Sample records for fever induction pathways

  1. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  2. Mechanism of fever induction in rabbits.

    PubMed Central

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  3. Atypical Protein Kinase C Activity in the Hypothalamus Is Required for Lipopolysaccharide-Mediated Sickness Responses

    PubMed Central

    Thaler, Joshua P.; Choi, Sun Ju; Sajan, Mini P.; Ogimoto, Kayoko; Nguyen, Hong T.; Matsen, Miles; Benoit, Stephen C.; Wisse, Brent E.; Farese, Robert V.; Schwartz, Michael W.

    2009-01-01

    By activating the Toll-like receptor 4-nuclear factor-κB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphatidylinositol-3 kinase signaling pathway. In the current study, we investigated whether a common Toll-like receptor 4 and phosphatidylinositol-3 kinase signaling intermediate, atypical protein kinase Cζ/λ (aPKC), contributes to changes of energy balance induced by these stimuli. Immunohistochemistry analysis revealed that aPKC is expressed in the arcuate and paraventricular nuclei of the hypothalamus, key sites of leptin, insulin, and LPS action. Although administration of LPS, insulin, and leptin each acutely increased hypothalamic aPKC activity at doses that also reduce food intake, LPS treatment caused over 10-fold greater activation of hypothalamic a PKC signaling than that induced by leptin or insulin. Intracerebroventricular pretreatment with an aPKC inhibitor blocked anorexia induced by LPS but not insulin or leptin. Similarly, LPS-induced hypothalamic inflammation (as judged by induction of proinflammatory cytokine gene expression) and neuronal activation in the paraventricular nucleus (as judged by c-fos induction) were reduced by central aPKC inhibition. Although intracerebroventricular aPKC inhibitor administration also abolished LPS-induced fever, it had no effect on sickness-related hypoactivity or weight loss. We conclude that although hypothalamic aPKC signaling is not required for food intake inhibition by insulin or leptin, it plays a key role in inflammatory anorexia and fever induced by LPS. PMID:19819945

  4. A novel antipyretic action of 15-deoxy-Delta12,14-prostaglandin J2 in the rat brain.

    PubMed

    Mouihate, Abdeslam; Boissé, Lysa; Pittman, Quentin J

    2004-02-11

    Fever is an important part of the host defense response, yet fever can be detrimental if it is uncontrolled. We provide the first evidence that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), can attenuate the febrile response to lipopolysaccharide (LPS) in rats via an action on the brain. Furthermore, we show that PPARgamma is expressed in the hypothalamus, an important locus in the brain for fever generation. In addition, 15d-PGJ2 and its synthesizing enzyme (PGD2 synthase) were present in rat cerebrospinal fluid, and their levels were enhanced in response to systemic injection of LPS. The antipyretic effect of 15d-PGJ2 was associated with reduction in LPS-stimulated cyclooxygenase-2 expression in the hypothalamus but not in p44/p42 mitogen-activated protein kinase phosphorylation or in the expression of the PPARgamma. Thus it is likely that there is a parallel induction of an endogenous prostanoid pathway in the brain capable of limiting deleterious actions of the proinflammatory prostaglandin E2-dependent pathway.

  5. Mechanisms of fever production and lysis: lessons from experimental LPS fever.

    PubMed

    Roth, Joachim; Blatteis, Clark M

    2014-10-01

    Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

  6. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    PubMed

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  7. Incidence and differential characteristics of culture-negative fever following pancreas transplantation with anti-thymocyte globulin induction.

    PubMed

    Shin, S; Kim, Y H; Kim, S-H; Lee, S-O; Kwon, H W; Choi, J Y; Han, D J

    2016-10-01

    Limited data are available on the incidence and characteristics of culture-negative fever following pancreas transplantation (PTx) with anti-thymocyte globulin (ATG) induction. Our study aims to better define the features of culture-negative fever, so it can be delineated from infectious fever, hopefully helping clinicians to guide antibiotic therapy in this high-risk patient population. We performed a retrospective cohort study of postoperative fever among 198 consecutive patients undergoing PTx at our center between August 1, 2004 and December 31, 2014. Fever was classified as culture-negative if there was neither a positive culture nor a documented clinical diagnosis of infection. Fever was identified in 113 patients; 66 were deemed to be infectious, 39 were culture-negative, and 8 were indeterminate. High body mass index of recipient (odds ratio 1.87, 95% confidence interval: 1.15-3.03, P = 0.011) was a significant factor associated with culture-negative fever in multivariate analysis. No patients with culture-negative fever were diagnosed with infiltrates or effusion on chest radiography. In addition, an increase in white blood cell count, C-reactive protein, and serum amylase was less prominent in culture-negative fever. Culture-negative fever developed most frequently at postoperative 7 or 14 days, showing a biphasic curve. Culture-negative fever develops in a substantial proportion of patients early after PTx. The awareness of the possibility and clinical features of post-transplant culture-negative fever might help clinicians to guide antibiotic therapy in this high-risk patient population, especially following ATG induction and early steroid withdrawal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Induces Prostaglandin E2 Production through Cyclooxygenase 1, Which Is Dependent on the ERK1/2-p-C/EBP-β Pathway

    PubMed Central

    Bi, Yanmin; Guo, Xue-kun; Zhao, Haiyan; Gao, Li; Wang, Lianghai; Tang, Jun

    2014-01-01

    ABSTRACT Atypical porcine reproductive and respiratory syndrome (PRRS) caused by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is characterized by high fever and high mortality. However, the mechanism underlying the fever induction is still unknown. Prostaglandin E2 (PGE2), synthesized by cyclooxygenase type 1/2 (COX-1/2) enzymes, is essential for inducing fever. In this study, we found that PGE2, together with COX-1, was significantly elevated by HP-PRRSV. We subsequently demonstrated that extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK (p-ERK) were the key nodes to trigger COX-1 expression after HP-PRRSV infection. Furthermore, we proved the direct binding of p-C/EBP-β to the COX-1 promoter by luciferase reporter and chromatin immunoprecipitation assays. In addition, silencing of C/EBP-β remarkably impaired the enhancement of COX-1 production induced by HP-PRRSV infection. Taken together, our results indicate that HP-PPRSV elicits the expression of COX-1 through the ERK1/2-p-C/EBP-β signaling pathway, resulting in the increase of PGE2, which might be the cause of high fever in infected pigs. Our findings might provide new insights into the molecular mechanisms underlying the pathogenesis of HP-PRRSV infection. IMPORTANCE The atypical PRRS caused by HP-PRRSV was characterized by high fever, high morbidity, and high mortality in pigs of all ages, yet how HP-PRRSV induces high fever in pigs remains unknown. In the present study, we found out that HP-PRRSV infection could increase PGE2 production by upregulation of COX-1, and we subsequently characterized the underlying mechanisms about how HP-PRRSV enhances COX-1 production. PGE2 plays a critical role in inducing high temperature in hosts during pathogen infections. Thus, our findings here could help us have a better understanding of HP-PRRSV pathogenesis. PMID:24352469

  9. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells

    PubMed Central

    Pei, Jingjing; Deng, Jieru; Ye, Zuodong; Wang, Jiaying; Gou, Hongchao; Liu, Wenjun; Zhao, Mingqiu; Liao, Ming; Yi, Lin; Chen, Jinding

    2016-01-01

    ABSTRACT A growing number of studies have demonstrated that both macroautophagy/autophagy and apoptosis are important inner mechanisms of cell to maintain homeostasis and participate in the host response to pathogens. We have previously reported that a functional autophagy pathway is trigged by infection of classical swine fever virus (CSFV) and is required for viral replication and release in host cells. However, the interplay of autophagy and apoptosis in CSFV-infected cells has not been clarified. In the present study, we demonstrated that autophagy induction with rapamycin facilitates cellular proliferation after CSFV infection, and that autophagy inhibition by knockdown of essential autophagic proteins BECN1/Beclin 1 or MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) promotes apoptosis via fully activating both intrinsic and extrinsic mechanisms in CSFV-infected cells. We also found that RIG-I-like receptor (RLR) signaling was amplified in autophagy-deficient cells during CSFV infection, which was closely linked to the activation of the intrinsic apoptosis pathway. Moreover, we discovered that virus infection of autophagy-impaired cells results in an increase in copy number of mitochondrial DNA and in the production of reactive oxygen species (ROS), which plays a significant role in enhanced RLR signaling and the activated extrinsic apoptosis pathway in cultured cells. Collectively, these data indicate that CSFV-induced autophagy delays apoptosis by downregulating ROS-dependent RLR signaling and thus contributes to virus persistent infection in host cells. PMID:27463126

  10. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells.

    PubMed

    Pei, Jingjing; Deng, Jieru; Ye, Zuodong; Wang, Jiaying; Gou, Hongchao; Liu, Wenjun; Zhao, Mingqiu; Liao, Ming; Yi, Lin; Chen, Jinding

    2016-10-02

    A growing number of studies have demonstrated that both macroautophagy/autophagy and apoptosis are important inner mechanisms of cell to maintain homeostasis and participate in the host response to pathogens. We have previously reported that a functional autophagy pathway is trigged by infection of classical swine fever virus (CSFV) and is required for viral replication and release in host cells. However, the interplay of autophagy and apoptosis in CSFV-infected cells has not been clarified. In the present study, we demonstrated that autophagy induction with rapamycin facilitates cellular proliferation after CSFV infection, and that autophagy inhibition by knockdown of essential autophagic proteins BECN1/Beclin 1 or MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) promotes apoptosis via fully activating both intrinsic and extrinsic mechanisms in CSFV-infected cells. We also found that RIG-I-like receptor (RLR) signaling was amplified in autophagy-deficient cells during CSFV infection, which was closely linked to the activation of the intrinsic apoptosis pathway. Moreover, we discovered that virus infection of autophagy-impaired cells results in an increase in copy number of mitochondrial DNA and in the production of reactive oxygen species (ROS), which plays a significant role in enhanced RLR signaling and the activated extrinsic apoptosis pathway in cultured cells. Collectively, these data indicate that CSFV-induced autophagy delays apoptosis by downregulating ROS-dependent RLR signaling and thus contributes to virus persistent infection in host cells.

  11. Behavioral fever in ectothermic vertebrates.

    PubMed

    Rakus, Krzysztof; Ronsmans, Maygane; Vanderplasschen, Alain

    2017-01-01

    Fever is an evolutionary conserved defense mechanism which is present in both endothermic and ectothermic vertebrates. Ectotherms in response to infection can increase their body temperature by moving to warmer places. This process is known as behavioral fever. In this review, we summarize the current knowledge on the mechanisms of induction of fever in mammals. We further discuss the evolutionary conserved mechanisms existing between fever of mammals and behavioral fever of ectothermic vertebrates. Finally, the experimental evidences supporting an adaptive value of behavioral fever expressed by ectothermic vertebrates are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Central mediators involved in the febrile response: effects of antipyretic drugs

    PubMed Central

    Zampronio, Aleksander R; Soares, Denis M; Souza, Glória E P

    2015-01-01

    Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions. PMID:27227071

  13. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  14. Interferon-Inducible Oligoadenylate Synthetase-Like Protein Acts as an Antiviral Effector against Classical Swine Fever Virus via the MDA5-Mediated Type I Interferon-Signaling Pathway.

    PubMed

    Li, Lian-Feng; Yu, Jiahui; Zhang, Yuexiu; Yang, Qian; Li, Yongfeng; Zhang, Lingkai; Wang, Jinghan; Li, Su; Luo, Yuzi; Sun, Yuan; Qiu, Hua-Ji

    2017-06-01

    Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which poses a serious threat to the global pig industry. Interferons (IFNs) and IFN-stimulated genes (ISGs) play a key role in host antiviral defense. We have previously screened the porcine 2'-5'-oligoadenylate synthetase-like protein (pOASL) as a potential anti-CSFV ISG using a reporter CSFV. This study aimed to clarify the underlying antiviral mechanism of pOASL against CSFV. We confirmed that CSFV replication was significantly suppressed in lentivirus-delivered, pOASL-overexpressing PK-15 cells, whereas silencing the expression of endogenous pOASL by small interfering RNAs markedly enhanced CSFV growth. In addition, the transcriptional level of pOASL was upregulated both in vitro and in vivo upon CSFV infection. Interestingly, the anti-CSFV effects of pOASL are independent of the canonical RNase L pathway but depend on the activation of the type I IFN response. Glutathione S -transferase pulldown and coimmunoprecipitation assays revealed that pOASL interacts with MDA5, a double-stranded RNA sensor, and further enhances MDA5-mediated type I IFN signaling. Moreover, we showed that pOASL exerts anti-CSFV effects in an MDA5-dependent manner. In conclusion, pOASL suppresses CSFV replication via the MDA5-mediated type I IFN-signaling pathway. IMPORTANCE The host innate immune response plays an important role in mounting the initial resistance to viral infection. Here, we identify the porcine 2'-5'-oligoadenylate synthetase-like protein (pOASL) as an interferon (IFN)-stimulated gene (ISG) against classical swine fever virus (CSFV). We demonstrate that the anti-CSFV effects of pOASL depend on the activation of type I IFN response. In addition, we show that pOASL, as an MDA5-interacting protein, is a coactivator of MDA5-mediated IFN induction to exert anti-CSFV actions. This work will be beneficial to the development of novel anti-CSFV strategies by targeting pOASL. Copyright © 2017 Li et al.

  15. Fever

    PubMed Central

    Conti, Bruno

    2010-01-01

    Measurement of body temperature remains one of the most common ways to assess health. An increase in temperature above what is considered to be a normal value is inevitably regarded as a sure sign of disease and referred to with one simple word: fever. In this review, we summarize how research on fever allowed the identification of the exogenous and endogenous molecules and pathways mediating the fever response. We also show how temperature elevation is common to different pathologies and how the molecular components of the fever-generation pathway represent drug targets for antipyretics, such as acetylsalicylic acid, the first “blockbuster drug”. We also show how fever research provided new insights into temperature and energy homeostasis, and into treatment of infection and inflammation. PMID:20305990

  16. MyD88 and STING Signaling Pathways Are Required for IRF3-Mediated IFN-β Induction in Response to Brucella abortus Infection

    PubMed Central

    de Almeida, Leonardo A.; Carvalho, Natalia B.; Oliveira, Fernanda S.; Lacerda, Thais L. S.; Vasconcelos, Anilton C.; Nogueira, Lucas; Bafica, Andre; Silva, Aristóbolo M.; Oliveira, Sergio C.

    2011-01-01

    Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis. PMID:21829705

  17. A strong interferon response correlates with a milder dengue clinical condition.

    PubMed

    De La Cruz Hernández, Sergio Isaac; Puerta-Guardo, Henry; Flores-Aguilar, Hilario; González-Mateos, Silvia; López-Martinez, Irma; Ortiz-Navarrete, Vianney; Ludert, Juan E; Del Angel, Rosa María

    2014-07-01

    Type 1 interferon (IFNα/β) has a significant role in establishing protection against virus infections. It has been well documented by in vitro studies that dengue virus (DENV) activates a robust IFNα/β response. However, DENV also induces a down-regulation of the JAK/STAT pathway, inhibiting the induction of interferon regulated genes. As a consequence, the role played by the IFN type 1 response in the protection of dengue patients is not fully understood. To compare IFN-α levels in dengue patients with dengue fever (DF) or dengue hemorrhagic fever (DHF) undergoing primary or secondary infections. Two hundred and four serum samples were analyzed for IFN-α level by cytometric bead array. Patients' clinical condition was assigned following the WHO 1997 criteria and specific IgG and IgM antibodies were measured using commercial assays to determine primary and secondary infections. The infecting serotype was determined by qRT-PCR. The IFN-α levels were found significantly higher in DF than DHF patients irrespective of the infecting serotype (DENV1 or 2), and were found to decline rapidly at day 3 after fever onset. For DENV2 infections, higher IFN-α level was found during primary than secondary infections. These results suggest that an early strong interferon response correlates with a better clinical condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    PubMed

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  19. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures.

    PubMed

    Chen, Kang; Neu, Axel; Howard, Allyson L; Földy, Csaba; Echegoyen, Julio; Hilgenberg, Lutz; Smith, Martin; Mackie, Ken; Soltesz, Ivan

    2007-01-03

    Depolarization-induced suppression of inhibition (DSI) is an endocannabinoid-mediated short-term plasticity mechanism that couples postsynaptic Ca2+ rises to decreased presynaptic GABA release. Whether the gain of this retrograde synaptic mechanism is subject to long-term modulation by glutamatergic excitatory inputs is not known. Here, we demonstrate that activity-dependent long-term DSI potentiation takes place in hippocampal slices after tetanic stimulation of Schaffer collateral synapses. This activity-dependent, long-term plasticity of endocannabinoid signaling was specific to GABAergic synapses, as it occurred without increases in the depolarization-induced suppression of excitation. Induction of tetanus-induced DSI potentiation in vitro required a complex pathway involving AMPA/kainate and metabotropic glutamate receptor as well as CB1 receptor activation. Because DSI potentiation has been suggested to play a role in persistent limbic hyperexcitability after prolonged seizures in the developing brain, we used these mechanistic insights into activity-dependent DSI potentiation to test whether interference with the induction of DSI potentiation prevents seizure-induced long-term hyperexcitability. The results showed that the in vitro, tetanus-induced DSI potentiation was occluded by previous in vivo fever-induced (febrile) seizures, indicating a common pathway. Accordingly, application of CB1 receptor antagonists during febrile seizures in vivo blocked the seizure-induced persistent DSI potentiation, abolished the seizure-induced upregulation of CB1 receptors, and prevented the emergence of long-term limbic hyperexcitability. These results reveal a new form of activity-dependent, long-term plasticity of endocannabinoid signaling at perisomatic GABAergic synapses, and demonstrate that blocking the induction of this plasticity abolishes the long-term effects of prolonged febrile seizures in the developing brain.

  20. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    PubMed Central

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU. PMID:22163042

  1. The expression of TRPV channels, prostaglandin E2 and pro-inflammatory cytokines during behavioural fever in fish.

    PubMed

    Boltana, Sebastian; Sanhueza, Nataly; Donoso, Andrea; Aguilar, Andrea; Crespo, Diego; Vergara, Daniela; Arriagada, Gabriel; Morales-Lange, Byron; Mercado, Luis; Rey, Sonia; Tort, Lluis; Mackenzie, Simon

    2018-03-21

    A fever, or increased body temperature, is a symptom of inflammation, which is a complex defence reaction of the organism to pathogenic infections. After pathogens enter the body, immune cells secrete a number of agents, the functions of which stimulate the body to develop a functional immune and fever response. In mammals it is known that PGE 2 is the principal mediator of fever. The extent to which PGE 2 and other pro-inflammatory cytokines such as TNF-α, IL-6, or IL-1β could be involved in the induction of behavioural fever in fish remains to be clarified. Several members of the transient receptor potential (TRP) family of ion channels have been implicated as transducers of thermal stimuli, including TRPV1 and TRPV2, which are activated by heat. Here we show that members of the TRP family, TRPV1 and TRPV4, may participate in the coordination of temperature sensing during the behavioural fever. To examine the behavioral fever mechanism in Salmo salar an infection with IPNV, infectious pancreatic necrosis virus, was carried out by an immersion challenge with 10 × 10 5 PFU/mL -1 of IPNV. Behavioural fever impacted upon the expression levels of both TRPV1 and TRPV4 mRNAs after the viral challenge and revealed a juxtaposed regulation of TRPV channels. Our results suggest that an increase in the mRNA abundance of TRPV1 is tightly correlated with a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and PGE 2 ) in the Pre-Optic Area (POA) and cytokine release in plasma. Together, these data indicate that the reduction of TRPV4 expression during behavioural fever may contribute to the onset of behavioural fever influencing movement toward higher water temperatures. Our data also suggest an effect of TRPV channels in the regulation of behavioural fever through activation of EP3 receptors in the central nervous system by PGE 2 induced by plasma-borne cytokines. These results highlight for first time in mobile ectotherms the key role of pro-inflammatory cytokines and TRPV channels in behavioural fever that likely involves a complex integration of prostaglandin induction, cytokine recognition and temperature sensing. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Species-Specific Variation in RELA Underlies Differences in NF-κB Activity: a Potential Role in African Swine Fever Pathogenesis▿

    PubMed Central

    Palgrave, Christopher J.; Gilmour, Linzi; Lowden, C. Stewart; Lillico, Simon G.; Mellencamp, Martha A.; Whitelaw, C. Bruce A.

    2011-01-01

    African swine fever virus (ASFV) is a highly infectious disease of domestic pigs, with virulent isolates causing a rapidly fatal hemorrhagic fever. In contrast, the porcine species endogenous to Africa tolerate infection. The ability of the virus to persist in one host while killing another genetically related host implies that disease severity may be, in part, modulated by host genetic variation. To complement transcription profiling approaches to identify the underlying genetic variation in the host response to ASFV, we have taken a candidate gene approach based on known signaling pathways that interact with the virus-encoded immunomodulatory protein A238L. We report the sequencing of these genes from different pig species and the identification and initial in vitro characterization of polymorphic variation in RELA (p65; v-rel reticuloendotheliosis viral oncogene homolog A), the major component of the NF-κB transcription factor. Warthog RELA and domestic pig RELA differ at three amino acids. Transient cell transfection assays indicate that this variation is reflected in reduced NF-κB activity in vitro for warthog RELA but not for domestic pig RELA. Induction assays indicate that warthog RELA and domestic pig RELA are elevated essentially to the same extent. Finally, mutational studies indicate that the S531P site conveys the majority of the functional variation between warthog RELA and domestic pig RELA. We propose that the variation in RELA identified between the warthog and domestic pig has the potential to underlie the difference between tolerance and rapid death upon ASFV infection. PMID:21450812

  3. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    PubMed

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.

  4. Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum.

    PubMed

    Yokoi, Kakeru; Koyama, Hiroaki; Minakuchi, Chieka; Tanaka, Toshiharu; Miura, Ken

    2012-01-01

    Using Tribolium castaneum, we quantitatively investigated the induction of nine antimicrobial peptide (AMP) genes by live gram-negative bacteria (Escherichia coli and Enterobacter cloacae), gram-positive bacteria (Micrococcus luteus and Bacillus subtilis) and the budding yeast (Saccharomyces cerevisiae). Then, five representative AMP genes were selected, and the involvement of the Toll and IMD pathways in their induction by E. coli, M. luteus and S. cerevisiae was examined by utilizing RNA interference of either MyD88 or IMD. Results indicated: Robust and acute induction of three genes by the two bacterial species was mediated mainly by the IMD pathway; slow and sustained induction of one gene by the two bacteria was mediated mainly by the Toll pathway; induction of the remaining one gene by the two bacteria was mediated by both pathways; induction of the five genes by the yeast was mediated by the Toll and/or IMD pathways depending on respective genes. These results suggest that more promiscuous activation and usage of the two pathways may occur in T. castaneum than in Drosophila melanogaster. In addition, the IMD pathway was revealed to dominantly contribute to defense against two bacterial species, gram-negative E. cloacae and gram-positive B. subtilis that possesses DAP-type peptidoglycan.

  5. Differential proteomic analysis of virus-enriched fractions obtained from plasma pools of patients with dengue fever or severe dengue.

    PubMed

    Fragnoud, Romain; Flamand, Marie; Reynier, Frederic; Buchy, Philippe; Duong, Vasna; Pachot, Alexandre; Paranhos-Baccala, Glaucia; Bedin, Frederic

    2015-11-14

    Dengue is the most widespread mosquito-borne viral disease of public health concern. In some patients, endothelial cell and platelet dysfunction lead to life-threatening hemorrhagic dengue fever or dengue shock syndrome. Prognostication of disease severity is urgently required to improve patient management. The pathogenesis of severe dengue has not been fully elucidated, and the role of host proteins associated with viral particles has received little exploration. The proteomes of virion-enriched fractions purified from plasma pools of patients with dengue fever or severe dengue were compared. Virions were purified by ultracentrifugation combined with a water-insoluble polyelectrolyte-based technique. Following in-gel hydrolysis, peptides were analyzed by nano-liquid chromatography coupled to ion trap mass spectrometry and identified using data libraries. Both dengue fever and severe dengue viral-enriched fractions contained identifiable viral envelope proteins and host cellular proteins. Canonical pathway analysis revealed the identified host proteins are mainly involved in the coagulation cascade, complement pathway or acute phase response signaling pathway. Some host proteins were over- or under-represented in plasma from patients with severe dengue compared to patients with dengue fever. ELISAs were used to validate differential expression of a selection of identified host proteins in individual plasma samples of patients with dengue fever compared to patients with severe dengue. Among 22 host proteins tested, two could differentiate between dengue fever and severe dengue in two independent cohorts (olfactomedin-4: area under the curve (AUC), 0.958; and platelet factor-4: AUC, 0.836). A novel technique of virion-enrichment from plasma has allowed to identify two host proteins that have prognostic value for classifying patients with acute dengue who are more likely to develop a severe dengue. The impact of these host proteins on pathogenicity and disease outcome are discussed.

  6. Role of the nitric oxide/cyclic GMP/Ca2+ signaling pathway in the pyrogenic effect of interleukin-1beta.

    PubMed

    Palmi, Mitri; Meini, Antonella

    2002-04-01

    Interleukin-1beta (IL-1beta) has a wide spectrum of inflammatory, metabolic, haemopoietic, and immunological properties. Because it produces fever when injected into animals and humans, it is considered an endogenous pyrogen. There is evidence to suggest that Ca2+ plays a critical role in the central mechanisms of thermoregulation, and in the intracellular signaling pathways controlling fever induced by IL-1beta and other pyrogens. Data from different labs indicate that Ca2+ and Na+ determine the temperature set point in the posterior hypothalamus (PH) of various mammals and that changes in Ca2+ and PGE2 concentrations in the cerebrospinal fluid (CSF) of these animals are associated with IL-1beta-induced fever. Antipyretic drugs such as acetylsalicylic acid, dexamethasone, and lipocortin 5-(204-212) peptide counteract IL-1beta-induced fever and abolish changes in Ca2+ and PGE2 concentrations in CSF. In vitro studies have established that activation of the nitric oxide (NO)/cyclic GMP (cGMP) pathway is part of the signaling cascade transducing Ca2+ mobilization in response to IL-1beta and that the ryanodine (RY)- and inositol-(1,4,5)-trisphosphate (IP3)-sensitive pools are the main source of the mobilized Ca2+. It is concluded that the NO/cGMP/Ca2+ pathway is part of the signaling cascade subserving some of the multiple functions of IL-1beta.

  7. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis.

    PubMed

    Dixon, Linda K; Sánchez-Cordón, Pedro J; Galindo, Inmaculada; Alonso, Covadonga

    2017-08-25

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.

  8. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis

    PubMed Central

    Dixon, Linda K.; Sánchez-Cordón, Pedro J.; Galindo, Inmaculada

    2017-01-01

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed. PMID:28841179

  9. Cytokines as endogenous pyrogens.

    PubMed

    Dinarello, C A

    1999-03-01

    Cytokines are pleiotropic molecules mediating several pathologic processes. Long before the discovery of cytokines as immune system growth factors or as bone marrow stimulants, investigators learned a great deal about cytokines when they studied them as the endogenous mediators of fever. The terms "granulocytic" or "endogenous pyrogen" were used to describe substances with the biologic property of fever induction. Today, we recognize that pyrogenicity is a fundamental biologic property of several cytokines and hence the clinically recognizeable property of fever links host perturbations during disease with fundamental perturbations in cell biology. In this review, the discoveries made on endogenous pyrogens are revisited, with insights into the importance of the earlier work to the present-day understanding of cytokines in health and in disease.

  10. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs.

    PubMed

    Rahim, Fakher; Allahmoradi, Hossein; Salari, Fatemeh; Shahjahani, Mohammad; Fard, Ali Dehghani; Hosseini, Seyed Ahmad; Mousakhani, Hadi

    2013-01-01

    Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.

  11. Efficient Sensing of Infected Cells in Absence of Virus Particles by Blasmacytoid Dendritic Cells Is Blocked by the Viral Ribonuclease Erns

    PubMed Central

    Python, Sylvie; Gerber, Markus; Suter, Rolf; Ruggli, Nicolas; Summerfield, Artur

    2013-01-01

    Plasmacytoid dendritic cells (pDC) have been shown to efficiently sense HCV- or HIV-infected cells, using a virion-free pathway. Here, we demonstrate for classical swine fever virus, a member of the Flaviviridae, that this process is much more efficient in terms of interferon-alpha induction when compared to direct stimulation by virus particles. By employment of virus replicon particles or infectious RNA which can replicate but not form de novo virions, we exclude a transfer of virus from the donor cell to the pDC. pDC activation by infected cells was mediated by a contact-dependent RNA transfer to pDC, which was sensitive to a TLR7 inhibitor. This was inhibited by drugs affecting the cytoskeleton and membrane cholesterol. We further demonstrate that a unique viral protein with ribonuclease activity, the viral Erns protein of pestiviruses, efficiently prevented this process. This required intact ribonuclease function in intracellular compartments. We propose that this pathway of activation could be of particular importance for viruses which tend to be mostly cell-associated, cause persistent infection, and are non-cytopathogenic. PMID:23785283

  12. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  13. Infectious complications in children with acute lymphoblastic leukemia treated with the Taiwan Pediatric Oncology Group protocol: A 16-year tertiary single-institution experience.

    PubMed

    Li, Meng-Ju; Chang, Hsiu-Hao; Yang, Yung-Li; Lu, Meng-Yao; Shao, Pei-Lan; Fu, Chun-Min; Chou, An-Kuo; Liu, Yen-Lin; Lin, Kai-Hsin; Huang, Li-Min; Lin, Dong-Tsamn; Jou, Shiann-Tarng

    2017-10-01

    Infection is a major complication in pediatric patients with acute lymphoblastic leukemia during chemotherapy. In this study, the infection characteristics were determined and risk factors analyzed based on the Taiwan Pediatric Oncology Group (TPOG) acute lymphoblastic leukemia (ALL) protocol. We retrospectively reviewed fever events during chemotherapy in 252 patients treated during two consecutive clinical trials at a single institution between 1997 and 2012. Patients were classified as standard, high, and very high risk by treatment regimen according to the TPOG definitions. We analyzed the characteristics and risk factors for infection. Fever occurred in 219 patients (86.9%) with a mean of 2.74 episodes per person. The fever events comprised 64% febrile neutropenia, 39% clinically documented infections, and 44% microbiologically documented infections. The microbiologically documented infections were mostly noted during the induction phase and increased in very high risk patients (89 vs. 24% and 46% in standard-risk and high-risk patients, respectively). Younger age and higher risk (high-risk and very high risk groups) were risk factors for fever and microbiologic and bloodstream infections. Female gender and obesity were additive risk factors for urinary tract infection (odds ratios = 3.52 and 3.24, P < 0.001 and P = 0.004, respectively). Infections developed primarily during the induction phase, for which younger age and higher risk by treatment regimen were risk factors. Female gender and obesity were additive risk factors for urinary tract infection. © 2017 Wiley Periodicals, Inc.

  14. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates✩

    PubMed Central

    Lukashevich, Igor S.; Carrion, Ricardo; Salvato, Maria S.; Mansfield, Keith; Brasky, Kathleen; Zapata, Juan; Cairo, Cristiana; Goicochea, Marco; Hoosien, Gia E.; Ticer, Anysha; Bryant, Joseph; Davis, Harry; Hammamieh, Rasha; Mayda, Maria; Jett, Marti; Patterson, Jean

    2008-01-01

    A single injection of ML29 reassortant vaccine for Lassa fever induces low, transient viremia, and low or moderate levels of ML29 replication in tissues of common marmosets depending on the dose of the vaccination. The vaccination elicits specific immune responses and completely protects marmosets against fatal disease by induction of sterilizing cell-mediated immunity. DNA array analysis of human peripheral blood mononuclear cells from healthy donors exposed to ML29 revealed that gene expression patterns in ML29-exposed PBMC and control, media-exposed PBMC, clustered together confirming safety profile of the ML29 in non-human primates. The ML29 reassortant is a promising vaccine candidate for Lassa fever. PMID:18692539

  15. Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles.

    PubMed

    Gandini, Mariana; Reis, Sonia Regina Nogueira Ignacio; Torrentes-Carvalho, Amanda; Azeredo, Elzinandes Leal; Freire, Marcos da Silva; Galler, Ricardo; Kubelka, Claire Fernandes

    2011-08-01

    Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.

  16. Paracetamol in fever in critically ill patients-an update.

    PubMed

    Chiumello, D; Gotti, M; Vergani, G

    2017-04-01

    Fever, which is arbitrary defined as an increase in body temperature above 38.3°C, can affect up to 90% of patients admitted in intensive care unit. Induction of fever is mediated by the release of pyrogenic cytokines (tumor necrosis factor α, interleukin 1, interleukin 6, and interferons). Fever is associated with increased length of stay in intensive care unit and with a worse outcome in some subgroups of patients (mainly neurocritically ill patients). Although fever can increase oxygen consumption in unstable patients, on the contrary, it can activate physiologic systems that are involved in pathogens clearance. Treatments to reduce fever include the use of antipyretics. Thus, the reduction of fever might reduce the ability to develop an efficient host response. This balance, between harms and benefits, has to be taken into account every time we decide to treat or not to treat fever in a given patient. Among the antipyretics, paracetamol is one of the most common used. Paracetamol is a synthetic, nonopioid, centrally acting analgesic, and antipyretic drug. Its antipyretic effect occurs because it inhibits cyclooxygenase-3 and the prostaglandin synthesis, within the central nervous system, resetting the hypothalamic heat-regulation center. In this clinical review, we will summarize the use of paracetamol as antipyretic in critically ill patients (sepsis, trauma, neurological, and medical). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ciliary neurotrophic factor is an endogenous pyrogen.

    PubMed

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-09-15

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus.

  18. Ciliary neurotrophic factor is an endogenous pyrogen.

    PubMed Central

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-01-01

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus. PMID:8378338

  19. Serial Metabolome Changes in a Prospective Cohort of Subjects with Influenza Viral Infection and Comparison with Dengue Fever.

    PubMed

    Cui, Liang; Fang, Jinling; Ooi, Eng Eong; Lee, Yie Hou

    2017-07-07

    Influenza virus infection (IVI) and dengue virus infection (DVI) are major public health threats. Between IVI and DVI, clinical symptoms can be overlapping yet infection-specific, but host metabolome changes are not well-described. Untargeted metabolomics and targeted oxylipinomic analyses were performed on sera serially collected at three phases of infection from a prospective cohort study of adult subjects with either H3N2 influenza infection or dengue fever. Untargeted metabolomics identified 26 differential metabolites, and major perturbed pathways included purine metabolism, fatty acid biosynthesis and β-oxidation, tryptophan metabolism, phospholipid catabolism, and steroid hormone pathway. Alterations in eight oxylipins were associated with the early symptomatic phase of H3N2 flu infection, were mostly arachidonic acid-derived, and were enriched in the lipoxygenase pathway. There was significant overlap in metabolome profiles in both infections. However, differences specific to IVI and DVI were observed. DVI specifically attenuated metabolites including serotonin, bile acids and biliverdin. Additionally, metabolome changes were more persistent in IVI in which metabolites such as hypoxanthine, inosine, and xanthine of the purine metabolism pathway remained significantly elevated at 21-27 days after fever onset. This study revealed the dynamic metabolome changes in IVI subjects and provided biochemical insights on host physiological similarities and differences between IVI and DVI.

  20. African Swine Fever Virus Gets Undressed: New Insights on the Entry Pathway.

    PubMed

    Andrés, Germán

    2017-02-15

    African swine fever virus (ASFV) is a large, multienveloped DNA virus composed of a genome-containing core successively wrapped by an inner lipid envelope, an icosahedral protein capsid, and an outer lipid envelope. In keeping with this structural complexity, recent studies have revealed an intricate entry program. This Gem highlights how ASFV uses two alternative pathways, macropinocytosis and clathrin-mediated endocytosis, to enter into the host macrophage and how the endocytosed particles undergo a stepwise, low pH-driven disassembly leading to inner envelope fusion and core delivery in the cytoplasm. Copyright © 2017 American Society for Microbiology.

  1. Rituximab Treatment for PR3-ANCA-Positive Membranoproliferative Glomerulonephritis Associated with Adult-Onset Periodic Fever Syndrome.

    PubMed

    Hamano, Yoshitomo; Yoshizawa, Hiromichi; Sugase, Taro; Miki, Takuya; Ohtani, Naoko; Hanawa, Shiho; Takeshima, Eri; Morishita, Yoshiyuki; Saito, Osamu; Takemoto, Fumi; Muto, Shigeaki; Yumura, Wako; Kusano, Eiji

    2012-07-01

    We report the case of a 36-year-old Japanese woman with nephrotic syndrome due to membranoproliferative glomerulonephritis (MPGN) Type I diagnosed after a 5-year history of periodic fever syndrome (PFS). Hypocomplementemia and elevation of anti-proteinase 3 anti-neutrophil cytoplasmic autoantibody (PR3-ANCA) were observed. HIV, and hepatitis B and C serology were negative. Nephrotic syndrome and periodic fever did not respond to oral steroid and intravenous steroid pulse therapies combined with cyclosporine, dipyridamole, warfarin and losartan. We tried immunotherapy using rituximab, a human-mouse chimeric monoclonal antibody directed against the CD20 antigen on mature B cells. This therapeutic approach led to improvement of renal function and remission of nephrotic syndrome and hypocomplementemia. However, it did not have a beneficial effect on periodic fever. Suspecting adult-onset hereditary PFS, we analyzed her genetic alteration of MEFV and TNFRSF1A genes. A rare genotype in intron 6 of TNFRSF1A was revealed. The etiological relationship between periodic fever and MPGN is discussed. Rituximab is a hopeful choice of induction therapy for refractory MPGN.

  2. Comparison of Chemical Profiles, Anti-Inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol.

    PubMed

    Zou, Liang; Zhang, Yan; Li, Wei; Zhang, Jinming; Wang, Dan; Fu, Jia; Wang, Ping

    2017-08-31

    Natural borneol (NB, called "Bingpian") is an important traditional Chinese medicine to restore consciousness, remove heat and relieve pain, all of which are inflammation-related diseases. Recently, due to the limited source of NB, synthetic borneol (SB) is widely used as a substitute for NB in clinics. However, little is known about the effects of SB instead of NB. Herein, the aim of the present study was to compare NB and SB on chemical profiles by gas chromatography-mass spectrometer (GC-MS) analysis, anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomic approaches in endotoxic fever induced in rats. Results showed that, in total, 13 volatile components could be identified in NB and SB by GC-MS analysis, in which a significant difference between them still existed. The main constituents in SB were iso-borneol and borneol, while borneol contributes to 98.96% of the amount in NB. Additionally, both NB and SB exhibited remarkable anti-inflammatory effects to reduce the level of inflammatory factors including NO, TNF-α and IL-6 in LPS-induced RAW 264.7 macrophages, and lower the high body temperature in rats with endotoxic fever induced by LPS. Moreover, it seems that NB exhibited higher efficacy than SB. The unequal bioactive efficiency between NB and SB was also indicated by means of non-targeting metabolomics. Based on UPLC-Q-TOF/MS technology, 12 biomarkers in the serum of fever rats were identified. Pathway analysis revealed that the anti-fever effect of NB and SB was related to regulating the abnormal glycerophospholipid, linoleic acid and alpha-linoleic acid metabolism pathways in the fever model. Results indicated that there was still a great difference between NB and SB involving chemical constituents, anti-inflammation activity and the ability to regulate the abnormal metabolism pathways of the fever model. Certainly, further studies are warranted to better understand the replacement rationale in medicinal application.

  3. Infections during induction therapy for children with acute lymphoblastic leukemia. the role of sulfamethoxazole-trimethoprim (SMX-TMP) prophylaxis.

    PubMed

    Rungoe, Christine; Malchau, Emma Louise; Larsen, Line Nordahl; Schroeder, Henrik

    2010-08-01

    Bacteremias are frequent during induction therapy for acute lymphoblastic leukemia (ALL) in children. Antibacterial prophylaxis therapy may thus be warranted. The purpose of this study was to analyze the rate of infections during induction therapy in two cohorts of children with ALL where one cohort received prophylactic sulfamethoxazole-trimethoprim (SMX-TMP). All infections were registered through a retrospective non-randomized review of medical records of 171 consecutive children newly diagnosed with ALL below 15 years of age at diagnosis. A total of 85 children treated from 1992 to 2000 did not receive SMX-TMP, whereas 86 children treated from 2000 to 2008 received SMX-TMP 20 mg/kg in one daily oral dose during induction therapy. A total of 26% of all children had no febrile episodes during induction. Infections were more frequent in children below 5 years of age. Significantly fewer children receiving SMX-TMP developed fever (17% vs. 34%, P = 0.02) and bacteremia (20% vs. 45%, P = 0.0003). Especially children with non-high risk criteria had fewer infections when receiving prophylaxis. When adjusting for age, type of catheter, and SMX-TMP prophylaxis on the risk of bacteremia by a multiple Cox regression analysis, we found that age and prophylaxis, but not the type of catheter, were associated with a significantly reduced risk of bacteremia. Children with ALL receiving SMX-TMP prophylaxis during induction therapy experienced fewer febrile episodes, fewer days with fever demanding intravenous antibiotic treatment, and fewer episodes of bacteremia. Both SMX-TMP prophylaxis and age played significant independent roles for the occurrence of bacteremia. (c) 2010 Wiley-Liss, Inc.

  4. Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain.

    PubMed

    Rummel, Christoph; Sachot, Christelle; Poole, Stephen; Luheshi, Giamal N

    2006-11-01

    Interleukin (IL)-6 is an important humoral mediator of fever following infection and inflammation and satisfies a number of criteria for a circulating pyrogen. However, evidence supporting such a role is diminished by the moderate or even absent ability of the recombinant protein to induce fever and activate the cyclooxygenase-2 (COX-2) pathway in the brain, a prerequisite step in the initiation and maintenance of fever. In the present study, we investigated the role of endogenous circulating IL-6 in a rodent model of localized inflammation, by neutralizing its action using a specific antiserum (IL-6AS). Rats were injected with LPS (100 microg/kg) or saline into a preformed air pouch in combination with an intraperitoneal injection of either normal sheep serum or IL-6AS (1.8 ml/rat). LPS induced a febrile response, which was accompanied by a significant rise in plasma IL-6 and nuclear STAT3 translocation in endothelial cells throughout the brain 2 h after treatment, including areas surrounding the sensory circumventricular organs and the median preoptic area (MnPO), important regions in mediating fever. These responses were abolished in the presence of the IL-6AS, which also significantly inhibited the LPS-induced upregulation of mRNA expression or immunoreactivity (IR) of the inducible form of COX, the rate-limiting enzyme for PGE2-synthesis. Interestingly, nuclear signal transducer and activator of transcription (STAT)3-positive cells colocalized with COX-2-IR, signifying that IL-6-activated cells are directly involved in PGE2 production. These observations suggest that IL-6 is an important circulating pyrogen that activates the COX-2-pathway in cerebral microvasculature, most likely through a STAT3-dependent pathway.

  5. Interaction of structural core protein of Classical Swine Fever Virus with endoplasmic reticulum-associated degradation pathway protein OS9

    USDA-ARS?s Scientific Manuscript database

    Classical Swine Fever Virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, t...

  6. Global impact of Salmonella type III secretion effector SteA on host cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. Thesemore » systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.« less

  7. Typhoid fever as a triggering factor in acute and intractable bronchial asthma attack.

    PubMed

    Wardhana; Surachmanto, Eko E; Datau, E A

    2013-10-01

    Typhoid fever is an enteric infection caused by Salmonella typhi. In Indonesia, typhoid fever is endemic with high incidence of the disease. In daily practice we frequently have patients with bronchial asthma, and it is becoming worse when these patients get typhoid fever. After oral ingestion, Salmonella typhi invades the the intestine mucosa after conducted by microbial binding to epithelial cells, destroying the microfold cells (M cell) then passed through the lamina propria and detected by dendritic cells (DC) which express a variety of pathogen recognition receptors on the surfaces, including Toll-Like Receptor (TLR). expressed on macrophages and on intestinal epithelial cells inducing degradation of IB, and translocation of NF-B (Nuclear Factor-Kappa Beta). This process initiates the induction of pro-inflammatory gene expression profile adhesion molecules, chemokines, adhesion molecules, and other proteins that induce and perpetuate the inflammation in host cells then will induce acute ant intractable attack of bronchial asthma. The role of typhoid fever in bronchial asthma, especially in persons with acute attack of bronchial asthma, is not well understood. In this article, we will discuss the role of typhoid fever in the bronchial asthma patients which may cause bronchial asthma significantly become more severe even triggering the acute and intractable attack of bronchial asthma. This fact makes an important point, to treat completely the typhoid fever in patients with bronchial asthma.

  8. The single kinin receptor signals to separate and independent physiological pathways in Malpighian tubules of the yellow fever mosquito

    USDA-ARS?s Scientific Manuscript database

    In the past we have used the leucokinins, the kinins of the cockroach Leucophaea, to evaluate the mechanism of diuretic action of kinin peptides in Malpighian tubules of the yellow fever mosquito Aedes aegypti. Now using aedeskinins, the kinins of Aedes, are available, we find that in isolated Aede...

  9. Updates in diagnosis and management of Ebola hemorrhagic fever

    PubMed Central

    El Sayed, Salah Mohamed; Abdelrahman, Ali A.; Ozbak, Hani Adnan; Hemeg, Hassan Abdullah; Kheyami, Ali Mohammed; Rezk, Nasser; El-Ghoul, Mohamed Baioumy; Nabo, Manal Mohamed Helmy; Fathy, Yasser Mohamed

    2016-01-01

    Ebola hemorrhagic fever is a lethal viral disease transmitted by contact with infected people and animals. Ebola infection represents a worldwide health threat causing enormous mortality rates and fatal epidemics. Major concern is pilgrimage seasons with possible transmission to Middle East populations. In this review, we aim to shed light on Ebola hemorrhagic fever as regard: virology, transmission, biology, pathogenesis, clinical picture, and complications to get the best results for prevention and management. We also aim to guide future research to new therapeutic perspectives to precise targets. Our methodology was to review the literature extensively to make an overall view of the biology of Ebola virus infection, its serious health effects and possible therapeutic benefits using currently available remedies and future perspectives. Key findings in Ebola patients are fever, hepatic impairment, hepatocellular necrosis, lymphopenia (for T-lymphocyte and natural killer cells) with lymphocyte apoptosis, hemorrhagic manifestations, and complications. Pathogenesis in Ebola infection includes oxidative stress, immune suppression of both cell-mediated and humoral immunities, hepatic and adrenal impairment and failure, hemorrhagic fever, activation of deleterious inflammatory pathways, for example, tumor necrosis factor-related apoptosis-inducing ligand, and factor of apoptotic signal death receptor pathways causing lymphocyte depletion. Several inflammatory mediators and cytokines are involved in pathogenesis, for example, interleukin-2, 6, 8, and 10 and others. In conclusion, Ebola hemorrhagic fever is a serious fatal viral infection that can be prevented using strict health measures and can be treated to some extent using some currently available remedies. Newer treatment lines, for example, prophetic medicine remedies as nigella sativa may be promising. PMID:28163730

  10. Updates in diagnosis and management of Ebola hemorrhagic fever.

    PubMed

    El Sayed, Salah Mohamed; Abdelrahman, Ali A; Ozbak, Hani Adnan; Hemeg, Hassan Abdullah; Kheyami, Ali Mohammed; Rezk, Nasser; El-Ghoul, Mohamed Baioumy; Nabo, Manal Mohamed Helmy; Fathy, Yasser Mohamed

    2016-01-01

    Ebola hemorrhagic fever is a lethal viral disease transmitted by contact with infected people and animals. Ebola infection represents a worldwide health threat causing enormous mortality rates and fatal epidemics. Major concern is pilgrimage seasons with possible transmission to Middle East populations. In this review, we aim to shed light on Ebola hemorrhagic fever as regard: virology, transmission, biology, pathogenesis, clinical picture, and complications to get the best results for prevention and management. We also aim to guide future research to new therapeutic perspectives to precise targets. Our methodology was to review the literature extensively to make an overall view of the biology of Ebola virus infection, its serious health effects and possible therapeutic benefits using currently available remedies and future perspectives. Key findings in Ebola patients are fever, hepatic impairment, hepatocellular necrosis, lymphopenia (for T-lymphocyte and natural killer cells) with lymphocyte apoptosis, hemorrhagic manifestations, and complications. Pathogenesis in Ebola infection includes oxidative stress, immune suppression of both cell-mediated and humoral immunities, hepatic and adrenal impairment and failure, hemorrhagic fever, activation of deleterious inflammatory pathways, for example, tumor necrosis factor-related apoptosis-inducing ligand, and factor of apoptotic signal death receptor pathways causing lymphocyte depletion. Several inflammatory mediators and cytokines are involved in pathogenesis, for example, interleukin-2, 6, 8, and 10 and others. In conclusion, Ebola hemorrhagic fever is a serious fatal viral infection that can be prevented using strict health measures and can be treated to some extent using some currently available remedies. Newer treatment lines, for example, prophetic medicine remedies as nigella sativa may be promising.

  11. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway

    PubMed Central

    Reizis, Boris; Leder, Philip

    2002-01-01

    The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor α (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway. PMID:11825871

  12. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1.

    PubMed

    Dinarello, C A; Cannon, J G; Wolff, S M; Bernheim, H A; Beutler, B; Cerami, A; Figari, I S; Palladino, M A; O'Connor, J V

    1986-06-01

    Recombinant human tumor necrosis factor (rTNF alpha) injected intravenously into rabbits produces a rapid-onset, monophasic fever indistinguishable from the fever produced by rIL-1. On a weight basis (1 microgram/kg) rTNF alpha and rIL-1 produce the same amount of fever and induce comparable levels of PGE2 in rabbit hypothalamic cells in vitro; like IL-1, TNF fever is blocked by drugs that inhibit cyclooxygenase. At higher doses (10 micrograms/kg) rTNF alpha produces biphasic fevers. The first fever reaches peak elevation 45-55 min after bolus injection and likely represents a direct action on the thermoregulatory center. During the second fever peak (3 h later), a circulating endogenous pyrogen can be shown present using passive transfer of plasma into fresh rabbits. This likely represents the in vivo induction of IL-1. In vitro, rTNF alpha induces the release of IL-1 activity from human mononuclear cells with maximal production observed at 50-100 ng/ml of rTNF alpha. In addition, rTNF alpha and rIFN-gamma have a synergistic effect on IL-1 production. The biological activity of rTNF alpha could be distinguished from IL-1 in three ways: the monophasic pyrogenic activity of rIL-1 was destroyed at 70 degrees C, whereas rTNF alpha remained active; anti-IL-1 neutralized IL-1 but did recognize rTNF alpha or natural cachectin nor neutralize its cytotoxic effect; and unlike IL-1, rTNF alpha was not active in the mitogen-stimulated T cell proliferation assay. The possibility that endotoxin was responsible for rTNF alpha fever and/or the induction of IL-1 was ruled-out in several studies: rTNF alpha produced fever in the endotoxin-resistant C3H/HeJ mice; the IL-1-inducing property of rTNF alpha was destroyed either by heat (70 degrees C) or trypsinization, and was unaffected by polymyxin B; pyrogenic tolerance to daily injections of rTNF alpha did not occur; levels of endotoxin, as determined in the Limulus amebocyte lysate, were below the minimum rabbit pyrogen dose; and these levels of endotoxin were confirmed by gas chromatography/mass spectrometry analysis for the presence of beta-hydroxymyristic acid. Although rTNF alpha is not active in T cell proliferation assays, it may mimic IL-1 in a T cell assay, since high concentrations of rTNF alpha induced IL-1 from epithelial or macrophagic cells in the thymocyte preparations. These studies show that TNF (cachectin) is another endogenous pyrogen which, like IL-1 and IFN-alpha, directly stimulate hypothalamic PGE2 synthesis. In addition, rTNF alpha is an endogenous inducer of IL-1.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish.

    PubMed

    Rakus, Krzysztof; Ronsmans, Maygane; Forlenza, Maria; Boutier, Maxime; Piazzon, M Carla; Jazowiecka-Rakus, Joanna; Gatherer, Derek; Athanasiadis, Alekos; Farnir, Frédéric; Davison, Andrew J; Boudinot, Pierre; Michiels, Thomas; Wiegertjes, Geert F; Vanderplasschen, Alain

    2017-02-08

    Both endotherms and ectotherms (e.g., fish) increase their body temperature to limit pathogen infection. Ectotherms do so by moving to warmer places, hence the term "behavioral fever." We studied the manifestation of behavioral fever in the common carp infected by cyprinid herpesvirus 3, a native carp pathogen. Carp maintained at 24°C died from the infection, whereas those housed in multi-chamber tanks encompassing a 24°C-32°C gradient migrated transiently to the warmest compartment and survived as a consequence. Behavioral fever manifested only at advanced stages of infection. Consistent with this, expression of CyHV-3 ORF12, encoding a soluble decoy receptor for TNF-α, delayed the manifestation of behavioral fever and promoted CyHV-3 replication in the context of a temperature gradient. Injection of anti-TNF-α neutralizing antibodies suppressed behavioral fever, and decreased fish survival in response to infection. This study provides a unique example of how viruses have evolved to alter host behavior to increase fitness. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites.

    PubMed

    Tamura, Tomokazu; Nagashima, Naofumi; Ruggli, Nicolas; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2014-04-17

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.

  15. Hyperresponsive febrile reactions to interleukin (IL) 1α and IL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice

    PubMed Central

    Alheim, Katarina; Chai, Zhen; Fantuzzi, Giamila; Hasanvan, Homa; Malinowsky, David; Di Santo, Elena; Ghezzi, Pietro; Dinarello, Charles A.; Bartfai, Tamas

    1997-01-01

    IL-1β is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1α and IL-1β, and compared these with response to LPS (i.p.) in wild-type and IL-1β-deficient mice. The IL-1β deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1β, IL-1α, or LPS induced hyperresponsive fevers in the IL-1β-deficient mice. We also observed phenotypic differences between wild-type and IL-1β-deficient mice in hypothalamic basal mRNA levels for IL-1α and IL-6, but not for IL-1β-converting enzyme or IL-1 receptor type I or type II. The IL-1α mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1β-deficient mice as compared with wild-type mice. The IL-1β-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type α levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1β plays an important but not obligatory role in fever induction by LPS or IL-1α, as well as in the induction of serum tumor necrosis factor type α and corticosterone responses either by LPS or by IL-1α or IL-1β. PMID:9122256

  16. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway.

    PubMed

    Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H

    2015-01-01

    Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.

    PubMed Central

    Hamilton, I R; Lebtag, H

    1979-01-01

    Growth on lactose by strains of Streptococcus mutans resulted in the induction of the lactose-phosphoenolpyruvate-phosphotransferase system, phospho-beta-galactosidase, and the enzymes of the tagatose 6-phosphate pathway. PMID:230175

  18. The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae.

    PubMed Central

    Abdel-Sater, Fadi; Iraqui, Ismaïl; Urrestarazu, Antonio; André, Bruno

    2004-01-01

    Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1-but not Stp2-plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene's upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UAS(AA) element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UAS(AA) itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5'-GATA-3' sequences, to amplify the positive effect of UAS(AA). Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway. PMID:15126393

  19. Induction of Cell Cycle and NK Cell Responses by Live-Attenuated Oral Vaccines against Typhoid Fever

    PubMed Central

    Blohmke, Christoph J.; Hill, Jennifer; Darton, Thomas C.; Carvalho-Burger, Matheus; Eustace, Andrew; Jones, Claire; Schreiber, Fernanda; Goodier, Martin R.; Dougan, Gordon; Nakaya, Helder I.; Pollard, Andrew J.

    2017-01-01

    The mechanisms by which oral, live-attenuated vaccines protect against typhoid fever are poorly understood. Here, we analyze transcriptional responses after vaccination with Ty21a or vaccine candidate, M01ZH09. Alterations in response profiles were related to vaccine-induced immune responses and subsequent outcome after wild-type Salmonella Typhi challenge. Despite broad genetic similarity, we detected differences in transcriptional responses to each vaccine. Seven days after M01ZH09 vaccination, marked cell cycle activation was identified and associated with humoral immunogenicity. By contrast, vaccination with Ty21a was associated with NK cell activity and validated in peripheral blood mononuclear cell stimulation assays confirming superior induction of an NK cell response. Moreover, transcriptional signatures of amino acid metabolism in Ty21a recipients were associated with protection against infection, including increased incubation time and decreased severity. Our data provide detailed insight into molecular immune responses to typhoid vaccines, which could aid the rational design of improved oral, live-attenuated vaccines against enteric pathogens. PMID:29075261

  20. Assessment of the risk of African swine fever introduction into Finland using NORA-a rapid tool for semiquantitative assessment of the risk.

    PubMed

    Kyyrö, J; Sahlström, L; Lyytikäinen, T

    2017-12-01

    The NORA rapid risk assessment tool was developed for situations where there is a change in the disease status of easily transmissible animal diseases in neighbouring countries or in countries with significant interactions with Finland. The goal was to develop a tool that is quick to use and will provide consistent results to support risk management decisions. The model contains 63 questions that define the potential for entry and exposure by nine different pathways. The magnitude of the consequences is defined by 23 statements. The weight of different pathways is defined according to the properties of the assessed disease. The model was built as an Excel spreadsheet and is intended for use by animal health control administrators. As an outcome, the model gives the possible pathways of disease entry into the country, an overall approximation for the probability of entry and the subsequent exposure, an overall estimate for the consequences and a combined overall risk estimate (probability multiplied by magnitude of consequences). Model validity was assessed by expert panels. Outside Africa, African swine fever is currently established in Russia and Sardinia. In addition, there have been cases in both wild boar and domestic pigs in Latvia, Lithuania, Poland and Estonia. Finland has frequent contacts with Russia and Estonia, especially through passengers. The risk of African swine fever (ASF) introduction into Finland was tested with NORA for the situation in December 2015, when ASF was endemic in many parts of Russia, Africa and Sardinia and was present in Baltic countries and in Poland. African swine fever was assessed to have a high probability of entry into Finland, with high consequences and therefore a high overall risk. © 2017 Blackwell Verlag GmbH.

  1. Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors.

    PubMed

    Miguez, April M; McNerney, Monica P; Styczynski, Mark P

    2018-01-01

    Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.

  2. Nonstructural NSs protein of rift valley fever virus interacts with pericentromeric DNA sequences of the host cell, inducing chromosome cohesion and segregation defects.

    PubMed

    Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E

    2010-01-01

    Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.

  3. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling

    PubMed Central

    2013-01-01

    Backgroud Isatis indigotica is a widely used herb for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine (TCM). Various structural classes of compounds have been identified as effective ingredients. However, little is known at genetics level about these active metabolites. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset of I. indigotica. Results A database of 36,367 unigenes (average length = 1,115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, 104 unigenes were identified covering most of the catalytic steps in the general biosynthetic pathways of indole, terpenoid, and phenylpropanoid. Subsequently, the organ-specific expression patterns of the genes involved in these pathways, and their responses to methyl jasmonate (MeJA) induction, were investigated. Metabolites profile of effective phenylpropanoid showed accumulation pattern of secondary metabolites were mostly correlated with the transcription of their biosynthetic genes. According to the analysis of UDP-dependent glycosyltransferases (UGT) family, several flavonoids were indicated to exist in I. indigotica and further identified by metabolic profile using UPLC/Q-TOF. Moreover, applying transcriptome co-expression analysis, nine new, putative UGTs were suggested as flavonol glycosyltransferases and lignan glycosyltransferases. Conclusions This database provides a pool of candidate genes involved in biosynthesis of effective metabolites in I. indigotica. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb. PMID:24308360

  4. The induction of rho- mutants by UV or gamma-rays is independent of the nuclear recombinational repair pathway in Saccharomyces cerevisiae.

    PubMed

    Heude, M

    1988-09-01

    In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -52, -55 and -56 genes on the induction of rho- mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in gamma-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by gamma-rays. Such an impairment of the respiratory ability of diploids by chromosome losses was effectively observed in the aneuploid progeny of unirradiated RAD+ cdc6 diploids incubated at the restrictive temperature.

  5. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    PubMed

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transglutaminase induction by various cell death and apoptosis pathways.

    PubMed

    Fesus, L; Madi, A; Balajthy, Z; Nemes, Z; Szondy, Z

    1996-10-31

    Clarification of the molecular details of forms of natural cell death, including apoptosis, has become one of the most challenging issues of contemporary biomedical sciences. One of the effector elements of various cell death pathways is the covalent cross-linking of cellular proteins by transglutaminases. This review will discuss the accumulating data related to the induction and regulation of these enzymes, particularly of tissue type transglutaminase, in the molecular program of cell death. A wide range of signalling pathways can lead to the parallel induction of apoptosis and transglutaminase, providing a handle for better understanding the exact molecular interactions responsible for the mechanism of regulated cell death.

  7. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    PubMed

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  8. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system

    USDA-ARS?s Scientific Manuscript database

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. Howev...

  9. Induction of humoral immune response to multiple recombinant rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    USDA-ARS?s Scientific Manuscript database

    Background: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiologic agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect fee...

  10. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.

    PubMed

    Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga

    2015-03-16

    The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The influence of current and future climate on the spatial distribution of coccidioidomycosis in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Gorris, M. E.; Hoffman, F. M.; Zender, C. S.; Treseder, K. K.; Randerson, J. T.

    2017-12-01

    Coccidioidomycosis, otherwise known as valley fever, is an infectious fungal disease currently endemic to the southwestern U.S. The magnitude, spatial distribution, and seasonality of valley fever incidence is shaped by variations in regional climate. As such, climate change may cause new communities to become at risk for contracting this disease. Humans contract valley fever by inhaling fungal spores of the genus Coccidioides. Coccidioides grow in the soil as a mycelium, and when stressed, autolyze into spores 2-5 µm in length. Spores can become airborne from any natural or anthropogenic soil disturbance, which can be exacerbated by dry soil conditions. Understanding the relationship between climate and valley fever incidence is critical for future disease risk management. We explored several multivariate techniques to create a predictive model of county-level valley fever incidence throughout the southwestern U.S., including Arizona, California, New Mexico, Nevada, and Utah. We incorporated surface air temperature, precipitation, soil moisture, surface dust concentrations, leaf area index, and the amount of agricultural land, all of which influence valley fever incidence. A log-linear regression model that incorporated surface air temperature, soil moisture, surface dust concentration, and the amount of agricultural land explained 34% of the county-level variance in annual average valley fever incidence. We used this model to predict valley fever incidence for the Representative Concentration Pathway 8.5 using simulation output from the Community Earth System Model. In our analysis, we describe how regional hotspots of valley fever incidence may shift with sustained warming and drying in the southwestern U.S. Our predictive model of valley fever incidence may help mitigate future health impacts of valley fever by informing health officials and policy makers of the climate conditions suitable for disease outbreak.

  12. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers.

    PubMed

    Gale, Trevor V; Horton, Timothy M; Grant, Donald S; Garry, Robert F

    2017-09-01

    Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV) infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF), PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients.

  13. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers

    PubMed Central

    Gale, Trevor V.; Horton, Timothy M.; Grant, Donald S.

    2017-01-01

    Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV) infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF), PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients. PMID:28922385

  14. The impact of climate change on the epidemiology and control of Rift Valley fever.

    PubMed

    Martin, V; Chevalier, V; Ceccato, P; Anyamba, A; De Simone, L; Lubroth, J; de La Rocque, S; Domenech, J

    2008-08-01

    Climate change is likely to change the frequency of extreme weather events, such as tropical cyclones, floods, droughts and hurricanes, and may destabilise and weaken the ecosystem services upon which human society depends. Climate change is also expected to affect animal, human and plant health via indirect pathways: it is likely that the geography of infectious diseases and pests will be altered, including the distribution of vector-borne diseases, such as Rift Valley fever, yellow fever, malaria and dengue, which are highly sensitive to climatic conditions. Extreme weather events might then create the necessary conditions for Rift Valley fever to expand its geographical range northwards and cross the Mediterranean and Arabian seas, with an unexpected impact on the animal and human health of newly affected countries. Strengthening global, regional and national early warning systems is crucial, as are co-ordinated research programmes and subsequent prevention and intervention measures.

  15. Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses.

    PubMed

    Matsuwaki, Takashi; Shionoya, Kiseko; Ihnatko, Robert; Eskilsson, Anna; Kakuta, Shigeru; Dufour, Sylvie; Schwaninger, Markus; Waisman, Ari; Müller, Werner; Pinteaux, Emmanuel; Engblom, David; Blomqvist, Anders

    2017-11-01

    Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE 2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Long-term alterations in neuroimmune responses after neonatal exposure to lipopolysaccharide.

    PubMed

    Boissé, Lysa; Mouihate, Abdeslam; Ellis, Shaun; Pittman, Quentin J

    2004-05-26

    Fever is an integral part of the host's defense to infection that is orchestrated by the brain. A reduced febrile response is associated with reduced survival. Consequently, we have asked if early life immune exposure will alter febrile and neurochemical responses to immune stress in adulthood. Fourteen-day-old neonatal male rats were given Escherichia coli lipopolysaccharide (LPS) that caused either fever or hypothermia depending on ambient temperature. Control rats were given pyrogen-free saline. Regardless of the presence of neonatal fever, adult animals that had been neonatally exposed to LPS displayed attenuated fevers in response to intraperitoneal LPS but unaltered responses to intraperitoneal interleukin 1beta or intracerebroventricular prostaglandin E(2). The characteristic reduction in activity that accompanies fever was unaltered, however, as a function of neonatal LPS exposure. Treatment of neonates with an antigenically dissimilar LPS (Salmonella enteritidis) was equally effective in reducing adult responses to E. coli LPS, indicating an alteration in the innate immune response. In adults treated as neonates with LPS, basal levels of hypothalamic cyclooxygenase 2 (COX-2), determined by semiquantitative Western blot analysis, were significantly elevated compared with controls. In addition, whereas adult controls responded to LPS with the expected induction of COX-2, adults pretreated neonatally with LPS responded to LPS with a reduction in COX-2. Thus, neonatal LPS can alter CNS-mediated inflammatory responses in adult rats.

  17. Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents

    PubMed Central

    Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

    2007-01-01

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

  18. Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections.

    PubMed

    Scherer, Christina A; Magness, Charles L; Steiger, Kathryn V; Poitinger, Nicholas D; Caputo, Christine M; Miner, Douglas G; Winokur, Patricia L; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A; Gillham, Martha H; Haulman, N Jean; Stapleton, Jack T; Iadonato, Shawn P

    2007-08-29

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.

  19. [Regulation effects of short sunlight on two electron transport pathways in nectarine flower bud during dormancy induction].

    PubMed

    Li, Dong-Mei; Zhang, Hai-Sen; Tan, Qiu-Ping; Li, Ling; Yu, Qin; Gao, Dong-Sheng

    2011-11-01

    Taking the nectarine variety 'Shuguang' (Prunus persica var. nectariana cv. Shuguang) as test material, and by using respiration inhibitors KCN and SHAM, this paper studied the cytochrome electron transport pathway and the alternative respiration pathway in nectarine flower bud during dormancy induction under the effects of short sunlight. Both the total respiration rate (V(t)) and the cytochrome electron transport pathway respiration rate (rho' V(cyt)) presented double hump-shaped variation. Short sunlight brought the first-hump of V(t) and rho' V(cyt), forward and delayed the second-hump synchronously, inhibited the rho' V(cyt), but had no significant effects on the V(t). The capacity (V(alt)) and activity (rho V (alt)) of alternative respiration pathway also varied in double hump-shape, and the variation was basically in synchronous. Short sunlight made the first climax of V(alt) and rhoV(alt) advanced, but had little effects on the later period climax. The inhibition of cytochrome electron transport pathway and the enhancement of alternative respiration pathway were the important features of nectarine flower bud during dormancy induction, and according to the respective contributions of the two electron transport pathways to the total respiration rate, the cytochrome electron transport pathway was still the main pathway of electron transport, whereas the alternative respiration pathway played an auxiliary and branched role.

  20. Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats

    PubMed Central

    Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas

    2013-01-01

    Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270

  1. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    PubMed

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  2. Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever.

    PubMed

    Blohmke, Christoph J; Darton, Thomas C; Jones, Claire; Suarez, Nicolas M; Waddington, Claire S; Angus, Brian; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Kane, Leanne; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Duque-Correa, Maria A; Wright, James C; Roumeliotis, Theodoros I; Yu, Lu; Choudhary, Jyoti S; Mejias, Asuncion; Ramilo, Octavio; Shanyinde, Milensu; Sztein, Marcelo B; Kingsley, Robert A; Lockhart, Stephen; Levine, Myron M; Lynn, David J; Dougan, Gordon; Pollard, Andrew J

    2016-05-30

    Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. © 2016 Blohmke et al.

  3. Interferon-driven alterations of the host’s amino acid metabolism in the pathogenesis of typhoid fever

    PubMed Central

    Jones, Claire; Waddington, Claire S.; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Roumeliotis, Theodoros I.; Yu, Lu; Ramilo, Octavio; Sztein, Marcelo B.; Kingsley, Robert A.; Levine, Myron M.

    2016-01-01

    Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host–pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. PMID:27217537

  4. Expression of intra- and extracellular granzymes in patients with typhoid fever.

    PubMed

    de Jong, Hanna K; Garcia-Laorden, Maria Isabel; Hoogendijk, Arie J; Parry, Christopher M; Maude, Rapeephan R; Dondorp, Arjen M; Faiz, Mohammed Abul; van der Poll, Tom; Wiersinga, Willem Joost

    2017-07-01

    Typhoid fever, caused by the intracellular pathogen Salmonella (S.) enterica serovar Typhi, remains a major cause of morbidity and mortality worldwide. Granzymes are serine proteases promoting cytotoxic lymphocytes mediated eradication of intracellular pathogens via the induction of cell death and which can also play a role in inflammation. We aimed to characterize the expression of extracellular and intracellular granzymes in patients with typhoid fever and whether the extracellular levels of granzyme correlated with IFN-γ release. We analyzed soluble protein levels of extracellular granzyme A and B in healthy volunteers and patients with confirmed S. Typhi infection on admission and day of discharge, and investigated whether this correlated with interferon (IFN)-γ release, a cytokine significantly expressed in typhoid fever. The intracellular expression of granzyme A, B and K in subsets of lymphocytic cells was determined using flow cytometry. Patients demonstrated a marked increase of extracellular granzyme A and B in acute phase plasma and a correlation of both granzymes with IFN-γ release. In patients, lower plasma levels of granzyme B, but not granzyme A, were found at day of discharge compared to admission, indicating an association of granzyme B with stage of disease. Peripheral blood mononuclear cells of typhoid fever patients had a higher percentage of lymphocytic cells expressing intracellular granzyme A and granzyme B, but not granzyme K, compared to controls. The marked increase observed in extra- and intracellular levels of granzyme expression in patients with typhoid fever, and the correlation with stage of disease, suggests a role for granzymes in the host response to this disease.

  5. Expression of intra- and extracellular granzymes in patients with typhoid fever

    PubMed Central

    Garcia-Laorden, Maria Isabel; Hoogendijk, Arie J.; Parry, Christopher M.; Maude, Rapeephan R.; Dondorp, Arjen M.; Faiz, Mohammed Abul; van der Poll, Tom; Wiersinga, Willem Joost

    2017-01-01

    Background Typhoid fever, caused by the intracellular pathogen Salmonella (S.) enterica serovar Typhi, remains a major cause of morbidity and mortality worldwide. Granzymes are serine proteases promoting cytotoxic lymphocytes mediated eradication of intracellular pathogens via the induction of cell death and which can also play a role in inflammation. We aimed to characterize the expression of extracellular and intracellular granzymes in patients with typhoid fever and whether the extracellular levels of granzyme correlated with IFN-γ release. Methods and principal findings We analyzed soluble protein levels of extracellular granzyme A and B in healthy volunteers and patients with confirmed S. Typhi infection on admission and day of discharge, and investigated whether this correlated with interferon (IFN)-γ release, a cytokine significantly expressed in typhoid fever. The intracellular expression of granzyme A, B and K in subsets of lymphocytic cells was determined using flow cytometry. Patients demonstrated a marked increase of extracellular granzyme A and B in acute phase plasma and a correlation of both granzymes with IFN-γ release. In patients, lower plasma levels of granzyme B, but not granzyme A, were found at day of discharge compared to admission, indicating an association of granzyme B with stage of disease. Peripheral blood mononuclear cells of typhoid fever patients had a higher percentage of lymphocytic cells expressing intracellular granzyme A and granzyme B, but not granzyme K, compared to controls. Conclusion The marked increase observed in extra- and intracellular levels of granzyme expression in patients with typhoid fever, and the correlation with stage of disease, suggests a role for granzymes in the host response to this disease. PMID:28749963

  6. Involvement of matrix metalloproteinases in chronic Q fever.

    PubMed

    Jansen, A F M; Schoffelen, T; Textoris, J; Mege, J L; Bleeker-Rovers, C P; Roest, H I J; Wever, P C; Joosten, L A B; Netea, M G; van de Vosse, E; van Deuren, M

    2017-07-01

    Chronic Q fever is a persistent infection with the intracellular Gram-negative bacterium Coxiella burnetii, which can lead to complications of infected aneurysms. Matrix metalloproteinases (MMPs) cleave extracellular matrix and are involved in infections as well as aneurysms. We aimed to study the role of MMPs in the pathogenesis of chronic Q fever. We investigated gene expression of MMPs through microarray analysis and MMP production with ELISA in C. burnetii-stimulated peripheral blood mononuclear cells (PBMCs) of patients with chronic Q fever and healthy controls. Twenty single nucleotide polymorphisms (SNPs) of MMP and tissue inhibitor of MMP genes were genotyped in 139 patients with chronic Q fever and 220 controls with similar cardiovascular co-morbidity. Additionally, circulating MMPs levels in patients with chronic Q fever were compared with those in cardiovascular controls with and without a history of past Q fever. In healthy controls, the MMP pathway involving four genes (MMP1, MMP7, MMP10, MMP19) was significantly up-regulated in C. burnetii-stimulated but not in Escherichia coli lipopolysaccharide -stimulated PBMCs. Coxiella burnetii induced MMP-1 and MMP-9 production in PBMCs of healthy individuals (both p<0.001), individuals with past Q fever (p<0.05, p<0.01, respectively) and of patients with chronic Q fever (both p<0.001). SNPs in MMP7 (rs11568810) (p<0.05) and MMP9 (rs17576) (p<0.05) were more common in patients with chronic Q fever. Circulating MMP-7 serum levels were higher in patients with chronic Q fever (median 33.5 ng/mL, interquartile range 22.3-45.7 ng/mL) than controls (20.6 ng/mL, 15.9-33.8 ng/mL). Coxiella burnetii-induced MMP production may contribute to the development of chronic Q fever. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Identification and utility of innate immune system evasion mechanisms of ASFV.

    PubMed

    Correia, Sílvia; Ventura, Sónia; Parkhouse, Robert Michael

    2013-04-01

    The interferon (IFN) system is an early innate anti-virus host defense mechanism that takes place shortly after entry of the pathogen and long before the onset of adaptive immunity. Thus, African swine fever virus (ASFV), as an acute and persistent virus in pigs, is predicted to have evolved multiple genes for the manipulation and evasion of interferon. Although, ASFV is known to interfere with signaling pathways controlling the transcription of cytokines, surprisingly no individual virus gene manipulating the induction or impact of IFN has been described. Since an initial bioinformatics search of the ASFV genome failed to identify potential antagonists of the IFN response, our strategy was to functionally screen early expressed, "unassigned" ASFV genes without existing homologies, particularly from MGFs 360 and 530, in luciferase reporter assays for their inhibition of the induction and impact of IFN. Specifically, we used reporter plasmids containing the luciferase gene under the control of: (1) the IFN-β promoter, to screen for inhibition of induction of type I IFN stimulated by the addition of Poly(I:C); (2) the ISRE DNA elements, to screen for the inhibition of the impact of type I IFN; and (3) the GAS DNA elements to screen for the inhibition of the impact of type II IFN. Our initial experiments revealed six ASFV genes inhibiting one or more of the three luciferase assays. From these, we have selected a total of 3 genes for presentation. The ASFV A276R gene from MGF360 inhibited the induction of IFN-β via both the TLR3 and the cytosolic pathways, targeting IRF3, but not IRF7 or NF-κB. The ASFV A528R inhibited the induction of both NF-κB and IRF3 branches of the type I IFN induction signaling pathway and the impact of IFN response via both IFN type I and type II stimulation. The ASFV I329L gene is a functional viral TLR3 homologue inhibiting the induction of IFN at the level of TRIF. Thus, these genes reduce the IFN response by targeting different intracellular signaling intermediates. Their deletion from wild type virus may strengthen the host interferon response and so provide an attenuated form with more restricted virus spread after the initial infection, perhaps "buying" sufficient time to allow the development of a protective adaptive immune response. The demonstration of multiple ASFV genes for the evasion of IFN responses will demand technology to construct viruses with multiple gene deletions. An alternative would be a multigene DNA vaccine. Finally, our work clearly demonstrates that unassigned viral genes may be viewed as a repository of host evasion strategies, only identifiable through functional assays. These may be considered to be "ready-made tools" for the experimental manipulation of cell biology and immune responses in health and disease and, as proof of concept, we have constructed a T-cell restricted transgenic mouse expressing the ASFV gene A238L, a dual inhibitor of NF-κB and NFAT activation. The resulting T cell restricted A238L transgenic mice developed a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas. In contrast, transgenic mice similarly expressing a mutant A238L solely inhibiting transcription mediated by NF-κB were indistinguishable from wild type mice, suggesting a transgene-NFAT-dependent transformation. Elucidation of the molecular events associated with the development of this virus host evasion molecule induced tumor may clarify some mechanisms of tumorigenesis in general, and in the development of T cell acute lymphoblastic leukemia in particular. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Hexavalent Chromium Cr(VI) Up-Regulates COX-2 Expression through an NFκB/c-Jun/AP-1–Dependent Pathway

    PubMed Central

    Zuo, Zhenghong; Cai, Tongjian; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui

    2012-01-01

    Background: Hexavalent chromium [Cr(VI)] is recognized as a human carcinogen via inhalation. However, the molecular mechanisms by which Cr(VI) causes cancers are not well understood. Objectives: We evaluated cyclooxygenase-2 (COX-2) expression and the signaling pathway leading to this induction due to Cr(VI) exposure in cultured cells. Methods: We used the luciferase reporter assay and Western blotting to determine COX-2 induction by Cr(VI). We used dominant negative mutant, genetic knockout, gene knockdown, and chromatin immunoprecipitation approaches to elucidate the signaling pathway leading to COX-2 induction. Results: We found that Cr(VI) exposure induced COX-2 expression in both normal human bronchial epithelial cells and mouse embryonic fibroblasts in a concentration- and time-dependent manner. Deletion of IKKβ [inhibitor of transcription factor NFκB (IκB) kinase β; an upstream kinase responsible for nuclear factor κB (NFκB) activation] or overexpression of TAM67 (a dominant-negative mutant of c-Jun) dramatically inhibited the COX-2 induction due to Cr(VI), suggesting that both NFκB and c-Jun/AP-1 pathways were required for Cr(VI)-induced COX-2 expression. Our results show that p65 and c-Jun are two major components involved in NFκB and AP-1 activation, respectively. Moreover, our studies suggest crosstalk between NFκB and c-Jun/AP-1 pathways in cellular response to Cr(VI) exposure for COX-2 induction. Conclusion: We demonstrate for the first time that Cr(VI) is able to induce COX-2 expression via an NFκB/c-Jun/AP-1–dependent pathway. Our results provide novel insight into the molecular mechanisms linking Cr(VI) exposure to lung inflammation and carcinogenesis. PMID:22472290

  9. Update on the chemopreventive effects of ginger and its phytochemicals.

    PubMed

    Baliga, Manjeshwar Shrinath; Haniadka, Raghavendra; Pereira, Manisha Maria; D'Souza, Jason Jerome; Pallaty, Princy Louis; Bhat, Harshith P; Popuri, Sandhya

    2011-07-01

    The rhizomes of Zingiber officinale Roscoe (Zingiberaceae), commonly known as ginger, is one of the most widely used spice and condiment. It is also an integral part of many traditional medicines and has been extensively used in Chinese, Ayurvedic, Tibb-Unani, Srilankan, Arabic, and African traditional medicines, since antiquity, for many unrelated human ailments including common colds, fever, sore throats, vomiting, motion sickness, gastrointestinal complications, indigestion, constipation, arthritis, rheumatism, sprains, muscular aches, pains, cramps, hypertension, dementia, fever, infectious diseases, and helminthiasis. The putative active compounds are nonvolatile pungent principles, namely gingerols, shogaols, paradols, and zingerone. These compounds are some of the extensively studied phytochemicals and account for the antioxidant, anti-inflammatory, antiemetic, and gastroprotective activities. A number of preclinical investigations with a wide variety of assay systems and carcinogens have shown that ginger and its compounds possess chemopreventive and antineoplastic effects. A number of mechanisms have been observed to be involved in the chemopreventive effects of ginger. The cancer preventive activities of ginger are supposed to be mainly due to free radical scavenging, antioxidant pathways, alteration of gene expressions, and induction of apoptosis, all of which contribute towards decrease in tumor initiation, promotion, and progression. This review provides concise information from preclinical studies with both cell culture models and relevant animal studies by focusing on the mechanisms responsible for the chemopreventive action. The conclusion describes directions for future research to establish its activity and utility as a human cancer preventive and therapeutic drug. The above-mentioned mechanisms of ginger seem to be promising for cancer prevention; however, further clinical studies are warranted to assess the efficacy and safety of ginger.

  10. EVIDENCE FOR EGFR PATHWAY MEDIATION OF CLEFT PALATE INDUCTION BY TCDD

    EPA Science Inventory

    EVIDENCE FOR EGFR PATHWAY MEDIATION OF CLEFT PALATE INDUCTION BY TCDD. B D Abbott, A R Buckalew, and K E Leffler. RTD, NHEERL, ORD,US EPA, RTP, NC, USA.

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in C57BL/6J mice, producing cleft palate (CP) after exposure...

  11. The Alternative Epac/cAMP Pathway and the MAPK Pathway Mediate hCG Induction of Leptin in Placental Cells

    PubMed Central

    Maymó, Julieta Lorena; Pérez Pérez, Antonio; Maskin, Bernardo; Dueñas, José Luis; Calvo, Juan Carlos; Sánchez Margalet, Víctor; Varone, Cecilia Laura

    2012-01-01

    Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway. PMID:23056265

  12. Birth of a normal child after in vitro fertilization treatment followed by dengue fever.

    PubMed

    Geber, Selmo; Coimbra, Bruna Barbosa; Geber, Guilherme Primo; Sampaio, Marcos

    2014-11-01

    Dengue is a serious public health issue due to its escalating aspect. It is also not yet established whether dengue has any impact on the outcome of assisted reproductive technique for infertility treatments. To our knowledge there are no published data in this subject. Therefore we describe a successful case of birth after in vitro fertilization (IVF) followed by dengue fever. A couple with primary unexplained infertility was submitted to IVF. The patient was submitted to ovulation induction with long protocol. A total of 12 oocytes were retrieved and two embryos were transferred. On the evening of the embryo transfer the patient started with headache and retro-orbital pain, followed by fever and nausea. Two days later she started with vomiting and diarrhea and epistaxis. The tourniquet test was positive. After patient's exams showed hemoconcentration and low platelet count (<50,000/mm(3)) the diagnosis of dengue hemorrhagic fever was confirmed and she was hospitalized and parenterally hydrated. As there was a good response to treatment, the patient was discharged the next day. A serum βhCG concentration 14 days after oocyte retrieval was positive. A healthy infant was born at the thirty-ninth gestational week by cesarean section. To our knowledge this is the first successful case reported on a patient who had dengue fever immediately after embryo transfer in an IVF treatment cycle. As dengue becomes a public health problem, it is important to bring attention to the subject.

  13. Serum Metabolomic Profiling of Piglets Infected with Virulent Classical Swine Fever Virus

    PubMed Central

    Gong, Wenjie; Jia, Junjie; Zhang, Bikai; Mi, Shijiang; Zhang, Li; Xie, Xiaoming; Guo, Huancheng; Shi, Jishu; Tu, Changchun

    2017-01-01

    Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and β-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF. PMID:28496435

  14. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    PubMed Central

    Schüller, C; Brewster, J L; Alexander, M R; Gustin, M C; Ruis, H

    1994-01-01

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress. Images PMID:7523111

  15. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    PubMed

    Schüller, C; Brewster, J L; Alexander, M R; Gustin, M C; Ruis, H

    1994-09-15

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress.

  16. Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus.

    PubMed

    Reis, Ana Luisa; Netherton, Chris; Dixon, Linda K

    2017-03-15

    African swine fever is an acute hemorrhagic disease of pigs. Extensive recent spread in the Russian Federation and Eastern Europe has increased the risk to global pig production. The virus is a large DNA virus and is the only member of the Asfarviridae family. In pigs, the virus replicates predominantly in macrophages. We review how the virus overcomes the barriers to replication in the macrophage and the virus mechanism to inhibit key host defense pathways. Copyright © 2017 American Society for Microbiology.

  17. Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways

    PubMed Central

    Shore, David E.; Carr, Christopher E.; Ruvkun, Gary

    2012-01-01

    Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors. PMID:22829775

  18. Endogenous opioids: role in prostaglandin-dependent and -independent fever.

    PubMed

    Fraga, Daniel; Machado, Renes R; Fernandes, Luíz C; Souza, Glória E P; Zampronio, Aleksander R

    2008-02-01

    This study evaluated the participation of mu-opioid-receptor activation in body temperature (T(b)) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic d-Phe-Cys-Try-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP; 0.1-1.0 microg) reduced fever induced by LPS (5.0 microg/kg) but did not change T(b) at ambient temperatures of either 20 degrees C or 28 degrees C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0-10.0 mg/kg, 3.0-30.0 microg, and 1-100 ng, respectively) produced a dose-dependent increase in T(b). Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 microg icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 microg), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2alpha) (500.0 ng) but not the fever induced by IL-1beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE(2) levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.

  19. Bacteraemia caused by Sciscionella marina in a lymphoma patient: phenotypically mimicking Nocardia.

    PubMed

    Sinha, M; Shivaprakash, M R; Chakrabarti, A; Shafiulla, M; Babu, K G; Jayshree, R S

    2013-06-01

    A 55-year-old female patient with malignant lymphoma after induction chemotherapy developed fever. Blood culture yielded an organism biochemically identified as representing Nocardia spp., but molecular identification (16S rRNA gene sequencing) later identified it as representing Sciscionella marina. This is the first report, to the best of our knowledge, of Sciscionella being isolated from a human sample.

  20. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses.

    PubMed

    Chang, Jinhong; Warren, Travis K; Zhao, Xuesen; Gill, Tina; Guo, Fang; Wang, Lijuan; Comunale, Mary Ann; Du, Yanming; Alonzi, Dominic S; Yu, Wenquan; Ye, Hong; Liu, Fei; Guo, Ju-Tao; Mehta, Anand; Cuconati, Andrea; Butters, Terry D; Bavari, Sina; Xu, Xiaodong; Block, Timothy M

    2013-06-01

    Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Intrahypothalamic Injection of the HIV-1 Envelope Glycoprotein Induces Fever via Interaction with the Chemokine System

    PubMed Central

    Addou, Saad; Yondorf, Menachem; Geller, Ellen B.; Eisenstein, Toby K.; Adler, Martin W.

    2010-01-01

    Wasting syndrome is a common complication of HIV infection and is marked by progressive weight loss and weakness, often associated with fever. The mechanisms involved in the pathogenesis of these syndromes are not well defined, and neither are the brain areas involved. The present study tests a new hypothesis: that the preoptic anterior hypothalamus (POAH), the main brain area for thermoregulation and fever, has a role in the pathogenesis of fever induced by glycoprotein 120 (gp120), the surface envelope protein used by the HIV to gain access into immune cells, and that the CXC chemokine receptors (CXCR4) that serve as a coreceptor for HIV entry mediate the effect. A sterilized stainless steel C313G cannula guide was implanted into the POAH, and a biotelemetry system was used to monitor the body temperature (Tb) changes. The administration of gp120 into the POAH induced fever in a dose-dependent manner. To demonstrate possible links between the gp120 and CXCR4 in generating the fever, we pretreated the rats with 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] octohydrobromide dihydrate (AMD 3100), an antagonist of stromal cell-derived growth factor (SDF)-1α/CXCL12, acting at its receptor, CXCR4, 30 min before administration of gp120. AMD 3100 significantly reduced the gp120-induced fever. The present studies show that the presence of HIV-1 envelope glycoprotein gp120 in the POAH provokes fever via interaction CXCR4 pathway. PMID:19906780

  2. The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus.

    PubMed

    Urata, Shuzo; Uno, Yukiko; Kurosaki, Yohei; Yasuda, Jiro

    2018-06-12

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high mortality rate. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV infection. Here, we report that the cholesterol, fatty acid, and triglyceride synthesis pathways regulated by S1P is involved in SFTSV replication, using CHO-K1 cell line (SRD-12B) that is deficient in site 1 protease (S1P) enzymatic activity, PF-429242, a small compound targeting S1P enzymatic activity, and Fenofibrate and Lovastatin, which inhibit triglyceride and cholesterol synthesis, respectively. These results enhance our understanding of the SFTSV replication mechanism and may contribute to the development of novel therapies for SFTSV infection. Copyright © 2018. Published by Elsevier Inc.

  3. Molecular pathogenesis of viral hemorrhagic fever.

    PubMed

    Basler, Christopher F

    2017-07-01

    The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused by several different families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses, and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma volume, coagulation abnormalities, and varying degrees of hemorrhage. Study of the filovirus Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral pathogenesis. Additionally, antigen-presenting cells are targets of productive infection and immune dysregulation. Among these cell populations, monocytes and macrophages are proposed to produce damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. However, the specific molecular pathways that underlie these features of VHF remain poorly understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate models that closely mimic VHF are available for Ebola, Lassa, and yellow fever viruses, we propose that comparative molecular studies using these models will yield new insights into the molecular underpinnings of VHF and suggest new therapeutic approaches.

  4. CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-γ at 5-7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses.

    PubMed

    Neves, Patrícia C C; Rudersdorf, Richard A; Galler, Ricardo; Bonaldo, Myrna C; de Santana, Marlon Gilsepp Veloso; Mudd, Philip A; Martins, Maurício A; Rakasz, Eva G; Wilson, Nancy A; Watkins, David I

    2010-11-29

    The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (days 5-7) before the development of classical antigen-specific CD8(+) and CD4(+) T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post-vaccination activated CD8(+) gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4(+) T cells produced IFN-γ and TNF-α at day 7 post-vaccination. This early IFN-γ production was also induced after vaccination with recombinant YF-17D (rYF-17D), but was not observed after recombinant Adenovirus type 5 (rAd5) vaccination. Early IFN-γ production, therefore, might be an important aspect of yellow fever vaccination. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The contribution of c-Jun N-terminal kinase activation and subsequent Bcl-2 phosphorylation to apoptosis induction in human B-cells is dependent on the mode of action of specific stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscarella, Donna E.; Bloom, Stephen E.

    2008-04-01

    The c-Jun N-terminal kinase (JNK) pathway can play paradoxical roles as either a pro-survival or a pro-cell death pathway depending on type of stress and cell type. The goal of the present study was to determine the role of JNK pathway signaling for regulating B-cell apoptosis in two important but contrasting situations-global proteotoxic damage, induced by arsenite and hyperthermia, versus specific microtubule inhibition, induced by the anti-cancer drug vincristine, using the EW36 B-cell line. This cell line over-expresses the Bcl-2 protein and is a useful model to identify treatments that can overcome multi-drug resistance in lymphoid cells. Exposure of EW36more » B-cells to arsenite or lethal hyperthermia resulted in activation of the JNK pathway and induction of apoptosis. However, pharmacological inhibition of the JNK pathway did not inhibit apoptosis, indicating that JNK pathway activation is not required for apoptosis induction by these treatments. In contrast, vincristine treatment of EW36 B-cells resulted in JNK activation and apoptosis that was suppressed by JNK inhibition. A critical difference between the two types of stress treatments was that only vincristine-induced JNK activation resulted in phosphorylation of Bcl-2 at threonine-56, a modification that can block its anti-apoptotic function. Importantly, Bcl-2 phosphorylation was attenuated by JNK inhibition implicating JNK as the upstream kinase. Furthermore, arsenite and hyperthermia treatments activated a p53/p21 pathway associated with apoptosis induction, whereas vincristine did not activate this pathway. These results reveal two stress-activated pathways, one JNK-dependent and another JNK-independent, either of which can bypass Bcl-2 mediated resistance, resulting in cell death.« less

  6. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever.

    PubMed

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended.

  7. Modulation of p53 cellular function and cell death by African swine fever virus.

    PubMed

    Granja, Aitor G; Nogal, María L; Hurtado, Carolina; Salas, José; Salas, María L; Carrascosa, Angel L; Revilla, Yolanda

    2004-07-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.

  8. Modulation of p53 Cellular Function and Cell Death by African Swine Fever Virus

    PubMed Central

    Granja, Aitor G.; Nogal, María L.; Hurtado, Carolina; Salas, José; Salas, María L.; Carrascosa, Angel L.; Revilla, Yolanda

    2004-01-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells. PMID:15194793

  9. A review of the evidence for use of thymoglobulin induction in renal transplantation.

    PubMed

    Gaber, A Osama; Knight, R J; Patel, S; Gaber, L W

    2010-06-01

    Depleting antilymphocyte, or antithymocyte antibodies, have long been an integral part of induction regimens and continue today to be used in the management of patients at risk of early rejection or those in whom the introduction of calcineurins or other immune suppressants must be delayed. Registry data demonstrate that the most commonly used depleting antibody, rabbit anti-human thymocyte globulin (rATG), is associated with improved outcomes following renal transplantation in high-risk patients, particularly in conjunction with steroid-avoidance regimens. Two prospective randomized trials in high-risk renal allograft patients have also demonstrated an advantage of r-ATG induction compared to the nondepleting interleukin receptor (IL2RA) antibodies. In low-immunologic-risk patients, however, r-ATG induction and IL2RA induction appear to be equivalent in terms of rejection prophylaxis and long-term function. Other studies have shown that sequential rATG-containing regimens were superior to no induction and allowed for successful late introduction of calcineurin inhibitors. The side effect profile of the depleting antibody included increased incidence of fever, hematologic abnormalities, cytomegalovirus infections when prophylaxis was not employed, and in some studies, increased incidence of posttransplant lymphoproliferative disease. This review describes the evidence supporting the use of depleting ATGs in kidney transplantation.

  10. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  11. Production of Mice Deficient in Genes for Interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 Receptor Antagonist Shows that IL-1β Is Crucial in Turpentine-induced Fever Development and Glucocorticoid Secretion

    PubMed Central

    Horai, Reiko; Asano, Masahide; Sudo, Katsuko; Kanuka, Hirotaka; Suzuki, Masatoshi; Nishihara, Masugi; Takahashi, Michio; Iwakura, Yoichiro

    1998-01-01

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1α/β doubly deficient (KO) mice together with mice deficient in either the IL-1α, IL-1β, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1β as well as IL-1α/β KO mice, but not in IL-1α KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1β mRNA in the diencephalon decreased 1.5-fold in IL-1α KO mice, whereas expression of IL-1α mRNA decreased >30-fold in IL-1β KO mice, suggesting mutual induction between IL-1α and IL-1β. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1β KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1β but not IL-1α KO mice. These observations suggest that IL-1β but not IL-1α is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1α expression in the brain is dependent on IL-1β. The importance of IL-1ra both in normal physiology and under stress is also suggested. PMID:9565638

  12. Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion.

    PubMed

    Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y

    1998-05-04

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.

  13. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling.

    PubMed

    Zhao, Yingxin; Valbuena, Gustavo; Walker, David H; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R

    2016-01-01

    Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.

    PubMed

    Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D

    2017-07-01

    The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.

  15. Modular framework to assess the risk of African swine fever virus entry into the European Union.

    PubMed

    Mur, Lina; Martínez-López, Beatriz; Costard, Solenne; de la Torre, Ana; Jones, Bryony A; Martínez, Marta; Sánchez-Vizcaíno, Fernando; Muñoz, María Jesús; Pfeiffer, Dirk U; Sánchez-Vizcaíno, José Manuel; Wieland, Barbara

    2014-07-03

    The recent occurrence and spread of African swine fever (ASF) in Eastern Europe is perceived as a serious risk for the pig industry in the European Union (EU). In order to estimate the potential risk of ASF virus (ASFV) entering the EU, several pathways of introduction were previously assessed separately. The present work aimed to integrate five of these assessments (legal imports of pigs, legal imports of products, illegal imports of products, fomites associated with transport and wild boar movements) into a modular tool that facilitates the visualization and comprehension of the relative risk of ASFV introduction into the EU by each analyzed pathway. The framework's results indicate that 48% of EU countries are at relatively high risk (risk score 4 or 5 out of 5) for ASFV entry for at least one analyzed pathway. Four of these countries obtained the maximum risk score for one pathway: Bulgaria for legally imported products during the high risk period (HRP); Finland for wild boar; Slovenia and Sweden for legally imported pigs during the HRP. Distribution of risk considerably differed from one pathway to another; for some pathways, the risk was concentrated in a few countries (e.g., transport fomites), whereas other pathways incurred a high risk for 4 or 5 countries (legal pigs, illegal imports and wild boar). The modular framework, developed to estimate the risk of ASFV entry into the EU, is available in a public domain, and is a transparent, easy-to-interpret tool that can be updated and adapted if required. The model's results determine the EU countries at higher risk for each ASFV introduction route, and provide a useful basis to develop a global coordinated program to improve ASFV prevention in the EU.

  16. Modular framework to assess the risk of African swine fever virus entry into the European Union

    PubMed Central

    2014-01-01

    Background The recent occurrence and spread of African swine fever (ASF) in Eastern Europe is perceived as a serious risk for the pig industry in the European Union (EU). In order to estimate the potential risk of ASF virus (ASFV) entering the EU, several pathways of introduction were previously assessed separately. The present work aimed to integrate five of these assessments (legal imports of pigs, legal imports of products, illegal imports of products, fomites associated with transport and wild boar movements) into a modular tool that facilitates the visualization and comprehension of the relative risk of ASFV introduction into the EU by each analyzed pathway. Results The framework’s results indicate that 48% of EU countries are at relatively high risk (risk score 4 or 5 out of 5) for ASFV entry for at least one analyzed pathway. Four of these countries obtained the maximum risk score for one pathway: Bulgaria for legally imported products during the high risk period (HRP); Finland for wild boar; Slovenia and Sweden for legally imported pigs during the HRP. Distribution of risk considerably differed from one pathway to another; for some pathways, the risk was concentrated in a few countries (e.g., transport fomites), whereas other pathways incurred a high risk for 4 or 5 countries (legal pigs, illegal imports and wild boar). Conclusions The modular framework, developed to estimate the risk of ASFV entry into the EU, is available in a public domain, and is a transparent, easy-to-interpret tool that can be updated and adapted if required. The model’s results determine the EU countries at higher risk for each ASFV introduction route, and provide a useful basis to develop a global coordinated program to improve ASFV prevention in the EU. PMID:24992824

  17. The ubiquitin-proteasome system is required for African swine fever replication.

    PubMed

    Barrado-Gil, Lucía; Galindo, Inmaculada; Martínez-Alonso, Diego; Viedma, Sergio; Alonso, Covadonga

    2017-01-01

    Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.

  18. Intact interferon-γ response against Coxiella burnetii by peripheral blood mononuclear cells in chronic Q fever.

    PubMed

    Schoffelen, T; Textoris, J; Bleeker-Rovers, C P; Ben Amara, A; van der Meer, J W M; Netea, M G; Mege, J-L; van Deuren, M; van de Vosse, E

    2017-03-01

    Q fever is caused by Coxiella burnetii, an intracellular bacterium that infects phagocytes. The aim of the present study was to investigate whether the C. burnetii-induced IFN-γ response is defective in chronic Q fever patients. IFN-γ was measured in supernatants of C. burnetii-stimulated peripheral blood mononuclear cells (PBMCs) of 17 chronic Q fever patients and 17 healthy individuals. To assess IFN-γ responses, expression profiles of IFN-γ-induced genes in C. burnetii-stimulated PBMCs were studied in six patients and four healthy individuals. Neopterin was measured in PBMC supernatants (of eight patients and four healthy individuals) and in sera (of 21 patients and 11 healthy individuals). In a genetic association study, polymorphisms in genes involved in the Th1-cytokine response were analysed in a cohort of 139 chronic Q fever patients and a cohort of 220 control individuals with previous exposition to C. burnetii. IFN-γ production by C. burnetii-stimulated PBMCs from chronic Q fever patients was significantly higher than in healthy controls. Many IFN-γ response genes were strongly upregulated in PBMCs of patients. Neopterin levels were significantly higher in PBMC supernatants and sera of patients. The IL12B polymorphisms rs3212227 and rs2853694 were associated with chronic Q fever. IFN-γ production, as well as the response to IFN-γ, is intact in chronic Q fever patients, and even higher than in healthy individuals. Polymorphisms in the IL-12p40 gene are associated with chronic Q fever. Thus, a deficiency in IFN-γ responses does not explain the failure to clear the infection. The genetic data suggest, however, that the IL-12/IFN-γ pathway does play a role. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Martin, Cameron L; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R; Mwangi, Duncan; Dominowski, Paul J; Foss, Dennis L; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2016-11-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ + ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Martin, Cameron L.; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R.; Mwangi, Duncan; Dominowski, Paul J.; Foss, Dennis L.; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John

    2016-01-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ+) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. PMID:27628166

  1. A Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus Infection.

    PubMed

    Harmon, Brooke; Bird, Sara W; Schudel, Benjamin R; Hatch, Anson V; Rasley, Amy; Negrete, Oscar A

    2016-08-15

    Rift Valley fever virus (RVFV) is an arbovirus within the Bunyaviridae family capable of causing serious morbidity and mortality in humans and livestock. To identify host factors involved in bunyavirus replication, we employed genome-wide RNA interference (RNAi) screening and identified 381 genes whose knockdown reduced infection. The Wnt pathway was the most represented pathway when gene hits were functionally clustered. With further investigation, we found that RVFV infection activated Wnt signaling, was enhanced when Wnt signaling was preactivated, was reduced with knockdown of β-catenin, and was blocked using Wnt signaling inhibitors. Similar results were found using distantly related bunyaviruses La Crosse virus and California encephalitis virus, suggesting a conserved role for Wnt signaling in bunyaviral infection. We propose a model where bunyaviruses activate Wnt-responsive genes to regulate optimal cell cycle conditions needed to promote efficient viral replication. The findings in this study should aid in the design of efficacious host-directed antiviral therapeutics. RVFV is a mosquito-borne bunyavirus that is endemic to Africa but has demonstrated a capacity for emergence in new territories (e.g., the Arabian Peninsula). As a zoonotic pathogen that primarily affects livestock, RVFV can also cause lethal hemorrhagic fever and encephalitis in humans. Currently, there are no treatments or fully licensed vaccines for this virus. Using high-throughput RNAi screening, we identified canonical Wnt signaling as an important host pathway regulating RVFV infection. The beneficial role of Wnt signaling was observed for RVFV, along with other disparate bunyaviruses, indicating a conserved bunyaviral replication mechanism involving Wnt signaling. These studies supplement our knowledge of the fundamental mechanisms of bunyavirus infection and provide new avenues for countermeasure development against pathogenic bunyaviruses. Copyright © 2016 Harmon et al.

  2. A genome-wide RNA interference screen identifies a role for Wnt/β-catenin signaling during Rift Valley Fever Virus infection

    DOE PAGES

    Harmon, Brooke; Bird, Sara W.; Schudel, Benjamin R.; ...

    2016-05-25

    Rift Valley fever virus (RVFV) is an arbovirus within the Bunyaviridae family capable of causing serious morbidity and mortality in humans and livestock. To identify host factors involved in bunyavirus replication, we employed genome-wide RNA interference (RNAi) screening and identified 381 genes whose knockdown reduced infection. The Wnt pathway was the most represented pathway when gene hits were functionally clustered. With further investigation, we found that RVFV infection activated Wnt signaling, was enhanced when Wnt signaling was preactivated, was reduced with knockdown of β-catenin, and was blocked using Wnt signaling inhibitors. Similar results were found using distantly related bunyaviruses Lamore » Crosse virus and California encephalitis virus, suggesting a conserved role for Wnt signaling in bunyaviral infection. We propose a model where bunyaviruses activate Wnt-responsive genes to regulate optimal cell cycle conditions needed to promote efficient viral replication. The findings in this study should aid in the design of efficacious host-directed antiviral therapeutics. IMPORTANCE RVFV is a mosquito-borne bunyavirus that is endemic to Africa but has demonstrated a capacity for emergence in new territories (e.g., the Arabian Peninsula). As a zoonotic pathogen that primarily affects livestock, RVFV can also cause lethal hemorrhagic fever and encephalitis in humans. Currently, there are no treatments or fully licensed vaccines for this virus. Using high-throughput RNAi screening, we identified canonical Wnt signaling as an important host pathway regulating RVFV infection. The beneficial role of Wnt signaling was observed for RVFV, along with other disparate bunyaviruses, indicating a conserved bunyaviral replication mechanism involving Wnt signaling. Lastly, these studies supplement our knowledge of the fundamental mechanisms of bunyavirus infection and provide new avenues for countermeasure development against pathogenic bunyaviruses.« less

  3. A genome-wide RNA interference screen identifies a role for Wnt/β-catenin signaling during Rift Valley Fever Virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Brooke; Bird, Sara W.; Schudel, Benjamin R.

    Rift Valley fever virus (RVFV) is an arbovirus within the Bunyaviridae family capable of causing serious morbidity and mortality in humans and livestock. To identify host factors involved in bunyavirus replication, we employed genome-wide RNA interference (RNAi) screening and identified 381 genes whose knockdown reduced infection. The Wnt pathway was the most represented pathway when gene hits were functionally clustered. With further investigation, we found that RVFV infection activated Wnt signaling, was enhanced when Wnt signaling was preactivated, was reduced with knockdown of β-catenin, and was blocked using Wnt signaling inhibitors. Similar results were found using distantly related bunyaviruses Lamore » Crosse virus and California encephalitis virus, suggesting a conserved role for Wnt signaling in bunyaviral infection. We propose a model where bunyaviruses activate Wnt-responsive genes to regulate optimal cell cycle conditions needed to promote efficient viral replication. The findings in this study should aid in the design of efficacious host-directed antiviral therapeutics. IMPORTANCE RVFV is a mosquito-borne bunyavirus that is endemic to Africa but has demonstrated a capacity for emergence in new territories (e.g., the Arabian Peninsula). As a zoonotic pathogen that primarily affects livestock, RVFV can also cause lethal hemorrhagic fever and encephalitis in humans. Currently, there are no treatments or fully licensed vaccines for this virus. Using high-throughput RNAi screening, we identified canonical Wnt signaling as an important host pathway regulating RVFV infection. The beneficial role of Wnt signaling was observed for RVFV, along with other disparate bunyaviruses, indicating a conserved bunyaviral replication mechanism involving Wnt signaling. Lastly, these studies supplement our knowledge of the fundamental mechanisms of bunyavirus infection and provide new avenues for countermeasure development against pathogenic bunyaviruses.« less

  4. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    PubMed

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  5. Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model

    PubMed Central

    Cao, Chunxiang; Xu, Min; Pandit, Shreejana

    2018-01-01

    Both the number of cases of dengue fever and the areas of outbreaks within Nepal have increased significantly in recent years. Further expansion and range shift is expected in the future due to global climate change and other associated factors. However, due to limited spatially-explicit research in Nepal, there is poor understanding about the present spatial distribution patterns of dengue risk areas and the potential range shift due to future climate change. In this context, it is crucial to assess and map dengue fever risk areas in Nepal. Here, we used reported dengue cases and a set of bioclimatic variables on the MaxEnt ecological niche modeling approach to model the climatic niche and map present and future (2050s and 2070s) climatically suitable areas under different representative concentration pathways (RCP2.6, RCP6.0 and RCP8.5). Simulation-based estimates suggest that climatically suitable areas for dengue fever are presently distributed throughout the lowland Tarai from east to west and in river valleys at lower elevations. Under the different climate change scenarios, these areas will be slightly shifted towards higher elevation with varied magnitude and spatial patterns. Population exposed to climatically suitable areas of dengue fever in Nepal is anticipated to further increase in both 2050s and 2070s on all the assumed emission scenarios. These findings could be instrumental to plan and execute the strategic interventions for controlling dengue fever in Nepal. PMID:29360797

  6. Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones

    PubMed Central

    Papazisi, Leka; Ratnayake, Shashikala; Remortel, Brian G.; Bock, Geoffrey R.; Liang, Wei; Saeed, Alexander I.; Liu, Jia; Fleischmann, Robert D.; Kilian, Mogens; Peterson, Scott N.

    2010-01-01

    Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of H. influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants. PMID:20654709

  7. TAK-242 treatment ameliorates liver ischemia/reperfusion injury by inhibiting TLR4 signaling pathway in a swine model of Maastricht-category-III cardiac death.

    PubMed

    Shao, Zigong; Jiao, Baoping; Liu, Tingting; Cheng, Ying; Liu, Hao; Liu, Yongfeng

    2016-12-01

    This study aims to test the effects of TAK-242 on liver transplant viability in a model of swine Maastricht-category-III cardiac death. A swine DCD Maastricht-III model of cardiac death was established, and TAK-242 was administered prior to the induction of cardiac death. The protein and mRNA level of TLR4 signaling pathway molecules and cytokines that are important in mediating immune and inflammatory responses were assessed at different time points following the induction of cardiac death. After induction of cardiac death, both the mRNA and protein levels of key molecules (TLR4, TRAF6, NF-ϰB, ICAM-1, MCP-1 and MPO), TNF-α and IL-6 increased significantly. Infusion of TAK-242 1h before induction of cardiac death blocked the increase of immune and inflammatory response molecules. However, the increase of TLR4 level was not affected by infusion of TAK-242. Histology study showed that infusion of TAK-242 protect liver tissue from damage during cardiac death. These results indicates that TLR4 signaling pathway may contribute to ischemia/reperfusion injury in the liver grafts, and blocking TLR4 pathway with TAk-242 may reduce TLR4-mediated tissue damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Protective Role of Cytotoxic T Lymphocytes in Filovirus Hemorrhagic Fever

    PubMed Central

    Warfield, Kelly Lyn; Olinger, Gene Garrard

    2011-01-01

    Infection with many emerging viruses, such as the hemorrhagic fever disease caused by the filoviruses, Marburg (MARV), and Ebola virus (EBOV), leaves the host with a short timeframe in which to mouse a protective immune response. In lethal cases, uncontrolled viral replication and virus-induced immune dysregulation are too severe to overcome, and mortality is generally associated with a lack of notable immune responses. Vaccination studies in animals have demonstrated an association of IgG and neutralizing antibody responses against the protective glycoprotein antigen with survival from lethal challenge. More recently, studies in animal models of filovirus hemorrhagic fever have established that induction of a strong filovirus-specific cytotoxic T lymphocyte (CTL) response can facilitate complete viral clearance. In this review, we describe assays used to discover CTL responses after vaccination or live filovirus infection in both animal models and human clinical trials. Unfortunately, little data regarding CTL responses have been collected from infected human survivors, primarily due to the low frequency of disease and the inability to perform these studies in the field. Advancements in assays and technologies may allow these studies to occur during future outbreaks. PMID:22253531

  9. The Characteristic of S100A7 Induction by the Hippo-YAP Pathway in Cervical and Glossopharyngeal Squamous Cell Carcinoma.

    PubMed

    Kong, Fei; Li, Yunguang; Hu, Enze; Wang, Rui; Wang, Junhao; Liu, Jin; Zhang, Jinsan; He, Dacheng; Xiao, Xueyuan

    2016-01-01

    S100A7 is expressed in many squamous cell carcinomas (SCCs). Our previous study revealed that S100A7 was dramatically induced in several SCC cells and activation of the Hippo pathway significantly promoted S100A7 in epidermoid carcinoma cells. However, whether the Hippo pathway regulates S100A7 expression in SCCs remains largely unknown. Here, we uncover that S100A7 induction by the Hippo-YAP pathway displays different characteristic in cervical and glossopharyngeal SCC. In well differentiated HCC94 cervical cells and FaDu pharyngeal cells, S100A7 is easily induced by both suspension and dense culture, which is accompanied by an increase in YAP phosphorylation and a decrease in nuclear YAP. Strikingly, these correlations of S100A7 and YAP reverse after recovery of cell attachment or relief from dense culture. Further examination finds that S100A7 induction is significantly repressed by nuclear YAP, which is validated by activation or inhibition of the Hippo pathway via loss- and/or gain-of- LATS1 and MST1 function. Subsequently, we prove that TEAD1 is required for YAP transcriptional repression of S100A7. However, S100A7 is hardly induced in poorly differentiated SiHa cervical cells and NCI-H226 pulmonary cells even in suspension or activation of the Hippo pathway. More importantly, cervical and lingual SCC tissues array analyses show that S100A7 expression displays the positive correlation with pYAP-S127 and the negative correlation with nuclear YAP in the majority of well differentiated but not in poorly differentiated tissues. Collectively, our findings demonstrate that the different induction of S100A7 toward activation of the Hippo pathway mainly depends on the degree of cell differentiation in cervical and glossopharyngeal SCC.

  10. Multicenter phase II study of weekly docetaxel, cisplatin, and S-1 (TPS) induction chemotherapy for locally advanced squamous cell cancer of the head and neck.

    PubMed

    Bae, Woo Kyun; Hwang, Jun Eul; Shim, Hyun Jeong; Cho, Sang Hee; Lee, Ki Hyeong; Han, Hye Suk; Song, Eun-Kee; Yun, Hwan Jung; Cho, In Sung; Lee, Joon Kyoo; Lim, Sang-Chul; Chung, Woong-Ki; Chung, Ik-Joo

    2013-03-06

    The purpose of this study was to evaluate the efficacy and tolerability of weekly docetaxel, cisplatin, and S-1 (weekly TPS) as induction chemotherapy for patients with locally advanced head and neck squamous cell carcinoma (HNSCC). A total of 35 patients with previously untreated, locally advanced HNSCC were enrolled. Seven patients (20%) were diagnosed with stage III HNSCC and 28 patients (80%) were diagnosed with stage IV. Induction treatment included 30 mg/m(2) docetaxel on day 1 and 8, 60 mg/m(2) cisplatin on day 1, and 70 mg/m(2) S-1 on days 1 to 14. The regimen was repeated every 21 days. After three courses of induction chemotherapy, patients received concurrent chemoradiotherapy. Among the 35 patients, 30 (85.7%) completed induction chemotherapy. The response to induction chemotherapy was as follows: nine patients (25.7%) achieved a complete response (CR) and the overall response rate (ORR) was 85.7%. Grades 3-4 toxicity during induction therapy included neutropenia (28.5%), neutropenic fever (8.5%), and diarrhea (17.1%). After completion of concurrent chemoradiotherapy, the CR rate was 62.8% and the partial response (PR) was 22.8%. Estimates of progression-free and overall survival at 2 years were 73.2% and 79.3%, respectively. Weekly TPS is a promising regimen that is well-tolerated, causes minimal myelosuppression and is effective as an outpatient regimen for locally advanced HNSCC. ClinicalTrials.gov: NCT01645748.

  11. African Swine Fever Virus Biology and Vaccine Approaches.

    PubMed

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  12. The antipyretic effect of dipyrone is unrelated to inhibition of PGE2 synthesis in the hypothalamus

    PubMed Central

    do C Malvar, David; Soares, Denis M; Fabrício, Aline SC; Kanashiro, Alexandre; Machado, Renes R; Figueiredo, Maria J; Rae, Giles A; de Souza, Glória EP

    2011-01-01

    BACKGROUND AND PURPOSE Bacterial lipopolysaccharide (LPS) induces fever through two parallel pathways; one, prostaglandin (PG)-dependent and the other, PG-independent and involving endothelin-1 (ET-1). For a better understanding of the mechanisms by which dipyrone exerts antipyresis, we have investigated its effects on fever and changes in PGE2 content in plasma, CSF and hypothalamus induced by either LPS or ET-1. EXPERIMENTAL APPROACH Rats were given (i.p.) dipyrone (120 mg·kg−1) or indomethacin (2 mg·kg−1) 30 min before injection of LPS (5 µg·kg−1, i.v.) or ET-1 (1 pmol, i.c.v.). Rectal temperature was measured by tele-thermometry. PGE2 levels were determined in the plasma, CSF and hypothalamus by elisa. KEY RESULTS LPS or ET-1 induced fever and increased CSF and hypothalamic PGE2 levels. Two hours after LPS, indomethacin reduced CSF and hypothalamic PGE2 but did not inhibit fever, while at 3 h it reduced all three parameters. Three hours after ET-1, indomethacin inhibited the increase in CSF and hypothalamic PGE2 levels but did not affect fever. Dipyrone abolished both the fever and the increased CSF PGE2 levels induced by LPS or ET-1 but did not affect the increased hypothalamic PGE2 levels. Dipyrone also reduced the increase in the venous plasma PGE2 concentration induced by LPS. CONCLUSIONS AND IMPLICATIONS These findings confirm that PGE2 does not play a relevant role in ET-1-induced fever. They also demonstrate for the first time that the antipyretic effect of dipyrone was not mechanistically linked to the inhibition of hypothalamic PGE2 synthesis. PMID:21133897

  13. Functional CD8+ T Cell Responses in Lethal Ebola Virus Infection

    DTIC Science & Technology

    2008-03-15

    Crimean-Congo Hemorrhagic Fever (5), and Hantavirus (6). It is often hypothesized that induction of lymphocyte apoptosis by viral infection obstructs...recommendations are those of the authors and are not necessarily endorsed by the U.S. Army. 2 Address correspondence and reprint requests to Dr. Sina Bavari, United...infection. Journal of Immunology 180:4058-4066 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) Bradfute /SB Warfield

  14. Cytarabine syndrome despite corticosteroid premedication in an adult undergoing induction treatment for acute myelogenous leukemia.

    PubMed

    Jirasek, Matthew A; Herrington, Jon D

    2016-12-01

    Cytarabine syndrome is a rare clinical condition characterized by fever, malaise, myalgia, arthralgia, and/or rash that occurs after receipt of cytarabine. Our patient developed fever, malaise, and diffuse body pain shortly following cytarabine initiation despite receiving prophylactic dexamethasone. The patient's discomfort was treated with intravenous morphine and her other symptoms were controlled with a higher dose of dexamethasone. Although the exact cause is not fully understood, cytarabine syndrome is hypothesized to be an immune-mediated response following cytarabine-induced apoptosis that results in a rapid increase in proinflammatory cytokines. While there is no standard therapy for cytarabine syndrome, corticosteroids appear to play a role in the treatment and prevention of the condition by suppressing the proinflammatory response. Since our case describes the development of cytarabine syndrome despite dexamethasone, clinicians should monitor for this adverse event if patients begin exhibiting characteristics of this syndrome. © The Author(s) 2015.

  15. Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meili, Nicole; Christen, Verena

    Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1 μM) and toxic concentrations (5 μM) for 24, 48, and 72 h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5 μM at all time-points. TNF-α led tomore » induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5 nM, while HepG2 cells were insensitive up to 10 μM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin. - Highlights: • Toxicity of nodularin and its mechanisms of action are poorly understood. • We investigated mechanisms of nodularin toxicity in human liver cell lines and human hepatocytes. • We identified several pathways involved in nodularin toxicity. • Nodularin induces TNF-α, MAPK pathway and ER stress • These activated pathways may contribute to the hepatotoxic and tumorigenic action of nodularin.« less

  16. The inductive effect of ginsenoside F2 on hair growth by altering the WNT signal pathway in telogen mouse skin.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Song, Hyun-Geun; Mavlonov, Gafurjon T; Yi, Tae-Hoo

    2014-05-05

    This study was conducted to confirm the possibility of using minor ginseng saponin F2 by oral administration on hair anagen induction effects. The signaling pathway and anagen induction effect of ginsenoside F2 were investigated and compared with finasteride on the effect of hair growth induction. The cell-based MTT assay results indicated that the proliferation rates of HHDPC and HaCaT treated with F2 significantly increased by 30% compared with the finasteride-treated group. A western blot study showed that the expression of β-catenin Lef-1 and DKK-1 increased by 140, 200% and decreased by 40% in the F2-treated group, respectively compared to that of finasteride-treated group. C57BL/6 mice were subjected to the same treatments. The hair growth promotion rates were compared with groups treated with finasteride, which was 20% higher in the F2-treated group. Tissue histological analysis results showed the number of hair follicles, thickness of the epidermis, and follicles of the anagen phase which increased in the F2-treated group, compared with the finasteride-treated groups. Moreover, the effect of F2 on hair growth was confirmed through the immunofluorescence (IF) methods indicating the expression aspect of Wnt signal pathway-related factors in the tissue of C57BL/6 mouse. Our results considered the expression increase in β-catenin, Lef-1 which was suggested as a major factor related to the development and growth of hair follicle and the decrease in DKK-1 when entering catagen by F2. As the data showed, F2 might be a potential new therapeutic source for anagen induction and hair growth through the Wnt signal pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  18. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    PubMed

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes.

    PubMed

    Rex, Maria; Hilton, Emma; Old, Robert

    2002-03-01

    We have investigated the induction of the six Xenopus nodal-related genes, Xnr1-Xnr6, by maternal determinants. The beta-catenin pathway was modelled by stimulation using Xwnt8, activin-like signalling was modelled by activin, and VegT action was studied by overexpression in animal cap explants. Combinations of factors were examined, and previously unrecognised interactions were revealed in animal caps and whole embryos. For the induction of Xnr5 and Xnr6 in whole embryos, using a beta-catenin antisense morpholino oligonucleotide or a dominant negative XTcf3, we have demonstrated an absolute permissive requirement for the beta-catenin/Tcf pathway, in addition to the requirement for VegT action. In animal caps Xnr5 and Xnr6 are induced in response to VegT overexpression, and this induction is dependent upon the concomitant activation of the beta-catenin pathway that VegT initiates in animal caps. For the induction of Xnr3, VegT interacts negatively so as to inhibit the induction otherwise observed with wnt-signalling alone. The negative effect of VegT is not the result of a general inhibition of wnt-signalling, and does not result from an inhibition of wnt-induced siamois expression. A 294 bp proximal promoter fragment of the Xnr3 gene is sufficient to mediate the negative effect of VegT. Further experiments, employing cycloheximide to examine the dependence of Xnr gene expression upon proteins translated after the mid-blastula stage, demonstrated that Xnrs 4, 5 and 6 are 'primary' Xnr genes whose expression in the late blastula is solely dependent upon factors present before the mid-blastula stage.

  20. Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression.

    PubMed

    Liu, Yongqing; Sánchez-Tilló, Ester; Lu, Xiaoqin; Huang, Li; Clem, Brian; Telang, Sucheta; Jenson, Alfred B; Cuatrecasas, Miriam; Chesney, Jason; Postigo, Antonio; Dean, Douglas C

    2013-04-19

    Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.

  1. Vitamin D serostatus and dengue fever progression to dengue hemorrhagic fever/dengue shock syndrome.

    PubMed

    Villamor, E; Villar, L A; Lozano, A; Herrera, V M; Herrán, O F

    2017-10-01

    Vitamin D could modulate pathways leading to dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). We examined the associations of serum total 25-hydroxy vitamin D [25(OH)D] and vitamin D binding protein (VDBP) concentrations in patients with uncomplicated dengue fever (DF) with risk of progression to DHF/DSS. In a case-control study nested in a cohort of DF patients who were followed during the acute episode in Bucaramanga, Colombia, we compared 25(OH)D and VDBP at onset of fever between 110 cases who progressed to DHF/DSS and 235 DF controls who did not progress. 25(OH)D concentrations were also compared between the acute sample and a sample collected >1 year post-convalescence in a subgroup. Compared with 25(OH)D ⩾75 nmol/l, adjusted odds ratios (95% CI) for progression were 0·44 (0·22-0·88) and 0·13 (0·02-1·05) for 50 to 75 nmol/l (vitamin D insufficiency) and <50 nmol/l (vitamin D deficiency), respectively (P, trend = 0·003). Mean 25(OH)D concentrations were much lower post-convalescence compared with the acute episode, regardless of case status. Compared with controls, mean VDBP was non-significantly lower in cases. We conclude that low serum 25(OH)D concentrations in DF patients predict decreased odds of progression to DHF/DSS.

  2. Supporting First Year Alternatively Certified Urban and Rural Intern Teachers through a Multicomponent Distance Induction Program

    ERIC Educational Resources Information Center

    Gresko, Jennifer A.

    2013-01-01

    The pathway for entering the K-12 classroom as a teacher varies compared to what was once the traditional model of teacher preparation. In this mixed-methods action research study, I explore supporting first year alternatively certified urban and rural intern teachers through a multicomponent distance induction program. The induction model in this…

  3. An essential role of a FoxD gene in notochord induction in Ciona embryos.

    PubMed

    Imai, Kaoru S; Satoh, Nori; Satou, Yutaka

    2002-07-01

    A key issue for understanding the early development of the chordate body plan is how the endoderm induces notochord formation. In the ascidian Ciona, nuclear accumulation of beta-catenin is the first step in the process of endoderm specification. We show that nuclear accumulation of beta-catenin directly activates the gene (Cs-FoxD) for a winged helix/forkhead transcription factor and that this gene is expressed transiently at the 16- and 32-cell stages in endodermal cells. The function of Cs-FoxD, however, is not associated with differentiation of the endoderm itself but is essential for notochord differentiation or induction. In addition, it is likely that the inductive signal that appears to act downstream of Cs-FoxD does not act over a long range. It has been suggested that FGF or Notch signal transduction pathway mediates ascidian notochord induction. Our previous study suggests that Cs-FGF4/6/9 is partially involved in the notochord induction. The present experimental results suggest that the expression and function of Cs-FGF4/6/9 and Cs-FoxD are not interdependent, and that the Notch pathway is involved in B-line notochord induction downstream of Cs-FoxD.

  4. Molecular Factors and Biological Pathways Associated with Malaria Fever and the Pathogenesis of Cerebral Malaria

    DTIC Science & Technology

    2007-04-09

    Novakovic , P. Gerold, R. T. Schwarz, M. J. McConville, and S. D. Tachado. 1996. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates...Schofield, L., S. Novakovic , P. Gerold, R. T. Schwarz, M. J. McConville, and S. D. Tachado. 1996. Glycosylphosphatidylinositol toxin of Plasmodium up

  5. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension

    PubMed Central

    Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal

    2015-01-01

    Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway under a constitutive promoter. The presence of AroG* protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG* transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG*. This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG* cells, and the relative frequencies of the different anthocyanins changed as well. PMID:26236327

  6. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension.

    PubMed

    Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal

    2015-01-01

    Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG (*)) of the shikimate pathway under a constitutive promoter. The presence of AroG(*) protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG (*) transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG (*). This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG(*) cells, and the relative frequencies of the different anthocyanins changed as well.

  7. Transcriptional and translational control of ornithine decarboxylase during Ras transformation.

    PubMed Central

    Shantz, Lisa M

    2004-01-01

    ODC (ornithine decarboxylase) activity is induced following ras activation. However, the Ras effector pathways responsible are unknown. These experiments used NIH-3T3 cells expressing partial-loss-of-function Ras mutants to activate selectively pathways downstream of Ras and examined the contribution of each pathway to ODC induction. Overexpression of Ras12V, a constitutively active mutant, resulted in ODC activities up to 20-fold higher than controls. Stable transfections of Ras partial-loss-of-function mutants and constitutively active forms of MEK (MAPK kinase) and Akt indicated that activation of more than one Ras effector pathway is necessary for the complete induction of ODC activity. The increase in ODC activity in Ras12V-transformed cells is not owing to a substantial change in ODC protein half-life, which increased by <2-fold. Northern-blot analysis and reporter assays suggested that the mechanism of ODC induction involves both a modest increase in the transcription of ODC mRNA and a much more considerable increase in the translation of mRNA into protein. ODC transcription was controlled through a pathway dependent on Raf/MEK/ERK (where ERK stands for extracellular-signal-regulated kinase) activation, whereas activation of the phosphoinositide 3-kinase and the Raf/MEK/ERK pathways were necessary for translational regulation of ODC. The increase in ODC synthesis was accompanied by changes in phosphorylation of eukaryotic initiation factor 4E and its binding protein 4E-BP1. Results show that the phosphoinositide 3-kinase pathway regulates phosphorylation of both proteins, whereas the Raf/MEK/ERK pathway affects only the eukaryotic initiation factor 4E phosphorylation. PMID:14519103

  8. Simultaneous conduction over the fast and slow pathways during induction of atrioventricular nodal reentrant arrhythmia with a rate of less than 100 bpm and infra-His block after radiofrequency ablation of the slow pathway.

    PubMed

    Amasyalı, Basri; Köktürk, Bülent; Otomo, Kiyoshi; Köse, Sedat

    2011-04-01

    Atrioventricular nodal reentrant tachycardia (AVNRT) is the most common form of paroxysmal regular supraventricular tachycardia in adults. It is typically induced with an anterograde block over the fast pathway (FP) and conduction over the slow pathway (SP), with subsequent retrograde conduction over the FP. Rarely, a simultaneous conduction of a premature atrial complex occurs over the FP and SP to induce AVNRT and is called "one for two phenomenon". We present a 46-year-old woman with atrioventricular nodal rhythm with a rate of 95 beats per minute with distinct electrophysiological characteristics showing simultaneous conduction over the FP and SP during induction of tachycardia and an infra-His block after radiofrequency ablation of the SP.

  9. [Perioperative preventive use of antibiotics in breast surgery: clindamycin vs. cefuroxime].

    PubMed

    Hoyme, U B; Bühler, K; Walz, K A; Winkler, U H; Schindler, A E

    1993-01-01

    149 patients scheduled for breast surgery with an identified risk for infection received either 1.2 g Clindamycin (n = 79) or 1.5 g Cefuroxim given intravenously in a prospectively randomized fashion at induction of anaesthesia. Both drugs were well tolerated by all study patients. Postoperative fever was seen in one woman in the Clindamycin group vs. two women in the Cefuroxim group (n.s.). Serum and tissue levels measured 30 minutes after administration were within the therapeutic range for both antimicrobial substances.

  10. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  11. Yellow Fever Virus Modulates the Expression of Key Proteins Related to the microRNA Pathway in the Human Hepatocarcinoma Cell Line HepG2.

    PubMed

    Holanda, Gustavo Moraes; Casseb, Samir Mansour Moraes; Mello, Karla Fabiane Lopes; Vasconcelos, Pedro Fernando Costa; Cruz, Ana Cecília Ribeiro

    2017-06-01

    Yellow fever is a zoonotic disease caused by the yellow fever virus (YFV) and transmitted by mosquitoes of the family Culicidae. It is well known that cellular and viral microRNAs (miRNAs) are involved in modulation of viral and cellular gene expression, as well as immune response, and are considered by the scientific community as possible targets for an effective therapy against viral infections. This regulation may be involved in different levels of infection and clinical symptomatology. We used viral titration techniques, viral kinetics from 24 to 96 hours postinfection (hpi), and analyzed the expression of key proteins related to the miRNA pathway by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The expression of Dicer was different when compared over the course of infection by the distinct YFV genotypes. Drosha expression was similar during infection by YFV genotype 1 or 2, with a decrease in their expression over time and a slight increase in 96 hpi. Ago1, Ago2, and Ago4 showed different levels of expression between the viral genotypes: for YFV genotype 1 infection, Ago1 presented a positive expression, while for YFV genotype 2, it showed a negative expression, when compared with negative controls. We conclude that YFV infection modulates the proteins involved in miRNA biogenesis, which can regulate both viral replication and cellular immune response.

  12. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    PubMed

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  13. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment

    PubMed Central

    2011-01-01

    Background Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Methods Three independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1. Results We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. Conclusions These data demonstrate a novel, coordinated age-related induction of the MHC II immune response pathway and glial activation in the hippocampus, indicating an allostatic shift toward a para-inflammatory phenotype with advancing age. Our findings demonstrate that age-related induction of these aspects of hippocampal neuroinflammation, while a potential contributing factor, is not sufficient by itself to elicit impairment of spatial learning and memory in models of normative aging. Future efforts are needed to understand how neuroinflammation may act synergistically with cognitive-decline specific alterations to cause cognitive impairment. PMID:21989322

  14. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment.

    PubMed

    VanGuilder, Heather D; Bixler, Georgina V; Brucklacher, Robert M; Farley, Julie A; Yan, Han; Warrington, Junie P; Sonntag, William E; Freeman, Willard M

    2011-10-11

    Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Three independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1. We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. These data demonstrate a novel, coordinated age-related induction of the MHC II immune response pathway and glial activation in the hippocampus, indicating an allostatic shift toward a para-inflammatory phenotype with advancing age. Our findings demonstrate that age-related induction of these aspects of hippocampal neuroinflammation, while a potential contributing factor, is not sufficient by itself to elicit impairment of spatial learning and memory in models of normative aging. Future efforts are needed to understand how neuroinflammation may act synergistically with cognitive-decline specific alterations to cause cognitive impairment.

  15. African Swine Fever Virus: A Review.

    PubMed

    Galindo, Inmaculada; Alonso, Covadonga

    2017-05-10

    African swine fever (ASF) is a highly contagious viral disease of swine which causes high mortality, approaching 100%, in domestic pigs. ASF is caused by a large, double stranded DNA virus, ASF virus (ASFV), which replicates predominantly in the cytoplasm of macrophages and is the only member of the Asfarviridae family, genus Asfivirus . The natural hosts of this virus include wild suids and arthropod vectors of the Ornithodoros genus. The infection of ASFV in its reservoir hosts is usually asymptomatic and develops a persistent infection. In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which there is no effective vaccine. Identification of ASFV genes involved in virulence and the characterization of mechanisms used by the virus to evade the immune response of the host are recognized as critical steps in the development of a vaccine. Moreover, the interplay of the viral products with host pathways, which are relevant for virus replication, provides the basic information needed for the identification of potential targets for the development of intervention strategies against this disease.

  16. African Swine Fever Virus: A Review

    PubMed Central

    Galindo, Inmaculada; Alonso, Covadonga

    2017-01-01

    African swine fever (ASF) is a highly contagious viral disease of swine which causes high mortality, approaching 100%, in domestic pigs. ASF is caused by a large, double stranded DNA virus, ASF virus (ASFV), which replicates predominantly in the cytoplasm of macrophages and is the only member of the Asfarviridae family, genus Asfivirus. The natural hosts of this virus include wild suids and arthropod vectors of the Ornithodoros genus. The infection of ASFV in its reservoir hosts is usually asymptomatic and develops a persistent infection. In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which there is no effective vaccine. Identification of ASFV genes involved in virulence and the characterization of mechanisms used by the virus to evade the immune response of the host are recognized as critical steps in the development of a vaccine. Moreover, the interplay of the viral products with host pathways, which are relevant for virus replication, provides the basic information needed for the identification of potential targets for the development of intervention strategies against this disease. PMID:28489063

  17. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte.

    PubMed

    Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph

    2018-05-25

    Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.

  18. Wnt and Notch Pathways Have Interrelated Opposing Roles on Prostate Progenitor Cell Proliferation and Differentiation

    PubMed Central

    Shahi, Payam; Seethammagari, Mamatha R.; Valdez, Joseph M.; Xin, Li; Spencer, David M.

    2011-01-01

    Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony (“prostasphere”) formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1+ CD49f+ basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in “triple positive” (cytokeratin [CK] 5+, CK8+, p63+) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling. PMID:21308863

  19. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.

    PubMed

    Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs

    2015-06-01

    Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    PubMed

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  1. Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones.

    PubMed

    Papazisi, Leka; Ratnayake, Shashikala; Remortel, Brian G; Bock, Geoffrey R; Liang, Wei; Saeed, Alexander I; Liu, Jia; Fleischmann, Robert D; Kilian, Mogens; Peterson, Scott N

    2010-11-01

    Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway.

    PubMed

    Ling, Shifeng; Luo, Mingyang; Jiang, Shengnan; Liu, Jiayu; Ding, Chunying; Zhang, Qinghuan; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-05-01

    Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Roles of MAPK pathway activation during cytokine induction in BEAS-2B cells exposed to fine World Trade Center (WTC) dust.

    PubMed

    Wang, Shang; Prophete, Colette; Soukup, Joleen M; Chen, Lung-Chi; Costa, Max; Ghio, Andrew; Qu, Qingshan; Cohen, Mitchell D; Chen, Haobin

    2010-01-01

    The World Trade Center (WTC) collapse on September 11, 2001 released copious amounts of particulate matter (PM) into the atmosphere of New York City. Follow-up studies on persons exposed to the dusts have revealed a severely increased rate for asthma and other respiratory illnesses. There have only been a few studies that have sought to discern the possible mechanisms underlying these untoward pathologies. In one study, an increased cytokine release was detected in cells exposed to WTC fine dusts (PM₂.₅ fraction or WTC₂.₅). However, the mechanism(s) for these increases has yet to be fully defined. Because activation of the mitogen-activated protein kinase (MAPK) signaling pathways is known to cause cytokine induction, the current study was undertaken to analyze the possible involvement of these pathways in any increased cytokine formation by lung epithelial cells (as BEAS-2B cells) exposed to WTC₂.₅. Our results showed that exposure to WTC₂.₅ for 5 hr increased interleukin-6 (IL-6) mRNA expression in BEAS-2B cells, as well as its protein levels in the culture media, in a dose-dependent manner. Besides IL-6, cytokine multiplex analyses revealed that formation of IL-8 and -10 was also elevated by the exposure. Both extracellular signal-regulated kinase (ERK) and p38, but not c-Jun N-terminal protein kinase, signaling pathways were found to be activated in cells exposed to WTC₂.₅. Inactivation of ERK signaling pathways by PD98059 effectively blocked IL-6, -8, and -10 induction by WTC₂.₅; the p38 kinase inhibitor SB203580 significantly decreased induction of IL-8 and -10. Together, our data demonstrated activation of MAPK signaling pathway(s) likely played an important role in the WTC₂.₅-induced formation of several inflammatory (and, subsequently, anti-inflammatory) cytokines. The results are important in that they help to define one mechanism via which the WTC dusts may have acted to cause the documented increases in asthma and other inflammation-associated respiratory dysfunctions in the individuals exposed to the dusts released from the WTC collapse.

  4. Involvement of TrkB- and p75NTR-signaling pathways in two contrasting forms of long-lasting synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Sakuragi, Shigeo; Tominaga-Yoshino, Keiko; Ogura, Akihiko

    2013-11-01

    The repetition of experience is often necessary to establish long-lasting memory. However, the cellular mechanisms underlying this repetition-dependent consolidation of memory remain unclear. We previously observed in organotypic slice cultures of the rodent hippocampus that repeated inductions of long-term potentiation (LTP) led to a slowly developing long-lasting synaptic enhancement coupled with synaptogenesis. We also reported that repeated inductions of long-term depression (LTD) produced a long-lasting synaptic suppression coupled with synapse elimination. We proposed these phenomena as useful in vitro models for analyzing repetition-dependent consolidation. Here, we hypothesized that the enhancement and suppression are mediated by the brain-derived neurotrophic factor (BDNF)-TrkB signaling pathway and the proBDNF-p75NTR pathway, respectively. When we masked the respective pathways, reversals of the enhancement and suppression resulted. These results suggest the alternative activation of the p75NTR pathway by BDNF under TrkB-masking conditions and of the TrkB pathway by proBDNF under p75NTR-masking conditions, thus supporting the aforementioned hypothesis.

  5. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation.

    PubMed

    Praveen, Koganti; Saxena, Nandita

    2013-06-01

    Radiation simultaneously activate Fas and JNK pathway in lymphocytes but their precise interaction is not clearly understood. Activation of Fas pathway is required for radiation induced apoptosis, however induction of JNK pathway may or may not contribute in apoptosis. Here we report that Fas, Fas associated death domain and total JNK are activated in a dose- and time-dependent radiation exposure. A biphasic pattern of phospho-JNK was found at lower doses (1 and 2 Gy), however at higher doses of radiation phospho-JNK was continuously activated. Interestingly, Fas ligand expression remained biphasic at all the doses of radiation. Our results suggest that the Fas pathway is the major player in radiation-induced apoptosis, with JNK playing a contributory role. We also observed that Fas ligand expression by radiation is dependent on JNK activation. We also propose that radiation activates JNK pathway, but sustained activation is required for maximal induction of apoptosis at later times. Our findings define a mechanism for crosstalk between JNK and Fas pathway in radiation-induced apoptosis, which may lead to the development of new therapeutic strategies.

  6. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans.

    PubMed

    Cheng, Shih-Chin; van de Veerdonk, Frank L; Lenardon, Megan; Stoffels, Monique; Plantinga, Theo; Smeekens, Sanne; Rizzetto, Lisa; Mukaremera, Liliane; Preechasuth, Kanya; Cavalieri, Duccio; Kanneganti, Thirumala Devi; van der Meer, Jos W M; Kullberg, Bart Jan; Joosten, Leo A B; Gow, Neil A R; Netea, Mihai G

    2011-08-01

    In the mucosa, the immune pathways discriminating between colonizing and invasive Candida, thus inducing tolerance or inflammation, are poorly understood. Th17 responses induced by Candida albicans hyphae are central for the activation of mucosal antifungal immunity. An essential step for the discrimination between yeasts and hyphae and induction of Th17 responses is the activation of the inflammasome by C. albicans hyphae and the subsequent release of active IL-1β in macrophages. Inflammasome activation in macrophages results from differences in cell-wall architecture between yeasts and hyphae and is partly mediated by the dectin-1/Syk pathway. These results define the dectin-1/inflammasome pathway as the mechanism that enables the host immune system to mount a protective Th17 response and distinguish between colonization and tissue invasion by C. albicans.

  7. Direct tubulin polymerization perturbation contributes significantly to the induction of micronuclei in vivo.

    PubMed

    ter Haar, E; Day, B W; Rosenkranz, H S

    1996-03-09

    The computational analysis data presented indicate a significant mechanistic association between the ability of a chemical to cause tubulin polymerization perturbation (TPP), via direct interaction with the protein, and the in vivo induction of micronuclei (MN). Since it is known that TPP is not a genotoxic event, the analyses suggest that the induction of MN by a non-genotoxic mechanism is a significant alternate pathway.

  8. [Fever of unknown origin (febris continua e causa ignota)].

    PubMed

    Hansen, T H; Seidenfaden-Lassen, M

    1992-02-10

    Fever can be recognized as a higher set-point of the normal temperature regulation which is controlled by the center in the anterior part of hypothalamus. The change in this set-point is induced by interleukin-1 (IL-1) which is the common mediator of exogenic and endogenic pyrogenic factors. IL-1 is believed to act through an induction of a prostaglandin E cascade. The normal diurnal variation in temperature can often be recognized in infectious diseases but not always in non-infectious conditions. Four different fever curves can be defined but are without differential diagnostic importance, however, septic fever curves are more likely to occur in bacteremic patients. Comparison of the most important investigations about PUO since 1960 shows that the follow-up investigations revealed a high percentage of undiagnosed cases and that the mortality due to conditions related to PUO was 6-8%. Among the other investigations, a total of 83% were diagnosed: 23% had cancer, 33% had infections, 11% had collagenic diseases, 17% had other causes and 16% were undiagnosed. To establish the diagnosis in cases of PUO, liver biopsy can be of diagnostic value especially in patients with hepatomegaly. Abdominal CT-scan, ultrasonography and Gallium 67 scintigraphy are equal in sensitivity and specificity and can supplement each other with diagnostic information. Leucocyte scintigraphy can detect local inflammatory processes. Laparotomy or laparoscopy have high diagnostic values and can be considered in patients with signs of involvement of abdominal organs if no diagnosis has been established after noninvasive investigations. Lymphography gives only limited diagnostic information in cases of PUO.

  9. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells.

    PubMed

    Dinarello, C A; Cannon, J G; Mancilla, J; Bishai, I; Lees, J; Coceani, F

    1991-10-25

    Fever induced by endogenous as well as exogenous pyrogens is often prevented by cyclooxygenase inhibitors; endogenous pyrogens stimulate prostaglandin E2 (PGE2) in or near the thermoregulatory centers of the brain. The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), are two pyrogens which stimulate brain PGE2 formation during fever and also increase PGE2 synthesis in human mononuclear cells in vitro. In the present study, we examined whether interleukin-6 (IL-6) stimulates PGE2 formation in a manner similar to IL-1 and TNF. Both glycosylated and non-glycosylated forms of recombinant human IL-6 were tested. Following intravenous injection into rabbits, the glycosylated IL-6 was more pyrogenic than the non-glycosylated form and there was no evidence of synergy in the production of fever when IL-6 and IL-1 were given simultaneously. IL-6 fever was blocked by prior administration of the cyclooxygenase inhibitor ibuprofen. IL-6 was also pyrogenic in the cat by either the systemic or the intraventricular route. However, in both species, IL-6 was less effective than IL-1 beta. When given intraventricularly to cats, IL-6 produced an increase in PGE2 levels of the cerebrospinal fluid in parallel with the rise in body temperature. In the latter respect, IL-6 imitated IL-1 beta; however, IL-6 from 0.15-15 micrograms/ml did not increase mononuclear cell PGE2 production in vitro whereas IL-1 beta induced 20-30-fold increases in PGE2 at 100 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Prevalence and pattern of self-medication in Karachi: A community survey

    PubMed Central

    Afridi, M. Iqbal; Rasool, Ghulam; Tabassum, Rabia; Shaheen, Marriam; Siddiqullah; Shujauddin, M.

    2015-01-01

    Objective: To study the prevalence and pattern of self-medication among adult males and females in Karachi, Pakistan. Methods: This cross-sectional community- based survey was carried out at five randomly selected towns of Karachi (Defence, Gulshan-e-Iqbal, North Nazimabad, Malir, Orangi town) over a period of 3 months (October, November & December 2012). A sample size of 500 adult cases (250 males & 250 females), with systemic random selection from different towns of Karachi were inducted in this study. The city was divided in 5 zones and one town from each zone was selected by systemic randomization. First available male and female from each randomly selected house were included in the study. After consent and confidentiality assurance they were interviewed on semi-structured Performa designed for this purpose. Results were analyzed and tabulated through SPSS v14.0. Result: The prevalence of self-medication in males and females in Karachi is found to be 84.8% (males 88.4% and females 81.2%). The most frequent symptoms for which self-medication used were headache (32.7%), fever (23.3%) and the medicines used were painkillers (28.8%), fever reducer medicines (19.8%). The most common reason 33.3% was previous experience with similar symptom. Conclusion: Self-medication is highly prevalent (84.8%) in Karachi. It was frequently used for headache followed by fever. Predominantly painkillers, fever reducer and cough syrups were used in the form of tablets and syrups. Main source of medicines for males were friends and for females were relatives. PMID:26649022

  11. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity.

    PubMed

    Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S

    2006-02-05

    Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.

  12. Gingival transcriptome patterns during induction and resolution of experimental gingivitis in humans.

    PubMed

    Offenbacher, Steven; Barros, Silvana P; Paquette, David W; Winston, J Leslie; Biesbrock, Aaron R; Thomason, Ryan G; Gibb, Roger D; Fulmer, Andy W; Tiesman, Jay P; Juhlin, Kenton D; Wang, Shuo L; Reichling, Tim D; Chen, Ker-Sang; Ho, Begonia

    2009-12-01

    To our knowledge, changes in the patterns of whole-transcriptome gene expression that occur during the induction and resolution of experimental gingivitis in humans were not previously explored using bioinformatic tools. Gingival biopsy samples collected from 14 subjects during a 28-day stent-induced experimental gingivitis model, followed by treatment, and resolution at days 28 through 35 were analyzed using gene-expression arrays. Biopsy samples were collected at different sites within each subject at baseline (day 0), at the peak of gingivitis (day 28), and at resolution (day 35) and processed using whole-transcriptome gene-expression arrays. Gene-expression data were analyzed to identify biologic themes and pathways associated with changes in gene-expression profiles that occur during the induction and resolution of experimental gingivitis using bioinformatic tools. During disease induction and resolution, the dominant expression pathway was the immune response, with 131 immune response genes significantly up- or downregulated during induction, during resolution, or during both at P <0.05. During induction, there was significant transient increase in the expression of inflammatory and oxidative stress mediators, including interleukin (IL)-1 alpha (IL1A), IL-1 beta (IL1B), IL8, RANTES, colony stimulating factor 3 (CSF3), and superoxide dismutase 2 (SOD2), and a decreased expression of IP10, interferon inducible T-cell alpha chemoattractant (ITAC), matrix metalloproteinase 10 (MMP10), and beta 4 defensin (DEFB4). These genes reversed expression patterns upon resolution in parallel with the reversal of gingival inflammation. A relatively small subset (11.9%) of the immune response genes analyzed by array was transiently activated in response to biofilm overgrowth, suggesting a degree of specificity in the transcriptome-expression response. The fact that this same subset demonstrates a reversal in expression patterns during clinical resolution implicates these genes as being critical for maintaining tissue homeostasis at the biofilm-gingival interface. In addition to the immune response pathway as the dominant response theme, new candidate genes and pathways were identified as being selectively modulated in experimental gingivitis, including neural processes, epithelial defenses, angiogenesis, and wound healing.

  13. Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models.

    PubMed

    Ornelas, Argentina; McCullough, Christopher R; Lu, Zhen; Zacharias, Niki M; Kelderhouse, Lindsay E; Gray, Joshua; Yang, Hailing; Engel, Brian J; Wang, Yan; Mao, Weiqun; Sutton, Margie N; Bhattacharya, Pratip K; Bast, Robert C; Millward, Steven W

    2016-10-26

    Autophagy is a bulk catabolic process that modulates tumorigenesis, therapeutic resistance, and dormancy. The tumor suppressor ARHI (DIRAS3) is a potent inducer of autophagy and its expression results in necroptotic cell death in vitro and tumor dormancy in vivo. ARHI is down-regulated or lost in over 60 % of primary ovarian tumors yet is dramatically up-regulated in metastatic disease. The metabolic changes that occur during ARHI induction and their role in modulating death and dormancy are unknown. We employed Nuclear Magnetic Resonance (NMR)-based metabolomic strategies to characterize changes in key metabolic pathways in both cell culture and xenograft models of ARHI expression and autophagy. These pathways were further interrogated by cell-based immunofluorescence imaging, tracer uptake studies, targeted metabolic inhibition, and in vivo PET/CT imaging. Induction of ARHI in cell culture models resulted in an autophagy-dependent increase in lactate production along with increased glucose uptake and enhanced sensitivity to glycolytic inhibitors. Increased uptake of glutamine was also dependent on autophagy and dramatically sensitized cultured ARHI-expressing ovarian cancer cell lines to glutaminase inhibition. Induction of ARHI resulted in a reduction in mitochondrial respiration, decreased mitochondrial membrane potential, and decreased Tom20 staining suggesting an ARHI-dependent loss of mitochondrial function. ARHI induction in mouse xenograft models resulted in an increase in free amino acids, a transient increase in [ 18 F]-FDG uptake, and significantly altered choline metabolism. ARHI expression has previously been shown to trigger autophagy-associated necroptosis in cell culture. In this study, we have demonstrated that ARHI expression results in decreased cellular ATP/ADP, increased oxidative stress, and decreased mitochondrial function. While this bioenergetic shock is consistent with programmed necrosis, our data indicates that the accompanying up-regulation of glycolysis and glutaminolysis is autophagy-dependent and serves to support cell viability rather than facilitate necroptotic cell death. While the mechanistic basis for metabolic up-regulation following ARHI induction is unknown, our preliminary data suggest that decreased mitochondrial function and increased metabolic demand may play a role. These alterations in fundamental metabolic pathways during autophagy-associated necroptosis may provide the basis for new therapeutic strategies for the treatment of dormant ovarian tumors.

  14. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity.

    PubMed

    Arts, Rob J W; Moorlag, Simone J C F M; Novakovic, Boris; Li, Yang; Wang, Shuang-Yin; Oosting, Marije; Kumar, Vinod; Xavier, Ramnik J; Wijmenga, Cisca; Joosten, Leo A B; Reusken, Chantal B E M; Benn, Christine S; Aaby, Peter; Koopmans, Marion P; Stunnenberg, Hendrik G; van Crevel, Reinout; Netea, Mihai G

    2018-01-10

    The tuberculosis vaccine bacillus Calmette-Guérin (BCG) has heterologous beneficial effects against non-related infections. The basis of these effects has been poorly explored in humans. In a randomized placebo-controlled human challenge study, we found that BCG vaccination induced genome-wide epigenetic reprograming of monocytes and protected against experimental infection with an attenuated yellow fever virus vaccine strain. Epigenetic reprogramming was accompanied by functional changes indicative of trained immunity. Reduction of viremia was highly correlated with the upregulation of IL-1β, a heterologous cytokine associated with the induction of trained immunity, but not with the specific IFNγ response. The importance of IL-1β for the induction of trained immunity was validated through genetic, epigenetic, and immunological studies. In conclusion, BCG induces epigenetic reprogramming in human monocytes in vivo, followed by functional reprogramming and protection against non-related viral infections, with a key role for IL-1β as a mediator of trained immunity responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer.

    PubMed

    Minker, Carole; Duban, Livine; Karas, Daniel; Järvinen, Päivi; Lobstein, Annelise; Muller, Christian D

    2015-01-01

    The aim of this work is to identify which proapoptotic pathway is induced in human colon cancer cell lines, in contact with proanthocyanidins extracted from various berries. Proanthocyanidins (Pcys) extracted from 11 berry species are monitored for proapoptotic activities on two related human colon cancer cell lines: SW480-TRAIL-sensitive and SW620-TRAIL-resistant. Apoptosis induction is monitored by cell surface phosphatidylserine (PS) detection. Lowbush blueberry extract triggers the strongest activity. When tested on the human monocytic cell line THP-1, blueberry Pcys are less effective for PS externalisation and DNA fragmentation is absent, highlighting a specificity of apoptosis induction in gut cells. In Pcys-treated gut cell lines, caspase 8 (apoptosis extrinsic pathway) but not caspase 9 (apoptosis intrinsic pathway) is activated after 3 hours through P38 phosphorylation (90 min), emphasizing the potency of lowbush blueberry Pcys to eradicate gut TRAIL-resistant cancer cells. We highlight here that berries Pcys, especially lowbush blueberry Pcys, are of putative interest for nutritional chemoprevention of colorectal cancer in view of their apoptosis induction in a human colorectal cancer cell lines.

  16. The eczema risk variant on chromosome 11q13 (rs7927894) in the population-based ALSPAC cohort: a novel susceptibility factor for asthma and hay fever.

    PubMed

    Marenholz, Ingo; Bauerfeind, Anja; Esparza-Gordillo, Jorge; Kerscher, Tamara; Granell, Raquel; Nickel, Renate; Lau, Susanne; Henderson, John; Lee, Young-Ae

    2011-06-15

    In a genome-wide association study, a common variant on chromosome 11q13.5 (rs7927894[T]) has been identified as a susceptibility locus for eczema. We aimed to analyze the effect of this risk variant on asthma and hay fever and to determine its impact on the general population level in over 9300 individuals of the prospectively evaluated Avon Longitudinal Study of Parents and Children birth cohort. We demonstrate an association of rs7927894[T] with atopic asthma and with hay fever. The largest effect sizes were found in patients with the combined phenotype atopic asthma plus eczema [odds ratio (OR) = 1.50; 95% confidence interval (CI) 1.20-1.88; P = 3.7 × 10(-4)] and hay fever plus eczema (OR = 1.37; 95% CI 1.15-1.62; P = 3.8 × 10(-4)). We replicated the effects of rs7927894[T] on eczema-associated asthma and hay fever independently in the German GENUFAD (GEnetic studies in NUclear Families with Atopic Dermatitis) study and show that they are significantly larger than the effect observed in eczema. The estimated population attributable risk fractions for eczema, eczema-associated atopic asthma or hay fever were 9.3, 24.9 and 23.5%, respectively. Finally in eczema, we found a synergistic interaction of rs7927894[T] with filaggrin gene (FLG) mutations, which are a major cause of epidermal barrier dysfunction, and replicated the interaction in the German Multicenter Allergy Study birth cohort. The synergistic effect of rs7927894[T] and FLG mutations on eczema risk as well as the association of both variants with eczema-associated atopic asthma and hay fever point to an involvement of rs7927894[T] in a functional pathway that is linked to the barrier defect.

  17. Complement reduction impairs the febrile response of guinea pigs to endotoxin.

    PubMed

    Sehic, E; Li, S; Ungar, A L; Blatteis, C M

    1998-06-01

    Although it is generally believed that circulating exogenous pyrogens [e.g., lipopolysaccharides (LPS)] induce fever via the mediation of endogenous pyrogens (EP) such as cytokines, the first of these, tumor necrosis factor-alpha, is usually not detectable in blood until at least 30 min after intravenous administration of LPS, whereas the febrile rise begins within 15 min after its administration. Moreover, although abundant evidence indicates that circulating LPS is cleared primarily by liver macrophages [Kupffer cells (KC)], these do not secrete EP in immediate response. This would imply that other factors, presumably evoked earlier than EP, may mediate the onset of the febrile response to intravenous LPS. It is well known that blood-borne LPS very rapidly activates the intravascular complement (C) system, some components of which in turn stimulate the quick release into blood of various substances that have roles in the acute inflammatory reaction. KC contain receptors for C components and are in close contact with afferent vagal terminals in the liver; the involvement of hepatic vagal afferents in LPS-induced fever has recently been shown. In this study, we tested the hypothesis that the initiation of fever by intravenous LPS involves, sequentially, the C system and KC. To test this postulated mechanism, we measured directly the levels of prostaglandin E2 (PGE2) in the interstitial fluid of the preoptic anterior hypothalamus (POA), the presumptive site of the fever-producing controller, of conscious guinea pigs over their entire febrile course, before and after C depletion by cobra venom factor (CVF) and before and after elimination of KC by gadolinium chloride (GdCl3). CVF and GdCl3 pretreatment each individually attenuated the first of the biphasic core temperature (Tc) rises after intravenous LPS, inverted the second into a Tc fall, and greatly reduced the usual fever-associated increase in POA PGE2. We conclude, therefore, that C activation may indeed be pivotal in the induction of fever by intravenous LPS and that substance(s) generated presumably by KC in almost immediate reaction to the presence of LPS and/or C may transmit pyrogenic signals via hepatic vagal afferents to the POA, where they rapidly induce the production of PGE2 and, hence, fever.

  18. RANTES: a new prostaglandin dependent endogenous pyrogen in the rat.

    PubMed

    Tavares, E; Miñano, F J

    2000-09-01

    Fever, a hallmark of disease, is a highly complex process initiated by the action of a number of endogenous pyrogens on the thermosensitive cells of the brain. We describe the activity of RANTES, a chemotactic cytokine, as intrinsically pyrogenic in the rat, when it is delivered directly to the thermosensitive region of the rat's anterior hypothalamic, pre-optic area (AH/POA). RANTES, microinjected into the AH/POA in a dose of 1, 5, 10, 15, 25 or 50 pg, produces an immediate and intense dose-related fever following injection. Increasing the dose to 100 pg did not result in a further increase in the febrile response. No significant change in body temperature was produced by heat-inactivated RANTES. The intrahypothalamic injection of antibodies against RANTES (2.0 microg, 15 min prior to RANTES) significantly blocked the fever induced by this chemokine. Pretreatment with ibuprofen blocked the fever induced by RANTES. In order of potency, the magnitude of the febrile response induced by RANTES was greater than that produced with equipotent doses of either macrophage inflammatory protein-1beta or interleukin-6. The results thus demonstrate that RANTES is the most potent endopyrogen discovered thus far and exerts its action directly on pyrogen-sensitive cells of the AH/POA through a prostaglandin-dependent pathway.

  19. The Hog1 Mitogen-Activated Protein Kinase Mediates a Hypoxic Response in Saccharomyces cerevisiae

    PubMed Central

    Hickman, Mark J.; Spatt, Dan; Winston, Fred

    2011-01-01

    We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes. PMID:21467572

  20. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    PubMed Central

    Zeng, Ximin; Lin, Jun

    2013-01-01

    Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147

  1. STING-Dependent Interferon-λ1 Induction in HT29 Cells, a Human Colorectal Cancer Cell Line, After Gamma-Radiation.

    PubMed

    Chen, Jianzhou; Markelc, Bostjan; Kaeppler, Jakob; Ogundipe, Vivian M L; Cao, Yunhong; McKenna, W Gillies; Muschel, Ruth J

    2018-05-01

    To investigate the induction of type III interferons (IFNs) in human cancer cells by gamma-rays. Type III IFN expression in human cancer cell lines after gamma-ray irradiation in vitro was assessed by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Signaling pathways mediating type III IFN induction were examined by a variety of means, including immunoblotting, flow cytometry, confocal imaging, and reverse transcription-quantitative polymerase chain reaction. Key mediators in these pathways were further explored and validated using gene CRISPR knockout or short hairpin RNA knockdown. Exposure to gamma-rays directly induced type III IFNs (mainly IFNL1) in human cancer cell lines in dose- and time-dependent fashions. The induction of IFNL1 was primarily mediated by the cytosolic DNA sensors-STING-TBK1-IRF1 signaling axis, with a lesser contribution from the nuclear factor kappa b signaling in HT29 cells. In addition, type III IFN signaling through its receptors serves as a positive feedback loop, further enhancing IFN expression via up-regulation of the kinases in the STING-TBK1 signaling axis. Our results suggest that IFNL1 can be up-regulated in human cancer cell lines after gamma-ray treatment. In HT29 cells this induction occurs via the STING pathway, adding another layer of complexity to the understanding of radiation-induced antitumor immunity, and may provide novel insights into IFN-based cancer treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Induction of DREB2A pathway with repression of E2F, Jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation specific freeze resistant wheat crown

    USDA-ARS?s Scientific Manuscript database

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...

  3. Development of a broad-spectrum antiviral with activity against Ebola virus.

    PubMed

    Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina

    2009-09-01

    We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.

  4. Iodine-131 induces apoptosis in human cardiac muscle cells through the p53/Bax/caspase-3 and PIDD/caspase-2/ t‑BID/cytochrome c/caspase-3 signaling pathway.

    PubMed

    Wang, Yansheng; Liu, Changqing; Wang, Jianchun; Zhang, Yang; Chen, Linlin

    2017-09-01

    The aim of this study was to elucidate the effects of iodine-131 on the induction of apoptosis in human cardiac muscle cells and the underlying molecular mechanisms. We found that iodine-131 reduced cell proliferation, induced apoptosis, induced p53, PIDD, t-BID (mitochondria) protein expression, suppressed cytochrome c (mitochondria) protein expression, and increased Bax protein expression, and promoted caspase-2, -3 and -9 expression levels in human cardiac muscle cells. Meanwhile, si-p53 inhibited the effects of iodine-131 on the reduction in cell proliferation and induction of apoptosis in human cardiac muscle cells through regulation of Bax/cytochrome c/caspase-3 and PIDD/caspase‑2/t-BID/cytochrome c/caspase-3 signaling pathway. After si-Bax reduced the effects of iodine-131, it reduced cell proliferation and induced apoptosis in human cardiac muscle cells through the cytochrome c/caspase-3 signaling pathway. However, si-caspase-2 also reduced the effects of iodine-131 on the reduction of cell proliferation and induction of apoptosis in human cardiac muscle cells through the t-BID/cytochrome c/caspase-3 signaling pathway. These findings demonstrated that iodine-131 induces apoptosis in human cardiac muscle cells through the p53/Bax/caspase-3 and PIDD/caspase-2/t-BID/cytochrome c/caspase-3 signaling pathway.

  5. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage

    PubMed Central

    2017-01-01

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway. PMID:28826208

  6. [An unusual cause of febrile neutropenia: brucellosis].

    PubMed

    Solmaz, Soner; Asma, Süheyl; Ozdoğu, Hakan; Yeral, Mahmut; Turunç, Tuba

    2014-10-01

    Febrile neutropenia which is a common complication of cancer treatment, is one of the major causes of morbidity and mortality. Several gram-negative and gram-positive bacteria are responsible for infections in neutropenic patients, however the most common microorganisms are Escherichia coli and coagulase-negative staphylococci, in decreasing order. Although Brucella spp. infections are endemic in Turkey, brucellosis-related febrile neutropenia has only rarely been reported. In this report, a case of brucellosis-related febrile neutropenia in a patient with acute myeloblastic leukemia (AML) was presented. A 56-year-old male patient presenting with fever, petechiae/purpura, leukocytosis, thrombocytopenia, and anemia was admitted to our hospital. Laboratory studies revealed a hemoglobin level of 8.27 g/dl, leukocyte count of 77.100 k/ml, absolute neutrophil count of 200 k/ml, and platelets at 94.200 k/ml. The patient was diagnosed as AML-M1 and piperacillin/tazobactam was started as the first-line antibiotic therapy due to the febrile neutropenia. On admission, blood and urine cultures were negative. Once the fever was controlled, remission/induction chemotherapy was initiated. However, fever developed again on the eight day, and vancomycin was added to the therapy. Since the fever persisted, the antibiotic therapy was gradually replaced with meropenem and linezolid. However, fever continued and the patient's general condition deteriorated. Subsequently performed Brucella tube agglutination test revealed positivity at 1/320 titer and the microorganism grown in blood culture (Bactec 9050; BD, USA) was identified as B.melitensis by conventional methods. Rifampicin and doxycycline therapy was started immediately, however, the patient died due to septic shock. If the tests for brucellosis were performed earlier when response to second step antibiotic therapy lacked in this patient, it was assumed that mortality could be prevented by the prompt initiation of the appropriate treatment. Thus, since brucellosis is endemic in Turkey, it should be considered as a possible agent of febrile neutropenia especially in patients unresponsive to empiric antibiotherapy and appropriate diagnostic tests should be performed.

  7. ACOG Committee Opinion no. 597: Committee on Obstetric Practice: Labor induction or augmentation and autism.

    PubMed

    2014-05-01

    Functional oxytocin deficiency and a faulty oxytocin signaling pathway have been observed in conjunction with autism spectrum disorder (ASD). Because exogenous synthetic oxytocin commonly is administered for labor induction and augmentation, some have hypothesized that synthetic oxytocin used for these purposes may alter fetal oxytocin receptors and predispose exposed offspring to ASD. However, current evidence does not identify a causal relationship between labor induction or augmentation in general, or oxytocin labor induction specifically, and autism or ASD. Recognizing the limitations of available study design, conflicting data, and the potential consequences of limiting labor induction and augmentation, the Committee on Obstetric Practice recommends against a change in current guidance regarding counseling and indications for and methods of labor induction and augmentation.

  8. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells.

    PubMed

    Ouyang, Weiming; Li, Jingxia; Ma, Qian; Huang, Chuanshu

    2006-04-01

    Skin is a major target of carcinogenic trivalent arsenic (arsenite, As3+). It has been thought that cell proliferation is one of the central events involved in the carcinogenic effect of arsenite. Cyclin D1, a nuclear protein playing a pivotal role in cell proliferation and cell cycle transition from G1 to S phases, has been reported to be induced in human fibroblast by arsenite via uncertain molecular mechanisms. In the present study, the potential roles of PI-3K/Akt/IKKbeta/NFkappaB signal pathway in cyclin D1 induction by arsenite were addressed in mouse epidermal Cl41 cells. We found that exposure of Cl41 cells to arsenite was able to induce cell proliferation, activate PI-3K-->Akt/p70(S6k) signal pathway and increase cyclin D1 expression at both transcription and protein levels. Pre-treatment of Cl41 cells with PI-3K inhibitor, wortmannin, significantly inhibited the phosphorylation of Akt and p70(S6k) and thereby dramatically impaired the cyclin D1 induction by arsenite, implicating the importance of the PI-3K signal pathway in the cyclin D1 induction by arsenite. Furthermore, inhibition of PI-3K/Akt by overexpression of Deltap85 or DN-Akt blocked arsenite-induced IKK phosphorylation, IkappaBalpha degradation and cyclin D1 expression, indicating that IKK/NFkappaB is the downstream transducer of arsenite-triggered PI-3K/Akt cascade. Moreover, inhibition of IKKbeta/NFkappaB signal pathway by overexpression of its dominant negative mutant, IKKbeta-KM, also significantly blocked arsenite-induced cyclin D1 expression. Overall, arsenite exposure triggered PI-3K/Akt/IKKbeta/NFkappaB signal cascade which in turn plays essential roles in inducing cyclin D1 expression.

  9. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  10. Inhibition of osteoclast activation by phloretin through disturbing αvβ3 integrin-c-Src pathway.

    PubMed

    Lee, Eun-Jung; Kim, Jung-Lye; Gong, Ju-Hyun; Park, Sin-Hye; Kang, Young-Hee

    2015-01-01

    This study was to explore the sequential signaling of disorganization of the actin cytoskeletal architecture by phloretin. RAW 264.7 macrophages were incubated with 1-20 μM phloretin for 5 days in the presence of RANKL. C57BL/6 mice were ovariectomized (OVX) and orally treated with 10 mg/kg phloretin once a day for 8 weeks. Phloretin allayed RANKL stimulated formation of actin podosomes with the concomitant retardation of the vinculin activation. Oral administration of phloretin suppressed the induction of femoral gelsolin and vinculin in OVX mice. The RANK-RANKL interaction resulted in the αvβ3 integrin induction, which was demoted by phloretin. The RANKL induction of actin rings and vacuolar-type H(+)-ATPase entailed Pyk2 phosphorylation and c-Src and c-Cbl induction, all of which were blunted by phloretin. Similar inhibition was also observed in phloretin-exposed OVX mouse femoral bone tissues with decreased trabecular collagen formation. Phloretin suppressed the paxillin induction in RANKL-activated osteoclasts and in OVX epiphyseal bone tissues. Also, phloretin attenuated the Syk phosphorylation and phospholipase Cγ induction by RANKL in osteoclasts. These results suggest that phloretin was an inhibitor of actin podosomes and sealing zone, disrupting αvβ3 integrin-c-Src-Pyk2/Syk signaling pathway for the regulation of actin cytoskeletal organization in osteoclasts.

  11. Inhibition of Osteoclast Activation by Phloretin through Disturbing αvβ3 Integrin-c-Src Pathway

    PubMed Central

    Lee, Eun-Jung; Kim, Jung-Lye; Gong, Ju-Hyun; Park, Sin-Hye; Kang, Young-Hee

    2015-01-01

    This study was to explore the sequential signaling of disorganization of the actin cytoskeletal architecture by phloretin. RAW 264.7 macrophages were incubated with 1–20 μM phloretin for 5 days in the presence of RANKL. C57BL/6 mice were ovariectomized (OVX) and orally treated with 10 mg/kg phloretin once a day for 8 weeks. Phloretin allayed RANKL stimulated formation of actin podosomes with the concomitant retardation of the vinculin activation. Oral administration of phloretin suppressed the induction of femoral gelsolin and vinculin in OVX mice. The RANK-RANKL interaction resulted in the αvβ3 integrin induction, which was demoted by phloretin. The RANKL induction of actin rings and vacuolar-type H+-ATPase entailed Pyk2 phosphorylation and c-Src and c-Cbl induction, all of which were blunted by phloretin. Similar inhibition was also observed in phloretin-exposed OVX mouse femoral bone tissues with decreased trabecular collagen formation. Phloretin suppressed the paxillin induction in RANKL-activated osteoclasts and in OVX epiphyseal bone tissues. Also, phloretin attenuated the Syk phosphorylation and phospholipase Cγ induction by RANKL in osteoclasts. These results suggest that phloretin was an inhibitor of actin podosomes and sealing zone, disrupting αvβ3 integrin-c-Src-Pyk2/Syk signaling pathway for the regulation of actin cytoskeletal organization in osteoclasts. PMID:25834823

  12. Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells.

    PubMed

    Vázquez-Gómez, G; Rocha-Zavaleta, L; Rodríguez-Sosa, M; Petrosyan, P; Rubio-Lightbourn, J

    2018-06-01

    Benzo[a]pyrene (B[a]P), the most extensively studied carcinogen in cigarette smoke, has been regarded as a critical mediator of lung cancer. It is known that B[a]P-mediated Aryl hydrocarbon Receptor (AhR) activation stimulates the mitogen activated protein kinases (MAPK) signaling cascade in different cell models. MAPK pathway disturbances drive alterations in cellular processes, such as differentiation, proliferation, and apoptosis, and the disturbances may also modify the AhR pathway itself. However, MAPK involvement in B[a]P metabolic activation and toxicity in lung tissues is not well understood. Here, we used a non-transformed human bronchial epithelial lung cell line, BEAS-2B, to study the participation of ERK 1/2 kinases in the metabolic activation of B[a]P and in its related genotoxic effects. Our results indicate that B[a]P is not cytotoxic to BEAS-2B cells at relatively low concentrations, but it enhances CYP1A1 gene transcription and protein induction. Additionally, B[a]P promotes Src and ERK 1/2 phosphorylation. Accordingly, inhibition of both Src and ERK 1/2 phosphorylation decreases CYP1A1 protein induction, AhR nuclear translocation and production of B[a]P adducts. Together, these data suggest a crosstalk between AhR and the members of the MAPK pathway, ERK 1/2 mediated by Src kinase. This interaction is important for the adequate AhR pathway signaling that in turn induces transcription and protein induction of CYP1A1 and B[a]P-induced DNA damage in BEAS-2B cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Killing of Human Melanoma Cells Induced by Activation of Class I Interferon–Regulated Signaling Pathways via MDA-7/IL-24

    PubMed Central

    Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.

    2008-01-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  14. Fatty Acid-binding Protein 4, a Point of Convergence for Angiogenic and Metabolic Signaling Pathways in Endothelial Cells*

    PubMed Central

    Harjes, Ulrike; Bridges, Esther; McIntyre, Alan; Fielding, Barbara A.; Harris, Adrian L.

    2014-01-01

    Fatty acid-binding protein 4 (FABP4) is an adipogenic protein and is implicated in atherosclerosis, insulin resistance, and cancer. In endothelial cells, FABP4 is induced by VEGFA, and inhibition of FABP4 blocks most of the VEGFA effects. We investigated the DLL4-NOTCH-dependent regulation of FABP4 in human umbilical vein endothelial cells by gene/protein expression and interaction analyses following inhibitor treatment and RNA interference. We found that FABP4 is directly induced by NOTCH. Stimulation of NOTCH signaling with human recombinant DLL4 led to FABP4 induction, independently of VEGFA. FABP4 induction by VEGFA was reduced by blockade of DLL4 binding to NOTCH or inhibition of NOTCH signal transduction. Chromatin immunoprecipitation of the NOTCH intracellular domain showed increased binding to two specific regions in the FABP4 promoter. The induction of FABP4 gene expression was dependent on the transcription factor FOXO1, which was essential for basal expression of FABP4, and FABP4 up-regulation following stimulation of the VEGFA and/or the NOTCH pathway. Thus, we show that the DLL4-NOTCH pathway mediates endothelial FABP4 expression. This indicates that induction of the angiogenesis-restricting DLL4-NOTCH can have pro-angiogenic effects via this pathway. It also provides a link between DLL4-NOTCH and FOXO1-mediated regulation of endothelial gene transcription, and it shows that DLL4-NOTCH is a nodal point in the integration of pro-angiogenic and metabolic signaling in endothelial cells. This may be crucial for angiogenesis in the tumor environment. PMID:24939870

  15. Cutting edge: A transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway.

    PubMed

    El Kasmi, Karim C; Smith, Amber M; Williams, Lynn; Neale, Geoffrey; Panopoulos, Athanasia D; Panopolous, Athanasia; Watowich, Stephanie S; Häcker, Hans; Foxwell, Brian M J; Murray, Peter J

    2007-12-01

    IL-10 regulates anti-inflammatory signaling via the activation of STAT3, which in turn controls the induction of a gene expression program whose products execute inhibitory effects on proinflammatory mediator production. In this study we show that IL-10 induces the expression of an ETS family transcriptional repressor, ETV3, and a helicase family corepressor, Strawberry notch homologue 2 (SBNO2), in mouse and human macrophages. IL-10-mediated induction of ETV3 and SBNO2 expression was dependent upon both STAT3 and a stimulus through the TLR pathway. We also observed that ETV3 expression was strongly induced by the STAT3 pathway regulated by IL-10 but not by STAT3 signaling activated by IL-6, which cannot activate the anti-inflammatory signaling pathway. ETV3 and SBNO2 repressed NF-kappaB- but not IFN regulatory factor 7 (IRF7)-activated transcriptional reporters. Collectively our data suggest that ETV3 and SBNO2 are components of the pathways that contribute to the downstream anti-inflammatory effects of IL-10.

  16. Enhancement of anthraquinone production in Morinda citrifolia cell suspension cultures after stimulation of the proline cycle with two proline analogs.

    PubMed

    Quevedo, Carla V; Perassolo, María; Giulietti, Ana M; Rodríguez Talou, Julián

    2012-03-01

    Synthesis of anthraquinones (AQs) involves the shikimate and 2-C-methyl-D-erythritol 4-phosphate pathways. The proline cycle is linked to the pentose phosphate pathway (PPP) to generate NADPH needed in the first steps of this pathway. The effect of two proline analogs, azetidine-2-carboxylic acid (A2C) and thiazolidine-4-carboxylic acid (T4C), were evaluated in Morinda citrifolia suspension cultures. Both analogs gave higher proline accumulation after 6 and 10 days (68 and 179% after 6 days with A2C at 25 and 50 μM, respectively, and 111% with T4C added at 100 μM). Induction of the proline cycle increased the AQ content after 6 days (~40% for 50 μM A2C and 100 μM T4C). Whereas A2C (50 μM) increased only AQ production, T4C also enhanced total phenolics. However, no induction of the PPP was observed with any of the treatments. This pathway therefore does not limit the supply of carbon skeletons to secondary metabolic pathways.

  17. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus.

    PubMed

    Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard

    2015-11-15

    The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Factors influencing choice of care-seeking for acute fever comparing private chemical shops with health centres and hospitals in Ghana: a study using case-control methodology.

    PubMed

    Ansah, Evelyn K; Gyapong, Margaret; Narh-Bana, Solomon; Bart-Plange, Constance; Whitty, Christopher J M

    2016-05-25

    Several public health interventions to improve management of patients with fever are largely focused on the public sector yet a high proportion of patients seek care outside the formal healthcare sector. Few studies have provided information on the determinants of utilization of the private sector as against formal public sector. Understanding the differences between those who attend public and private health institutions, and their pathway to care, has significant practical implications. The chemical shop is an important source of care for acute fever in Ghana. Case-control methodology was used to identify factors associated with seeking care for fever in the Dangme West District, Ghana. People presenting to health centres, or hospital outpatients, with a history or current fever were compared to counterparts from the same community with fever visiting a chemical shop. Of 600 patients, 150 each, were recruited from the district hospital and two health centres, respectively, and 300 controls from 51 chemical shops. Overall, 103 (17.2 %) patients tested slide positive for malaria. Specifically, 13.7 % (41/300) of chemical shop patients, 30.7 % (46/150) health centre and 10.7 % (16/150) hospital patients were slide positive. While it was the first option for care for 92.7 % (278/300) chemical shop patients, 42.7 % (64/150) of health centre patients first sought care from a chemical shop. More health centre patients (61.3 %; 92/150) presented with fever after more than 3 days than chemical shop patients (27.7 %; 83/300) [AOR = 0.19; p < 0.001 CI 0.11-0.30]. Although the hospital was the first option for 83.3 % (125/150) of hospital patients, most (63.3 %; 95/150) patients arrived there over 3 days after their symptoms begun. Proximity was significantly associated with utilization of each source of care. Education, but not other socioeconomic or demographic factors were significantly associated with chemical shop use. The private drug retail sector is the first option for the majority of patients, including poorer patients, with fever in this setting. Most patients with fever arrive at chemical shops with less delay and fewer signs of severity than at public health facilities. Improving chemical shop skills is a good opportunity to diagnose, treat or refer people with fever early.

  19. Molecular Control of the Induction of Alcohol Dehydrogenase by Ethanol in Drosophila Melanogaster Larvae

    PubMed Central

    Kapoun, A. M.; Geer, B. W.; Heinstra, PWH.; Corbin, V.; McKechnie, S. W.

    1990-01-01

    The activity of alcohol dehydrogenase (ADH:EC 1.1.1.1), the initial enzyme in the major pathway for ethanol degradation, is induced in Drosophila melanogaster larvae by low concentrations of dietary ethanol. Two lines of evidence indicate that the metabolic products of the ADH pathway for ethanol degradation are not directly involved in the induction of Adh. First, the accumulation of the proximal transcript in Adh(n2) larvae was increased when the intracellular level of ethanol was elevated. In addition, the ADH activity, the proximal Adh mRNA, and the intracellular concentration of ethanol were elevated coordinately in wild-type larvae fed hexadeuterated-ethanol, which is metabolized more slowly than normal ethanol. An examination of P element transformant lines with specific deletions in the 5' regulatory DNA of the Adh gene showed that the DNA sequence between +604 and +634 of the start site of transcription from the distal promoter was essential for this induction. The DNA sequence between -660 and about -5000 of the distal transcript start site was important for the down-regulation of the induction response. PMID:2157627

  20. Induction of the SHARP-2 mRNA level by insulin is mediated by multiple signaling pathways.

    PubMed

    Kanai, Yukiko; Asano, Kosuke; Komatsu, Yoshiko; Takagi, Katsuhiro; Ono, Moe; Tanaka, Takashi; Tomita, Koji; Haneishi, Ayumi; Tsukada, Akiko; Yamada, Kazuya

    2017-02-01

    The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor which represses transcription of the rat phosphoenolpyruvate carboxykinase gene. In this study, a regulatory mechanism of the SHARP-2 mRNA level by insulin was analyzed. Insulin rapidly induced the level of SHARP-2 mRNA. This induction was blocked by inhibitors for phosphoinositide 3-kinase (PI 3-K), protein kinase C (PKC), and mammalian target of rapamycin (mTOR), actinomycin D, and cycloheximide. Whereas an adenovirus infection expressing a dominant negative form of atypical PKC lambda (aPKCλ) blocked the insulin-induction of the SHARP-2 mRNA level, insulin rapidly activated the mTOR. Insulin did not enhance transcriptional activity from a 3.7 kb upstream region of the rat SHARP-2 gene. Thus, we conclude that insulin induces the expression of the rat SHARP-2 gene at the transcription level via both a PI 3-K/aPKCλ- and a PI 3-K/mTOR- pathways and that protein synthesis is required for this induction.

  1. Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis.

    PubMed

    Bell, Todd M; Espina, Virginia; Senina, Svetlana; Woodson, Caitlin; Brahms, Ashwini; Carey, Brian; Lin, Shih-Chao; Lundberg, Lindsay; Pinkham, Chelsea; Baer, Alan; Mueller, Claudius; Chlipala, Elizabeth A; Sharman, Faye; de la Fuente, Cynthia; Liotta, Lance; Kehn-Hall, Kylene

    2017-07-01

    Despite over 60 years of research on antiviral drugs, very few are FDA approved to treat acute viral infections. Rift Valley fever virus (RVFV), an arthropod borne virus that causes hemorrhagic fever in severe cases, currently lacks effective treatments. Existing as obligate intracellular parasites, viruses have evolved to manipulate host cell signaling pathways to meet their replication needs. Specifically, translation modulation is often necessary for viruses to establish infection in their host. Here we demonstrated phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eIF4G following RVFV infection in vitro through western blot analysis and in a mouse model of infection through reverse phase protein microarrays (RPPA). Inhibition of p70 S6 kinase through rapamycin treatment reduced viral titers in vitro and increased survival and mitigated clinical disease in RVFV challenged mice. Additionally, the phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo. Collectively these data demonstrate modulating p70 S6 kinase can be an effective antiviral strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. African Swine Fever Virus: a new old enemy of Europe

    PubMed

    Cisek, Agata A; Dąbrowska, Iwona; Gregorczyk, Karolina P; Wyżewski, Zbigniew

    2016-10-01

    African swine fever (ASF) is a highly contagious viral disease of swine with a mortality rate approaching 100 percent. African Swine Fever Virus (ASFV) is a double-stranded DNA virus with a complex molecular structure. Its large genome, encoding multiple virulence factors, allows for efficient replication, which takes place predominantly in the cytoplasm of monocytes and macrophages. Also, ASFV has the ability to interfere with cell signalling pathways, which leads to various modulations in the synthesis profiles of interferon and other cytokines. Sustained viremia favours the persistence of virions in blood and tissues of the convalescents, and the extended circulation of ASFV within the herd. ASFV has been spreading in the Caucasus since 2007, and in 2014 reached the eastern territory of the European Union. Outbreaks pose an economical threat to native pig rearing, especially since a single point source may easily develop into an epizootic event. There is currently no effective vaccine nor treatment for ASF, and eradication is possible only by prevention or the slaughter of diseased animals. This review paper summarizes the current state of knowledge about ASFV.

  3. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans

    PubMed Central

    Govindan, J. Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Breen, Peter; Larkins-Ford, Jonah; Mylonakis, Eleftherios

    2015-01-01

    Translation in eukaryotes is surveilled to detect toxins and virulence factors and coupled to the induction of defense pathways. C. elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNAi screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways that act upstream of MAP kinase to mediate the systemic communication of translation-defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from wild type can also rescue detoxification gene induction in lipid biosynthetic defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors. PMID:26322678

  4. [Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].

    PubMed

    Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y

    1996-03-01

    Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.

  5. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  6. A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control.

    PubMed

    Coelho, C P; Costa Netto, A P; Colasanti, J; Chalfun-Júnior, A

    2013-04-25

    Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.

  7. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates

    PubMed Central

    Terasaki, Kaori; Tercero, Breanna R.; Makino, Shinji

    2015-01-01

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever, which was first recognized in the Great Rift Valley of Kenya in 1931. RVFV is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines’ residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. PMID:26022573

  8. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates.

    PubMed

    Terasaki, Kaori; Tercero, Breanna R; Makino, Shinji

    2016-05-02

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems.

    PubMed

    Dietrich, Isabelle; Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Brennan, Benjamin; Elliott, Richard M; Diallo, Mawlouth; Sall, Amadou A; Failloux, Anna-Bella; Schnettler, Esther; Kohl, Alain; Becker, Stefanie C

    2017-01-01

    The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus , Bunyaviridae ) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster . We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies.

  10. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems

    PubMed Central

    Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Elliott, Richard M.; Diallo, Mawlouth; Sall, Amadou A.; Failloux, Anna-Bella; Schnettler, Esther

    2017-01-01

    ABSTRACT The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster. We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies. PMID:28497117

  11. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  12. On-demand anakinra treatment is effective in mevalonate kinase deficiency.

    PubMed

    Bodar, E J; Kuijk, L M; Drenth, J P H; van der Meer, J W M; Simon, A; Frenkel, J

    2011-12-01

    Mevalonate kinase deficiency (MKD) is a hereditary autoinflammatory syndrome marked by recurrent attacks of fever and inflammation. Severe enzyme deficiency results in mevalonic aciduria (MA) and milder deficiency in hyperimmunoglobulin D syndrome (HIDS). Treatment remains a challenge. To observe the effect of the recombinant interleukin-1 receptor antagonist anakinra in patients with MKD. A prospective observational study was undertaken. Two patients with MA started continuous treatment with anakinra (1-2 mg/kg/day) and nine patients with HIDS chose between continuous treatment and on-demand treatment (starting at first symptoms of attack, 100 mg/day or 1 mg/kg/day for 5-7 days). Anakinra induced partial remission in one patient with MA but there was no response in the other patient with MA. In one patient with HIDS continuous treatment induced complete remission for 7 months but was stopped because of side effects. Eight patients with HIDS preferred on-demand treatment from the start. This induced a clinical response (≥50% reduction in duration) in 8 of 12 treated attacks without a change in attack frequency. Anakinra prevented fever attacks due to vaccination without inhibiting antibody induction. No major side effects were seen. On-demand treatment with anakinra in HIDS decreases the duration and severity of fever attacks. Because of the burden of daily injections and relatively long asymptomatic intervals of HIDS, all patients with HIDS preferred on-demand treatment.

  13. Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa.

    PubMed

    Lin, Liangcai; Chen, Yong; Li, Jingen; Wang, Shanshan; Sun, Wenliang; Tian, Chaoguang

    2017-04-01

    To elucidate the mechanism of cellulase signal transduction in filamentous fungi including the components of the cellulase induction pathway. Neurospora crassa ncw-1 encodes a non-anchored cell wall protein. The absence of ncw-1 increased cellulase gene expression and this is not due to relieving carbon catabolite repression mediated by the cre-1 pathway. A mutant lacking genes encoding both three major β-glucosidase enzymes and NCW-1 (Δ3βGΔncw-1) was constructed. Transcriptome analysis of the quadruple mutant demonstrated enhanced expression of cellodextrin transporters after ncw-1 deletion, indicating that ncw-1 affects cellulase expression and production by inhibiting the uptake of the cellodextrin. NCW-1 is a novel component that plays a critical role in the cellulase induction signaling pathway.

  14. Biochemical Plant Responses to Ozone (IV. Cross-Induction of Defensive Pathways in Parsley (Petroselinum crispum L.) Plants).

    PubMed Central

    Eckey-Kaltenbach, H.; Ernst, D.; Heller, W.; Sandermann, H.

    1994-01-01

    Parsley (Petroselinum crispum L.) is known to respond to ultraviolet irradiation by the synthesis of flavone glycosides, whereas fungal or elicitor stress leads to the synthesis of furanocoumarin phytoalexins. We tested how these defensive pathways are affected by a single ozone treatment (200 nL L-1; 10 h). Assays were performed at the levels of transcripts, for enzyme activities, and for secondary products. The most rapid transcript accumulation was maximal at 3 h, whereas flavone glycosides and furanocoumarins were maximally induced at 12 and 24 h, respectively, after the start of ozone treatment. Ozone acted as a cross-inducer because the two distinct pathways were simultaneously induced. These results are consistent with the previously observed ozone induction of fungal and viral defense reactions in tobacco, spruce, and pine. PMID:12232062

  15. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response.

    PubMed

    Reis, Ana Luisa; Abrams, Charles C; Goatley, Lynnette C; Netherton, Chris; Chapman, Dave G; Sanchez-Cordon, Pedro; Dixon, Linda K

    2016-09-07

    African swine fever virus (ASFV) encodes multiple copies of MGF360 and MGF530/505 gene families. These genes have been implicated in the modulation of the type I interferon (IFN) response. We investigated the effect of modulating the IFN response on virus attenuation and induction of protective immunity by deleting genes MGF360 (MGF360-10L, 11L, 12L, 13L, 14L) and MGF530/505 (MGF530/505-1R, 2R and 3R) and interrupting genes (MGF360-9L and MGF530/505-4R) in the genome of the virulent ASFV isolate Benin 97/1. Replication of this deletion mutant, BeninΔMGF, in porcine macrophages in vitro was similar to that of the parental virulent virus Benin 97/1 and the natural attenuated isolate OURT88/3, which has a similar deletion of MGF360 and 530/505 genes. Levels of IFN-β mRNA in macrophages infected with virulent Benin 97/1 isolate were barely detectable but high levels were detected in macrophages infected with OURT88/3 and intermediate levels in macrophages infected with BeninΔMGF. The data confirms that these MGF360 and MGF530/505 genes have roles in suppressing induction of type I IFN. Immunisation and boost of pigs with BeninΔMGF showed that the virus was attenuated and all pigs (5/5) were protected against challenge with a lethal dose of virulent Benin 97/1. A short transient fever was observed at day 5 or 6 post-immunisation but no other clinical signs. Following immunisation and boost with the OURT88/3 isolate 3 of 4 pigs were protected against challenge. Differences were observed in the cellular and antibody responses in pigs immunised with BeninΔMGF compared to OURT88/3. Deletion of IFN modulators is a promising route for construction of rationally attenuated ASFV candidate vaccine strains. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Bacillus Calmette-Guérin with or without interferon α-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer.

    PubMed

    Nepple, Kenneth G; Lightfoot, Andrew J; Rosevear, Henry M; O'Donnell, Michael A; Lamm, Donald L

    2010-11-01

    In a multicenter, prospectively randomized study we evaluated bacillus Calmette-Guérin alone vs bacillus Calmette-Guérin plus interferon α-2b and megadose vitamins vs recommended daily allowance vitamins during induction and maintenance intravesical therapy in the treatment of nonmuscle invasive bladder cancer. Patients who were bacillus Calmette-Guérin naïve with carcinoma in situ, Ta or T1 urothelial cancer were randomized to receive intravesical bacillus Calmette-Guérin or bacillus Calmette-Guérin plus interferon α-2b. Patients were further randomized to receive a recommended daily allowance or megadose vitamin preparation. Induction bacillus Calmette-Guérin treatment was given weekly for 6 weeks, and patients who were recurrence-free received maintenance treatment at 4, 7, 13, 19, 25 and 37 months. Patients were followed with quarterly cystoscopy for 2 years, then semiannually through year 4 and then annually. The primary end point was biopsy confirmed tumor recurrence or positive cytology. A total of 670 patients were accrued and randomized. At 24-month median followup recurrence-free survival was similar in all groups with 63% in the bacillus Calmette-Guérin with recommended daily allowance vitamins group, 59% in bacillus Calmette-Guérin with megadose vitamins, 55% in bacillus Calmette-Guérin/interferon α-2b with recommended daily allowance vitamins and 61% in bacillus Calmette-Guérin/interferon α-2b with megadose vitamins (p >0.05). The addition of interferon α-2b was associated with a more frequent incidence of fever (11% vs 5%) and constitutional symptoms (18% vs 11%) vs bacillus Calmette-Guérin alone (p <0.05). Interferon α-2b added to bacillus Calmette-Guérin induction and maintenance intravesical therapy did not decrease tumor recurrence in bacillus Calmette-Guérin naïve cases, but was associated with increased fever and constitutional symptoms. No difference in time to recurrence was present in patients receiving recommended daily allowance vs high dose vitamins. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

    PubMed Central

    Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.

    2012-01-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329

  18. Effect of endotoxin on ventilation and breath variability: role of cyclooxygenase pathway.

    PubMed

    Preas, H L; Jubran, A; Vandivier, R W; Reda, D; Godin, P J; Banks, S M; Tobin, M J; Suffredini, A F

    2001-08-15

    To evaluate the effects of endotoxemia on respiratory controller function, 12 subjects were randomized to receive endotoxin or saline; six also received ibuprofen, a cyclooxygenase inhibitor, and six received placebo. Administration of endotoxin produced fever, increased respiratory frequency, decreased inspiratory time, and widened alveolar-arterial oxygen tension gradient (all p < or = 0.001); these responses were blocked by ibuprofen. Independent of ibuprofen, endotoxin produced dyspnea, and it increased fractional inspiratory time, minute ventilation, and mean inspiratory flow (all p < or = 0.025). Endotoxin altered the autocorrelative behavior of respiratory frequency by increasing its autocorrelation coefficient at a lag of one breath, the number of breath lags with significant serial correlations, and its correlated fraction (all p < 0.05); these responses were blocked by ibuprofen. Changes in correlated behavior of respiratory frequency were related to changes in arterial carbon dioxide tension (r = 0.86; p < 0.03). Endotoxin decreased the oscillatory fraction of inspiratory time in both the placebo (p < 0.05) and ibuprofen groups (p = 0.06). In conclusion, endotoxin produced increases in respiratory motor output and dyspnea independent of fever and symptoms, and it curtailed the freedom to vary respiratory timing-a response that appears to be mediated by the cyclooxygenase pathway.

  19. Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007.

    PubMed

    Willetts, Andrew; Masters, Pamela; Steadman, Carol

    2018-05-07

    For the first time, the differential rates of synthesis of all the key monooxygenases involved in the catabolism by Pseudomonas putida NCIMB 10007 of bicyclic ( rac )-camphor to ∆ 2,5 -3,4,4-trimethylpimelyl-CoA, the first aliphatic pathway intermediate, have been determined to help establish the relevant induction profile of each of the oxygen-dependent enzymes. The efficacy of both relevant substrates and pathway metabolites as inducers has been established. Further, inhibitors with characterised functionality have been used to indicate that the pertinent regulatory controls operate at the level of transcription of the corresponding genes.

  20. Specific induction of Akt3 in spinal cord motor neurons is neuroprotective in a mouse model of familial amyotrophic lateral sclerosis.

    PubMed

    Peviani, Marco; Tortarolo, Massimo; Battaglia, Elisa; Piva, Roberto; Bendotti, Caterina

    2014-02-01

    Evidence is accumulating that an imbalance between pathways for degeneration or survival in motor neurons may play a central role in mechanisms that lead to neurodegeneration in amyotrophic lateral sclerosis (ALS). We and other groups have observed that downregulation, or lack of induction, of the PI3K/Akt prosurvival pathway may be responsible for defective response of motor neurons to injury and their consequent cellular demise. Some of the neuroprotective effects mediated by growth factors may involve activation of Akt, but a proof of concept of Akt as a target for therapy is lacking. We demonstrate that specific expression of constitutively activated Akt3 in motor neurons through the use of the promoter of homeobox gene Hb9 prevents neuronal loss induced by SOD1.G93A both in vitro (in mixed neuron/astrocyte cocultures) and in vivo (in a mouse model of ALS). Inhibition of ASK1 and GSK3beta was involved in the neuroprotective effects of activated Akt3, further supporting the hypothesis that induction of Akt3 may be a key step in activation of pathways for survival in the attempt to counteract motor neuronal degeneration in ALS.

  1. Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer

    PubMed Central

    Minker, Carole; Duban, Livine; Karas, Daniel; Järvinen, Päivi; Lobstein, Annelise; Muller, Christian D.

    2015-01-01

    Scope. The aim of this work is to identify which proapoptotic pathway is induced in human colon cancer cell lines, in contact with proanthocyanidins extracted from various berries. Methods and Results. Proanthocyanidins (Pcys) extracted from 11 berry species are monitored for proapoptotic activities on two related human colon cancer cell lines: SW480-TRAIL-sensitive and SW620-TRAIL-resistant. Apoptosis induction is monitored by cell surface phosphatidylserine (PS) detection. Lowbush blueberry extract triggers the strongest activity. When tested on the human monocytic cell line THP-1, blueberry Pcys are less effective for PS externalisation and DNA fragmentation is absent, highlighting a specificity of apoptosis induction in gut cells. In Pcys-treated gut cell lines, caspase 8 (apoptosis extrinsic pathway) but not caspase 9 (apoptosis intrinsic pathway) is activated after 3 hours through P38 phosphorylation (90 min), emphasizing the potency of lowbush blueberry Pcys to eradicate gut TRAIL-resistant cancer cells. Conclusion. We highlight here that berries Pcys, especially lowbush blueberry Pcys, are of putative interest for nutritional chemoprevention of colorectal cancer in view of their apoptosis induction in a human colorectal cancer cell lines. PMID:26180579

  2. A Brief History of IL-1 and IL-1 Ra in Rheumatology.

    PubMed

    Dayer, Jean-Michel; Oliviero, Francesca; Punzi, Leonardo

    2017-01-01

    The history of what, in 1979, was called interleukin-1 (IL-1), orchestrator of leukocyte inter-communication, began many years before then, initially by the observation of fever induction via the endogenous pyrogen (EP) (1974) and then in rheumatology on the role in tissue destruction in rheumatoid diseases via the induction of collagenase and PGE 2 in human synovial cells by a mononuclear cell factor (MCF) (1977). Since then, the family has exploded to presently 11 members as well as many membrane-bound and soluble receptor forms. The discovery of a natural Interleukin-1 receptor antagonist (IL-1Ra) in human biological fluids has highlighted the importance of IL-1 and IL-1Ra in human diseases. Evidence delineating its role in autoinflammatory syndromes and the elucidation of the macromolecular complex referred to as "inflammasome" have been instrumental to our understanding of the link with IL-1. At present, the IL-1blockade as therapeutic approach is crucial for many hereditary autoinflammatory diseases, as well as for adult-onset Still's disease, crystal-induced arthropathies, certain skin diseases including neutrophil-triggered skin diseases, Behçet's disease and deficiency of IL-1Ra and other rare fever syndromes. Its role is only marginally important in rheumatoid arthritis and is still under debate with regard to osteoarthritis, type 2 diabetes mellitus, cardiovascular diseases and cancer. This brief historical review focuses on some aspects of IL-1, mainly IL-1β and IL-Ra, in rheumatology. There are many excellent reviews focusing on the IL-1 family in general or with regard to specific diseases or biological discoveries.

  3. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    PubMed

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Thermosensitivity is reduced during fever induced by Staphylococcus aureus cells walls in rabbits.

    PubMed

    Tøien, Ø; Mercer, J B

    1996-05-01

    Thermosensitivity (TS) and threshold core temperature for metabolic cold defence were determined in six conscious rabbits before, and at seven different times after i.v. injection of killed Staphylococcus aureus (8 x 10(7) or 2 x 10(7) cell walls x kg(-1)) by exposure to short periods (5-10 min) of body cooling. Heat was extracted with a chronically implanted intravascular heat exchanger. TS was calculated by regression of metabolic heat production (M) and core temperature, as indicated by hypothalamic temperature. Threshold for cold defence (shivering threshold) was calculated as the core temperature at which the thermosensitivity line crossed preinjection resting M. The shivering thresholds followed the shape of the fever response. TS was significantly reduced (up to 49%) during the time course of fever induced by the highest dose of pyrogen only. At both high and low doses of pyrogen TS correlated negatively with shivering threshold (r = 0.66 and 0.79 respectively) with similar slopes. The reduction in TS during fever was thus associated with the increase in shivering threshold resulting from the pyrogen injection and not by the dose of pyrogen. Model considerations indicate, however, that changes in sensitivity of the thermosensory input to the hypothalamic controller may affect threshold changes but cause negligible TS changes. It is more likely that the reduction in TS is effected in the specific hypothalamic effector pathways.

  5. Induction of the pi class of glutathione S-transferase by carnosic acid in rat Clone 9 cells via the p38/Nrf2 pathway.

    PubMed

    Lin, Chia-Yuan; Wu, Chi-Rei; Chang, Shu-Wei; Wang, Yu-Jung; Wu, Jia-Jiuan; Tsai, Chia-Wen

    2015-06-01

    Induction of phase II enzymes is important in cancer chemoprevention. We compared the effect of rosemary diterpenes on the expression of the pi class of glutathione S-transferase (GSTP) in rat liver Clone 9 cells and the signaling pathways involved. Culturing cells with 1, 5, 10, or 20 μM carnosic acid (CA) or carnosol (CS) for 24 h in a dose-dependent manner increased the GSTP expression. CA was more potent than CS. The RNA level and the enzyme activity of GSTP were also enhanced by CA treatment. Treatment with 10 μM CA highly induced the reporter activity of the enhancer element GPEI. Furthermore, CA markedly increased the translocation of nuclear factor erythroid-2 related factor 2 (Nrf2) from the cytosol to the nucleus after 30 to 60 min. CA the stimulated the protein induction of p38, nuclear Nrf2, and GSTP was diminished in the presence of SB203580 (a p38 inhibitor). In addition, SB203580 pretreatment or silencing of Nrf2 by siRNA suppressed the CA-induced GPEI-DNA binding activity and GSTP protein expression. Knockdown of p38 or Nrf2 by siRNA abolished the activation of p38 and Nrf2 as well as the protein induction and enzyme activity of GSTP by CA. These results suggest that CA up-regulates the expression and enzyme activity of GSTP via the p38/Nrf2/GPEI pathway.

  6. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction.

    PubMed

    Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R

    2006-09-01

    Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.

  7. Alteration of synaptic plasticity in rat dorsal striatum induced by chronic ethanol intake and withdrawal via ERK pathway.

    PubMed

    Cui, Sheng-zhong; Wang, Shen-jun; Li, Jing; Xie, Gui-qin; Zhou, Rong; Chen, Ling; Yuan, Xiao-ru

    2011-02-01

    The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.

  8. RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs.

    PubMed

    Pathak, Shalu Kumari; Kumar, Amit; Bhuwana, G; Sah, Vaishali; Upmanyu, Vikramadiya; Tiwari, A K; Sahoo, A P; Sahoo, A R; Wani, Sajjad A; Panigrahi, Manjit; Sahoo, N R; Kumar, Ravi

    2017-09-01

    In present investigation, differential expression of transcriptome after classical swine fever (CSF) vaccination has been explored at the cellular level in crossbred and indigenous (desi) piglets. RNA Sequencing by Expectation-Maximization (RSEM) package was used to quantify gene expression from RNA Sequencing data, and differentially expressed genes (DEGs) were identified using EBSeq, DESeq2, and edgeR softwares. After analysis, 5222, 6037, and 6210 common DEGs were identified in indigenous post-vaccinated verses pre-vaccinated, crossbred post-vaccinated verses pre-vaccinated, and post-vaccinated crossbred verses indigenous pigs, respectively. Functional annotation of these DEGs showed enrichment of antigen processing-cross presentation, B cell receptor signaling, T cell receptor signaling, NF-κB signaling, and TNF signaling pathways. The interaction network among the immune genes included more number of genes with greater connectivity in vaccinated crossbred than the indigenous piglets. Higher expression of IRF3, IL1β, TAP1, CSK, SLA2, SLADM, and NF-kB in crossbred piglets in comparison to indigenous explains the better humoral response observed in crossbred piglets. Here, we predicted that the processed CSFV antigen through the T cell receptor signaling cascade triggers the B cell receptor-signaling pathway to finally activate MAPK kinase and NF-κB signaling pathways in B cell. This activation results in expression of genes/transcription factors that lead to B cell ontogeny, auto immunity and immune response through antibody production. Further, immunologically important genes were validated by qRT-PCR.

  9. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades.

    PubMed

    Kunigal, Sateesh; Ponnusamy, Moorthy P; Momi, Navneet; Batra, Surinder K; Chellappan, Srikumar P

    2012-04-26

    The membrane-bound mucins are thought to play an important biological role in cell-cell and cell-matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells.

  10. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades

    PubMed Central

    2012-01-01

    Background The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Results Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Conclusions Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells. PMID:22537161

  11. USE OF METAL- AND FLUORESCEIN-TAGGED MATERIALS TO STUDY SETTLED PARTICLES EXPOSURE PATHWAYS

    EPA Science Inventory

    Through the use of ten size ranges of tagged materials (Antley et. al., 2000a), inductively coupled plasma- mass spectrometry (ICP-MS) and flourometry are being used to study the movement of settled particles in the indoor environment, exposure pathways, and the collection effi...

  12. A Double-Blind, Double-Dummy, Flexible-Design Randomized Multicenter Trial: Early Safety of Single- Versus Divided-Dose Rabbit Anti-Thymocyte Globulin Induction in Renal Transplantation.

    PubMed

    Stevens, R B; Wrenshall, L E; Miles, C D; Farney, A C; Jie, T; Sandoz, J P; Rigley, T H; Osama Gaber, A

    2016-06-01

    A previous nonblinded, randomized, single-center renal transplantation trial of single-dose rabbit anti-thymocyte globulin induction (SD-rATG) showed improved efficacy compared with conventional divided-dose (DD-rATG) administration. The present multicenter, double-blind/double-dummy STAT trial (Single dose vs. Traditional Administration of Thymoglobulin) evaluated SD-rATG versus DD-rATG induction for noninferiority in early (7-day) safety and tolerability. Ninety-five patients (randomized 1:1) received 6 mg/kg SD-rATG or 1.5 mg/kg/dose DD-rATG, with tacrolimus-mycophenolate maintenance immunosuppression. The primary end point was a composite of fever, hypoxia, hypotension, cardiac complications, and delayed graft function. Secondary end points included 12-month patient survival, graft survival, and rejection. Target enrollment was 165 patients with an interim analysis scheduled after 80 patients. Interim analysis showed primary end point noninferiority of SD-rATG induction (p = 0.6), and a conditional probability of <1.73% of continued enrollment producing a significant difference (futility analysis), leading to early trial termination. Final analysis (95 patients) showed no differences in occurrence of primary end point events (p = 0.58) or patients with no, one, or more than one event (p = 0.81), or rejection, graft, or patient survival (p = 0.78, 0.47, and 0.35, respectively). In this rigorously blinded trial in adult renal transplantation, we have shown SD-rATG induction to be noninferior to DD-rATG induction in early tolerability and equivalent in 12-month safety. (Clinical Trials.gov #NCT00906204.). © Copyright 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of the American Society of Transplantation and the American Society of Transplant Surgeons.

  13. African Swine Fever Virus pB119L Protein Is a Flavin Adenine Dinucleotide-Linked Sulfhydryl Oxidase

    PubMed Central

    Rodríguez, Irene; Redrejo-Rodríguez, Modesto; Rodríguez, Javier M.; Alejo, Alí; Salas, José; Salas, María L.

    2006-01-01

    Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway. PMID:16537584

  14. African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Rodríguez, Irene; Redrejo-Rodríguez, Modesto; Rodríguez, Javier M; Alejo, Alí; Salas, José; Salas, María L

    2006-04-01

    Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.

  15. Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome.

    PubMed

    Benferhat, Rima; Josse, Thibaut; Albaud, Benoit; Gentien, David; Mansuroglu, Zeyni; Marcato, Vasco; Souès, Sylvie; Le Bonniec, Bernard; Bouloy, Michèle; Bonnefoy, Eliette

    2012-10-01

    Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.

  16. Large-Scale Chromatin Immunoprecipitation with Promoter Sequence Microarray Analysis of the Interaction of the NSs Protein of Rift Valley Fever Virus with Regulatory DNA Regions of the Host Genome

    PubMed Central

    Benferhat, Rima; Josse, Thibaut; Albaud, Benoit; Gentien, David; Mansuroglu, Zeyni; Marcato, Vasco; Souès, Sylvie; Le Bonniec, Bernard

    2012-01-01

    Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level. PMID:22896612

  17. Different Populations of Prostaglandin EP3 Receptor-Expressing Preoptic Neurons Project to Two Fever-Mediating Sympathoexcitatory Brain Regions

    PubMed Central

    Nakamura, Y.; Nakamura, K.; Morrison, S. F.

    2010-01-01

    The central mechanism of fever induction is triggered by an action of prostaglandin E2 (PGE2) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE2 pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT thermogenesis and for cutaneous vasoconstriction by distinct sets of POA neurons. PMID:19327390

  18. Constitutive activation of MAPK cascade in acute quadriplegic myopathy.

    PubMed

    Di Giovanni, Simone; Molon, Annamaria; Broccolini, Aldobrando; Melcon, Gisela; Mirabella, Massimiliano; Hoffman, Eric P; Servidei, Serenella

    2004-02-01

    Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-beta receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-beta pathway in myofibers. The acute stimulation of the TGF-beta/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients.

  19. The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth Factor-β Signaling by Destabilizing Ski and Inducing Smad7*

    PubMed Central

    Band, Arja M.; Björklund, Mia; Laiho, Marikki

    2009-01-01

    Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456

  20. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking.

    PubMed

    Gauthier, Kimberley; Rocheleau, Christian E

    2017-01-01

    Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.

  1. Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis1

    PubMed Central

    Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C.

    2016-01-01

    Plants respond to herbivory with the induction of resistance, mediated by distinct phytohormonal signaling pathways and their interactions. Phloem feeders are known to induce plant resistance via the salicylic acid pathway, whereas biting-chewing herbivores induce plant resistance mainly via the jasmonate pathway. Here, we show that a specialist caterpillar (biting-chewing herbivore) and a specialist aphid (phloem feeder) differentially induce resistance against Pieris brassicae caterpillars in Arabidopsis (Arabidopsis thaliana) plants. Caterpillar feeding induces resistance through the jasmonate signaling pathway that is associated with the induction of kaempferol 3,7-dirhamnoside, whereas aphid feeding induces resistance via a novel mechanism involving sinapoyl malate. The role of sinapoyl malate is confirmed through the use of a mutant compromised in the biosynthesis of this compound. Caterpillar-induced resistance is associated with a lower cost in terms of plant growth reduction than aphid-induced resistance. A strong constitutive resistance against P. brassicae caterpillars in combination with a strong growth attenuation in plants of a transfer DNA (T-DNA) insertion mutant of WRKY70 (wrky70) suggest that the WRKY70 transcription factor, a regulator of downstream responses mediated by jasmonate-salicylic acid signaling cross talk, is involved in the negative regulation of caterpillar resistance and in the tradeoff between growth and defense. In conclusion, different mechanisms of herbivore-induced resistance come with different costs, and a functional WRKY70 transcription factor is required for the induction of low-cost resistance. PMID:26603653

  2. Analysis of repair and PCNA complex formation induced by ionizing radiation in human fibroblast cell lines.

    PubMed

    Karmakar, P; Balajee, A S; Natarajan, A T

    2001-05-01

    Proliferating cell nuclear antigen (PCNA), an auxiliary factor for DNA polymerase delta and epsilon, is involved in both DNA replication and repair. Previous studies in vitro have demonstrated the requirement of PCNA in the resynthesis step of nucleotide excision repair (NER) and base excision repair (BER). Using a native chromatin template isolated under near physiological conditions, we have analysed the involvement of PCNA in the BER pathway in different NER defective human cell lines. The repair sites and PCNA were visualized by indirect immunolabelling followed by fluorescence microscopy. The results indicate that exposure to X-rays triggers the induction of PCNA in all the three human fibroblast cell lines studied, namely normal, xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). In all the cell lines, induction of PCNA and repair patches occurred in a dose- and time-dependent fashion. Induction of repair patches in NER-deficient XP-A cells suggests that the X-ray-induced lesions are largely repaired via the BER pathway involving PCNA as one of the key components of this pathway. X-ray-induced repair synthesis was greatly inhibited by treatment of cells with DNA polymerase inhibitors aphidicolin and cytosine arabinoside. Interestingly, inhibition of repair resynthesis did not affect the intensity of PCNA staining in X-irradiated cells indicating that the PCNA may be required for the BER pathway at a step preceding the resynthesis step.

  3. Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo.

    PubMed

    Ryan, Margaret M; Ryan, Brigid; Kyrke-Smith, Madeleine; Logan, Barbara; Tate, Warren P; Abraham, Wickliffe C; Williams, Joanna M

    2012-01-01

    Long-term potentiation (LTP) is widely accepted as a cellular mechanism underlying memory processes. It is well established that LTP persistence is strongly dependent on activation of constitutive and inducible transcription factors, but there is limited information regarding the downstream gene networks and controlling elements that coalesce to stabilise LTP. To identify these gene networks, we used Affymetrix RAT230.2 microarrays to detect genes regulated 5 h and 24 h (n = 5) after LTP induction at perforant path synapses in the dentate gyrus of awake adult rats. The functional relationships of the differentially expressed genes were examined using DAVID and Ingenuity Pathway Analysis, and compared with our previous data derived 20 min post-LTP induction in vivo. This analysis showed that LTP-related genes are predominantly upregulated at 5 h but that there is pronounced downregulation of gene expression at 24 h after LTP induction. Analysis of the structure of the networks and canonical pathways predicted a regulation of calcium dynamics via G-protein coupled receptors, dendritogenesis and neurogenesis at the 5 h time-point. By 24 h neurotrophin-NFKB driven pathways of neuronal growth were identified. The temporal shift in gene expression appears to be mediated by regulation of protein synthesis, ubiquitination and time-dependent regulation of specific microRNA and histone deacetylase expression. Together this programme of genomic responses, marked by both homeostatic and growth pathways, is likely to be critical for the consolidation of LTP in vivo.

  4. HCV NS5A Up-Regulates COX-2 Expression via IL-8-Mediated Activation of the ERK/JNK MAPK Pathway

    PubMed Central

    Chen, Wei-Chun; Tseng, Chin-Kai; Chen, Yen-Hsu; Lin, Chun-Kuang; Hsu, Shih-hsien; Wang, Shen-Nien; Lee, Jin-Ching

    2015-01-01

    Chronic hepatitis C virus (HCV) infection leads to intrahepatic inflammation and liver cell injury, which are considered a risk factor for virus-associated hepatitis, cirrhosis, and hepatocellular carcinoma worldwide. Inflammatory cytokines are critical components of the immune system and influence cellular signaling, and genetic imbalances. In this study, we found that cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) were significantly induced by HCV infection and HCV NS5A expression, and induction of COX-2 correlated with HCV-induced IL-8 production. We also found that the ERK and JNK signaling pathways were involved in the regulation of IL-8-mediated COX-2 induction in response to HCV infection. Using a promoter-linked reporter assay, we identified that the C/EBP regulatory element within the COX-2 promoter was the dominant factor responsible for the induction of COX-2 by HCV. Silencing C/EBP attenuated HCV-induced COX-2 expression. Our results revealed that HCV-induced inflammation promotes viral replication, providing new insights into the involvement of IL-8-mediated COX-2 induction in HCV replication. PMID:26231035

  5. Jasmonate-Dependent Induction of Indole Glucosinolates in Arabidopsis by Culture Filtrates of the Nonspecific Pathogen Erwinia carotovora1

    PubMed Central

    Brader, Günter; Tas, Éva; Palva, E. Tapio

    2001-01-01

    Elicitors from the plant pathogen Erwinia carotovora trigger coordinate induction of the tryptophan (Trp) biosynthesis pathway and Trp oxidizing genes in Arabidopsis. To elucidate the biological role of such pathogen-induced activation we characterized the production of secondary defense metabolites such as camalexin and indole glucosinolates derived from precursors of this pathway. Elicitor induction was followed by a specific increase in 3-indolylmethylglucosinolate (IGS) content, but only a barely detectable accumulation of the indole-derived phytoalexin camalexin. The response is mediated by jasmonic acid as shown by lack of IGS induction in the jasmonate-insensitive mutant coi1-1. In accordance with this, methyl jasmonate was able to trigger IGS accumulation in Arabidopsis. In contrast, ethylene and salicylic acid seem to play a minor role in the response. They did not trigger alterations in IGS levels, and methyl jasmonate- or elicitor-induced IGS accumulation in NahG and ethylene-insensitive ein2-1 mutant plants was similar as in the wild type. The breakdown products of IGS and other glucosinolates were able to inhibit growth of E. carotovora. The results suggest that IGS is of importance in the defense against bacterial pathogens. PMID:11402212

  6. Hair growth-promoting effect of Aconiti Ciliare Tuber extract mediated by the activation of Wnt/β-catenin signaling.

    PubMed

    Park, Phil-June; Moon, Byoung-San; Lee, Soung-Hoon; Kim, Su-Na; Kim, Ah-Reum; Kim, Hyung-Jun; Park, Won-Seok; Choi, Kang-Yell; Cho, Eun-Gyung; Lee, Tae Ryong

    2012-11-02

    The activation of Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis by stimulating bulge stem cells. This study was to obtain the activator of Wnt/β-catenin signaling pathway from natural products and to determine whether this activator can induce anagen hair growth in mice. To identify materials that activate Wnt/β-catenin signaling pathway, 800 natural product extracts were screened using pTOPFlash assay and neural progenitor cell (NPC) differentiation assay. A selected extract was further tested for its effects on alkaline phosphatase (ALP) activity in human immortalized dermal papilla cell (iDPC) and the proliferation in iDPC and immortalized rat vibrissa DPC (RvDP). Finally, hair growth-promoting effects were evaluated in the dorsal skin of C57BL/6 mice. Aconiti Ciliare Tuber (ACT) extract was one of the most active materials in both pTOPFlash and NPC differentiation assays. It promoted the differentiation of NPC cells even under proliferation-stimulating conditions (basic fibroblast growth factor: bFGF). It also increased ALP activity and proliferation of iDPC in dose-dependent manners, and it stimulated the induction of the anagen hair growth in C57BL/6 mice. These results suggest that ACT extract activates the Wnt/β-catenin signaling pathway by enhancing β-catenin transcription and has the potential to promote the induction of hair growth via activation of the stem cell activity of the dermal papilla cells. This is the first report indicating benefits of ACT extract in hair loss prevention by triggering the activation of Wnt/β-catenin signaling pathway and induction of the anagen hair growth in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by baicalin

    PubMed Central

    2012-01-01

    Background Baicalin, a flavone present in Scutellaria baicalensis Georgi, inhibits the growth of human leukemia and myeloma cells through induction of apoptosis. Methods The present study was undertaken to ascertain whether cultured Burkitt lymphoma cells undergo apoptosis when treated with baicalin. Growth rates were measured using MTT and colony formation assays, and induction of apoptosis was quantified using Annexin V and DNA fragmentation assays. Mechanisms underlying observed growth suppression were examined using Western blotting. Results Treatment of CA46 Burkitt lymphoma cells with baicalin for 48 h markedly decreased the rate of cell proliferation; an IC50 value of 10 μM was obtained. Colony formation was almost fully suppressed at 10 μM baicalin. CA46 cells underwent apoptosis in response to baicalin treatment as evidenced by an increase in the percentage of cells stainable with Annexin V, by increased DNA fragmentation, and by activation of the intrinsic (mitochondrial) pathway for cell death as characterized by increased expression of the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase. Additionally, baicalin was found to down-regulate anti-apoptotic and up-regulate apoptotic components of the phosphatidylinositide-3-kinase (PI3K)/serine/threonine kinase (Akt) signaling pathway. Conclusions The concentrations at which baicalin altered expression of components of the PI3K/Akt pathway in CA46 cells were comparable to those that suppressed growth and induced apoptosis, supporting the hypothesis that the observed growth-inhibitory and apoptosis-inducing actions of baicalin in these cells are mediated by down-regulation of this pathway. PMID:22607709

  8. De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction

    PubMed Central

    Liu, Chuan-He; Fan, Chao

    2016-01-01

    A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL·L−1 (T1) or 2.40 mL·L−1 ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high-quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPCR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene expression profiling results. Ethephon-mediated induction likely mimics the process of vernalization in the floral transition in pineapple by increasing LTI, FT, and VRN1 expression and promoting the up-regulation of floral meristem identity genes involved in flower development. The candidate genes screened can be used in investigations of the molecular mechanisms of the flowering pathway and of various other biological mechanisms in pineapple. PMID:26955375

  9. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes.

    PubMed

    Burlet, E; HogenEsch, H; Dunham, A; Morefield, G

    2017-05-01

    Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.

  10. Studies on the mechanism of endogenous pyrogen production. II. Role of cell products in the regulation of pyrogen release from blood leukocytes.

    PubMed

    Bodel, P

    1974-09-01

    Some characteristics of the process by which endogenous pyrogen (EP), the mediator of fever, is released from cells were examined by using human blood leukocytes incubated in vitro. Studies were designed to examine a possible role for leukocyte products, including EP, in the induction, augmentation, or suppression of pyrogen release by blood leukocytes. Products of stimulated leukocytes, including a partially purified preparation of EP, did not induce significant activation of nonstimulated cells. Also, no evidence was obtained that stimulated cell products either augment or inhibit pyrogen production by other stimulated cells. A feedback control of EP production was thus not observed. A crude preparation of EP, containing other products of activated cells, maintained its pyrogenicity when incubated at pH 7.4 but not at pH 5.0. These studies thus provide no support for hypothesized control mechanisms regulating production of EP by blood leukocytes. By contrast, local inactivation of EP at inflammatory sites may modify the amount of EP entering the blood, and hence fever.

  11. Studies on the Mechanism of Endogenous Pyrogen Production II. Role of Cell Products in the Regulation of Pyrogen Release from Blood Leukocytes

    PubMed Central

    Bodel, Phyllis

    1974-01-01

    Some characteristics of the process by which endogenous pyrogen (EP), the mediator of fever, is released from cells were examined by using human blood leukocytes incubated in vitro. Studies were designed to examine a possible role for leukocyte products, including EP, in the induction, augmentation, or suppression of pyrogen release by blood leukocytes. Products of stimulated leukocytes, including a partially purified preparation of EP, did not induce significant activation of nonstimulated cells. Also, no evidence was obtained that stimulated cell products either augment or inhibit pyrogen production by other stimulated cells. A feedback control of EP production was thus not observed. A crude preparation of EP, containing other products of activated cells, maintained its pyrogenicity when incubated at pH 7.4 but not at pH 5.0. These studies thus provide no support for hypothesized control mechanisms regulating production of EP by blood leukocytes. By contrast, local inactivation of EP at inflammatory sites may modify the amount of EP entering the blood, and hence fever. PMID:4426696

  12. Murine Models for Viral Hemorrhagic Fever.

    PubMed

    Gonzalez-Quintial, Rosana; Baccala, Roberto

    2018-01-01

    Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes. This model has the advantage that the mice used are fully immunocompetent, allowing studies on the contribution of the immune response to disease progression. Moreover, LCMV is very well characterized and exhibits limited pathogenicity in humans, allowing handling in convenient BSL-2 facilities. In this chapter we outline protocols for the induction and analysis of arenavirus-mediated pathogenesis in the NZB/LCMV model, including mouse infection, virus titer determination, platelet counting, phenotypic analysis of virus-specific T cells, and assessment of vascular permeability.

  13. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505.

    PubMed

    Golding, Josephine P; Goatley, Lynnette; Goodbourn, Steve; Dixon, Linda K; Taylor, Geraldine; Netherton, Christopher L

    2016-06-01

    African swine fever virus (ASFV) causes a lethal haemorrhagic disease of pigs. There are conflicting reports on the role of interferon in ASFV infection. We therefore analysed the interaction of ASFV with porcine interferon, in vivo and in vitro. Virulent ASFV induced biologically active IFN in the circulation of pigs from day 3-post infection, whereas low virulent OUR T88/3, which lacks genes from multigene family (MGF) 360 and MGF505, did not. Infection of porcine leucocytes enriched for dendritic cells, with ASFV, in vitro, induced high levels of interferon, suggesting a potential source of interferon in animals undergoing acute ASF. Replication of OUR T88/3, but not virulent viruses, was reduced in interferon pretreated macrophages and a recombinant virus lacking similar genes to those absent in OUR T88/3 was also inhibited. These findings suggest that as well as inhibiting the induction of interferon, MGF360 and MGF505 genes also enable ASFV to overcome the antiviral state. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis.

    PubMed

    van den Bosch, Martijn H; Blom, Arjen B; Schelbergen, Rik F P; Vogl, Thomas; Roth, Johannes P; Slöetjes, Annet W; van den Berg, Wim B; van der Kraan, Peter M; van Lent, Peter L E M

    2016-01-01

    Both alarmins S100A8/A9 and canonical Wnt signaling have been found to play active roles in the development of experimental osteoarthritis (OA). However, what activates canonical Wnt signaling remains unknown. This study was undertaken to investigate whether S100A8 induces canonical Wnt signaling and whether S100 proteins exert their effects via activation of Wnt signaling. Expression of the genes for S100A8/A9 and Wnt signaling pathway members was measured in an experimental OA model. Selected Wnt signaling pathway members were overexpressed, and levels of S100A8/A9 were measured. Activation of canonical Wnt signaling was determined after injection of S100A8 into naive joints and induction of collagenase-induced OA in S100A9-deficient mice. Expression of Wnt signaling pathway members was tested in macrophages and fibroblasts after S100A8 stimulation. Canonical Wnt signaling was inhibited in vivo to determine if the effects of S100A8 injections were dependent on Wnt signaling. The alarmins S100A8/A9 and members of the Wnt signaling pathway showed coinciding expression in synovial tissue in an experimental OA model. Synovial overexpression of selected Wnt signaling pathway members did not result in increased expression of S100 proteins. In contrast, intraarticular injection of S100A8 increased canonical Wnt signaling, whereas canonical Wnt signaling was decreased after induction of experimental OA in S100A9-deficient mice. S100A8 stimulation of macrophages, but not fibroblasts, resulted in increased expression of canonical Wnt signaling members. Overexpression of Dkk-1 to inhibit canonical Wnt signaling decreased the induction of matrix metalloproteinase 3, interleukin-6, and macrophage inflammatory protein 1α after injection of S100A8. Our findings indicate that the alarmin S100A8 induces canonical Wnt signaling in macrophages and murine knee joints. The effects of S100A8 are partially dependent on activation of canonical Wnt signaling. © 2016, American College of Rheumatology.

  15. Inductive specification and axonal orientation of spinal neurons mediated by divergent bone morphogenetic protein signaling pathways

    PubMed Central

    2011-01-01

    Background Bone morphogenetic protein (BMP)7 evokes both inductive and axon orienting responses in dorsal interneurons (dI neurons) in the developing spinal cord. These events occur sequentially during the development of spinal neurons but in these and other cell types such inductive and acute chemotactic responses occur concurrently, highlighting the requirement for divergent intracellular signaling. Both type I and type II BMP receptor subtypes have been implicated selectively in orienting responses but it remains unclear how, in a given cell, divergence occurs. We have examined the mechanisms by which disparate BMP7 activities are generated in dorsal spinal neurons. Results We show that widely different threshold concentrations of BMP7 are required to elicit the divergent inductive and axon orienting responses. Type I BMP receptor kinase activity is required for activation of pSmad signaling and induction of dI character by BMP7, a high threshold response. In contrast, neither type I BMP receptor kinase activity nor Smad1/5/8 phosphorylation is involved in the low threshold orienting responses of dI axons to BMP7. Instead, BMP7-evoked axonal repulsion and growth cone collapse are dependent on phosphoinositide-3-kinase (PI3K) activation, plausibly through type II receptor signaling. BMP7 stimulates PI3K-dependent signaling in dI neurons. BMP6, which evokes neural induction but does not have orienting activity, activates Smad signaling but does not stimulate PI3K. Conclusions Divergent signaling through pSmad-dependent and PI3K-dependent (Smad-independent) mechanisms mediates the inductive and orienting responses of dI neurons to BMP7. A model is proposed whereby selective engagement of BMP receptor subunits underlies choice of signaling pathway. PMID:22085733

  16. In vitro inactivation of complement by a serum factor present in Junin-virus infected guinea-pigs.

    PubMed Central

    Rimoldi, M T; de Bracco, M M

    1980-01-01

    A serum factor(s) of guinea-pigs infected with Junin virus, the etiological agent of Argentine haemorrhagic fever, is endowed with a potent anticomplementary activity. It is resistant to heat (56 degrees, 30 min) and elutes from a Sephadex G-200 column between albumin and haemoglobin. It is ineffective in the presence of EDTA or EGTA and does not sediment at 82,000 g. It has no direct effect on C4 unless functional Cl is present. However, it induces Cl activation that consumes C4 haemolytic activity in normal human and guinea-pig sera. The evidence presented in this report demonstrates that the complement activation observed in experimental Argentine haemorrhagic fever is at least in part due to a direct effect of this serum factor on the classical complement pathway. PMID:6247264

  17. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228.

    PubMed

    Pluchino, Lenora Ann; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2016-10-10

    Safe and effective combination chemotherapy regimens against breast cancer are lacking. We used our cellular system, consisting of the non-cancerous human breast epithelial MCF10A cell line and its derived tumorigenic, oncogenic H-Ras-expressing, MCF10A-Ras cell line, to investigate the effectiveness of a combination chemotherapy regimen in treating breast cancer cells using two FDA-approved agents, cisplatin and FK228. Cisplatin and FK228 significantly, synergistically, and preferentially induced death and reduced drug resistance of MCF10A-Ras versus MCF10A cells. The ERK-Nox-ROS pathway played a major role in both synergistic cell death induction and GSH-level reduction, which contributed to the synergistic suppression of drug resistance in cells. Enhancement of the Ras-ERK-Nox pathway by combined cisplatin and FK228 significantly increased ROS levels, leading to induction of death, reduction of drug resistance, and induction of DNA damage and oxidation in cancerous MCF10A-Ras cells. Furthermore, synergistic induction of cell death and reduction of drug resistance by combined cisplatin and FK228 in breast cells is independent of their estrogen receptor status. Our study suggests that combined cisplatin and FK228 should be considered in clinical trials as a new regimen for therapeutic control of breast cancers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Host - HIF- 1alpha Pathway And Hypoxia: In Vitro Studies And Mathematical Model

    DTIC Science & Technology

    2016-08-30

    TERMS mathematical model, signaling pathways, hypoxia, immunohistochemistry, ELISA , inhalation chamber 16. SECURITY CLASSIFICATION OF: U 17...B. HIF-1α ELISA Procedure ........................................................................................27 Appendix C. HIF-1α Model...Quantifying Induction of HIF-1α Expression using ELISA .........................................15 Figure 10. Simulation Outputs from HIF-1α Kinetic

  19. Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dopazo, A.; Tormo, A.; Aldea, M.

    1987-04-01

    The inhibition of cell division caused by induction of the SOS pathway in Escherichia coli structurally blocks septation, as deduced from two sets of results. Potential septation sites active at the time of SOS induction became inactivated, while those initiated during the following doubling time were active. Penicillin resistance increased in wild-type UV light-irradiated cells, a behavior similar to that observed in mutants in which structural blocks were introduced by inactivation of FtsA. Potential septation sites that have been structurally blocked by either the SOS division inhibitor, furazlocillin inhibition of PBP3, or inactivation of a TER pathway component, FtsA3, couldmore » be reactivated one doubling time after removal of the inhibitory agent in the presence of an active lon gene product. Reactivation of potential septation sites blocked by the presence of an inactivated FtsA3 was significantly lower when the lon protease was not active, suggesting that Lon plays a role in the removal of inactivated TER pathway products from the blocked potential septation sites.« less

  20. 3-Decylcatechol induces autophagy-mediated cell death through the IRE1α/JNK/p62 in hepatocellular carcinoma cells

    PubMed Central

    Kim, Jin-A; Jo, In-Hwa; Han, Yeon Soo; Jo, Yong Hun; Kim, Kwang-Youn; Seo, Young-Kyo; Moon, Jae-Hak; Jung, Chang Hwa; Jeon, Tae-Il

    2017-01-01

    The natural, phenolic lipid urushiol exhibits both antioxidant and anticancer activities; however, its biological activity on hepatocellular carcinoma (HCC) has not been previously investigated. Here, we demonstrate that an urushiol derivative, 3-decylcatechol (DC), induces human HCC Huh7 cell death by induction of autophagy. DC initiates the autophagic process by activation of the mammalian target of rapamycin signaling pathway via Unc-51-like autophagy activating kinase 1, leading to autophagosome formation. The autophagy inhibitor, chloroquine, suppressed autolysosome formation and cell death induction by DC, indicating an autophagic cell death. Interestingly, DC also activated the endoplasmic reticulum (ER) stress response that promotes autophagy via p62 transcriptional activation involving the inositol-requiring enzyme 1α/c-Jun N-terminal kinase/c-jun pathway. We also show that cytosolic calcium mobilization is necessary for the ER stress response and autophagy induction by DC. These findings reveal a novel mechanism by which this urushiol derivative induces autophagic cell death in HCC. PMID:28938597

  1. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway.

    PubMed

    Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M

    1995-05-05

    A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.

  2. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor

    PubMed Central

    Omi, T; Tanimukai, H; Kanayama, D; Sakagami, Y; Tagami, S; Okochi, M; Morihara, T; Sato, M; Yanagida, K; Kitasyoji, A; Hara, H; Imaizumi, K; Maurice, T; Chevallier, N; Marchal, S; Takeda, M; Kudo, T

    2014-01-01

    We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell's responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress. PMID:25032855

  3. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae.

    PubMed

    Singh, Rakesh Kumar; Krishna, Malini

    2005-12-01

    Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.

  4. Typhoid fever in Fiji: a reversible plague?

    PubMed

    Thompson, Corinne N; Kama, Mike; Acharya, Shrish; Bera, Una; Clemens, John; Crump, John A; Dawainavesi, Aggie; Dougan, Gordon; Edmunds, W John; Fox, Kimberley; Jenkins, Kylie; Khan, M Imran; Koroivueta, Josefa; Levine, Myron M; Martin, Laura B; Nilles, Eric; Pitzer, Virginia E; Singh, Shalini; Raiwalu, Ratu Vereniki; Baker, Stephen; Mulholland, Kim

    2014-10-01

    The country of Fiji, with a population of approximately 870 000 people, faces a growing burden of several communicable diseases including the bacterial infection typhoid fever. Surveillance data suggest that typhoid has become increasingly common in rural areas of Fiji and is more frequent amongst young adults. Transmission of the organisms that cause typhoid is facilitated by faecal contamination of food or water and may be influenced by local behavioural practices in Fiji. The Fijian Ministry of Health, with support from Australian Aid, hosted a meeting in August 2012 to develop comprehensive control and prevention strategies for typhoid fever in Fiji. International and local specialists were invited to share relevant data and discuss typhoid control options. The resultant recommendations focused on generating a clearer sense of the epidemiology of typhoid in Fiji and exploring the contribution of potential transmission pathways. Additionally, the panel suggested steps such as ensuring that recommended ciprofloxacin doses are appropriate to reduce the potential for relapse and reinfection in clinical cases, encouraging proper hand hygiene of food and drink handlers, working with water and sanitation agencies to review current sanitation practices and considering a vaccination policy targeting epidemiologically relevant populations. © 2014 The Authors. Tropical Medicine & International Health published by John Wiley & Sons Ltd.

  5. Typhoid fever in Fiji: a reversible plague?

    PubMed Central

    Thompson, Corinne N; Kama, Mike; Acharya, Shrish; Bera, Una; Clemens, John; Crump, John A; Dawainavesi, Aggie; Dougan, Gordon; Edmunds, W John; Fox, Kimberley; Jenkins, Kylie; Khan, M Imran; Koroivueta, Josefa; Levine, Myron M; Martin, Laura B; Nilles, Eric; Pitzer, Virginia E; Singh, Shalini; Raiwalu, Ratu Vereniki; Baker, Stephen; Mulholland, Kim

    2014-01-01

    The country of Fiji, with a population of approximately 870 000 people, faces a growing burden of several communicable diseases including the bacterial infection typhoid fever. Surveillance data suggest that typhoid has become increasingly common in rural areas of Fiji and is more frequent amongst young adults. Transmission of the organisms that cause typhoid is facilitated by faecal contamination of food or water and may be influenced by local behavioural practices in Fiji. The Fijian Ministry of Health, with support from Australian Aid, hosted a meeting in August 2012 to develop comprehensive control and prevention strategies for typhoid fever in Fiji. International and local specialists were invited to share relevant data and discuss typhoid control options. The resultant recommendations focused on generating a clearer sense of the epidemiology of typhoid in Fiji and exploring the contribution of potential transmission pathways. Additionally, the panel suggested steps such as ensuring that recommended ciprofloxacin doses are appropriate to reduce the potential for relapse and reinfection in clinical cases, encouraging proper hand hygiene of food and drink handlers, working with water and sanitation agencies to review current sanitation practices and considering a vaccination policy targeting epidemiologically relevant populations. PMID:25066005

  6. Plasminogen activator: analysis of enzyme induction by ultraviolet irradiation mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskin, R.; Reich, E.; Dixon, K.

    1981-10-01

    Ultraviolet irradiation mapping techniques have previously been used to study the organization of eucaryotic gene classes and transcription units. We used the same method to probe some regulatory phenomena observed in the induction of plasminogen activator (PA) biosynthesis: PA synthesis in chicken embryo fibroblasts is induced by tumor-promoting phorbol esters and by retinoic acid; furthermore, PA induction by phorbol esters is synergistic with transformation, being 10- to 20-fold greater in virus-transformed cells than in normal cells. We found that the ultraviolet irradiation inactivation cross sections for PA induction by phorbol esters and by retinoate differed significantly, suggesting that these agentsmore » induce PA biosynthesis by different mechanisms. On the other hand, the ultraviolet irradiation sensitivity of phorbol ester induction in normal chicken embryo fibroblasts was the same as in transformed cells, indicating that the synergism of transformation and phorbol esters is probably not due to different pathways of PA induction.« less

  7. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis.

    PubMed

    Luo, Xiao; Gao, Zheng; Wang, Yizhong; Chen, Zhijuan; Zhang, Wenju; Huang, Jirong; Yu, Hao; He, Yuehui

    2018-07-01

    Many plants sense the seasonal cues, day length or photoperiod changes, to align the timing of the developmental transition to flowering with changing seasons for reproductive success. Inductive day lengths through the photoperiod pathway induce the expression of FLOWERING LOCUS T (FT) or FT relatives that encode a major mobile florigen to promote flowering. In Arabidopsis thaliana, under inductive long days the photoperiod pathway output CONSTANS (CO) accumulates toward the end of the day, and associates with the B and C subunits of Nuclear Factor Y (NF-Y) to form the NF-CO complex that acts to promote FT expression near dusk, whereas Polycomb group (PcG) proteins function to silence FT expression. How NF-CO acts to antagonize the function of PcG proteins to regulate FT expression remains unclear. Here, we show that the NF-CO complex bound to the proximal FT promoter, through chromatin looping, acts in concert with an NF-Y complex bound to a distal enhancer to reduce the levels of PcG proteins, including both Polycomb repressive complex 1 (PRC1) and PRC2 at the FT promoter, leading to a relieving of Polycomb silencing and thus FT de-repression near dusk. Thus, our study provides molecular insights on how the 'active' photoperiod pathway and the 'repressive' Polycomb silencing system interact to control temporal FT expression, conferring the long-day induction of flowering in Arabidopsis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  8. Intragraft Molecular Pathways Associated with Tolerance Induction in Renal Transplantation.

    PubMed

    Gallon, Lorenzo; Mathew, James M; Bontha, Sai Vineela; Dumur, Catherine I; Dalal, Pranav; Nadimpalli, Lakshmi; Maluf, Daniel G; Shetty, Aneesha A; Ildstad, Suzanne T; Leventhal, Joseph R; Mas, Valeria R

    2018-02-01

    The modern immunosuppression regimen has greatly improved short-term allograft outcomes but not long-term allograft survival. Complications associated with immunosuppression, specifically nephrotoxicity and infection risk, significantly affect graft and patient survival. Inducing and understanding pathways underlying clinical tolerance after transplantation are, therefore, necessary. We previously showed full donor chimerism and immunosuppression withdrawal in highly mismatched allograft recipients using a bioengineered stem cell product (FCRx). Here, we evaluated the gene expression and microRNA expression profiles in renal biopsy samples from tolerance-induced FCRx recipients, paired donor organs before implant, and subjects under standard immunosuppression (SIS) without rejection and with acute rejection. Unlike allograft samples showing acute rejection, samples from FCRx recipients did not show upregulation of T cell- and B cell-mediated rejection pathways. Gene expression pathways differed slightly between FCRx samples and the paired preimplantation donor organ samples, but most of the functional gene networks overlapped. Notably, compared with SIS samples, FCRx samples showed upregulation of genes involved in pathways, like B cell receptor signaling. Additionally, prediction analysis showed inhibition of proinflammatory regulators and activation of anti-inflammatory pathways in FCRx samples. Furthermore, integrative analyses (microRNA and gene expression profiling from the same biopsy sample) identified the induction of regulators with demonstrated roles in the downregulation of inflammatory pathways and maintenance of tissue homeostasis in tolerance-induced FCRx samples compared with SIS samples. This pilot study highlights the utility of molecular intragraft evaluation of pathways related to FCRx-induced tolerance and the use of integrative analyses for identifying upstream regulators of the affected downstream molecular pathways. Copyright © 2018 by the American Society of Nephrology.

  9. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine.

    PubMed

    Bao, Huihui; Ramanathan, Aarti A; Kawalakar, Omkar; Sundaram, Senthil G; Tingey, Colleen; Bian, Charoran B; Muruganandam, Nagarajan; Vijayachari, Paluru; Sardesai, Niranjan Y; Weiner, David B; Ugen, Kenneth E; Muthumani, Karuppiah

    2013-02-01

    Chikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections. The generation of an efficient vaccine against CHIKV is necessary to prevent and/or control the disease manifestations of the infection. In this report, we studied immune response against a CHIKV-envelope DNA vaccine (pEnv) and the role of the CHIKV nonstructural gene 2 (nsP2) as an adjuvant for the induction of protective immune responses in a relevant mouse challenge model. When injected with the CHIKV pEnv alone, 70% of the immunized mice survived CHIKV challenge, whereas when co-injected with pEnv+pnsP2, 90% of the mice survived viral challenge. Mice also exhibited a delayed onset signs of illness, and a marked decrease in morbidity, suggesting a nsP2 mediated adjuvant effect. Co-injection of the pnsP2 adjuvant with pEnv also qualitatively and quantitatively increased antigen specific neutralizing antibody responses compared to vaccination with pEnv alone. In sum, these novel data imply that the addition of nsP2 to the pEnv vaccine enhances anti-CHIKV-Env immune responses and maybe useful to include in future CHIKV clinical vaccination strategies.

  10. Outcome of misoprostol and oxytocin in induction of labour

    PubMed Central

    Acharya, Trishna; Devkota, Ramesh; Bhattarai, Bimbishar; Acharya, Radha

    2017-01-01

    Background: Induction of labour is the process of initiating the labour by artificial means from 24 weeks of gestation. The main aim of this study is to find out the maternal and foetal outcomes after induction of labour with misoprostol and oxytocin beyond 37 weeks of gestation. Methods: This was a hospital-based observational study carried out at Paropakar Maternity and Women’s Hospital, Nepal. Misoprostol of 25 µg was inserted in posterior fornix of vagina or oxytocin infusion was started from 2.5 units on whom induction was decided. Maternal and foetal/neonatal outcomes were observed. Collected data were analysed using SPSS and MS Excel. Results: General induction rate was found to be 7.2%. In this study, post-term pregnancy was found to be the most common reason for induction of labour. Analysis of onset of labour led to the finding that mean onset of labour was much rapid in oxytocin (6.6 h) than misoprostol (13.6 h). However, there is similarity in induction–delivery interval in both groups. Overall, the rate of normal delivery and caesarean section was found to be 64.9% and 33.2%, respectively. Similarly, normal delivery within 12 h was seen in 18.4% of the patients given with misoprostol and 43.5% in oxytocin group. Foetal distress was found as the most common reason for caesarean section. The overall occurrence of maternal complication was found to be similar in misoprostol and oxytocin groups, nausea/vomiting being the most common (36.7%) complication followed by fever (24.1%). Besides this, the most common neonatal complication found in overall cases was meconium stained liquor (49.2%). Conclusion: It was found that misoprostol was used most frequently for induction of labour compared to oxytocin. The onset of labour was found to be rapid in oxytocin than misoprostol. However, the occurrence of side effects was found to be similar in both misoprostol and oxytocin groups. PMID:28540049

  11. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  12. IL-1 Blockade in Autoinflammatory Syndromes1

    PubMed Central

    Jesus, Adriana A.; Goldbach-Mansky, Raphaela

    2014-01-01

    Monogenic autoinflammatory syndromes present with excessive systemic inflammation including fever, rashes, arthritis, and organ-specific inflammation and are caused by defects in single genes encoding proteins that regulate innate inflammatory pathways. Pathogenic variants in two interleukin-1 (IL-1)–regulating genes, NLRP3 and IL1RN, cause two severe and early-onset autoinflammatory syndromes, CAPS (cryopyrin associated periodic syndromes) and DIRA (deficiency of IL-1 receptor antagonist). The discovery of the mutations that cause CAPS and DIRA led to clinical and basic research that uncovered the key role of IL-1 in an extended spectrum of immune dysregulatory conditions. NLRP3 encodes cryopyrin, an intracellular “molecular sensor” that forms a multimolecular platform, the NLRP3 inflammasome, which links “danger recognition” to the activation of the proinflammatory cytokine IL-1β. The success and safety profile of drugs targeting IL-1 in the treatment of CAPS and DIRA have encouraged their wider use in other autoinflammatory syndromes including the classic hereditary periodic fever syndromes (familial Mediterranean fever, TNF receptor–associated periodic syndrome, and hyperimmunoglobulinemia D with periodic fever syndrome) and additional immune dysregulatory conditions that are not genetically well defined, including Still’s, Behcet’s, and Schnitzler diseases. The fact that the accumulation of metabolic substrates such as monosodium urate, ceramide, cholesterol, and glucose can trigger the NLRP3 inflammasome connects metabolic stress to IL-1β-mediated inflammation and provides a rationale for therapeutically targeting IL-1 in prevalent diseases such as gout, diabetes mellitus, and coronary artery disease. PMID:24422572

  13. Calcium channel blockers inhibit endogenous pyrogen fever in rats and rabbits.

    PubMed

    Stitt, J T; Shimada, S G

    1991-09-01

    We have previously shown that febrile responses in both rats and rabbits are elicited by the intravenous injection of a semipurified endogenous pyrogen (EP) prepared from human monocytes. We are now presenting evidence that these febrile responses are mediated via activation of Ca2+ channels by EP. The febrile responses of male New Zealand White rabbits and Sprague-Dawley rats to a standard dose of EP were determined at their respective thermoneutral ambient temperatures. The animals were then treated with Ca2+ channel blocker verapamil (7.5 mg/kg iv) 30-60 min before the EP challenge. In every case the febrile response to EP was markedly attenuated after verapamil pretreatment, while administration of verapamil by itself had no detectable effect on body temperature. Another Ca2+ channel blocker, nifedipine (5 mg/kg iv), was shown to possess antipyretic activity in rats also. To localize where in the fever pathway these Ca2+ channel blockers were acting, we investigated the effect of verapamil at the same dose on fevers that were produced by microinjection of prostaglandin E (PGE) directly into the brain. These PGE fevers were unaffected by verapamil pretreatment, indicating that the antipyretic action of Ca2+ channel blockers occurs before the formation of PGE in response to EP stimulation. The most likely locus of action is the activation of the enzyme phospholipase A2, which regulates the production of arachidonic acid from cellular phospholipids in the prostanoid cascade.

  14. Small Molecular Weight Soybean Protein-Derived Peptides Nutriment Attenuates Rat Burn Injury-Induced Muscle Atrophy by Modulation of Ubiquitin-Proteasome System and Autophagy Signaling Pathway.

    PubMed

    Zhao, Fen; Yu, Yonghui; Liu, Wei; Zhang, Jian; Liu, Xinqi; Liu, Lingying; Yin, Huinan

    2018-03-21

    This article describes results of the effect of dietary supplementation with small molecular weight soybean protein-derived peptides on major rat burn injury-induced muscle atrophy. As protein nutrients have been previously implicated to play an important role in improving burn injury outcomes, optimized more readily absorbed small molecular weight soybean protein-derived peptides were evaluated. Thus, the quantity, sodium dodecyl sulfate polyacrylamide-gel electrophoresis patterns, molecular weight distribution, and composition of amino acids of the prepared peptides were analyzed, and a major full-thickness 30% total body surface area burn-injury rat model was utilized to assess the impact of supplementation with soybean protein-derived peptides on initial systemic inflammatory responses as measured by interferon-gamma (IFN-γ), chemokine (C-C motif) ligand 2 (CCL2, also known as MCP-1), chemokine (C-C motif) ligand 7 (CCL7, also known as MCP-3), and generation of muscle atrophy as measured by tibialis anterior muscle (TAM) weight relative to total body weight. Induction of burn injury-induced muscle atrophy ubiquitin-proteasome system (UPS) signaling pathways in effected muscle tissues was determined by Western blot protein expression measurements of E3 ubiquitin-protein ligase TRIM-63 (TRIM63, also known as MuRF1) and F-box only protein 32 (FBXO32, also known as atrogin-1 or MAFbx). In addition, induction of burn injury-induced autophagy signaling pathways associated with muscle atrophy in effected muscle tissues was assessed by immunohistochemical analysis as measured by microtubule-associated proteins 1 light chain 3 (MAP1LC3, or commonly abbreviated as LC3) and beclin-1 (BECN1) expression, as well as relative induction of cytoplasmic-liberated form of MAP1LC3 (LC3-I) and phagophore and autophagosome membrane-bound form of MAP1LC3 (LC3-II), and BECN1 protein expression by Western blot analysis. Nutrient supplementation with small molecular weight soybean protein-derived peptides resulted a significant reduction in burn injury-induced inflammatory markers, muscle atrophy, induction of TRIM63 and FBXO32 muscle atrophy signaling pathways, and induction of autophagy signaling pathways LC3 and BECN1 associated with muscle atrophy. These results implicated that small molecular weight soybean-derived peptides dietary supplementation could be used as an adjunct therapy in burn injury management to reduce the development or severity of muscle atrophy for improved burn patient outcomes.

  15. Carotenoids buffer the acute phase response on fever, sickness behavior and rapid bill color change in zebra finches.

    PubMed

    George, Deanna B; Schneider, Brent C; McGraw, Kevin J; Ardia, Daniel R

    2017-08-15

    Carotenoids are finite resources that animals can allocate to self-maintenance, attractiveness or reproduction. Here we test how carotenoids affect the acute phase response (APR), an intense rapid systemic response characterized by fever, sickness behavior and production of acute phase proteins, which serves to reduce pathogen persistence. We conducted a 2×2 factorial design experiment in captive adult male and female zebra finches ( Taeniopygia guttata ) to determine the effects of carotenoid supplementation on the intensity of the APR. We measured changes in feeding rate, activity level and body temperature of the birds. We found that, relative to unsupplemented controls, carotenoid-supplemented birds exhibited less severe reductions in feeding and activity, smaller increases in body temperature and lower circulating levels of haptoglobin (an acute phase protein) 24 h after inducing an APR. Among supplemented individuals, those with higher blood carotenoid levels exhibited a lower reduction in activity rate after 24 h. Forty-eight hours after APR induction, birds exhibited a significant decrease in plasma carotenoid levels and a decrease in bill hue, with less reduction in hue in carotenoid-supplemented individuals. These results demonstrate that carotenoids can alleviate several important behavioral and physiological effects of an APR and that bill color can change rapidly following induction of the costly APR immune defense. In particular, immune activation may have caused birds to preferentially draw down carotenoids from the bloodstream, ostensibly for use in health. Rapid bill color changes over a 48-h period support growing evidence that bills may serve as short-term signals of health and condition. © 2017. Published by The Company of Biologists Ltd.

  16. Toscana virus induces interferon although its NSs protein reveals antagonistic activity.

    PubMed

    Gori Savellini, Gianni; Weber, Friedemann; Terrosi, Chiara; Habjan, Matthias; Martorelli, Barbara; Cusi, Maria Grazia

    2011-01-01

    Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.

  17. Serum metabolomics analysis of patients with chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease conditions

    NASA Astrophysics Data System (ADS)

    Shrinet, Jatin; Shastri, Jayanthi S.; Gaind, Rajni; Bhavesh, Neel Sarovar; Sunil, Sujatha

    2016-11-01

    Chikungunya and dengue are arboviral infections with overlapping clinical symptoms. A subset of chikungunya infection occurs also as co-infections with dengue, resulting in complications during diagnosis and patient management. The present study was undertaken to identify the global metabolome of patient sera infected with chikungunya as mono infections and with dengue as co-infections. Using nuclear magnetic resonance (NMR) spectroscopy, the metabolome of sera of three disease conditions, namely, chikungunya and dengue as mono-infections and when co-infected were ascertained and compared with healthy individuals. Further, the cohorts were analyzed on the basis of age, onset of fever and joint involvement. Here we show that many metabolites in the serum are significantly differentially regulated during chikungunya mono-infection as well as during chikungunya co-infection with dengue. We observed that glycine, serine, threonine, galactose and pyrimidine metabolisms are the most perturbed pathways in both mono and co-infection conditions. The affected pathways in our study correlate well with the clinical manifestation like fever, inflammation, energy deprivation and joint pain during the infections. These results may serve as a starting point for validations and identification of distinct biomolecules that could be exploited as biomarker candidates thereby helping in better patient management.

  18. Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus

    PubMed Central

    G. Sánchez, Elena; Pérez-Núñez, Daniel; Revilla, Yolanda

    2017-01-01

    African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol. PMID:29117102

  19. Hepatitis C virus controls interferon production through PKR activation.

    PubMed

    Arnaud, Noëlla; Dabo, Stéphanie; Maillard, Patrick; Budkowska, Agata; Kalliampakou, Katerina I; Mavromara, Penelope; Garcin, Dominique; Hugon, Jacques; Gatignol, Anne; Akazawa, Daisuke; Wakita, Takaji; Meurs, Eliane F

    2010-05-11

    Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2alpha initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2alpha-dependent (IRES(EMCV)) or independent (IRES(HCV)) RNA showed a specific HCV-mediated inhibition of eIF2alpha-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2alpha at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection.

  20. Hepatitis C Virus Controls Interferon Production through PKR Activation

    PubMed Central

    Arnaud, Noëlla; Dabo, Stéphanie; Maillard, Patrick; Budkowska, Agata; Kalliampakou, Katerina I.; Mavromara, Penelope; Garcin, Dominique; Hugon, Jacques; Gatignol, Anne; Akazawa, Daisuke; Wakita, Takaji; Meurs, Eliane F.

    2010-01-01

    Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2α initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2α-dependent (IRESEMCV) or independent (IRESHCV) RNA showed a specific HCV-mediated inhibition of eIF2α-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2α at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection. PMID:20485506

  1. Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

    PubMed Central

    Arnaud, Noëlla; Dabo, Stéphanie; Akazawa, Daisuke; Fukasawa, Masayoshi; Shinkai-Ouchi, Fumiko; Hugon, Jacques; Wakita, Takaji; Meurs, Eliane F.

    2011-01-01

    Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response. PMID:22022264

  2. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever.

    PubMed

    Karalyan, Z; Voskanyan, H; Ter-Pogossyan, Z; Saroyan, D; Karalova, E

    2016-10-15

    The interleukin (IL)-23/IL-17 pathway plays a crucial role in various forms of inflammation but its function in acute African swine fever (ASF) is not well understood. Thus, in this study, we aimed to find out whether IL-23/IL-17/G-CSF is released in acute ASF and what function it may have. The present study revealed that the production of IL-17 and IL-23 were significantly increased in the sera of ASFV infected pigs. Using ELISA, we found that the serum levels of IL-23 and IL-17 have overexpressed in ASF virus infected pigs compared with healthy controls. The levels of IL-17 and IL-23 increase in the early stages and the levels of G-CSF and C - reactive protein in the later stages of ASF. Simultaneously, with the increase of the levels of IL-23/IL-17 extravasation of granular leukocytes in the tissue (diapedesis) is observed. Diapedesis can explain the neutropenia that we identified previously in the terminal stages of ASF. The increase in serum levels of IL-23/IL-17 is preceded by enhanced migration of neutrophils in tissues, and the last one is preceded by neutropenia. The increase in serum levels of G-CSF has compensatory nature, directed on stimulation of proliferation of granulocytes. Taken together, our results revealed an overexpression of the IL-23/IL-17 axis in the ASF virus infected pigs, suggesting that it may be a crucial pathway in the diapedesis at ASF. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.; Lin, J.; Su, Z.-Z.

    The melanoma differentiation associated gene, mda-6, which is identical to the P53-inducible gene WAF1/CIP1, encodes an M(r) 21,000 protein (p21) that can directly inhibit cell growth by repressing cyclin dependent kinases. mda-6 was identified using subtraction hybridization by virtue of its enhanced expression in human melanoma cells induced to terminally differentiate by treatment with human fibroblast interferon and the anti-leukemic compound mezerein (Jiang and Fisher, 1993). In the present study, we demonstrate that mda-6 (WAF1/CIP1) is an immediate early response gene induced during differentiation of the promyelocytic HL-60 leukemia cell line along the granulocytic or macrophage/monocyte pathway. mda-6 gene expressionmore » in HL-60 cells is induced within 1 to 3 h during differentiation along the macrophage/monocyte pathway evoked by 12-0-tetradecanoyl phorbol-13-acetate (TPA) or 1,25-dihydroxyvitamin D3 (Vit D3) or the granulocytic pathway produced by retinoic acid (RA) or dimethylsulfoxide (DMSO). Immunoprecipitation analyses using an anti-p21 antibody indicate a temporal induction of p21 protein following treatment with TPA, DMSO or RA. A relationship between rapid induction of mda-6 gene expression and differentiation is indicated by a delay in this expression in an HL-60 cell variant resistant to TPA-induced growth arrest and differentiation. A similar delay in mda-6 gene expression is not observed in Vit D3 treated TPA-resistant variant cells that are also sensitive to induction of monocytic differentiation. Since HL-60 cells have a null-p53 phenotype, these results demonstrate that p21 induction occurs during initiation of terminal differentiation in a p53-independent manner. In this context, p21 may play a more global role in growth control and differentiation than originally envisioned.« less

  4. Effects of the Transforming Growth Factor Beta Signaling Pathway on the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells

    PubMed Central

    Zhang, Yani; Wang, Yingjie; Zuo, Qisheng; Li, Dong; Zhang, Wenhui; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Wang, Man; Wang, Kehua

    2016-01-01

    Abstract The objectives of the present study were to screen for key gene and signaling pathways involved in the production of male germ cells in poultry and to investigate the effects of the transforming growth factor beta (TGF-β) signaling pathway on the differentiation of chicken embryonic stem cells (ESCs) into male germ cells. The ESCs, primordial germ cells, and spermatogonial stem cells (SSCs) were sorted using flow cytometry for RNA sequencing (RNA-seq) technology. Male chicken ESCs were induced using 40 ng/mL of bone morphogenetic protein 4 (BMP4). The effects of the TGF-β signaling pathway on the production of chicken SSCs were confirmed by morphology, quantitative real-time polymerase chain reaction, and immunocytochemistry. One hundred seventy-three key genes relevant to development, differentiation, and metabolism and 20 signaling pathways involved in cell reproduction, differentiation, and signal transduction were identified by RNA-seq. The germ cells formed agglomerates and increased in number 14 days after induction by BMP4. During the induction process, the ESCs, Nanog, and Sox2 marker gene expression levels decreased, whereas expression of the germ cell-specific genes Stra8, Dazl, integrin-α6, and c-kit increased. The results indicated that the TGF-β signaling pathway participated in the differentiation of chicken ESCs into male germ cells. PMID:27906584

  5. Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways

    PubMed Central

    Koulnis, Miroslav; Porpiglia, Ermelinda; Porpiglia, P. Alberto; Liu, Ying; Hallstrom, Kelly; Hidalgo, Daniel

    2012-01-01

    Survival signaling by the erythropoietin (Epo) receptor (EpoR) is essential for erythropoiesis and for its acceleration in hypoxic stress. Several apparently redundant EpoR survival pathways were identified in vitro, raising the possibility of their functional specialization in vivo. Here we used mouse models of acute and chronic stress, including a hypoxic environment and β-thalassemia, to identify two markedly different response dynamics for two erythroblast survival pathways in vivo. Induction of the antiapoptotic protein Bcl-xL is rapid but transient, while suppression of the proapoptotic protein Bim is slower but persistent. Similar to sensory adaptation, however, the Bcl-xL pathway “resets,” allowing it to respond afresh to acute stress superimposed on a chronic stress stimulus. Using “knock-in” mouse models expressing mutant EpoRs, we found that adaptation in the Bcl-xL response occurs because of adaptation of its upstream regulator Stat5, both requiring the EpoR distal cytoplasmic domain. We conclude that survival pathways show previously unsuspected functional specialization for the acute and chronic phases of the stress response. Bcl-xL induction provides a “stop-gap” in acute stress, until slower but permanent pathways are activated. Furthermore, pathologic elevation of Bcl-xL may be the result of impaired adaptation, with implications for myeloproliferative disease mechanisms. PMID:22086418

  6. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  7. The School-Community Integrated Learning Pathway: Exploring a New Way to Prepare and Induct Final-Year Preservice Teachers

    ERIC Educational Resources Information Center

    Hudson, Suzanne; Hudson, Peter; Adie, Lenore

    2015-01-01

    Universities and teacher employment bodies seek new, cost-effective ways for graduating classroom-ready teachers. This study involved 32 final-year preservice teachers in an innovative school--university partnership teacher education programme titled, the School-Community Integrated Learning (SCIL) pathway. Data were collected using a five-part…

  8. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio)

    USDA-ARS?s Scientific Manuscript database

    Induction of innate immune pathways is critical for early host defense but there is limited understanding of how teleost fish recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition rece...

  9. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  10. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  11. Differential expression of jasmonate biosynthesis genes in cacao genotypes contrasting for resistance against Moniliophthora perniciosa.

    PubMed

    Litholdo, Celso G; Leal, Gildemberg A; Albuquerque, Paulo S B; Figueira, Antonio

    2015-10-01

    The resistance mechanism of cacao against M. perniciosa is likely to be mediated by JA/ET-signaling pathways due to the preferential TcAOS and TcSAM induction in a resistant genotype. The basidiomycete Moniliophthora perniciosa causes a serious disease in cacao (Theobroma cacao L.), and the use of resistant varieties is the only sustainable long-term solution. Cacao resistance against M. perniciosa is characterized by pathogen growth inhibition with reduced colonization and an attenuation of disease symptoms, suggesting a regulation by jasmonate (JA)/ethylene (ET) signaling pathways. The hypothesis that genes involved in JA biosynthesis would be active in the interaction of T. cacao and M. perniciosa was tested here. The cacao JA-related genes were evaluated for their relative quantitative expression in susceptible and resistant genotypes upon the exogenous application of ET, methyl-jasmonate (MJ), and salicylic acid (SA), or after M. perniciosa inoculation. MJ treatment triggered changes in the expression of genes involved in JA biosynthesis, indicating that the mechanism of positive regulation by exogenous MJ application occurs in cacao. However, a higher induction of these genes was observed in the susceptible genotype. Further, a contrast in JA-related transcriptional expression was detected between susceptible and resistant plants under M. perniciosa infection, with the induction of the allene oxide synthase gene (TcAOS), which encodes a key enzyme in the JA biosynthesis pathway in the resistant genotype. Altogether, this work provides additional evidences that the JA-dependent signaling pathway is modulating the defense response against M. perniciosa in a cacao-resistant genotype.

  12. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.

    PubMed

    Tüzün, Erdem; Scott, Benjamin G; Goluszko, Elzbieta; Higgs, Stephen; Christadoss, Premkumar

    2003-10-01

    Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.

  13. Salicylic Acid and Ethylene Pathways Are Differentially Activated in Melon Cotyledons by Active or Heat-Denatured Cellulase from Trichoderma longibrachiatum

    PubMed Central

    Martinez, Christelle; Blanc, Frédéric; Le Claire, Emilie; Besnard, Olivier; Nicole, Michel; Baccou, Jean-Claude

    2001-01-01

    Infiltration of cellulase (EC 3.2.1.4) from Trichoderma longibrachiatum into melon (Cucumis melo) cotyledons induced several key defense mechanisms and hypersensitive reaction-like symptoms. An oxidative burst was observed 3 hours after treatment and was followed by activation of ethylene and salicylic acid (SA) signaling pathways leading to marked induction of peroxidase and chitinase activities. The treatment of cotyledons by heat-denatured cellulase also led to some induction of peroxidase and chitinase activities, but the oxidative burst and SA production were not observed. Co-infiltration of aminoethoxyvinil-glycine (an ethylene inhibitor) with the active cellulase did not affect the high increase of peroxidase and chitinase activities. In contrast, co-infiltration of aminoethoxyvinil-glycine with the denatured enzyme blocked peroxidase and chitinase activities. Our data suggest that the SA pathway (induced by the cellulase activity) and ethylene pathway (induced by heat-denatured and active protein) together coordinate the activation of defense mechanisms. We found a partial interaction between both signaling pathways since SA caused an inhibition of the ethylene production and a decrease in peroxidase activity when co-infiltrated with denatured cellulase. Treatments with active or denatured cellulase caused a reduction in powdery mildew (Sphaerotheca fuliginea) disease. PMID:11553761

  14. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie; Courtin, Christophe M; Verstrepen, Kevin J

    2013-12-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.

  15. A high throughput screening for TLR3-IRF3 signaling pathway modulators identifies several antipsychotic drugs as TLR inhibitors1

    PubMed Central

    Zhu, Jianzhong; Smith, Kevin; Hsieh, Paishiun N.; Mburu, Yvonne K.; Chattopadhyay, Saurabh; Sen, Ganes C.; Sarkar, Saumendra N.

    2010-01-01

    Toll-like Receptor 3 (TLR3) is one of the major innate immune sensors of double stranded RNA (dsRNA). The signal transduction pathway activated by TLR3, upon binding to dsRNA, leads to the activation of two major transcription factors: NF-κB and IRF3. In an effort to identify specific chemical modulators of TLR3-IRF3 signal transduction pathway we developed a cell-based read out system. Using the interferon stimulated gene 56 (ISG56) promoter driven firefly luciferase gene stably integrated in a TLR3 expressing HEK293 cell line, we were able to generate a cell line where treatment with dsRNA resulted in a dose dependent induction of luciferase activity. A screen of two pharmacologically active compound libraries using this system, identified a number of TLR3-IRF3 signaling pathway modulators. Among them we focused on a subset of inhibitors and characterized their mode of action. Several antipsychotic drugs, such as Sertraline, Trifluoperazine and Fluphenazine were found to be direct inhibitors of the innate immune signaling pathway. These inhibitors also showed the ability to inhibit ISG56 induction mediated by TLR4 and TLR7/8 pathways. Interestingly, they did not show significant effect on TLR3, TLR7 and TLR8 mediated NF-κB activation. Detailed analysis of the signaling pathway indicated that these drugs may be exerting their inhibitory effects on IRF3 via PI3K signaling pathway. The data presented here provides mechanistic explanation of possible anti-inflammatory roles of some antipsychotic drugs. PMID:20382888

  16. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways.

    PubMed

    Hansen, Immo A; Attardo, Geoffrey M; Rodriguez, Stacy D; Drake, Lisa L

    2014-01-01

    Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level.

  17. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3.

    PubMed

    Seago, Julian; Hilton, Louise; Reid, Elizabeth; Doceul, Virginie; Jeyatheesan, Janan; Moganeradj, Kartykayan; McCauley, John; Charleston, Bryan; Goodbourn, Stephen

    2007-11-01

    Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae. The N(pro) product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N(pro) protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN-beta promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N(pro) overexpression. Moreover, IFN-alpha stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.

  18. Metabolic Induction of Trained Immunity through the Mevalonate Pathway.

    PubMed

    Bekkering, Siroon; Arts, Rob J W; Novakovic, Boris; Kourtzelis, Ioannis; van der Heijden, Charlotte D C C; Li, Yang; Popa, Calin D; Ter Horst, Rob; van Tuijl, Julia; Netea-Maier, Romana T; van de Veerdonk, Frank L; Chavakis, Triantafyllos; Joosten, Leo A B; van der Meer, Jos W M; Stunnenberg, Henk; Riksen, Niels P; Netea, Mihai G

    2018-01-11

    Innate immune cells can develop long-term memory after stimulation by microbial products during infections or vaccinations. Here, we report that metabolic signals can induce trained immunity. Pharmacological and genetic experiments reveal that activation of the cholesterol synthesis pathway, but not the synthesis of cholesterol itself, is essential for training of myeloid cells. Rather, the metabolite mevalonate is the mediator of training via activation of IGF1-R and mTOR and subsequent histone modifications in inflammatory pathways. Statins, which block mevalonate generation, prevent trained immunity induction. Furthermore, monocytes of patients with hyper immunoglobulin D syndrome (HIDS), who are mevalonate kinase deficient and accumulate mevalonate, have a constitutive trained immunity phenotype at both immunological and epigenetic levels, which could explain the attacks of sterile inflammation that these patients experience. Unraveling the role of mevalonate in trained immunity contributes to our understanding of the pathophysiology of HIDS and identifies novel therapeutic targets for clinical conditions with excessive activation of trained immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation.

    PubMed

    Oh, Jung Hwa; Lee, Tae-Jin; Kim, Sang Hyun; Choi, Yung Hyun; Lee, Sang Han; Lee, Jin Man; Kim, Young-Ho; Park, Jong-Wook; Kwon, Taeg Kyu

    2008-12-01

    Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-gamma1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-kappaB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.

  20. [Vitamin para-aminobenzoic acid inhibits development of SOS function in tif-1 mutants of Escherichia coli at nonpermissive temperatures].

    PubMed

    Vasil'eva, S V; Gorb, T E; Rapoport, I A

    1983-12-01

    The development of "SOS" inducible functions in lysogenic and non-lysogenic strains of Escherichia coli tif-1 sfiA11 (lambda) at nonpermissive temperature of 42 degrees C was strongly suppressed by para-aminobenzoic acid (PABA). The rate of prophage lambda induction decreased 400 times, as compared to the control level; the efficiency of W-reactivation of UV-irradiated phage lambda decreased 37.5 to 16%. PABA also inhibited to some extent (1.5 times) the process of inducible recombination on the RecF pathway. The processes of spontaneous lambda induction and W-reactivation, as well as spontaneous recombination on RecBC and RecF pathways, were not influenced by PABA. The above data are in accordance with previous studies of PABA action when the manifestation of "SOS" functions was induced by chemical mutagens. The action of PABA has been tentatively interpreted on the basis of negative control of "SOS" repair pathway.

  1. CREB-binding protein (CBP) regulates β-adrenoceptor (β-AR)−mediated apoptosis

    PubMed Central

    Lee, Y Y; Moujalled, D; Doerflinger, M; Gangoda, L; Weston, R; Rahimi, A; de Alboran, I; Herold, M; Bouillet, P; Xu, Q; Gao, X; Du, X-J; Puthalakath, H

    2013-01-01

    Catecholamines regulate the β-adrenoceptor/cyclic AMP-regulated protein kinase A (cAMP/PKA) pathway. Deregulation of this pathway can cause apoptotic cell death and is implicated in a range of human diseases, such as neuronal loss during aging, cardiomyopathy and septic shock. The molecular mechanism of this process is, however, only poorly understood. Here we demonstrate that the β-adrenoceptor/cAMP/PKA pathway triggers apoptosis through the transcriptional induction of the pro-apoptotic BH3-only Bcl-2 family member Bim in tissues such as the thymus and the heart. In these cell types, the catecholamine-mediated apoptosis is abrogated by loss of Bim. Induction of Bim is driven by the transcriptional co-activator CBP (CREB-binding protein) together with the proto-oncogene c-Myc. Association of CBP with c-Myc leads to altered histone acetylation and methylation pattern at the Bim promoter site. Our findings have implications for understanding pathophysiology associated with a deregulated neuroendocrine system and for developing novel therapeutic strategies for these diseases. PMID:23579242

  2. Cytoprotection of Human Endothelial Cells Against Oxidative Stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of Systems Biology to Understand the Mechanism of Action

    DTIC Science & Technology

    2014-04-03

    and exogenous oxidants, electrophiles , and toxicants. Activation of this pathway was reported to facilitate the induction of HMOX1 (Heiss et al., 2009...cytoprotective effect of caffeic acid phenethyl ester (CAPE) and fluorinated derivatives: effects on heme oxygenase-1 induction and antioxidant

  3. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect

    PubMed Central

    Cao, Peirang; Hanai, Jun-ichi; Tanksale, Preeti; Imamura, Shintaro; Sukhatme, Vikas P.; Lecker, Stewart H.

    2009-01-01

    Statins are widely used to treat hypercholesterolemia but can lead to a number of side effects in muscle, including rhabdomyolysis. Our recent findings implicated the induction of atrogin-1, a gene required for the development of muscle atrophy, in statin-induced muscle damage. Since statins inhibit many biochemical reactions besides cholesterol synthesis, we sought to define the statin-inhibited pathways responsible for atrogin-1 expression and muscle damage. We report here that lovastatin-induced atrogin-1 expression and muscle damage in cultured mouse myotubes and zebrafish can be prevented in the presence of geranylgeranol but not farnesol. Further, inhibitors of the transfer of geranylgeranyl isoprene units to protein targets cause statin muscle damage and atrogin-1 induction in cultured cells and in fish. These findings support the concept that dysfunction of small GTP-binding proteins lead to statin-induced muscle damage since these molecules require modification by geranylgeranyl moieties for their cellular localization and activity. Collectively, our animal and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be regulated by novel signaling pathways.—Cao, P., Hanai, J., Tanksale, P., Imamura, S., Sukhatme, V. P., Lecker, S. H. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. PMID:19406843

  4. Regulation of rat heme oxygenase-1 expression by interleukin-6 via the Jak/STAT pathway in hepatocytes.

    PubMed

    Tron, Kyrylo; Samoylenko, Anatoly; Musikowski, Gernot; Kobe, Fritz; Immenschuh, Stephan; Schaper, Fred; Ramadori, Giuliano; Kietzmann, Thomas

    2006-07-01

    Heme oxygenase-1 (HO-1) can be induced by various stimuli, one of which is interleukin-6 (IL-6). Therefore, the aim of this study was to elucidate the molecular mechanisms responsible for IL-6-dependent HO-1 induction in the liver. The IL-6-dependent HO-1 regulation in rat primary hepatocytes and HepG2 hepatoma cells was studied by Northern and Western blot analyses, HO-1 promoter reporter gene assays and EMSA. The HO-1 expression was transcriptionally induced by IL-6 in a time- and dose-dependent manner. Activation of signal transducers and activators of transcription (STAT) factors by the IL-6 receptor was crucial for HO-1 induction. By contrast, negative regulation of HO-1 expression appeared to be mediated through the SH2-domain-containing tyrosine phosphatase-2 (SHP2)/ suppressors of cytokine signaling-3 (SOCS3) binding site within the gp130 IL-6 receptor subunit. Among the three putative STAT binding elements (SBE) in the HO-1 promoter, only the distal one was functional and when deleted, the remaining Luc induction was completely obliterated by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The HO-1 SBE3 mediates HO-1 gene induction by IL-6 mainly via activation of the Jak/STAT pathway.

  5. Possible Oxcarbazepine Inductive Effects on Aripiprazole Metabolism: A Case Report.

    PubMed

    McGrane, Ian R; Loveland, Joshua G; de Leon, Jose

    2017-01-01

    Oxcarbazepine is a cytochrome P450 (CYP) 3A4 inducer, which is structurally similar to carbamazepine. Although lacking Food and Drug Administration approval, oxcarbazepine is sometimes prescribed to treat aggressive behavior in youth with autism spectrum disorder (ASD). These youths may also be taking second-generation antipsychotics, some of which are substrates of the CYP3A4 metabolic pathway. The combination of these medications may result in decreased serum antipsychotic concentrations, potentially reducing effectiveness. A limited number of reports are available which discuss reduced atypical antipsychotic concentrations secondary to oxcarbazepine CYP3A4 induction. We report a young boy taking oxcarbazepine (1200 mg/d) who presented with an unexpectedly low serum aripiprazole concentration. Utilizing therapeutic drug monitoring, pharmacogenetic testing, and a tool to evaluate drug-drug interactions, we estimate that oxcarbazepine possibly reduced his serum aripiprazole concentration by 68%. Our report is important, as it is the first to describe a drug-drug interaction between oxcarbazepine and aripiprazole. This report should encourage the completion of in vitro and clinical studies and the publication of case reports describing the possible inductive effects of oxcarbazepine on atypical antipsychotics (including cariprazine, lurasidone, quetiapine, aripiprazole, brexpiprazole, iloperidone, and risperidone) mediated by induction of the CYP3A4 metabolic pathway.

  6. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway.

    PubMed

    Pérez-Sala, D; Cernuda-Morollón, E; Díaz-Cazorla, M; Rodríguez-Pascual, F; Lamas, S

    2001-03-01

    Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.

  7. Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis.

    PubMed

    Joubert, D Albert; de Lorenzo, Giulia; Vivier, Melané A

    2013-03-01

    Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.

  8. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    PubMed

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  9. Staurosporine synergistically potentiates the deoxycholate-mediated induction of COX-2 expression.

    PubMed

    Saeki, Tohru; Inui, Haruka; Fujioka, Saya; Fukuda, Suguru; Nomura, Ayumi; Nakamura, Yasushi; Park, Eun Young; Sato, Kenji; Kanamoto, Ryuhei

    2014-08-01

    Colorectal cancer is a major cause of cancer-related death in western countries, and thus there is an urgent need to elucidate the mechanism of colorectal tumorigenesis. A diet that is rich in fat increases the risk of colorectal tumorigenesis. Bile acids, which are secreted in response to the ingestion of fat, have been shown to increase the risk of colorectal tumors. The expression of cyclooxygenase (COX)-2, an inducible isozyme of cyclooxygenase, is induced by bile acids and correlates with the incidence and progression of cancers. In this study, we investigated the signal transduction pathways involved in the bile-acid-mediated induction of COX-2 expression. We found that staurosporine (sts), a potent protein kinase C (PKC) inhibitor, synergistically potentiated the deoxycholate-mediated induction of COX-2 expression. Sts did not increase the stabilization of COX-2 mRNA. The sts- and deoxycholate-mediated synergistic induction of COX-2 expression was suppressed by a membrane-permeable Ca(2+) chelator, a phosphoinositide 3-kinase inhibitor, a nuclear factor-κB pathway inhibitor, and inhibitors of canonical and stress-inducible mitogen-activated protein kinase pathways. Inhibition was also observed using PKC inhibitors, suggesting the involvement of certain PKC isozymes (η, θ, ι, ζ, or μ). Our results indicate that sts exerts its potentiating effects via the phosphorylation of p38. However, the effects of anisomycin did not mimic those of sts, indicating that although p38 activation is required, it does not enhance deoxycholate-induced COX-2 expression. We conclude that staurosporine synergistically enhances deoxycholate-induced COX-2 expression in RCM-1 colon cancer cells. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae

    PubMed Central

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC. PMID:23613664

  11. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    PubMed

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  12. Protein recycling pathways in neurodegenerative diseases

    PubMed Central

    2014-01-01

    Many progressive neurodegenerative diseases, including Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal lobe dementia, are associated with the formation of insoluble intracellular proteinaceous inclusions. It is therefore imperative to understand the factors that regulate normal, as well as abnormal, protein recycling in neurons. Dysfunction of the ubiquitin-proteasome or autophagy pathways might contribute to the pathology of various neurodegenerative diseases. Induction of these pathways may offer a rational therapeutic strategy for a number of these diseases. PMID:25031631

  13. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    PubMed Central

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  14. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice

    PubMed Central

    Herold, Marco J.

    2016-01-01

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  15. Direct molecular interactions between Beclin 1 and the canonical NFκB activation pathway.

    PubMed

    Niso-Santano, Mireia; Criollo, Alfredo; Malik, Shoaib Ahmad; Michaud, Michael; Morselli, Eugenia; Mariño, Guillermo; Lachkar, Sylvie; Galluzzi, Lorenzo; Maiuri, Maria Chaira; Kroemer, Guido

    2012-02-01

    General (macro)autophagy and the activation of NFκB constitute prominent responses to a large array of intracellular and extracellular stress conditions. The depletion of any of the three subunits of the inhibitor of NFκB (IκB) kinase (IKKα, IKKβ, IKKγ/NEMO), each of which is essential for the canonical NFκB activation pathway, limits autophagy induction by physiological or pharmacological triggers, while constitutive active IKK subunits suffice to stimulate autophagy. The activation of IKK usually relies on TGFβ-activated kinase 1 (TAK1), which is also necessary for the optimal induction of autophagy in multiple settings. TAK1 interacts with two structurally similar co-activators, TAK1-binding proteins 2 and 3 (TAB2 and TAB3). Importantly, in resting conditions both TAB2 and TAB3 bind the essential autophagic factor Beclin 1, but not TAK1. In response to pro-autophagic stimuli, TAB2 and TAB3 dissociate from Beclin 1 and engage in stimulatory interactions with TAK1. The inhibitory interaction between TABs and Beclin 1 is mediated by their coiled-coil domains (CCDs). Accordingly, the overexpression of either TAB2 or TAB3 CCD stimulates Beclin 1- and TAK1-dependent autophagy. These results point to the existence of a direct molecular crosstalk between the canonical NFκB activation pathway and the autophagic core machinery that guarantees the coordinated induction of these processes in response to stress.

  16. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators

    PubMed Central

    Lazennec, Gwendal; Canaple, Laurence; Saugy, Damien; Wahli, Walter

    2000-01-01

    The nuclear peroxisome proliferator-activated receptors (PPARs) α, β and γ activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. The activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas the activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase dependent induction of PPARs but also their ligand-dependent induction, suggesting that the ligands may also mobilize the PKA pathway to lead to maximal transcriptional induction by PPARs. Moreover, comparing PPARα KO with PPARα wild-type mice, we show that the expression of the ACO gene can be regulated by PKA-activated PPARα in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity and we propose a model associating this pathway in the control of fatty acid β-oxidation under conditions of fasting, stress and exercise. PMID:11117527

  17. Alpha Alumina Nanoparticle Conjugation to Cysteine Peptidase A and B: An Efficient Method for Autophagy Induction

    PubMed Central

    Beyzay, Fatemeh; Zavaran Hosseini, Ahmad; Soudi, Sara

    2017-01-01

    Background: Autophagy as a cellular pathway facilitates several immune responses against infection. It also eliminates invading pathogens through transferring content between the cytosol and the lysosomal vesicles and contributes to the cross-presentation of exogenous antigens to T lymphocytes via MHC class I pathway. Autophagy induction is one of the main targets for new drugs and future vaccine formulations. Nanoparticles are one of the candidates for autophagy induction. Cysteine Peptidase A (CPA) and Cysteine Peptidase B (CPB) are two members of papain family (Clan CA, family C1) enzyme that have been considered as a virulence factor of Leishmania (L.) major, making them suitable vaccine candidates. In this research, Leishmania major cysteine peptidase A and B (CPA and CPB) conjugation to alpha alumina nanoparticle was the main focus and their entrance efficacy to macrophages was assessed. Methods: For this purpose, CPA and CPB genes were cloned in expression vectors. Related proteins were extracted from transformed Escherichia coli (E. coli) and purified using Ni affinity column. Alpha alumina nanoparticles were conjugated to CPA/CPB proteins using Aldehyde/Hydrazine Reaction. Autophagy induction in macrophages was assessed using acridine orange staining. Results: CPA/CPB protein loading to nanoparticles was confirmed by Fourier Transform Infrared Spectroscopy. α-alumina conjugated CPA/CPB antigen uptake by macrophages at different concentrations was confirmed using fluorescence microscope and flowcytometry. Highly efficient CPA/CPB protein loading to α-alumina nanoparticles and rapid internalization to macrophages introduced these nanocarriers as a delivery tool. Acridine orange staining demonstrated higher autophagy induction in CPA/CPB protein conjugated with α-alumina nanoparticles. Conclusion: α-alumina nanoparticles may be a promising adjuvant in the development of therapeutic leishmania vaccines through antigen delivery to intracellular compartments, induction of autophagy and cross presentation to CD8 lymphocytes. PMID:28496946

  18. Carprofen Induction of p75NTR Dependent Apoptosis via the p38 MAPK Pathway in Prostate Cancer Cells

    PubMed Central

    Khwaja, Fatima S.; Quann, Emily J.; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-01-01

    The p75NTR functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we demonstrated that treatment with R-flurbiprofen or ibuprofen induced p75NTR expression in several prostate cancer cell lines leading to p75NTR mediated decreased survival. Utilizing the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico data base of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75NTR levels and inhibition of cell survival. Prostate (PC-3, DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75NTR associated loss of survival than breast (MCF7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant negative form of p75NTR prior to carprofen treatment partially rescued cell survival demonstrating a cause and effect relationship between carprofen induction of p75NTR levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF7 and 3T3 cells. Furthermore, siRNA knockdown of the p38 MAPK protein prevented induction of p75NTR by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 minute. Expression of a dominant negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75NTR protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75NTR dependent apoptosis via the p38 MAPK pathway in prostate cancer cells. PMID:18974393

  19. Intersection of transfer cells with phloem biology—broad evolutionary trends, function, and induction

    PubMed Central

    Andriunas, Felicity A.; Zhang, Hui-Ming; Xia, Xue; Patrick, John W.; Offler, Christina E.

    2013-01-01

    Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals. PMID:23847631

  20. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74.

    PubMed

    Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit

    2010-08-15

    The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.

  1. RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans

    PubMed Central

    Davis, Dana; Wilson, R. Bryce; Mitchell, Aaron P.

    2000-01-01

    Growth and differentiation of Candida albicans over a broad pH range underlie its ability to infect an array of tissues in susceptible hosts. We identified C. albicans RIM101, RIM20, and RIM8 based on their homology to components of the one known fungal pH response pathway. PCR product-disruption mutations in each gene cause defects in three responses to alkaline pH: filamentation, induction of PRA1 and PHR1, and repression of PHR2. We find that RIM101 itself is an alkaline-induced gene that also depends on Rim20p and Rim8p for induction. Two observations indicate that a novel pH response pathway also exists. First, PHR2 becomes an alkaline-induced gene in the absence of Rim101p, Rim20p, or Rim8p. Second, we created strains in which Rim101p activity is independent of Rim20p and Rim8p; in these strains, filamentation remains pH dependent. Thus, pH governs gene expression and cellular differentiation in C. albicans through both RIM101-dependent and RIM101-independent pathways. PMID:10629054

  2. Differential suppression of glial nitric oxide synthase induction by structurally related tyrosine kinase inhibitors.

    PubMed

    Galea, E; Reddi, J; Feinstein, D L

    1995-11-24

    Incubation of C6 astrocytoma cells with bacterial endotoxin (lipopolysaccharide; LPS) plus interferon-gamma (IFN-gamma), or with a combination of cytokines (TNF-alpha, IL1-beta, and IFN-gamma) leads to high levels of inducible nitric oxide synthase (iNOS) expression. Previous results demonstrated a requirement for tyrosine kinase (TK) activities for iNOS induction. In the present study, a set of structurally related TK inhibitors, the tyrphostins (TYRs), were used to characterize possible differences between LPS and cytokine iNOS induction. All TYRs tested suppressed both types of induction. However, dose-response curves revealed significant differences in the IC50 values obtained for some TYRs (T25 and T56), and significant differences in the IC50 potency rank order when comparing inhibition of LPS versus cytokine-dependent iNOS induction. These results are consistent with differential TK utilization by the LPS versus cytokine pathways of iNOS induction, and establish a basis for developing further selective inhibitors of iNOS expression.

  3. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    PubMed

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.

    PubMed

    Zhang, Shulin; Liang, Meiling; Naqvi, Naweed I; Lin, Chaoxiang; Qian, Wanqiang; Zhang, Lian-Hui; Deng, Yi Zhen

    2017-08-03

    Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.

  5. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    PubMed

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  6. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  7. Beneficial effects of Houttuynia cordata polysaccharides on "two-hit" acute lung injury and endotoxic fever in rats associated with anti-complementary activities.

    PubMed

    Lu, Yan; Jiang, Yun; Ling, Lijun; Zhang, Yunyi; Li, Hong; Chen, Daofeng

    2018-03-01

    Houttuynia cordata Thunb. is a traditional herb used for clearing heat and eliminating toxins, and has also been used for the treatment of severe acute respiratory syndrome (SARS). In vitro, the crude H. cordata polysaccharides (CHCP) exhibited potent anti-complementary activity through both the classical and alternative pathways by acting on components C3 and C4 of the complement system without interfering with the coagulation system. This study was to investigate the preventive effects of CHCP on acute lung injury (ALI) induced by hemorrhagic shock plus lipopolysaccharide (LPS) instillation (two-hit) and LPS-induced fever in rats. CHCP significantly attenuated pulmonary injury in the "two-hit" ALI model by reducing pulmonary edema and protein exudation in bronchoalveolar lavage fluid (BALF). In addition, it reduced the deposit of complement activation products in the lung and improved oxidant-antioxidant imbalance. Moreover, CHCP administration inhibited fever in rats, reduced the number of leukocytes and restored serum complement levels. The inhibition on the inappropriate activation of complement system by CHCP may play an important role in its beneficial effects on inflammatory diseases. The anti-complementary polysaccharides are likely to be among the key substances for the heat-clearing function of H. cordata .

  8. Nonspreading Rift Valley Fever Virus Infection of Human Dendritic Cells Results in Downregulation of CD83 and Full Maturation of Bystander Cells.

    PubMed

    Oreshkova, Nadia; Wichgers Schreur, Paul J; Spel, Lotte; Vloet, Rianka P M; Moormann, Rob J M; Boes, Marianne; Kortekaas, Jeroen

    2015-01-01

    Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and MHC-II and secretion of the proinflammatory cytokines IFN-β, IL-6 and TNF. Interestingly, expression of the most prominent marker of DC maturation, CD83, was consistently downregulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated CD83 upregulation by LPS. Downregulation of CD83 was not associated with reduced mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be prevented by inhibition of the proteasome or endocytic degradation pathways, suggesting that suppression occurs at the translational level. In contrast to infected cells, bystander DCs displayed full maturation as evidenced by upregulation of CD83. Our results indicate that bystander DCs play an important role in NSR-mediated immunity.

  9. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus.

    PubMed

    Wu, Xiaodong; Qi, Xian; Liang, Mifang; Li, Chuan; Cardona, Carol J; Li, Dexin; Xing, Zheng

    2014-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses. © FASEB.

  10. The significance of peripartum fever in women undergoing vaginal deliveries.

    PubMed

    Bensal, Adi; Weintraub, Adi Y; Levy, Amalia; Holcberg, Gershon; Sheiner, Eyal

    2008-10-01

    We investigated whether patients undergoing vaginal delivery who developed peripartum fever (PPF) had increased rates of other gestational complications. A retrospective study was undertaken comparing pregnancy complications of patients who developed PPF with those who did not. A multivariable logistic regression model was constructed to control for confounders. To avoid ascertainment bias, the year of birth was included in the model. Women who underwent cesarean delivery and those with multiple pregnancies were excluded from the study. During the study period, there were 169,738 singleton vaginal deliveries, and 0.4% of the women suffered from PPF. Hypertensive disorders, induction of labor, dystocia of labor in the second stage, suspected fetal distress, meconium-stained amniotic fluid, postpartum hemorrhage, manual lysis of a retained placenta, and revision of the uterine cavity and cervix were found to be independently associated with PPF by multivariable analysis. Year of birth was found to be a risk factor for fever. Apgar scores lower than 7 at 1 but not 5 minutes were significantly higher in the PPF group. Perinatal mortality rates were significantly higher among women with PPF (6.7% versus 1.3%, odds ratio [OR] = 5.4; 95% confidence interval [CI] 3.9 to 7.3; P < 0.001). Using another multivariable analysis, with perinatal mortality as the outcome variable, PPF was found as an independent risk factor for perinatal mortality (OR = 2.9; 95% CI 1.9 to 4.6; P < 0.001). PPF in women undergoing vaginal deliveries is associated with adverse perinatal outcomes and specifically is an independent risk factor for perinatal mortality.

  11. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    PubMed

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  12. Autophagy Enhances Memory Erasure through Synaptic Destabilization.

    PubMed

    Shehata, Mohammad; Abdou, Kareem; Choko, Kiriko; Matsuo, Mina; Nishizono, Hirofumi; Inokuchi, Kaoru

    2018-04-11

    There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. SIGNIFICANCE STATEMENT It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy induction can be used to overcome a reconsolidation-resistant memory, suggesting autophagy inducers as a potential therapeutic tool in the treatment of anxiety disorders. Copyright © 2018 the authors 0270-6474/18/383809-14$15.00/0.

  13. International Retrospective Chart Review of Treatment Patterns in Severe Familial Mediterranean Fever, Tumor Necrosis Factor Receptor-Associated Periodic Syndrome, and Mevalonate Kinase Deficiency/Hyperimmunoglobulinemia D Syndrome.

    PubMed

    Ozen, Seza; Kuemmerle-Deschner, Jasmin B; Cimaz, Rolando; Livneh, Avi; Quartier, Pierre; Kone-Paut, Isabelle; Zeft, Andrew; Spalding, Steve; Gul, Ahmet; Hentgen, Veronique; Savic, Sinisa; Foeldvari, Ivan; Frenkel, Joost; Cantarini, Luca; Patel, Dony; Weiss, Jeffrey; Marinsek, Nina; Degun, Ravi; Lomax, Kathleen G; Lachmann, Helen J

    2017-04-01

    Periodic fever syndrome (PFS) conditions are characterized by recurrent attacks of fever and localized inflammation. This study examined the diagnostic pathway and treatments at tertiary centers for familial Mediterranean fever (FMF), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), and mevalonate kinase deficiency (MKD)/hyperimmunoglobulinemia D syndrome (HIDS). PFS specialists at medical centers in the US, the European Union, and the eastern Mediterranean participated in a retrospective chart review, providing de-identified data in an electronic case report form. Patients were treated between 2008 and 2012, with at least 1 year of followup; all had clinical and/or genetically proven disease and were on/eligible for biologic treatment. A total of 134 patients were analyzed: FMF (n = 49), TRAPS (n = 47), and MKD/HIDS (n = 38). Fever was commonly reported as severe across all indications. Other frequently reported severe symptoms were serositis for FMF patients and elevated acute-phase reactants and gastrointestinal upset for TRAPS and MKD/HIDS. A long delay from disease onset to diagnosis was seen within TRAPS and MKD/HIDS (5.8 and 7.1 years, respectively) compared to a 1.8-year delay in FMF patients. An equal proportion of TRAPS patients first received anti-interleukin-1 (anti-IL-1) and anti-tumor necrosis factor (anti-TNF) biologic agents, whereas IL-1 blockade was the main choice for FMF patients resistant to colchicine and MKD/HIDS patients. For TRAPS patients, treatment with anakinra versus anti-TNF treatments as first biologic agent resulted in significantly higher clinical and biochemical responses (P = 0.03 and P < 0.01, respectively). No significant differences in responses were observed between biologic agents among other cohorts. Referral patterns and diagnostic delays highlight the need for greater awareness and improved diagnostics for PFS. This real-world treatment assessment supports the need for further refinement of treatment practices. © 2016, American College of Rheumatology.

  14. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.

    PubMed

    Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan

    2008-04-01

    Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.

  15. Wnt/β-catenin pathway regulates Bmp2-mediated differentiation of dental follicle cells

    PubMed Central

    Silvério, Karina G.; Davidson, Kathryn C.; James, Richard G.; Adams, Allison M.; Foster, Brian L.; Nociti, Francisco H.; Somermam, Martha J.; Moon, Randall T.

    2013-01-01

    Background and Objectives Bmp2-induced osteogenic differentiation has been shown to occur through the canonical Wnt/β-catenin pathway, whereas factors promoting canonical Wnt signaling in cementoblasts inhibited cell differentiation and promoted cell proliferation in vitro. The aim of this study was to investigate whether putative precursor cells of cementoblasts, dental follicle cells (murine SVF4 cells), when stimulated with Bmp2, would exhibit changes in genes/proteins associated with the Wnt/β-catenin pathway. Materials and Methods SVF4 cells were stimulated with Bmp2, and the following assays were carried out: 1) Wnt/β-catenin pathway activation assessed by western blot, β-catenin/TCF reporter assay, and gene expression of lymphoid enhancer-binding factor-1 (Lef1), transcription factor 7 (Tcf7), Wnt inhibitor factor 1 (Wif1) and Axin2, and 2) cementoblast/osteoblast differentiation assessed by mineralization in vitro, and mRNA levels of runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), osteocalcin (Ocn) and bone sialoprotein (Bsp) by qPCR after Wnt3a treatment and knockdown of β-catenin. Results Wnt3a induced β-catenin nuclear translocation and upregulated the transcriptional activity of a canonical Wnt-responsive reporter, suggesting the Wnt/β-catenin pathway functions in SVF4 cells. Activation of Wnt signaling with Wnt3a suppressed Bmp2-mediated induction of cementoblast/osteoblast maturation of SVF4 cells. However, β-catenin knockdown showed that Bmp2-induced expression of cementoblast/osteoblast differentiation markers requires endogenous β-catenin. Wnt3a down-regulated transcripts for Runx2, Alp and Ocn in SVF4 cells compared to untreated cells. In contrast, Bmp2 induction of Bsp transcripts occurred independent of Wnt/β-catenin signaling. Conclusions These data suggest that stabilization of β-catenin by Wnt-3a treatment inhibits Bmp2-mediated induction of cementoblast/osteoblast differentiation in SVF4 cells, although Bmp2 requires endogenous Wnt/β-catenin signaling to promote cell maturation. PMID:22150562

  16. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition.

    PubMed

    Mali, Aniket V; Joshi, Asavari A; Hegde, Mahabaleshwar V; Kadam, Shivajirao S

    2018-05-01

    Triple-negative breast cancer (TNBC) is highly metastatic, and there is an urgent unmet need to develop novel therapeutic strategies leading to the new drug discoveries against metastasis. The transforming growth factor-β (TGF-β) is known to promote the invasive and migratory potential of breast cancer cells through induction of epithelial-mesenchymal transition (EMT) via the ERK/NF-κB/Snail signaling pathway, leading to breast cancer metastasis. Targeting this pathway to revert the EMT would be an attractive, novel therapeutic strategy to halt breast cancer metastasis. Effects of enterolactone (EL) on the cell cycle and apoptosis were investigated using flow cytometry and a cleaved caspase-3 enzyme-linked immunosorbent assay (ELISA), respectively. Effects of TGF-β induction and EL treatment on the functional malignancy of MDA-MB-231 breast cancer cells were investigated using migration and chemo-invasion assays. The effects of EL on EMT markers and the ERK/NF-κB/Snail signaling pathway after TGF-β induction were studied using confocal microscopy, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and flow cytometry. Herein, we report that EL exhibits a significant antimetastatic effect on MDA-MB-231 cells by almost reverting the TGF-β-induced EMT in vitro . EL downregulates the mesenchymal markers N-cadherin and vimentin, and upregulates the epithelial markers E-cadherin and occludin. It represses actin stress fiber formation via inhibition of mitogen-activated protein kinase p-38 (MAPK-p38) and cluster of differentiation 44 (CD44). EL also suppresses ERK-1/2, NF-κB, and Snail at the mRNA and protein levels. Briefly, EL was found to inhibit TGF-β-induced EMT by blocking the ERK/NF-κB/Snail signaling pathway, which is a promising target for breast cancer metastasis therapy.

  17. Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation.

    PubMed

    Chaudhary, Vidyanath; Zhang, Shuo; Yuen, Kit-San; Li, Chuan; Lui, Pak-Yin; Fung, Sin-Yee; Wang, Pei-Hui; Chan, Chi-Ping; Li, Dexin; Kok, Kin-Hang; Liang, Mifang; Jin, Dong-Yan

    2015-11-01

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen causing significant morbidity and mortality in Asia. NSs protein of SFTSV is known to perturb type I IFN induction and signalling, but the mechanism remains to be fully understood. Here, we showed the suppression of both type I and type III IFN signalling by SFTSV NSs protein is mediated through inhibition of STAT1 phosphorylation and activation. Infection with live SFTSV or expression of NSs potently suppressed IFN-stimulated genes but not NFkB activation. NSs was capable of counteracting the activity of IFN-α1, IFN-β, IFN-λ1 and IFN-λ2. Mechanistically, NSs associated with STAT1 and STAT2, mitigated IFN-β-induced phosphorylation of STAT1 at S727, and reduced the expression and activity of STAT1 protein in IFN-β-treated cells, resulting in the inhibition of STAT1 and STAT2 recruitment to IFNstimulated promoters. Taken together, SFTSV NSs protein is an IFN antagonist that suppresses phosphorylation and activation of STAT1.

  18. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    PubMed

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-02-05

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.

  19. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    PubMed

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana.

    PubMed

    Lee, Chin-Mei; Thomashow, Michael F

    2012-09-11

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures.

  1. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana

    PubMed Central

    Lee, Chin-Mei; Thomashow, Michael F.

    2012-01-01

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures. PMID:22927419

  2. Early Induction of NRF2 Antioxidant Pathway by RHBDF2 Mediates Rapid Cutaneous Wound Healing

    PubMed Central

    Hosur, Vishnu; Burzenski, Lisa M.; Stearns, Timothy M.; Farley, Michelle L.; Sundberg, John P.; Wiles, Michael V.; Shultz, Leonard D.

    2017-01-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15 min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15 min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. PMID:28268192

  3. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    PubMed

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in Arabidopsis thaliana has a defect in the water-water cycle of photosynthesis.

    PubMed

    Higuchi, Mieko; Ozaki, Hiroshi; Matsui, Minami; Sonoike, Kintake

    2009-03-03

    The water-water cycle is the electron flow through scavenging enzymes for the reactive species of oxygen in chloroplasts, and is proposed to play a role in alternative electron sink in photosynthesis. Here we showed that the water-water cycle is impaired in the T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in chloroplasts. Chlorophyll fluorescence under steady state was not affected in hma1, indicating that photosynthetic electron transport under normal condition was not impaired. Under electron acceptor limited conditions, however, hma1 showed distinguished phenotype in chlorophyll fluorescence characteristics. The most severe phenotype of hma1 could be observed in high (0.1%) CO(2) concentrations, indicating that hma1 has the defect other than photorespiration. The transient increase of chlorophyll fluorescence upon the cessation of the actinic light as well as the NPQ induction of chlorophyll fluorescence revealed that the two pathways of cyclic electron flow around PSI, NDH-pathway and FQR-pathway, are both intact in hma1. Based on the NPQ induction under 0% oxygen condition, we conclude that the water-water cycle is impaired in hma1, presumably due to the decreased level of Cu/Zn SOD in the mutant. Under high CO(2) condition, hma1 exhibited slightly higher NPQ induction than wild type plants, while this increase of NPQ in hma1 was suppressed when hma1 was crossed with crr2 having a defect in NDH-mediated PSI cyclic electron flow. We propose that the water-water cycle and NDH-mediated pathways might be regulated compensationally with each other especially when photorespiration is suppressed.

  5. cPLA2α Gene Activation by IL-1β is Dependent on an Upstream Kinase pathway, Enzymatic Activation and Downstream 15-lipoxygenase Activity: A Positive Feedback Loop

    PubMed Central

    Walters, Jewell N.; Bickford, Justin S.; Beachy, Dawn E.; Newsom, Kimberly J.; Herlihy, John-David H.; Peck, Molly V.; Qiu, Xiaolei; Nick, Harry S.

    2011-01-01

    Cytosolic phospholipase A2α (cPLA2α) is the most widely studied member of the Group IV PLA2 family. The enzyme is Ca2+-dependent with specificity for phospholipid substrates containing arachidonic acid. As the pinnacle of the arachidonic acid pathway, cPLA2α has a primary role in the biosynthesis of a diverse family of eicosanoid metabolites, with potent physiological, inflammatory and pathological consequences. cPLA2α activity is regulated by pro-inflammatory stimuli through pathways involving increased intracellular Ca2+ levels, phosphorylation coupled to increased enzymatic activity and de novo gene transcription. This study addresses the signal transduction pathways for protein phosphorylation and gene induction following IL-1β stimulation in human fetal lung fibroblasts. Our results utilizing both inhibitors and kinase-deficient cells demonstrate that cPLA2α is phosphorylated within 10 min of IL-1β treatment, an event requiring p38 MAPK as well as the upstream kinase, MKK3/MKK6. Inhibition of p38 MAPK also blocks the phosphorylation of a downstream, nuclear kinase, MSK-1. Our results further demonstrate that the activities of both cPLA2α and a downstream lipoxygenase (15-LOX2) are required for IL-1β-dependent induction of cPLA2α mRNA expression. Overall, these data support an MKK3/MKK6→p38 MAPK→MSK-1→cPLA2α→15-LOX2-dependent, positive feedback loop where a protein’s enzymatic activity is required to regulate its own gene induction by a pro-inflammatory stimulus. PMID:21771656

  6. Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie

    2013-01-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  7. C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling

    PubMed Central

    Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis

    2015-01-01

    Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013

  8. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death

    PubMed Central

    Garg, Abhishek D; Krysko, Dmitri V; Verfaillie, Tom; Kaczmarek, Agnieszka; Ferreira, Gabriela B; Marysael, Thierry; Rubio, Noemi; Firczuk, Malgorzata; Mathieu, Chantal; Roebroek, Anton J M; Annaert, Wim; Golab, Jakub; de Witte, Peter; Vandenabeele, Peter; Agostinis, Patrizia

    2012-01-01

    Surface-exposed calreticulin (ecto-CRT) and secreted ATP are crucial damage-associated molecular patterns (DAMPs) for immunogenic apoptosis. Inducers of immunogenic apoptosis rely on an endoplasmic reticulum (ER)-based (reactive oxygen species (ROS)-regulated) pathway for ecto-CRT induction, but the ATP secretion pathway is unknown. We found that after photodynamic therapy (PDT), which generates ROS-mediated ER stress, dying cancer cells undergo immunogenic apoptosis characterized by phenotypic maturation (CD80high, CD83high, CD86high, MHC-IIhigh) and functional stimulation (NOhigh, IL-10absent, IL-1βhigh) of dendritic cells as well as induction of a protective antitumour immune response. Intriguingly, early after PDT the cancer cells displayed ecto-CRT and secreted ATP before exhibiting biochemical signatures of apoptosis, through overlapping PERK-orchestrated pathways that require a functional secretory pathway and phosphoinositide 3-kinase (PI3K)-mediated plasma membrane/extracellular trafficking. Interestingly, eIF2α phosphorylation and caspase-8 signalling are dispensable for this ecto-CRT exposure. We also identified LRP1/CD91 as the surface docking site for ecto-CRT and found that depletion of PERK, PI3K p110α and LRP1 but not caspase-8 reduced the immunogenicity of the cancer cells. These results unravel a novel PERK-dependent subroutine for the early and simultaneous emission of two critical DAMPs following ROS-mediated ER stress. PMID:22252128

  9. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    PubMed

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells

    PubMed Central

    Heidari, N; Miller, A V; Hicks, M A; Marking, C B; Harada, H

    2012-01-01

    Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. BIM (BCL-2-interacting mediator of cell death), a BCL-2 homology 3-only pro-apoptotic protein, is upregulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia cells and has an essential role in Dex-induced apoptosis. It has been indicated that Dex-induced BIM is regulated mainly by transcription, however, the molecular mechanisms including responsible transcription factors are unclear. In this study, we found that Dex treatment induced transcription factor Runx2 and c-Jun in parallel with BIM induction. Dex-induced BIM and apoptosis were decreased in cells harboring dominant-negative c-Jun and were increased in cells with c-Jun overexpression. Cells harboring short hairpin RNA for Runx2 also decreased BIM induction and apoptosis. On the Bim promoter, c-Jun bound to and activated the AP-1-binding site at about −2.7 kb from the transcription start site. Treatment with RU486, a GC receptor antagonist, blocked Dex-induced Runx2, c-Jun and BIM induction, as well as apoptosis. Furthermore, pretreatment with SB203580, a p38-mitogen-activated protein kinase (MAPK) inhibitor, decreased Dex-induced Runx2, c-Jun and BIM, suggesting that p38-MAPK activation is upstream of the induction of these molecules. In conclusion, we identified the critical signaling pathway for GC-induced apoptosis, and targeting these molecules may be an alternative approach to overcome GC-resistance in leukemia treatment. PMID:22825467

  11. Platelet-derived Growth Factor-mediated Induction of the Synaptic Plasticity Gene Arc/Arg3.1*

    PubMed Central

    Peng, Fuwang; Yao, Honghong; Bai, Xuetao; Zhu, Xuhui; Reiner, Benjamin C.; Beazely, Michael; Funa, Keiko; Xiong, Huangui; Buch, Shilpa

    2010-01-01

    Platelet-derived growth factor (PDGF) is a pleiotropic protein with critical roles in both developmental as well as pathogenic processes. In the central nervous system specifically, PDGF is critical for neuronal proliferation and differentiation and has also been implicated as a neuroprotective agent. Whether PDGF also plays a role in synaptic plasticity, however, remains poorly understood. In the present study we demonstrated that in the rat hippocampal neurons PDGF regulated the expression of Arc/Arg3.1 gene that has been implicated in both synapse plasticity and long term potentiation. Relevance of these findings was further confirmed in vivo by injecting mice with intracerebral inoculations of PDGF, which resulted in a rapid induction of Arc in the hippocampus of the injected mice. PDGF induced long term potentiation in rat hippocampal slices, which was abolished by PDGF receptor-tyrosine kinase inhibitor STI-571. We also present evidence that PDGF-mediated induction of Arc/Arg3.1 involved activation of the MAPK/ERK (MEK) pathway. Additionally, induction of Arc/Arg3.1 also involved the upstream release of intracellular calcium stores, an effect that could be blocked by thapsigargin but not by EGTA. Pharmacological approach using inhibitors specific for either MAPK/ERK phosphorylation or calcium release demonstrated that the two pathways converged downstream at a common point involving activation of the immediate early gene Egr-1. Chromatin immunoprecipitation assays demonstrated the binding of Egr-1, but not Egr-3, to the Arc promoter. These findings for the first time, thus, suggest an additional role of PDGF, that of induction of Arc. PMID:20452974

  12. Increased expression and processing of caspase-12 after traumatic brain injury in rats.

    PubMed

    Larner, Stephen F; Hayes, Ronald L; McKinsey, Deborah M; Pike, Brian R; Wang, Kevin K W

    2004-01-01

    Traumatic brain injury (TBI) disrupts tissue homeostasis resulting in pathological apoptotic activation. Recently, caspase-12 was reported to be induced and activated by the unfolded protein response following excess endoplasmic reticulum (ER) stress. This study examined rat caspase-12 expression using the controlled cortical impact TBI model. Immunoblots of fractionalized cell lysates found elevated caspase-12 proform (approximately 60 kDa) and processed form (approximately 12 kDa), with peak induction observed within 24 h post-injury in the cortex (418% and 503%, respectively). Hippocampus caspase-12 proform induction peaked at 24 h post-injury (641%), while processed form induction peaked at 6 h (620%). Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed elevated caspase-12 mRNA levels after TBI. Injury severity (1.0, 1.2 or 1.6 mm compression) was associated with increased caspase-12 mRNA expression, peaking at 5 days in the cortex (657%, 651% and 1259%, respectively) and 6 h in the hippocampus (435%, 451% and 460%, respectively). Immunohistochemical analysis revealed caspase-12 induction in neurons in both the cortex and hippocampus as well as in astrocytes at the contusion site. This is the first report of increased expression of caspase-12 following TBI. Our results suggest that the caspase-12-mediated ER apoptotic pathway may play a role in rat TBI pathology independent of the receptor- or mitochondria-mediated apoptotic pathways.

  13. HIGH GLUCOSE POTENTIATES L-FABP MEDIATED FIBRATE INDUCTION OF PPARα IN MOUSE HEPATOCYTES

    PubMed Central

    Petrescu, Anca D.; McIntosh, Avery L.; Storey, Stephen M.; Huang, Huan; Martin, Gregory G.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Although liver fatty acid binding protein (L-FABP) binds fibrates and PPARα in vitro and enhances fibrate induction of PPARα in transformed cells, the functional significance of these findings is unclear, especially in normal hepatocytes. Studies with cultured primary mouse hepatocytes show that: 1) At physiological (6 mM) glucose, fibrates (bezafibrate, fenofibrate) only weakly activated PPARα transcription of genes in LCFA β-oxidation; 2) High (11–20 mM) glucose, but not maltose (osmotic control), significantly potentiated fibrate-induction of mRNA of these and other PPARα target genes to increase LCFA β-oxidation. These effects were associated with fibrate-mediated redistribution of L-FABP into nuclei—an effect prolonged by high glucose—but not with increased de novo fatty acid synthesis from glucose; 3) Potentiation of bezafibrate action by high glucose required an intact L-FABP/PPARα signaling pathway as shown with L-FABP null, PPARα null, PPARα inhibitor-treated WT, or PPARα-specific fenofibrate-treated WT hepatocytes. High glucose alone in the absence of fibrate was ineffective. Thus, high glucose potentiation of PPARα occurred through FABP/PPARα rather than indirectly through other PPARs or glucose induced signaling pathways. These data indicated L-FABP’s importance in fibrate-induction of hepatic PPARα LCFA β-oxidative genes, especially in the context of high glucose levels. PMID:23747828

  14. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    PubMed

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of electron fluxes between alternative pathways. The model adequately describes the main peculiarities of P700(+) induction and dynamics of the intersystem electron transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Hantavirus-infection Confers Resistance to Cytotoxic Lymphocyte-Mediated Apoptosis

    PubMed Central

    Gupta, Shawon; Braun, Monika; Tischler, Nicole D.; Stoltz, Malin; Sundström, Karin B.; Björkström, Niklas K.; Ljunggren, Hans-Gustaf; Klingström, Jonas

    2013-01-01

    Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)), both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response. PMID:23555267

  16. [Disappearance of Philadelphia chromosomes after remission induction in lymphoid crisis of chronic myelogenous leukemia].

    PubMed

    Nagafuji, K; Iwakiri, R; Miyamoto, T; Okamura, H; Yokota, E; Matsumoto, I

    1992-09-01

    The authors report a rare case of chronic myelogenous leukemia (CML) in which the Ph1 clone disappeared after remission induction of lymphoid crisis. A 58-year-old man was admitted to our hospital because of fever in July 1988. The white cell count was elevated. Bone marrow aspirate showed hypercellularity with myeloid hyperplasia. In the chromosomal analysis, Ph1 chromosomes were detected in 100% of bone marrow cells analysed. Diagnosis of CML was made and treatment was initiated with recombinant interferon-alpha 2a. Hematological remission without cytogenetic improvement was achieved. In March 1990 he developed lymphoid crisis with proliferation of CD10-positive cells. The chromosomal analysis revealed additional abnormalities including, 45, X, -Y, t(9;22) (q34;q11), +1, -8. With vincristine 0.6 mgX4, pirarubicin 15 mgX4, dexamethasone 40 mgX4 therapy complete remission was obtained. In December 1990 the Ph1 positive clone completely disappeared judging from normal karyotypes in the chromosomal analysis and the disappearance of M-bcr gene rearrangement.

  17. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    PubMed Central

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    SUMMARY The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identified as substrates for ADAM13. ADAM13 upregulates canonical Wnt signaling and early expression of the transcription factor snail2, whereas EfnB1 inhibits the canonical Wnt pathway and snail2 expression. We propose that by cleaving class B Efns, ADAM13 promotes canonical Wnt signaling and early CNC induction. PMID:20708595

  18. Integrated compensatory network is activated in the absence of NCC phosphorylation.

    PubMed

    Grimm, P Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric; Wall, Susan M; Dorsey, Susan G; Weinman, Edward J; Coleman, Richard; Wade, James B; Welling, Paul A

    2015-05-01

    Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.

  19. Integrated compensatory network is activated in the absence of NCC phosphorylation

    PubMed Central

    Grimm, P. Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric; Wall, Susan M.; Dorsey, Susan G.; Weinman, Edward J.; Coleman, Richard; Wade, James B.; Welling, Paul A.

    2015-01-01

    Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase–deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H+-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG–activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy. PMID:25893600

  20. cGMP in ozone and NO dependent responses

    PubMed Central

    Ederli, Luisa; Meier, Stuart; Borgogni, Andrea; Reale, Lara; Ferranti, Francesco; Gehring, Chris

    2008-01-01

    We have recently reported that ozone (O3) can inhibit mitochondrial respiration and induce activation of the alternative oxidase (AOX) pathway and in particular AOX1a in tobacco. While O3 causes mitochondrial H2O2, early leaf nitric oxide (NO) as well as transient ethylene (ET) accumulation, the levels of jasmonic acid and 12-oxo-phytodienoic acid remained unchanged. It was shown that both, NO and ET dependent pathways can induce AOX1a transcription by O3. AOX plays a role in reducing reactive oxygen species (ROS) which in turn are linked to biotic and abiotic plant stresses, much like the second messengers guanosine 3′, 5′-cyclic monophosphate (cGMP). The goal is to unravel specific cGMP signatures and induction pathways downstream from O3 and NO, including transcription of AOX1a. Here we propose that some late (>3 h) responses to NO, e.g., the accumulation of phenylalanine lyase (PAL) transcripts, are critically cGMP dependent, while the early (<2 h) responses, including AOX1a induction are not. PMID:19704720

  1. Mitochondrial deficiency impairs hypoxic induction of HIF-1 transcriptional activity and retards tumor growth

    PubMed Central

    Koido, Masaru; Haga, Naomi; Furuno, Aki; Tsukahara, Satomi; Sakurai, Junko; Tani, Yuri; Sato, Shigeo; Tomida, Akihiro

    2017-01-01

    Mitochondria can be involved in regulating cellular stress response to hypoxia and tumor growth, but little is known about that mechanistic relationship. Here, we show that mitochondrial deficiency severely retards tumor xenograft growth with impairing hypoxic induction of HIF-1 transcriptional activity. Using mtDNA-deficient ρ0 cells, we found that HIF-1 pathway activation was comparable in slow-growing ρ0 xenografts and rapid-growing parental xenografts. Interestingly, we found that ex vivo ρ0 cells derived from ρ0 xenografts exhibited slightly increased HIF-1α expression and modest HIF-1 pathway activation regardless of oxygen concentration. Surprisingly, ρ0 cells, as well as parental cells treated with oxidative phosphorylation inhibitors, were unable to boost HIF-1 transcriptional activity during hypoxia, although HIF-1α protein levels were ordinarily increased in these cells under hypoxic conditions. These findings indicate that mitochondrial deficiency causes loss of hypoxia-induced HIF-1 transcriptional activity and thereby might lead to a constitutive HIF-1 pathway activation as a cellular adaptation mechanism in tumor microenvironment. PMID:28060746

  2. [Bacterial meningitis in adults in emergency and rescue services].

    PubMed

    Klein, M; Pfister, H-W

    2016-10-01

    The cardinal symptoms of bacterial meningitis are headache, fever, impaired consciousness and nuchal stiffness (meningism); however, the diagnosis of acute bacterial meningitis can only be confirmed or ruled out by investigation of cerebrospinal fluid. The recommended empirical antibiotic regimen for community-acquired acute bacterial meningitis in adults in Germany is a combination of ceftriaxone and ampicillin plus adjuvant dexamethasone. An important influenceable factor for treatment success of acute bacterial meningitis is a rapid induction of antibiotic therapy, which must be initiated directly after lumbar puncture. When this is delayed for any reason, e. g. because of the necessity of cerebral computed tomography imaging before lumbar puncture, antibiotics should be started even before acquisition of cerebrospinal fluid.

  3. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways

    PubMed Central

    Grogan, Patrick T.; Sleder, Kristina D.; Samadi, Abbas K.; Timmermann, Barbara N.; Cohen, Mark S.

    2012-01-01

    Withaferin A (WA), a steroidal lactone derived from the plant Vassobia breviflora, has been reported to have anti-proliferative, pro-apoptotic, and anti-angiogenic properties against cancer growth. In this study, we identified several key underlying mechanisms of anticancer action of WA in glioblastoma cells. WA was found to inhibit proliferation by inducing a dose-dependent G2/M cell cycle arrest and promoting cell death through both intrinsic and extrinsic apoptotic pathways. This was accompanied by an inhibitory shift in the Akt/mTOR signaling pathway which included diminished expression and/or phosphorylation of Akt, mTOR, p70 S6K, and p85 S6K with increased activation of AMPKα and the tumor suppressor tuberin/TSC2. Alterations in proteins of the MAPK pathway and cell surface receptors like EGFR, Her2/ErbB2, and c-Met were also observed. WA induced an N-acetyl-L-cysteinerepressible enhancement in cellular oxidative potential/stress with subsequent induction of a heat shock stress response primarily through HSP70, HSP32, and HSP27 upregulation and HSF1 downregulation. Taken together, we suggest that WA may represent a promising chemotherapeutic candidate in glioblastoma therapy warranting further translational evaluation. PMID:23129310

  4. Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.

    PubMed

    Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H

    2002-07-01

    Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.

  5. Induction of Syndecan-4 by Organic-Inorganic Hybrid Molecules with a 1,10-Phenanthroline Structure in Cultured Vascular Endothelial Cells.

    PubMed

    Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki

    2017-02-08

    Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline ( o -Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o -Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.

  6. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression.

    PubMed

    Zhang, Qin; Adiseshaiah, Pavan; Kalvakolanu, Dhananjaya V; Reddy, Sekhar P

    2006-04-14

    The FRA-1 proto-oncogene is overexpressed in a variety of human tumors and is known to up-regulate the expression of genes involved in tumor progression and invasion. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway is also known to regulate these cellular processes. More importantly, respiratory toxicants and carcinogens activate both the PI3K-Akt pathway and FRA-1 expression in human bronchial epithelial (HBE) cells. In this study we investigated a potential link between the PI3K-Akt pathway and the cigarette smoke (CS)-stimulated epidermal growth factor receptor-mediated FRA-1 induction in non-oncogenic HBE cells. Treatment of cells with LY294002, an inhibitor of the PI3K-Akt pathway, completely blocked CS-induced FRA-1 expression. Surprisingly pharmacological inhibition of Akt had no significant effect on CS-induced FRA-1 expression. Likewise the inhibition of protein kinase C zeta, which is a known downstream effector of PI3K, did not alter FRA-1 expression. We found that the PI3K through p21-activated kinase 1 regulates FRA-1 proto-oncogene induction by CS and the subsequent activation of the Elk1 and cAMP-response element-binding protein transcription factors that are bound to the promoter in HBE cells.

  7. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways

    PubMed Central

    Hansen, Immo A.; Attardo, Geoffrey M.; Rodriguez, Stacy D.; Drake, Lisa L.

    2014-01-01

    Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level. PMID:24688471

  8. The Single Kinin Receptor Signals to Separate and Independent Physiological Pathways in Malpighian Tubules of the Yellow Fever Mosquito

    DTIC Science & Technology

    2010-06-10

    Felix Tiburcy3, Ronald J. Nachman4, Peter M. Piermarini1 and Klaus W. Beyenbach1 1Department of Biomedical Sciences, VRT 8004, Cornell...Dept. of Biomedical Sciences VRT 8004 Cornell University Ithaca, NY 14853 Voice: (607) 253-3482 FAX: (607) 253-3851 Email: KWB1@CORNELL.EDU...University,Department of Biomedical Sciences, VRT 8004,Ithaca,NY,14853 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  9. Q Fever in Pregnant Goats: Pathogenesis and Excretion of Coxiella burnetii

    PubMed Central

    Roest, Hendrik-Jan; van Gelderen, Betty; Dinkla, Annemieke; Frangoulidis, Dimitrios; van Zijderveld, Fred; Rebel, Johanna; van Keulen, Lucien

    2012-01-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans. PMID:23152826

  10. Q fever in pregnant goats: pathogenesis and excretion of Coxiella burnetii.

    PubMed

    Roest, Hendrik-Jan; van Gelderen, Betty; Dinkla, Annemieke; Frangoulidis, Dimitrios; van Zijderveld, Fred; Rebel, Johanna; van Keulen, Lucien

    2012-01-01

    Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans.

  11. [Effectiveness of pidotimod in combination with bacterial lysates in the treatment of the pfapa (periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis) syndrome].

    PubMed

    Buongiorno, A; Pierossi, N

    2015-06-01

    PFAPA (periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis) syndrome is the most common autoinflammatory syndrome in pediatrics, accepted as an hyperimmune condition. Pidotimod is a molecule with immunomodulatory activity on both innate and adaptive immune responses; it also has the capacity to modulate the function of the respiratory epithelial cells through the activation of a NK-KB pathway which would involve the host-virus interaction. Moreover, the proven beneficial effect of Pidotimod in enhancing the immune response during vaccination, and its benefits in the prevention of respiratory tract infections, should be noted. A joint combination of Pidotimod and bacterial lysates was used to treat 37 children with a clinical diagnosis of PFAPA; within the end of the first year of therapy, the healing rate of PFAPA symptoms was 67.5% (25 children), with a 10.8% (4 cases) still in complete remission within the end of the second year of follow-up. It is important to highlight that 29 children (78.3%) had benefitted from this therapy, in terms of healing, with a marked decrease in the incidence of fever from a total of 360 to 106 episodes, and episodes of periodic fever occurring almost 4 times less frequently. The use of Pidotimod determined a significant reduction of surgical tonsillectomy's treatment. This approach had a strong impact on the children's quality of life; a significant decrement in the use of antipyretic drugs, as well as a lower rate of antibiotic prescription, were also noted. It also had a dramatic impact on families' lives, because the treatment lowers the number of absences of family members from work or school/kindergarten.

  12. Host biomarkers are associated with progression to dengue haemorrhagic fever: a nested case-control study.

    PubMed

    Conroy, Andrea L; Gélvez, Margarita; Hawkes, Michael; Rajwans, Nimerta; Tran, Vanessa; Liles, W Conrad; Villar-Centeno, Luis Angel; Kain, Kevin C

    2015-11-01

    Dengue represents the most important arboviral infection worldwide. Onset of circulatory collapse can be unpredictable. Biomarkers that can identify individuals at risk of plasma leakage may facilitate better triage and clinical management. Using a nested case-control design, we randomly selected subjects from a prospective cohort study of dengue in Colombia (n=1582). Using serum collected within 96 hours of fever onset, we tested 19 biomarkers by ELISA in cases (developed dengue hemorrhagic fever or dengue shock syndrome (DHF/DSS); n=46), and controls (uncomplicated dengue fever (DF); n=65) and healthy controls (HC); n=15. Ang-1 levels were lower and angptl3, sKDR, sEng, sICAM-1, CRP, CXCL10/IP-10, IL-18 binding protein, CHI3L1, C5a and Factor D levels were increased in dengue compared to HC. sICAM-1, sEng and CXCL10/IP-10 were further elevated in subjects who subsequently developed DHF/DSS (p=0.008, p=0.028 and p=0.025, respectively). In a logistic regression model, age (odds ratio (OR) (95% CI): 0.95 (0.92-0.98), p=0.001), hyperesthesia/hyperalgesia (OR; 3.8 (1.4-10.4), p=0.008) and elevated sICAM-1 (>298ng/mL: OR; 6.3 (1.5-25.7), p=0.011) at presentation were independently associated with progression to DHF/DSS. These results suggest that inflammation and endothelial activation are important pathways in the pathogenesis of dengue and sICAM-1 levels may identify individuals at risk of plasma leakage. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Defining a Role for Acid Sphingomyelinase in the p38/Interleukin-6 Pathway*

    PubMed Central

    Perry, David M.; Newcomb, Benjamin; Adada, Mohamad; Wu, Bill X.; Roddy, Patrick; Kitatani, Kazuyuki; Siskind, Leah; Obeid, Lina M.; Hannun, Yusuf A.

    2014-01-01

    Acid sphingomyelinase (ASM) is one of the key enzymes involved in regulating the metabolism of the bioactive sphingolipid ceramide in the sphingolipid salvage pathway, yet defining signaling pathways by which ASM exerts its effects has proven difficult. Previous literature has implicated sphingolipids in the regulation of cytokines such as interleukin-6 (IL-6), but the specific sphingolipid pathways and mechanisms involved in inflammatory signaling need to be further elucidated. In this work, we sought to define the role of ASM in IL-6 production because our previous work showed that a parallel pathway of ceramide metabolism, acid β-glucosidase 1, negatively regulates IL-6. First, silencing ASM with siRNA abrogated IL-6 production in response to the tumor promoter, 4β-phorbol 12-myristate 13-acetate (PMA), in MCF-7 cells, in distinction to acid β-glucosidase 1 and acid ceramidase, suggesting specialization of the pathways. Moreover, treating cells with siRNA to ASM or with the indirect pharmacologic inhibitor desipramine resulted in significant inhibition of TNFα- and PMA-induced IL-6 production in MDA-MB-231 and HeLa cells. Knockdown of ASM was found to significantly inhibit PMA-dependent IL-6 induction at the mRNA level, probably ruling out mechanisms of translation or secretion of IL-6. Further, ASM knockdown or desipramine blunted p38 MAPK activation in response to TNFα, revealing a key role for ASM in activating p38, a signaling pathway known to regulate IL-6 induction. Last, knockdown of ASM dramatically blunted invasion of HeLa and MDA-MB-231 cells through Matrigel. Taken together, these results demonstrate that ASM plays a critical role in p38 signaling and IL-6 synthesis with implications for tumor pathobiology. PMID:24951586

  14. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L.

    PubMed

    Domingos, Sara; Fino, Joana; Cardoso, Vânia; Sánchez, Claudia; Ramalho, José C; Larcher, Roberto; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F

    2016-02-01

    Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission competence acquisition, noticeably responding to independent stimuli.

  15. Induction of cytoplasmic petite in yeast by guanidine hydrochloride: combined treatment with other inducing agents.

    PubMed

    Villa, L L; Juliani, M H

    1980-06-01

    We have studied the induction of rho- mutants by guanidine hydrochloride (GuHCl) in combination with other known inducers: ethidium bromide (EB), berenil and ultraviolet light. Competition was observed when cells were simultaneously treated with optimal concentrations of EB and GuHCl; on the other hand, treatment of cells with EB in the presence of non-inducing concentrations of GuHCl resulted in the stimulation of rho- induction of EB. Furthermore, using a strain which upon treatment with high EB concentrations shows recovery of respiratory competence, the presence of GuHCl did not interfere either with the early phase of induction or with the recovery phase, but it did interfere in a competitive fashion with the final irreversible phase of EB induction. In the case of berenil, a synergistic effect was seen when cells were pretreated with GuHCl. A synergistic induction was also observed when cells were submitted to UV prior to GuHCl treatment. These results suggest that GuHCl, EB and berenil act via some common step in their rho- induction pathways. Moreover, GuHCl may somehow be decreasing the efficiency of dark repair of ultraviolet lesions on mitochondrial DNA.

  16. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    PubMed Central

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  17. FGF-mediated mesoderm induction involves the Src-family kinase Laloo.

    PubMed

    Weinstein, D C; Marden, J; Carnevali, F; Hemmati-Brivanlou, A

    1998-08-27

    During embryogenesis, inductive interactions underlie the development of much of the body plan. In Xenopus laevis, factors secreted from the vegetal pole induce mesoderm in the adjacent marginal zone; members of both the transforming growth factor-beta (TGF-beta) and fibroblast growth factor (FGF) ligand families seem to have critical roles in this process. Here we report the identification and characterization of laloo, a novel participant in the signal transduction cascade linking extracellular, mesoderm-inducing signals to the nucleus, where alteration of cell fate is driven by changes in gene expression. Overexpression of laloo, a member of the Src-related gene family, in Xenopus embryos gives rise to ectopic posterior structures that frequently contain axial tissue. Laloo induces mesoderm in Xenopus ectodermal explants; this induction is blocked by reagents that disrupt the FGF signalling pathway. Conversely, expression of a dominant-inhibitory Laloo mutant blocks mesoderm induction by FGF and causes severe posterior truncations in vivo. This work provides the first evidence that a Src-related kinase is involved in vertebrate mesoderm induction.

  18. Inflammatory cause of metabolic syndrome via brain stress and NF-κB.

    PubMed

    Cai, Dongsheng; Liu, Tiewen

    2012-02-01

    Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain.

  19. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yingying; Chen, Xi; Yu, Dehai

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phasemore » blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.« less

  20. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    PubMed Central

    Kenmoku, Hiroyuki

    2017-01-01

    ABSTRACT Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. PMID:28250052

  1. A novel mode of induction of the humoral innate immune response in Drosophila larvae.

    PubMed

    Kenmoku, Hiroyuki; Hori, Aki; Kuraishi, Takayuki; Kurata, Shoichiro

    2017-03-01

    Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin ; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. © 2017. Published by The Company of Biologists Ltd.

  2. A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options

    PubMed Central

    Hansford, Kayleigh M.; Schaffner, Francis; Versteirt, Veerle; Hendrickx, Guy; Zeller, Herve; Bortel, Wim Van

    2012-01-01

    Abstract There has been growing interest in Europe in recent years in the establishment and spread of invasive mosquitoes, notably the incursion of Aedes albopictus through the international trade in used tires and lucky bamboo, with onward spread within Europe through ground transport. More recently, five other non-European aedine mosquito species have been found in Europe, and in some cases populations have established locally and are spreading. Concerns have been raised about the involvement of these mosquito species in transmission cycles of pathogens of public health importance, and these concerns were borne out following the outbreak of chikungunya fever in Italy in 2007, and subsequent autochthonous cases of dengue fever in France and Croatia in 2010. This article reviews current understanding of all exotic (five introduced invasive and one intercepted) aedine species in Europe, highlighting the known import pathways, biotic and abiotic constraints for establishment, control strategies, and public health significance, and encourages Europe-wide surveillance for invasive mosquitoes. PMID:22448724

  3. Apoptosis induced in an early step of African swine fever virus entry into vero cells does not require virus replication.

    PubMed

    Carrascosa, Angel L; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; Revilla, Yolanda

    2002-03-15

    Permissive Vero cells develop apoptosis, as characterized by DNA fragmentation, caspases activation, cytosolic release of mitochondrial cytochrome c, and flow cytometric analysis of DNA content, upon infection with African swine fever virus (ASFV). To determine the step in virus replication that triggers apoptosis, we used UV-inactivated virus, inhibitors of protein and nucleic acid synthesis, and lysosomotropic drugs that block virus uncoating. ASFV-induced apoptosis was accompanied by caspase-3 activation, which was detected even in the presence of either cytosine arabinoside or cycloheximide, indicating that viral DNA replication and protein synthesis were not required to activate the apoptotic process. The activation of caspase-3 was released from chloroquine inhibition 2 h after virus absorption, while the infection with UV-inactivated ASFV did not induce the activation of the caspase cascade. We conclude that ASFV induces apoptosis in the infected cell by an intracellular pathway probably triggered during the process of virus uncoating.

  4. The control of East Coast fever of cattle by live parasite vaccination: A science-to-impact narrative.

    PubMed

    Perry, B D

    2016-12-01

    There is an increasing interest in determining the impact of vaccine technologies developed using public funding targeted at international development, and understanding the factors and ingredients which contribute to the success and impacts of such vaccines. This paper chronicles the development of a live vaccine against East Coast fever, a tick-borne disease of cattle caused by Theileria parva . The paper describes the technological innovation, commonly known as infection-and-treatment, which was developed some 40 years ago, explores the institutional settings in which the vaccine was developed and refined, and discusses the political dynamics of both during the decades from first development to field deployment and impacts. The paper also analyses the direct and indirect indicators of success of ITM and the many qualifiers of these, the impacts that the emerging technology has had, both in positive and negative terms, and maps the key contributors and milestones on the research-to-impact pathway.

  5. Advances in Rift Valley Fever Research: Insights for Disease Prevention

    PubMed Central

    LaBeaud, A. Desiree; Kazura, James W.; King, Charles H.

    2011-01-01

    Purpose of review The purpose of the study was to review recent research on Rift Valley fever virus (RVFV) infection, encompassing four main areas: epidemiology and outbreak prediction, viral pathogenesis, human diagnostics and therapeutics, and vaccine and therapeutic candidates. Recent findings RVFV continues to extend its range in Africa and the Middle East. Better definition of RVFV-related clinical syndromes and human risk factors for severe disease, combined with early-warning systems based on remote-sensing, simplified rapid diagnostics, and tele-epidemiology, hold promise for earlier deployment of effective outbreak control measures. Advances in understanding of viral replication pathways and host cell-related pathogenesis suggest means for antiviral therapeutics and for more effective vaccination strategies based on genetically engineered virus strains or subunit vaccines. Summary RVFV is a significant health and economic burden in many areas of Africa, and remains a serious threat to other parts of the world. Development of more effective methods for RVFV outbreak prevention and control remains a global health priority. PMID:20613512

  6. Annual Progress Report--Fiscal Year 1979

    DTIC Science & Technology

    1979-10-01

    fever virus Ebola fever virus Korean hemorrhagic fever virus Rift Valley fever virus Bolivian hemorrhagic fever virus...Machupo) Argentinian hemorrhagic fever virus (Junin) Dengue fever virus Congo/Crimean hemorrhagic fever virus Sand fly fever virus Eastern encephalitis...virus Western encephalitis virus Venezuelan fever virus Japanese B fever virus Chikungunya virus Tacaribe virus Pichinde virus Yellow fever

  7. Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge

    PubMed Central

    Lee, Chen-Ting; Zhong, Lingwen; Mace, Thomas A.; Repasky, Elizabeth A.

    2012-01-01

    Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection. PMID:22253887

  8. Fever control and application of hypothermia using intravenous cold saline

    PubMed Central

    Fink, Ericka L.; Kochanek, Patrick M.; Clark, Robert S. B.; Bell, Michael J.

    2013-01-01

    Objective To describe the use and feasibility of cold saline to decrease body temperature in pediatric neurocritical care. Design Retrospective chart review. Setting Pediatric tertiary care university hospital. Patients Children between 1 week and 17 yrs of age admitted to the pediatric intensive care unit with acute brain injury and having received intravenous cold saline between June-August 2009. Intervention(s) None. Measurements and Main Results Eighteen subjects accounted for 20 infusions with mean infusion volume 18 ± 10 cc/kg. Eight subjects had traumatic brain injury (TBI), 2 had intracranial hemorrhage, 6 had cardiac arrest, and one each had ischemic stroke and status epilepticus. The mean age was 9.5 ± 4.8 yrs. Temperature decreased from 38.7 ± 1.1°C to 37.7 ± 1.2°C and 37.0 ± 2.0 to 35.3 ± 1.6°C one h after infusion for fever (n=14, p<.05) or hypothermia (HT) induction (n=6, p=.05), respectively. Cold saline was not bolused, rather infused over 10–15 minutes. Mean arterial blood pressure and oxygenation parameters (PaO2/FiO2 ratio, mean airway pressure) were unchanged, but heart rate decreased in HT subjects (121 ± 4 vs. 109 ± 12; p<.05). Serum sodium concentration and International normalized ratio were significantly increased after cold saline infusion. There were no differences between pre- and post-infusion serum glucose and hematocrit, nor cerebral perfusion pressure or intracranial pressure in TBI patients. Conclusions Cold saline was an effective method of reducing temperature in children with acute brain injury. This approach can be considered to treat fever or to induce HT. Prospective study comparing safety and efficacy versus other cooling measures should be considered. PMID:21037507

  9. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A.

    PubMed

    Pham, Thi Thanh My; Pino Rodriguez, Nancy Johanna; Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway.

  10. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A

    PubMed Central

    Hijri, Mohamed; Sylvestre, Michel

    2015-01-01

    There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway. PMID:25970559

  11. Seasonal induction of alternative principal pathway for rose flower scent

    PubMed Central

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Tomida, Kensuke; Ishida, Haruka; Kanda, Momoyo; Sakai, Miwa; Yoshimura, Jin; Suzuki, Hideyuki; Ishikawa, Takamasa; Dohra, Hideo; Watanabe, Naoharu

    2016-01-01

    Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses. PMID:26831950

  12. Nitric oxide activity in platelets of dengue haemorrhagic fever patients: the apparent paradoxical role of ADMA and l-NMMA.

    PubMed

    Matsuura, Cristiane; Moraes, Thalyta L; Barbosa, Julia B; Moss, Monique B; Siqueira, Mariana A S; Mann, Giovanni E; Neto, Miguel Lemos; Brunini, Tatiana M C; Mendes-Ribeiro, Antonio Claudio

    2012-03-01

    Dengue haemorrhagic fever (DHF) is a prevalent acute disease that occurs in patients infected by an arbovirus in tropical and subtropical regions. We have previously shown increased intraplatelet nitric oxide (NO) production in patients with dengue fever associated with reduced platelet aggregation. In this study, l-arginine transport as well as expression and activity of nitric oxide synthase (NOS) isoforms in the presence or absence of l-arginine analogues were examined in 23 DHF patients. l-arginine transport and NOS activity in platelets were increased in patients with DHF compared with controls. However, platelet endothelial NOS (eNOS) and inducible (iNOS) protein levels did not differ between healthy controls and DHF patients. Endogenous or exogenous analogues did not inhibit platelet NOS activity from DHF patients. In contrast, endogenous l-arginine analogues [N(G)-monomethyl-l-arginine (l-NMMA) and asymmetric dimethylarginine (ADMA)] inhibited NOS activity in platelets from healthy subjects. These results show the first evidence that the intraplatelet l-arginine-NO pathway is activated in DHF patients. The lack of inhibition of NO formation in vitro by all l-arginine analogues tested in DHF platelets may suggest another mechanism by which NOS activity can be regulated. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  13. Genetic Profiling and Comorbidities of Zika Infection.

    PubMed

    Moni, Mohammad Ali; Lio', Pietro

    2017-09-15

    The difficulty in distinguishing infection by Zika virus (ZIKV) from other flaviviruses is a global health concern, particularly given the high risk of neurologic complications (including Guillain-Barré syndrome [GBS]) with ZIKV infection. We developed quantitative frameworks to compare and explore infectome, diseasome, and comorbidity of ZIKV infections. We analyzed gene expression microarray and RNA-Seq data from ZIKV, West Nile fever (WNF), chikungunya, dengue, yellow fever, Japanese encephalitis virus, GBS, and control datasets. Using neighborhood-based benchmarking and multilayer network topology, we constructed relationship networks based on the Online Mendelian Inheritance in Man database and our identified significant genes. ZIKV infections showed dysregulation in expression of 929 genes. Forty-seven genes were highly expressed in both ZIKV and dengue infections. However, ZIKV shared <15 significant transcripts with other flavivirus infections. Notably, dysregulation of MAFB and SELENBP1 was common to ZIKV, dengue, and GBS infection; ATF5, TNFAIP3, and BAMB1 were common to ZIKV, dengue, and WNF; and NAMPT and PMAlP1 were common to ZIKV, GBS, and WNF. Phylogenetic, ontologic, and pathway analyses showed that ZIKV infection most resembles dengue fever. We have developed methodologies to investigate disease mechanisms and predictions for infectome, diseasome, and comorbidities quantitatively, and identified particular similarities between ZIKV and dengue infections. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. TLR9 Ligands Induce S100A8 in Macrophages via a STAT3-Dependent Pathway which Requires IL-10 and PGE2

    PubMed Central

    Hsu, Kenneth; Chung, Yuen Ming; Endoh, Yasumi; Geczy, Carolyn L.

    2014-01-01

    S100A8 and S100A9 are highly-expressed calcium-binding proteins in neutrophils and monocytes, and in subsets of macrophages in inflammatory lesions. Unmethylated CpG motifs found in bacterial and viral DNA are potent activators of innate immunity via Toll-like receptor 9 (TLR9). S100A8, but not S100A9, mRNA and protein was directly induced by CpG-DNA in murine and human macrophages. Induction in murine macrophages peaked at 16 h. CpG-DNA-induced S100A8 required de novo protein synthesis; IL-10 and Prostaglandin E2 (PGE2) synergistically enhanced expression and promoted earlier gene induction. Inhibitors of endogenous IL-10, PGE2, and the E prostanoid (EP) 4 receptor strongly suppressed S100A8 expression, particularly when combined. Thus, S100A8 induction by E. coli DNA required both IL-10 and PGE2/EP4 signaling. The MAPKs, PI3K and JAK pathways were essential, whereas ERK1/2 appeared to play a direct role. S100A8 induction by CpG-DNA was controlled at the transcriptional level. The promoter region responsible for activation, either directly, or indirectly via IL-10 and PGE2, was located within a −178 to −34-bp region and required STAT3 binding. Because of the robust links connecting IL-10 and PGE2 with an anti-inflammatory macrophage phenotype, the induction profile of S100A8 strongly indicates a role for this protein in resolution of inflammation. PMID:25098409

  15. TLR9 ligands induce S100A8 in macrophages via a STAT3-dependent pathway which requires IL-10 and PGE2.

    PubMed

    Hsu, Kenneth; Chung, Yuen Ming; Endoh, Yasumi; Geczy, Carolyn L

    2014-01-01

    S100A8 and S100A9 are highly-expressed calcium-binding proteins in neutrophils and monocytes, and in subsets of macrophages in inflammatory lesions. Unmethylated CpG motifs found in bacterial and viral DNA are potent activators of innate immunity via Toll-like receptor 9 (TLR9). S100A8, but not S100A9, mRNA and protein was directly induced by CpG-DNA in murine and human macrophages. Induction in murine macrophages peaked at 16 h. CpG-DNA-induced S100A8 required de novo protein synthesis; IL-10 and Prostaglandin E2 (PGE2) synergistically enhanced expression and promoted earlier gene induction. Inhibitors of endogenous IL-10, PGE2, and the E prostanoid (EP) 4 receptor strongly suppressed S100A8 expression, particularly when combined. Thus, S100A8 induction by E. coli DNA required both IL-10 and PGE2/EP4 signaling. The MAPKs, PI3K and JAK pathways were essential, whereas ERK1/2 appeared to play a direct role. S100A8 induction by CpG-DNA was controlled at the transcriptional level. The promoter region responsible for activation, either directly, or indirectly via IL-10 and PGE2, was located within a -178 to -34-bp region and required STAT3 binding. Because of the robust links connecting IL-10 and PGE2 with an anti-inflammatory macrophage phenotype, the induction profile of S100A8 strongly indicates a role for this protein in resolution of inflammation.

  16. NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways.

    PubMed

    Rapino, F; Abhari, B A; Jung, M; Fulda, S

    2015-03-12

    Recently, we reported that induction of the co-chaperone Bcl-2-associated athanogene 3 (BAG3) is critical for recovery of rhabdomyosarcoma (RMS) cells after proteotoxic stress upon inhibition of the two constitutive protein degradation pathways, that is, the ubiquitin-proteasome system by Bortezomib and the aggresome-autophagy system by histone deacetylase 6 (HDAC6) inhibitor ST80. In the present study, we investigated the molecular mechanisms mediating BAG3 induction under these conditions. Here, we identify nuclear factor-kappa B (NF-κB)-inducing kinase (NIK) as a key mediator of ST80/Bortezomib-stimulated NF-κB activation and transcriptional upregulation of BAG3. ST80/Bortezomib cotreatment upregulates mRNA and protein expression of NIK, which is accompanied by an initial increase in histone H3 acetylation. Importantly, NIK silencing by siRNA abolishes NF-κB activation and BAG3 induction by ST80/Bortezomib. Furthermore, ST80/Bortezomib cotreatment stimulates NF-κB transcriptional activity and upregulates NF-κB target genes. Genetic inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) or by knockdown of p65 blocks the ST80/Bortezomib-stimulated upregulation of BAG3 mRNA and protein expression. Interestingly, inhibition of lysosomal activity by Bafilomycin A1 inhibits ST80/Bortezomib-stimulated IκBα degradation, NF-κB activation and BAG3 upregulation, indicating that IκBα is degraded via the lysosome in the presence of Bortezomib. Thus, by demonstrating a critical role of NIK in mediating NF-κB activation and BAG3 induction upon ST80/Bortezomib cotreatment, our study provides novel insights into mechanisms of resistance to proteotoxic stress in RMS.

  17. Induction of Suppressor of Cytokine Signaling-3 by Herpes Simplex Virus Type 1 Contributes to Inhibition of the Interferon Signaling Pathway

    PubMed Central

    Yokota, Shin-ichi; Yokosawa, Noriko; Okabayashi, Tamaki; Suzutani, Tatsuo; Miura, Shunsuke; Jimbow, Kowichi; Fujii, Nobuhiro

    2004-01-01

    We showed previously that herpes simplex virus type 1 (HSV-1) suppresses the interferon (IFN) signaling pathway during the early infection stage in the human amnion cell line FL. HSV-1 inhibits the IFN-induced phosphorylation of Janus kinases (JAK) in infected FL cells. In the present study, we showed that the suppressor of cytokine signaling-3 (SOCS3), a host negative regulator of the JAK/STAT pathway, is rapidly induced in FL cells after HSV-1 infection. Maximal levels of SOCS3 protein were detected at around 1 to 2 h after infection. This is consistent with the occurrence of HSV-1-mediated inhibition of IFN-induced JAK phosphorylation. The HSV-1 wild-type strain VR3 induced SOCS3 more efficiently than did mutants that are defective in UL41 or UL13 and that are hyperresponsive to IFN. Induction of the IRF-7 protein and transcriptional activation of IFN-α4, which occur in a JAK/STAT pathway-dependent manner, were poorly induced by VR3 but efficiently induced by the mutant viruses. In contrast, phosphorylation of IRF-3 and transcriptional activation of IFN-β, which are JAK/STAT pathway-independent process, were equally well induced by the wild-type strain and the mutants. In conclusion, the SOCS3 protein appears to be mainly responsible for the suppression of IFN signaling and IFN production that occurs during HSV-1 infection. PMID:15163721

  18. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley

    PubMed Central

    Logemann, Elke; Tavernaro, Annette; Schulz, Wolfgang; Somssich, Imre E.; Hahlbrock, Klaus

    2000-01-01

    The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. PMID:10677554

  19. SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways.

    PubMed

    Chen, Shuliang; Bonifati, Serena; Qin, Zhihua; St Gelais, Corine; Kodigepalli, Karthik M; Barrett, Bradley S; Kim, Sun Hee; Antonucci, Jenna M; Ladner, Katherine J; Buzovetsky, Olga; Knecht, Kirsten M; Xiong, Yong; Yount, Jacob S; Guttridge, Denis C; Santiago, Mario L; Wu, Li

    2018-04-17

    Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.

  20. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling

    PubMed Central

    Gibert, Yann; Bernard, Laure; Debiais-Thibaud, Melanie; Bourrat, Franck; Joly, Jean-Stephane; Pottin, Karen; Meyer, Axel; Retaux, Sylvie; Stock, David W.; Jackman, William R.; Seritrakul, Pawat; Begemann, Gerrit; Laudet, Vincent

    2010-01-01

    One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity.—Gibert, Y., Bernard, L., Debiais-Thibaud, M., Bourrat, F., Joly, J.-S., Pottin, K., Meyer, A., Retaux, S., Stock, D. W., Jackman, W. R., Seritrakul, P., Begemann, G., Laudet, V. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. PMID:20445074

  1. Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence

    PubMed Central

    Terasaki, Kaori; Ramirez, Sydney I.; Makino, Shinji

    2016-01-01

    Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, causes periodic outbreaks in livestocks and humans in countries of the African continent and Middle East. RVFV NSs protein, a nonstructural protein, is a major virulence factor that exhibits several important biological properties. These include suppression of general transcription, inhibition of IFN-β promoter induction and degradation of double-stranded RNA-dependent protein kinase R. Although each of these biological functions of NSs are considered important for countering the antiviral response in the host, the individual contributions of these functions towards RVFV virulence remains unclear. To examine this, we generated two RVFV MP-12 strain-derived mutant viruses. Each carried mutations in NSs that specifically targeted its general transcription inhibition function without affecting its ability to degrade PKR and inhibit IFN-β promoter induction, through its interaction with Sin3-associated protein 30, a part of the repressor complex at the IFN-β promoter. Using these mutant viruses, we have dissected the transcription inhibition function of NSs and examined its importance in RVFV virulence. Both NSs mutant viruses exhibited a differentially impaired ability to inhibit host transcription when compared with MP-12. It has been reported that NSs suppresses general transcription by interfering with the formation of the transcription factor IIH complex, through the degradation of the p62 subunit and sequestration of the p44 subunit. Our study results lead us to suggest that the ability of NSs to induce p62 degradation is the major contributor to its general transcription inhibition property, whereas its interaction with p44 may not play a significant role in this function. Importantly, RVFV MP-12-NSs mutant viruses with an impaired general transcription inhibition function showed a reduced cytotoxicity in cell culture and attenuated virulence in young mice, compared with its parental virus MP-12, highlighting the contribution of NSs-mediated general transcription inhibition towards RVFV virulence. PMID:27711108

  2. Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence.

    PubMed

    Terasaki, Kaori; Ramirez, Sydney I; Makino, Shinji

    2016-10-01

    Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, causes periodic outbreaks in livestocks and humans in countries of the African continent and Middle East. RVFV NSs protein, a nonstructural protein, is a major virulence factor that exhibits several important biological properties. These include suppression of general transcription, inhibition of IFN-β promoter induction and degradation of double-stranded RNA-dependent protein kinase R. Although each of these biological functions of NSs are considered important for countering the antiviral response in the host, the individual contributions of these functions towards RVFV virulence remains unclear. To examine this, we generated two RVFV MP-12 strain-derived mutant viruses. Each carried mutations in NSs that specifically targeted its general transcription inhibition function without affecting its ability to degrade PKR and inhibit IFN-β promoter induction, through its interaction with Sin3-associated protein 30, a part of the repressor complex at the IFN-β promoter. Using these mutant viruses, we have dissected the transcription inhibition function of NSs and examined its importance in RVFV virulence. Both NSs mutant viruses exhibited a differentially impaired ability to inhibit host transcription when compared with MP-12. It has been reported that NSs suppresses general transcription by interfering with the formation of the transcription factor IIH complex, through the degradation of the p62 subunit and sequestration of the p44 subunit. Our study results lead us to suggest that the ability of NSs to induce p62 degradation is the major contributor to its general transcription inhibition property, whereas its interaction with p44 may not play a significant role in this function. Importantly, RVFV MP-12-NSs mutant viruses with an impaired general transcription inhibition function showed a reduced cytotoxicity in cell culture and attenuated virulence in young mice, compared with its parental virus MP-12, highlighting the contribution of NSs-mediated general transcription inhibition towards RVFV virulence.

  3. Chemoprevention by Quercetin of Oral Squamous Cell Carcinoma by Suppression of the NF-κB Signaling Pathway in DMBA-treated Hamsters.

    PubMed

    Zhang, Wen; Yin, Gang; Dai, Jianguo; Sun, Y U; Hoffman, Robert M; Yang, Zhijian; Fan, Yuan

    2017-08-01

    The aim of this study was to investigate the effects of the flavonoid quercetin on chemoprevention of oral squamous cell carcinoma (OSCC). The study involved molecular signaling pathways in 7,12-dimethylbenz(a) anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. DMBA (0.5%) was painted at the right buccal pouches of hamsters for 14 weeks to induce carcinoma. DMBA-treated hamsters received simultaneous doses of quercetin. Animals without DMBA induction were used as normal controls. The incidence of OSCC and the severity of pre-malignant lesions were determined histologically. Apoptosis in the pouch tissue was determined by TUNEL staining. The mRNA and protein expression of NF-κB p50 and p65, as well as Bcl-2 and Bax genes were analyzed using RT-PCR and Western blotting, respectively. Quercetin, at various doses, significantly reduced OSCC incidence and severity of hyperplasia and dysplasia compared to the DMBA-induction-only group (p<0.01). Apoptosis was induced by quercetin treatment compared to the DMBA-induction-only group (p<0.01). mRNA and protein expression of NF-κB p50, p65 as well as Bcl-2 genes were significantly suppressed by quercetin at high doses compared to DMBA induction only (p<0.05). However, mRNA and protein expression of the Bax gene was increased by quercetin treatment at medium and high doses, compared to the DMBA-induction-only group (p<0.05). Quercetin significantly reduced body-weight loss compared to the DMBA-induction-only group (p<0.05). Quercetin reduced tumor incidence and induced apoptosis through modulation of NF-κB signaling and its target genes Bcl-2 and Bax in the DMBA-induced carcigenesis hamster model, suggesting the potential of quercetin as a candidate for OSCC chemoprevention. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells.

    PubMed

    Khwaja, Fatima S; Quann, Emily J; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-11-01

    The p75 neurotrophin receptor (p75(NTR)) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75(NTR) expression in several prostate cancer cell lines leading to p75(NTR)-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75(NTR)-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75(NTR) before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75(NTR) levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75(NTR) protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells.

  5. C-fos induction in forebrain areas of two different visual pathways during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2006-10-16

    Two forebrain areas in the hyperpallium apicale and in the lateral nidopallium of isolated male zebra finches are highly active (2-deoxyglucose technique) on exposure to females for the first time, that is first courtship. These areas also demonstrate enhanced neuronal plasticity when screened with c-fos immunocytochemistry. Both are areas involved in the processing of visual information conveyed by the two major visual pathways in birds, strengthening our hypothesis that courtship in the zebra finch is a visually guided behaviour. First courtship and chased birds show enhanced c-fos induction in the hyperpallial area, which could represent neuronal activity reflecting changes in the immediate environment. The enhanced expression of fos in first courtship birds in lateral nidopallial neurons indicates imminent long-lasting changes at the synaptic level that form the substrate for imprinting, a stable form of learning in birds.

  6. Induction Specificity and Catabolite Repression of the Early Enzymes in Camphor Degradation by Pseudomonas putida

    PubMed Central

    Hartline, Richard A.; Gunsalus, I. C.

    1971-01-01

    The ability of bornane and substituted bornanes to induce the early enzymes for d(+)-camphor degradation and control of these enzymes by catabolite repression were studied in a strain of a Pseudomonas putida. Bornane and 20 substituted bornane compounds showed induction. Of these 21 compounds, bornane and 8 of the substituted bornanes provided induction without supporting growth. Oxygen, but not nitrogen, enhanced the inductive potency of the unsubstituted bornane ring. All bornanedione isomers caused induction, and those with substituents on each of the three consecutive carbon atoms, including the methyl group at the bridgehead carbon, showed induction without supporting growth. Although it was not possible to obtain experimental data for a case of absolute gratuitous induction by compounds not supporting growth, indirect evidence in support of gratuitous induction is presented. It is proposed that the ability of P. putida to tolerate the unusually high degree of possible gratuitous induction observed for camphor catabolism may be related to the infrequent occurrence of bicyclic ring structures in nature. Survival of an organism with a broad specificity for gratuitous induction is discussed. Glucose and succinate, but not glutamate, produced catabolite repression of the early camphor-degrading enzymes. Pathway enzymes differ in their degree of sensitivity to succinate-provoked catabolite repression. The ability of a compound to produce catabolite repression is not, however, directly related to the duration of the lag period (diauxic lag) between growth on camphor and growth on the repressing compound. PMID:5573731

  7. Hematopoietic stem cell injury induced by ionizing radiation.

    PubMed

    Shao, Lijian; Luo, Yi; Zhou, Daohong

    2014-03-20

    Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid.

  8. Fornix lesions decouple the induction of hippocampal arc transcription from behavior but not plasticity.

    PubMed

    Fletcher, Bonnie R; Calhoun, Michael E; Rapp, Peter R; Shapiro, Matthew L

    2006-02-01

    The immediate-early gene (IEG) Arc is transcribed after behavioral and physiological treatments that induce synaptic plasticity and is implicated in memory consolidation. The relative contributions of neuronal activity and learning-related plasticity to the behavioral induction of Arc remain to be defined. To differentiate the contributions of each, we assessed the induction of Arc transcription in rats with fornix lesions that impair hippocampal learning yet leave cortical connectivity and neuronal firing essentially intact. Arc expression was assessed after exploration of novel environments and performance of a novel water maze task during which normal rats learned the spatial location of an escape platform. During the same task, rats with fornix lesions learned to approach a visible platform but did not learn its spatial location. Rats with fornix lesions had normal baseline levels of hippocampal Arc mRNA, but unlike normal rats, expression was not increased in response to water maze training. The integrity of signaling pathways controlling Arc expression was demonstrated by stimulation of the medial perforant path, which induced normal synaptic potentiation and Arc in rats with fornix lesions. Together, the results demonstrate that Arc induction can be decoupled from behavior and is more likely to indicate the engagement of synaptic plasticity mechanisms than synaptic or neuronal activity per se. The results further imply that fornix lesions may impair memory in part by decoupling neuronal activity from signaling pathways required for long-lasting hippocampal synaptic plasticity.

  9. Adaptation of Candida albicans to Reactive Sulfur Species

    PubMed Central

    Chebaro, Yasmin; Lorenz, Michael; Fa, Alice; Zheng, Rui; Gustin, Michael

    2017-01-01

    Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1, support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene. PMID:28235888

  10. Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome

    PubMed Central

    Oliveira, Marisa; Lert-itthiporn, Worachart; Cavadas, Bruno; Fernandes, Verónica; Chuansumrit, Ampaiwan; Anunciação, Orlando; Casademont, Isabelle; Koeth, Fanny; Penova, Marina; Tangnararatchakit, Kanchana; Khor, Chiea Chuen; Paul, Richard; Malasit, Prida; Matsuda, Fumihiko; Simon-Lorière, Etienne; Suriyaphol, Prapat; Sakuntabhai, Anavaj

    2018-01-01

    Ethnic diversity has been long considered as one of the factors explaining why the severe forms of dengue are more prevalent in Southeast Asia than anywhere else. Here we take advantage of the admixed profile of Southeast Asians to perform coupled association-admixture analyses in Thai cohorts. For dengue shock syndrome (DSS), the significant haplotypes are located in genes coding for phospholipase C members (PLCB4 added to previously reported PLCE1), related to inflammation of blood vessels. For dengue fever (DF), we found evidence of significant association with CHST10, AHRR, PPP2R5E and GRIP1 genes, which participate in the xenobiotic metabolism signaling pathway. We conducted functional analyses for PPP2R5E, revealing by immunofluorescence imaging that the coded protein co-localizes with both DENV1 and DENV2 NS5 proteins. Interestingly, only DENV2-NS5 migrated to the nucleus, and a deletion of the predicted top-linking motif in NS5 abolished the nuclear transfer. These observations support the existence of differences between serotypes in their cellular dynamics, which may contribute to differential infection outcome risk. The contribution of the identified genes to the genetic risk render Southeast and Northeast Asian populations more susceptible to both phenotypes, while African populations are best protected against DSS and intermediately protected against DF, and Europeans the best protected against DF but the most susceptible against DSS. PMID:29447178

  11. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    PubMed Central

    Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.

    2013-01-01

    For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485

  12. Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome.

    PubMed

    Oliveira, Marisa; Lert-Itthiporn, Worachart; Cavadas, Bruno; Fernandes, Verónica; Chuansumrit, Ampaiwan; Anunciação, Orlando; Casademont, Isabelle; Koeth, Fanny; Penova, Marina; Tangnararatchakit, Kanchana; Khor, Chiea Chuen; Paul, Richard; Malasit, Prida; Matsuda, Fumihiko; Simon-Lorière, Etienne; Suriyaphol, Prapat; Pereira, Luisa; Sakuntabhai, Anavaj

    2018-02-01

    Ethnic diversity has been long considered as one of the factors explaining why the severe forms of dengue are more prevalent in Southeast Asia than anywhere else. Here we take advantage of the admixed profile of Southeast Asians to perform coupled association-admixture analyses in Thai cohorts. For dengue shock syndrome (DSS), the significant haplotypes are located in genes coding for phospholipase C members (PLCB4 added to previously reported PLCE1), related to inflammation of blood vessels. For dengue fever (DF), we found evidence of significant association with CHST10, AHRR, PPP2R5E and GRIP1 genes, which participate in the xenobiotic metabolism signaling pathway. We conducted functional analyses for PPP2R5E, revealing by immunofluorescence imaging that the coded protein co-localizes with both DENV1 and DENV2 NS5 proteins. Interestingly, only DENV2-NS5 migrated to the nucleus, and a deletion of the predicted top-linking motif in NS5 abolished the nuclear transfer. These observations support the existence of differences between serotypes in their cellular dynamics, which may contribute to differential infection outcome risk. The contribution of the identified genes to the genetic risk render Southeast and Northeast Asian populations more susceptible to both phenotypes, while African populations are best protected against DSS and intermediately protected against DF, and Europeans the best protected against DF but the most susceptible against DSS.

  13. Score of liver ultrasonography predicts treatment-related severe neutropenia and neutropenic fever in induction chemotherapy with docetaxel for locally advanced head and neck cancer patients with normal serum transamines.

    PubMed

    Wang, Ting-Yao; Chen, Wei-Ming; Yang, Lan-Yan; Chen, Chao-Yu; Chou, Wen-Chi; Chen, Yi-Yang; Chen, Chih-Cheng; Lee, Kuan-Der; Lu, Chang-Hsien

    2016-11-01

    Induction chemotherapy with docetaxel improved outcome in advanced head and neck squamous cell carcinoma (HNSCC) patients, but docetaxel was not recommended in liver dysfunction patients for treatment toxicities. Severe neutropenic events (SNE) including severe neutropenia (SN) and febrile neutropenia (FN) still developed in these patients with normal serum transaminases. Ultrasonography (US) fibrotic score represented degree of hepatic parenchymal damage and showed good correlation to fibrotic changes histologically. This study aims to evaluate the association of US fibrotic score with docetaxel treatment-related SNE in advanced HNSCC patients with normal serum transaminases. Between 1 January 2011 and 31 December 2013, a total of 47 advanced HNSCC patients treated with induction docetaxel were enrolled. The clinical features were collected to assess predictive factors for SNE. The patients were divided into two groups by the US fibrotic score with a cutoff value of 7. The Mann-Whitney U test and logistic regression method were used for the risk factor analysis. The background, treatment, and response were similar in both groups except for lower lymphocyte and platelet count in patients with higher US score. Twenty-seven patients (51 %) developed grade 3/4 neutropenia, and more SNE developed in patients with US score ≧7. In multivariate analysis, only US score ≥7 was independent predictive factor for developing SN (hazard ratio 7.71, p = 0.043) and FN (hazard ratio 20.95, p = 0.008). US score ≥7 is an independent risk factor for SNE in advanced HNSCC patients treated with induction docetaxel. US score could be used for risk prediction of docetaxel-related SNE.

  14. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).

    PubMed

    Lazare, S; Zaccai, M

    2016-07-01

    Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway

    PubMed Central

    Lin, Fei-xiang; Du, Shi-xin; Liu, De-zhong; Hu, Qin-xiao; Yu, Guo-yong; Wu, Chu-cheng; Zheng, Gui-zhou; Xie, Da; Li, Xue-dong; Chang, Bo

    2016-01-01

    Naringin is an active compound extracted from Rhizoma Drynariae, and studies have revealed that naringin can promote proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we explored whether naringin could promote osteogenic differentiation of BMSCs by upregulating Foxc2 expression via the Indian hedgehog (IHH) signaling pathway. BMSCs were cultured in basal medium, basal medium with naringin, osteogenic induction medium, osteogenic induction medium with naringin and osteogenic induction medium with naringin in the presence of the IHH inhibitor cyclopamine (CPE). We examined cell proliferation by using a WST-8 assay, and differentiation by Alizarin Red S staining (for mineralization) and alkaline phosphatase (ALP) activity. In addition, we detected core-binding factor α1 (Cbfα1), osteocalcin (OCN), bone sialoprotein (BSP), peroxisome proliferation-activated receptor gamma 2 (PPARγ2) and Foxc2 expression by using RT-PCR. We also determined Foxc2 and IHH protein levels by western blotting. Naringin increased the mineralization of BMSCs, as shown by Alizarin red S assays, and induced ALP activity. In addition, naringin significantly increased the mRNA levels of Foxc2, Cbfα1, OCN, and BSP, while decreasing PPARγ2 mRNA levels. Furthermore, the IHH inhibitor CPE inhibited the osteogenesis-potentiating effects of naringin. Naringin increased Foxc2 and stimulated the activation of IHH, as evidenced by increased expression of proteins that were inhibited by CPE. Our findings indicate that naringin promotes osteogenic differentiation of BMSCs by up-regulating Foxc2 expression via the IHH signaling pathway. PMID:27904711

  16. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway.

    PubMed

    Lin, Fei-Xiang; Du, Shi-Xin; Liu, De-Zhong; Hu, Qin-Xiao; Yu, Guo-Yong; Wu, Chu-Cheng; Zheng, Gui-Zhou; Xie, Da; Li, Xue-Dong; Chang, Bo

    2016-01-01

    Naringin is an active compound extracted from Rhizoma Drynariae, and studies have revealed that naringin can promote proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we explored whether naringin could promote osteogenic differentiation of BMSCs by upregulating Foxc2 expression via the Indian hedgehog (IHH) signaling pathway. BMSCs were cultured in basal medium, basal medium with naringin, osteogenic induction medium, osteogenic induction medium with naringin and osteogenic induction medium with naringin in the presence of the IHH inhibitor cyclopamine (CPE). We examined cell proliferation by using a WST-8 assay, and differentiation by Alizarin Red S staining (for mineralization) and alkaline phosphatase (ALP) activity. In addition, we detected core-binding factor α1 (Cbfα1), osteocalcin (OCN), bone sialoprotein (BSP), peroxisome proliferation-activated receptor gamma 2 (PPARγ2) and Foxc2 expression by using RT-PCR. We also determined Foxc2 and IHH protein levels by western blotting. Naringin increased the mineralization of BMSCs, as shown by Alizarin red S assays, and induced ALP activity. In addition, naringin significantly increased the mRNA levels of Foxc2, Cbfα1, OCN, and BSP, while decreasing PPARγ2 mRNA levels. Furthermore, the IHH inhibitor CPE inhibited the osteogenesis-potentiating effects of naringin. Naringin increased Foxc2 and stimulated the activation of IHH, as evidenced by increased expression of proteins that were inhibited by CPE. Our findings indicate that naringin promotes osteogenic differentiation of BMSCs by up-regulating Foxc2 expression via the IHH signaling pathway.

  17. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells.

    PubMed

    Mironova, Nadezhda L; Petrushanko, Irina Y; Patutina, Olga A; Sen'kova, Aexandra V; Simonenko, Olga V; Mitkevich, Vladimir A; Markov, Oleg V; Zenkova, Marina A; Makarov, Alexander A

    2013-07-01

    Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS 40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1-5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS 40 and inhibits metastasis up to 50% in LLC and RLS 40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS 40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells.

  18. Proteolytic activities in yeast after UV irradiation. II. Variation in proteinase levels in mutants blocked in DNA-repair pathways.

    PubMed

    Schwencke, J; Moustacchi, E

    1982-01-01

    When the levels of three common yeast proteinases in exponentially growing cells of mutants blocked in different repair pathways are compared to that of isogenic wild-type cells, it can be seen that the level of proteinase B is enhanced in the mutants whereas the levels of leucin aminopeptidase (Leu.AP) and lysine aminopeptidase (Lys.AP) are similar in all strains. As in its corresponding wild type, the level of proteinase B activity is further enhanced after UV-irradiation in a mutant blocked in excision-repair (rad1-3). In contrast, following the same treatment the level of proteinase B remains almost constant in a mutant blocked in a general error-prone repair system (rad6-1) and in a mutant defective in a more specific mutagenic repair pathway (pso2-1). Cycloheximide, an inhibitor of protein synthesis, blocks the post-UV enhancement in proteinase B activity observed in rad1-3 indicating that, as in the wild-type cells, an inducible process is involved. The levels of Lys.AP and Leu.AP are, respectively, either unaffected or only moderately increased following UV-treatment of the repair defective mutants, as in wild-type strains. It is obvious that the induction of protease B activity following UV-treatment in Saccharomyces cannot be equated to the induction of the recA protein in Escherichia coli. However the correlation found between the block in mutagenic repair and the lack of UV-induction of protease B activity leads to questions on the possible role of certain protease activities in mutagenic repair in eucaryotic cells.

  19. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.

    PubMed

    Dong, Jie; Ma, Qiang

    2018-01-01

    T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.

  20. Identification of flowering genes in strawberry, a perennial SD plant

    PubMed Central

    Mouhu, Katriina; Hytönen, Timo; Folta, Kevin; Rantanen, Marja; Paulin, Lars; Auvinen, Petri; Elomaa, Paula

    2009-01-01

    Background We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15°C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants. Results We have searched homologs for 118 Arabidopsis flowering time genes from Fragaria by EST sequencing and bioinformatics analysis and identified 66 gene homologs that by sequence similarity, putatively correspond to genes of all known genetic flowering pathways. The expression analysis of 25 selected genes representing various flowering pathways did not reveal large differences between the everbearing and the short-day genotypes. However, putative floral identity and floral integrator genes AP1 and LFY were co-regulated during early floral development. AP1 mRNA was specifically accumulating in the shoot apices of the everbearing genotype, indicating its usability as a marker for floral initiation. Moreover, we showed that flowering induction in everbearing 'Baron Solemacher' and 'Hawaii-4' was inhibited by short-day and low temperature, in contrast to short-day genotypes. Conclusion We have shown that many central genetic components of the flowering pathways in Arabidopsis can be identified from strawberry. However, novel regulatory mechanisms exist, like SFL that functions as a switch between short-day/low temperature and long-day/high temperature flowering responses between the short-day genotype and the everbearing 'Baron Solemacher'. The identification of putative flowering gene homologs and AP1 as potential marker gene for floral initiation will strongly facilitate the exploration of strawberry flowering pathways. PMID:19785732

  1. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy.

    PubMed

    Srivastava, Isha N; Shperdheja, Jona; Baybis, Marianna; Ferguson, Tanya; Crino, Peter B

    2016-01-01

    Mammalian target of rapamycin (mTOR) pathway signaling governs cellular responses to hypoxia and inflammation including induction of autophagy and cell survival. Cerebral palsy (CP) is a neurodevelopmental disorder linked to hypoxic and inflammatory brain injury however, a role for mTOR modulation in CP has not been investigated. We hypothesized that mTOR pathway inhibition would diminish inflammation and prevent neuronal death in a mouse model of CP. Mouse pups (P6) were subjected to hypoxia-ischemia and lipopolysaccharide-induced inflammation (HIL), a model of CP causing neuronal injury within the hippocampus, periventricular white matter, and neocortex. mTOR pathway inhibition was achieved with rapamycin (an mTOR inhibitor; 5mg/kg) or PF-4708671 (an inhibitor of the downstream p70S6kinase, S6K, 75 mg/kg) immediately following HIL, and then for 3 subsequent days. Phospho-activation of the mTOR effectors p70S6kinase and ribosomal S6 protein and expression of hypoxia inducible factor 1 (HIF-1α) were assayed. Neuronal cell death was defined with Fluoro-Jade C (FJC) and autophagy was measured using Beclin-1 and LC3II expression. Iba-1 labeled, activated microglia were quantified. Neuronal death, enhanced HIF-1α expression, and numerous Iba-1 labeled, activated microglia were evident at 24 and 48 h following HIL. Basal mTOR signaling, as evidenced by phosphorylated-S6 and -S6K levels, was unchanged by HIL. Rapamycin or PF-4,708,671 treatment significantly reduced mTOR signaling, neuronal death, HIF-1α expression, and microglial activation, coincident with enhanced expression of Beclin-1 and LC3II, markers of autophagy induction. mTOR pathway inhibition prevented neuronal death and diminished neuroinflammation in this model of CP. Persistent mTOR signaling following HIL suggests a failure of autophagy induction, which may contribute to neuronal death in CP. These results suggest that mTOR signaling may be a novel therapeutic target to reduce neuronal cell death in CP. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    PubMed

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart from drinking water treatment where chlorination caused an increase in oxidative stress response, presumably due to the formation of disinfection by-products. This study demonstrates the relevance and applicability of the oxidative stress response pathway for water quality monitoring.

  3. Retrospective Analysis of Esophageal Heat Transfer for Active Temperature Management in Post-cardiac Arrest, Refractory Fever, and Burn Patients.

    PubMed

    Naiman, Melissa; Markota, Andrej; Hegazy, Ahmed; Dingley, John; Kulstad, Erik

    2018-03-01

    Core temperature management is an important aspect of critical care; preventing unintentional hypothermia, reducing fever, and inducing therapeutic hypothermia when appropriate are each tied to positive health outcomes. The purpose of this study is to evaluate the performance of a new temperature management device that uses the esophageal environment to conduct heat transfer. De-identified patient data were aggregated from three clinical sites where an esophageal heat transfer device (EHTD) was used to provide temperature management. The device was evaluated against temperature management guidelines and best practice recommendations, including performance during induction, maintenance, and cessation of therapy. Across all active cooling protocols, the average time-to-target was 2.37 h and the average maintenance phase was 22.4 h. Patients spent 94.9% of the maintenance phase within ±1.0°C and 67.2% within ±0.5°C (574 and 407 measurements, respectively, out of 605 total). For warming protocols, all of the patient temperature readings remained above 36°C throughout the surgical procedure (average 4.66 h). The esophageal heat transfer device met performance expectations across a range of temperature management applications in intensive care and burn units. Patients met and maintained temperature goals without any reported adverse events.

  4. Online Monitoring of Induction Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through amore » limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.« less

  5. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.

    PubMed

    Procházka, Erik; Escher, Beate I; Plewa, Michael J; Leusch, Frederic D L

    2015-10-19

    The process of disinfecting drinking water inadvertently leads to the formation of numerous disinfection byproducts (DBPs). Some of these are mutagenic, genotoxic, teratogenic, and cytotoxic, as well as potentially carcinogenic both in vivo and in vitro. We investigated the in vitro biological activity of five DBPs: three monohaloacetic acids (monoHAAs) [chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA)] and two novel halobenzoquinones (HBQs) [2,6-dichloro-p-benzoquinone (DCBQ) and 2,6-dibromo-p-benzoquinone]. We focused particularly on cytotoxicity and induction of two adaptive stress response pathways: the oxidative stress responsive Nrf2/ARE and DNA-damage responsive p53 pathways. All five DBPs were cytotoxic to the Caco-2 cell line after a 4 h exposure, and all DBPs induced both of the adaptive stress response pathways, Nrf2/ARE and p53, in the micromolar range, as measured by two β-lactamase-based reporter gene assays. The decreasing order of potency for all three endpoints for the five DBPs was IAA ∼ BAA > DCBQ ∼ DBBQ > CAA. Induction of oxidative stress was previously proposed to be the molecular initiating event (MIE) for both classes of DBPs. However, comparing the levels of activation of the two pathways uncovered that the Nrf2/ARE pathway was the more sensitive endpoint for HAAs, whereas the p53 pathway was more sensitive in the case of HBQs. Therefore, the DNA damage-responsive p53 pathway may be an important piece of information to fill in a gap in the adverse outcome pathway framework for the assessment of HBQs. Finally, we cautiously compared the potential risk of the two novel HBQs using a benchmarking approach to that of the well-studied CAA, which suggested that their relative risk may be lower than that of BAA and IAA.

  6. Sorafenib Impedes Rift Valley Fever Virus Egress by Inhibiting Valosin-Containing Protein Function in the Cellular Secretory Pathway.

    PubMed

    Brahms, Ashwini; Mudhasani, Rajini; Pinkham, Chelsea; Kota, Krishna; Nasar, Farooq; Zamani, Rouzbeh; Bavari, Sina; Kehn-Hall, Kylene

    2017-11-01

    There is an urgent need for therapeutic development to combat infections caused by Rift Valley fever virus (RVFV), which causes devastating disease in both humans and animals. In an effort to repurpose drugs for RVFV treatment, our previous studies screened a library of FDA-approved drugs. The most promising candidate identified was the hepatocellular and renal cell carcinoma drug sorafenib. Mechanism-of-action studies indicated that sorafenib targeted a late stage in virus infection and caused a buildup of virions within cells. In addition, small interfering RNA (siRNA) knockdown studies suggested that nonclassical targets of sorafenib are important for the propagation of RVFV. Here we extend our previous findings to identify the mechanism by which sorafenib inhibits the release of RVFV virions from the cell. Confocal microscopy imaging revealed that glycoprotein Gn colocalizes and accumulates within the endoplasmic reticulum (ER) and the transport of Gn from the Golgi complex to the host cell membrane is reduced. Transmission electron microscopy demonstrated that sorafenib caused virions to be present inside large vacuoles inside the cells. p97/valosin-containing protein (VCP), which is involved in membrane remodeling in the secretory pathway and a known target of sorafenib, was found to be important for RVFV egress. Knockdown of VCP resulted in decreased RVFV replication, reduced Gn Golgi complex localization, and increased Gn ER accumulation. The intracellular accumulation of RVFV virions was also observed in cells transfected with siRNA targeting VCP. Collectively, these data indicate that sorafenib causes a disruption in viral egress by targeting VCP and the secretory pathway, resulting in a buildup of virions within dilated ER vesicles. IMPORTANCE In humans, symptoms of RVFV infection mainly include a self-limiting febrile illness. However, in some cases, infected individuals can also experience hemorrhagic fever, neurological disorders, liver failure, and blindness, which could collectively be lethal. The ability of RVFV to expand geographically outside sub-Saharan Africa is of concern, particularly to the Americas, where native mosquito species are capable of virus transmission. Currently, there are no FDA-approved therapeutics to treat RVFV infection, and thus, there is an urgent need to understand the mechanisms by which the virus hijacks the host cell machinery to replicate. The significance of our research is in identifying the cellular target of sorafenib that inhibits RVFV propagation, so that this information can be used as a tool for the further development of therapeutics used to treat RVFV infection. Copyright © 2017 American Society for Microbiology.

  7. [Male infertility. Current life style could be responsible for infertility].

    PubMed

    Jung, A; Schill, W B

    2000-09-14

    Optimal spermatogenesis requires the testicles to be at a lower temperature than the body core. This is achieved by the following factors:--Blood in the testicular artery is precooled by the surrounding veins of the plexus pampiniformis; nevertheless, high fever results in substantial warming of the testicles;--Heat loss via the scrotal skin, with tight-fitting, thermally insulating clothing or obesity having an unfavorable effect;--increased circulation of air around the genitals on physical activity;--High temperature gradient to the environment when ambient temperatures are low. If the combination of these factors is unfavorable, disturbed spermatogenesis and fertility may result, which, however, is usually reversible. Likewise, electromagnetic waves may impair spermatogenesis by heat induction in the testicles, but only when exposure is excessive.

  8. Role of CREB on heme oxygenase-1 induction in adrenal cells: involvement of the PI3K pathway.

    PubMed

    Astort, F; Repetto, E M; Rocha-Viegas, L; Mercau, M E; Puch, S Sanchez; Finkielstein, C V; Pecci, A; Cymeryng, C B

    2016-08-01

    In addition to the well-known function of ACTH as the main regulator of adrenal steroidogenesis, we have previously demonstrated its effect on the transcriptional stimulation of HO-1 expression, a component of the cellular antioxidant defense system. In agreement, we hereby demonstrate that, in adrenocortical Y1 cells, HO-1 induction correlates with a significant prevention of the generation of reactive oxygen species induced by H2O2/Fe(2+) ACTH/cAMP-dependent activation of redox-imbalanced related factors such as NRF2 or NFκB and the participation of MAPKs in this mechanism was, however, discarded based on results with specific inhibitors and reporter plasmids. We suggest the involvement of CREB in HO-1 induction by ACTH/cAMP, as transfection of cells with a dominant-negative isoform of CREB (DN-CREB-M1) decreased, while overexpression of CREB increased HO-1 protein levels. Sequence screening of the murine HO-1 promoter revealed CRE-like sites located at -146 and -37 of the transcription start site and ChIP studies indicated that this region recruits phosphorylated CREB (pCREB) upon cAMP stimulation in Y1 cells. In agreement, H89 (PKA inhibitor) or cotransfection with DN-CREB-M1 prevented the 8Br-cAMP-dependent increase in luciferase activity in cells transfected with pHO-1[-295/+74].LUC. ACTH and cAMP treatment induced the activation of the PI3K/Akt signaling pathway in a PKA-independent mechanism. Inhibition of this pathway prevented the cAMP-dependent increase in HO-1 protein levels and luciferase activity in cells transfected with pHO-1[-295/+74].LUC. Finally, here we show a crosstalk between the cAMP/PKA and PI3K pathways that affects the binding of p-CREB to its cognate element in the murine promoter of the Hmox1 gene. © 2016 Society for Endocrinology.

  9. The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1.

    PubMed

    Miyamoto, Masahiko; Furuichi, Yasuhiro; Komiyama, Tadazumi

    2012-11-01

    Fps1p is an aquaglyceroporin important for turgor regulation of Saccharomyces cerevisiae. Previously we reported the involvement of Fps1p in the yeast-killing action of killer toxin HM-1. The fps1 cells showed a high HM-1-resistant phenotype in hypotonic medium and an HM-1-susceptible phenotype in hypertonic medium. This osmotic dependency in HM-1 susceptibility was similar to those observed in Congo red, but different from those observed in other cell wall-disturbing agents. These results indicate that HM-1 exerts fungicidal activity mainly by binding and inserting into the yeast cell wall structure, rather than by inhibiting 1,3-β-glucan synthase. We next determined HM-1-susceptibility and diphospho-MAP kinase inductions in S. cerevisiae. In the wild-type cell, expressions of diphospho-Hog1p and -Slt2p, and mRNA transcription of CWP1 and HOR2, were induced within 1 h after an addition of HM-1. ssk1 and pbs2 cells, but not sho1 and hkr1 cells, showed HM-1-sensitive phenotypes and lacked inductions of phospho-Hog1p in response to HM-1. mid2, rom2 and bck1 cells showed HM-1-sensitive phenotypes and decreased inductions of phospho-Slt2p in response to HM-1. From these results, we postulated that the Sln1-Ypd1-Ssk1 branch of the high-osmolality glycerol (HOG) pathway and plasma membrane sensors of the cell wall integrity (CWI) pathway detect cell wall stresses caused by HM-1. We further suggested that activations of both HOG and CWI pathways have an important role in the adaptive response to HM-1 toxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  10. p38 inhibitor inhibits the apoptosis of cowanin-treated human colorectal adenocarcinoma cells.

    PubMed

    Chowchaikong, Nittiya; Nilwarangkoon, Sirinun; Laphookhieo, Surat; Tanunyutthawongse, Chantra; Watanapokasin, Ramida

    2018-06-01

    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.

  11. ACTIVATION OF COMMON ANTIVIRAL PATHWAYS CAN POTENTIATE INFLAMMATORY RESPONSES TO SEPTIC SHOCK

    PubMed Central

    Doughty, Lesley A.; Carlton, Stacey; Galen, Benjamin; Cooma-Ramberan, Indranie; Chung, Chung-Shiang; Ayala, Alfred

    2006-01-01

    Induction of the antiviral cytokine interferon α/β (IFN-α/β) is common in many viral infections. The impact of ongoing antiviral responses on subsequent bacterial infection is not well understood. In human disease, bacterial superinfection complicating a viral infection can result in significant morbidity and mortality. We injected mice with polyinosinic-polycytidylic (PIC) acid, a TLR3 ligand and known IFN-α/β inducer as well as nuclear factor κB (NF-κB) activator to simulate very early antiviral pathways. We then challenged mice with an in vivo septic shock model characterized by slowly evolving bacterial infection to simulate bacterial superinfection early during a viral infection. Our data demonstrated robust induction of IFN-α in serum within 24 h of PIC injection with IFN-α/β–dependent major histocompatibility antigen class II up-regulation on peritoneal macrophages. PIC pretreatment before septic shock resulted in augmented tumor necrosis factor alpha and interleukins 6 and 10 and heightened lethality compared with septic shock alone. Intact IFN-α/β signaling was necessary for augmentation of the inflammatory response to in vivo septic shock and to both TLR2 and TLR4 agonists in vitro. To assess the NF-κB contribution to PIC-modulated inflammatory responses to septic shock, we treated with parthenolide an NF-κB inhibitor before PIC and septic shock. Parthenolide did not inhibit IFN-α induction by PIC. Inhibition of NF-κB by parthenolide did reduce IFN-α–mediated potentiation of the cytokine response and lethality from septic shock. Our data demonstrate that pathways activated early during many viral infections can have a detrimental impact on the outcome of subsequent bacterial infection. These pathways may be critical to understanding the heightened morbidity and mortality from bacterial superinfection after viral infection in human disease. PMID:16878028

  12. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    PubMed

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  13. Imposex induction is mediated through the Retinoid X Receptor signalling pathway in the neogastropod Nucella lapillus.

    PubMed

    Castro, L Filipe C; Lima, D; Machado, A; Melo, C; Hiromori, Y; Nishikawa, J; Nakanishi, T; Reis-Henriques, M A; Santos, M M

    2007-11-15

    The imposex phenomenon in female prosobranch gastropods provides one of the best documented examples of endocrine disruption in wildlife. While many field studies have demonstrated the negative impact of tributyltin (TBT) upon female gastropods, the mechanism(s) underlying imposex development has not yet been fully clarified. Over the years several hypotheses have been raised to determine the biochemical and molecular determinants of this process. Nevertheless, the interplay between the different suggested pathways (neuroendocrine, steroid and retinoid) is still unknown. Hence, through a combination of exposure experiments, we show that the 9-cis-retinoic acid (9cisRA), the proposed natural ligand of the retinoic X receptor (RXR), induces imposex in females of Nucella lapillus to the same degree as tributyltin, when administered at similar concentrations (1 microg/g body weight). Methoprene acid, a selective ligand for RXR, also induces imposex, albeit to a lower degree than that of the positive control. In contrast, testosterone significantly induced imposex, but had no effect on female penis induction, while the neuropeptide APGWamide had no effect on imposex development. These results clearly demonstrate that imposex induction in N. lapillus is mediated through the modulation of the RXR signalling pathways. In addition to the effects reported in female dogwhelks, both TBT and RA significantly increased male penis length, thus suggesting that TBT may also impact male secondary sex organs through the RXR signalling pathways. As a step for future studies, we have cloned the orthologue of N. lapillus RXR and provide experimental evidence that it binds 9cisRA. Finally, the basal expression level of RXR in several tissues of N. lapillus was determined through real-time PCR, thus showing that RXR is ubiquitously expressed in mollusc tissues, with the highest expression levels being recorded in female and male gonads. The mechanistic impacts of the overall findings to the imposex process are discussed.

  14. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  15. A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli.

    PubMed

    Fehér, Tamás; Libis, Vincent; Carbonell, Pablo; Faulon, Jean-Loup

    2015-01-01

    Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA, a common precursor for both fatty acid and flavonoid biosynthesis. The sensor can be used either for high-throughput pathway screening in synthetic biology applications or for introducing a feedback circuit to regulate production of the desired chemical. Here, we used the sensor to compare the performance of several predicted malonyl-CoA-producing pathways, and validated the utility of malonyl-CoA reductase and malonate-CoA transferase for malonyl-CoA biosynthesis. We generated a second-order dynamic linear model describing the relation of the fluorescence generated by the sensor to the biomass of the host cell representing a filter/amplifier with a gain that correlates with the level of induction. We found the time constants describing filter dynamics to be independent of the level of induction but distinctively clustered for each of the production pathways, indicating the robustness of the sensor. Moreover, by monitoring the effect of the copy-number of the production plasmid on the dose-response curve of the sensor, we managed to coarse-tune the level of pathway expression to maximize malonyl-CoA synthesis. In addition, we provide an example of the sensor's use in analyzing the effect of inducer or substrate concentrations on production levels. The rational development of models describing sensors, supplemented with the power of high-throughput optimization provide a promising potential for engineering feedback loops regulating enzyme levels to maximize productivity yields of synthetic metabolic pathways.

  16. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  17. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.

    PubMed

    Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao

    2008-06-17

    The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.

  18. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.

    PubMed

    Nakada, Daisuke; Hirano, Yukinori; Sugimoto, Katsunori

    2004-11-01

    The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.

  19. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR.

    PubMed

    Circelli, Luisa; Sciammarella, Concetta; Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-04-05

    To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.

  20. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals.

    PubMed

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-10-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c(+)CD40(low)IL-10(+) regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.

  1. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals

    PubMed Central

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-01-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c+CD40lowIL-10+ regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway. PMID:24051433

  2. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR

    PubMed Central

    Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-01-01

    Objective To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Methods Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. Results: CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. Conclusions CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant. PMID:26934559

  3. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms

    PubMed Central

    Yang, Le; Shen, Lin; Gao, Peixian; Li, Gang; He, Yuxiang; Wang, Maohua; Zhou, Hua; Yuan, Hai; Jin, Xing; Wu, Xuejun

    2017-01-01

    Background and aims Determine the effect of AMPK activation and inhibition on the development of AAA (abdominal aortic aneurysm). Methods AAA was induced in ApoE−/− mice by Ang II (Angiotensin II)-infusion. AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) was used as AMPK activator and Compound C was used as AMPK inhibitor. We further investigate the effect of metformin, a widely used anti-diabetic drug which could activate AMPK signal pathway, on the pathogenesis of aneurysm. Results Phospho-AMPK level was significantly decreased in AAA tissue compared with control aortas. AICAR significantly reduced the incidence, severity and mortality of aneurysm in the Ang II-infusion model. AICAR also alleviated macrophage infiltration and neovascularity in Ang II infusion model at day 28. The expression of pro-inflammatory factors, angiogenic factors and the activity of MMPs were also alleviated by AICAR during AAA induction. On the other hand, Compound C treatment did not exert obvious protective effect. AMPK activation may inhibit the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-3 (STAT-3) during AAA induction. Administration of metformin also activated AMPK signal pathway and retarded AAA progression in Ang II infusion model. Conclusions Activation of AMPK signaling pathway may inhibit the Ang II-induced AAA in mice. Metformin may be a promising approach to the treatment of AAA. PMID:29190959

  4. Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae)

    PubMed Central

    Ren, Shuang; Hao, You-Jin; Chen, Bin; Yin, You-Ping

    2017-01-01

    The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction. PMID:29158334

  5. Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway

    PubMed Central

    Vitorino, Marta; Silva, Ana Cristina; Inácio, José Manuel; Ramalho, José Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José António

    2015-01-01

    Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PMID:26270962

  6. Influence of cytarabine metabolic pathway polymorphisms in acute myeloid leukemia induction treatment.

    PubMed

    Megías-Vericat, Juan Eduardo; Montesinos, Pau; Herrero, María José; Moscardó, Federico; Bosó, Virginia; Martínez-Cuadrón, David; Rojas, Luis; Rodríguez-Veiga, Rebeca; Boluda, Blanca; Sendra, Luis; Cervera, José; Poveda, José Luis; Sanz, Miguel Ángel; Aliño, Salvador F

    2017-12-01

    Cytarabine is considered the most effective chemotherapeutic option in acute myeloid leukemia (AML). The impact of 10 polymorphisms in cytarabine metabolic pathway genes were evaluated in 225 adult de novo AML patients. Variant alleles of DCK rs2306744 and CDA rs602950 showed higher complete remission (p = .024, p = .045), with lower survival rates for variant alleles of CDA rs2072671 (p = .015, p = .045, p = .032), rs3215400 (p = .033) and wild-type genotype of rs602950 (p = .039, .014). Induction death (p = .033) and lower survival rates (p = .021, p = .047) were correlated to RRM1 rs9937 variant allele. In addition, variant alleles of CDA rs532545 and rs602950 were related to skin toxicity (p = .031, p = .049) and mucositis to DCK rs2306744 minor allele (p = .046). Other toxicities associated to variant alleles were hepatotoxicity to NT5C2 rs11598702 (p = .032), lung toxicity (p = .031) and thrombocytopenia to DCK rs4694362 (p = .046). This study supports the interest of cytarabine pathway polymorphisms regarding efficacy and toxicity of AML therapy in a coherent integrated manner.

  7. IKKβ-induced inflammation impacts the kinetics but not the magnitude of the immune response to a viral vector

    PubMed Central

    Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.

    2012-01-01

    Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279

  8. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Kouji; Ohnishi, Hirohide; Aoki, Hiroyoshi

    2006-02-17

    Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-{beta}{sub 1} inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSCmore » proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-{beta}{sub 1}-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.« less

  9. Jolkinolide B induces apoptosis in MDA-MB-231 cells through inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Lin, Yu; Cui, Hongxia; Xu, Huiyu; Yue, Liling; Xu, Hao; Jiang, Liyan; Liu, Jicheng

    2012-06-01

    The phosphoinositol-3-kinase (PI3K)/Akt signal transduction pathway is critically important for tumor cell growth, proliferation and apoptosis. Apoptosis activation has been reported to be a good target in cancer therapies. In this study, we have found that jolkinolide B (JB), a diterpenoid from the traditional Chinese medicinal herb Euphorbia fischeriana Steud, strongly inhibited the expression of the PI3K p85 subunit and the phosphorylation of Akt. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MDA-MB-231 human breast cancer cells. Our results show significant induction of apoptosis in MDA-MB-231 cells incubated with JB. This effect was enhanced by combination with LY294002. In addition, treatment with JB could induce downregulation of the Bcl-2/Bax ratio, and subsequent promotion of mitochondrial release of cytochrome c and activation of caspase-3. Taken together, JB-induced apoptosis of MDA-MB-231 cells occurs through the mitochondrial pathway. Further, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.

  10. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes

    PubMed Central

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-01-01

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. PMID:23313877

  11. Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge

    PubMed Central

    O'Donnell, Vivian; Risatti, Guillermo R.; Holinka, Lauren G.; Krug, Peter W.; Carlson, Jolene; Velazquez-Salinas, Lauro; Azzinaro, Paul A.; Gladue, Douglas P.

    2016-01-01

    ABSTRACT African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Successful experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFV. Recombinant viruses harboring engineered deletions of specific virulence-associated genes induce solid protection against challenge with parental viruses. Deletion of the 9GL (B119L) gene in the highly virulent ASFV isolates Malawi Lil-20/1 (Mal) and Pretoriuskop/96/4 (Δ9GL viruses) resulted in complete protection when challenged with parental isolates. When similar deletions were created within the ASFV Georgia 2007 (ASFV-G) genome, attenuation was achieved but the protective and lethal doses were too similar. To enhance attenuation of ASFV-G, we deleted another gene, UK (DP96R), which was previously shown to be involved in attenuation of the ASFV E70 isolate. Here, we report the construction of a double-gene-deletion recombinant virus, ASFV-G-Δ9GL/ΔUK. When administered intramuscularly (i.m.) to swine, there was no induction of disease, even at high doses (106 HAD50). Importantly, animals infected with 104 50% hemadsorbing doses (HAD50) of ASFV-G-Δ9GL/ΔUK were protected as early as 14 days postinoculation when challenged with ASFV-G. The presence of protection correlates with the appearance of serum anti-ASFV antibodies, but not with virus-specific circulating ASFV-specific gamma interferon (IFN-γ)-producing cells. ASFV-G-Δ9GL/ΔUK is the first rationally designed experimental ASFV vaccine that protects against the highly virulent ASFV Georgia 2007 isolate as early as 2 weeks postvaccination. IMPORTANCE Currently, there is no commercially available vaccine against African swine fever. Outbreaks of the disease are devastating to the swine industry and are caused by circulating strains of African swine fever virus. Here, we report a putative vaccine derived from a currently circulating strain but containing two deletions in two separate areas of the virus, allowing increased safety. Using this genetically modified virus, we were able to vaccinate swine and protect them from developing ASF. We were able to achieve protection from disease as early as 2 weeks after vaccination, even when the pigs were exposed to a higher than normal concentration of ASFV. PMID:27795430

  12. Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge.

    PubMed

    O'Donnell, Vivian; Risatti, Guillermo R; Holinka, Lauren G; Krug, Peter W; Carlson, Jolene; Velazquez-Salinas, Lauro; Azzinaro, Paul A; Gladue, Douglas P; Borca, Manuel V

    2017-01-01

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Successful experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFV. Recombinant viruses harboring engineered deletions of specific virulence-associated genes induce solid protection against challenge with parental viruses. Deletion of the 9GL (B119L) gene in the highly virulent ASFV isolates Malawi Lil-20/1 (Mal) and Pretoriuskop/96/4 (Δ9GL viruses) resulted in complete protection when challenged with parental isolates. When similar deletions were created within the ASFV Georgia 2007 (ASFV-G) genome, attenuation was achieved but the protective and lethal doses were too similar. To enhance attenuation of ASFV-G, we deleted another gene, UK (DP96R), which was previously shown to be involved in attenuation of the ASFV E70 isolate. Here, we report the construction of a double-gene-deletion recombinant virus, ASFV-G-Δ9GL/ΔUK. When administered intramuscularly (i.m.) to swine, there was no induction of disease, even at high doses (10 6 HAD 50 ). Importantly, animals infected with 10 4 50% hemadsorbing doses (HAD 50 ) of ASFV-G-Δ9GL/ΔUK were protected as early as 14 days postinoculation when challenged with ASFV-G. The presence of protection correlates with the appearance of serum anti-ASFV antibodies, but not with virus-specific circulating ASFV-specific gamma interferon (IFN-γ)-producing cells. ASFV-G-Δ9GL/ΔUK is the first rationally designed experimental ASFV vaccine that protects against the highly virulent ASFV Georgia 2007 isolate as early as 2 weeks postvaccination. Currently, there is no commercially available vaccine against African swine fever. Outbreaks of the disease are devastating to the swine industry and are caused by circulating strains of African swine fever virus. Here, we report a putative vaccine derived from a currently circulating strain but containing two deletions in two separate areas of the virus, allowing increased safety. Using this genetically modified virus, we were able to vaccinate swine and protect them from developing ASF. We were able to achieve protection from disease as early as 2 weeks after vaccination, even when the pigs were exposed to a higher than normal concentration of ASFV. Copyright © 2016 American Society for Microbiology.

  13. The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa*

    PubMed Central

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-01

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875

  14. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.

    PubMed

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-09

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    PubMed Central

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  16. Autoinflammatory Skin Disorders: The Inflammasomme in Focus

    PubMed Central

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2016-01-01

    Autoinflammatory skin disorders are a group of heterogeneous diseases that include diseases such as cryopyrin-associated periodic syndrome (CAPS) and familial Mediterranean fever (FMF). Therapeutic strategies targeting IL-1 cytokines have proved helpful in ameliorating some of these diseases. While inflammasomes are the major regulators of IL-1 cytokines, inflammasome-independent complexes can also process IL-1 cytokines. Herein, we focus on recent advances in our understanding of how IL-1 cytokines, stemming from inflammasome-dependent and -independent pathways are involved in the regulation of skin conditions. Importantly, we discuss several mouse models of skin inflammation generated to help elucidate the basic cellular and molecular effects and modulation of IL-1 in the skin. Such models offer perspectives on how these signaling pathways could be targeted to improve therapeutic approaches in the treatment of these rare and debilitating inflammatory skin disorders. PMID:27267764

  17. Autoimmune-autoinflammatory rheumatoid arthritis overlaps: a rare but potentially important subgroup of diseases

    PubMed Central

    Savic, Sinisa; Mistry, Anoop; Wilson, Anthony G; Barcenas-Morales, Gabriela; Doffinger, Rainer; Emery, Paul; McGonagle, Dennis

    2017-01-01

    At the population level, rheumatoid arthritis (RA) is generally viewed as autoimmune in nature with a small subgroup of cases having a palindromic form or systemic autoinflammatory disorder (SAID) phenotype. Herein, we describe resistant cases of classical autoantibody associated RA that had clinical, genetic and therapeutic responses indicative of coexistent autoinflammatory disease. Five patients with clinically overlapping features between RA and SAID including polysynovitis and autoantibody/shared epitope positivity, and who had abrupt severe self-limiting attacks including fevers and serositis, are described. Mutations or single nucleotide polymorphisms in recognised autoinflammatory pathways were evident. Generally, these cases responded poorly to conventional Disease-modifying anti-rheumatic drugs (DMARD) treatment with some excellent responses to colchicine or interleukin 1 pathway blockade. A subgroup of RA cases have a mixed autoimmune-autoinflammatory phenotype and genotype with therapeutic implications. PMID:29177082

  18. Autoimmune-autoinflammatory rheumatoid arthritis overlaps: a rare but potentially important subgroup of diseases.

    PubMed

    Savic, Sinisa; Mistry, Anoop; Wilson, Anthony G; Barcenas-Morales, Gabriela; Doffinger, Rainer; Emery, Paul; McGonagle, Dennis

    2017-01-01

    At the population level, rheumatoid arthritis (RA) is generally viewed as autoimmune in nature with a small subgroup of cases having a palindromic form or systemic autoinflammatory disorder (SAID) phenotype. Herein, we describe resistant cases of classical autoantibody associated RA that had clinical, genetic and therapeutic responses indicative of coexistent autoinflammatory disease. Five patients with clinically overlapping features between RA and SAID including polysynovitis and autoantibody/shared epitope positivity, and who had abrupt severe self-limiting attacks including fevers and serositis, are described. Mutations or single nucleotide polymorphisms in recognised autoinflammatory pathways were evident. Generally, these cases responded poorly to conventional Disease-modifying anti-rheumatic drugs (DMARD) treatment with some excellent responses to colchicine or interleukin 1 pathway blockade. A subgroup of RA cases have a mixed autoimmune-autoinflammatory phenotype and genotype with therapeutic implications.

  19. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

    PubMed

    Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard

    2016-12-15

    The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.

  20. IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH Oxidase-mediated airway antiviral response

    PubMed Central

    Fink, Karin; Martin, Lydie; Mukawera, Esperance; Chartier, Stéfany; De Deken, Xavier; Brochiero, Emmanuelle; Miot, Françoise; Grandvaux, Nathalie

    2013-01-01

    Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction. PMID:23545780

  1. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  2. TNF induction of jagged-1 in endothelial cells is NFκB-dependent

    PubMed Central

    Johnston, Douglas A.; Dong, Bamboo; Hughes, Christopher C.W.

    2009-01-01

    TNF-α is a potent proinflammatory cytokine that induces endothelial cell (EC) adhesion molecules. In addition, TNF promotes angiogenesis by inducing an EC tip cell phenotype and the expression of jagged-1, a ligand for the notch pathway. Notch signaling is critical for vascular patterning and helps to restrict the proliferation of tip cells. Here we demonstrate that TNF induction of jagged-1 in human EC is rapid and dependent upon signaling through TNFR1, but not TNFR2. A luciferase reporter construct carrying 3.7 kb of 5′ promoter sequence from the human gene was responsive to both TNF and overexpression of NFκB pathway components. TNF-induced promoter activation was blocked by treatment with an NFκB inhibitor or co-expression of dominant-negative IKKβ. Mutations in a putative NFκB-binding site at −3.0 kb, which is conserved across multiple species, resulted in a loss of responsiveness to TNF and NFκB. Electromobility shift and chromatin immunoprecipitation assays revealed binding of both p50 and p65 to the promoter in response to TNF treatment. Full promoter activity also depends on an AP-1 site at −2.0 kb. These results indicate that canonical NFκB signaling is required for TNF induction of the notch ligand jagged-1 in EC. PMID:19393188

  3. Regulation of cellular responsiveness to inductive signals in the developing C. elegans nervous system.

    PubMed

    Waring, D A; Kenyon, C

    1991-04-25

    In Caenorhabditis elegans, cell-cell communication is required to form a simple pattern of sensory ray neurons and cuticular structures (alae). The C. elegans pal-1 gene initiates one developmental pathway (ray lineages) simply by blocking a cell-cell interaction that induces an alternative pathway. Here we show by mosaic analysis that pal-1+ acts by preventing specific cells from responding to inductive signals. The results indicate that although cell signals play a critical role in generating this pattern, they do not provide spatial information. Instead, signals are sent to many, if not all, of the precursor cells, and the ability to respond is spatially restricted. This patterning strategy thus differs from many well known models for pattern formation in which localized inductive signals influence a subset of cells within a field. We find that pal-1 encodes a homeodomain protein and so is likely to regulate transcription. The pal-1+ protein could block the response to cell signals either by repressing genes involved in signal transduction or by acting directly on downstream genes in a way that neutralizes the effects of the intercellular signals. Genetic experiments indicate that one candidate for such a downstream gene is the Antennapedia-like homeotic selector gene mab-5.

  4. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    PubMed

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Implementation of an Inpatient Pediatric Sepsis Identification Pathway.

    PubMed

    Bradshaw, Chanda; Goodman, Ilyssa; Rosenberg, Rebecca; Bandera, Christopher; Fierman, Arthur; Rudy, Bret

    2016-03-01

    Early identification and treatment of severe sepsis and septic shock improves outcomes. We sought to identify and evaluate children with possible sepsis on a pediatric medical/surgical unit through successful implementation of a sepsis identification pathway. The sepsis identification pathway, a vital sign screen and subsequent physician evaluation, was implemented in October 2013. Quality improvement interventions were used to improve physician and nursing adherence with the pathway. We reviewed charts of patients with positive screens on a monthly basis to assess for nursing recognition/physician notification, physician evaluation for sepsis, and subsequent physician diagnosis of sepsis and severe sepsis/septic shock. Adherence data were analyzed on a run chart and statistical process control p-chart. Nursing and physician pathway adherence of >80% was achieved over a 6-month period and sustained for the following 6 months. The direction of improvements met standard criteria for special causes. Over a 1-year period, there were 963 admissions to the unit. Positive screens occurred in 161 (16.7%) of these admissions and 38 (23.5%) of these had a physician diagnosis of sepsis, severe sepsis, or septic shock. One patient with neutropenia and septic shock had a negative sepsis screen due to lack of initial fever. Using quality improvement methodology, we successfully implemented a sepsis identification pathway on our pediatric unit. The pathway provided a standardized process to identify and evaluate children with possible sepsis requiring timely evaluation and treatment. Copyright © 2016 by the American Academy of Pediatrics.

  6. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation

    PubMed Central

    Kozhemyakina, Elena; Lassar, Andrew B.; Zelzer, Elazar

    2015-01-01

    Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the ‘engine’ of bone elongation. PMID:25715393

  7. The early cellular signatures of protective immunity induced by live viral vaccination.

    PubMed

    Kohler, Siegfried; Bethke, Nicole; Böthe, Matthias; Sommerick, Sophie; Frentsch, Marco; Romagnani, Chiara; Niedrig, Matthias; Thiel, Andreas

    2012-09-01

    Here, we have used primary vaccination of healthy donors with attenuated live yellow fever virus 17D (YFV-17D) as a model to study the generation of protective immunity. In short intervals after vaccination, we analyzed the induction of YFV-17D specific T- and B-cell immunity, bystander activation, dendritic cell subsets, changes in serum cytokine levels, and YFV-17D-specific antibodies. We show activation of innate immunity and a concomitant decline of numbers of peripheral blood T and B cells. An early peak of antigen-specific T cells at day 2, followed by mobilization of innate immune cells, preceded the development of maximal adaptive immunity against YFV-17D at day 14 after vaccination. Interestingly, potent adaptive immunity as measured by high titers of neutralizing YFV-17D-specific antibodies, correlated with early activation and recruitment of YFV-17D-specific CD4(+) T cells and higher levels of sIL-6R. Thus our data might provide new insights into the interplay of innate and adaptive immunity for the induction of protective immunity. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterizing RecA-Independent Induction of Shiga toxin2-Encoding Phages by EDTA Treatment

    PubMed Central

    Imamovic, Lejla; Muniesa, Maite

    2012-01-01

    Background The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. Methodology/Principal Findings The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. Conclusions/Significance Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains. PMID:22393404

  9. Calcium and calmodulin are involved in blue light induction of the gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas.

    PubMed Central

    Im, C S; Matters, G L; Beale, S I

    1996-01-01

    The Chlamydomonas reinhardtii nuclear gene gsa, which encodes the early chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase (GSAT), is specifically induced by blue light in cells synchronized in a 12-hr-light and 12-hr-dark regime. Light induction required the presence of a nitrogen source in the incubation medium. Maximal induction also required acetate. However, in the absence of acetate, partial induction occurred when Ca2+ was present in the medium at concentrations of > or = 1 microM. The Ca2+ channel-blocking agents Nd3+ and nifedipine partially inhibited the external Ca(2+)-supported induction of GSAT mRNA but did not inhibit acetate-supported induction. The calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide inhibited both external Ca(2+)-supported and acetate-supported induction. The Ca2+ ionophore A23187 caused a transient induction in the dark. These results suggest that Ca2+ and calmodulin are involved in the signal transduction pathway linking blue light perception to the induction of GSAT mRNA. The electron transport uncoupler carbonyl cyanide m-chlorophenylhydrazone inhibited acetate-supported induction of GSAT mRNA but did not inhibit external Ca(2+)-supported induction. It is proposed that in the presence of acetate, an internal pool of Ca2+ can be mobilized as a second message, whereas in the absence of acetate, internal Ca2+ is not available but the requirement for Ca2+ can be partially met by an external Ca2+ source. The mobilization of internal Ca2+ may require energy derived from metabolism of acetate. PMID:8989881

  10. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  11. Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways.

    PubMed

    Wang, Xiaoyue; Sommer, Ralf J

    2011-07-01

    Most diversity in animals and plants results from the modification of already existing structures. Many organ systems, for example, are permanently modified during evolution to create developmental and morphological diversity, but little is known about the evolution of the underlying developmental mechanisms. The theory of developmental systems drift proposes that the development of conserved morphological structures can involve large-scale modifications in their regulatory mechanisms. We test this hypothesis by comparing vulva induction in two genetically tractable nematodes, Caenorhabditis elegans and Pristionchus pacificus. Previous work indicated that the vulva is induced by epidermal growth factor (EGF)/RAS and WNT signaling in Caenorhabditis and Pristionchus, respectively. Here, we show that the evolution of vulva induction involves major molecular alterations and that this shift of signaling pathways involves a novel wiring of WNT signaling and the acquisition of novel domains in otherwise conserved receptors in Pristionchus vulva induction. First, Ppa-LIN-17/Frizzled acts as an antagonist of WNT signaling and suppresses the ligand Ppa-EGL-20 by ligand sequestration. Second, Ppa-LIN-18/Ryk transmits WNT signaling and requires inhibitory SH3 domain binding motifs, unknown from Cel-LIN-18/Ryk. Third, Ppa-LIN-18/Ryk signaling involves Axin and β-catenin and Ppa-axl-1/Axin is epistatic to Ppa-lin-18/Ryk. These results confirm developmental system drift as an important theory for the evolution of organ systems and they highlight the significance of protein modularity in signal transduction and the dynamics of signaling networks.

  12. Antagonism of LIN-17/Frizzled and LIN-18/Ryk in Nematode Vulva Induction Reveals Evolutionary Alterations in Core Developmental Pathways

    PubMed Central

    Wang, Xiaoyue; Sommer, Ralf J.

    2011-01-01

    Most diversity in animals and plants results from the modification of already existing structures. Many organ systems, for example, are permanently modified during evolution to create developmental and morphological diversity, but little is known about the evolution of the underlying developmental mechanisms. The theory of developmental systems drift proposes that the development of conserved morphological structures can involve large-scale modifications in their regulatory mechanisms. We test this hypothesis by comparing vulva induction in two genetically tractable nematodes, Caenorhabditis elegans and Pristionchus pacificus. Previous work indicated that the vulva is induced by epidermal growth factor (EGF)/RAS and WNT signaling in Caenorhabditis and Pristionchus, respectively. Here, we show that the evolution of vulva induction involves major molecular alterations and that this shift of signaling pathways involves a novel wiring of WNT signaling and the acquisition of novel domains in otherwise conserved receptors in Pristionchus vulva induction. First, Ppa-LIN-17/Frizzled acts as an antagonist of WNT signaling and suppresses the ligand Ppa-EGL-20 by ligand sequestration. Second, Ppa-LIN-18/Ryk transmits WNT signaling and requires inhibitory SH3 domain binding motifs, unknown from Cel-LIN-18/Ryk. Third, Ppa-LIN-18/Ryk signaling involves Axin and β-catenin and Ppa-axl-1/Axin is epistatic to Ppa-lin-18/Ryk. These results confirm developmental system drift as an important theory for the evolution of organ systems and they highlight the significance of protein modularity in signal transduction and the dynamics of signaling networks. PMID:21814488

  13. The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells

    PubMed Central

    2014-01-01

    Background c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression. Methods Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy. Results In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy. Conclusions These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression. PMID:24438216

  14. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  15. Rift Valley fever virus infection in golden Syrian hamsters.

    PubMed

    Scharton, Dionna; Van Wettere, Arnaud J; Bailey, Kevin W; Vest, Zachary; Westover, Jonna B; Siddharthan, Venkatraman; Gowen, Brian B

    2015-01-01

    Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies.

  16. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.

    PubMed

    Laughlin, Richard C; Drake, Kenneth L; Morrill, John C; Adams, L Garry

    2016-01-01

    Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.

  17. Intrinsic and extrinsic apoptotic pathways are involved in rat testis by cold water immersion-induced acute and chronic stress.

    PubMed

    Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro

    2015-01-01

    Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.

  18. Medical Surveillance Monthly Report (MSMR). Volume 9, Number 3, April 2003

    DTIC Science & Technology

    2003-04-01

    Rocky Mountain spotted fever , dengue, typhus, yellow fever, Rift Valley fever, or other hemorrhagic fevers among active duty servicemembers. During...Valley fever . . . . . E. coli O157:H7 3 3 9 3 1 Rocky Mountain spotted fever 2 . 12 2 . Ehrlichiosis 2 1 2 3 1 Rubella . . . . . Encephalitis...Dengue fever . . . 1 . Rheumatic fever, acute . . 1 . . Diphtheria . . . . . Rift Valley fever . . . . . E. coli O157:H7 . 1 1 1 . Rocky Mountain spotted

  19. Human Placental Lactogen Induces CYP2E1 Expression via PI 3-Kinase Pathway in Female Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.

    2014-01-01

    The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518

  20. Complex IV Deficient Surf1−/− Mice Initiate Mitochondrial Stress Responses

    PubMed Central

    Pulliam, Daniel A.; Deepa, Sathyaseelan S.; Liu, Yuhong; Hill, Shauna; Lin, Ai-Ling; Bhattacharya, Arunabh; Shi, Yun; Sloane, Lauren; Viscomi, Carlo; Zeviani, Massimo; Van Remmen, Holly

    2014-01-01

    Summary Mutations in SURF1 cytochrome c oxidase (COX) assembly protein are associated with Leigh’s syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the Surf1 protein (Surf1−/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in reactive oxygen species (ROS) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared to wild-type. However, blood lactate levels are elevated and Surf1−/− mice have reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo. Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis (PGC-1α and VDAC) in both heart and skeletal muscle. While mitochondrial biogenesis is a common response in the two tissues, skeletal muscle have an up-regulation of the mitochondrial unfolded protein response (UPRMT) and heart exhibits induction of the Nrf2 antioxidant response pathway. These data are the first to report induction of the UPRMT in a mammalian model of diminished COX activity. In addition our results suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homeostasis. Loss of complex IV assembly factor Surf1 in mice results in compensatory responses including mitochondrial biogenesis, the nrf2 pathway and the mitochondrial unfolded protein response. This compensatory response may contribute to the lack of deleterious phenotypes under basal conditions. PMID:24911525

  1. PAK5, a New Brain-Specific Kinase, Promotes Neurite Outgrowth in N1E-115 Cells

    PubMed Central

    Dan, Chuntao; Nath, Niharika; Liberto, Muriel; Minden, Audrey

    2002-01-01

    We have characterized a new member of the mammalian PAK family of serine/threonine kinases, PAK5, which is a novel target of the Rho GTPases Cdc42 and Rac. The kinase domain and GTPase-binding domain (GBD) of PAK5 are most closely related in sequence to those of mammalian PAK4. Outside of these domains, however, PAK5 is completely different in sequence from any known mammalian proteins. PAK5 does share considerable sequence homology with the Drosophila MBT protein (for “mushroom body tiny”), however, which is thought to play a role in development of cells in Drosophila brain. Interestingly, PAK5 is highly expressed in mammalian brain and is not expressed in most other tissues. We have found that PAK5, like Cdc42, promotes the induction of filopodia. In N1E-115 neuroblastoma cells, expression of PAK5 also triggered the induction of neurite-like processes, and a dominant-negative PAK5 mutant inhibited neurite outgrowth. Expression of activated PAK1 caused no noticeable changes in these cells. An activated mutant of PAK5 had an even more dramatic effect than wild-type PAK5, indicating that the morphologic changes induced by PAK5 are directly related to its kinase activity. Although PAK5 activates the JNK pathway, dominant-negative JNK did not inhibit neurite outgrowth. In contrast, the induction of neurites by PAK5 was abolished by expression of activated RhoA. Previous work has shown that Cdc42 and Rac promote neurite outgrowth by a pathway that is antagonistic to Rho. Our results suggest, therefore, that PAK5 operates downstream to Cdc42 and Rac and antagonizes Rho in the pathway, leading to neurite development. PMID:11756552

  2. Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway

    PubMed Central

    Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.

    2011-01-01

    Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980

  3. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.

    PubMed

    Berr, Alexandre; McCallum, Emily J; Alioua, Abdelmalek; Heintz, Dimitri; Heitz, Thierry; Shen, Wen-Hui

    2010-11-01

    As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.

  4. Long interspersed nuclear element-1 retroelements are expressed in patients with systemic autoimmune disease and induce type I interferon

    PubMed Central

    Mavragani, Clio P.; Sagalovskiy, Irina; Guo, Qiu; Nezos, Adrianos; Kapsogeorgou, Efstathia K.; Lu, Pin; Zhou, Jun Liang; Kirou, Kyriakos A.; Seshan, Surya V.; Moutsopoulos, Haralampos M.; Crow, Mary K.

    2016-01-01

    Objective Increased type I interferon (IFN-I) and a broad signature of IFN-I-induced gene transcripts are observed in patients with SLE and other systemic autoimmune diseases. To identify disease-relevant triggers of the IFN-I pathway we investigated whether endogenous virus-like genomic repeat elements, normally silent, might be expressed in patients with systemic autoimmune disease, activate an innate immune response and induce IFN-I. Methods Expression of IFN-I and long interspersed nuclear element-1 (LINE-1; L1) was studied in kidney tissue from lupus patients and minor salivary gland (MSG) tissue from patients with primary Sjogren’s syndrome (SS) by PCR, western blot and immunohistochemistry. Induction of IFN-I by L1 was investigated by transfection of plasmacytoid dendritic cells (pDCs) or monocytes with an L1-encoding plasmid or L1 RNA. Involvement of innate immune pathways and altered L1 methylation were assessed. Results L1 mRNA transcripts were increased in lupus nephritis kidneys and in MSG from SS patients and correlated with IFN-I expression and L1 DNA demethylation. L1 open reading frame 1/p40 protein and IFNβ were expressed in MSG ductal epithelial cells and in lupus kidneys, and IFNα was detected in infiltrating pDCs. Transfection of pDCs or monocytes with L1-encoding DNA or RNA induced IFN-I. Inhibition of TLR7/8 reduced L1 induction of IFNα in pDCs and an inhibitor of IKKε/TBK1 abrogated induction of IFN-I by L1 RNA in monocytes. Conclusion L1 genomic repeat elements represent endogenous nucleic acid triggers of the IFN-I pathway in SLE and SS and may contribute to initiation or amplification of autoimmune disease. PMID:27338297

  5. Antigen Cross-Presentation of Immune Complexes

    PubMed Central

    Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda

    2014-01-01

    The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8− DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets. PMID:24744762

  6. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation1[OPEN

    PubMed Central

    Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica

    2016-01-01

    Distinct ROS signaling pathways initiated by singlet oxygen (1O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the 1O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of 1O2 using the conditional flu mutant. A qPCR time course of 1O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent 1O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. PMID:27288360

  7. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation.

    PubMed

    Carmody, Melanie; Crisp, Peter A; d'Alessandro, Stefano; Ganguly, Diep; Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica; Pogson, Barry J

    2016-07-01

    Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  9. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating I{kappa}B kinase renaturation and blocking its further denaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan

    2005-07-01

    Heat shock (HS) treatment has been previously shown to suppress the I{kappa}B/nuclear factor-{kappa}B (NF-{kappa}B) cascade by denaturing, and thus inactivating I{kappa}B kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayedmore » TNF-{alpha}-induced I{kappa}B{alpha} degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the I{kappa}B{alpha} stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating the renaturation of IKK and blocking its further denaturation.« less

  10. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2011-01-01

    Bifunctional alkyalating agent, Sulfur mustard (SM)-caused cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 or 4 mg CEES for 9–48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in COX-2, iNOS, and MMP-9 levels, indicating the involvement of DNA damage and inflammation in CEES-caused skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-caused DNA damage and the induction of inflammatory molecules. Oral GSH (300mg/kg) administration 1 h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injuries involve DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injuries in humans by SM. PMID:21722719

  11. Proapoptotic and Antimetastatic Properties of Supercritical CO2 Extract of Nigella sativa Linn. Against Breast Cancer Cells

    PubMed Central

    Baharetha, Hussein M.; Nassar, Zeyad D.; Aisha, Abdalrahim F.; Ahamed, Mohamed B. Khadeer; Al-Suede, Foaud Saleih R.; Kadir, Mohd Omar Abd; Ismail, Zhari

    2013-01-01

    Abstract Nigella sativa, commonly referred as black cumin, is a popular spice that has been used since the ancient Egyptians. It has traditionally been used for treatment of various human ailments ranging from fever to intestinal disturbances to cancer. This study investigated the apoptotic, antimetastatic, and anticancer activities of supercritical carbon dioxide (SC-CO2) extracts of the seeds of N. sativa Linn. against estrogen-dependent human breast cancer cells (MCF-7). Twelve extracts were prepared from N. sativa seeds using the SC-CO2 extraction method by varying pressure and temperature. Extracts were analyzed using FTIR and UV-Vis spectrometry. Cytotoxicity of the extracts was evaluated on various human cancer and normal cell lines. Of the 12 extracts, 1 extract (A3) that was prepared at 60°C and 2500 psi (∼17.24 MPa) showed selective antiproliferative activity against MCF-7 cells with an IC50 of 53.34±2.15 μg/mL. Induction of apoptosis was confirmed by evaluating caspases activities and observing the cells under a scanning electron microscope. In vitro antimetastatic properties of A3 were investigated by colony formation, cell migration, and cell invasion assays. The elevated levels of caspases in A3 treated MCF-7 cells suggest that A3 is proapoptotic. Further nuclear condensation and fragmentation studies confirmed that A3 induces cytotoxicity through the apoptosis pathway. A3 also demonstrated remarkable inhibition in migration and invasion assays of MCF-7 cells at subcytotoxic concentrations. Thus, this study highlights the therapeutic potentials of SC-CO2 extract of N. sativa in targeting breast cancer. PMID:24328702

  12. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway.

    PubMed

    Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Del Aguila, Carmen; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2006-01-01

    African swine fever virus (ASFV) is able to inhibit TNF-alpha-induced gene expression through the synthesis of A238L protein. This was shown by the use of deletion mutants lacking the A238L gene from the Vero cell-adapted Ba71V ASFV strain and from the virulent isolate E70. To further analyze the molecular mechanism by which the viral gene controls TNF-alpha, we have used Jurkat cells stably transfected with the viral gene to identify the TNF-alpha regulatory elements involved in the induction of the gene after stimulation with PMA and calcium ionophore. We have thus identified the cAMP-responsive element and kappa3 sites on the TNF-alpha promoter as the responsible of the gene activation, and demonstrate that A238L inhibits TNF-alpha expression through these DNA binding sites. This inhibition was partially reverted by overexpression of the transcriptional factors NF-AT, NF-kappaB, and c-Jun. Furthermore, we present evidence that A238L inhibits the activation of TNF-alpha by modulating NF-kappaB, NF-AT, and c-Jun trans activation through a mechanism that involves CREB binding protein/p300 function, because overexpression of these transcriptional coactivators recovers TNF-alpha promoter activity. In addition, we show that A238L is a nuclear protein that binds to the cyclic AMP-responsive element/kappa3 complex, thus displacing the CREB binding protein/p300 coactivators. Taken together, these results establish a novel mechanism in the control of TNF-alpha gene expression by a viral protein that could represent an efficient strategy used by ASFV to evade the innate immune response.

  13. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells

    PubMed Central

    Maddur, Mohan S.; O’Neal, Justin T.; Fedorova, Nadia B.; Puri, Vinita; Pulendran, Bali; Suthar, Mehul S.

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs) are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN) protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target. PMID:28152048

  14. Context dependency and generality of fever in insects.

    PubMed

    Stahlschmidt, Z R; Adamo, S A

    2013-07-01

    Fever can reduce mortality in infected animals. Yet, despite its fitness-enhancing qualities, fever often varies among animals. We used several approaches to examine this variation in insects. Texas field crickets (Gryllus texensis) exhibited a modest fever (1 °C increase in preferred body temperature, T pref) after injection of prostaglandin, which putatively mediates fever in both vertebrates and invertebrates, but they did not exhibit fever during chronic exposure to heat-killed bacteria. Further, chronic food limitation and mating status did not affect T pref or the expression of behavioural fever, suggesting limited context dependency of fever in G. texensis. Our meta-analysis of behavioural fever studies indicated that behavioural fever occurs in many insects, but it is not ubiquitous. Thus, both empirical and meta-analytical results suggest that the fever response in insects 'is widespread, although certainly not inevitable' (Moore 2002). We highlight the need for future work focusing on standardizing an experimental protocol to measure behavioural fever, understanding the specific mechanism(s) underlying fever in insects, and examining whether ecological or physiological costs often outweigh the benefits of fever and can explain the sporadic nature of fever in insects.

  15. Context dependency and generality of fever in insects

    NASA Astrophysics Data System (ADS)

    Stahlschmidt, Z. R.; Adamo, S. A.

    2013-07-01

    Fever can reduce mortality in infected animals. Yet, despite its fitness-enhancing qualities, fever often varies among animals. We used several approaches to examine this variation in insects. Texas field crickets ( Gryllus texensis) exhibited a modest fever (1 °C increase in preferred body temperature, T pref) after injection of prostaglandin, which putatively mediates fever in both vertebrates and invertebrates, but they did not exhibit fever during chronic exposure to heat-killed bacteria. Further, chronic food limitation and mating status did not affect T pref or the expression of behavioural fever, suggesting limited context dependency of fever in G. texensis. Our meta-analysis of behavioural fever studies indicated that behavioural fever occurs in many insects, but it is not ubiquitous. Thus, both empirical and meta-analytical results suggest that the fever response in insects `is widespread, although certainly not inevitable' (Moore 2002). We highlight the need for future work focusing on standardizing an experimental protocol to measure behavioural fever, understanding the specific mechanism(s) underlying fever in insects, and examining whether ecological or physiological costs often outweigh the benefits of fever and can explain the sporadic nature of fever in insects.

  16. Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection.

    PubMed

    de la Fuente, Cynthia; Pinkham, Chelsea; Dabbagh, Deemah; Beitzel, Brett; Garrison, Aura; Palacios, Gustavo; Hodge, Kimberley Alex; Petricoin, Emanuel F; Schmaljohn, Connie; Campbell, Catherine E; Narayanan, Aarthi; Kehn-Hall, Kylene

    2018-01-01

    Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-β superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.

  17. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.

    PubMed

    Laurent-Rolle, Maudry; Morrison, Juliet; Rajsbaum, Ricardo; Macleod, Jesica M Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-09-10

    To successfully establish infection, flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Pyrogen sensing and signaling: old views and new concepts.

    PubMed

    Blatteis, C M; Sehic, E; Li, S

    2000-10-01

    Fever is thought to be caused by endogenous pyrogenic cytokines, which are elaborated and released into the circulation by systemic mononuclear phagocytes that are activated by exogenous inflammatory agents and transported to the preoptic-anterior hypothalamic area (POA) of the brain, where they act. Prostaglandin (PG) E2 is thought to be an essential, proximal mediator in the POA, and induced by these cytokines. It seems unlikely, however, that these factors could directly account for early production of PGE2 following the intravenous administration of bacterial endotoxic lipopolysaccharides (LPS), because PGE2 is generated before the cytokines that induce it are detectable in the blood and the before cyclooxygenase-2, the synthase that they stimulate, is expressed. Hence other, more quickly evoked mediators are presumed to be involved in initiating the febrile response; moreover, their message may be conveyed to the brain by a neural rather than a humoral pathway. This article reviews current conceptions of pyrogen signalling from the periphery to the brain and presents new, developing hypotheses about the mechanism by which LPS initiates fever.

  19. Blood Trials: Transfusions, Injections, and Experiments in Africa, 1890–1920

    PubMed Central

    Sunseri, Thaddeus

    2016-01-01

    From about 1880 to 1920, a culture of medical experimentation promoted blood transfusion as a therapy for severe anemia in Europe, which was applied in German East Africa in 1892 for a case of blackwater fever, a complication of malaria afflicting mainly Europeans. This first case of blood transfusion in Africa, in which an African's blood was transfused into a German official, complicates the dominant narrative that blood transfusions in Africa came only after World War I. Medical researchers moreover experimented with blood serum therapies on human and animal subjects in Europe and Africa, injecting blood of different species, “races” and ethnicities into others to demonstrate parasite transmissibility and to discover vaccines for diseases such as malaria, sleeping sickness, and yellow fever. While research in German colonies is highlighted here, this was a transnational medical culture that crossed borders and oceans. This research is of interest as a possible early pathway for the epidemic spread of HIV and other zoonoses in Africa and the world, which biomedical researchers have identified as emerging in West-Central Africa sometime around the turn of the twentieth century. PMID:26514397

  20. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by Type I interferon

    PubMed Central

    Rajsbaum, Ricardo; Macleod, Jesica M. Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-01-01

    Summary To successfully establish infection Flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. PMID:25211074

Top