test session. Rats were perfused and their brains were processed for Fos immunohistochemistry 90 min after the i.v. treatment. In both experiments, the frontal cortex and striatum of the cocaine-treated nonanesthetized rats expressed Fos in greater amounts than the saline-treated nonanesthetized rats, as expected. The α-chloralose treatment prevented cocaine-induced Fos expression across all eight subregions of the striatum and frontal cortex that were examined. In contrast, isoflurane only partially attenuated Fos expression in the orbital and Cg2 subregions of frontal cortex. These results suggest a strong advantage for using isoflurane, as opposed to α-chloralose, when studying anesthetized rats for in vivo effects of psychostimulants. PMID:19467261

  15. A single dose of vortioxetine, but not ketamine or fluoxetine, increases plasticity-related gene expression in the rat frontal cortex.

    PubMed

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Sanchez, Connie; Wegener, Gregers; Elfving, Betina

    2016-09-01

    Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that has been shown to induce a rapid antidepressant effect in treatment-resistant patients. Vortioxetine is a multimodal-acting antidepressant that exert its therapeutic activity through serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibition and modulation of several 5-HT receptors. In clinical trials, vortioxetine improves depression symptoms and cognitive dysfunction. Neuroplasticity as well as serotonergic and glutamatergic signaling attain significant roles in depression pathophysiology and antidepressant responses. Here, we investigate the effects of ketamine and vortioxetine on gene expression related to serotonergic and glutamatergic neurotransmission as well as neuroplasticity and compare them to those of the selective serotonin reuptake inhibitor fluoxetine. Rats were injected with fluoxetine (10mg/kg), ketamine (15mg/kg), or vortioxetine (10mg/kg) at 2, 8, 12, or 27h prior to harvesting of the frontal cortex and hippocampus. mRNA levels were measured by real-time quantitative polymerase chain reaction (qPCR). The main finding was that vortioxetine enhanced plasticity-related gene expression (Mtor, Mglur1, Pkcα, Homer3, Spinophilin, and Synapsin3) in the frontal cortex at 8h after a single dose. Ingenuity pathway analysis of this subset of data identified a biological network that was engaged by vortioxetine and is plausibly associated with neuroplasticity. Transcript levels had returned to baseline levels 12h after injection. Only minor effects on gene expression were found for ketamine or fluoxetine. In conclusion, acute vortioxetine, but not fluoxetine or ketamine, transiently increased plasticity-related gene expression in the frontal cortex. These effects may be ascribed to the direct 5-HT receptor activities of vortioxetine. PMID:27235984

  16. Patterns of social-experience-related c-fos and Arc expression in the frontal cortices of rats exposed to saccharin or moderate levels of ethanol during prenatal brain development.

    PubMed

    Hamilton, Derek A; Candelaria-Cook, Felicha T; Akers, Katherine G; Rice, James P; Maes, Levi I; Rosenberg, Martina; Valenzuela, C Fernando; Savage, Daniel D

    2010-12-01

    Recent findings from our laboratory indicate that alterations in frontal cortex function, structural plasticity, and related social behaviors are persistent consequences of exposure to moderate levels of ethanol during prenatal brain development [24]. Fetal-ethanol-related reductions in the expression of the immediate early genes (IEGs) c-fos and Arc and alterations in dendritic spine density in ventrolateral and medial aspects of frontal cortex suggest a dissociation reminiscent of that described by Kolb et al. [38] in which these aspects of frontal cortex undergo reciprocal experience-dependent changes. In addition to providing a brief review of the available data on social behavior and frontal cortex function in fetal-ethanol-exposed rats, the present paper presents novel data on social-experience-related IEG expression in four regions of frontal cortex (Zilles LO, VLO, Fr1, Fr2) that are evaluated alongside our prior data from AID and Cg3. Social experience in normal rats was related to a distinct pattern of IEG expression in ventrolateral and medial aspects of frontal cortex, with generally greater expression observed in ventrolateral frontal cortex. In contrast, weaker expression was observed in all aspects of frontal cortex in ethanol-exposed rats, with the exception of an experience-related increase in the medial agranular cortex. Behaviors related to social investigation and wrestling/boxing were differentially correlated with patterns of activity-related IEG expression in the regions under investigation for saccharin- and ethanol-exposed rats. These observations suggest that recruitment and expression of IEGs in frontal cortex following social experience are potentially important for understanding the long-term consequences of moderate prenatal ethanol exposure on frontal cortex function, synaptic plasticity, and related behaviors.

  17. Grafts of fetal locus coeruleus neurons in rat amygdala-piriform cortex suppress seizure development in hippocampal kindling.

    PubMed

    Barry, D I; Wanscher, B; Kragh, J; Bolwig, T G; Kokaia, M; Brundin, P; Björklund, A; Lindvall, O

    1989-11-01

    Hippocampal kindling was investigated in rats with a 6-hydroxydopamine-induced lesion of the forebrain catecholamine system after implantation of neural tissue from the fetal locus coeruleus region either bilaterally into the amygdala-piriform cortex (i.e., distant to the kindling site) or unilaterally into the hippocampus (close to the kindling site). Lesioned animals with either sham grafts or control grafts consisting of fetal striatal tissue showed a kindling rate much faster than that of normal controls. In contrast, in rats with bilateral locus coeruleus grafts in the amygdala-piriform cortex (implanted at three sites) the development of seizures was similar to that of controls and significantly slower than that in lesioned animals with sham grafts. All these animals had bilateral surviving grafts with a mean of 125 noradrenergic cells per implantation site. In the animals with locus coeruleus grafts in the stimulated hippocampus the kindling rate did not differ from that in the lesioned animals with control grafts. Most of these animals had large surviving grafts and showed a dense noradrenergic reinnervation of the implanted hippocampus. The present findings indicate that grafting of fetal pontine tissue (rich in noradrenergic neurons) to a site distant to the stimulation focus, but important for the generalization and spread of seizures, can retard the development of seizures in hippocampal kindling. Together with the data of our previous report this study also indicates that noradrenergic reinnervation of both hippocampi is important for the seizure-suppressant action in hippocampal kindling of locus coeruleus grafts implanted in the hippocampus.

  18. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity.

    PubMed

    Fujita, Hiroyuki; Kasubuchi, Kenji; Wakata, Satoshi; Hiyamizu, Makoto; Morioka, Shu

    2016-01-01

    Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM). The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb) levels during standing during single (S-S), standing during dual (S-D), one leg standing during single (O-S), and one leg standing during dual (O-D) tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance. PMID:27034947

  19. Paclitaxel-induced hyperalgesia modulates negative affective component of pain and NR1 receptor expression in the frontal cortex in rats.

    PubMed

    Noda, Kazuko; Akita, Hisanao; Ogata, Masanori; Saji, Makoto

    2014-03-01

    Paclitaxel, one of the chemotherapeutic agents clinically used to treat several types of cancer, produces side effects such as peripheral neuropathy, sensory abnormalities, and hyperalgesia. Since hyperalgesia remains after cessation of paclitaxel therapy and becomes chronic, we hypothesize that alteration in memory and the cognitive process of pain underlies hyperalgesia. To test this hypothesis, we examined whether drug-induced hyperalgesia alters the affective component of pain and the NMDA-NR1 and mGluR1 receptors as a mediator for signal transmission and memory of pain. Mechanical sensitivity was measured by von Frey filament test after intraperitoneal injection of paclitaxel in rats. Paclitaxel-induced hyperalgesia was confirmed over almost the entire 14-day period of observation after the treatment. The effect of paclitaxel-induced hyperalgesia on the affective component of pain was assessed using pain-induced place aversion. The formalin-induced conditioned place aversion was completely abolished in the paclitaxel-treated rats. Immunoblot analysis of NR1 and mGluR1 protein levels in various brain regions was performed after paclitaxel treatment. Treatment reduced only the NR1 expression within the frontal cortex. These results suggest that the hypofunction of memory processes with the reduced NMDA receptors in the frontal cortex might be involved in the expression of abnormal emotional behaviors accompanied by hyperalgesia.

  20. [The effect of anxiolytics and an anxiogen on the electrical activity of the frontal cortex and limbic structures of dogs with different nervous system properties].

    PubMed

    Chilingarian, L I; Bogdanov, N N

    1998-01-01

    The influence of benzodiazepine anxiolytics (diazepam, medazepam, nozepam) and anxiogen corasole on the electrical activity of the dorsal hippocampus, frontal cortex, basolateral amygdala, and lateral hypothalamus was studied in 8 dogs with implanted electrodes. The anxiolytics decreased anxiety and reduced the theta-rhythm frequency in all the structures under study. The effect was most pronounced in the dorsal hippocampus. The excitable dogs with initially more frequent theta rhythm turned to be less sensitive to diazepam than more calm animals with prevailing inhibition. The higher dose of diazepam was necessary for excitable dogs to obtain the same electrophysiological effect. At the end of the drug action, the theta-rhythm power significantly increased in the dorsal hippocampus in all the animals, and in the excitable dogs it increased also in the frontal cortex. Moreover, diazepam produced as decrease in the beta 2-frequency and increase in the frequency of the alpha-like rhythm. The anxiogen intake resulted in an increase in dogs' alertness and motor activity, accompanied by an increase in the theta-rhythm frequency. Anxiogen increased the frequency asymmetry of theta between hemispheres in the hippocampus and amygdala.

  1. Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease

    PubMed Central

    Fabelo, Noemí; Martín, Virginia; Santpere, Gabriel; Marín, Raquel; Torrent, Laia; Ferrer, Isidre; Díaz, Mario

    2011-01-01

    Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physicochemical microenvironment to promote protein–lipid and protein–protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson’s disease (PD) and incidental Parkinson’s disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders. PMID:21717034

  2. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion.

    PubMed

    Munhoz, Carolina Demarchi; Lepsch, Lucilia B; Kawamoto, Elisa Mitiko; Malta, Marília Brinati; Lima, Larissa de Sá; Avellar, Maria Christina Werneck; Sapolsky, Robert M; Scavone, Cristoforo

    2006-04-01

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established in the periphery, these stress hormones can increase inflammation under some circumstances in the brain. The transcription factor nuclear factor-kappaB (NF-kappaB), which is inhibited by GCs, regulates numerous genes central to inflammation. In this study, the effects of stress, GCs, and NMDA receptors on lipopolysaccharide (LPS)-induced activation of NF-kappaB in the brain were investigated. One day after chronic unpredictable stress (CUS), nonstressed and CUS rats were treated with saline or LPS and killed 2 h later. CUS potentiated the increase in LPS-induced activation of NF-kappaB in frontal cortex and hippocampus but not in the hypothalamus. This stress effect was blocked by pretreatment of rats with RU-486, an antagonist of the GC receptor. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an NMDA receptor antagonist, also reduced the effect of LPS in all three brain regions. However, the combined antagonism of both GC and NMDA receptors produced no further reduction in NF-kappaB activation when compared with the effect of each treatment alone. Our results indicate that stress, via GC secretion, can increase LPS-induced NF-kappaB activation in the frontal cortex and hippocampus, agreeing with a growing literature demonstrating proinflammatory effects of GCs.

  3. Facilitation and recovery of shuttle box avoidance behavior after frontal cortex lesions is induced by a contingent electrical stimulation in the ventral tegmental nucleus.

    PubMed

    Castro-Alamancos, M A; Borrell, J

    1992-09-28

    A bilateral ablation of the frontal cortex was performed in rats before and after training in an active avoidance task in a shuttle box. Animals with this lesion showed an impairment in learning and in the reversal of the avoidance task. If the animals with the lesion were implanted with an electrode in the ventral tegmental nucleus and received an electrical stimulation in this area contingent to a correct response (avoidance or escape response) in the behavioral task, they did not show any impairment in the performance of the task. Furthermore, the effect of the stimulation persisted after it was retrieved. The present findings indicate that the motivational and cue properties of the electrical stimulation of the ventral tegmental nucleus may serve to facilitate learning and reversal in an avoidance task and to induce at the long term a recovery process in animals in which the frontal cortex has been ablated. Therefore, this method may be useful to study the adaptative changes which take place in the nervous system after recovery from brain damage occurs. PMID:1333223

  4. Adolescent testosterone influences BDNF and TrkB mRNA and neurotrophin-interneuron marker relationships in mammalian frontal cortex.

    PubMed

    Purves-Tyson, Tertia D; Allen, Katherine; Fung, Samantha; Rothmond, Debora; Noble, Pam L; Handelsman, David J; Shannon Weickert, Cynthia

    2015-11-01

    Late adolescence in males is a period of increased susceptibility for the onset of schizophrenia, coinciding with increased circulating testosterone. The cognitive deficits prevalent in schizophrenia may be related to unhealthy cortical interneurons, which are trophically dependent on brain derived neurotrophic factor. We investigated, under conditions of depleted (monkey and rat) and replaced (rat) testosterone over adolescence, changes in gene expression of cortical BDNF and TrkB transcripts and interneuron markers and the relationships between these mRNAs and circulating testosterone. Testosterone removal by gonadectomy reduced gene expression of some BDNF transcripts in monkey and rat frontal cortices and the BDNF mRNA reduction was prevented by testosterone replacement. In rat, testosterone replacement increased the potential for classical TrkB signalling by increasing the full length to truncated TrkB mRNA ratio, whereas in the monkey cortex, circulating testosterone was negatively correlated with the TrkB full length/truncated mRNA ratio. We did not identify changes in interneuron gene expression in monkey frontal cortex in response to gonadectomy, and in rat, we showed that only somatostatin mRNA was decreased by gonadectomy but not restored by testosterone replacement. We identified complex and possibly species-specific, relationships between BDNF/TrkB gene expression and interneuron marker gene expression that appear to be dependent on the presence of testosterone at adolescence in rat and monkey frontal cortices. Taken together, our findings suggest there are dynamic relationships between BDNF/TrkB and interneuron markers that are dependent on the presence of testosterone but that this may not be a straightforward increase in testosterone leading to changes in BDNF/TrkB that contributes to interneuron health. PMID:26088421

  5. Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators.

    PubMed

    Hölzel, Britta K; Ott, Ulrich; Hempel, Hannes; Hackl, Andrea; Wolf, Katharina; Stark, Rudolf; Vaitl, Dieter

    2007-06-21

    This study investigated differences in brain activation during meditation between meditators and non-meditators. Fifteen Vipassana meditators (mean practice: 7.9 years, 2h daily) and fifteen non-meditators, matched for sex, age, education, and handedness, participated in a block-design fMRI study that included mindfulness of breathing and mental arithmetic conditions. For the meditation condition (contrasted to arithmetic), meditators showed stronger activations in the rostral anterior cingulate cortex and the dorsal medial prefrontal cortex bilaterally, compared to controls. Greater rostral anterior cingulate cortex activation in meditators may reflect stronger processing of distracting events. The increased activation in the medial prefrontal cortex may reflect that meditators are stronger engaged in emotional processing.

  6. Domain-related differentiation of working memory in the Japanese macaque (Macaca fuscata) frontal cortex: a positron emission tomography study.

    PubMed

    Kojima, T; Onoe, H; Hikosaka, K; Tsutsui, K; Tsukada, H; Watanabe, M

    2007-04-01

    The lateral prefrontal cortex (LPFC) is important for working memory (WM) task performance. Neuropsychological and neurophysiological studies in monkeys suggest that the lateral prefrontal cortex is functionally segregated based on the working memory domain (spatial vs. non-spatial). However, this is not supported by most human neuroimaging studies, and the discrepancy might be due to differences in methods and/or species (monkey neuropsychology/physiology vs. human neuroimaging). We used positron emission topography to examine the functional segregation of the lateral prefrontal cortex of Japanese macaques (Macaca fuscata) that showed near 100% accuracy on spatial and non-spatial working memory tasks. Compared with activity during the non-working memory control tasks, the dorsolateral prefrontal cortex (DLPFC) was more active during the non-spatial, but not during the spatial, working memory task, although a muscimol microinjection into the dorsolateral prefrontal cortex significantly impaired the performance of both working memory tasks. A direct comparison of the brain activity between the two working memory tasks revealed no differences within the lateral prefrontal cortex, whereas the premotor area was more active during the spatial working memory task. Comparing the delay-specific activity, which did not include task-associated stimulus/response-related activity, revealed more spatial working memory-related activity in the posterior parietal and premotor areas, and more non-spatial working memory-related activity in the dorsolateral prefrontal cortex and hippocampus. These results suggest that working memory in the monkey brain is segregated based on domain, not within the lateral prefrontal cortex but rather between the posterior parietal-premotor areas and the dorsolateral prefrontal-hippocampus areas.

  7. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  8. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  9. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  10. Disrupted Reinforcement Signaling in Orbital Frontal Cortex and Caudate in Youths with Conduct Disorder/Oppositional Defiant Disorder and High Psychopathic Traits

    PubMed Central

    Finger, Elizabeth C.; Marsh, Abigail A.; Blair, Karina S.; Reid, Marguerite. E.; Sims, Courtney; Ng, Pamela; Pine, Daniel S.; Blair, R. James. R.

    2010-01-01

    OBJECTIVE Dysfunction in amygdala and orbital frontal cortex functioning has been reported in youths and adults with psychopathic traits. However, the specific nature of the computational irregularities within these brain structures remains poorly understood. The current study used the passive avoidance task to examine responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. METHOD 30 youths (N=15 with conduct disorder or oppositional defiant disorder plus high psychopathic traits and N=15 comparison subjects) completed a 3.0 T fMRI scan while performing a passive avoidance learning task. RESULTS Relative to comparison youth, youths with conduct disorder or oppositional defiant disorder plus psychopathic traits showed reduced orbitofrontal cortex responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as reduced caudate response to early stimulus-reinforcement exposure. Contrary to other predictions, however, there were no group differences in amygdala responsiveness specifically to these two task parameters. However, amygdala responsiveness throughout the task was reduced in the youths with conduct disorder or oppositional defiant disorder plus psychopathic traits. CONCLUSIONS This study demonstrates that youths with conduct disorder or oppositional defiant disorder plus psychopathic traits are marked by a compromised sensitivity to early reinforcement information in both orbitofrontal cortex and caudate and to reward outcome information within orbitofrontal cortex. They further suggest that the integrated functioning of the amygdala, caudate and orbitofrontal cortex may be disrupted in individuals with this disorder. PMID:21078707

  11. Characterization of sulpipride-displaceable sup 3 H-YM-09151-2 binding sites in rat frontal cortex and the effects of subchronic treatment with haloperidol on cortical D-2 dopamine receptors

    SciTech Connect

    Kazawa, Tetsushi; Higuchi, Teruhiko National Institute of Neuroscience, Tokyo ); Mikuni, Masahiko; Takahshi, Kiyohisa ); Arai, Ichiro; Yamauchi, Toshio )

    1990-01-01

    We investigated the pharmacological properties of the sulpiride-displaceable binding sites labeled by {sup 3}H-YM-09151-2 in rat frontal cortex, compared to those in striatum. The IC{sub 50} value of ketanserin was 486 nM, which was apparently different from its affinity for the 5HT-2 receptor. Various dopamine antagonists showed almost the same inhibitory effects for binding site in frontal cortex and striatum. Sulpiride-displaceable {sup 3}H-YM-09151-2 binding sites were considered to be D-2 dopamine receptors. After subchronic treatment with haloperidol, the D-2 receptor density of frontal cortex increased to the same extent as striatum without significant change in apparent affinity.

  12. The effects on auditory neurocognitive evoked responses and contingent negative variation activity of frontal cortex lesions or ablations in man: three new case studies.

    PubMed

    Zappoli, R; Versari, A; Zappoli, F; Chiaramonti, R; Zappoli Thyrion, G D; Grazia Arneodo, M; Zerauschek, V

    2000-11-01

    Our previous research in patients with extensive surgical ablations of the prefrontal cortex contradict the hypothesis of some authors that the generators of several auditory event-related potentials (ERPs) (N100; P200; N200; P300; SW), recordable in humans with depth/scalp electrodes and MEG over the prefrontal dorsolateral cortical areas, are essentially located in medial prefrontal and anterior cingulate-limbic cortices. Using a standard CNV paradigm, 21 EEG electrodes and topographic mapping analysis, the post-warning (S1) auditory N100a b c, P200, P300 (binaural clicks) and CNV activity were recorded in three additional patients after extensive dorsolateral and/or medial prefrontal cortex ablations, verified through CT/MRI examinations. No true post-S1/CNV components were recordable over the ablated frontal areas, only sporadic volume-conducted ERPs probably generated in the temporo-parietal lobes or posterior cingulate gyrus. For one of these patients, after excision of a vast right frontal epileptogenic cortical region (including extensive dorsolateral areas, but sparing the fronto-medial cortex and anterior/middle cingulate gyrus), no post-S1/CNV components were recordable over the ablated regions. These latest observations again indicate that independent neuronal generators of several post-S1 auditory and CNV components are located in the dorsolateral supramodal premotor/prefrontal cortical areas which are directly, ipsilaterally connected to the uni/multimodal temporo-parieto-occipital sensory and associative regions through the long, two-way, fairly superficial, superior arcuate-longitudinal and deeper superior and inferior occipito-frontal bundles. Clear and almost constant differences in the latency of some post-S1 N100 subcomponents (especially the time-lapses between onset and the highest amplitude of the N100 a and c) over various posterior, central and anterior cortical areas sequentially involved, roughly measured in 10 normal subjects along the

  13. Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder.

    PubMed

    Smiley, John F; Saito, Mariko; Bleiwas, Cynthia; Masiello, Kurt; Ardekani, Babak; Guilfoyle, David N; Gerum, Scott; Wilson, Donald A; Vadasz, Csaba

    2015-09-01

    Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD.

  14. Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder

    PubMed Central

    Smiley, John F.; Saito, Mariko; Bleiwas, Cynthia; Masiello, Kurt; Ardekani, Babak; Guilfoyle, David N.; Gerum, Scott; Wilson, Donald A.; Vadasz, Csaba

    2015-01-01

    Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10–13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD. PMID:26252988

  15. Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder.

    PubMed

    Smiley, John F; Saito, Mariko; Bleiwas, Cynthia; Masiello, Kurt; Ardekani, Babak; Guilfoyle, David N; Gerum, Scott; Wilson, Donald A; Vadasz, Csaba

    2015-09-01

    Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD. PMID:26252988

  16. Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats.

    PubMed

    Boschen, K E; Criss, K J; Palamarchouk, V; Roth, T L; Klintsova, A Y

    2015-06-01

    Third trimester-equivalent alcohol exposure causes significant deficits in hippocampal and cortical neuroplasticity, resulting in alterations to dendritic arborization, hippocampal adult neurogenesis, and performance on learning tasks. The current study investigated the impact of neonatal alcohol exposure (postnatal days 4-9, 5.25 g/kg/day) on expression of brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor in the hippocampal and frontal cortex of infant Long-Evans rats. Levels of BDNF protein were increased in the hippocampus, but not frontal cortex, of alcohol-exposed rats 24h after the last dose, when compared with undisturbed (but not sham-intubated) control animals. BDNF protein levels showed a trend toward increase in hippocampus of sham-intubated animals as well, suggesting an effect of the intubation procedure. TrkB protein was increased in the hippocampus of alcohol-exposed animals compared to sham-intubated pups, indicating an alcohol-specific effect on receptor expression. In addition, expression of bdnf total mRNA in alcohol-exposed and sham-intubated pups was enhanced in the hippocampus; however, there was a differential effect of alcohol and intubation stress on exon I- and IV-specific mRNA transcripts. Further, plasma corticosterone was found to be increased in both alcohol-exposed and sham-intubated pups compared to undisturbed animals. Upregulation of BDNF could potentially represent a neuroprotective mechanism activated following alcohol exposure or stress. The results suggest that alcohol exposure and stress have both overlapping and unique effects on BDNF, and highlight the need for the stress of intubation to be taken into consideration in studies that implement this route of drug delivery.

  17. Brain Region–Specific Decrease in the Activity and Expression of Protein Kinase A in the Frontal Cortex of Regressive Autism

    PubMed Central

    Ji, Lina; Chauhan, Ved; Flory, Michael J.; Chauhan, Abha

    2011-01-01

    Autism is a severe neurodevelopmental disorder that is characterized by impaired language, communication, and social skills. In regressive autism, affected children first show signs of normal social and language development but eventually lose these skills and develop autistic behavior. Protein kinases are essential in G-protein-coupled, receptor-mediated signal transduction and are involved in neuronal functions, gene expression, memory, and cell differentiation. We studied the activity and expression of protein kinase A (PKA), a cyclic AMP–dependent protein kinase, in postmortem brain tissue samples from the frontal, temporal, parietal, and occipital cortices, and the cerebellum of individuals with regressive autism; autistic subjects without a clinical history of regression; and age-matched developmentally normal control subjects. The activity of PKA and the expression of PKA (C-α), a catalytic subunit of PKA, were significantly decreased in the frontal cortex of individuals with regressive autism compared to control subjects and individuals with non-regressive autism. Such changes were not observed in the cerebellum, or the cortices from the temporal, parietal, and occipital regions of the brain in subjects with regressive autism. In addition, there was no significant difference in PKA activity or expression of PKA (C-α) between non-regressive autism and control groups. These results suggest that regression in autism may be associated, in part, with decreased PKA-mediated phosphorylation of proteins and abnormalities in cellular signaling. PMID:21909354

  18. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation.

    PubMed

    Chan, S-Y; Martín-Santos, A; Loubière, L S; González, A M; Stieger, B; Logan, A; McCabe, C J; Franklyn, J A; Kilby, M D

    2011-06-01

    Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of the human N-Tera-2 (NT2) cell line, in triiodothyronine (T3) replete and T3-depleted media. Compared with adult cortex, mRNAs encoding OATP1A2, OATP1C1, OATP3A1 variant 2, OATP4A1, LAT2 and CD98 were reduced in fetal cortex at different gestational ages, whilst mRNAs encoding MCT8, MCT10, OATP3A1 variant 1 and LAT1 were similar. From the early first trimester, immunohistochemistry localised MCT8 and MCT10 to the microvasculature and to undifferentiated CNS cells. With neurodifferentiation, NT2 cells demonstrated declining T3 uptake, accompanied by reduced expressions of MCT8, LAT1, CD98 and OATP4A1. T3 depletion significantly reduced MCT10 and LAT2 mRNA expression at specific time points during neurodifferentiation but there were no effects upon T3 uptake, neurodifferentiation marker expression or neurite lengths and branching. MCT8 repression also did not affect NT2 neurodifferentiation. In conclusion, many TH transporters are expressed in the human fetal cerebral cortex from the first trimester, which could regulate cellular TH supply during early development. However, human NT2 neurodifferentiation is not dependent upon T3 or MCT8 and there were no compensatory changes to promote T3 uptake in a T3-depleted environment. PMID:21486766

  19. Dynamic expression of calretinin in embryonic and early fetal human cortex

    PubMed Central

    González-Gómez, Miriam; Meyer, Gundela

    2014-01-01

    Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial

  20. Disrupting the clustering of GABAA receptor α2 subunits in the frontal cortex leads to reduced γ-power and cognitive deficits

    PubMed Central

    Hines, Rochelle M.; Hines, Dustin J.; Houston, Catriona M.; Mukherjee, Jayanta; Haydon, Philip G.; Tretter, Verena; Smart, Trevor G.; Moss, Stephen J.

    2013-01-01

    In schizophrenia, cognitive dysfunction is highly predictive of poor patient outcomes and is not responsive to current medications. Postmortem studies have suggested that cognitive deficits in schizophrenia are correlated with modifications in the number and size of inhibitory synapses. To test if these modifications lead to cognitive deficits, we have created a dominant-negative virus [adeno-associated (AAV)-DN1] that disrupts the clustering of γ-aminobutyric acid type A receptors (GABAARs) at postsynaptic inhibitory specializations. When injected into the frontal cortex of mice, AAV-DN1 impairs GABAAR α2 subunit and GABA transporter 1 (GAT-1) clustering, but increases GABAAR α1 subunit clustering on the perisomatic region, with no influence on axon-initial segment clustering. Mice expressing AAV-DN1 have prepulse inhibition deficits and impairments in working memory. Significantly, these behavioral deficits are paralleled by a reduction in electroencephalography γ-power. Collectively, our study provides functional evidence revealing that GABAergic synapses in the prefrontal cortex directly contribute to cognition and γ-power. PMID:24043839

  1. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model.

    PubMed

    Kratsman, Neta; Getselter, Dmitriy; Elliott, Evan

    2016-03-01

    The core behavioral symptoms of Autism Spectrum Disorders (ASD) include dysregulation of social communication and the presence of repetitive behaviors. However, there is no pharmacological agent that is currently used to target these core symptoms. Epigenetic dysregulation has been implicated in the etiology of ASD, and may present a pharmacological target. The effect of sodium butyrate, a histone deacetylase inhibitor, on social behavior and repetitive behavior, and the frontal cortex transcriptome, was examined in the BTBR autism mouse model. A 100 mg/kg dose, but not a 1200 mg/kg dose, of sodium butyrate attenuated social deficits in the BTBR mouse model. In addition, both doses decreased marble burying, an indication of repetitive behavior, but had no significant effect on self-grooming. Using RNA-seq, we determined that the 100 mg/kg dose of sodium butyrate induced changes in many behavior-related genes in the prefrontal cortex, and particularly affected genes involved in neuronal excitation or inhibition. The decrease in several excitatory neurotransmitter and neuronal activation marker genes, including cFos Grin2b, and Adra1, together with the increase in inhibitory neurotransmitter genes Drd2 and Gabrg1, suggests that sodium butyrate promotes the transcription of inhibitory pathway transcripts. Finally, DMCM, a GABA reverse agonist, decreased social behaviors in sodium-butyrate treated BTBR mice, suggesting that sodium butyrate increases social behaviors through modulation of the excitatory/inhibitory balance. Therefore, transcriptional modulation by sodium butyrate may have beneficial effects on autism related behaviors.

  2. Alteration in Nuclear Factor-KappaB Pathway and Functionality of Estrogen via Receptors Promote Neuroinflammation in Frontal Cortex after 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Treatment

    PubMed Central

    Mitra, Soham; Ghosh, Nabanita; Sinha, Priyobrata; Chakrabarti, Nilkanta; Bhattacharyya, Arindam

    2015-01-01

    The MPTP mediated neurodegeneration in substantia nigra has been well studied, but not the status of frontal cortex. The novelty of the present study is to explore the sex difference of frontal cortex during MPTP intoxication and to investigate the role of estrogen and its receptors in presence of glial cells in a time chase experiment; to identify which pathway of NF-kappaB exist to proceed the neuroinflammation; to investigate the estrogen binding with its nuclear or cytosolic receptors and whether any direct relation exists between estrogen receptor (ER) -beta and NF-kappaB molecules p65 and RelB. The progression of neurodegeneration occurred with the association of glial cells and functional (via its nuclear and cytosolic receptors) estrogen level. Both the canonical and/or non canonical pathways of NF-kappaB exist in frontal cortex of both the sexes after MPTP treatment. The homodimeric or heterodimeric form of ER-beta binds with NF-kappaB molecules p65 and RelB differently, but the canonical or non canonical pathways of NF-kappaB molecules could not be stopped or may be promoted. The changes in the molecular and cellular pattern in frontal cortex of both sexes during MPTP intoxication depends on the estrogen function via its nuclear or cytosolic estrogen receptors. PMID:26365888

  3. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour.

    PubMed

    Dippel, Gabriel; Beste, Christian

    2015-04-08

    Everyday activities, such as, for example, driving a car or preparing a meal, require the hierarchical organization and processing of several individual actions. Currently, the neural mechanisms underlying the control of action sequences are not well understood. Here, the authors demonstrate that the right inferior frontal gyrus (rIFG) plays a key role in implementing the strategy used to cascade different actions. Continuous theta burst stimulation (TBS) applied to the rIFG results in a less efficient action cascading strategy, whereas intermittent TBS results in a more efficient strategy, compared with a shamTBS control condition. These effects are confirmed in electrophysiological data showing that activity differences in the rIFG are related to alterations in response selection processes. Overall, these results suggest that the neural dynamics of the rIFG determine the strategy used during some forms of everyday multi-component behaviour.

  4. Functional connectivity delineates distinct roles of the inferior frontal cortex and pre-supplementary motor area in stop signal inhibition

    PubMed Central

    Duann, Jeng-Ren; Ide, Jaime S.; Luo, Xi; Li, Chiang-shan Ray

    2009-01-01

    The neural basis of motor response inhibition has drawn considerable attention in recent imaging literature. Many studies have employed the go/no-go or stop signal task to examine the neural processes underlying motor response inhibition. In particular, showing greater activity during no-go (stop) as compared to go trials and during stop success as compared to stop error trials, the right inferior prefrontal cortex (IFC) has been suggested by numerous studies as the cortical area mediating response inhibition. Many of these same studies as well as others have also implicated the pre-supplementary motor area (preSMA) in this process, in accord with a function of the medial prefrontal cortex in goal-directed action. Here we employed connectivity analyses to delineate the roles of IFC and preSMA during stop signal inhibition. Specifically, we hypothesized that, as an integral part of the ventral attention system, the IFC responds to a stop signal and expedites the stop process in the preSMA, the primary site of motor response inhibition. This hypothesis predicted that preSMA and primary motor cortex would show functional interconnectivity via the basal ganglia circuitry to mediate response execution or inhibition, whereas the IFC would influence the basal ganglia circuitry via connectivity with preSMA. The results of Granger causality analyses in 57 participants confirmed this hypothesis. Furthermore, psychophysiological interaction showed that, as compared to stop errors, stop successes evoked greater effective connectivity between the IFC and preSMA, providing additional support for this hypothesis. These new findings provided evidence critically differentiating the roles of IFC and preSMA during stop signal inhibition and have important implications for our understanding of the component processes of inhibitory control. PMID:19675251

  5. Global resting-state fMRI analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder

    PubMed Central

    Anticevic, Alan; Hu, Sien; Zhang, Sheng; Savic, Aleksandar; Billingslea, Eileen; Wasylink, Suzanne; Repovs, Grega; Cole, Michael W.; Bednarski, Sarah; Krystal, John H.; Bloch, Michael H.; Li, Chiang-shan R.; Pittenger, Christopher

    2013-01-01

    Background Obsessive-compulsive disorder (OCD) is associated with regional hyperactivity in cortico-striatal circuits. However, the large-scale patterns of abnormal neural connectivity remain uncharacterized. Resting-state functional connectivity (rs-fcMRI) studies have shown altered connectivity within the implicated circuitry, but they have used seed-driven approaches wherein a circuit of interest is defined a priori. This limits their ability to identify network abnormalities beyond the prevailing framework. This limitation is particularly problematic within the prefrontal cortex (PFC), which is large and heterogeneous and where a priori specification of seeds is therefore difficult. A hypothesis-neutral data-driven approach to the analysis of connectivity is vital. Method We analyzed rs-fcMRI data collected at 3T in 27 OCD patients and 66 matched controls using a recently developed data-driven global brain connectivity (GBC) method, both within the PFC and across the whole brain. Results We found clusters of decreased connectivity in the left lateral PFC in both whole-brain and PFC-restricted analyses. Increased GBC was found in the right putamen and left cerebellar cortex. Within ROIs in the basal ganglia and thalamus, we identified increased GBC in dorsal striatum and anterior thalamus, which was reduced in patients on medication. The ventral striatum/nucleus accumbens exhibited decreased global connectivity, but increased connectivity specifically with the ventral anterior cingulate cortex in subjects with OCD. Conclusion These findings identify previously uncharacterized PFC and basal ganglia dysconnectivity in OCD and reveal differentially altered GBC in dorsal and ventral striatum. Results highlight complex disturbances in PFC networks, which could contribute to disrupted cortical-striatal-cerebellar circuits in OCD. PMID:24314349

  6. Frontal cortex and hippocampus neurotransmitter receptor complex level parallels spatial memory performance in the radial arm maze.

    PubMed

    Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Miklosi, András G; Sialana, Fernando J; Subramaniyan, Saraswathi; Aher, Yogesh D; Gröger, Marion; Höger, Harald; Bennett, Keiryn L; Lubec, Gert

    2015-08-01

    Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies. PMID:25930220

  7. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    PubMed

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior. PMID:24239852

  8. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    PubMed

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior.

  9. Chronic psychotropic drug treatment causes differential expression of connexin 43 and GFAP in frontal cortex of rats.

    PubMed

    Fatemi, S Hossein; Folsom, Timothy D; Reutiman, Teri J; Pandian, Twinkle; Braun, Natalie N; Haug, Kari

    2008-09-01

    Astrocytic markers glial fibrillary acidic protein (GFAP) and connexin 43 (CX43) are known to have altered expression in brains of subjects with psychiatric disorders including autism and major depression. The current study investigated whether GFAP and CX43 expressions are affected by several commonly used psychotropic medications (clozapine, fluoxetine, haloperidol, lithium, olanzapine, and valproic acid). Using SDS-PAGE and western blotting technique, we observed that CX43 protein expression in prefrontal cortex was significantly increased following chronic treatment with fluoxetine and clozapine, while it was significantly decreased by haloperidol and lithium. GFAP protein expression was significantly decreased following chronic treatment with clozapine and valproic acid. These results suggest that astroglial markers GFAP and CX43 could be potential targets for therapeutic intervention.

  10. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context.

    PubMed

    Alonso, Joan F; Romero, Sergio; Mañanas, Miguel A; Alcalá, Marta; Antonijoan, Rosa M; Giménez, Sandra

    2016-01-01

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships. PMID:27089346

  11. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context

    PubMed Central

    Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Alcalá, Marta; Antonijoan, Rosa M.; Giménez, Sandra

    2016-01-01

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships. PMID:27089346

  12. We are more selfish than we think: The endowment effect and reward processing within the human medial-frontal cortex.

    PubMed

    Hassall, Cameron D; Silver, Amy; Turk, David J; Krigolson, Olave E

    2016-01-01

    Perceived ownership has been shown to impact a variety of cognitive processes: attention, memory, and--more recently--reward processing. In the present experiment we examined whether or not perceived ownership would interact with the construct of value-the relative worth of an object. Participants completed a simple gambling game in which they gambled either for themselves or for another while electroencephalographic data were recorded. In a key manipulation, gambles for oneself or for another were for either small or large rewards. We tested the hypothesis that value affects the neural response to self-gamble outcomes, but not other-gamble outcomes. Our experimental data revealed that while participants learned the correct response option for both self and other gambles, the reward positivity evoked by wins was impacted by value only when gambling for oneself. Importantly, our findings provide additional evidence for a self-ownership bias in cognitive processing and further demonstrate the insensitivity of the medial-frontal reward system to gambles for another.

  13. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates mTOR signal pathways and protein translation in the rat frontal cortex.

    PubMed

    Kim, Se Hyun; Yu, Hyun-Sook; Park, Hong Geun; Ha, Kyooseob; Kim, Yong Sik; Shin, Soon Young; Ahn, Yong Min

    2013-08-01

    Intracerebroventricular (ICV) injection of ouabain, a specific Na/K-ATPase inhibitor, induces behavioral changes in rats in a putative animal model of mania. The binding of ouabain to Na/K-ATPase affects signaling molecules in vitro, including ERK1/2 and Akt, which promote protein translation. We have also reported that ERK1/2 and Akt in the brain are involved in the ouabain-induced hyperactivity of rats. In this study, rats were given an ICV injection of ouabain, and then their frontal cortices were examined to determine the effects of ouabain on the mTOR/p70S6K/S6 signaling pathway and protein translation, which are important in modifications of neural circuits and behavior. Rats showed ouabain-induced hyperactivity up to 8h following injection, and increased phosphorylation levels of mTOR, p70S6K, S6, eIF4B, and 4E-BP at 1, 2, 4, and 8h following ouabain injection. Immunohistochemical analyses revealed that increased p-S6 immunoreactivity in the cytoplasm of neurons by ouabain was evident in the prefrontal, cingulate, and orbital cortex. These findings suggested increased translation initiation in response to ouabain. The rate of protein synthesis was measured as the amount of [(3)H]-leucine incorporation in the cell-free extracts of frontal cortical tissues, and showed a significant increase at 8h after ouabain injection. These results suggest that ICV injection of ouabain induced activation of the protein translation initiation pathway regulated by ERK1/2 and Akt, and prolonged hyperactivity in rats. In conclusion, protein translation pathway could play an important role in ouabain-induced hyperactivity in a rodent model of mania. PMID:23643758

  14. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    SciTech Connect

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  15. Value and Prediction Error in Medial Frontal Cortex: Integrating the Single-Unit and Systems Levels of Analysis

    PubMed Central

    Silvetti, Massimo; Seurinck, Ruth; Verguts, Tom

    2011-01-01

    The role of the anterior cingulate cortex (ACC) in cognition has been extensively investigated with several techniques, including single-unit recordings in rodents and monkeys and EEG and fMRI in humans. This has generated a rich set of data and points of view. Important theoretical functions proposed for ACC are value estimation, error detection, error-likelihood estimation, conflict monitoring, and estimation of reward volatility. A unified view is lacking at this time, however. Here we propose that online value estimation could be the key function underlying these diverse data. This is instantiated in the reward value and prediction model (RVPM). The model contains units coding for the value of cues (stimuli or actions) and units coding for the differences between such values and the actual reward (prediction errors). We exposed the model to typical experimental paradigms from single-unit, EEG, and fMRI research to compare its overall behavior with the data from these studies. The model reproduced the ACC behavior of previous single-unit, EEG, and fMRI studies on reward processing, error processing, conflict monitoring, error-likelihood estimation, and volatility estimation, unifying the interpretations of the role performed by the ACC in some aspects of cognition. PMID:21886616

  16. Dopamine release and metabolism in the rat frontal cortex, nucleus accumbens, and striatum: a comparison of acute clozapine and haloperidol.

    PubMed Central

    Karoum, F.; Egan, M. F.

    1992-01-01

    1. The effects of the typical and typical neuroleptic agents clozapine (CLZ) (2.5-20 mg kg-1, i.p.) and haloperidol (Hal) (0.05-1.0 mg kg-1), were compared on dopamine release and metabolism in the rat prefrontal cortex (PFC), nucleus accumbens (ACC) and striatum (ST). Dopamine release was estimated by measuring the steady-state concentration of 3-methoxytyramine (3-MT) and the level of 3-MT 10 min after pargyline (3-MT accumulation); dopamine metabolism was evaluated from the steady-state concentrations of its acidic metabolites. 2. Both drugs increased 3-MT accumulation in the PFC in a dose-dependent manner. In contrast to Hal, CLZ failed to increase 3-MT accumulation in the ACC or ST. The ST was the region most sensitive to Hal in terms of 3-MT accumulation and, by inference, dopamine release. 3. Both CLZ and Hal dose-dependently elevated the concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in all 3 brain regions studied. The ACC appears to be the region most sensitive to these drugs in terms of changes in the levels of HVA. 4. The result of the present investigations suggest measurements of 3-MT production in the 3 brain regions analysed might be a useful and simple pharmacological tool in the search for atypical neuroleptic drugs with a selectivity of action for the cortical systems. PMID:1628156

  17. Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis.

    PubMed

    Silvetti, Massimo; Seurinck, Ruth; Verguts, Tom

    2011-01-01

    The role of the anterior cingulate cortex (ACC) in cognition has been extensively investigated with several techniques, including single-unit recordings in rodents and monkeys and EEG and fMRI in humans. This has generated a rich set of data and points of view. Important theoretical functions proposed for ACC are value estimation, error detection, error-likelihood estimation, conflict monitoring, and estimation of reward volatility. A unified view is lacking at this time, however. Here we propose that online value estimation could be the key function underlying these diverse data. This is instantiated in the reward value and prediction model (RVPM). The model contains units coding for the value of cues (stimuli or actions) and units coding for the differences between such values and the actual reward (prediction errors). We exposed the model to typical experimental paradigms from single-unit, EEG, and fMRI research to compare its overall behavior with the data from these studies. The model reproduced the ACC behavior of previous single-unit, EEG, and fMRI studies on reward processing, error processing, conflict monitoring, error-likelihood estimation, and volatility estimation, unifying the interpretations of the role performed by the ACC in some aspects of cognition.

  18. Depressive-like history alters persistent pain behavior in rats: Opposite contribution of frontal cortex and amygdala implied

    PubMed Central

    Qi, Wei-Jing; Wang, Wei; Wang, Ning; Wang, Jin-Yan; Luo, Fei

    2015-01-01

    Numerous studies have shown that pain perception is strongly influenced by depression. However, very few studies have examined whether pain perception is altered in the remission period of depression, and what role the fronto-limbic circuits may play in the behavioral changes associated with remission. Using an unpredictable chronic mild stress (UCMS) animal model of depression, the present study investigated pain-related behaviors in rats with prior exposure to a UCMS stimulus. The γ-aminobutyric acid (GABA)A receptor agonist muscimol was microinjected bilaterally into the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) to examine the modulation of pain by these brain regions in the recovery state. Rats with a depression-like history displayed increased ongoing pain behavior in the formalin test, although their thermal pain thresholds were unchanged. Intra-BLA muscimol during the recovery phase dramatically decreased formalin-induced pain behavior and also significantly increased rats’ sucrose preference. By contrast, in the mPFC, muscimol produced the opposite effect, suggesting different, perhaps opposing, roles of the BLA and mPFC in mediating the influence of prior UCMS exposure on pain perception. Taken together, these results demonstrated that a depressive experience may cause long-term alterations in limbic circuit excitability and thus lead to long-lasting changes in pain perception. PMID:26229589

  19. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    PubMed

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR.

  20. The melanin-concentrating hormone1 receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats.

    PubMed

    Millan, Mark J; Gobert, Alain; Panayi, Fany; Rivet, Jean-Michel; Dekeyne, Anne; Brocco, Mauricette; Ortuno, Jean-Claude; Di Cara, Benjamin

    2008-12-01

    Melanin-concentrating hormone (MCH)1 receptors are widely expressed in limbic structures and cortex. Their inactivation is associated with anxiolytic and antidepressive properties but little information is available concerning cognition. This issue was addressed using the selective antagonists, SNAP-7941 and GW3430, in a social recognition paradigm in rats. The muscarinic blocker, scopolamine (1.25 mg/kg s.c.), reduced social recognition, an action dose-dependently blocked by SNAP-7941 and GW3430 (0.63-10.0 and 20.0-80.0 mg/kg i.p., respectively) which did not themselves display amnesic properties. Further, in a protocol where a spontaneous deficit was induced by a prolonged inter-session delay, SNAP-7941 and GW3430 dose-dependently enhanced social recognition. In dialysis studies, SNAP-7941 (0.63-40.0 mg/kg i.p.) and GW3430 (10.0-40.0 mg/kg i.p.) elevated extracellular levels of acetylcholine (ACh) in the frontal cortex (FCX) of freely moving rats. The SNAP-7941 effect was specific, as it did not increase levels of ACh in ventral and dorsal hippocampus: moreover, it did not modify levels of noradrenaline, dopamine, serotonin and glutamate in FCX. Active doses of SNAP-7941 and GW3430 corresponded to doses (2.5-40.0 and 10.0-80.0 mg/kg i.p., respectively) exerting anxiolytic properties in Vogel conflict and ultrasonic vocalization tests, and antidepressant actions in forced swim, isolation-induced aggression and marble-burying procedures. In contrast to SNAP-7941 and GW3430, the benzodiazepine, diazepam, decreased social recognition and dialysate levels of ACh, while the tricyclic, imipramine, reduced social recognition and failed to enhance cholinergic transmission. In conclusion, at anxiolytic and antidepressant doses, SNAP-7941 and GW3430 improve social recognition and elevate extracellular ACh levels in FCX. This profile differentiates MCH1 receptor antagonists from conventional anxiolytic and antidepressant agents.

  1. Efferents from the lateral frontal cortex to spinomedullary target areas, trigeminal nuclei, and spinally projecting brainstem regions in the hedgehog tenrec.

    PubMed

    Künzle, H; Lotter, G

    1996-08-12

    This study was done in the Madagascan lesser hedgehog tenrec, an insectivore with a very poorly differentiated neocortex. The cortical region, known to give rise to spinal projections, was injected with tracer, and the cortical efferents to brainstem and spinal cord were analyzed. Bulbar reticular fields, in addition, were identified according to their cells of origin and the laterality of their spinal projections after injection of tracer. Only few cortical fibers could be traced from the bulbar pyramid into the ipsilateral spinal cord, particularly to the lateral funiculus. The projections to the dorsal column nuclei and the classical spinally projecting brainstem regions were also weak. Faint projections were demonstrated to the nucleus of the posterior commissure and the nucleus of Darkschewitsch. In comparison to other mammals, there was no evidence that the contralateral cortico-bulbo-spinal pathway was strengthened, substituting for the almost non-existent contralateral corticospinal projection. Unlike the sensorimotor apparatus controlling limb and body movements, the brainstem regions controlling the head and neck received prominent cortical projections. Direct corticotrigeminal projections and indirect pathways were well represented. The projections to the trigeminal nuclei and the lateral reticular fields were clearly bilateral; those to the superior colliculus were predominantly ipsilateral. The corticobulbar fibers left the pyramid along its entire extent; the principal trigeminal nucleus and the dorsolateral pontine tegmentum were supplied by additional fibers of the corticotegmental tract. The lateral frontal cortex also projected densely to the dorsolateral hypothalamus, the periaqueductal gray, and the adjacent mesencephalic tegmentum, components of the emotional motor system.

  2. Effects of aging on hemispheric asymmetry in inferior frontal cortex activity during belief-bias syllogistic reasoning: a near-infrared spectroscopy study.

    PubMed

    Tsujii, Takeo; Okada, Mitsuhiro; Watanabe, Shigeru

    2010-07-11

    The belief-bias effect in syllogistic reasoning refers to the tendency for subjects to be erroneously biased when logical conclusions are incongruent with beliefs about the world. This study examined age-related differences in inferior frontal cortex (IFC) activity associated with belief-bias reasoning using near-infrared spectroscopy (NIRS). The subjects were 32 older (mean age, 68.53 years) and 32 young adult volunteers (mean age, 21.50 years). They performed belief-congruent and incongruent reasoning trials while right and left IFC activities were being measured by NIRS. Behavioral analysis found that older adults exhibited a larger belief-bias than young adults. NIRS analysis showed that the right IFC was more activated than the left IFC in young adults, while there was no significant hemispheric difference in older adults. On correlation analysis, there was a significant positive correlation between reasoning accuracy and IFC activation in both hemispheres for older adults, while in young adults, the correlation was significant only in the right hemisphere. These correlation patterns suggest that the right IFC is critical for resolving conflicting reasoning in young adults, but that older adults may further recruit the left IFC to compensate for the age-related decline in the inhibitory control functions. Thus, we demonstrate, for the first time, age-related differences in neural activity associated with belief-bias reasoning.

  3. Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study

    PubMed Central

    2011-01-01

    Background Fragile X syndrome is caused by loss of function of the fragile X mental retardation 1 (FMR1) gene and shares multiple phenotypes with autism. We have previously found reduced expression of the protein product of FMR1 (FMRP) in vermis of adults with autism. Methods In the current study, we have investigated levels of FMRP in the superior frontal cortex of people with autism and matched controls using Western blot analysis. Because FMRP regulates the translation of multiple genes, we also measured protein levels for downstream molecules metabotropic glutamate receptor 5 (mGluR5) and γ-aminobutyric acid (GABA) A receptor β3 (GABRβ3), as well as glial fibrillary acidic protein (GFAP). Results We observed significantly reduced levels of protein for FMRP in adults with autism, significantly increased levels of protein for mGluR5 in children with autism and significantly increased levels of GFAP in adults and children with autism. We found no change in expression of GABRβ3. Our results for FMRP, mGluR5 and GFAP confirm our previous work in the cerebellar vermis of people with autism. Conclusion These changes may be responsible for cognitive deficits and seizure disorder in people with autism. PMID:21548960

  4. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats.

    PubMed

    Romano-López, Antonio; Méndez-Díaz, Mónica; García, Fabio García; Regalado-Santiago, Citlalli; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2016-08-01

    A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016.

  5. Assessment of oxidative stress in hippocampus, cerebellum and frontal cortex in rat pups exposed to lead (Pb) during specific periods of initial brain development.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana Kurady

    2015-04-01

    Epidemiological studies in children have proved that lead (Pb) exposure causes deficits in neural and cognitive functions. The present study assessed the oxidative stress on postnatal day 30, in the hippocampus, cerebellum and frontal cortex of rat pups exposed to Pb during specific periods of early brain development. Five groups of rat pups were investigated, and 0.2% Pb acetate in drinking was the dosage used. (i) Gestation and lactation (GL) group (n = 9) of rat pups was exposed to Pb during gestation and lactation through their mother, (ii) gestation (G) group (n = 9) of rat pups was exposed to Pb during gestation only, (iii) lactation (L) group (n = 9) of rat pups was exposed to Pb during lactation only, (iv) pre-gestation (PG) group (n = 9) of rat pups was born to mothers who were exposed to Pb for 1 month before conception, and (v) normal control (NC) (n = 9) group of rats pups had no exposure to Pb during gestation and lactation period. From the present study, it is evident that Pb exposure during different periods of early brain development (GL, G, L and PG groups) causes oxidative stress and lactation period (postnatal period) of Pb exposure produces maximum oxidative stress.

  6. Chronic ethanol intake modifies pyrrolidon carboxypeptidase activity in mouse frontal cortex synaptosomes under resting and K+ -stimulated conditions: role of calcium.

    PubMed

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García-López, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2008-07-01

    Pyrrolidon carboxypeptidase (Pcp) is an omega peptidase that removes pyroglutamyl N-terminal residues of peptides such as thyrotrophin-releasing hormone (TRH), which is one of the neuropeptides that has been localized into many areas of the brain and acts as an endogenous neuromodulator of several parameters related to ethanol (EtOH) consumption. In this study, we analysed the effects of chronic EtOH intake on Pcp activity on mouse frontal cortex synaptosomes and their corresponding supernatant under basal and K+ -stimulated conditions, in presence and absence of calcium (Ca2+) to know the regulation of Pcp on TRH. In basal conditions, chronic EtOH intake significantly decreased synaptosomes Pcp activity but only in absence of Ca2+. However, supernatant Pcp activity is also decreased in presence and absence of calcium. Under K+-stimulated conditions, chronic EtOH intake decreased synaptosomes Pcp activity but only in absence of Ca2+, whereas supernatant Pcp activity was significantly decreased only in presence of Ca2+. The general inhibitory effect of chronic EtOH intake on Pcp activity suggests an inhibition of TRH metabolism and an enhancement of TRH neurotransmitter/neuromodulator functions, which could be related to putative processes of tolerance to EtOH in which TRH has been involved. Our data may also indicate that active peptides and their degrading peptidases are released together to the synaptic cleft to regulate the neurotransmitter/neuromodulator functions of these peptides, through a Ca2+ -dependent mechanism.

  7. Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements.

    PubMed

    Quaresima, Valentina; Ferrari, Marco; van der Sluijs, Marco C P; Menssen, Jan; Colier, Willy N J M

    2002-11-30

    The organisation of language in the brain of multilingual people remains controversial. Using a high temporal resolution 12-channel near-infrared continuous wave spectroscopy system, we have demonstrated that it is possible to monitor non-invasively, comfortably and, without the interferences due to intrinsic limitations of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), cortical oxygenation changes in the Broca's area in response to translation of short sentences and language switching. Eight Dutch students proficient in English translated aloud from their native language into English or vice versa or alternating (switching) short visually presented sentences. These tasks provoked, in the left inferior frontal cortex which includes the Broca's area, a consistent and incremental rise in oxyhaemoglobin accompanied by a smaller decrease in deoxyhaemoglobin. The investigated cortical areas surrounding the Broca's area showed no uniform and consistent oxygenation changes upon the three different translation tasks. These results confirm that Broca's area is involved in the translation process and its so called activation is unaffected by the direction of the translation. In addition, these results strengthen the role of near-infrared multi-point measurements as a powerful tool for investigating the spatial and temporal features of the cortical oxygenation changes during language processing.

  8. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    PubMed

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-01

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P < 0.01). Social isolation decreased gene expression (P < 0.05) in the frontal cortex of all piglets. Twelve-day-old piglets showed higher MR mRNA in the frontal cortex (P < 0.01) and lower 11beta-HSD2 and GR mRNA (P < 0.05) in the hippocampus compared to 23-day-old animals. Results indicate that EW affected the hippocampus of piglets at 12 days of age, while social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  9. Higher levels of phosphorylated Y1472 on GluN2B subunits in the frontal cortex of aged mice are associated with good spatial reference memory, but not cognitive flexibility.

    PubMed

    Zamzow, Daniel R; Elias, Val; Acosta, Varinia A; Escobedo, Emily; Magnusson, Kathy R

    2016-06-01

    The N-methyl-D-aspartate receptor (NMDAr) is particularly vulnerable to aging. The GluN2B subunit of the NMDAr, compared to other NMDAr subunits, suffers the greatest losses of expression in the aging brain, especially in the frontal cortex. While expression levels of GluN2B mRNA and protein in the aged brain are well documented, there has been little investigation into age-related posttranslational modifications of the subunit. In this study, we explored some of the mechanisms that may promote differences in the NMDAr complex in the frontal cortex of aged animals. Two ages of mice, 3 and 24 months, were behaviorally tested in the Morris water maze. The frontal cortex and hippocampus from each mouse were subjected to differential centrifugation followed by solubilization in Triton X-100. Proteins from Triton-insoluble membranes, Triton-soluble membranes, and intracellular membranes/cytosol were examined by Western blot. Higher levels of GluN2B tyrosine 1472 phosphorylation in frontal cortex synaptic fractions of old mice were associated with better reference learning but poorer cognitive flexibility. Levels of GluN2B phosphotyrosine 1336 remained steady, but there were greater levels of the calpain-induced 115 kDa GluN2B cleavage product on extrasynaptic membranes in these old good learners. There was an age-related increase in calpain activity, but it was not associated with better learning. These data highlight a unique aging change for aged mice with good spatial learning that might be detrimental to cognitive flexibility. This study also suggests that higher levels of truncated GluN2B on extrasynaptic membranes are not deleterious to spatial memory in aged mice.

  10. Role of Arcuate Frontal Cortex of Monkeys in Smooth Pursuit Eye Movements. I. Basic Response Properties to Retinal Image Motion and Position

    PubMed Central

    Tanaka, Masaki; Lisberger, Stephen G.

    2008-01-01

    Anatomical and physiological studies have shown that the “frontal pursuit area” (FPA) in the arcuate cortex of monkeys is involved in the control of smooth pursuit eye movements. To further analyze the signals carried by the FPA, we examined the activity of pursuit-related neurons recorded from a discrete region near the arcuate spur during a variety of oculomotor tasks. Pursuit neurons showed direction tuning with a wide range of preferred directions and a mean full width at half-maximum of 129°. Analysis of latency using the “receiver operating characteristic” to compare responses to target motion in opposite directions showed that the directional response of 58% of FPA neurons led the initiation of pursuit, while 19% led by 25 ms or more. Analysis of neuronal responses during pursuit of a range of target velocities revealed that the sensitivity to eye velocity was larger during the initiation of pursuit than during the maintenance of pursuit, consistent with two components of firing related to image motion and eye motion. FPA neurons showed correlates of two behavioral features of pursuit documented in prior reports. 1) Eye acceleration at the initiation of pursuit declines as a function of the eccentricity of the moving target. FPA neurons show decreased firing at the initiation of pursuit in parallel with the decline in eye acceleration. This finding is consistent with prior suggestions that the FPA plays a role in modulating the gain of visual-motor transmission for pursuit. 2) A stationary eccentric cue evokes a smooth eye movement opposite in direction to the cue and enhances the pursuit evoked by subsequent target motions. Many pursuit neurons in the FPA showed weak, phasic visual responses for stationary targets and were tuned for the positions about 4° eccentric on the side opposite to the preferred pursuit direction. However, few neurons (12%) responded during the preparation or execution of saccades. The responses to the stationary target

  11. [The typological characteristics of higher nervous activity in dogs and the maxima of the cross-correlation function between the electrical activities of the frontal cortex and the brain limbic systems].

    PubMed

    Chilingarian, L I

    1999-01-01

    Electrical activity of the frontal cortex, dorsal hippocampus, basolateral amygdala and lateral hypothalamus was recorded in eight dogs with chronically implanted electrodes. Mean values of the maxima of crosscorrelation function (MCCF) between electrical potentials in the theta, alpha and beta-2 ranges were used as a basis for assessment of conditions for interaction between these structures. Typological features of the higher nervous activity were assessed by the animal performance under conditions of free choice of the reinforcement mode of a conditioned stimulus: either high probable but of low alimentary quality or with low probability but more valuable. The mean MCCF values in the theta range were higher than in the other ranges. The brain structure which had the high MCCF in the theta-range, at least, with two of the structures under study was considered as "dominant". It was shown that hippocampus was the dominant structure for melancholic dogs, the frontal cortex was in phlegmatics. The hypothalamus was shown to be the "dominant structure" in both sanguine and choleric animals, but, for the most part, its activity was correlated with different structures. Thus, conditions for interaction between the frontal cortex, hippocampus, amygdala and hypothalamus seem to be an important factor, which determines typological features of the higher nervous activity of dogs.

  12. Intracerebroventricular injection of mu- and delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat.

    PubMed

    Lai, H; Carino, M

    1998-01-01

    In previous research, we have found that acute exposure to a 60 Hz magnetic field decreased cholinergic activity in the frontal cortex and hippocampus of the rat as measured by sodium-dependent high-affinity choline uptake activity. We concluded that the effect was mediated by endogenous opioids inside the brain because it could be blocked by pretreatment of rats before magnetic field exposure with the opiate antagonist naltrexone, but not by the peripheral antagonist naloxone methiodide. In the present study, the involvement of opiate receptor subtypes was investigated. Rats were pretreated by intracerebroventricular injection of the mu-opiate receptor antagonist, beta-funaltrexamine, or the delta-opiate receptor antagonist, naltrindole, before exposure to a 60 Hz magnetic field (2 mT, 1 hour). It was found that the effects of magnetic field on high-affinity choline uptake in the frontal cortex and hippocampus were blocked by the drug treatments. These data indicate that both mu- and delta-opiate receptors in the brain are involved in the magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat.

  13. Distinct Changes in CREB Phosphorylation in Frontal Cortex and Striatum During Contingent and Non-Contingent Performance of a Visual Attention Task

    PubMed Central

    Pozzi, Laura; Sacchetti, Giuseppina; Agnoli, Laura; Mainolfi, Pierangela; Invernizzi, Roberto W.; Carli, Mirjana

    2011-01-01

    The cyclic-adenosine monophosphate response element-binding protein (CREB) family of transcription factors has been implicated in numerous forms of behavioral plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC) and dorsal (caudate–putamen, CPu) and ventral (nucleus accumbens, NAC) striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT) used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, “master”), a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, “yoked”) and a control group matched for food deprivation and exposure to the test apparatus (untrained). Rats trained on the 5-CSRTT (both master and yoked) had higher levels of CREB protein in the FC, CPu, and NAC compared to untrained controls. Despite the divergent behavior of “master” and “yoked” rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT (“master”), CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement (“yoked”). The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement. PMID:22016726

  14. Sex differences in myelin-associated protein levels within and density of projections between the orbital frontal cortex and dorsal striatum of adult rats: implications for inhibitory control.

    PubMed

    Bayless, D W; Daniel, J M

    2015-08-01

    Impulsive actions and decisions often lead to undesirable outcomes. Lesion and neuroimaging studies have revealed that the orbital frontal cortex (OFC) and dorsal striatum (dSTR) play key roles in inhibitory control. It has been proposed that greater OFC input into the dSTR reflects enhanced top-down cognitive control and less impulsive responding. We previously reported a sex difference in inhibitory control, such that female rats make fewer impulsive errors than do male rats. The goal of the present study was to investigate differences in the OFC and dSTR of young adult male and female rats. In Experiment 1, we measured levels of two myelin-associated proteins, myelin basic protein (MBP) and myelin proteolipid protein (PLP), in the OFC and dSTR. Western blot data revealed that females had significantly higher levels of both MBP and PLP in the OFC but similar levels in the dSTR as compared to males. In Experiment 2, we infused the anterograde tracer, biotinylated dextran amine (BDA), into the OFC and measured the density of BDA in the dSTR. BDA was visualized using histochemistry followed by light microscopy imaging and densitometry analysis. Density of BDA in the dSTR was significantly greater in females as compared to males indicating that the projections from the OFC to dSTR may be greater in females as compared to males. Our results suggest a potential neuroanatomical sex difference that may contribute to the reported differences in inhibitory control levels of male and female rats. PMID:26002313

  15. Elevation of BDNF exon I-specific transcripts in the frontal cortex and midbrain of rat during spontaneous morphine withdrawal is accompanied by enhanced pCreb1 occupancy at the corresponding promoter.

    PubMed

    Peregud, Danil I; Panchenko, Leonid F; Gulyaeva, Natalia V

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is believed to play a crucial role in the mechanisms underlying opiate dependence; however, little is known about specific features and mechanisms regulating its expression in the brain under these conditions. The aim of this study was to investigate the effects of acute morphine intoxication and withdrawal from chronic intoxication on expression of BDNF exon I-, II-, IV-, VI- and IX-containing transcripts in the rat frontal cortex and midbrain. We also have studied whether alterations of BDNF exon-specific transcripts are accompanied by changes in association of well-known transcriptional regulators of BDNF gene-phosphorylated (active form) cAMP response element binding protein (pCreb1) and methyl-CpG binding protein 2 (MeCP2) with corresponding regulatory regions of the BDNF gene. Acute morphine intoxication did not affect levels of BDNF exons in brain regions, while spontaneous morphine withdrawal in dependent rats was accompanied by an elevation of the BDNF exon I-containing mRNAs both in the frontal cortex and midbrain. During spontaneous morphine withdrawal, increased associations of pCreb1 were found with promoter of exon I in the frontal cortex and promoters of exon I, IV and VI in the midbrain. The association of MeCP2 with BDNF promoters during spontaneous morphine withdrawal did not change. Thus, BDNF exon-specific transcripts are differentially expressed in brain regions during spontaneous morphine withdrawal in dependent rats and pCreb1 may be at least partially responsible for these alterations.

  16. Fetal and Neonatal Iron Deficiency Reduces Thyroid Hormone-Responsive Gene mRNA Levels in the Neonatal Rat Hippocampus and Cerebral Cortex

    PubMed Central

    Bastian, Thomas W.; Anderson, Jeremy A.; Fretham, Stephanie J.; Prohaska, Joseph R.; Georgieff, Michael K.

    2012-01-01

    Copper (Cu), iron (Fe), and thyroid hormone (TH) deficiencies produce similar defects in late brain development including hypomyelination of axons and impaired synapse formation and function, suggesting that these micronutrient deficiencies share a common mechanism contributing to these derangements. We previously demonstrated that fetal/neonatal Cu and Fe deficiencies lower circulating TH concentrations in neonatal rats. Fe deficiency also reduces whole-brain T3 content, suggesting impaired TH action in the developing Fe-deficient brain. We hypothesized that fetal/neonatal Cu and Fe deficiencies will produce mild or moderate TH deficiencies and will impair TH-responsive gene expression in the neonatal cerebral cortex and hippocampus. To test this hypothesis, we rendered pregnant Sprague Dawley rats Cu-, Fe-, or TH-deficient from early gestation through postnatal d 10 (P10). Mild and moderate TH deficiencies were induced by 1 and 3 ppm propylthiouracil treatment, respectively. Cu deficiency did not significantly alter serum or tissue TH concentrations or TH-responsive brain mRNA expression. Fe deficiency significantly lowered P10 serum total T3 (45%), serum total T4 (52%), whole brain T3 (14%), and hippocampal T3 (18%) concentrations, producing a mild TH deficiency similar to 1 ppm propylthiouracil treatment. Fe deficiency lowered Pvalb, Enpp6, and Mbp mRNA levels in the P10 hippocampus. Fe deficiency also altered Hairless, Dbm, and Dio2 mRNA levels in the P10 cerebral cortex. These results suggest that some of the brain defects associated with Fe deficiency may be mediated through altered thyroidal status and the concomitant alterations in TH-responsive gene transcription. PMID:23054056

  17. D-Cycloserine acts via increasing the GluN1 protein expressions in the frontal cortex and decreases the avoidance and risk assessment behaviors in a rat traumatic stress model.

    PubMed

    Sarıdoğan, Gökçe Elif; Aykaç, Aslı; Cabadak, Hülya; Cerit, Cem; Çalışkan, Mecit; Gören, M Zafer

    2015-10-15

    D-cycloserine (DCS), an FDA approved anti-tuberculosis drug has extensively been studied for its cognitive enhancer effects in psychiatric disorders. DCS may enhance the effects of fear extinction trainings in animals during exposure therapy and hence we investigated the effects of DCS on distinct behavioral parameters in a predator odor stress model and tested the optimal duration for repeated daily administrations of the agent. Cat fur odor blocks were used to produce stress and avoidance and risk assessment behavioral parameters were used where DCS or saline were used as treatments in adjunct to extinction trainings. We observed that DCS facilitated extinction training by providing further extinction of avoidance responses, risk assessment behaviors and increased the contact with the cue in a setting where DCS was administered before extinction trainings for 3 days without producing a significant tolerance. In amygdala and hippocampus, GluN1 protein expressions decreased 72h after the fear conditioning in the traumatic stress group suggesting a possible down-regulation of NMDARs. We observed that extinction learning increased GluN1 proteins both in the amygdaloid complex and the dorsal hippocampus of the rats receiving extinction training or extinction training with DCS. Our findings also indicate that DCS with extinction training increased GluN1 protein levels in the frontal cortex. We may suggest that action of DCS relies on enhancement of the consolidation of fear extinction in the frontal cortex. PMID:26225843

  18. Time organization of frontal-motor cortex interneuron interactions in the cat neocortex in conditions of different levels of food motivation.

    PubMed

    Merzhanova, G Kh; Dolbakyan, E E

    1997-01-01

    Studies were carried out in conscious cats with recording of multicellular activity in moderate hunger and after 24-h food deprivation. Cross-correlation analysis was used to assess statistical interneuron interactions between closely-located neurons in the frontal and sensorimotor regions of the neocortex (local networks), and between the cells of these regions (distributed networks). One-day food deprivation increased the number of interactions formed within both local and distributed neuron networks. Increases in intercortical connections between the frontal and motor regions was seen at all time intervals studied (0-100 msec), though the most significant changes occurred at time intervals of up to 30 msec.

  19. Ethanol consumption during early pregnancy alters the disposition of tangentially migrating GABAergic interneurons in the fetal cortex.

    PubMed

    Cuzon, Verginia C; Yeh, Pamela W L; Yanagawa, Yuchio; Obata, Kunihiko; Yeh, Hermes H

    2008-02-20

    Consumption of alcohol (ethanol) during pregnancy can lead to developmental defects in the offspring, the most devastating being the constellation of symptoms collectively referred to as fetal alcohol syndrome (FAS). In the brain, a hallmark of FAS is abnormal cerebral cortical morphology consistent with insult during corticogenesis. Here, we report that exposure to a relatively low level of ethanol in utero (average maternal and fetal blood alcohol level of 25 mg/dl) promotes premature tangential migration into the cortical anlage of primordial GABAergic interneurons, including those originating in the medial ganglionic eminence (MGE). This ethanol-induced effect was evident in vivo at embryonic day 14.5 (E14.5) in GAD67 knock-in and BAC-Lhx6 embryos, as well as in vitro in isotypic telencephalic slice cocultures obtained from E14.5 embryos exposed to ethanol in utero. Analysis of heterotypic cocultures indicated that both cell-intrinsic and -extrinsic factors contribute to the aberrant migratory profile of MGE-derived cells. In this light, we provide evidence for an interaction between ethanol exposure in utero and the embryonic GABAergic system. Exposure to ethanol in utero elevated the ambient level of GABA and increased the sensitivity to GABA of MGE-derived cells. Our results uncovered for the first time an effect of ethanol consumption during pregnancy on the embryonic development of GABAergic cortical interneurons. We propose that ethanol exerts its effect on the tangential migration of GABAergic interneurons extrinsically by modulating extracellular levels of GABA and intrinsically by altering GABA(A) receptor function.

  20. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture

    PubMed Central

    Reddy, Radhika C.; Amodei, Rebecka; Estill, Charles T.; Stormshak, Fred; Meaker, Mary; Roselli, Charles E.

    2015-01-01

    Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN), is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA) and cerebral cortex (CTX) of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM) for 3 days significantly (P < 0.05) increased both total neurite outgrowth (35%) and soma size (8%) in the HPOA and outgrowth (21%) and number of branch points (33%) in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain. PMID:26053052

  1. Fetal Alcohol Spectrum Disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model

    PubMed Central

    Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M.

    2009-01-01

    Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associated with behaviors that model depression, as well as with reduced BDNF levels in the hippocampal formation and/or medial frontal cortex, in a mouse model of fetal alcohol spectrum disorder (FASD). Compared to control adult mice, prenatal ethanol-exposed adult mice displayed increased learned helplessness behavior and increased immobility in the Porsolt forced swim test. Prenatal ethanol exposure was associated with decreased BDNF protein levels in the medial frontal cortex, but not the hippocampal formation, while total BDNF mRNA and BDNF transcripts containing exon III, IV or VI were reduced in both the medial frontal cortex and the hippocampal formation of prenatal ethanol-exposed mice. These results identify reduced BDNF levels in the medial frontal cortex and hippocampal formation as potential mediators of depressive disorders associated with FASD. PMID:18558427

  2. Correlation between number of type 2 serotonin receptors in the frontal cortex and intensity of serotonin-induced head jerks in mice

    SciTech Connect

    Popova, N.K.; Kulikov, A.V.; Pak, D.F.

    1986-02-01

    This paper shows interlinear differences discovered in the number of S2 receptors in the cerebral cortex and they are compared with the intensity of 5-HT-induced head jerking in mice of inbred lines. The number of S2 receptors was estimated from the quantity of tritium-spiperone, which is specifically bound by brain membrane preparations. Specific binding was assessed as the difference between the quantity of label bound in the absence and in the presence of methylsergide, a drug which specificably blocks S2 receptors. The presence of high correlation be= tween the number of S2 receptors and the number of head jerkings in mice reflects a genetic connection between this form of behavior and the serotonin system, and it in no way signifies that this phenomenon is controlled purely by the serotonin system and cannot be modulated by other mediator systems, for example, the adrenergic system.

  3. First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia

    PubMed Central

    2010-01-01

    Background The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. Result Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. Conclusion These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy. PMID:20573273

  4. Differential Expression of Immunophilins FKBP51 and FKBP52 in the Frontal Cortex of HIV-Infected Patients with Major Depressive Disorder

    PubMed Central

    Tatro, Erick T.; Everall, Ian P.; Masliah, Eliezer; Hult, Britta J.; Lucero, Ginger; Chana, Gursharan; Soontornniyomkij, Virawudh; Achim, Cristian L.

    2010-01-01

    Patients infected with human immunodeficiency virus (HIV) have a higher risk of developing major depressive disorder (MDD) than the general population. Immunophilins FKBP51 and FKBP52 are expressed in cortical neurons and regulate the function of the glucocorticoid receptor (GR). Previous reports have shown that genetic variants in the FKBP5 gene encoding FKBP51 are linked to psychiatric disorders. We sought to determine whether immunophilins are upregulated in HIV infection. To determine whether FKBP52 and FKBP51 are associated with MDD and/or HIV, we compared protein and gene expression in autopsy tissues from the frontal cortical gray matter. The study cases were divided into five groups: control, MDD, MDD with psychosis, HIV+, and HIV+ with MDD. Gene expression and protein levels were determined by real-time PCR and Western blot analysis of fresh frozen tissues. Genotyping of previously published alleles of the FKBP5 gene was also performed. We found correlation of upregulation of both immunophilins in the HIV-infected groups. In the HIV+ population with MDD, FKBP4 expression is significantly higher while FKBP5 is more variable. After analyzing the FKBP5 gene for single nucleotide polymorphisms, we found that rs3800373 CC genotype is more frequent in the MDD and MDD/Psychosis groups. We hypothesized that the levels of FKBP51, as modulator of the nuclear translocation of GR, would be lower in MDD. Instead, an increase in FKBP51 at both the transcript (FKBP5) and protein level correlated with MDD. Increased FKBP4 expression of correlated to HIV+MDD but not to HIV without MDD. PMID:19199039

  5. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease.

    PubMed

    Jiang, Qiong; Chen, Shuangxi; Hu, Chengliang; Huang, Peizhi; Shen, Huifan; Zhao, Weijiang

    2016-09-01

    Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β‑amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin‑1 (Nrg1)‑mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1‑42, two inducers of oxidative stress and neuronal damage, led to a dose‑dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD. PMID:27486021

  6. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease

    PubMed Central

    Jiang, Qiong; Chen, Shuangxi; Hu, Chengliang; Huang, Peizhi; Shen, Huifan; Zhao, Weijiang

    2016-01-01

    Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin-1 (Nrg1)-mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1–42, two inducers of oxidative stress and neuronal damage, led to a dose-dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD. PMID:27486021

  7. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning.

    PubMed

    Levine, Morgan E; Lu, Ake T; Bennett, David A; Horvath, Steve

    2015-12-01

    There is an urgent need to develop molecular biomarkers of brain age in order to advance our understanding of age related neurodegeneration. Recently, we developed a highly accurate epigenetic biomarker of tissue age (known as epigenetic clock) which is based on DNA methylation levels. Here we use n=700 dorsolateral prefrontal cortex (DLPFC) samples from Caucasian subjects of the Religious Order Study and the Rush Memory and Aging Project to examine the association between epigenetic age and Alzheimer's disease (AD) related cognitive decline, and AD related neuropathological markers. Epigenetic age acceleration of DLPFC is correlated with several neuropathological measurements including diffuse plaques (r=0.12, p=0.0015), neuritic plaques (r=0.11, p=0.0036), and amyloid load (r=0.091, p=0.016). Further, it is associated with a decline in global cognitive functioning (β=-0.500, p=0.009), episodic memory (β=-0.411, p=0.009) and working memory (β=-0.405, p=0.011) among individuals with AD. The neuropathological markers may mediate the association between epigenetic age and cognitive decline. Genetic complex trait analysis (GCTA) revealed that epigenetic age acceleration is heritable (h2=0.41) and has significant genetic correlations with diffuse plaques (r=0.24, p=0.010) and possibly working memory (r=-0.35, p=0.065). Overall, these results suggest that the epigenetic clock may lend itself as a molecular biomarker of brain age. PMID:26684672

  8. Quantitative Proteomic Analysis of the Orbital Frontal Cortex in Rats Following Extended Exposure to Caffeine Reveals Extensive Changes to Protein Expression: Implications for Neurological Disease.

    PubMed

    Franklin, Jane L; Mirzaei, Mehdi; Wearne, Travis A; Homewood, Judi; Goodchild, Ann K; Haynes, Paul A; Cornish, Jennifer L

    2016-05-01

    Caffeine is a plant-derived psychostimulant and a common additive found in a wide range of foods and pharmaceuticals. The orbitofrontal cortex (OFC) is rapidly activated by flavours, integrates gustatory and olfactory information, and plays a critical role in decision-making, with dysfunction contributing to psychopathologies and neurodegenerative conditions. This study investigated whether long-term consumption of caffeine causes changes to behavior and protein expression in the OFC. Male adult Sprague-Dawley rats (n = 8 per group) were treated for 26 days with either water or a 0.6 g/L caffeine solution. Locomotor behavior was measured on the first and last day of treatment, then again after 9 days treatment free following exposure to a mild stressor. When tested drug free, caffeine-treated animals were hyperactive compared to controls. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free shotgun proteomics found 157 proteins differentially expressed in the caffeine-drinking rats compared to control. Major proteomic effects were seen for cell-to-cell communication, cytoskeletal regulation, and mitochondrial function. Similar changes have been observed in neurological disorders including Alzheimer's disease, Parkinson's disease, and schizophrenia.

  9. Striatal patch compartment lesions alter methamphetamine-induced behavior and immediate early gene expression in the striatum, substantia nigra and frontal cortex.

    PubMed

    Murray, Ryan C; Gilbert, Yamiece E; Logan, Anna S; Hebbard, John C; Horner, Kristen A

    2014-07-01

    Methamphetamine (METH) induces stereotypy, which is characterized as inflexible, repetitive behavior. Enhanced activation of the patch compartment of the striatum has been correlated with stereotypy, suggesting that stereotypy may be related to preferential activation of this region. However, the specific contribution of the patch compartment to METH-induced stereotypy is not clear. To elucidate the involvement of the patch compartment to the development of METH-induced stereotypy, we determined if destruction of this sub-region altered METH-induced behaviors. Animals were bilaterally infused in the striatum with the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) to specifically ablate the neurons of the patch compartment. Eight days later, animals were treated with METH (7.5 mg/kg), placed in activity chambers, observed for 2 h and killed. DERM-SAP pretreatment significantly reduced the number and total area of mu-labeled patches in the striatum. DERM-SAP pretreatment significantly reduced the intensity of METH-induced stereotypy and the spatial immobility typically observed with METH-induced stereotypy. In support of this observation, DERM-SAP pretreatment also significantly increased locomotor activity in METH-treated animals. In the striatum, DERM-SAP pretreatment attenuated METH-induced c-Fos expression in the patch compartment, while enhancing METH-induced c-Fos expression in the matrix compartment. DERM-SAP pretreatment followed by METH administration augmented c-Fos expression in the SNpc and reduced METH-induced c-Fos expression in the SNpr. In the medial prefrontal, but not sensorimotor cortex, c-Fos and zif/268 expression was increased following METH treatment in animals pre-treated with DERM-SAP. These data indicate that the patch compartment is necessary for the expression of repetitive behaviors and suggests that alterations in activity in the basal ganglia may contribute to this phenomenon.

  10. T’ain’t what you say, it’s the way that you say it – left insula and inferior frontal cortex work in interaction with superior temporal regions to control the performance of vocal impersonations

    PubMed Central

    McGettigan, Carolyn; Eisner, Frank; Agnew, Zarinah K; Manly, Tom; Wisbey, Duncan; Scott, Sophie K

    2014-01-01

    Historically, the study of human identity perception has focused on faces, but the voice is also central to our expressions and experiences of identity (P. Belin, Fecteau, & Bedard, 2004). Our voices are highly flexible and dynamic; talkers speak differently depending on their health, emotional state, and the social setting, as well as extrinsic factors such as background noise. However, to date, there have been no studies of the neural correlates of identity modulation in speech production. In the current fMRI experiment, we measured the neural activity supporting controlled voice change in adult participants performing spoken impressions. We reveal that deliberate modulation of vocal identity recruits the left anterior insula and inferior frontal gyrus, supporting the planning of novel articulations. Bilateral sites in posterior superior temporal/inferior parietal cortex and a region in right mid/anterior superior temporal sulcus showed greater responses during the emulation of specific vocal identities than for impressions of generic accents. Using functional connectivity analyses, we describe roles for these three sites in their interactions with the brain regions supporting speech planning and production. Our findings mark a significant step toward understanding the neural control of vocal identity, with wider implications for the cognitive control of voluntary motor acts. PMID:23691984

  11. Investigation of neural correlates between perception of pain and hemodynamic response measured in the pre-frontal cortex using functional near infra-red spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Venkatagiri

    Perception of pain is multi-dimensional, comprising three major psychological dimensions: sensory-discriminative, motivational-affective and cognitive-evaluative. This dissertation study investigates the cognitive evaluation of pain, by acquiring functional Near Infra-Red Spectroscopic (fNIRS) measurements from the prefrontal cortex (PFC) areas, during mechanical and thermal pain stimulation induced on the subject's volar forearm. Clustered-wise analysis on the oxy-hemoglobin (HbO) response from specific PFC areas was followed by categorizing the resulting HbO response into early (0.1--12sec) and late (12.1--25sec) phases. For each respective phase, regression analysis was carried between the HbO-derived parameters and behaviorally measured pain rating. The major findings of this study include: (1) across both 41°C and 48°C thermal stimulation, significant DeltaHbO deactivation was observed during the late phase, in the left hemispheric (LH) anterior PFC (aPFC) or Brodmann area 10 (BA 10). (2) Significant correlates of pain rating were observed in the LH prefrontal areas: (a) under mechanical stimulation, early phase HbO-derived peak intensity (PI) from LH aPFC correlated with the pain rating. (b) Under both 41°C and 48°C thermal stimulation, late phase HbO-derived PI from the LH dorsolateral PFC (DLPFC or BA 46) showed correlation with the pain rating. (3) The significant correlates observed from the right hemispheric (RH) PFC were: (a) under mechanical stimulation, early phase HbO-derived FWHM from the RH aPFC correlated with the pain rating. (b) Under 41°C thermal stimulation, late phase HbO-derived PI from the RH DLPFC area correlated with the pain rating. (4) The late phase HbO-derived time to peak from LH aPFC reflected cognitive discrimination of two different pain levels (41°C and 48°C). The observed trend for DeltaHbO activation and deactivation could possibly be due to synaptic-induced vasodilation and vasoconstriction leading to increased or

  12. Manual MRI parcellation of the frontal lobe.

    PubMed

    Ranta, Marin E; Crocetti, Deana; Clauss, Jacqueline A; Kraut, Michael A; Mostofsky, Stewart H; Kaufmann, Walter E

    2009-05-15

    The ability to examine associations between neuropsychiatric conditions and functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry, but methods for identifying frontal sub-regions in MR (magnetic resonance) images are not well established. Prior published techniques have principally defined gyral regions that do not necessarily correspond to known functional divisions. We present a method in which sulcal-gyral landmarks are used to manually delimit functionally relevant regions within the frontal lobe: primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex (SMC), frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC (DLPFC), inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Feasibility was tested by applying the protocol to brain MR data from 15 boys with attention-deficit/hyperactivity disorder (ADHD) and 15 typically developing controls, 8-12 years old. Intra- and inter-rater intraclass correlation coefficients were calculated using parcellation volumes from a subset of that group. Inter-rater results for the 22 hemisphere specific sub-regions ranged from 0.724 to 0.997, with all but seven values above 0.9. Boys with ADHD showed significantly smaller left hemisphere SMC and DLPFC volumes after normalization for total cerebral volume. These findings support the method as a reliable and valid technique for parcellating the frontal lobe into functionally relevant sub-regions.

  13. Manual MRI parcellation of the frontal lobe

    PubMed Central

    Richardson, Marin E.; Crocetti, Deana; Clauss, Jacqueline A.; Kraut, Michael A.; Mostofsky, Stewart H.; Kaufmann, Walter E.

    2009-01-01

    The ability to examine associations between neuropsychiatric conditions and functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry, but methods for identifying frontal sub-regions in MR (magnetic resonance) images are not well established. Prior published techniques have principally defined gyral regions that do not necessarily correspond to known functional divisions. We present a method in which sulcal-gyral landmarks are used to manually delimit functionally relevant regions within the frontal lobe: primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex (SMC), frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC (DLPFC), inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Feasibility was tested by applying the protocol to brain MR data from 15 boys with ADHD and 15 typically developing controls, 8–12 years old. Intra- and inter-rater intraclass correlation coefficients were calculated using parcellation volumes from a subset of that group. Inter-rater results for the 22 hemisphere specific sub-regions ranged from 0.724 to 0.997, with all but six values above 0.9. Boys with ADHD showed significantly smaller left hemisphere SMC and DLPFC volumes after normalization for total cerebral volume. These findings support the method as a reliable and valid technique for parcellating the frontal lobe into functionally relevant subregions. PMID:19324532

  14. Sevoflurane Stimulates MAP Kinase Signal transduction through the Activation of PKC α and βII in Fetal Rat Cerebral Cortex Cultured Neuron

    PubMed Central

    Hasegawa, Jun; Takekoshi, Susumu; Nagata, Hidetaka; Osamura, R. Yoshiyuki; Suzuki, Toshiyasu

    2006-01-01

    Protein kinase C (PKC) is a key enzyme that participates in various neuronal functions. PKC has also been identified as a target molecule for general anesthetic actions. Raf, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK1/2) have been thought to be target effectors of PKC. In the present study, we attempted to evaluate the effect of sevoflurane on PKC/MAPK cascade signaling in cultured fetal rat cerebral ­cortex neurons, prepared from embryonic day 18 fetuses. The effects of sevoflurane on the translocation of 7 PKC isoforms (α, βI, βII, γ, δ, ɛ and ζ) were observed by immunoblotting using isoform-selective antibodies to PKCs. The treatment of neurons with sevoflurane induced the translocation of PKC α and PKC βII species from the cytosol to the membrane fraction, which indicated the activation of these PKC isoforms. In contrast, there was no clear change in the distribution of other PKC isoforms. We next examined whether the specific activation of PKC α and βII by sevoflurane could stimulate the MAP kinase signaling pathway in cultured neurons. Raf phosphorylation was increased by the administration of 0.25 mM sevoflurane. The phosphorylation of Raf proteins reached a maximum at 5–10 min. Subsequently, the phosphorylation of MEK proteins was increased at 10–15 min after sevoflurane treatments. That of ERK proteins was induced at 15–60 min. Moreover, the phosphorylation of ERK induced by sevoflurane was significantly decreased by the treatment of PKC inhibitor (staurosporine) and MEK inhibitor (PD98059). On the other hand, the contents of total Raf, MEK and ERK proteins were relatively constant at all times examined. To examine the ­localization of phosphorylated-ERK protein, immunohistochemical staining of sevoflurane-treated cultured neurons was performed. The phosphorylated-ERK proteins were markedly accumulated in both the cytosol of the cell body and the neurites in the neuronal cells with time after 0

  15. Automated MRI parcellation of the frontal lobe

    PubMed Central

    Ranta, Marin E.; Chen, Min; Crocetti, Deana; Prince, Jerry L.; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E.; Mostofsky, Stewart H.

    2014-01-01

    Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. (2009) in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. PMID:23897577

  16. Effects of maternal oral administration of morphine sulfate on developing rat fetal cerebrum: a morphometrical evaluation.

    PubMed

    Sadraie, Seyed Homayoon; Kaka, Gholam Reza; Sahraei, Hedayat; Dashtnavard, Hosein; Bahadoran, Hosein; Mofid, Mahmood; Nasab, Hossein Mahdavi; Jafari, Fatemeh

    2008-12-15

    Intrauterine morphine exposure is a risk factor for neurological and behavioral deficit in children, although the precise underlying biological correlate for this is unclear. Female pregnant rats were orally treated with 0.1 mg/ml of morphine solution on the 21st day of gestation. Pregnant rats were killed on the 21st day of gestation and their fetuses were taken out and evaluated for growth and cerebral development. The fetuses were fixed and followed by dehydration through graded ethanol solutions and were then embedded and their heads were coronally sectioned through the frontal cerebral cortex. Quantitative computer-assisted morphometric study was done on the frontal cerebral cortex (FCC) which consists of cortical plate (CP), intermediate (migratory) zone (IZ) and matrix (proliferative) zone (MZ) in the rat embryos. The results showed that morphine exposure caused a significant reduction of fetal weight and crown-to-rump length in morphine exposure group. The present study showed that animals with intrauterine morphine exposure, induced by a period of reduced placental blood flow during the second week of pregnancy, demonstrate reduced both cortical thickness and the numbers of neurons in the developing fetal frontal cerebral cortex (FCC). Histomorphometric evaluation revealed that the thickness of the CP was significantly decreased in the morphine-exposed embryos. In addition, neuronal counting showed that cell proliferation in the CP was suppressed after morphine administration and that the migration of neurons from the matrix zone (MZ) to the cortex was decelerated. In conclusion, these results showed that morphine exposure during the second week of pregnancy could affect brain development in a way, which could lead to neurological and behavioral deficits in the postnatal animal.

  17. Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice.

    PubMed

    Molinaro, G; Traficante, A; Riozzi, B; Di Menna, L; Curto, M; Pallottino, S; Nicoletti, F; Bruno, V; Battaglia, G

    2009-08-01

    The interaction between 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and metabotropic glutamate (mGlu) 2/3 receptors underlies the antipsychotic activity of mGlu2/3 receptor agonists in experimental animals and humans. The molecular nature of this interaction is only partially known. We here report for the first time that pharmacological activation of mGlu2/3 receptors attenuates the stimulation of polyphosphoinositide (PI) hydrolysis mediated by 5-HT(2A) receptors in the frontal cortex of living mice. Mice were injected intracerebroventricularly with [myo-(3)H]inositol and treated with drugs 1 h after a pretreatment with lithium, which blocks the conversion of inositol monophosphate into free inositol. Systemic injection of the mGlu2/3 receptor agonist (-)-2-oxa-4-aminocyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) inhibited the stimulation of PI hydrolysis induced by the hallucinogenic 5-HT(2A) receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) without affecting the stimulation by mGlu1/5 or muscarinic receptors. The action of LY379268 was prevented by the preferential mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). N-(4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), a selective mGlu2 receptor enhancer, also reduced DOI-stimulated PI hydrolysis when combined with subthreshold doses of LY379268. Systemic LY379268 inhibited DOI-stimulated PI hydrolysis in mice lacking either mGlu2 or mGlu3 receptors but was inactive in double mGlu2/mGlu3 receptor knockout mice, suggesting that both mGlu2 and mGlu3 receptors interact with 5-HT(2A) receptors. Surprisingly, contrasting results were obtained in cortical slice preparations, where LY379268 amplified both DOI- and 3,5-dihydroxyphenylglycine-stimulated PI hydrolysis. Amplification was abrogated by the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine, suggesting that

  18. Dissociations in Hippocampal and Frontal Contributions to Episodic Memory Performance

    PubMed Central

    Kramer, Joel H.; Rosen, Howard J.; Du, An-Tao; Schuff, Norbert; Hollnagel, Caroline; Weiner, Michael W.; Miller, Bruce L.; Delis, Dean C.

    2007-01-01

    The hippocampus and frontal lobes both contribute to episodic memory performance. In the present study, the authors evaluated the relative contributions of hippocampus, frontal lobes, anterior temporal cortex, and posterior cortex to memory performance in neurodegenerative patients and normal older controls. Subjects (n = 42) were studied with structural MRI and a memory paradigm that measured delayed recall, semantic clustering during recall, recognition discriminability, and recognition response bias. Data were analyzed with multiple regression. Consistent with the authors’ hypotheses, hippocampal volumes were the best predictor of delayed recall and recognition discriminability, whereas frontal volumes were the best predictor of semantic clustering and response bias. Smaller frontal volumes were associated with less semantic clustering during recall and a more liberal response bias. Results indicate that hippocampal and frontal contributions to episodic memory can be dissociated, with the hippocampus more important for memory accuracy, and frontal structures more important for strategic processing and decision making. PMID:16351355

  19. Human frontal lobes are not relatively large.

    PubMed

    Barton, Robert A; Venditti, Chris

    2013-05-28

    One of the most pervasive assumptions about human brain evolution is that it involved relative enlargement of the frontal lobes. We show that this assumption is without foundation. Analysis of five independent data sets using correctly scaled measures and phylogenetic methods reveals that the size of human frontal lobes, and of specific frontal regions, is as expected relative to the size of other brain structures. Recent claims for relative enlargement of human frontal white matter volume, and for relative enlargement shared by all great apes, seem to be mistaken. Furthermore, using a recently developed method for detecting shifts in evolutionary rates, we find that the rate of change in relative frontal cortex volume along the phylogenetic branch leading to humans was unremarkable and that other branches showed significantly faster rates of change. Although absolute and proportional frontal region size increased rapidly in humans, this change was tightly correlated with corresponding size increases in other areas and whole brain size, and with decreases in frontal neuron densities. The search for the neural basis of human cognitive uniqueness should therefore focus less on the frontal lobes in isolation and more on distributed neural networks.

  20. Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer disease brain: coding and noncoding regions of the fetal precursor mRNA are expressed in the cortex

    SciTech Connect

    Zain, S.B.; Salim, M.; Chou, W.G.; Sajdel-Sulkowska, E.M.; Majocha, R.E.; Marotta, C.A.

    1988-02-01

    To gain insight into factors associated with the excessive accumulation of ..beta..-amyloid in the Alzheimer disease (AD) brain, the present studies were initiated to distinguish between a unique primary structure of the AD-specific amyloid precursor mRNA vis a vis other determinants that may affect amyloid levels. Previous molecular cloning experiments focused on amyloid derived from sources other than AD cases. In the present work, the authors cloned and characterized amyloid cDNA derived directly from AD brain mRNA. Poly(A)/sup +/ RNA from AD cortices was used for the preparation of lambdagt11 recombinant cDNA libraries. An insert of 1564 nucleotides was isolated that included the ..beta..-amyloid domain and corresponded to 75% of the coding region and approx. = 70% of the 3'-noncoding region of the fetal precursor amyloid cDNA reported by others. On RNA blots, the AD amyloid mRNA consisted of a doublet of 3.2 and 3.4 kilobases. In control and AD cases, the amyloid mRNA levels were nonuniform and were independent of glial-specific mRNA levels. Based on the sequence analysis data, they conclude that a segment of the amyloid gene is expressed in the AD cortex as a high molecular weight precursor mRNA with major coding and 3'-noncoding regions that are identical to the fetal brain gene product.

  1. Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer disease brain: coding and noncoding regions of the fetal precursor mRNA are expressed in the cortex.

    PubMed Central

    Zain, S B; Salim, M; Chou, W G; Sajdel-Sulkowska, E M; Majocha, R E; Marotta, C A

    1988-01-01

    To gain insight into factors associated with the excessive accumulation of beta-amyloid in the Alzheimer disease (AD) brain, the present studies were initiated to distinguish between a unique primary structure of the AD-specific amyloid precursor mRNA vis a vis other determinants that may affect amyloid levels. Previous molecular cloning experiments focused on amyloid derived from sources other than AD cases. In the present work, we cloned and characterized amyloid cDNA derived directly from AD brain mRNA. Poly(A)+ RNA from AD cortices was used for the preparation of lambda gt11 recombinant cDNA libraries. An insert of 1564 nucleotides was isolated that included the beta-amyloid domain and corresponded to 75% of the coding region and approximately equal to 70% of the 3'-noncoding region of the fetal precursor amyloid cDNA reported by others. On RNA blots, the AD amyloid mRNA consisted of a doublet of 3.2 and 3.4 kilobases. In control and AD cases, the amyloid mRNA levels were nonuniform and were independent of glial-specific mRNA levels. Based on the sequence analysis data, we conclude that a segment of the amyloid gene is expressed in the AD cortex as a high molecular weight precursor mRNA with major coding and 3'-noncoding regions that are identical to the fetal brain gene product. Images PMID:2893379

  2. Fetal Research

    NASA Astrophysics Data System (ADS)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  3. Jealousy increased by induced relative left frontal cortical activity.

    PubMed

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. PMID:25844975

  4. Fetal endocrinology

    PubMed Central

    Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.

    2013-01-01

    Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471

  5. Developmental cortical thinning in fetal alcohol spectrum disorders.

    PubMed

    Zhou, Dongming; Lebel, Catherine; Lepage, Claude; Rasmussen, Carmen; Evans, Alan; Wyper, Katy; Pei, Jacqueline; Andrew, Gail; Massey, Ashleigh; Massey, Donald; Beaulieu, Christian

    2011-09-01

    Regional cortical thickness was evaluated using CIVET processing of 3D T1-weighted images (i) to compare the variation in cortical thickness between 33 participants with fetal alcohol spectrum disorders (FASD) aged 6-30 years (mean age 12.3 years) versus 33 age/sex/hand-matched controls, and (ii) to examine developmental changes in cortical thickness with age from children to young adults in both groups. Significant cortical thinning was found in the participants with FASD in large areas of the bilateral middle frontal lobe, pre- and post- central areas, lateral and inferior temporal and occipital lobes compared to controls. No significant cortical thickness increases were observed for the FASD group. Cortical thinning with age in a linear model was observed in both groups, but the locations were different for each group. FASD participants showed thinning with age in the left middle frontal, bilateral precentral, bilateral precuneus and paracingulate, left inferior occipital and bilateral fusiform gyri; while controls showed decreases with age in the bilateral middle frontal gyrus, right inferior frontal gyrus, bilateral precuneus gyrus, and bilateral occipital gyrus. A battery of cognitive assessments of memory, attention, motor, and verbal abilities was conducted with many of the FASD participants, but no significant correlations were found between these cognitive scores and regional cortical thickness. Non-invasive measurements of cortical thickness in children to young adults with FASD have identified both key regions of cortex that may be more deleteriously affected by prenatal alcohol exposure as well as cortical changes with age that differ from normal developmental thinning.

  6. Fetal Exposure to Maternal Depressive Symptoms is Associated with Cortical Thickness in Late Childhood

    PubMed Central

    Sandman, Curt A.; Buss, Claudia; Head, Kevin; Davis, Elysia Poggi

    2014-01-01

    Background Maternal depression is one of the most common prenatal complications. The consequences of fetal exposure to maternal depression are poorly understood. The aim of this study is to examine the association between fetal exposure to maternal depressive symptoms and cortical thickness in 6–9 year-old children. Methods A prospective, longitudinal study of maternal depressive symptoms at 19, 25 and 31 weeks gestation was followed by acquisition of a structural MRI scan in 81 children (86.1 ± 9.9 months). Results Significant (p<.01) cortical thinning in children primarily in the right frontal lobes was associated with exposure to prenatal maternal depression. The strongest association was at 25 weeks gestation; exposure to maternal depression at 25 gestational weeks was associated with cortical thinning in 19% of the whole cortex and 24% of the frontal lobes, primarily in the right superior, medial orbital and frontal pole regions of the prefrontal cortex (p<.01). The significant association between prenatal maternal depression and child externalizing behavior (p<.05) was mediated by cortical thinning in prefrontal areas of the right hemisphere. Conclusions The pattern of cortical thinning in children exposed to prenatal maternal depression is similar to patterns in depressed patients and in individuals with risk for depression. Exposure to prenatal depression coupled with subsequent cortical thinning was associated with presence of externalizing behavior in preadolescent children and may be prodromal markers of risk for dysphoria. Vulnerability to prenatal influences at 25 gestational weeks may result from the enormous growth and dramatic structural changes in the nervous system. PMID:25129235

  7. Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex.

    PubMed

    Miller, M W; Nowakowski, R S

    1991-03-01

    Prenatal exposure to ethanol produces profound changes in the number of neurons in the mature cortex. These changes in neuronal number may reflect ethanol-induced disturbances in early developmental processes, that is in the proliferation of neuronal precursors. Hence, the present study examined the effect of ethanol on cell proliferation in the two neocortical proliferative zones, the ventricular zone (VZ) and subventricular zone (SZ). From gestational day 5 to 21, pregnant rats were fed an ethanol diet (6.7% v/v), pair-fed an isocaloric control diet, or fed chow and water. Pregnant rats were given a series of one to nine injections of bromodeoxyuridine (BrdU). After immunohistochemical processing, the ratio of cells in each proliferative zone that were labeled with BrdU to the total population was determined. The portion of the population that was cycling (growth fraction), the total length of the cell cycle, and the length of the S-phase of the cell cycle were calculated for VZ and SZ cells. Exposure to moderate levels of ethanol has markedly different effects upon the two neocortical proliferative zones. In the VZ, the length of the total cell cycle was significantly greater in ethanol-treated rats than in controls; however, the growth fraction and the length of the S-phase were unaffected by ethanol. In contrast, in the SZ, the growth fraction was significantly greater in ethanol-treated rats, but ethanol had no effect on the length of the total cell cycle or of the S-phase. These differences may underlie the ethanol-induced abnormalities in neuronal generation.

  8. Parceling of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 tesla.

    PubMed

    Tyszka, J M; Grafton, S T; Chew, W; Woods, R P; Colletti, P M

    1994-06-01

    Finger movement-related responses were identified in three discrete sites of mesial frontal cortex in 7 normal subjects using high resolution functional magnetic resonance imaging. During imagination of the same movements there was a differential response with rostral areas more active than caudal areas. Humans have multiple motor areas in mesial frontal cortex that subserve different functions in motor planning and execution.

  9. The effect of age on cognitive performance of frontal patients

    PubMed Central

    Cipolotti, Lisa; Healy, Colm; Chan, Edgar; MacPherson, Sarah E.; White, Mark; Woollett, Katherine; Turner, Martha; Robinson, Gail; Spanò, Barbara; Bozzali, Marco; Shallice, Tim

    2015-01-01

    Age is known to affect prefrontal brain structure and executive functioning in healthy older adults, patients with neurodegenerative conditions and TBI. Yet, no studies appear to have systematically investigated the effect of age on cognitive performance in patients with focal lesions. We investigated the effect of age on the cognitive performance of a large sample of tumour and stroke patients with focal unilateral, frontal (n=68), or non-frontal lesions (n=45) and healthy controls (n=52). We retrospectively reviewed their cross sectional cognitive and imaging data. In our frontal patients, age significantly predicted the magnitude of their impairment on two executive tests (Raven's Advanced Progressive Matrices, RAPM and the Stroop test) but not on nominal (Graded Naming Test, GNT) or perceptual (Incomplete Letters) task. In our non-frontal patients, age did not predict the magnitude of their impairment on the RAPM and GNT. Furthermore, the exacerbated executive impairment observed in our frontal patients manifested itself from middle age. We found that only age consistently predicted the exacerbated executive impairment. Lesions to specific frontal areas, or an increase in global brain atrophy or white matter abnormalities were not associated with this impairment. Our results are in line with the notion that the frontal cortex plays a critical role in aging to counteract cognitive and neuronal decline. We suggest that the combined effect of aging and frontal lesions impairs the frontal cortical systems by causing its computational power to fall below the threshold needed to complete executive tasks successfully. PMID:26102190

  10. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

  11. Specific frontal neural dynamics contribute to decisions to check

    PubMed Central

    Stoll, Frederic M.; Fontanier, Vincent; Procyk, Emmanuel

    2016-01-01

    Curiosity and information seeking potently shapes our behaviour and are thought to rely on the frontal cortex. Yet, the frontal regions and neural dynamics that control the drive to check for information remain unknown. Here we trained monkeys in a task where they had the opportunity to gain information about the potential delivery of a large bonus reward or continue with a default instructed decision task. Single-unit recordings in behaving monkeys reveal that decisions to check for additional information first engage midcingulate cortex and then lateral prefrontal cortex. The opposite is true for instructed decisions. Importantly, deciding to check engages neurons also involved in performance monitoring. Further, specific midcingulate activity could be discerned several trials before the monkeys actually choose to check the environment. Our data show that deciding to seek information on the current state of the environment is characterized by specific dynamics of neural activity within the prefrontal cortex. PMID:27319361

  12. Estimation of fetal gestational age from ultrasound images

    NASA Astrophysics Data System (ADS)

    Salari, Valiollah

    1992-06-01

    Estimation of fetal gestational age, weight, and determination of fetal growth from the measurements of certain parameters of fetal head, abdomen, and femur have been well established in prenatal sonography. The measurements are made from the two dimensional, B- mode, ultrasound images of the fetus. The most common parameters measured are, biparietal diameter, occipital frontal diameter, head circumference, femur diaphysis length, and abdominal circumference. Since the fetal head has an elliptical shape and the femur has a linear shape, fitting the ellipse on the image of the fetal head, a line on the image of the femur are the tasks of image processing which are discussed in this paper.

  13. Fetal Abuse.

    ERIC Educational Resources Information Center

    Kent, Lindsey; And Others

    1997-01-01

    Five cases of fetal abuse by mothers suffering from depression are discussed. Four of the women had unplanned pregnancies and had considered termination of the pregnancy. Other factors associated with fetal abuse include pregnancy denial, pregnancy ambivalence, previous postpartum depression, and difficulties in relationships. Vigilance for…

  14. Fetal biomodelling.

    PubMed

    D'Urso, P S; Thompson, R G

    1998-05-01

    A study has been performed to determine if a stereolithographic (SL) biomodel of a fetal face could be created from 3 dimensional (3D) ultrasound (US). 3D ultrasound images were acquired by Diasonics Gateway 2D Array ultrasound systems (Diasonics Ultrasound, San Jose, CA, USA) using an electromagnetic localizer (Tomtec Free Hand Scanning Device, Tomtec Imaging Systems, Middle Cove, Australia). 3D volumetric reconstruction of the fetal face was performed and the data was prepared to guide the construction of an exact solid biomodel by stereolithography (SLA 250 3D Systems, Valencia, CA, USA). A faithful solid representation of the fetal face was produced within 12 hours of the US scan. The fetal biomodel seemed to improve the display of the 3D data. The user-friendly nature of biomodelling may have clinical utility for fetal morphological assessment and as an aid when counselling parents.

  15. Isolated executive impairment and associated frontal neuropathology.

    PubMed

    Johnson, Julene K; Vogt, Brent A; Kim, Ronald; Cotman, Carl W; Head, Elizabeth

    2004-01-01

    Cognitive impairment in the absence of dementia is common in elderly individuals and is most often studied in the context of an isolated impairment in memory. In the current study, we report the neuropsychological and neuropathological features of a nondemented elderly individual with isolated impairment on a test of executive function (i.e., Trail Making Test) and preserved memory, language, and visuospatial function. Postmortem studies indicated that cortical neurofibrillary tangles (NFT) varied considerably, and some regions contained large numbers of neuritic senile plaques. Semiquantitative immunohistochemistry showed higher NFT and amyloid-beta (Abeta) loads in the frontal cortex relative to the temporal, entorhinal, occipital, and parietal cortices. A survey of the entire cingulate gyrus showed a wide dispersion of Abeta42 with the highest concentration in the perigenual part of the anterior cingulate cortex; Abeta appeared to be linked with neuron loss and did not overlap with the heaviest neuritic degeneration. The current case may represent a nonmemory presentation of mild cognitive impairment (executive mild cognitive impairment) that is associated with frontal and anterior cingulate pathology and may be an early stage of the frontal variant of Alzheimer disease.

  16. A Pilot Study of Mindfulness-Based Exposure Therapy in OEF/OIF Combat Veterans with PTSD: Altered Medial Frontal Cortex and Amygdala Responses in Social–Emotional Processing

    PubMed Central

    King, Anthony P.; Block, Stefanie R.; Sripada, Rebecca K.; Rauch, Sheila A. M.; Porter, Katherine E.; Favorite, Todd K.; Giardino, Nicholas; Liberzon, Israel

    2016-01-01

    Combat-related posttraumatic stress disorder (PTSD) is common among returning veterans, and is a serious and debilitating disorder. While highly effective treatments involving trauma exposure exist, difficulties with engagement and early drop may lead to sub-optimal outcomes. Mindfulness training may provide a method for increasing emotional regulation skills that may improve engagement in trauma-focused therapy. Here, we examine potential neural correlates of mindfulness training and in vivo exposure (non-trauma focused) using a novel group therapy [mindfulness-based exposure therapy (MBET)] in Afghanistan (OEF) or Iraq (OIF) combat veterans with PTSD. OEF/OIF combat veterans with PTSD (N = 23) were treated with MBET (N = 14) or a comparison group therapy [Present-centered group therapy (PCGT), N = 9]. PTSD symptoms were assessed at pre- and post-therapy with Clinician Administered PTSD scale. Functional neuroimaging (3-T fMRI) before and after therapy examined responses to emotional faces (angry, fearful, and neutral faces). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.43). Improvement in PTSD symptoms from pre- to post-treatment in both treatment groups was correlated with increased activity in rostral anterior cingulate cortex, dorsal medial prefrontal cortex (mPFC), and left amygdala. The MBET group showed greater increases in amygdala and fusiform gyrus responses to Angry faces, as well as increased response in left mPFC to Fearful faces. These preliminary findings provide intriguing evidence that MBET group therapy for PTSD may lead to changes in neural processing of social–emotional threat related to symptom reduction. PMID:27703434

  17. Fetal Surgery

    PubMed Central

    Laberge, Jean-Martin

    1986-01-01

    Fetal surgery has come of age. For decades experimental fetal surgery proved essential in studying normal fetal physiology and development, and pathophysiology of congenital defects. Clinical fetal surgery started in the 1960s with intrauterine transfusions. In the 1970s, the advent of ultrasonography revolutionized fetal diagnosis and created a therapeutic vacuum. Fetal treatment, medical and surgical, is slowly trying to fill the gap. Most defects detected are best treated after birth, some requiring a modification in the time, mode and place of delivery for optimal obstetrical and neonatal care. Surgical intervention in utero should be considered for malformations that cause progressive damage to the fetus, leading to death or severe morbidity; that can be corrected or palliated in utero with a reasonable expectation of normal postnatal development; that cannot wait to be corrected after birth, even considering pre-term delivery; that are not accompanied by chromosomal or other major anomalies. At present, congenital hydronephrosis is the most common indication for fetal surgery, followed by obstructive hydrocephalus. Congenital diaphragmatic hernia also fulfills the criteria, but its correction poses more problems, and no clinical attempts have been reported so far. In the future many other malformations or diseases may become best treated in utero. The ethical and moral issues are complex and need to be discussed as clinical and experimental progress is made. PMID:21267309

  18. Charting the Maturation of the Frontal Lobe: An Electrophysiological Strategy

    ERIC Educational Resources Information Center

    Segalowitz, S. J.; Davies, Patricia L.

    2004-01-01

    Tracking the functional development of specific regions of the prefrontal cortex in children using event-related potentials (ERPs) is challenging for both technical and conceptual reasons. In this paper we outline our strategy for studying frontal lobe development and present preliminary results from children aged 7-17 years and young adults using…

  19. Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex

    PubMed Central

    2013-01-01

    Background Candidate genes associated with idiopathic forms of autism overlap with other disorders including fragile X syndrome. Our laboratory has previously shown reduction in fragile X mental retardation protein (FMRP) and increase in metabotropic glutamate receptor 5 (mGluR5) in cerebellar vermis and superior frontal cortex (BA9) of individuals with autism. Methods In the current study we have investigated expression of four targets of FMRP and mGluR5 signaling - homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in the cerebellar vermis and superior frontal cortex (BA9) via SDS-PAGE and western blotting. Data were analyzed based on stratification with respect to age (children and adolescents vs. adults), anatomic region of the brain (BA9 vs. cerebellar vermis), and impact of medications (children and adolescents on medications (n = 4) vs. total children and adolescents (n = 12); adults on medications (n = 6) vs. total adults (n = 12)). Results There were significant increases in RAC1, APP 120 kDa and APP 80 kDa proteins in BA9 of children with autism vs. healthy controls. None of the same proteins were significantly affected in cerebellar vermis of children with autism. In BA9 of adults with autism there were significant increases in RAC1 and STEP 46 kDa and a significant decrease in homer 1 vs. controls. In the vermis of adult subjects with autism, RAC1 was significantly increased while APP 120, STEP 66 kDa, STEP 27 kDa, and homer 1 were significantly decreased when compared with healthy controls. No changes were observed in vermis of children with autism. There was a significant effect of anticonvulsant use on STEP 46 kDa/β-actin and a potential effect on homer 1/NSE, in BA9 of adults with autism. However, no other significant confound effects were observed in this study. Conclusions Our findings provide further evidence of abnormalities in FMRP and

  20. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  1. Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain Electrical Activity

    ERIC Educational Resources Information Center

    Light, Sharee N.; Coan, James A.; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture…

  2. Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls.

    PubMed

    Yener, Görsev G; Emek-Savaş, Derya Durusu; Lizio, Roberta; Çavuşoğlu, Berrin; Carducci, Filippo; Ada, Emel; Güntekin, Bahar; Babiloni, Claudio C; Başar, Erol

    2016-05-01

    Amnesic mild cognitive impairment (MCI) represents a risk of developing Alzheimer's disease (AD), but not all MCI subjects progress to dementia of AD type. Magnetic resonance imaging (MRI) of cortical and hippocampal atrophy supports early diagnosis of AD in MCI subjects, while frontal event-related oscillations (EROs) at delta frequencies (<4Hz) are appealing markers for this purpose, as they are both cost-effective and largely available. The present study tested the hypothesis that these EROs reflect cortical frontal neurodegeneration in the continuum between normal and amnesic MCI subjects. EROs and volumetric MRI data were recorded in 28 amnesic MCI and in 28 healthy elderly controls (HCs). EROs were collected during a standard visual oddball paradigm including frequent (66.6%) and rare (33.3%; targets to be mentally counted) stimuli. Peak-to-peak amplitude of delta target EROs (<4Hz) was measured. Volume of frontal cortex was estimated from MRIs. Frontal volume was lower in MCI compared to the HC group. Furthermore, widespread delta target EROs were lower in amplitude in the former than in the latter group. Finally, there was a positive correlation between frontal volume and frontal delta target EROs in MCI and HC subjects as a whole group. These results suggest that frontal delta EROs reflect frontal neurodegeneration in the continuum between normal and amnesic MCI subjects. PMID:25660300

  3. Distinct contributions of lateral orbito-frontal cortex, striatum, and fronto-parietal network regions for rule encoding and control of memory-based implementation during instructed reversal learning.

    PubMed

    Ruge, Hannes; Wolfensteller, Uta

    2016-01-15

    A key element of behavioral flexibility is to quickly learn to modify or reverse previously acquired stimulus-response associations. Such reversal learning (RL) can either be driven by feedback or by explicit instruction, informing either retrospectively or prospectively about the changed response requirements. Neuroimaging studies have thus far exclusively focused either on feedback-driven RL or on instructed initial learning of novel rules. The present study examined the neural basis of instructed RL as compared to instructed initial learning, separately assessing reversal-related instruction-based encoding processes and reversal-related control processes required for implementing reversed rules under competition from the initially learned rules. We found that instructed RL is partly supported by similar regions as feedback-driven RL, including lateral orbitofrontal cortex (lOFC) and anterior dorsal caudate. Encoding-related activation in both regions determined resilience against response competition during subsequent memory-based reversal implementation. Different from feedback-driven RL, instruction-based RL relied heavily on the generic fronto-parietal cognitive control network--not for encoding but for reversal-related control processes during memory-based implementation. These findings are consistent with a model of partly decoupled, yet interacting, systems of (i) symbolic rule representations that are instantaneously updated upon instruction and (ii) pragmatic representations of reward-associated S-R links mediating the enduring competition from initially learned rules.

  4. Spatial-temporal atlas of human fetal brain development during the early second trimester.

    PubMed

    Zhan, Jinfeng; Dinov, Ivo D; Li, Junning; Zhang, Zhonghe; Hobel, Sam; Shi, Yonggang; Lin, Xiangtao; Zamanyan, Alen; Feng, Lei; Teng, Gaojun; Fang, Fang; Tang, Yuchun; Zang, Fengchao; Toga, Arthur W; Liu, Shuwei

    2013-11-15

    During the second trimester, the human fetal brain undergoes numerous changes that lead to substantial variation in the neonatal in terms of its morphology and tissue types. As fetal MRI is more and more widely used for studying the human brain development during this period, a spatiotemporal atlas becomes necessary for characterizing the dynamic structural changes. In this study, 34 postmortem human fetal brains with gestational ages ranging from 15 to 22 weeks were scanned using 7.0 T MR. We used automated morphometrics, tensor-based morphometry and surface modeling techniques to analyze the data. Spatiotemporal atlases of each week and the overall atlas covering the whole period with high resolution and contrast were created. These atlases were used for the analysis of age-specific shape changes during this period, including development of the cerebral wall, lateral ventricles, Sylvian fissure, and growth direction based on local surface measurements. Our findings indicate that growth of the subplate zone is especially striking and is the main cause for the lamination pattern changes. Changes in the cortex around Sylvian fissure demonstrate that cortical growth may be one of the mechanisms for gyration. Surface deformation mapping, revealed by local shape analysis, indicates that there is global anterior-posterior growth pattern, with frontal and temporal lobes developing relatively quickly during this period. Our results are valuable for understanding the normal brain development trajectories and anatomical characteristics. These week-by-week fetal brain atlases can be used as reference in in vivo studies, and may facilitate the quantification of fetal brain development across space and time.

  5. MRI volumetry of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was cortex boundaries on 3D images was critical to obtaining accurate measurements. MR prefrontal cortex volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  6. Developmental alterations of frontal-striatal-thalamic connectivity in obsessive compulsive disorder

    PubMed Central

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatalthalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal cortex) follow unique maturational trajectories, and altered connectivity within distinct loops may be differentially associated with OCD at specific stages of development. Method Altered development of striatal and thalamic connectivity to medial frontal cortex was tested in 60 OCD patients compared to 61 healthy controls at child, adolescent and adult stages of development, using resting state functional connectivity MRI. Results OCD in the youngest patients was associated with reduced connectivity of dorsal striatum and medial dorsal thalamus to rostral and dorsal anterior cingulate cortex, respectively. Increased connectivity of dorsal striatum to ventral medial frontal cortex was observed in patients at all developmental stages. In child patients, reduced connectivity between dorsal striatum and rostral anterior cingulate cortex correlated with OCD severity. Conclusions Frontal-striatal-thalamic loops involved in cognitive control are hypoconnected in young patients near illness onset, while loops implicated in emotion-processing are hyperconnected throughout the illness. PMID:21871375

  7. [Fetal magnetocardiography].

    PubMed

    van Leeuwen, P

    1997-09-01

    Fetal magnetocardiography is a new, alternative method for prenatal surveillance. The fetal magnetocardiogram (FMCG) registers the magnetic field produced by conduction currents in the fetal heart. Compared to the fetal electrocardiogram, the propagation of magnetic fields is relatively undisturbed by surrounding tissue. The FMCG thus has the advantage of a higher signal-to-noise ratio and can be acquired earlier pregnancy. Also, the high temporal resolution of the signal permits a significantly more precise determination of fetal heart rate parameters than fetal ultrasound. FMCG registration using a biomagnetometer is noninvasive and can be performed as of the second trimeter. It can be used to examine signal morphology, cardiac time intervals, heart rate variability as well as cardiac magnetic fields. To date, arrhythmic activity has been observed in the form of supraventricular and ventricular ectopies as well as atrial flutter, atrio-ventricular block, atrial tachycardia and Torsades de Pointes tachycardia. We also report here on the presence of short episodes of bradycardia in the second trimester of normal pregnancy. Measurement of the magnetic field strength at various locations above the abdomen has allowed the reconstruction of the fetal cardiac magnetic field and the determination of its relation to the position of the fetus. Signal averaging has permitted the precise examination of signal amplitude and cardiac time intervals and has shown that they increase in the course of pregnancy. Heart rate variability could be quantified in the time and frequency domain as well as using parameters of nonlinear dynamics. The results demonstrated an increase of variability and complexity over gestational age. Furthermore spectral analysis of fetal heart arte data could be associated with sympathetic and parasympathetic activity as well as, with respiration. Although the studies presenting these results have involved only limited numbers of observations, they

  8. Frontal headache induced by osteoma of frontal recess.

    PubMed

    Kim, Kyung Soo

    2013-01-01

    We reported a case of osteoma involving the frontal recess, which presented as frontal headache and reviewed literatures. Also, this case highlights that sinunasal osteomas can cause pain by local mass effects, referred pain, or prostaglandin E2-mediated mechanisms.

  9. Differential frontal involvement in shifts of internal and perceptual attention

    PubMed Central

    Tanoue, Ryan T.; Jones, Kevin T.; Peterson, Dwight J.; Berryhill, Marian E.

    2012-01-01

    Background Perceptual attention enhances the processing of items in the environment, whereas internal attention enhances processing of items encoded in visual working memory. In perceptual and internal attention cueing paradigms, cues indicate the to-be-probed item before (pre-cueing) or after (retro-cueing) the memory display, respectively. Pre- and retro- cues confer similar behavioral accuracy benefits (pre-: 14–19%, retro-: 11–17%) and neuroimaging data show that they activate overlapping frontoparietal networks (1). Yet reports of behavioral and neuroimaging differences suggest that pre- and retro-cueing differentially recruit frontal and parietal cortices (1). Objective/Hypothesis This study examined whether perceptual and internal attention are equally disrupted by neurostimulation to frontal and parietal cortices. We hypothesized that neurostimulation applied to frontal cortex would disrupt internal attention to a greater extent than perceptual attention. Methods Cathodal transcranial direct current stimulation (tDCS) was applied to frontal or parietal cortices. After stimulation, participants completed a change detection task coupled with either pre- or retro- cues. Results Cathodal tDCS across site (frontal, parietal) hindered performance. However, frontal tDCS had a greater negative impact on the retro-cued trials demonstrating greater frontal involvement during shifts of internal attention. Conclusions These results complement the neuroimaging data and provide further evidence suggesting that perceptual and internal attention are not identical processes. We conclude that although internal and perceptual attention are mediated by similar frontoparietal networks, the weight of contribution of these structures differs, with internal attention relying more heavily on the frontal cortex. PMID:23266133

  10. Executive function and fluid intelligence after frontal lobe lesions.

    PubMed

    Roca, María; Parr, Alice; Thompson, Russell; Woolgar, Alexandra; Torralva, Teresa; Antoun, Nagui; Manes, Facundo; Duncan, John

    2010-01-01

    Many tests of specific 'executive functions' show deficits after frontal lobe lesions. These deficits appear on a background of reduced fluid intelligence, best measured with tests of novel problem solving. For a range of specific executive tests, we ask how far frontal deficits can be explained by a general fluid intelligence loss. For some widely used tests, e.g. Wisconsin Card Sorting, we find that fluid intelligence entirely explains frontal deficits. When patients and controls are matched on fluid intelligence, no further frontal deficit remains. For these tasks too, deficits are unrelated to lesion location within the frontal lobe. A second group of tasks, including tests of both cognitive (e.g. Hotel, Proverbs) and social (Faux Pas) function, shows a different pattern. Deficits are not fully explained by fluid intelligence and the data suggest association with lesions in the right anterior frontal cortex. Understanding of frontal lobe deficits may be clarified by separating reduced fluid intelligence, important in most or all tasks, from other more specific impairments and their associated regions of damage.

  11. Frontal bone fractures.

    PubMed

    Marinheiro, Bruno Henrique; de Medeiros, Eduardo Henrique Pantosso; Sverzut, Cássio Edvard; Trivellato, Alexandre Elias

    2014-11-01

    The aim of this retrospective study was to evaluate the epidemiology, treatment, and complications of frontal bone fractures associated, or not, with other facial fractures. This evaluation also sought to minimize the influence of the surgeon's skills and the preference for any rigid internal fixation system. The files from 3758 patients who attended the Oral and Maxillofacial Surgery Department of the School of Dentistry of Ribeirao Preto, University of Sao Paulo, from March 2004 to November 2011 and presented with facial trauma were scanned, and 52 files were chosen for the review. Eleven (21.15%) of these patients had pure fractures of the frontal bone, and trauma incidence was more prevalent in men (92.3%), whites (61.53%), and adults (50%). Despite the use of helmets at the moment of the trauma, motorcycle crashes were the most common etiological factor (32.69%). Fracture of the anterior wall of the frontal sinus with displacement was the main injury observed (54.9%), and the most common treatment was internal fixation with a plate and screws (45.09%). Postoperative complications were observed in 35.29% of the cases. The therapy applied was effective in handling this type of fracture, and the success rate was comparable to that reported in other published studies. PMID:25377971

  12. Role of Frontal Alpha Oscillations in Creativity

    PubMed Central

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  13. Developmental consequences of childhood frontal lobe damage.

    PubMed

    Eslinger, P J; Grattan, L M; Damasio, H; Damasio, A R

    1992-07-01

    A 33-year-old woman underwent neurologic and neuropsychological studies 26 years after she sustained damage to the frontal lobe. The findings of the neurologic examination were normal, and magnetic resonance imaging revealed a lesion in left prefrontal cortex and deep white matter. Cerebral blood flow studies showed an abnormal pattern in both left and right frontal regions. The patient exhibited striking neuropsychological defects in higher cognition, most notably in self-regulation of emotion and affect and in social behavior. Analysis of her behavioral development failed to yield a pattern of abrupt onset of defect immediately after the lesion occurred. On the contrary, there was a delayed onset of defects, followed by a period of seeming progression, and finally an arrest of development in adolescence. We suggest that this peculiar pattern is the natural consequence of the varied changes that occurred in brain development and social cognition during the patient's formative years. While certain long-term neuropsychological deficits in our case are similar to those following frontal damage in adults, the delayed onset and progression of deficits are different. PMID:1497505

  14. A Novel Role for the Rat Retrosplenial Cortex in Cognitive Control

    ERIC Educational Resources Information Center

    Nelson, Andrew J. D.; Hindley, Emma L.; Haddon, Josephine E.; Vann, Seralynne D.; Aggleton, John P.

    2014-01-01

    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first…

  15. Prefrontal connections of the parabelt auditory cortex in macaque monkeys.

    PubMed

    Hackett, T A; Stepniewska, I; Kaas, J H

    1999-01-30

    In the present study, we determined connections of three newly defined regions of auditory cortex with regions of the frontal lobe, and how two of these regions in the frontal lobe interconnect and connect to other portions of frontal cortex and the temporal lobe in macaque monkeys. We conceptualize auditory cortex as including a core of primary areas, a surrounding belt of auditory areas, a lateral parabelt of two divisions, and adjoining regions of temporal cortex with parabelt connections. Injections of several different fluorescent tracers and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were placed in caudal (CPB) and rostral (RPB) divisions of the parabelt, and in cortex of the superior temporal gyrus rostral to the parabelt with parabelt connections (STGr). Injections were also placed in two regions of the frontal lobe that were labeled by a parabelt injection in the same case. The results lead to several major conclusions. First, CPB injections label many neurons in dorsal prearcuate cortex in the region of the frontal eye field and neurons in dorsal prefrontal cortex of the principal sulcus, but few or no neurons in orbitofrontal cortex. Fine-grain label in these same regions as a result of a WGA-HRP injection suggests that the connections are reciprocal. Second, RPB injections label overlapping prearcuate and principal sulcus locations, as well as more rostral cortex of the principal sulcus, and several locations in orbitofrontal cortex. Third, STGr injections label locations in orbitofrontal cortex, some of which overlap those of RPB injections, but not prearcuate or principal sulcus locations. Fourth, injections in prearcuate and principal sulcus locations labeled by a CPB injection labeled neurons in CPB and RPB, with little involvement of the auditory belt and no involvement of the core. In addition, the results indicated that the two frontal lobe regions are densely interconnected. They also connect with largely separate

  16. Insular cortex epilepsy: an overview.

    PubMed

    Nguyen, Dang Khoa; Nguyen, Dong Bach; Malak, Ramez; Bouthillier, Alain

    2009-08-01

    In this review the authors discuss insular cortex epilepsy, an under-recognized localization-related syndrome that may explain some temporal (but also frontal and parietal lobe) epilepsy surgery failures. The insula may generate a variety of symptoms (including visceral, motor and somatosensory) that mimic temporal, frontal or parietal lobe onset seizures. Intracerebral electrodes directly implanted in the insula are currently the only way to confirm insular seizures. Consideration should be given to exploration of the insular cortex in MRI negative patients with seizure semiology consistent with insular onset seizures. Electroencephalographers should have a low threshold to sample this region, especially in the absence of a structural lesion. Microneurosurgical technical advances allow resective surgery of the insula with relatively low morbidity. PMID:19760905

  17. [Frontal mass: diagnostic challenges].

    PubMed

    Rubino, Gina; Correia, Alexandre; Rodrigues, Fernanda

    2012-01-01

    Capnocytophaga spp. are part of the oral flora of humans and animals, being responsible for skin and soft tissues infections and invasive infections. Microbiological identification can be difficult due to its slow growth. We present a case of infection caused by this bacteria in the form of an extracerebral intracranial abscess, presenting as a frontal mass that posed some diagnostic challenges. A surgical drainage was performed together with antibiotic therapy with favourable outcome. This microorganism was identified in the second week of treatment and then a careful history revealed a dog bite days prior to the initial symptoms. This could have been the site of entry to a posterior focalization. PMID:23069241

  18. Fetal electrocardiograph

    NASA Astrophysics Data System (ADS)

    Rios, Heriberto; Andrade, Armando; Puente, Ernestina; Lizana, Pablo R.; Mendoza, Diego

    2002-11-01

    The high intra-uterine death rate is due to failure in appropriately diagnosing some problems in the cardiobreathing system of the fetus during pregnancy. The electrocardiograph is one apparatus which might detect problems at an early stage. With electrodes located near the womb and uterus, in a way similar to the normal technique, the detection of so-called biopotential differences, caused by concentrations of ions, can be achieved. The fetal electrocardiograph is based on an ultrasound technique aimed at detecting intrauterine problems in pregnant women, because it is a noninvasive technique due to the very low level of ultrasound power used. With this system, the following tests can be done: Heart movements from the ninth week onwards; Rapid and safe diagnosis of intrauterine fetal death; Location and size of the placenta. The construction of the fetal electrocardiograph requires instrument level components directly mounted on the printed circuit board, in order to avoid stray capacitance in the cabling which prevents the detection of the E.C.G. activity. The low cost of the system makes it affordable to low budget institutions; in contrast, available commercial systems are priced in U.S. Dollars. (To be presented in Spanish.)

  19. Pediatric frontal mucocele secondary to a bifid frontal sinus septum.

    PubMed

    Plikaitis, Christina M; Purzycki, Adam R; Couture, Daniel; David, Lisa R

    2010-09-01

    A mucocele is a mucus-containing sac lined with epithelium that arises within a sinus when its drainage is compromised. The frontal sinus is the most common location, with frontal mucocele development occurring when the nasofrontal duct becomes obstructed because of polyps, bone tumors, prior surgery, sinusitis, trauma, or anatomic variation. We report an unusual case of a sterile pediatric frontal mucocele presenting as a slowly enlarging forehead mass due to a bifid frontal sinus septum. A 9-year-old girl presented to the craniofacial clinic for evaluation of a right frontal mass that had been slowly growing over the past year. She was otherwise healthy and had no history of previous trauma or sinus infections. Computed tomography (CT) scan results revealed a localized frontal fluid collection with protrusion and thinning of the anterior frontal bone between 2 midline bony septii. Surgical cranialization of the frontal sinus was performed. The anatomy of her lesion seen both on CT scan and intraoperatively likely explains this unusual case presentation. Instead of the usual inciting event of an intact frontal sinus drainage system becoming blocked, this patient seemed to have a primary developmental lack of any drainage system that led to her mucocele. During formation of her frontal sinus, she developed a bifid septum within the midline that excluded a portion of her frontal sinus from the lateral nasofrontal ducts. With mucus-producing epithelium trapped within these bony confines, pressure began to mount with expansion and thinning of the bone both anteriorly and posteriorly. The lack of any infectious symptoms and sterile culture results may support that this space developed primarily and was never in continuity with the external drainage system. Only 4 other patients have been reported with asymptomatic forehead swelling as the only presenting symptom, with the age ranging from 33 to 79 years. This patient represents the first clinical report of a congenital

  20. Specificity of changes in cerebral blood flow in patients with frontal lobe dementia.

    PubMed Central

    Starkstein, S E; Migliorelli, R; Tesón, A; Sabe, L; Vázquez, S; Turjanski, M; Robinson, R G; Leiguarda, R

    1994-01-01

    Eight patients with a clinical diagnosis of probable Alzheimer's disease, eight patients with the clinical diagnosis of frontal lobe dementia, and eight controls were examined with single photon emission tomography (SPECT) using 99Tc-HMPAO. Patients with Alzheimer's disease and those with frontal lobe dementia met DSM-III-R criteria for mild dementia and were in the early stages of the illness. Compared with patients with Alzheimer's disease, the group with frontal lobe dementia had significantly lower blood flow in the frontal lobes (dorsolateral and orbital), the anterior temporal cortex, and the basal ganglia. Within the frontal lobe dementia group, blood flow was significantly lower in the orbital than in the dorsal frontal cortex, and in the anterior temporal than in the dorsal temporal cortex. The present study shows the specificity of changes in regional cerebral blood flow in the diagnosis of different types of dementia, and supports the importance of orbitofrontal, anterior temporal, and basal ganglia dysfunction in the production of the psychiatric syndrome of frontal lobe dementia. Images PMID:8021663

  1. 1H MRSI of middle frontal gyrus in pediatric ADHD.

    PubMed

    Tafazoli, Sharwin; O'Neill, Joseph; Bejjani, Anthony; Ly, Ronald; Salamon, Noriko; McCracken, James T; Alger, Jeffry R; Levitt, Jennifer G

    2013-04-01

    Neuroimaging studies in multiple modalities have implicated the left or right dorsolateral prefrontal cortex (here, middle frontal gyrus) in attentional functions, in ADHD, and in dopamine agonist treatment of ADHD. The far lateral location of this cortex in the brain, however, has made it difficult to study with magnetic resonance spectroscopy (MRS). We used the smaller voxel sizes of the magnetic resonance spectroscopic imaging (MRSI) variant of MRS, acquired at a steep coronal-oblique angle to sample bilateral middle frontal gyrus in 13 children and adolescents with ADHD and 13 age- and sex-matched healthy controls. Within a subsample of the ADHD patients, aspects of attention were also assessed with the Trail Making Task. In right middle frontal gyrus only, mean levels of N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA), creatine + phosphocreatine (Cr), choline-compounds (Cho), and myo-inositol (mI) were significantly lower in the ADHD than in the control sample. In the ADHD patients, lower right middle frontal Cr was associated with worse performance on Trails A and B (focused attention, concentration, set-shifting), while the opposite relationship held true for the control group on Trails B. These findings add to evidence implicating right middle frontal cortex in ADHD. Lower levels of these multiple species may reflect osmotic adjustment to elevated prefrontal cortical perfusion in ADHD and/or a previously hypothesized defect in astrocytic production of lactate in ADHD resulting in decelerated energetic metabolism (Cr), membrane synthesis (Cho, mI), and acetyl-CoA substrate for NAA synthesis. Lower Cr levels may indicate attentional or executive impairments. PMID:23273650

  2. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  3. Development of temperature regulation in the fetal sheep.

    PubMed

    Gunn, T R; Gluckman, P D

    1983-06-01

    To investigate the development of fetal thermoregulatory mechanisms the temperature of the ovine fetus in utero was altered by circulating water through a coil placed around the fetus. In 18 fetuses (76-142 days), temperature recordings were made from thermister probes placed in the fetal cranium below the frontal lobes, the fetal rectum, the amniotic cavity and the maternal vena cava. Severe hypothermia was observed during fetal surgery; the maximum decrement in fetal brain temperature ranged between -7.38 degrees C and -0.83 degrees C and was correlated inversely with gestational age (P less than 0.005). The temperature of the live fetal sheep in utero was 39.05 to 40.37 degrees C and was always greater than the maternal temperature by 0.30 to 0.78 degrees C. The amniotic fluid was intermediate in temperature between the fetus and mother. During cooling studies the fetal cranial temperature fell more quickly and to a greater extent (P less than 0.05) than the fetal rectal temperature. When the cooling was continued for 60 min, a steady fall in fetal temperature was observed until a plateau was reached at 20 to 40 min. The recovery time increased with increasing gestational age (P less than 0.001) suggesting that thermoregulation is still immature in late gestation. During prolonged cooling, fetal hypoxaemia and acidosis were observed.

  4. Frontal Sinus Patency after Extended Frontal Sinusotomy Type III

    PubMed Central

    Hajbeygi, Mansour; Nadjafi, Ali; Amali, Amin; Saedi, Babak; Sadrehosseini, Seyed Mousa

    2016-01-01

    Introduction: The surgical management of chronic frontal sinus disorders remains a challenge for rhinologists. The aim of this study was to evaluate the result of Draf III in a series of patients who underwent this procedure. Materials and Methods: Twenty patients were included in this study. Demographic data, history of prior surgery, asthma, aspirin sensitivity and Lund–Mackay score were recorded. A visual analog scale was used for frontal-related symptoms. Patients were followed for a mean duration of 17.5 months and the patency of the frontal sinus ostium was closely monitored. Results: Fifteen patients with chronic frontal sinusitis, two patients with mucoceles, two with malignancy, and one with osteoma underwent Draf III. The mean symptoms score significantly decreased from 5.9 to 3. No ostial closure was seen in the follow-up period. Among 15 patients with chronic frontal sinusitis, 12 had patent ostia of whom three had significant stenosis. All patients with mucocele and osteoma had patent ostia in the follow-up period but patients with sinonasal malignancy showed significant stenosis. Conclusion: Draf III frontal sinusotomy is successful in alleviating patient symptoms and the frontal sinus neo-ostium will remain patent in long-term follow-up of most patients. Revision surgery will be required in some cases, which seems to be related to the nature of the underlying chronic sinus diseases. PMID:27738610

  5. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  6. Effect of different labor forces on fetal skull molding.

    PubMed

    Pu, Fang; Xu, Liqiang; Li, Deyu; Li, Shuyu; Sun, Lianwen; Wang, Ling; Fan, Yubo

    2011-06-01

    Fetal head molding is important for adapting the fetal head to the birth canal during vaginal delivery; however, excessive deformation of fetal head may lead to severe complications. Although labor force is one of the major factors which cause deformation of the fetal head, its effect on fetal head molding has not been quantitatively investigated yet. We examined this effect by using a finite element modeling approach. Firstly, a geometric model was created by scanning a polyethylene replica of fetal skull model with a white light three-dimensional scanner. Secondly, a nonlinear finite element model was proposed based on the geometric model. Next, the simulation results of the proposed model were verified against the experimental data reported in other literatures and they showed good agreement with the experimental observations. After this validation, the proposed model was used to simulate the fetal skull deformations under different labor forces. Simulation results illustrated that the fetal skull diameters and modified molding index (MMI) increased when the labor force was increased. Parietal bone around bregma and frontal bone around coronal suture undertook more stress, and parietal and frontal bones around coronal suture undertook more spatial and rotational displacement under larger labor force. The suboccipito-bregmatic diameter (SOBD) was more sensitive to the changes of labor force than other fetal skull diameters. The simulation results revealed the quantitative relationship between the labor force and fetal skull molding during delivery. In the future, if the degree of fetal skull molding is directly related to that of the head injury, the relationship investigated in this study may be used to predict the head injury by measuring the labor force during delivery.

  7. Frontal lobe neurology and the creative mind

    PubMed Central

    de Souza, Leonardo C.; Guimarães, Henrique C.; Teixeira, Antônio L.; Caramelli, Paulo; Levy, Richard; Dubois, Bruno; Volle, Emmanuelle

    2014-01-01

    Concepts from cognitive neuroscience strongly suggest that the prefrontal cortex (PFC) plays a crucial role in the cognitive functions necessary for creative thinking. Functional imaging studies have repeatedly demonstrated the involvement of PFC in creativity tasks. Patient studies have demonstrated that frontal damage due to focal lesions or neurodegenerative diseases are associated with impairments in various creativity tasks. However, against all odds, a series of clinical observations has reported the facilitation of artistic production in patients with neurodegenerative diseases affecting PFC, such as frontotemporal dementia (FTD). An exacerbation of creativity in frontal diseases would challenge neuroimaging findings in controls and patients, as well as the theoretical role of prefrontal functions in creativity processes. To explore this paradox, we reported the history of a FTD patient who exhibited the emergence of visual artistic productions during the course of the disease. The patient produced a large amount of drawings, which have been evaluated by a group of professional artists who were blind to the diagnosis. We also reviewed the published clinical cases reporting a change in the artistic abilities in patients with neurological diseases. We attempted to reconcile these clinical observations to previous experimental findings by addressing several questions raised by our review. For instance, to what extent can the cognitive, conative, and affective changes following frontal damage explain changes in artistic abilities? Does artistic exacerbation truly reflect increased creative capacities? These considerations could help to clarify the place of creativity—as it has been defined and explored by cognitive neuroscience—in artistic creation and may provide leads for future lesion studies. PMID:25101029

  8. Frontal Sinus Fractures: Current Concepts

    PubMed Central

    Strong, E. Bradley

    2009-01-01

    Frontal sinus injuries may range from isolated anterior table fractures resulting in a simple aesthetic deformity to complex fractures involving the frontal recess, orbits, skull base, and intracranial contents. The risk of long-term morbidity can be significant. Optimal treatment strategies for the management of frontal sinus fractures remain controversial. However, it is critical to have a thorough understanding of frontal sinus anatomy as well as the current treatment strategies used to manage these injuries. A thorough physical exam and thin-cut, multiplanar (axial, coronal, and sagittal) computed tomography scan should be performed in all patients suspected of having a frontal sinus fracture. The most appropriate treatment strategy can be determined by assessing five anatomic parameters including the: frontal recess, anterior table integrity, posterior table integrity, dural integrity, and presence of a cerebrospinal fluid leak. A well thought out management strategy and meticulous surgical techniques are critical to success. The primary surgical goal is to provide a safe sinus while minimizing patient morbidity. This article offers an anatomically based treatment algorithm for the management of frontal sinus fractures and highlights the key steps to surgical repair. PMID:22110810

  9. Restoration of cognitive abilities by cholinergic grafts in cortex of monkeys with lesions of the basal nucleus of Meynert.

    PubMed

    Ridley, R M; Baker, J A; Baker, H F; Maclean, C J

    1994-12-01

    Three groups of marmosets were trained to perform a series of visual discrimination tasks in a Wisconsin General Test Apparatus. Two groups then received bilateral lesions of the basal nucleus of Meynert using the excitotoxin N-methyl-D-aspartate and were found to be severely impaired on relearning a visual discrimination first learnt prior to surgery. One lesioned group then received grafts of acetylcholine-rich tissue dissected from the basal forebrain of fetal marmosets. Three months later the marmosets with lesion alone remained impaired on a number of retention and reversal tasks whereas the transplanted animals were no longer significantly impaired. Histological examination of the brains indicated that all lesioned animals had sustained substantial loss of the cholinergic neurons of the basal nucleus of Meynert (assessed by nerve growth factor receptor immunoreactivity) and that the lesion-alone animals showed marked loss of the cholinergic marker acetylcholinesterase in the dorsolateral frontal and parietal cortex. All transplanted animals had surviving graft tissue (visualized by Cresyl Violet staining, dense acetylcholinesterase staining and the presence of a limited number of nerve growth factor receptor-immunoreactive neurons) in the neocortex and 5/6 transplanted animals showed near complete restitution of acetylcholinesterase staining in frontal and parietal cortex. Examination of individual animal data showed that the animal without this restitution performed very poorly. The performance of the remaining transplanted animals was significantly better than that of the animals with lesion alone. There was a significant positive correlation between the degree of acetylcholinesterase staining and good performance on tasks sensitive to frontal lobe damage. These results demonstrate that acetylcholine-rich tissue transplanted into the neocortex of primates with damage to the cholinergic projections to the neocortex can produce substantial restitution of

  10. Distinct frontal lobe morphology in girls and boys with ADHD

    PubMed Central

    Dirlikov, Benjamin; Shiels Rosch, Keri; Crocetti, Deana; Denckla, Martha B.; Mahone, E. Mark; Mostofsky, Stewart H.

    2014-01-01

    Objective This study investigated whether frontal lobe cortical morphology differs for boys and girls with ADHD (ages 8–12 years) in comparison to typically developing (TD) peers. Method Participants included 226 children between the ages of 8–12 including 93 children with ADHD (29 girls) and 133 TD children (42 girls) for which 3T MPRAGE MRI scans were obtained. A fully automated frontal lobe atlas was used to generate functionally distinct frontal subdivisions, with surface area (SA) and cortical thickness (CT) assessed in each region. Analyses focused on overall diagnostic differences as well as examinations of the effect of diagnosis within boys and girls. Results Girls, but not boys, with ADHD showed overall reductions in total prefrontal cortex (PFC) SA. Localization revealed that girls showed widely distributed reductions in the bilateral dorsolateral PFC, left inferior lateral PFC, right medial PFC, right orbitofrontal cortex, and left anterior cingulate; and boys showed reduced SA only in the right anterior cingulate and left medial PFC. In contrast, boys, but not girls, with ADHD showed overall reductions in total premotor cortex (PMC) SA. Further localization revealed that in boys, premotor reductions were observed in bilateral lateral PMC regions; and in girls reductions were observed in bilateral supplementary motor complex. In line with diagnostic group differences, PMC and PFC SAs were inversely correlated with symptom severity in both girls and boys with ADHD. Conclusions These results elucidate sex-based differences in cortical morphology of functional subdivisions of the frontal lobe and provide additional evidence of associations among SA and symptom severity in children with ADHD. PMID:25610784

  11. The Distributed Auditory Cortex

    PubMed Central

    Winer, Jeffery A.; Lee, Charles C.

    2009-01-01

    A synthesis of cat auditory cortex (AC) organization is presented in which the extrinsic and intrinsic connections interact to derive a unified profile of the auditory stream and use it to direct and modify cortical and subcortical information flow. Thus, the thalamocortical input provides essential sensory information about peripheral stimulus events, which AC redirects locally for feature extraction, and then conveys to parallel auditory, multisensory, premotor, limbic, and cognitive centers for further analysis. The corticofugal output influences areas as remote as the pons and the cochlear nucleus, structures whose effects upon AC are entirely indirect, and has diverse roles in the transmission of information through the medial geniculate body and inferior colliculus. The distributed AC is thus construed as a functional network in which the auditory percept is assembled for subsequent redistribution in sensory, premotor, and cognitive streams contingent on the derived interpretation of the acoustic events. The confluence of auditory and multisensory streams likely precedes cognitive processing of sound. The distributed AC constitutes the largest and arguably the most complete representation of the auditory world. Many facets of this scheme may apply in rodent and primate AC as well. We propose that the distributed auditory cortex contributes to local processing regimes in regions as disparate as the frontal pole and the cochlear nucleus to construct the acoustic percept. PMID:17329049

  12. Relative frontal brain asymmetry and cortisol release after social stress: The role of action orientation.

    PubMed

    Düsing, Rainer; Tops, Mattie; Radtke, Elise Leila; Kuhl, Julius; Quirin, Markus

    2016-03-01

    Social evaluation is a potent stressor and consistently leads to an activation of the hypothalamic-pituitary-adrenal system. Here, we investigated whether individual differences in action orientation influence the relationship between the cortisol response to social-evaluative threat and relative left frontal electroencephalographic (EEG) alpha asymmetry as a brain marker of approach motivation. Forty-nine participants were exposed to a camera-based variant of the Trier Social Stress Task while salivary cortisol and resting EEG frontal alpha asymmetry were assessed before and after stress induction. Higher relative left frontal activity was associated with higher changes in cortisol levels as measured by the area under curve with respect to increase, particularly in individuals low in action orientation. We discuss the role of the left frontal cortex in coping, the potential role of oxytocin, and negative health consequences when the left-frontal coping process becomes overstrained.

  13. Prenatal Alcohol Exposure is Associated with Regionally Thinner Cortex During the Preadolescent Period.

    PubMed

    Robertson, Frances C; Narr, Katherine L; Molteno, Christopher D; Jacobson, Joseph L; Jacobson, Sandra W; Meintjes, Ernesta M

    2016-07-01

    Children with fetal alcohol spectrum disorders (FASD) may exhibit craniofacial dysmorphology, neurobehavioral deficits, and reduced brain volume. Studies of cortical thickness in FASD have yielded contradictory findings, with 3 reporting thicker cerebral cortex in frontal and temporal brain regions and 2 showing thinner cortex across multiple regions. All 5 studies included subjects spanning a broad age range, and none have examined continuous measures of prenatal alcohol exposure. We investigated the relation of extent of in utero alcohol exposure to cortical thickness in 78 preadolescent children with FASD and controls within a narrow age range. A whole-brain analysis using FreeSurfer revealed no significant clusters where cortical thickness differed by FASD diagnostic group. However, alcohol dose/occasion during pregnancy was inversely related to cortical thickness in 3 regions-right cuneus/pericalcarine/superior parietal lobe, fusiform/lingual gyrus, and supramarginal/postcentral gyrus. The effect of prenatal alcohol exposure on IQ was mediated by cortical thickness in the right occipitotemporal region. It is noteworthy that a continuous measure of maternal alcohol consumption during pregnancy was more sensitive than FASD diagnosis and that the effect on cortical thickness was most evident in relation to a measure of maternal binge drinking. PMID:26088967

  14. Frontal glutamate and reward processing in adolescence and adulthood.

    PubMed

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  15. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  16. Insular cortex and neuropsychiatric disorders: a review of recent literature.

    PubMed

    Nagai, M; Kishi, K; Kato, S

    2007-09-01

    The insular cortex is located in the centre of the cerebral hemisphere, having connections with the primary and secondary somatosensory areas, anterior cingulate cortex, amygdaloid body, prefrontal cortex, superior temporal gyrus, temporal pole, orbitofrontal cortex, frontal and parietal opercula, primary and association auditory cortices, visual association cortex, olfactory bulb, hippocampus, entorhinal cortex, and motor cortex. Accordingly, dense connections exist among insular cortex neurons. The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition to gustatory, olfactory, visual, auditory, and tactile data. In this article, the literature on the relationship between the insular cortex and neuropsychiatric disorders was summarized following a computer search of the Pub-Med database. Recent neuroimaging data, including voxel based morphometry, PET and fMRI, revealed that the insular cortex was involved in various neuropsychiatric diseases such as mood disorders, panic disorders, PTSD, obsessive-compulsive disorders, eating disorders, and schizophrenia. Investigations of functions and connections of the insular cortex suggest that sensory information including gustatory, olfactory, visual, auditory, and tactile inputs converge on the insular cortex, and that these multimodal sensory information may be integrated there.

  17. Longitudinal progression of frontal and temporal lobe changes in schizophrenia.

    PubMed

    Cobia, Derin J; Smith, Matthew J; Wang, Lei; Csernansky, John G

    2012-08-01

    Cortical abnormalities are considered a neurobiological characteristic of schizophrenia. However, the pattern of such deficits as they progress over the illness remains poorly understood. The goal of this project was to assess the progression of cortical thinning in frontal and temporal cortical regions in schizophrenia, and determine whether relationships exist between them and neuropsychological and clinical symptom profiles. As part of a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy participants (n=20) group-matched for age, gender, and recent-alcohol use, were selected. Using MRI, estimates of gray matter thickness were derived from primary anatomical gyri of the frontal and temporal lobes using surface-based algorithms. These values were entered into repeated-measures analysis of variance models to determine group status and time effects. Change values in cortical regions were correlated with changes in neuropsychological functioning and clinical symptomatology. Results revealed exaggerated cortical thinning of the middle frontal, superior temporal, and middle temporal gyri in schizophrenia participants. These thickness changes strongly influenced volumetric reductions, but were not related to shrinking surface area. Neuropsychological and clinical symptom profiles were stable in the schizophrenia participants despite these neuroanatomic changes. Overall it appears that ongoing abnormalities in the cerebral cortex continue after initial onset of schizophrenia, particularly the lateral aspects of frontal and temporal regions, and do not relate to neuropsychological or clinical measures over time. Maintenance of neuropsychological performance and clinical stability in the face of changing neuroanatomical structure suggests the involvement of alternative compensatory mechanisms. PMID:22647883

  18. Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction.

    PubMed

    Derrfuss, J; Vogt, V L; Fiebach, C J; von Cramon, D Y; Tittgemeyer, M

    2012-02-15

    Two eye fields have been described in the human lateral frontal cortex: the frontal eye field (FEF) and the inferior frontal eye field (iFEF). The FEF has been extensively studied and has been found to lie at the ventral part of the superior precentral sulcus. Much less research, however, has focused on the iFEF. Recently, it was suggested that the iFEF is located at the dorsal part of the inferior precentral sulcus. A similar location was proposed for the inferior frontal junction area (IFJ), an area thought to be involved in cognitive control processes. The present study used fMRI to clarify the topographical and functional relationship of the iFEF and the IFJ in the left hemispheres of individual participants. The results show that both the iFEF and the IFJ are indeed located at the dorsal part of the inferior precentral sulcus. Nevertheless, the activations were spatially dissociable in every individual examined. The IFJ was located more towards the depth of the inferior precentral sulcus, close to the junction with the inferior frontal sulcus, whereas the iFEF assumed a more lateral, posterior and superior position. Furthermore, the results provided evidence for a functional double dissociation: the iFEF was activated only in a comparison of saccades vs. button presses, but not in a comparison of incongruent vs. congruent Stroop conditions, while the opposite pattern was found at the IFJ. These results provide evidence for a spatial and functional dissociation of two directly adjacent areas in the left posterior frontal lobe.

  19. Dementia of frontal lobe type.

    PubMed Central

    Neary, D; Snowden, J S; Northen, B; Goulding, P

    1988-01-01

    A significant proportion of patients with presenile dementia due to primary cerebral atrophy do not have Alzheimer's disease. One form of non-Alzheimer dementia may be designated as dementia of frontal lobe type (DFT), on the basis of a characteristic neuropsychological picture suggestive of frontal lobe disorder, confirmed by findings on single photon emission tomography. The case histories of seven patients exemplify the disorder: a presentation of social misconduct and personality change, unconcern and disinhibition, in the presence of physical well-being and few neurological signs. Assessment revealed economic and concrete speech with verbal stereotypes, variable memory impairment, and marked abnormalities on tasks sensitive to frontal lobe function. Visuo-spatial disorder was invariably absent. Comparisons of DFT and Alzheimer patients revealed qualitative differences in clinical presentation, neurological signs, profile of psychological disability, electroencephalography, single photon emission tomography and demography. DFT, which may represent forms of Pick's disease, may be more common than is often recognised. PMID:3258902

  20. Role of Medio-Dorsal Frontal and Posterior Parietal Neurons during Auditory Detection Performance in Rats

    PubMed Central

    Bohon, Kaitlin S.; Wiest, Michael C.

    2014-01-01

    To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units—15% in frontal cortex, 23% in parietal cortex—significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas. PMID:25479194

  1. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    PubMed

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, p<0.05) and there was a significant interaction between PFS and RRS on frontal asymmetry, p<0.01. Results indicated that those high in hedonic hunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods.

  2. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  3. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    PubMed

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex.

  4. Challenge of Fetal Mortality

    MedlinePlus

    ... Death Data File and Linked Birth/Infant Death Data Set, National Vital Statistics System The magnitude of fetal ... Death Data File and Linked Birth/Infant Death Data Set, NVSS. The vital statistics Fetal Death Data File ...

  5. Fetal alcohol syndrome

    MedlinePlus

    Alcohol in pregnancy; Alcohol-related birth defects; Fetal alcohol effects; FAS ... varies. Almost none of these babies have normal brain development. Infants and children with fetal alcohol syndrome have many different problems, which can be ...

  6. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  7. Fetal behavioral teratology.

    PubMed

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  8. Advances in fetal surgery

    PubMed Central

    Pedreira, Denise Araujo Lapa

    2016-01-01

    ABSTRACT This paper discusses the main advances in fetal surgical therapy aiming to inform health care professionals about the state-of-the-art techniques and future challenges in this field. We discuss the necessary steps of technical evolution from the initial open fetal surgery approach until the development of minimally invasive techniques of fetal endoscopic surgery (fetoscopy). PMID:27074241

  9. Uptake of (/sup 3/H)testosterone and its metabolites by the brain and pituitary gland of the fetal macaque

    SciTech Connect

    Michael, R.P.; Bonsall, R.W.; Rees, H.D.

    1989-03-01

    Testosterone is secreted by the fetal testis during gestation, and this is thought to influence certain aspects of the brain's subsequent development. To study this action at the neuronal level, nine macaque fetuses were injected with 250 microCi (3H)testosterone via the umbilical vein at about 120 days gestation. After 60 min, samples of brain and peripheral tissue were studied by autoradiography or HPLC. Purified nuclear pellets were prepared, and radioactivity in ether extracts was fractionated by HPLC and identified by coelution with internal standard steroids. Concentrations of radioactivity were significantly higher (P less than 0.05) in the hypothalamus-preoptic area than in amygdala, hippocampus, midbrain, and cerebral and cerebellar cortexes, and most of the radioactivity (75%) in the hypothalamus-preoptic area coeluted with 17 beta-estradiol. Radioactivity coeluting with 17 beta-estradiol was also detected in nuclear fractions from amygdala (44%). In contrast, 80% of the radioactivity extracted from pituitary gland nuclei coeluted with testosterone. Most of the neurons labeled in autoradiograms were located in the hypothalamus and preoptic area, fewer were found in the amygdala, and labeling in the frontal or motor cortex did not exceed chance levels. Results suggested that aromatization and, consequently, estrogen receptors play a role in the effects of testosterone on the hypothalamus and amygdala of the primate fetus at this stage of development.

  10. Intact discourse cohesion and coherence following bilateral ventromedial prefrontal cortex.

    PubMed

    Kurczek, Jake; Duff, Melissa C

    2012-12-01

    Discourse cohesion and coherence give communication its continuity providing the grammatical and lexical links that hold an utterance or text together and give it meaning. Researchers often link cohesion and coherence deficits to the frontal lobes by drawing attention to frontal lobe dysfunction in populations where discourse cohesion and coherence deficits are reported and through attribution of these deficits to underlying cognitive impairments putatively associated with the frontal lobes. We examined the distinct contribution of a region of the frontal lobes, the ventromedial prefrontal cortex (vmPFC), to discourse cohesion and coherence across a range of discourse tasks. We found that bilateral vmPFC damage does not impair cohesion and coherence in spoken discourse. This study provides insights into the contribution of the major anatomical subdivisions of the frontal lobes to language use and furthers our understanding of the neural and cognitive underpinnings of discourse cohesion and coherence.

  11. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  12. Collaborative Writing: Online versus Frontal

    ERIC Educational Resources Information Center

    Passig, David; Schwartz, Gali

    2007-01-01

    Students in higher education, most frequently, use the frontal approach while being asked to collaborate on a writing assignment. However, the difficulty in collaborative writing using conventional technologies such as pen and paper, board or computer is the limited ability to view the work of your peers during the process (Baeker, Glass,…

  13. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    PubMed

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  14. Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables

    PubMed Central

    Kennerley, Steven W.; Dahmubed, Aspandiar F.; Lara, Antonio H.; Wallis, Jonathan D.

    2009-01-01

    A central question in behavioral science is how we select among choice alternatives to obtain consistently the most beneficial outcomes. Three variables are particularly important when making a decision: the potential payoff, the probability of success, and the cost in terms of time and effort. A key brain region in decision making is the frontal cortex as damage here impairs the ability to make optimal choices across a range of decision types. We simultaneously recorded the activity of multiple single neurons in the frontal cortex while subjects made choices involving the three aforementioned decision variables. This enabled us to contrast the relative contribution of the anterior cingulate cortex (ACC), the orbito-frontal cortex, and the lateral prefrontal cortex to the decision-making process. Neurons in all three areas encoded value relating to choices involving probability, payoff, or cost manipulations. However, the most significant signals were in the ACC, where neurons encoded multiplexed representations of the three different decision variables. This supports the notion that the ACC is an important component of the neural circuitry underlying optimal decision making. PMID:18752411

  15. Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension.

    PubMed

    Meyer, Lars; Grigutsch, Maren; Schmuck, Noura; Gaston, Phoebe; Friederici, Angela D

    2015-10-01

    Successful working-memory retrieval requires that items be retained as distinct units. At the neural level, it has been shown that theta-band oscillatory power increases with the number of to-be-distinguished items during working-memory retrieval. Here we hypothesized that during sentence comprehension, verbal-working-memory retrieval demands lead to increased theta power over frontal cortex, supposedly supporting the distinction amongst stored items during verbal-working-memory retrieval. Also, synchronicity may increase between the frontal cortex and the posterior cortex, with the latter supposedly supporting item retention. We operationalized retrieval by using pronouns, which refer to and trigger the retrieval of antecedent nouns from a preceding sentence part. Retrieval demand was systematically varied by changing the pronoun antecedent: Either, it was non-embedded in the preceding main clause, and thus easy-to-retrieve across a single clause boundary, or embedded in the preceding subordinate clause, and thus hard-to-retrieve across a double clause boundary. We combined electroencephalography (EEG), scalp-level time-frequency analysis, source localization, and source-level coherence analysis, observing a frontal-midline and broad left-hemispheric theta-power increase for embedded-antecedent compared to non-embedded-antecedent retrieval. Sources were localized to left-frontal, left-parietal, and bilateral-inferior-temporal cortices. Coherence analyses suggested synchronicity between left-frontal and left-parietal and between left-frontal and right-inferior-temporal cortices. Activity of an array of left-frontal, left-parietal, and bilateral-inferior-temporal cortices may thus assist retrieval during sentence comprehension, potentially indexing the orchestration of item distinction, verbal working memory, and long-term memory. Our results extend prior findings by mapping prior knowledge on the functional role of theta oscillations onto processes genuine to human

  16. Sex-related differences in auditory processing in adolescents with fetal alcohol spectrum disorder: A magnetoencephalographic study

    PubMed Central

    Tesche, Claudia D.; Kodituwakku, Piyadasa W.; Garcia, Christopher M.; Houck, Jon M.

    2014-01-01

    Children exposed to substantial amounts of alcohol in utero display a broad range of morphological and behavioral outcomes, which are collectively referred to as fetal alcohol spectrum disorders (FASDs). Common to all children on the spectrum are cognitive and behavioral problems that reflect central nervous system dysfunction. Little is known, however, about the potential effects of variables such as sex on alcohol-induced brain damage. The goal of the current research was to utilize magnetoencephalography (MEG) to examine the effect of sex on brain dynamics in adolescents and young adults with FASD during the performance of an auditory oddball task. The stimuli were short trains of 1 kHz “standard” tone bursts (80%) randomly interleaved with 1.5 kHz “target” tone bursts (10%) and “novel” digital sounds (10%). Participants made motor responses to the target tones. Results are reported for 44 individuals (18 males and 26 females) ages 12 through 22 years. Nine males and 13 females had a diagnosis of FASD and the remainder were typically-developing age- and sex-matched controls. The main finding was widespread sex-specific differential activation of the frontal, medial and temporal cortex in adolescents with FASD compared to typically developing controls. Significant differences in evoked-response and time–frequency measures of brain dynamics were observed for all stimulus types in the auditory cortex, inferior frontal sulcus and hippocampus. These results underscore the importance of considering the influence of sex when analyzing neurophysiological data in children with FASD. PMID:26082886

  17. Sex-related differences in auditory processing in adolescents with fetal alcohol spectrum disorder: A magnetoencephalographic study.

    PubMed

    Tesche, Claudia D; Kodituwakku, Piyadasa W; Garcia, Christopher M; Houck, Jon M

    2015-01-01

    Children exposed to substantial amounts of alcohol in utero display a broad range of morphological and behavioral outcomes, which are collectively referred to as fetal alcohol spectrum disorders (FASDs). Common to all children on the spectrum are cognitive and behavioral problems that reflect central nervous system dysfunction. Little is known, however, about the potential effects of variables such as sex on alcohol-induced brain damage. The goal of the current research was to utilize magnetoencephalography (MEG) to examine the effect of sex on brain dynamics in adolescents and young adults with FASD during the performance of an auditory oddball task. The stimuli were short trains of 1 kHz "standard" tone bursts (80%) randomly interleaved with 1.5 kHz "target" tone bursts (10%) and "novel" digital sounds (10%). Participants made motor responses to the target tones. Results are reported for 44 individuals (18 males and 26 females) ages 12 through 22 years. Nine males and 13 females had a diagnosis of FASD and the remainder were typically-developing age- and sex-matched controls. The main finding was widespread sex-specific differential activation of the frontal, medial and temporal cortex in adolescents with FASD compared to typically developing controls. Significant differences in evoked-response and time-frequency measures of brain dynamics were observed for all stimulus types in the auditory cortex, inferior frontal sulcus and hippocampus. These results underscore the importance of considering the influence of sex when analyzing neurophysiological data in children with FASD.

  18. Human frontal eye fields and target switching.

    PubMed

    Muggleton, Neil G; Juan, Chi-Hung; Cowey, Alan; Walsh, Vincent; O'Breathnach, Uinsionn

    2010-02-01

    The frontal eye fields (FEF) have typically been predominantly investigated in terms of their role in the generation of eye movements. Lesions to this area, either accidental or experimental, disrupt saccades and electrical stimulation elicits eye movements. Recently there has been increasing interest in the involvement of this area in visual processes, including in tasks where eye movements were either not required or were precluded. In addition to being involved in a range of visual tasks, evidence from visual search paradigms has suggested that this area might be important when the defining quality of the target is unpredictable or that it may be involved in priming. We investigated the role of FEF in a task requiring localisation of a target defined by colour, in which the target colour was either maintained or switched across trials. Disruption of performance was seen on the task when transcranial magnetic stimulation (TMS) was delivered over the left FEF, specifically elevating response times on trials when the target and distracter colours were switched rather than affecting any benefit of repetition of the target attribute (priming). This result is consistent with altered modulation of extrastriate areas, consequently affecting the speed with which a switch of the target colour could be detected. This both offers an explanation for effects seen in unpredictable feature search and is consistent with other TMS and microstimulation studies showing that FEF modulates responses of extrastriate cortex. PMID:19409541

  19. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance.

    PubMed

    Voytek, Bradley; Kayser, Andrew S; Badre, David; Fegen, David; Chang, Edward F; Crone, Nathan E; Parvizi, Josef; Knight, Robert T; D'Esposito, Mark

    2015-09-01

    Humans have a capacity for hierarchical cognitive control-the ability to simultaneously control immediate actions while holding more abstract goals in mind. Neuropsychological and neuroimaging evidence suggests that hierarchical cognitive control emerges from a frontal architecture whereby prefrontal cortex coordinates neural activity in the motor cortices when abstract rules are needed to govern motor outcomes. We utilized the improved temporal resolution of human intracranial electrocorticography to investigate the mechanisms by which frontal cortical oscillatory networks communicate in support of hierarchical cognitive control. Responding according to progressively more abstract rules resulted in greater frontal network theta phase encoding (4-8 Hz) and increased prefrontal local neuronal population activity (high gamma amplitude, 80-150 Hz), which predicts trial-by-trial response times. Theta phase encoding coupled with high gamma amplitude during inter-regional information encoding, suggesting that inter-regional phase encoding is a mechanism for the dynamic instantiation of complex cognitive functions by frontal cortical subnetworks. PMID:26214371

  20. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance

    PubMed Central

    Voytek, Bradley; Kayser, Andrew S.; Badre, David; Fegen, David; Chang, Edward F.; Crone, Nathan E.; Parvizi, Josef; Knight, Robert T.; D'Esposito, Mark

    2015-01-01

    Humans have a capacity for hierarchical cognitive control—the ability to simultaneously control immediate actions while holding more abstract goals in mind. Neuropsychological and neuroimaging evidence suggests that hierarchical cognitive control emerges from a frontal architecture whereby prefrontal cortex coordinates neural activity in the motor cortices when abstract rules are needed to govern motor outcomes. Here we utilize the improved temporal resolution of human intracranial electrocorticography to investigate the mechanisms by which frontal cortical oscillatory networks communicate in support of hierarchical cognitive control. Responding according to progressively more abstract rules results in greater frontal network theta phase encoding (4-8 Hz) and increased prefrontal local neuronal population activity (high gamma amplitude, 80-150 Hz), which predicts trial-by-trial response times. Theta phase encoding couples with high gamma amplitude during interregional information encoding, suggesting that interregional phase encoding is a mechanism for the dynamic instantiation of complex cognitive functions by frontal cortical subnetworks. PMID:26214371

  1. Spatial organization of neurons in the frontal pole sets humans apart from great apes.

    PubMed

    Semendeferi, Katerina; Teffer, Kate; Buxhoeveden, Dan P; Park, Min S; Bludau, Sebastian; Amunts, Katrin; Travis, Katie; Buckwalter, Joseph

    2011-07-01

    Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance and gray-level ratio in layer III of 4 regions of human and ape cortex in all 6 living hominoid species: frontal pole (Brodmann area [BA] 10), and primary motor (BA 4), primary somatosensory (BA 3), and primary visual cortex (BA 17). Our results identified significant differences between humans and apes in the frontal pole (BA 10). Within the human brain, there were also significant differences between the frontal pole and 2 of the 3 regions studied (BA 3 and BA 17). Differences between BA 10 and BA 4 were present but did not reach significance. These findings in combination with earlier findings on BA 44 and BA 45 suggest that human brain evolution was likely characterized by an increase in the number and width of minicolumns and the space available for interconnectivity between neurons in the frontal lobe, especially the prefrontal cortex.

  2. Prefrontal Cortex Contributions to Episodic Retrieval Monitoring and Evaluation

    ERIC Educational Resources Information Center

    Cruse, Damian; Wilding, Edward L.

    2009-01-01

    Although the prefrontal cortex (PFC) plays roles in episodic memory judgments, the specific processes it supports are not understood fully. Event-related potential (ERP) studies of episodic retrieval have revealed an electrophysiological modulation--the right-frontal ERP old/new effect--which is thought to reflect activity in PFC. The functional…

  3. The Role of the Orbitofrontal Cortex in Human Discrimination Learning

    ERIC Educational Resources Information Center

    Chase, Henry W.; Clark, Luke; Myers, Catherine E.; Gluck, Mark A.; Sahakian, Barbara J.; Bullmore, Edward T.; Robbins, Trevor W.

    2008-01-01

    Several lines of evidence implicate the prefrontal cortex in learning but there is little evidence from studies of human lesion patients to demonstrate the critical role of this structure. To this end, we tested patients with lesions of the frontal lobe (n = 36) and healthy controls (n = 35) on two learning tasks: the weather prediction task…

  4. Immunolocalization of steroidogenic enzymes in equine fetal adrenal glands during mid-late gestation.

    PubMed

    Weng, Qiang; Tanaka, Yumiko; Taniyama, Hiroyuki; Tsunoda, Nobuo; Nambo, Yasuo; Watanabe, Gen; Taya, Kazuyoshi

    2007-10-01

    To elucidate the relationship between steroidogenic hormones and developing adrenal glands, we investigated the immunolocalization of steroidogenic enzymes in equine fetal adrenal glands during mid-late gestation. Fetal adrenal glands were obtained from three horses at 217, 225 and 235 days of gestation. Steroidogenic enzymes were immunolocalized using polyclonal antisera raised against bovine adrenal cholesterol side-chain cleavage cytochrome P450 (P450scc), human placental 3beta-hydroxysteroid dehydrogenase (3betaHSD), porcine testicular 17alpha-hydroxylase cytochrome P450 (P450c17) and human placental aromatase cytochrome P450 (P450arom). Histologically, cortex and medulla cells were clearly observed in the three fetal adrenal gland tissue samples. P450scc and P450c17 were identified in cortex cells close to medulla cells and in some medulla cells in the fetal adrenal glands. P450arom was present in both cortex and medulla cells in the fetal adrenal glands. However, 3betaHSD was not found in any of the equine fetal adrenal gland tissue samples. These results suggest that equine fetal adrenal glands have the ability to synthesize androgen and estrogen, which may play an important physiological role in the development of equine fetal adrenal glands.

  5. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. PMID:25936227

  6. Fetal Health and Development

    MedlinePlus

    ... specific prenatal tests to monitor both the mother's health and fetal health during each trimester. With modern technology, health professionals can Detect birth defects Identify problems that ...

  7. Differential distribution of NADPH-diaphorase histochemistry in human cerebral cortex.

    PubMed

    Garbossa, Diego; Fontanella, Marco; Tomasi, Simone; Ducati, Alessandro; Vercelli, Alessandro

    2005-02-01

    Beta-nicotinamidedinucleotide phosphate diaphorase (NADPH-d) colocalizes with NOS in the central nervous system. Two types of NADPH-d-positive neurons are present in the primate cerebral cortex: type 1, intensely and Golgi-like labeled neurons, a subset of GABAergic interneurons; type 2, lightly labeled neurons (divided into two subclasses, a first one having a lightly stained cell body bearing only one short process, and a second one showing intense NADPH-d staining with short processes extending radially). We have analyzed the distribution of NADPH-d activity in human frontal, temporal, and occipital cortical areas, finding remarkable laminar and interareal differences in cell size and distribution of the different cell types. There was a clear bias for type 1 neurons in infragranular layers in all areas considered; both in supra- and infragranular layers, their density was highest in frontal, and lowest in temporal cortex. The density of type 2 neurons was lower supragranularly in temporal cortex and infragranularly in occipital cortex. The overall density of type 2 cells was remarkably higher in occipital cortex than in the temporal and frontal ones. Type 1 neurons were significantly larger than type 2, and were smaller in the supragranular than in the infragranular subzone in occipital and temporal cortex. Type 1 cells were significantly larger in frontal cortex than in occipital and temporal cortex, and type 2 cells were significantly smaller in occipital than in temporal and frontal cortex. These area-related differences might reflect differences between heterotypic and homotypic cortex in the regulation of cortical blood flow.

  8. Biomechanics of frontal skull fracture.

    PubMed

    Delye, Hans; Verschueren, Peter; Depreitere, Bart; Verpoest, Ignaas; Berckmans, Daniel; Vander Sloten, Jos; Van Der Perre, Georges; Goffin, Jan

    2007-10-01

    The purpose of the present study was to investigate whether an energy failure level applies to the skull fracture mechanics in unembalmed post-mortem human heads under dynamic frontal loading conditions. A double-pendulum model was used to conduct frontal impact tests on specimens from 18 unembalmed post-mortem human subjects. The specimens were isolated at the occipital condyle level, and pre-test computed tomography images were obtained. The specimens were rigidly attached to an aluminum pendulum in an upside down position and obtained a single degree of freedom, allowing motion in the plane of impact. A steel pendulum delivered the impact and was fitted with a flat-surfaced, cylindrical aluminum impactor, which distributed the load to a force sensor. The relative displacement between the two pendulums was used as a measure for the deformation of the specimen in the plane of impact. Three impact velocity conditions were created: low (3.60+/-0.23 m/sec), intermediate (5.21+/-0.04 m/sec), and high (6.95+/-0.04 m/sec) velocity. Computed tomography and dissection techniques were used to detect pathology. If no fracture was detected, repeated tests on the same specimen were performed with higher impact energy until fracture occurred. Peak force, displacement and energy variables were used to describe the biomechanics. Our data suggests the existence of an energy failure level in the range of 22-24 J for dynamic frontal loading of an intact unembalmed head, allowed to move with one degree of freedom. Further experiments, however, are necessary to confirm that this is a definitive energy criterion for skull fracture following impact. PMID:17970621

  9. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  10. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    PubMed Central

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex. In terms of long-range coherence, we observed significantly more frontal-parietal coherence in the beta band (15–30 Hz) before the signal on misses compared with hits. This effect persisted after regressing away linear trends in the coherence values during a session, showing that the excess frontal-parietal beta coherence prior to misses cannot be explained by slow motivational changes during a session. In addition, a trend toward higher low-frequency (<15 Hz) coherence prior to miss trials compared with hits became highly significant when we rereferenced the LFPs to the mean voltage on each recording array, suggesting that the results are specific to our frontal and parietal areas. These results do not support a role for long-range frontal-parietal coherence or local synchronization in facilitating the detection of external stimuli. Rather, they extend to long-range frontal-parietal coherence previous findings that correlate local synchronization of low-frequency (<15 Hz) oscillations with inattention to external stimuli and synchronization of beta rhythms (15–30 Hz) with voluntary or involuntary prolongation of the current cognitive or motor state. PMID:24572093

  11. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    PubMed Central

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  12. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice.

    PubMed

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-06-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies.

  13. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice.

    PubMed

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-06-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  14. Fetal protection and maternal-fetal medicine.

    PubMed

    Nocon, J J

    1991-06-01

    Section 2.01 of the Fetal Protection Act of 1999 defines "qualified patient" as one who registers a pregnancy by six weeks of gestational age. Section 2.02 requires that a patient be "qualified" before receiving financial aid. Similarly, all private third party payers require "registration" of the pregnancy by six weeks. "Registration" consists of proof of intrauterine pregnancy by ultrasound and attachment of a telemetry device to the cervix. Such a device will monitor the patient's vital signs, contractions, fetal movement and levels of various "toxins" in the maternal blood. Toxins include but are not limited to alcohol, nicotine, controlled substances as well as excess levels of salt, carbohydrates and saturated fats. Unacceptable variations in telemetry will trip an alarm at the patient's approved prenatal care center. Such an alarm will trigger a visit from an agent from the Fetal Bureau of Investigation.

  15. Overview of fetal arrhythmias

    PubMed Central

    Srinivasan, Shardha; Strasburger, Janette

    2012-01-01

    Purpose of review Though fetal arrhythmias account for a small proportion of referrals to a fetal cardiologist, they may be associated with significant morbidity and mortality. The present review outlines the current literature with regard to the diagnosis and, in brief, some management strategies in fetal arrhythmias. Recent findings Advances in echocardiography have resulted in significant improvements in our ability to elucidate the mechanism of arrhythmia at the bedside. At the same time, fetal magnetocardiography is broadening our understanding of mechanisms of arrhythmia especially as it pertains to ventricular arrhythmias and congenital heart block. It provides a unique window to study electrical properties of the fetal heart, unlike what has been available to date. Recent reports of bedside use of fetal ECG make it a promising new technology. The underlying mechanisms resulting in immune-mediated complete heart block in a small subset of ‘at-risk’ fetuses is under investigation. Summary There have been great strides in noninvasive diagnosis of fetal arrhythmias. However, we still need to improve our knowledge of the electromechanical properties of the fetal heart as well as the mechanisms of arrhythmia to further improve outcomes. Multiinstitutional collaborative studies are needed to help answer some of the questions regarding patient, drug selection and management algorithms. PMID:18781114

  16. Fetal Neurobehavioral Development.

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; And Others

    1996-01-01

    Investigated the ontogeny of fetal autonomic, motoric, state, and interactive functioning in 31 healthy fetuses from 20 weeks through term. Found that male fetuses were more active than female fetuses, and that greater maternal stress appraisal was associated with reduced fetal heart rate variability. Found that an apparent period of…

  17. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  18. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions.

    PubMed

    Price, Joseph L

    2007-12-01

    The orbitofrontal cortex is often defined topographically as the cortex on the ventral surface of the frontal lobe. Unfortunately, this definition is not consistently used, and it obscures distinct connectional and functional systems within the orbital cortex. It is difficult to interpret data on the orbital cortex that do not take these different systems into account. Analysis of cortico-cortical connections between areas in the orbital and medial prefrontal cortex indicate two distinct networks in this region. One system, called the orbital network, involves most of the areas in the central orbital cortex. The other system, has been called the medial prefrontal network, though it is actually more complex, since it includes areas on the medial wall, in the medial orbital cortex, and in the posterolateral orbital cortex. Some areas in the medial orbital cortex are involved in both networks. Connections to other brain areas support the distinction between the networks. The orbital network receives several sensory inputs, from olfactory cortex, taste cortex, somatic sensory association cortex, and visual association cortex, and is connected with multisensory areas in the ventrolateral prefrontal cortex and perirhinal cortex. The medial network has outputs to the hypothalamus and brain stem and connects to a cortical circuit that includes the rostral part of the superior temporal gyrus and dorsal bank of the superior temporal sulcus, the cingulate and retrosplenial cortex, the entorhinal and posterior parahippocampal cortex, and the dorsomedial prefrontal cortex.

  19. Frontal activations associated with accessing and evaluating information in working memory: an fMRI study.

    PubMed

    Zhang, John X; Leung, Hoi-Chung; Johnson, Marcia K

    2003-11-01

    To investigate the involvement of frontal cortex in accessing and evaluating information in working memory, we used a variant of a Sternberg paradigm and compared brain activations between positive and negative responses (known to differentially tax access/evaluation processes). Participants remembered two trigrams in each trial and were then cued to discard one of them and maintain the other one as the target set. After a delay, a probe letter was presented and participants made decisions about whether or not it was in the target set. Several frontal areas--anterior cingulate (BA32), middle frontal gyrus (bilateral BA9, right BA10, and right BA46), and left inferior frontal gyrus (BA44/45)--showed increased activity when participants made correct negative responses relative to when they made correct positive responses. No areas activated significantly more for the positive responses than for the negative responses. It is suggested that the multiple frontal areas involved in the test phase of this task may reflect several component processes that underlie more general frontal functions. PMID:14642465

  20. Dynamic variation in pleasure in children predicts nonlinear change in lateral frontal brain electrical activity.

    PubMed

    Light, Sharee N; Coan, James A; Frye, Corrina; Goldsmith, H Hill; Davidson, Richard J

    2009-03-01

    Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture second-by-second changes in ongoing emotion until now. The relationship between pleasure and second-by-second lateral frontal activity was examined with the use of hierarchical linear modeling in a sample of 128 children ages 6-10 years. Electroencephalographic activity was recorded during "pop-out toy," a standardized task that elicits pleasure. The task consisted of 3 epochs: an anticipation period sandwiched between 2 play periods. The amount of pleasure expressed during the task predicted the pattern of nonlinear change in lateral frontal activity. Children who expressed increasing amounts of pleasure during the task exhibited increasing left lateral frontal activity during the task, whereas children who expressed contentment exhibited increasing right/decreasing left activity. These findings indicate that task-dependent changes in pleasure relate to dynamic, nonlinear changes in lateral frontal activity as the task unfolds. PMID:19271836

  1. Frontal activations associated with accessing and evaluating information in working memory: an fMRI study.

    PubMed

    Zhang, John X; Leung, Hoi-Chung; Johnson, Marcia K

    2003-11-01

    To investigate the involvement of frontal cortex in accessing and evaluating information in working memory, we used a variant of a Sternberg paradigm and compared brain activations between positive and negative responses (known to differentially tax access/evaluation processes). Participants remembered two trigrams in each trial and were then cued to discard one of them and maintain the other one as the target set. After a delay, a probe letter was presented and participants made decisions about whether or not it was in the target set. Several frontal areas--anterior cingulate (BA32), middle frontal gyrus (bilateral BA9, right BA10, and right BA46), and left inferior frontal gyrus (BA44/45)--showed increased activity when participants made correct negative responses relative to when they made correct positive responses. No areas activated significantly more for the positive responses than for the negative responses. It is suggested that the multiple frontal areas involved in the test phase of this task may reflect several component processes that underlie more general frontal functions.

  2. Anatomic Considerations in Frontal Sinus Surgery.

    PubMed

    Folbe, Adam J; Svider, Peter F; Eloy, Jean Anderson

    2016-08-01

    Comprehension of the complex anatomic variants comprising the frontal sinus outflow tract is essential for successful surgical intervention. Deviation from sound technique increases the potential for a variety of deleterious sequelae, including recurrent disease as well as catastrophic intracranial and orbital injury. Furthermore, incomplete removal of elements occluding the frontal recess can result in severe stenosis that can increase the difficulty of further interventions. This review covers anatomic considerations that should be kept in mind when performing frontal sinus surgery. PMID:27329978

  3. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter.

  4. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter. PMID:24048830

  5. Behavioral and hormonal reactivity to threat: Effects of selective amygdala, hippocampal or orbital frontal lesions in monkeys

    PubMed Central

    Machado, Christopher J.; Bachevalier, Jocelyne

    2008-01-01

    Summary We compared the effects of bilateral amygdala, hippocampal or orbital frontal cortex lesions on emotional and hormonal reactivity in rhesus monkeys (Macaca mulatta). Experiment 1 measured behavioral reactivity to an unfamiliar human intruder before and after surgery. Animals with amygdala lesions demonstrated decreases in one passive defensive behavior (freezing), whereas animals with hippocampal lesions showed decreases in a more stimulus-directed defensive behavior (tooth grinding). Orbital frontal cortex lesions also reduced these two defensive behaviors, as well as decreased cage-shaking dominance displays. Animals with amygdala, hippocampal or sham lesions also demonstrated increased tension-related behaviors after surgery, but those with orbital frontal lesions did not. Finally, all three lesions diminished the operated animals' ability to modulate tension-related behaviors depending on the magnitude of threat posed by the human intruder. Experiment 2 measured circulating levels of cortisol and testosterone when a subset of these same animals were at rest and following physical restraint, temporary isolation, exposure to threatening objects and social interactions with an unfamiliar conspecific. None of the lesions impacted on testosterone levels in any condition. Amygdala or orbital frontal lesions blunted cortisol reactivity during isolation from peers, but not during any other condition. Hippocampal lesions did not alter circulating levels of cortisol under any conditions. These results indicate that the amygdala, hippocampus and orbital frontal cortex play distinct, yet complimentary roles in coordinating emotional and hormonal reactivity to threat. PMID:18650022

  6. Fetal malnutrition: a possible cause of the fetal alcohol syndrome.

    PubMed

    Lin, G W

    1981-01-01

    The effects of ethanol ingestion during pregnancy on total folate levels in fetal tissues and on the concentrations of free amino acids in fetal and maternal plasma were examined in the rat. No differences were observed between the ethanol-fed and the control groups in total folates in fetal brain and liver. However, the concentration of fetal plasma histidine was reduced by 50% as a result of maternal ethanol consumption; the maternal plasma histidine level was not affected. It is suggested that fetal malnutrition in an essential amino acid, histidine, could impair fetal protein synthesis producing the fetal alcohol syndrome. PMID:7312865

  7. Mimicking maternal smoking and pharmacotherapy of preterm labor: fetal nicotine exposure enhances the effect of late gestational dexamethasone treatment on noradrenergic circuits.

    PubMed

    Slotkin, Theodore A; Seidler, Frederic J

    2011-11-25

    Smoking during pregnancy increases the risk of preterm delivery, which in turn necessitates the common use of glucocorticoids to prevent respiratory distress syndrome. Accordingly, there is a substantial population exposed conjointly to fetal nicotine and glucocorticoids (typically dexamethasone). We administered nicotine to pregnant rats throughout gestation, using a regimen (3 mg/kg/day by osmotic minipump) that maintains plasma nicotine levels within the range seen in smokers; on gestational days 17, 18 and 19, we gave 0.2 mg/kg of dexamethasone. We assessed norepinephrine levels in three brain regions (frontal/parietal cortex, brainstem, cerebellum) throughout adolescence, young adulthood and later adulthood, and contrasted the persistent effects with comparable measures in peripheral tissues (heart, liver). In adolescence, males showed initial deficits in the frontal/parietal cortex with either dexamethasone alone or the combined treatment, with resolution to normal by young adulthood; the group exposed to both nicotine+dexamethasone showed subsequent elevations that emerged in full adulthood and persisted through five months of age, an effect not seen with either agent separately. In females, the combined exposure produced an initial deficit that resolved by young adulthood, without any late-emerging changes. We did not see comparable effects in the other brain regions or peripheral tissues. This indicates that nicotine exposure sensitizes the developing brain to the adverse effects of dexamethasone treatment, producing sex-selective changes in innervation and/or activity of specific noradrenergic circuits. The fact that the combined treatment produced greater effects points to potentially worsened neurobehavioral outcomes after pharmacotherapy of preterm labor in the offspring of smokers.

  8. Frontal lobe dysfunction in schizophrenia and obsessive-compulsive disorder: a neuropsychological study.

    PubMed

    Abbruzzese, M; Bellodi, L; Ferri, S; Scarone, S

    1995-03-01

    Converging evidence suggests there is a specific role of dorso-lateral-prefrontal cortex (DLPC) in schizophrenic disorders and of orbito-frontal cortex (OFC) in obsessive-compulsive disorder (OCD). Here, 25 schizophrenic and 25 OCD patients were evaluated with Wisconsin Card Sorting Test and Object Alternation Test; neuropsychological tools sensitive to DLPC and OFC damage, respectively; and compared with 25 subjects of a control group. Moreover, they all underwent Weigl's Sorting Test and the Word Fluency Test to assess global frontal functioning. The results indicated a DLPC deficit in schizophrenia and an OFC involvement in OCD. These data suggest that functional disorders of the central nervous system can be explored with neuropsychological instruments.

  9. Decoding movement intent from human premotor cortex neurons for neural prosthetic applications

    PubMed Central

    Ojakangas, Catherine L.; Shaikhouni, Ammar; Friehs, Gerhard M.; Caplan, Abraham H.; Serruya, Mijail D.; Saleh, Maryam; Morris, Daniel S.; Donoghue, John P.

    2006-01-01

    Summary Primary motor cortex (MI), a key region for voluntary motor control, has been considered a first choice as the source of neural signals to control prosthetic devices for humans with paralysis. Less is known about the potential for other areas of frontal cortex as prosthesis signal sources. The frontal cortex is widely engaged in voluntary behavior. Single neuron recordings in monkey frontal cortex beyond MI have readily identified activity related to planning and initiating movement direction, remembering movement instructions over delays, or mixtures of these features (Kurata & Wise, 1988; Boussaoud & Wise, 1993; Crammond & Kalaska, 1994, 2000). Human functional imaging and lesion studies also support this role (Toni et al., 1999; Simon et al., 2002). Intraoperative mapping during deep brain stimulator placement in humans (Benabid et al., 1989) provides a unique opportunity to evaluate potential prosthesis control signals derived from non-primary areas and to expand our understanding of frontal lobe function and its role in movement disorders. Here we show that recordings from small groups of human prefrontal/premotor cortex neurons can provide information about movement planning, production and decision making sufficient to decode the planned direction of movement. Thus, additional frontal areas, beyond M1, may be valuable signal sources for human neuromotor prostheses. PMID:17143147

  10. Dissociation in prefrontal cortex of affective and attentional shifts.

    PubMed

    Dias, R; Robbins, T W; Roberts, A C

    1996-03-01

    The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex.

  11. Dissociation in prefrontal cortex of affective and attentional shifts.

    PubMed

    Dias, R; Robbins, T W; Roberts, A C

    1996-03-01

    The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex. PMID:8598908

  12. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.

  13. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions. PMID:27027542

  14. Fetal drug therapy.

    PubMed Central

    Evans, M I; Pryde, P G; Reichler, A; Bardicef, M; Johnson, M P

    1993-01-01

    Fetal drug therapy encompasses several areas, including the prevention of external genital masculinization in 21-hydroxylase deficiency syndrome (congenital adrenal hyperplasia), biochemical amelioration of methylmalonic acidemia, and biotin-responsive multiple carboxylase deficiency. The correction of cardiac arrhythmias has become relatively commonplace, and a reduction in the risks of neural tube defects is now possible with the use of preconceptual and early conceptual folic acid. Similarly, fetal function can be altered by the induction of fetal lung maturity using a number of agents; corticosteroids are the most common fetal pharmaceutic agent, and a number of other agents have also been tried. The most common route of administering pharmaceutic agents is through the mother and the placenta, although the direct administration of certain agents is becoming more common. Images PMID:8236974

  15. Putting the brakes on inhibitory models of frontal lobe function.

    PubMed

    Hampshire, Adam

    2015-06-01

    There has been much recent debate regarding the neural basis of motor response inhibition. An influential hypothesis from the last decade proposes that a module within the right inferior frontal cortex (RIFC) of the human brain is dedicated to supporting response inhibition. However, there is growing evidence to support the alternative view that response inhibition is just one prominent example of the many cognitive control processes that are supported by the same set of 'domain general' functional networks. Here, I test directly between the modular and network accounts of motor response inhibition by applying a combination of data-driven, event-related and functional connectivity analyses to fMRI data from a variety of attention and inhibition tasks. The results demonstrate that there is no inhibitory module within the RIFC. Instead, response inhibition recruits a functionally heterogeneous ensemble of RIFC networks, which can be dissociated from each other in the context of other task demands.

  16. Putting the brakes on inhibitory models of frontal lobe function

    PubMed Central

    Hampshire, Adam

    2015-01-01

    There has been much recent debate regarding the neural basis of motor response inhibition. An influential hypothesis from the last decade proposes that a module within the right inferior frontal cortex (RIFC) of the human brain is dedicated to supporting response inhibition. However, there is growing evidence to support the alternative view that response inhibition is just one prominent example of the many cognitive control processes that are supported by the same set of ‘domain general’ functional networks. Here, I test directly between the modular and network accounts of motor response inhibition by applying a combination of data-driven, event-related and functional connectivity analyses to fMRI data from a variety of attention and inhibition tasks. The results demonstrate that there is no inhibitory module within the RIFC. Instead, response inhibition recruits a functionally heterogeneous ensemble of RIFC networks, which can be dissociated from each other in the context of other task demands. PMID:25818684

  17. Frontal neurons modulate memory retrieval across widely varying temporal scales.

    PubMed

    Zhang, Wen-Hua; Williams, Ziv M

    2015-06-01

    Once a memory has formed, it is thought to undergo a gradual transition within the brain from short- to long-term storage. This putative process, however, also poses a unique problem to the memory system in that the same learned items must also be retrieved across broadly varying time scales. Here, we find that neurons in the ventrolateral prefrontal cortex (VLPFC) of monkeys, an area interconnected with both temporal and frontal associative neocortical regions, signaled the need to alter between retrieval of memories formed at different times. These signals were most closely related to the time interval between initial learning and later retrieval, and did not correlate with task switch demands, novelty, or behavioral response. Consistent with these physiological findings, focal inactivation of the VLPFC led to a marked degradation in retrieval performance. These findings suggest that the VLPFC plays a necessary regulatory role in retrieving memories over different temporal scales. PMID:25979992

  18. Fetal and neonatal thyrotoxicosis

    PubMed Central

    Batra, Chandar Mohan

    2013-01-01

    Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20th week of pregnancy and reaches its maximum by 30th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220

  19. Fetal and neonatal thyrotoxicosis.

    PubMed

    Batra, Chandar Mohan

    2013-10-01

    Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20(th) week of pregnancy and reaches its maximum by 30(th) week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220

  20. Medial Prefrontal Cortex Plays a Critical and Selective Role in "Feeling of Knowing" Meta-Memory Judgments

    ERIC Educational Resources Information Center

    Modirrousta, Mandana; Fellows, Lesley K.

    2008-01-01

    The frontal lobes are thought to play a role in the monitoring of memory performance, or "meta-memory," but the specific circuits involved have yet to be definitively established. Medial prefrontal cortex in general and the anterior cingulate cortex in particular, have been implicated in other forms of monitoring, such as error and conflict…

  1. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-01

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging.

  2. Functional role of frontal alpha oscillations in creativity.

    PubMed

    Lustenberger, Caroline; Boyle, Michael R; Foulser, A Alban; Mellin, Juliann M; Fröhlich, Flavio

    2015-06-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8-12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general "electrical stimulation" effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation.

  3. Co-activation based parcellation of the human frontal pole.

    PubMed

    Ray, K L; Zald, D H; Bludau, S; Riedel, M C; Bzdok, D; Yanes, J; Falcone, K E; Amunts, K; Fox, P T; Eickhoff, S B; Laird, A R

    2015-12-01

    Historically, the human frontal pole (FP) has been considered as a single architectonic area. Brodmann's area 10 is located in the frontal lobe with known contributions in the execution of various higher order cognitive processes. However, recent cytoarchitectural studies of the FP in humans have shown that this portion of cortex contains two distinct cytoarchitectonic regions. Since architectonic differences are accompanied by differential connectivity and functions, the frontal pole qualifies as a candidate region for exploratory parcellation into functionally discrete sub-regions. We investigated whether this functional heterogeneity is reflected in distinct segregations within cytoarchitectonically defined FP-areas using meta-analytic co-activation based parcellation (CBP). The CBP method examined the co-activation patterns of all voxels within the FP as reported in functional neuroimaging studies archived in the BrainMap database. Voxels within the FP were subsequently clustered into sub-regions based on the similarity of their respective meta-analytically derived co-activation maps. Performing this CBP analysis on the FP via k-means clustering produced a distinct 3-cluster parcellation for each hemisphere corresponding to previously identified cytoarchitectural differences. Post-hoc functional characterization of clusters via BrainMap metadata revealed that lateral regions of the FP mapped to memory and emotion domains, while the dorso- and ventromedial clusters were associated broadly with emotion and social cognition processes. Furthermore, the dorsomedial regions contain an emphasis on theory of mind and affective related paradigms whereas ventromedial regions couple with reward tasks. Results from this study support previous segregations of the FP and provide meta-analytic contributions to the ongoing discussion of elucidating functional architecture within human FP. PMID:26254112

  4. The history of fetal therapy.

    PubMed

    Moise, Kenneth J

    2014-08-01

    The Fetal Treatment Center founded by Michael Harrison is credited as the birthplace of fetal surgery. His trainees in pediatric surgery subsequently founded fetal centers throughout the United States. In Europe, the advent of minimally invasive fetal surgical techniques led to the establishment of treatment centers led predominantly by perinatologists. More recently, perinatologists in North America have begun to play a greater role in the field of fetal intervention.Intrauterine transfusion for the treatment of hemolytic disease of the fetus/newborn was the first successful fetal intervention. Although not subjected to the rigors of clinical trials, this treatment has withstood the test of time. Interventions for other fetal disease states such as twin-twin transfusion and repair of fetal myelomeningocele were investigated in animal models followed by randomized clinical trials before widespread adoption. Tracheal occlusion for diaphragmatic hernia is still currently being investigated as the next promising step in fetal intervention.

  5. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    PubMed

    Chou, Austin; Morganti, Josh M; Rosi, Susanna

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior. PMID:26964036

  6. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior

    PubMed Central

    Rosi, Susanna

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior. PMID:26964036

  7. Frontal sinus cholesterol granuloma: Case report

    PubMed Central

    Deep, Nicholas L.; Chaaban, Mohamad R.; Chaudhry, Ajaz L.

    2014-01-01

    A case report of a massive cholesterol granuloma (CG) of the frontal sinus in a 15-year-old male subject treated endoscopically is reported. CGs are slowly expanding, cystic lesions that are rarely observed in the frontal sinus. Frontal sinus CGs characteristically present with proptosis, diplopia, and a unilateral painless expanding mass above the orbit. Patients frequently report a history of chronic nasal obstruction or head trauma. Although the pathogenesis is unclear, it is likely multifactorial in etiology. Surgical resection via endoscopic sinus surgery has been gaining popularity because of the minimally invasive approach and lower rates of recurrence. PMID:24612824

  8. Management of the entered frontal sinus.

    PubMed

    Caroli, Emanuela; Rocchi, Giovanni; D'Andrea, Giancarlo; Delfini, Roberto

    2004-10-01

    The opening of the frontal sinus is a common occurrence in surgical practice. It may involve many surgical disciplines. The complications that may derive from incorrect treatment of an opened frontal sinus are potentially fatal. Unfortunately, the treatment of patients with injured frontal sinus is not uniform and standardized. Here, we describe our technique of treatment. We propose our treatment modality on the basis of our personal experience, which has been excellent in the past 20 years, that is from the time of the technique's introduction and routine application.

  9. Source memory and frontal functioning in Parkinson's disease.

    PubMed

    Drag, Lauren L; Bieliauskas, Linas A; Kaszniak, Alfred W; Bohnen, Nicolaas I; Glisky, Elizabeth L

    2009-05-01

    The most extensively described pathological abnormality in Parkinson's disease (PD) is loss of dopaminergic neurons in the substantia nigra pars compacta and the ventral tegmental area, with degeneration of their striatal terminals. Because of the intimate connections between the striatum and the frontal lobes, individuals with PD often demonstrate impairments on those tasks relying on the prefrontal cortex (e.g., tests of executive functioning). Source memory, or memory for context, is believed to rely on the prefrontal cortex and has been previously associated with executive functioning performance, although it has received little attention in the PD literature. Executive functioning and source memory were measured in a group of nondemented PD patients and healthy control participants. Within the PD group, an anti-Parkinson's medication withdrawal manipulation was used to examine whether source memory was affected by phasic changes in dopamine levels. Compared to healthy control participants, PD patients were impaired in source memory (both on- and off-medication) and on a composite measure of executive functioning. Within the PD group, medication administration improved motor performance but did not have a significant effect on source memory.

  10. Magnesium and fetal growth

    SciTech Connect

    Weaver, K.

    1988-01-01

    Fetal growth retardation and premature labor are major problems in perinatal medicine today and account for a great deal of the observed fetal morbidity. While the neonatal death rate has steadily declined over the past decade, there has been a lack of concommitant decrease in these two leading problems. Magnesium (Mg/sup ++/) plays a major role in both of these areas of concern. The fact that it is used as a treatment for premature labor has led investigators to look at low Mg/sup ++/ as a possible cause of this poorly understood phenomenon. The second major cause of small for gestational age infants is intrauterine growth retardation, a condition which may be of either fetal or maternal origin. In either case, Mg/sup ++/ may be implicated since it exerts a strong influence on the underlying pathophysiology of placental failure and maternal hypertension. Both of these conditions are mediated by vascular and platelet hyperactivity as well as by and increase in the ration of thromboxane to prostacyclin. Studies in both the human and animal species are beginning to show how Mg/sup ++/ interacts in these conditions to produce such a damaging fetal outcome. The recent use of Doppler velocimetry of the developing fetus has shown reduced fetal vascular and maternal uterine vascular compliance as early as 14 weeks of gestation in those who would be so affected.

  11. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies.

  12. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  13. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  14. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  15. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  16. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  17. Damage to left frontal regulatory circuits produces greater positive emotional reactivity in frontotemporal dementia.

    PubMed

    Sturm, Virginia E; Yokoyama, Jennifer S; Eckart, Janet A; Zakrzewski, Jessica; Rosen, Howard J; Miller, Bruce L; Seeley, William W; Levenson, Robert W

    2015-03-01

    Positive emotions foster social relationships and motivate thought and action. Dysregulation of positive emotion may give rise to debilitating clinical symptomatology such as mania, risk-taking, and disinhibition. Neuroanatomically, there is extensive evidence that the left hemisphere of the brain, and the left frontal lobe in particular, plays an important role in positive emotion generation. Although prior studies have found that left frontal injury decreases positive emotion, it is not clear whether selective damage to left frontal emotion regulatory systems can actually increase positive emotion. We measured happiness reactivity in 96 patients with frontotemporal dementia (FTD), a neurodegenerative disease that targets emotion-relevant neural systems and causes alterations in positive emotion (i.e., euphoria and jocularity), and in 34 healthy controls. Participants watched a film clip designed to elicit happiness and a comparison film clip designed to elicit sadness while their facial behavior, physiological reactivity, and self-reported emotional experience were monitored. Whole-brain voxel-based morphometry (VBM) analyses revealed that atrophy in predominantly left hemisphere fronto-striatal emotion regulation systems including left ventrolateral prefrontal cortex, orbitofrontal cortex, anterior insula, and striatum was associated with greater happiness facial behavior during the film (pFWE < .05). Atrophy in left anterior insula and bilateral frontopolar cortex was also associated with higher cardiovascular reactivity (i.e., heart rate and blood pressure) but not self-reported positive emotional experience during the happy film (p < .005, uncorrected). No regions emerged as being associated with greater sadness reactivity, which suggests that left-lateralized fronto-striatal atrophy is selectively associated with happiness dysregulation. Whereas previous models have proposed that left frontal injury decreases positive emotional responding, we argue that

  18. Damage to Left Frontal Regulatory Circuits Produces Greater Positive Emotional Reactivity in Frontotemporal Dementia

    PubMed Central

    Sturm, Virginia E.; Yokoyama, Jennifer S.; Eckart, Janet A.; Zakrzewski, Jessica; Rosen, Howard J.; Miller, Bruce L.; Seeley, William W.; Levenson, Robert W.

    2015-01-01

    Positive emotions foster social relationships and motivate thought and action. Dysregulation of positive emotion may give rise to debilitating clinical symptomatology such as mania, risk-taking, and disinhibition. Neuroanatomically, there is extensive evidence that the left hemisphere of the brain, and the left frontal lobe in particular, plays an important role in positive emotion generation. Although prior studies have found that left frontal injury decreases positive emotion, it is not clear whether selective damage to left frontal emotion regulatory systems can actually increase positive emotion. We measured happiness reactivity in 96 patients with frontotemporal dementia, a neurodegenerative disease that targets emotion-relevant neural systems and causes alterations in positive emotion (i.e., euphoria and jocularity), and in 34 healthy controls. Participants watched a film clip designed to elicit happiness and a comparison film clip designed to elicit sadness while their facial behavior, physiological reactivity, and self-reported emotional experience were monitored. Whole-brain voxel-based morphometry analyses revealed that atrophy in predominantly left hemisphere fronto-striatal emotion regulation systems including left ventrolateral prefrontal cortex, orbitofrontal cortex, anterior insula, and striatum (pFWE < .05) was associated with greater happiness facial behavior during the film. Atrophy in left anterior insula and bilateral frontopolar cortex was also associated with higher cardiovascular reactivity (i.e., heart rate and blood pressure) but not self-reported positive emotional experience during the happy film (p< .005, uncorrected). No regions emerged as being associated with greater sadness reactivity, which suggests that left-lateralized fronto-striatal atrophy is selectively associated with happiness dysregulation. Whereas previous models have proposed that left frontal injury decreases positive emotional responding, we argue that selective

  19. The impact of different aetiologies on the cognitive performance of frontal patients

    PubMed Central

    Cipolotti, Lisa; Healy, Colm; Chan, Edgar; Bolsover, Fay; Lecce, Francesca; White, Mark; Spanò, Barbara; Shallice, Tim; Bozzali, Marco

    2015-01-01

    Neuropsychological group study methodology is considered one of the primary methods to further understanding of the organisation of frontal ‘executive’ functions. Typically, patients with frontal lesions caused by stroke or tumours have been grouped together to obtain sufficient power. However, it has been debated whether it is methodologically appropriate to group together patients with neurological lesions of different aetiologies. Despite this debate, very few studies have directly compared the performance of patients with different neurological aetiologies on neuropsychological measures. The few that did included patients with both anterior and posterior lesions. We present the first comprehensive retrospective comparison of the impact of lesions of different aetiologies on neuropsychological performance in a large number of patients whose lesion solely affects the frontal cortex. We investigated patients who had a cerebrovascular accident (CVA), high (HGT) or low grade (LGT) tumour, or meningioma, all at the post-operative stage. The same frontal ‘executive’ (Raven's Advanced Progressive Matrices, Stroop Colour-Word Test, Letter Fluency-S; Trail Making Test Part B) and nominal (Graded Naming Test) tasks were compared. Patients' performance was compared across aetiologies controlling for age and NART IQ scores. Assessments of focal frontal lesion location, lesion volume, global brain atrophy and non-specific white matter (WM) changes were undertaken and compared across the four aetiology. We found no significant difference in performance between the four aetiology subgroups on the ‘frontal’ executive and nominal tasks. However, we found strong effects of premorbid IQ on all cognitive tasks and robust effects of age only on the frontal tasks. We also compared specific aetiology subgroups directly, as previously reported in the literature. Overall we found no significant differences in the performance of CVA and tumour patients, or LGT and HGT

  20. Frontal lobe dementia and motor neuron disease.

    PubMed Central

    Neary, D; Snowden, J S; Mann, D M; Northen, B; Goulding, P J; Macdermott, N

    1990-01-01

    Four patients are described, in whom a profound and rapidly progressive dementia occurred in association with clinical features of motor neuron disease. The pattern of dementia indicated impaired frontal lobe function, confirmed by reduced tracer uptake in the frontal lobes on single photon emission computed tomography (SPECT). Pathological examination of the brains of two patients revealed frontal-lobe atrophy, with mild gliosis and spongiform change. The spinal cord changes were consistent with motor neuron disease. The clinical picture and pathological findings resembled those of dementia of frontal-lobe type and were distinct from those of Alzheimer's disease. The findings have implications for the understanding of the spectrum of non-Alzheimer forms of primary degenerative dementia. Images PMID:2303828

  1. Human Frontal Lobes and AI Planning Systems

    NASA Technical Reports Server (NTRS)

    Levinson, Richard; Lum, Henry Jr. (Technical Monitor)

    1994-01-01

    Human frontal lobes are essential for maintaining a self-regulating balance between predictive and reactive behavior. This paper describes a system that integrates prediction and reaction based on neuropsychological theories of frontal lobe function. In addition to enhancing our understanding of deliberate action in humans' the model is being used to develop and evaluate the same properties in machines. First, the paper presents some background neuropsychology in order to set a general context. The role of frontal lobes is then presented by summarizing three theories which formed the basis for this work. The components of an artificial frontal lobe are then discussed from both neuropsychological and AI perspectives. The paper concludes by discussing issues and methods for evaluating systems that integrate planning and reaction.

  2. Objective identification of frontal wave cyclones

    NASA Astrophysics Data System (ADS)

    Hewson, T. D.

    1997-12-01

    This brief paper further develops the objective front-plotting methodology described in Hewson (1996), to enable the tips of frontal wave cyclones to also be objectively identified. The method embraces a new definition of frontal waves, but is analogous to operational practice in that these waves are located where cold and warm fronts join. It is suggested that for the early stages of cyclonic development the new methodology will perform better than those previously published.

  3. Frontal optimization algorithms for multiprocessor computers

    SciTech Connect

    Sergienko, I.V.; Gulyanitskii, L.F.

    1981-11-01

    The authors describe one of the approaches to the construction of locally optimal optimization algorithms on multiprocessor computers. Algorithms of this type, called frontal, have been realized previously on single-processor computers, although this configuration does not fully exploit the specific features of their computational scheme. Experience with a number of practical discrete optimization problems confirms that the frontal algorithms are highly successful even with single-processor computers. 9 references.

  4. Beyond the sniffer: frontal sinuses in Carnivora.

    PubMed

    Curtis, Abigail A; Van Valkenburgh, Blaire

    2014-11-01

    Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures). PMID:25312364

  5. Beyond the sniffer: frontal sinuses in Carnivora.

    PubMed

    Curtis, Abigail A; Van Valkenburgh, Blaire

    2014-11-01

    Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures).

  6. Fetal thyroid function: diagnosis and management of fetal thyroid disorders.

    PubMed

    Fisher, D A

    1997-03-01

    The fetal hypothalamic-pituitary-thyroid axis develops independently of the maternal axis, but it is dependent on the maternal-placental system for adequate supply of iodide substrate. This iodide is supplied by direct transfer of maternal plasma iodide and by placental deiodination of T4. In addition, although placental transport of iodothyronines is limited, significant maternal-fetal transfer of T4 occurs, accounting for approximately 30% of the average 10 ug/dL serum-T4 concentration in fetal-cord blood at term. Current information suggests that this maternal contribution to the fetal-T4 levels is important for normal fetal maturation, particularly of the central nervous system. Combined maternal-fetal hypothyroxinemia can lead to irreversible fetal central nervous system damage. The timing of this fetal T4 dependency is not clear. It may be important in the first half of gestation, before the fetal thyroid gland is capable of T4 production, as well as the latter half of gestation when thyroid hormone effects on multiple organ systems are developing. Management of fetal thyroid dysfunction requires normalization of maternal serum T4 concentrations, avoidance or careful monitoring of potentially goitrogenic drug effects in the fetus, and in some instances, direct or indirect fetal therapy. In most cases fetal hypothyroidism is sporadic and undetected, and prognosis for normal growth and development is excellent if the mother is euthyroid and the hypothyroid state is detected and adequately treated at birth. Fetal treatment by intraamniotic thyroxine injection has been provided in cases of inadvertent maternal radioiodine treatment of Graves' disease between 10 and 20 weeks gestation and for fetal goiter detected by ultrasound. Effective treatment of fetal hyperthyroidism in pregnant women with high titers of thyroid stimulating autoantibody is possible by judicious administration of antithyroid drugs to the mother. Management of the hyperthyroid state in the

  7. Surface Vulnerability of Cerebral Cortex to Major Depressive Disorder

    PubMed Central

    Li, Gang; Fralick, Drew; Shen, Ting; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Shen, Dinggang; Fang, Yiru

    2015-01-01

    Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process. PMID:25793287

  8. Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Zerrer, Peggy

    The paper reviews Fetal Alcohol Syndrome (FAS), a series of effects seen in children whose mothers drink alcohol to excess during pregnancy. The identification of FAS and its recognition as a major health problem in need of prevention are traced. Characteristics of children with FAS are described and resultant growth retardation, abnormal physical…

  9. The Fetal Alcohol Syndrome.

    ERIC Educational Resources Information Center

    Umbreit, John; Ostrow, Lisa S.

    1980-01-01

    Fetal alcohol syndrome is a pattern of altered growth and morphogenesis found in about half the offspring of severely and chronically alcoholic women who continue drinking throughout their pregnancy. Of children studied, mild to moderate mental retardation was the most common disorder, occurring in 44 percent of the cases. (PHR)

  10. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia

    SciTech Connect

    Jagust, W.J.; Reed, B.R.; Seab, J.P.; Kramer, J.H.; Budinger, T.F. )

    1989-01-01

    Thirty patients with degenerative dementia underwent clinical evaluation, neuropsychological testing, and single photon emission computed tomography (SPECT) with the blood flow tracer ({sup 123}I)-N-isopropyl-p-iodoamphetamine. Five of these patients were clinically and psychologically different from the others, demonstrating predominant behavioral disturbances with relative preservation of memory function. These five patients, who were felt to have a frontal lobe dementia (FLD), showed SPECT perfusion patterns which differed from the remaining 25 patients, who were diagnosed as having Alzheimer's disease (AD), and from 16 healthy control subjects. The FLD patients showed diminished perfusion in orbitofrontal, dorsolateral frontal, and temporal cortex relative to controls, while the AD patients showed lower perfusion in temporal and parietal cortex than controls. The FLD patients also showed hypoperfusion in both frontal cortical regions relative to AD patients. The pattern of performance on neuropsychological testing paralleled these differences in regional perfusion. These results suggest that clinical evaluation and physiological imaging may enable the differentiation of groups of degenerative dementia patients during life.

  11. Cerebral cortex structure in prodromal Huntington disease.

    PubMed

    Nopoulos, Peggy C; Aylward, Elizabeth H; Ross, Christopher A; Johnson, Hans J; Magnotta, Vincent A; Juhl, Andrew R; Pierson, Ronald K; Mills, James; Langbehn, Douglas R; Paulsen, Jane S

    2010-12-01

    Neuroimaging studies of subjects who are gene-expanded for Huntington Disease, but not yet diagnosed (termed prodromal HD), report that the cortex is "spared," despite the decrement in striatal and cerebral white-matter volume. Measurement of whole-cortex volume can mask more subtle, but potentially clinically relevant regional changes in volume, thinning, or surface area. The current study addressed this limitation by evaluating cortical morphology of 523 prodromal HD subjects. Participants included 693 individuals enrolled in the PREDICT-HD protocol. Of these participants, 523 carried the HD gene mutation (prodromal HD group); the remaining 170 were non gene-expanded and served as the comparison group. Based on age and CAG repeat length, gene-expanded subjects were categorized as "Far from onset," "Midway to onset," "Near onset," and "already diagnosed." MRI scans were processed using FreeSurfer. Cortical volume, thickness, and surface area were not significantly different between the Far from onset group and controls. However, beginning in the Midway to onset group, the cortex showed significant volume decrement, affecting most the posterior and superior cerebral regions. This pattern progressed when evaluating the groups further into the disease process. Areas that remained mostly unaffected included ventral and medial regions of the frontal and temporal cortex. Morphologic changes were mostly in thinning as surface area did not substantially change in most regions. Early in the course of HD, the cortex shows changes that are manifest as cortical thinning and are most robust in the posterior and superior regions of the cerebrum. PMID:20688164

  12. Verbal suppression and strategy use: a role for the right lateral prefrontal cortex?

    PubMed

    Robinson, Gail A; Cipolotti, Lisa; Walker, David G; Biggs, Vivien; Bozzali, Marco; Shallice, Tim

    2015-04-01

    Verbal initiation, suppression and strategy generation/use are cognitive processes widely held to be supported by the frontal cortex. The Hayling Test was designed to tap these cognitive processes within the same sentence completion task. There are few studies specifically investigating the neural correlates of the Hayling Test but it has been primarily used to detect frontal lobe damage. This study investigates the components of the Hayling Test in a large sample of patients with unselected focal frontal (n = 60) and posterior (n = 30) lesions. Patients and controls (n = 40) matched for education, age and sex were administered the Hayling Test as well as background cognitive tests. The standard Hayling Test clinical measures (initiation response time, suppression response time, suppression errors and overall score), composite errors scores and strategy-based responses were calculated. Lesions were analysed by classical frontal/posterior subdivisions as well as a finer-grained frontal localization method and a specific contrast method that is somewhat analogous to voxel-based lesion mapping methods. Thus, patients with right lateral, left lateral and superior medial lesions were compared to controls and patients with right lateral lesions were compared to all other patients. The results show that all four standard Hayling Test clinical measures are sensitive to frontal lobe damage although only the suppression error and overall scores were specific to the frontal region. Although all frontal patients produced blatant suppression errors, a specific right lateral frontal effect was revealed for producing errors that were subtly wrong. In addition, frontal patients overall produced fewer correct responses indicative of developing an appropriate strategy but only the right lateral group showed a significant deficit. This problem in strategy attainment and implementation could explain, at least in part, the suppression error impairment. Contrary to previous studies

  13. Verbal suppression and strategy use: a role for the right lateral prefrontal cortex?

    PubMed

    Robinson, Gail A; Cipolotti, Lisa; Walker, David G; Biggs, Vivien; Bozzali, Marco; Shallice, Tim

    2015-04-01

    Verbal initiation, suppression and strategy generation/use are cognitive processes widely held to be supported by the frontal cortex. The Hayling Test was designed to tap these cognitive processes within the same sentence completion task. There are few studies specifically investigating the neural correlates of the Hayling Test but it has been primarily used to detect frontal lobe damage. This study investigates the components of the Hayling Test in a large sample of patients with unselected focal frontal (n = 60) and posterior (n = 30) lesions. Patients and controls (n = 40) matched for education, age and sex were administered the Hayling Test as well as background cognitive tests. The standard Hayling Test clinical measures (initiation response time, suppression response time, suppression errors and overall score), composite errors scores and strategy-based responses were calculated. Lesions were analysed by classical frontal/posterior subdivisions as well as a finer-grained frontal localization method and a specific contrast method that is somewhat analogous to voxel-based lesion mapping methods. Thus, patients with right lateral, left lateral and superior medial lesions were compared to controls and patients with right lateral lesions were compared to all other patients. The results show that all four standard Hayling Test clinical measures are sensitive to frontal lobe damage although only the suppression error and overall scores were specific to the frontal region. Although all frontal patients produced blatant suppression errors, a specific right lateral frontal effect was revealed for producing errors that were subtly wrong. In addition, frontal patients overall produced fewer correct responses indicative of developing an appropriate strategy but only the right lateral group showed a significant deficit. This problem in strategy attainment and implementation could explain, at least in part, the suppression error impairment. Contrary to previous studies

  14. Stillbirth and fetal growth restriction.

    PubMed

    Bukowski, Radek

    2010-09-01

    The association between stillbirth and fetal growth restriction is strong and supported by a large body of evidence and clinically employed for the stillbirth prediction. However, although assessment of fetal growth is a basis of clinical practice, it is not trivial. Essentially, fetal growth is a result of the genetic growth potential of the fetus and placental function. The growth potential is the driving force of fetal growth, whereas the placenta as the sole source of nutrients and oxygen might become the rate limiting element of fetal growth if its function is impaired. Thus, placental dysfunction may prevent the fetus from reaching its full genetically determined growth potential. In this sense fetal growth and its aberration provides an insight into placental function. Fetal growth is a proxy for the test of the effectiveness of placenta, whose function is otherwise obscured during pregnancy.

  15. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.

    PubMed

    Kubota, Y; Sato, W; Toichi, M; Murai, T; Okada, T; Hayashi, A; Sengoku, A

    2001-04-01

    Frontal midline theta rhythm (Fm theta), recognized as distinct theta activity on EEG in the frontal midline area, reflects mental concentration as well as meditative state or relief from anxiety. Attentional network in anterior frontal lobes including anterior cingulate cortex is suspected to be the generator of this activity, and the regulative function of the frontal neural network over autonomic nervous system (ANS) during cognitive process is suggested. However no studies have examined peripheral autonomic activities during Fm theta induction, and interaction of central and peripheral mechanism associated with Fm theta remains unclear. In the present study, a standard procedure of Zen meditation requiring sustained attention and breath control was employed as the task to provoke Fm theta, and simultaneous EEG and ECG recordings were performed. For the subjects in which Fm theta activities were provoked (six men, six women, 48% of the total subjects), peripheral autonomic activities were evaluated during the appearance of Fm theta as well as during control periods. Successive inter-beat intervals were measured from the ECG, and a recently developed method of analysis by Toichi et al. (J. Auton. Nerv. Syst. 62 (1997) 79-84) based on heart rate variability was used to assess cardiac sympathetic and parasympathetic functions separately. Both sympathetic and parasympathetic indices were increased during the appearance of Fm theta compared with control periods. Theta band activities in the frontal area were correlated negatively with sympathetic activation. The results suggest a close relationship between cardiac autonomic function and activity of medial frontal neural circuitry.

  16. Unraveling the anxious mind: anxiety, worry, and frontal engagement in sustained attention versus off-task processing.

    PubMed

    Forster, Sophie; Nunez Elizalde, Anwar O; Castle, Elizabeth; Bishop, Sonia J

    2015-03-01

    Much remains unknown regarding the relationship between anxiety, worry, sustained attention, and frontal function. Here, we addressed this using a sustained attention task adapted for functional magnetic resonance imaging. Participants responded to presentation of simple stimuli, withholding responses to an infrequent "No Go" stimulus. Dorsolateral prefrontal cortex (DLPFC) activity to "Go" trials, and dorsal anterior cingulate (dACC) activity to "No Go" trials were associated with faster error-free performance; consistent with DLPFC and dACC facilitating proactive and reactive control, respectively. Trait anxiety was linked to reduced recruitment of these regions, slower error-free performance, and decreased frontal-thalamo-striatal connectivity. This indicates an association between trait anxiety and impoverished frontal control of attention, even when external distractors are absent. In task blocks where commission errors were made, greater DLPFC-precuneus and DLPFC-posterior cingulate connectivity were associated with both trait anxiety and worry, indicative of increased off-task thought. Notably, unlike trait anxiety, worry was not linked to reduced frontal-striatal-thalamo connectivity, impoverished frontal recruitment, or slowed responding during blocks without commission errors, contrary to accounts proposing a direct causal link between worry and impoverished attentional control. This leads us to propose a new model of the relationship between anxiety, worry and frontal engagement in attentional control versus off-task thought.

  17. [Normal aging of frontal lobe functions].

    PubMed

    Calso, Cristina; Besnard, Jérémy; Allain, Philippe

    2016-03-01

    Normal aging in individuals is often associated with morphological, metabolic and cognitive changes, which particularly concern the cerebral frontal regions. Starting from the "frontal lobe hypothesis of cognitive aging" (West, 1996), the present review is based on the neuroanatomical model developed by Stuss (2008), introducing four categories of frontal lobe functions: executive control, behavioural and emotional self-regulation and decision-making, energization and meta-cognitive functions. The selected studies only address the changes of one at least of these functions. The results suggest a deterioration of several cognitive frontal abilities in normal aging: flexibility, inhibition, planning, verbal fluency, implicit decision-making, second-order and affective theory of mind. Normal aging seems also to be characterised by a general reduction in processing speed observed during neuropsychological assessment (Salthouse, 1996). Nevertheless many cognitive functions remain preserved such as automatic or non-conscious inhibition, specific capacities of flexibility and first-order theory of mind. Therefore normal aging doesn't seem to be associated with a global cognitive decline but rather with a selective change in some frontal systems, conclusion which should be taken into account for designing caring programs in normal aging. PMID:27005339

  18. Frontal Cortical Asymmetry May Partially Mediate the Influence of Social Power on Anger Expression.

    PubMed

    Li, Dongdong; Wang, Changming; Yin, Qin; Mao, Mengchai; Zhu, Chaozhe; Huang, Yuxia

    2016-01-01

    When irritated by other people, powerful people usually tend to express their anger explicitly and directly, whereas people in less powerful positions are more likely not to show their feelings freely. The neural mechanism behind power and its influence on expression tendency has been scarcely explored. This study recorded frontal EEG activity at rest and frontal EEG activation while participants were engaged in a writing task describing an anger-eliciting event, in which they were irritated by people with higher or lower social power. Participants' anger levels and expression inclination levels were self-reported on nine-point visual analog Likert scales, and also rated by independent raters based on the essays they had written. The results showed that high social power was indeed associated with greater anger expression tendency and greater left frontal activation than low social power. This is in line with the approach-inhibition theory of power. The mid-frontal asymmetric activation served as a partial mediator between social power and expression inclination. This effect may relate to the functions of the prefrontal cortex, which is in charge of information integration and evaluation and the control of motivation direction, as reported by previous studies.

  19. Frontal Cortical Asymmetry May Partially Mediate the Influence of Social Power on Anger Expression

    PubMed Central

    Li, Dongdong; Wang, Changming; Yin, Qin; Mao, Mengchai; Zhu, Chaozhe; Huang, Yuxia

    2016-01-01

    When irritated by other people, powerful people usually tend to express their anger explicitly and directly, whereas people in less powerful positions are more likely not to show their feelings freely. The neural mechanism behind power and its influence on expression tendency has been scarcely explored. This study recorded frontal EEG activity at rest and frontal EEG activation while participants were engaged in a writing task describing an anger-eliciting event, in which they were irritated by people with higher or lower social power. Participants’ anger levels and expression inclination levels were self-reported on nine-point visual analog Likert scales, and also rated by independent raters based on the essays they had written. The results showed that high social power was indeed associated with greater anger expression tendency and greater left frontal activation than low social power. This is in line with the approach-inhibition theory of power. The mid-frontal asymmetric activation served as a partial mediator between social power and expression inclination. This effect may relate to the functions of the prefrontal cortex, which is in charge of information integration and evaluation and the control of motivation direction, as reported by previous studies. PMID:26869972

  20. Amodal processing in human prefrontal cortex.

    PubMed

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  1. Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masakuni; Koyama, Yohei; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2009-04-01

    To investigate the functional connectivity, the evoked potentials by stimulating at the motor cortex, the posterior parietal cortex, and the cerebellum by transcranial magnetic stimulation (TMS) were measured. It is difficult to measure the evoked electroencephalograph (EEG) by the magnetic stimulation because of the large artifact induced by the magnetic pulse. We used an EEG measurement system with sample-and-hold circuit and an independent component analysis to eliminate the electromagnetic interaction emitted from TMS. It was possible to measure EEG signals from all electrodes over the head within 10 ms after applying the TMS. When the motor area was stimulated by TMS, the spread of evoked electrical activity to the contralateral hemisphere was observed at 20 ms after stimulation. However, when the posterior parietal cortex was stimulated, the evoked electrical activity to the contralateral hemisphere was not observed. When the cerebellum was stimulated, the cortical activity propagated from the stimulated point to the frontal area and the contralateral hemisphere at around 20 ms after stimulation. These results suggest that the motor area has a strong interhemispheric connection and the posterior parietal cortex has no interhemispheric connection.

  2. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    PubMed

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  3. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    PubMed

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC. PMID:27318139

  4. Frontal-thalamic circuits associated with language

    PubMed Central

    Barbas, Helen; García-Cabezas, Miguel Ángel; Zikopoulos, Basilis

    2012-01-01

    Thalamic nuclei associated with language including the ventral lateral, ventral anterior, intralaminar and mediodorsal form a hub that uniquely receives the output of the basal ganglia and cerebellum, and is connected with frontal (premotor and prefrontal) cortices through two parallel circuits: a thalamic pathway targets the middle frontal cortical layers focally, and the other innervates widely cortical layer 1, poised to recruit other cortices and thalamic nuclei for complex cognitive operations. Return frontal pathways to the thalamus originate from cortical layers 6 and 5. Information through this integrated thalamo-cortical system is gated by the inhibitory thalamic reticular nucleus and modulated by dopamine, representing a specialization in primates. The intricate dialogue of distinct thalamic nuclei with the basal ganglia, cerebellum, and specific dorsolateral prefrontal and premotor cortices associated with language, suggests synergistic roles in the complex but seemingly effortless sequential transformation of cognitive operations for speech production in humans. PMID:23211411

  5. Cephalic aura after frontal lobe resection.

    PubMed

    Kakisaka, Yosuke; Jehi, Lara; Alkawadri, Rafeed; Wang, Zhong I; Enatsu, Rei; Mosher, John C; Dubarry, Anne-Sophie; Alexopoulos, Andreas V; Burgess, Richard C

    2014-08-01

    A cephalic aura is a common sensory aura typically seen in frontal lobe epilepsy. The generation mechanism of cephalic aura is not fully understood. It is hypothesized that to generate a cephalic aura extensive cortical areas need to be excited. We report a patient who started to have cephalic aura after right frontal lobe resection. Magnetoencephalography (MEG) showed interictal spike and ictal change during cephalic aura, both of which were distributed in the right frontal region, and the latter involved much more widespread areas than the former on MEG sensors. The peculiar seizure onset pattern may indicate that surgical modification of the epileptic network was related to the appearance of cephalic aura. We hypothesize that generation of cephalic aura may be associated with more extensive cortical involvement of epileptic activity than that of interictal activity, in at least a subset of cases.

  6. “It's Not What You Say, But How You Say it”: A Reciprocal Temporo-frontal Network for Affective Prosody

    PubMed Central

    Leitman, David I.; Wolf, Daniel H.; Ragland, J. Daniel; Laukka, Petri; Loughead, James; Valdez, Jeffrey N.; Javitt, Daniel C.; Turetsky, Bruce I.; Gur, Ruben C.

    2009-01-01

    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions. PMID:20204074

  7. Performance on Cambridge Neuropsychological Test Automated Battery Subtests Sensitive to Frontal Lobe Function in People with Autistic Disorder: Evidence from the Collaborative Programs of Excellence in Autism Network

    ERIC Educational Resources Information Center

    Ozonoff, Sally; Cook, Ian; Coon, Hilary; Dawson, Geraldine; Joseph, Robert M.; Klin, Ami; McMahon, William M.; Minshew, Nancy; Munson, Jeffrey A.

    2004-01-01

    Recent structural and functional imaging work, as well as neuropathology and neuropsychology studies, provide strong empirical support for the involvement of frontal cortex in autism. The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-administered set of neuropsychological tests developed to examine specific components…

  8. Frontal Polymerization in Microgravity Summary of Research

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    2002-01-01

    The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.

  9. The frontal method in hydrodynamics simulations

    USGS Publications Warehouse

    Walters, R.A.

    1980-01-01

    The frontal solution method has proven to be an effective means of solving the matrix equations resulting from the application of the finite element method to a variety of problems. In this study, several versions of the frontal method were compared in efficiency for several hydrodynamics problems. Three basic modifications were shown to be of value: 1. Elimination of equations with boundary conditions beforehand, 2. Modification of the pivoting procedures to allow dynamic management of the equation size, and 3. Storage of the eliminated equations in a vector. These modifications are sufficiently general to be applied to other classes of problems. ?? 1980.

  10. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  11. Changes in cortical thickness in the frontal lobes in schizophrenia are a result of thinning of pyramidal cell layers.

    PubMed

    Williams, M R; Chaudhry, R; Perera, S; Pearce, R K B; Hirsch, S R; Ansorge, O; Thom, M; Maier, M

    2013-02-01

    Decreased cortical thickness and reduced activity as measured by fMRI in the grey matter of the subgenual cingulate cortex have been reported in schizophrenia and bipolar disorder, and cortical grey matter loss has been reliably reported in the frontal and temporal lobes in schizophrenia. The aim of this study was to examine the thickness of each of the six cortical layers in the subgenual cingulate cortex, five frontal lobe and four temporal lobe gyri. We examined two separate cohorts. Cohort 1 examines the subgenual cingulate cortex (SCC) in schizophrenia (n = 10), bipolar disorder (n = 15) and major depressive disorder (n = 20) against control subjects (n = 19). Cohort two examines frontal and temporal gyri in schizophrenia (n = 16), major depressive disorder (n = 6) against matched controls (n = 32). The cohorts were selected with identical clinical criteria, but underwent different tissue processing to contrast the effect of chemical treatment on tissue shrinkage. Measurements of layer I-VI thickness were taken from cresyl-violet- and haematoxylin-stained sections in cohort one and from cresyl-violet- and H&E-stained sections in cohort two. SCC cortical thickness decreased in male subjects with bipolar disorder (p = 0.048), and male schizophrenia cases showed a specific decrease in the absolute thickness of layer V (p = 0.003). Compared to controls, the relative thickness of layer V in the crown of the SCC decreased in schizophrenia (p < 0.001). A significant decrease in total cortical thickness was observed across the frontal lobe in schizophrenia (p < 0.0001), with specific pyramidal layer thinning in layers III (p = 0.0001) and V (p = 0.005). There was no effect of lateralization. No changes were noted in temporal lobe cortical thickness. This study demonstrates diminished pyramidal layer thickness resulting in decreased frontal lobe thickness in schizophrenia.

  12. Timing Tasks Synchronize Cerebellar and Frontal Ramping Activity and Theta Oscillations: Implications for Cerebellar Stimulation in Diseases of Impaired Cognition

    PubMed Central

    Parker, Krystal L.

    2016-01-01

    Timing is a fundamental and highly conserved mammalian capability, yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning, which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here, we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. Lastly, we hypothesize that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. This hypothesis could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic potential of

  13. Fetal Alcohol Spectrum Disorders.

    PubMed

    Williams, Janet F; Smith, Vincent C

    2015-11-01

    Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus.

  14. Maternal-fetal conflict.

    PubMed

    Fasouliotis, S J; Schenker, J G

    2000-03-01

    Advances in prenatal care have brought about a greater understanding as to the special status of the fetus to the point that it is considered a patient in its own regard. Pregnant women generally follow the medical recommendations of their physicians that are intended for the benefit of their baby. Any situation where maternal well-being or wishes contradict fetal benefit constitutes a maternal-fetal conflict. Such situations include a broad range of possible interventions, non-interventions, and coercive influences. In such cases, the attending physician is expected to attain an attitude that involves either the respect of the woman's autonomy and right to privacy, which precludes any approach other than to accept her decision, or to modify this absolute for the beneficence of the fetus. Current ethical viewpoints range from absolute respect for maternal autonomy with no persuasion allowed, to gentle persuasion and to others which permit intervention and overriding of the woman's autonomy. Court-ordered decisions enforcing the pregnant woman to undergo a procedure in order to improve fetal outcome have been criticized as an invasion of a woman's privacy, limitation of her autonomy, and taking away of her right to informed consent. PMID:10733034

  15. Fetal