Science.gov

Sample records for fever spirochete borrelia

  1. Borrelia miyamotoi: a widespread tick-borne relapsing fever spirochete.

    PubMed

    Wagemakers, Alex; Staarink, Pieter J; Sprong, Hein; Hovius, Joppe W R

    2015-06-01

    Borrelia miyamotoi is a relapsing fever spirochete that has only recently been identified as a human pathogen. Borrelia miyamotoi is genetically and ecologically distinct from Borrelia burgdorferi sensu lato, while both are present in Ixodes ticks. Over 50 patients with an acute febrile illness have been described with a B. miyamotoi infection, and two infected immunocompromised patients developed a meningoencephalitis. Seroprevalence studies indicate exposure in the general population and in specific risk groups, such as patients initially suspected of having human granulocytic anaplasmosis. Here, we review the available literature on B. miyamotoi, describing its presence in ticks, reservoir hosts, and humans, and discussing its potential impact on public health.

  2. First isolation of the relapsing fever spirochete, Borrelia hermsii, from a domestic dog.

    PubMed

    Kelly, Ashley L; Raffel, Sandra J; Fischer, Robert J; Bellinghausen, Michael; Stevenson, Connie; Schwan, Tom G

    2014-03-01

    In North America, tick-borne relapsing fever of humans is most frequently caused by infection with the spirochete Borrelia hermsii. Prior to our investigation, this spirochete was not known to infect dogs although another species, Borrelia turicatae, has been isolated from domestic canids in Florida and Texas. A clinically ill dog in Washington, USA, was spirochetemic upon examination. Spirochetes were isolated from the dog's serum and examined by PCR and multi-locus sequence typing. DNA sequences for 7 loci all typed the spirochete as B. hermsii and a member of genomic group II of this species. Therefore, companion dogs that reside in rustic cabins in higher elevation forests are at risk of infection with B. hermsii.

  3. Tick Surveillance for Relapsing Fever Spirochete Borrelia miyamotoi in Hokkaido, Japan

    PubMed Central

    Konnai, Satoru; Ohashi, Kazuhiko; Nakao, Minoru; Ito, Takuya; Andoh, Masako; Maeda, Ken; Watarai, Masahisa; Sato, Kozue; Kawabata, Hiroki

    2014-01-01

    During 2012–2013, a total of 4325 host-seeking adult ticks belonging to the genus Ixodes were collected from various localities of Hokkaido, the northernmost island of Japan. Tick lysates were subjected to real-time PCR assay to detect borrelial infection. The assay was designed for specific detection of the Relapsing fever spirochete Borrelia miyamotoi and for unspecific detection of Lyme disease-related spirochetes. Overall prevalence of B. miyamotoi was 2% (71/3532) in Ixodes persulcatus, 4.3% (5/117) in Ixodes pavlovskyi and 0.1% (1/676) in Ixodes ovatus. The prevalence in I. persulcatus and I. pavlovskyi ticks were significantly higher than in I. ovatus. Co-infections with Lyme disease-related spirochetes were found in all of the tick species. During this investigation, we obtained 6 isolates of B. miyamotoi from I. persulcatus and I. pavlovskyi by culture in BSK-M medium. Phylogenetic trees of B. miyamotoi inferred from each of 3 housekeeping genes (glpQ, 16S rDNA, and flaB) demonstrated that the Hokkaido isolates were clustered with Russian B. miyamotoi, but were distinguishable from North American and European B. miyamotoi. A multilocus sequence analysis using 8 genes (clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA) suggested that all Japanese B. miyamotoi isolates, including past isolates, were genetically clonal, although these were isolated from different tick and vertebrate sources. From these results, B. miyamotoi-infected ticks are widely distributed throughout Hokkaido. Female I. persulcatus are responsible for most human tick-bites, thereby I. persulcatus is likely the most important vector of indigenous relapsing fever from tick bites in Hokkaido. PMID:25111141

  4. Detection of relapsing fever spirochetes (Borrelia hermsii and Borrelia coriaceae) in free-ranging mule deer (Odocoileus hemionus) from Nevada, United States.

    PubMed

    Nieto, Nathan C; Teglas, Mike B; Stewart, Kelley M; Wasley, Tony; Wolff, Peregrine L

    2012-02-01

    Surveillance of mule deer (Odocoileus hemionus, Rafinesque, 1917) populations for tick-borne diseases has helped define the distribution of these pathogens and their subsequent risk of transmission to humans and domestic animals. We surveyed three mule deer herds across the state of Nevada for infection with relapsing fever Borrelia spp. spirochetes. Bacterial prevalence varied by the county where deer were sampled but Borrelia spirochetes were detected in 7.7% of all deer sampled. Infected deer were identified in every location from which mule deer samples were obtained. Sequencing of the Borrelia intergenic spacer gene (IGS) revealed that one individual was infected with Borrelia coriaceae and all others were infected with Borrelia hermsii. The vector of B. hermsii, Ornithodoros hermsi (Acari: Argasidae, Wheeler, Herms, and Meyer, 1935), feeds primarily on wild rodents and has not been identified infesting deer. Additionally, Ornithodoros coriaceus (Acari: Argasidae, Koch, 1844), which readily feeds on deer and is frequently infected with B. coriaceae, has not been shown to be a competent vector for B. hermsii. Our data represent the first sylvatic evidence of B. hermsii infection in mule deer. Additionally, our data provide evidence that infection with relapsing fever spirochetes in Nevada is wide ranging in the state's deer populations.

  5. Genetic characterization of the human relapsing fever spirochete Borrelia miyamotoi in vectors and animal reservoirs of Lyme disease spirochetes in France

    PubMed Central

    2014-01-01

    Background In France as elsewhere in Europe the most prevalent TBD in humans is Lyme borreliosis, caused by different bacterial species belonging to Borrelia burgdorferi sensu lato complex and transmitted by the most important tick species in France, Ixodes ricinus. However, the diagnosis of Lyme disease is not always confirmed and unexplained syndromes occurring after tick bites have become an important issue. Recently, B. miyamotoi belonging to the relapsing fever group and transmitted by the same Ixodes species has been involved in human disease in Russia, the USA and the Netherlands. In the present study, we investigate the presence of B. miyamotoi along with other Lyme Borreliosis spirochetes, in ticks and possible animal reservoirs collected in France. Methods We analyzed 268 ticks (Ixodes ricinus) and 72 bank voles (Myodes glareolus) collected and trapped in France for the presence of DNA from B. miyamotoi as well as from Lyme spirochetes using q-PCR and specific primers and probes. We then compared the French genotypes with those found in other European countries. Results We found that 3% of ticks and 5.55% of bank voles were found infected by the same B. miyamotoi genotype, while co-infection with other Lyme spirochetes (B. garinii) was identified in 12% of B. miyamotoi infected ticks. Sequencing showed that ticks and rodents carried the same genotype as those recently characterized in a sick person in the Netherlands. Conclusions The genotype of B. miyamotoi circulating in ticks and bank voles in France is identical to those already described in ticks from Western Europe and to the genotype isolated from a sick person in The Netherlands. This results suggests that even though no human cases have been reported in France, surveillance has to be improved. Moreover, we showed that ticks could simultaneously carry B. miyamotoi and Lyme disease spirochetes, increasing the problem of co-infection in humans. PMID:24886071

  6. Relapsing Fever Borreliae in Africa

    PubMed Central

    Elbir, Haitham; Raoult, Didier; Drancourt, Michel

    2013-01-01

    The study of relapsing fever borreliae in Africa has long suffered from the use of non-specific laboratory tools for the direct detection of these spirochetes in clinical and vector specimens. Accordingly, Borrelia hispanica, Borrelia crocidurae, Borrelia duttonii, and Borrelia recurrentis have traditionally been distinguished on the basis of geography and vector and the unproven hypothesis that each species was exclusive to one vector. The recent sequencing of three relapsing fever Borrelia genomes in our laboratory prompted the development of more specific tools and a reappraisal of the epidemiology in Africa. Five additional potential species still need to be cultured from clinical and vector sources in East Africa to further assess their uniqueness. Here, we review the molecular evidence of relapsing fever borreliae in hosts and ectoparasites in Africa and explore the diversity, geographical distribution, and vector association of these pathogens for Africans and travelers to Africa. PMID:23926141

  7. Borrelia miyamotoi: A human tick-borne relapsing fever spirochete in Europe and its potential impact on public health.

    PubMed

    Siński, Edward; Welc-Falęciak, Renata; Zajkowska, Joanna

    2016-09-01

    Borrelia miyamotoi is a tick-borne bacterium which has only recently been identified in Europe as a human pathogen causing relapsing fever and little is known about its local impact on human health. There are three types of B. miyamotoi: Asian (Siberian), European, and American. B. miyamotoi is transmitted by the same Ixodes ricinus-persulcatus species complex, which also transmits B. burgdorferi s.l., the Lyme borreliosis group. Both Borrelia groups are mostly maintained in natural rodent populations. The aim of this review is to summarize the available literature on B. miyamotoi, with the focus of attention falling on Europe, as well as to describe its presence in ticks, reservoir hosts, and humans and discuss its potential impact on public health.

  8. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii.

    PubMed

    Guyard, Cyril; Raffel, Sandra J; Schrumpf, Merry E; Dahlstrom, Eric; Sturdevant, Daniel; Ricklefs, Stacy M; Martens, Craig; Hayes, Stanley F; Fischer, Elizabeth R; Hansen, Bryan T; Porcella, Stephen F; Schwan, Tom G

    2013-01-01

    Spirochetes are bacteria characterized in part by rotating periplasmic flagella that impart their helical or flat-wave morphology and motility. While most other bacteria rely on a transcriptional cascade to regulate the expression of motility genes, spirochetes employ post-transcriptional mechanism(s) that are only partially known. In the present study, we characterize a spontaneous non-motile mutant of the relapsing fever spirochete Borrelia hermsii that was straight, non-motile and deficient in periplasmic flagella. We used next generation DNA sequencing of the mutant's genome, which when compared to the wild-type genome identified a 142 bp deletion in the chromosomal gene encoding the flagellar export apparatus protein FliH. Immunoblot and transcription analyses showed that the mutant phenotype was linked to the posttranscriptional deficiency in the synthesis of the major periplasmic flagellar filament core protein FlaB. Despite the lack of FlaB, the amount of FlaA produced by the fliH mutant was similar to the wild-type level. The turnover of the residual pool of FlaB produced by the fliH mutant was comparable to the wild-type spirochete. The non-motile mutant was not infectious in mice and its inoculation did not induce an antibody response. Trans-complementation of the mutant with an intact fliH gene restored the synthesis of FlaB, a normal morphology, motility and infectivity in mice. Therefore, we propose that the flagellar export apparatus protein regulates motility of B. hermsii at the post-transcriptional level by influencing the synthesis of FlaB.

  9. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks.

    PubMed

    Scoles, G A; Papero, M; Beati, L; Fish, D

    2001-01-01

    A species of Borrelia spirochetes previously unknown from North America has been found to be transmitted by Ixodes scapularis ticks. Infected ticks are positive for Borrelia spp. by DFA test but negative for Borrelia burgdorferi by polymerase chain reaction (PCR) using species-specific primers for 16S rDNA, outer surface protein A, outer surface protein C, and flagellin genes. A 1,347-bp portion of 16S rDNA was amplified from a pool of infected nymphs, sequenced, and compared with the homologous fragment from 26 other species of Borrelia. The analysis showed 4.6% pairwise difference from B. burgdorferi, with the closest relative being Borrelia miyamotoi (99.3% similarity) reported from Ixodes persulcatus in Japan. Phylogenetic analysis showed the unknown Borrelia to cluster with relapsing fever group spirochetes rather than with Lyme disease spirochetes. A 764-bp fragment of the flagellin gene was also compared with the homologous fragment from 24 other Borrelia species. The flagellin sequence of B. burgdorferi was 19.5% different from the unknown Borrelia and showed 98.6% similarity with B. miyamotoi. A pair of PCR primers specifically designed to amplify a 219-bp fragment of the flagellin gene from this spirochete was used to survey field-collected I. scapularis nymphs from five northeastern states (Connecticut, Rhode Island, New York, New Jersey, and Maryland). Positive results were obtained in 1.9-2.5% of 712 nymphs sampled from four states but in none of 162 ticks collected from Maryland. Transovarial transmission was demonstrated by PCR of larval progeny from infected females with filial infection rates ranging from 6% to 73%. Transstadial passage occurred from larvae through adults. Vertebrate infection was demonstrated by feeding infected nymphs on Peromyscus leucopus mice and recovering the organism from uninfected xenodiagnostic larvae fed 7-21 days later. Considering the frequency of contact between I. scapularis and humans, further work is needed to

  10. Borrelia spirochetes in Russia: Genospecies differentiation by real-time PCR.

    PubMed

    Mukhacheva, T A; Kovalev, S Y

    2014-10-01

    Spirochetes of the Borrelia burgdorferi sensu lato complex are the causative agent of Lyme borreliosis which is widespread in Russia. Nowadays, three clinically important B. burgdorferi s.l. genospecies, B. afzelii, B. garinii, B. bavariensis sp. nov., can be found in Russia, as well as B. miyamotoi, which belongs to the tick-borne relapsing fever group of spirochetes. Several techniques have been developed to differentiate Borrelia genospecies. However, most of them do not allow detection of all of these genospecies simultaneously. Also, no method based on the RT-PCR TaqMan approach has been proposed to differentiate the genetically closely related species B. bavariensis and B. garinii. In the present paper, we investigated two species of ticks, I. persulcatus and I. pavlovskyi (1343 and 92 adults, respectively). Two sets of primers and probes for RT-PCR, with uvrA, glpQ and nifS genes as targets, were designed to detect four Borrelia genospecies in positive samples. The average prevalence of Borrelia sp. was about 40%, with B. afzelii as the most prevalent genospecies. Mixed infections of B. bavariensis and B. garinii were found to be extremely rare. While B. bavariensis was predominant in I. persulcatus, I. pavlovskyi ticks were infected exclusively by B. garinii. The proposed technique proved to be efficient in selection of individual Borrelia species for further genetic analysis, in particular, for multilocus sequence typing. Also, it could be applied for the differentiation of Borrelia genospecies in clinical material.

  11. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi

    PubMed Central

    Stone, Brandee L.; Brissette, Catherine A.

    2017-01-01

    The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi. PMID:28154563

  12. There Is a Method to the Madness: Strategies to Study Host Complement Evasion by Lyme Disease and Relapsing Fever Spirochetes

    PubMed Central

    Marcinkiewicz, Ashley L.; Kraiczy, Peter; Lin, Yi-Pin

    2017-01-01

    Lyme disease and relapsing fever are caused by various Borrelia species. Lyme disease borreliae, the most common vector-borne pathogens in both the U.S. and Europe, are transmitted by Ixodes ticks and disseminate from the site of tick bites to tissues leading to erythema migrans skin rash, arthritis, carditis, and neuroborreliosis. Relapsing fever borreliae, carried by ticks and lice, trigger reoccurring fever episodes. Following transmission, spirochetes survive in the blood to induce bacteremia at the early stages of infection, which is thought to promote evasion of the host complement system. The complement system acts as an important innate immune defense mechanism in humans and vertebrates. Upon activation, the cleaved complement components form complexes on the pathogen surface to eventually promote bacteriolysis. The complement system is negatively modulated by a number of functionally diverse regulators to avoid tissue damage. To evade and inhibit the complement system, spirochetes are capable of binding complement components and regulators. Complement inhibition results in bacterial survival in serum (serum resistance) and is thought to promote bloodstream survival, which facilitates spirochete dissemination and disease manifestations. In this review, we discuss current methodologies to elucidate the mechanisms of Borrelia spp. that promote serum resistance and bloodstream survival, as well as novel methods to study factors responsible for bloodstream survival of Lyme disease borreliae that can be applied to relapsing fever borreliae. Understanding the mechanisms these pathogens utilize to evade the complement system will ultimately aid in the development of novel therapeutic strategies and disease prevention to improve human health. PMID:28303129

  13. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    SciTech Connect

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  14. Transformation of the Lyme disease spirochete Borrelia burgdorferi with heterologous DNA.

    PubMed

    Stevenson, B; Bono, J L; Elias, A; Tilly, K; Rosa, P

    1998-09-01

    Studies of the spirochete Borrelia burgdorferi have been hindered by the scarcity of genetic tools that can be used in these bacteria. For the first time, a method has been developed by which heterologous DNA (DNA without a naturally occurring B. burgdorferi homolog) can be introduced into and persistently maintained by B. burgdorferi. This technique uses integration of circular DNA into the bacterial genome via a single-crossover event. The ability to transform B. burgdorferi with heterologous DNA will now permit a wide range of experiments on the biology of these bacteria and their involvement in the many facets of Lyme disease.

  15. Tick-borne Relapsing Fever and Borrelia hermsii, Los Angeles County, California, USA

    PubMed Central

    Raffel, Sandra J.; Schrumpf, Merry E.; Webster, Larry S.; Marques, Adriana R.; Spano, Robyn; Rood, Michael; Burns, Joe; Hu, Renjie

    2009-01-01

    The primary cause of tick-borne relapsing fever in western North America is Borrelia hermsii, a rodent-associated spirochete transmitted by the fast-feeding soft tick Ornithodoros hermsi. We describe a patient who had an illness consistent with relapsing fever after exposure in the mountains near Los Angeles, California, USA. The patient’s convalescent-phase serum was seropositive for B. hermsii but negative for several other vector-borne bacterial pathogens. Investigations at the exposure site showed the presence of O. hermsi ticks infected with B. hermsii and the presence of rodents that were seropositive for the spirochete. We determined that this tick-borne disease is endemic to the San Gabriel Mountains near the greater Los Angeles metropolitan area. PMID:19624916

  16. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations.

    PubMed

    Rollend, Lindsay; Fish, Durland; Childs, James E

    2013-02-01

    Transovarial transmission (TOT) of Borrelia burgdorferi (sensu lato), the agent of Lyme disease, by the Ixodes persulcatus group of hard ticks (Ixodidae) has frequently been reported in the literature since the discovery of Lyme disease 1982. Evidence for and against TOT by B. burgdorferi has led to uncertainty and confusion in the literature, causing misconceptions that may have public health consequences. In this report, we review the published information implicating B. burgdorferi as a bacterium transovarially transmitted among ticks of the Ixodes persulcatus group and present new data indicating the transovarially transmitted agent is actually Borrelia miyamotoi. B. miyamotoi, first described in 1995, is antigenically and phylogenetically related to B. burgdorferi, although more closely related to the relapsing fever-group Borrelia typically transmitted by soft ticks (Argasidae). Borrelia infections of unfed larvae derived from egg clutches of wild-caught Ixodes scapularis are demonstrated to result from transovarial transmission of B. miyamotoi, not B. burgdorferi. The presence of this second Borrelia species, apparently sympatric with B. burgdorferi worldwide also may explain other confusing observations reported on Borrelia/Ixodes relationships.

  17. Hypothetical Protein BB0569 Is Essential for Chemotaxis of the Lyme Disease Spirochete Borrelia burgdorferi

    PubMed Central

    Zhang, Kai; Liu, Jun; Charon, Nyles W.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi has five putative methyl-accepting chemotaxis proteins (MCPs). In this report, we provide evidence that a hypothetical protein, BB0569, is essential for the chemotaxis of B. burgdorferi. While BB0569 lacks significant homology to the canonical MCPs, it contains a conserved domain (spanning residues 110 to 170) that is often evident in membrane-bound MCPs such as Tar and Tsr of Escherichia coli. Unlike Tar and Tsr, BB0569 lacks transmembrane regions and recognizable HAMP and methylation domains and is similar to TlpC, a cytoplasmic chemoreceptor of Rhodobacter sphaeroides. An isogenic mutant of BB0569 constantly runs in one direction and fails to respond to attractants, indicating that BB0569 is essential for chemotaxis. Immunofluorescence, green fluorescent protein (GFP) fusion, and cryo-electron tomography analyses demonstrate that BB0569 localizes at the cell poles and is required for chemoreceptor clustering at the cell poles. Protein cross-linking studies reveal that BB0569 forms large protein complexes with MCP3, indicative of its interactions with other MCPs. Interestingly, analysis of B. burgdorferi mcp mutants shows that inactivation of either mcp2 or mcp3 reduces the level of BB0569 substantially and that such a reduction is caused by protein turnover. Collectively, these results demonstrate that the domain composition and function of BB0569 are similar in some respects to those of TlpC but that these proteins are different in their cellular locations, further highlighting that the chemotaxis of B. burgdorferi is unique and different from the Escherichia coli and Salmonella enterica paradigm. IMPORTANCE Spirochete chemotaxis differs substantially from the Escherichia coli and Salmonella enterica paradigm, and the basis for controlling the rotation of the bundles of periplasmic flagella at each end of the cell is unknown. In recent years, Borrelia burgdorferi, the causative agent of Lyme disease, has

  18. Reservoir competence of Microtus pennsylvanicus (Rodentia: Cricetidae) for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R.

    1998-01-01

    The reservoir competence of the meadow vole, Microtus pennsylvanicus Ord, for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner was established on Patience Island, RI. Meadow voles were collected from 5 locations throughout Rhode Island. At 4 of the field sites, M. pennsylvanicus represented only 4.0% (n = 141) of the animals captured. However, on Patience Island, M. pennsylvanicus was the sole small mammal collected (n = 48). Of the larval Ixodes scapularis Say obtained from the meadow voles on Patience Island, 62% (n = 78) was infected with B. burgdorferi. Meadow voles from all 5 locations were successfully infected with B. burgdorferi in the laboratory and were capable of passing the infection to xenodiagnostic I. scapularis larvae for 9 wk. We concluded that M. pennsylvanicus was physiologically capable of maintaining B. burgdorferi infection. However, in locations where Peromyscus leucopus (Rafinesque) is abundant, the role of M. pennsylvanicus as a primary reservoir for B. burgdorferi was reduced.

  19. Use of T7 RNA polymerase to direct expression of outer Surface Protein A (OspA) from the Lyme disease Spirochete, Borrelia burgdorferi

    NASA Technical Reports Server (NTRS)

    Dunn, John J.; Lade, Barbara N.

    1991-01-01

    The OspA gene from a North American strain of the Lyme disease Spirochete, Borrelia burgdorferi, was cloned under the control of transciption and translation signals from bacteriophage T7. Full-length OspA protein, a 273 amino acid (31kD) lipoprotein, is expressed poorly in Escherichia coli and is associated with the insoluble membrane fraction. In contrast, a truncated form of OspA lacking the amino-terminal signal sequence which normally would direct localization of the protein to the outer membrane is expressed at very high levels (less than or equal to 100 mg/liter) and is soluble. The truncated protein was purified to homogeneity and is being tested to see if it will be useful as an immunogen in a vaccine against Lyme disease. Circular dichroism and fluorescence spectroscopy was used to characterize the secondary structure and study conformational changes in the protein. Studies underway with other surface proteins from B burgdorferi and a related spirochete, B. hermsii, which causes relapsing fever, leads us to conclude that a strategy similar to that used to express the truncated OspA can provide a facile method for producing variations of Borrelia lipoproteins which are highly expressed in E. coli and soluble without exposure to detergents.

  20. Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi, isolated from ticks throughout California.

    PubMed

    Schwan, T G; Schrumpf, M E; Karstens, R H; Clover, J R; Wong, J; Daugherty, M; Struthers, M; Rosa, P A

    1993-12-01

    Previous studies describing the occurrence and molecular characteristics of Lyme disease spirochetes, Borrelia burgdorferi, from California have been restricted primarily to isolates obtained from the north coastal region of this large and ecologically diverse state. Our objective was to look for and examine B. burdorferi organisms isolated from Ixodes pacificus ticks collected from numerous regions spanning most parts of California where this tick is found. Thirty-one isolates of B. burgdorferi were examined from individual or pooled I. pacificus ticks collected from 25 counties throughout the state. One isolate was obtained from ticks collected at Wawona Campground in Yosemite National Park, documenting the occurrence of the Lyme disease spirochete in an area of intensive human recreational use. One isolate from an Ixodes neotomae tick from an additional county was also examined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblot analysis, agarose gel electrophoresis, Southern blot analysis, and the polymerase chain reaction were used to examine the molecular and genetic determinants of these uncloned, low-passage-number isolates. All of the isolates were identified as B. burgdorferi by their protein profiles and reactivities with monoclonal and polyclonal antibodies, and all the isolates were typed by the polymerase chain reaction as North American-type spirochetes (B. burgdorferi sensu stricto). Although products of the ospAB locus were identified in protein analyses in all of the isolates, several isolates contained deleted forms of this locus that would result in the expression of chimeric OspA-OspB proteins. The analysis of OspC demonstrated that this protein was widely conserved among the isolates but was also quite variable in its molecular mass and the amount of it that was expressed.

  1. Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes.

    PubMed

    Dudek, Slawomir; Ziółko, Ewa; Kimsa-Dudek, Magdalena; Solarz, Krzysztof; Mazurek, Urszula; Wierzgoń, Aleksander; Kokot, Teresa; Muc-Wierzgoń, Małgorzata

    2017-04-01

    The similarity of Lyme borreliosis to other diseases and its complex pathogenesis present diagnostic and therapeutic difficulties. The changes that occur at the cellular and molecular levels after a Borrelia sp. infection still remain poorly understood. Therefore, the present study focused on the expression of TLR and TLR-signaling genes in human dermal fibroblasts in the differentiation of an infection with Borrelia burgdorferi sensu lato spirochetes. Normal human dermal fibroblasts were cultured with the spirochetes of Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii. Total RNA was extracted from the cells using TRIzol reagent. The analysis of the expression profiles of TLRs and TLR-related genes was performed using commercially available oligonucleotide microarrays of HG-U133A. The GeneSpring 12.0 platform and significance analysis of microarrays were used for the statistical analysis of microarray data. The analyses using the oligonucleotide microarray and QRT-PCR techniques permitted to identify the genes encoding TLR4 and TLR6 as specific for infection with B. afzelii and B. burgdorferi sensu stricto. In turn, TLR3 was only characteristic for an infection with B. burgdorferi sensu stricto. There were no changes in the TLR gene expression after infection with B. garinii. Our findings confirm that Borrelia has a major effect on fibroblast gene expression. Further characterization of changes in gene expression may lead to valuable insights into the role of the toll-like receptor in the pathogenesis of Lyme disease and may provide guidelines for the development of diagnostic markers for an infection with a particular Borrelia genospecies. Moreover, this will help to identify better treatment strategies for Lyme disease.

  2. Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed Central

    Dunn, J J; Buchstein, S R; Butler, L L; Fisenne, S; Polin, D S; Lade, B N; Luft, B J

    1994-01-01

    We have determined the complete nucleotide sequence of a small circular plasmid from the spirochete Borrelia burgdorferi Ip21, the agent of Lyme disease. The plasmid (cp8.3/Ip21) is 8,303 bp long, has a 76.6% A+T content, and is unstable upon passage of cells in vitro. An analysis of the sequence revealed the presence of two nearly perfect copies of a 184-bp inverted repeat sequence separated by 2,675 bp containing three closely spaced, but nonoverlapping, open reading frames (ORFs). Each inverted repeat ends in sequences that may function as signals for the initiation of transcription and translation of flanking plasmid sequences. A unique oligonucleotide probe based on the repeated sequence showed that the DNA between the repeats is present predominantly in a single orientation. Additional copies of the repeat were not detected elsewhere in the Ip21 genome. An analysis for potential ORFs indicates that the plasmid has nine highly probable protein-coding ORFs and one that is less probable; together, they occupy almost 71% of the nucleotide sequence. Analysis of the deduced amino acid sequences of the ORFs revealed one (ORF-9) with features in common with Borrelia lipoproteins and another (ORF-2) having limited homology with a replication protein, RepC, from a gram-positive plasmid that replicates by a rolling circle (RC) mechanism. Known collectively as RC plasmids, such plasmids require a double-stranded origin at which the Rep protein nicks the DNA to generate a single-stranded replication intermediate. cp8.3/Ip21 has three copies of the heptameric motif characteristically found at a nick site of most RC plasmids. These observations suggest that cp8.3/Ip21 may replicate by an RC mechanism. Images PMID:8169221

  3. Role of Endotoxin in the Pathogenesis of Louse-borne Relapsing Fever and in the Mechanism of the Jarisch-Herxheimer Reaction Following Treatment of Louse-borne Relapsing Fever

    DTIC Science & Technology

    1977-12-01

    Louse-borne relapsing fever is an acute febrile illness caused by the spirochete Borrelia recurrentis and transmitted to man by infected body lice...shown to contain lipopolysaccharide (46), but extracted spirochetal lipopolysaccharides contained no pyrogenic activity for rabbits (47). Borreliae have...investigators. Mergenhagen et al extracted lipopolysaccharides from Borrelia vincentii, B. buccalis, and small oral treponemes and found them to be

  4. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Ginsberg, Howard S.; Buckley, P.A.; Balmforth, Maxon G.; Zhioua, Elyes; Mitra, Shaibal; Buckley, Francine G.

    2005-01-01

    Reservoir competence for the Lyme disease spirochete, Borrelia burgdorferi, was tested for six species of native North American birds: American robin, gray catbird, brown thrasher, eastern towhee, song sparrow, and northern cardinal. Wild birds collected by mist netting on Fire Island, NY, were held in a field laboratory in cages over water and locally collected larval ticks were placed on the birds, harvested from the water after engorgement, and tested for infection by direct fluorescent-antibody staining after molting to the nymphal stage. American robins were competent reservoirs, infecting 16.1% of larvae applied to wild-caught birds, compared with 0% of control ticks placed on uninfected laboratory mice. Robins that were previously infected in the laboratory by nymphal feeding infected 81.8% of applied larvae. Wild-caught song sparrows infected 4.8% of applied larvae and 21.1% when infected by nymphal feeding. Results suggest moderate levels of reservoir competence for northern cardinals, lower levels for gray catbirds, and little evidence of reservoir competence for eastern towhees or brown thrashers. Lower infection rates in larvae applied to wild-caught birds compared with birds infected in the laboratory suggest that infected birds display temporal variability in infectiousness to larval ticks. Engorged larvae drop from birds abundantly during daylight, so the abundance of these bird species in the peridomestic environment suggests that they might contribute infected ticks to lawns and gardens.

  5. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi

    PubMed Central

    Novak, Elizabeth A.; Sultan, Syed Z.; Motaleb, Md. A.

    2014-01-01

    In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease. PMID:24822172

  6. Glycerophosphodiester phosphodiesterase gene (glpQ) of Borrelia lonestari identified as a target for differentiating Borrelia species associated with hard ticks (Acari:Ixodidae).

    PubMed

    Bacon, Rendi Murphree; Pilgard, Mark A; Johnson, Barbara J B; Raffel, Sandra J; Schwan, Tom G

    2004-05-01

    A glpQ ortholog was identified in DNA from Borrelia lonestari-positive Amblyomma americanum, providing further evidence that B. lonestari is more closely related to the relapsing fever group spirochetes than to borreliae that cause Lyme disease. This finding provides a basis for developing diagnostic assays to differentiate species of borrelia transmitted by hard ticks.

  7. Borrelia burgdorferi Sensu Lato Spirochetes in Wild Birds in Northwestern California: Associations with Ecological Factors, Bird Behavior and Tick Infestation

    PubMed Central

    Newman, Erica A.; Eisen, Lars; Eisen, Rebecca J.; Fedorova, Natalia; Hasty, Jeomhee M.; Vaughn, Charles; Lane, Robert S.

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States. PMID:25714376

  8. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation.

    PubMed

    Newman, Erica A; Eisen, Lars; Eisen, Rebecca J; Fedorova, Natalia; Hasty, Jeomhee M; Vaughn, Charles; Lane, Robert S

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States.

  9. Relapsing fever group Borrelia in Southern California rodents.

    PubMed

    Nieto, Nathan C; Teglas, Mike B

    2014-09-01

    Wild rodent reservoir host species were surveyed prospectively for infection with Borrelia hermsii, the causative agent of tick-borne relapsing fever in the western United States. Trapping occurred during the summer of 2009-2012 at field sites surrounding Big Bear Lake, CA, a region where human infection has been reported for many years. Using quantitative polymerase chain reaction (qPCR), we tested 207 rodents from 11 species and found chipmunks (Tamias spp.) and a woodrat (Neotoma macrotis) infected. Chipmunks represented the majority of captures at these sites. Sixteen of the 207 (7.7%; CI = 4.6-12.4) animals were qPCR-positive for Borrelia spp. associated with relapsing fever, and of those, we obtained bacterial DNA sequences from eight. The phylogram made from these sequences depict a clear association with B. hermsii genomic group I. In addition, we identified an infection with Borrelia coriaceae in a Tamias merriami, a potentially nonpathogenic member of the tick-borne relapsing fever group. Our findings support the hypothesis that chipmunk species play an important role in the maintenance of Borrelia species that cause tick-borne relapsing fever in the western United States, and therefore the risk of infection to people.

  10. Novel relapsing fever Borrelia detected in African penguins (Spheniscus demersus) admitted to two rehabilitation centers in South Africa.

    PubMed

    Yabsley, Michael J; Parsons, Nola J; Horne, Elizabeth C; Shock, Barbara C; Purdee, Michaelle

    2012-03-01

    The African penguin, Spheniscus demersus, the only penguin species that breeds in Africa, is endangered, and several diseases including avian malaria, babesiosis, and aspergillosis are common in some populations. From 2002 to 2010, spirochetes morphologically consistent with Borrelia were observed on thin blood smears from 115 of 8,343 (1.4%) African penguins admitted to rehabilitation centers in the Western Cape and Eastern Cape provinces of South Africa. Prevalence rates were significantly higher among chicks and juveniles compared with adults and for birds sampled during the summer months of October to February compared with winter months. The majority of infected birds were ultimately released, despite lack of antibiotic treatment; however, at least one bird is believed to have died of borreliosis based on characteristic gross and microscopic lesions. Analysis of partial flaB gene sequences indicated this was a relapsing fever Borrelia most similar to a Borrelia sp. detected in soft ticks from a seabird colony in Japan. This represents the fourth report of a relapsing fever Borrelia sp. in an avian species and highlights the need for additional studies of potentially pathogenic organisms infecting the African penguin in South Africa.

  11. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells

    PubMed Central

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-01-01

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae—a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense” relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum. PMID:27506799

  12. Blood-Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria

    PubMed Central

    Fotso Fotso, Aurélien; Angelakis, Emmanouil; Mouffok, Nadjet; Drancourt, Michel; Raoult, Didier

    2015-01-01

    To improve the knowledge base of Borrelia in north Africa, we tested 257 blood samples collected from febrile patients in Oran, Algeria, between January and December 2012 for Borrelia species using flagellin gene polymerase chain reaction sequencing. A sequence indicative of a new Borrelia sp. named Candidatus Borrelia algerica was detected in one blood sample. Further multispacer sequence typing indicated this Borrelia sp. had 97% similarity with Borrelia crocidurae, Borrelia duttonii, and Borrelia recurrentis. In silico comparison of Candidatus B. algerica spacer sequences with those of Borrelia hispanica and Borrelia garinii revealed 94% and 89% similarity, respectively. Candidatus B. algerica is a new relapsing fever Borrelia sp. detected in Oran. Further studies may help predict its epidemiological importance. PMID:26416117

  13. Blood-Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria.

    PubMed

    Fotso Fotso, Aurélien; Angelakis, Emmanouil; Mouffok, Nadjet; Drancourt, Michel; Raoult, Didier

    2015-11-01

    To improve the knowledge base of Borrelia in north Africa, we tested 257 blood samples collected from febrile patients in Oran, Algeria, between January and December 2012 for Borrelia species using flagellin gene polymerase chain reaction sequencing. A sequence indicative of a new Borrelia sp. named Candidatus Borrelia algerica was detected in one blood sample. Further multispacer sequence typing indicated this Borrelia sp. had 97% similarity with Borrelia crocidurae, Borrelia duttonii, and Borrelia recurrentis. In silico comparison of Candidatus B. algerica spacer sequences with those of Borrelia hispanica and Borrelia garinii revealed 94% and 89% similarity, respectively. Candidatus B. algerica is a new relapsing fever Borrelia sp. detected in Oran. Further studies may help predict its epidemiological importance.

  14. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird

    PubMed Central

    2014-01-01

    Background The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. Methods Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. Results Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. Conclusions Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia

  15. Metamorphosis of Borrelia burgdorferi organisms--RNA, lipid and protein composition in context with the spirochetes' shape.

    PubMed

    Al-Robaiy, Samiya; Dihazi, Hassan; Kacza, Johannes; Seeger, Johannes; Schiller, Jürgen; Huster, Daniel; Knauer, Jens; Straubinger, Reinhard K

    2010-12-01

    Borrelia burgdorferi, the agent of Lyme borreliosis, has the ability to undergo morphological transformation from a motile spirochetal to non-motile spherical shape when it encounters unfavorable conditions. However, little information is available on the mechanism that enables the bacterium to change its shape and whether major components of the cells--nucleic acids, proteins, lipids--are possibly modified during the process. Deducing from investigations utilizing electron microscopy, it seems that shape alteration begins with membrane budding followed by folding of the protoplasmatic cylinder inside the outer surface membrane. Scanning electron microscopy confirmed that a deficiency in producing functioning periplasmic flagella did not hinder sphere formation. Further, it was shown that the spirochetes' and spheres' lipid compositions were indistinguishable. Neither phosphatidylcholine nor phosphatidylglycerol were altered by the structural transformation. In addition, no changes in differential protein expression were detected during this process. However, minimal degradation of RNA and a reduced antigen-antibody binding activity were observed with advanced age of the spheres. The results of our comparisons and the failure to generate mutants lacking the ability to convert to spheres suggest that the metamorphosis of B. burgdorferi results in a conditional reconstruction of the outer membrane. The spheres, which appear to be more resistant to unfavorable conditions and exhibit reduced immune reactivity when compared to spirochetes, might allow the B. burgdorferi to escape complete clearance and possibly ensure long-term survival in the host.

  16. The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia

    PubMed Central

    2013-01-01

    Background Lyme neuroborreliosis (LNB), caused by the spirochete Borrelia burgdorferi, affects both the peripheral and the central nervous systems. Radiculitis or nerve root inflammation, which can cause pain, sensory loss, and weakness, is the most common manifestation of peripheral LNB in humans. We previously reported that rhesus monkeys infected with B. burgdorferi develop radiculitis as well as inflammation in the dorsal root ganglia (DRG), with elevated levels of neuronal and satellite glial cell apoptosis in the DRG. We hypothesized that B. burgdorferi induces inflammatory mediators in glial and neuronal cells and that this inflammatory milieu precipitates glial and neuronal apoptosis. Methods To model peripheral neuropathy in LNB we incubated normal rhesus DRG tissue explants with live B. burgdorferi ex vivo and identified immune mediators, producer cells, and verified the presence of B. burgdorferi in tissue sections by immunofluorescence staining and confocal microscopy. We also set up primary cultures of DRG cells from normal adult rhesus macaques and incubated the cultures with live B. burgdorferi. Culture supernatants were subjected to multiplex ELISA to detect immune mediators, while the cells were evaluated for apoptosis by the in situ TUNEL assay. A role for inflammation in mediating apoptosis was assessed by evaluating the above phenomena in the presence and absence of various concentrations of the anti-inflammatory drug dexamethasone. As Schwann cells ensheath the dorsal roots of the DRG, we evaluated the potential of live B. burgdorferi to induce inflammatory mediators in human Schwann cell (HSC) cultures. Results Rhesus DRG tissue explants exposed to live B. burgdorferi showed localization of CCL2 and IL-6 in sensory neurons, satellite glial cells and Schwann cells while IL-8 was seen in satellite glial cells and Schwann cells. Live B. burgdorferi induced elevated levels of IL-6, IL-8 and CCL2 in HSC and DRG cultures and apoptosis of sensory

  17. Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe.

    PubMed

    Dubska, Lenka; Literak, Ivan; Kocianova, Elena; Taragelova, Veronika; Sychra, Oldrich

    2009-02-01

    Borrelia spirochetes in bird-feeding ticks were studied in the Czech Republic. During the postbreeding period (July to September 2005), 1,080 passerine birds infested by 2,240 Ixodes ricinus subadult ticks were examined. Borrelia garinii was detected in 22.2% of the ticks, Borrelia valaisiana was detected in 12.8% of the ticks, Borrelia afzelii was detected in 1.6% of the ticks, and Borrelia burgdorferi sensu stricto was detected in 0.3% of the ticks. After analysis of infections in which the blood meal volume and the stage of the ticks were considered, we concluded that Eurasian blackbirds (Turdus merula), song thrushes (Turdus philomelos), and great tits (Parus major) are capable of transmitting B. garinii; that juvenile blackbirds and song thrushes are prominent reservoirs for B. garinii spirochetes; that some other passerine birds investigated play minor roles in transmitting B. garinii; and that the presence B. afzelii in ticks results from infection in a former stage. Thus, while B. garinii transmission is associated with only a few passerine bird species, these birds have the potential to distribute millions of Lyme disease spirochetes between urban areas.

  18. Differential Role of Passerine Birds in Distribution of Borrelia Spirochetes, Based on Data from Ticks Collected from Birds during the Postbreeding Migration Period in Central Europe▿

    PubMed Central

    Dubska, Lenka; Literak, Ivan; Kocianova, Elena; Taragelova, Veronika; Sychra, Oldrich

    2009-01-01

    Borrelia spirochetes in bird-feeding ticks were studied in the Czech Republic. During the postbreeding period (July to September 2005), 1,080 passerine birds infested by 2,240 Ixodes ricinus subadult ticks were examined. Borrelia garinii was detected in 22.2% of the ticks, Borrelia valaisiana was detected in 12.8% of the ticks, Borrelia afzelii was detected in 1.6% of the ticks, and Borrelia burgdorferi sensu stricto was detected in 0.3% of the ticks. After analysis of infections in which the blood meal volume and the stage of the ticks were considered, we concluded that Eurasian blackbirds (Turdus merula), song thrushes (Turdus philomelos), and great tits (Parus major) are capable of transmitting B. garinii; that juvenile blackbirds and song thrushes are prominent reservoirs for B. garinii spirochetes; that some other passerine birds investigated play minor roles in transmitting B. garinii; and that the presence B. afzelii in ticks results from infection in a former stage. Thus, while B. garinii transmission is associated with only a few passerine bird species, these birds have the potential to distribute millions of Lyme disease spirochetes between urban areas. PMID:19060160

  19. Toward a Complete North American Borrelia miyamotoi Genome

    PubMed Central

    Replogle, Adam; Batra, Dhwani; Rowe, Lori A.; Sexton, Christopher; Dolan, Marc; Connally, Neeta; Petersen, Jeannine M.

    2017-01-01

    ABSTRACT Borrelia miyamotoi, of the relapsing-fever spirochete group, is an emerging tick-borne pathogen causing human illness in the northern hemisphere. Here, we present the chromosome, eight extrachromosomal linear plasmids, and a draft sequence for five circular and one linear plasmid of a Borrelia miyamotoi strain isolated from an Ixodes sp. tick from Connecticut, USA. PMID:28153903

  20. A novel relapsing fever Borrelia sp. infects the salivary glands of the molted hard tick, Amblyomma geoemydae.

    PubMed

    Takano, Ai; Sugimori, Chieko; Fujita, Hiromi; Kadosaka, Teruki; Taylor, Kyle R; Tsubota, Toshio; Konnai, Satoru; Tajima, Tomoko; Sato, Kozue; Watanabe, Haruo; Ohnishi, Makoto; Kawabata, Hiroki

    2012-09-01

    A novel relapsing fever Borrelia sp. was found in Amblyomma geoemydae in Japan. The novel Borrelia sp. was phylogenetically related to the hard (ixodid) tick-borne relapsing fever Borrelia spp. Borrelia miyamotoi and B. lonestari. The novel relapsing fever Borrelia sp. was detected in 39 A. geoemydae (39/274: 14.2%), of which 14 (14/274: 5.1%) were co-infected with the novel relapsing fever Borrelia sp. and Borrelia sp. tAG, one of the reptile-associated borreliae. Transstadial transmission of the novel relapsing fever Borrelia sp. occurred in the tick midgut and the salivary glands, although Borrelia sp. tAG was only detected in the tick midgut. The difference of the borrelial niche in molted ticks might be associated with borrelial characterization.

  1. Vector competence of the blacklegged tick, Ixodes scapularis, for the recently recognized Lyme borreliosis spirochete Candidatus Borrelia mayonii.

    PubMed

    Dolan, Marc C; Hojgaard, Andrias; Hoxmeier, J Charles; Replogle, Adam J; Respicio-Kingry, Laurel B; Sexton, Christopher; Williams, Martin A; Pritt, Bobbi S; Schriefer, Martin E; Eisen, Lars

    2016-07-01

    A novel species within the Borrelia burgdorferi sensu lato complex, provisionally named Borrelia mayonii, was recently found to be associated with Lyme borreliosis in the Upper Midwest of the United States. Moreover, B. mayonii was detected from host-seeking Ixodes scapularis, the primary vector of B. burgdorferi sensu stricto in the eastern United States. We therefore conducted a study to confirm the experimental vector competence of I. scapularis for B. mayonii (strain MN14-1420), using colony ticks originating from adults collected in Connecticut and CD-1 white mice. Larvae fed on mice 10 weeks after needle-inoculation with B. mayonii acquired spirochetes and maintained infection through the nymphal stage at an average rate of 12.9%. In a transmission experiment, 40% of naïve mice exposed to a single infected nymph developed viable infections, as compared with 87% of mice fed upon by 2-3 infected nymphs. Transmission of B. mayonii by one or more feeding infected nymphs was uncommon up to 48h after attachment (one of six mice developed viable infection) but occurred frequently when nymphs were allowed to remain attached for 72-96h or feed to completion (11 of 16 mice developed viable infection). Mice infected via tick bite maintained viable infection with B. mayonii, as determined by ear biopsy culture, for at least 28 weeks. Our results demonstrate that I. scapularis is capable of serving as a vector of B. mayonii. This finding, together with data showing that field-collected I. scapularis are infected with B. mayonii, indicate that I. scapularis likely is a primary vector to humans of this recently recognized Lyme borreliosis spirochete.

  2. Hypercholesterolemia and ApoE deficiency result in severe infection with Lyme disease and relapsing-fever Borrelia.

    PubMed

    Toledo, Alvaro; Monzón, Javier D; Coleman, James L; Garcia-Monco, Juan C; Benach, Jorge L

    2015-04-28

    The Lyme disease (Borrelia burgdorferi) and relapsing-fever (Borrelia hispanica) agents have distinct infection courses, but both require cholesterol for growth. They acquire cholesterol from the environment and process it to form cholesterol glycolipids that are incorporated onto their membranes. To determine whether higher levels of serum cholesterol could enhance the organ burdens of B. burgdorferi and the spirochetemia of B. hispanica in laboratory mice, apolipoprotein E (apoE)-deficient and low-density lipoprotein receptor (LDLR)-deficient mice that produce large amounts of serum cholesterol were infected with both spirochetes. Both apoE- and LDLR-deficient mice infected with B. burgdorferi had an increased number of spirochetes in the joints and inflamed ankles compared with the infected wild-type (WT) mice, suggesting that mutations in cholesterol transport that result in high serum cholesterol levels can affect the pathogenicity of B. burgdorferi. In contrast, elevated serum cholesterol did not lead to an increase in the spirochetemia of B. hispanica. In the LDLR-deficient mice, the course of infection was indistinguishable from the WT mice. However, infection of apoE-deficient mice with B. hispanica resulted in a longer spirochetemia and increased mortality. Together, these results argue for the apoE deficiency, and not hypercholesterolemia, as the cause for the increased severity with B. hispanica. Serum hyperlipidemias are common human diseases that could be a risk factor for increased severity in Lyme disease.

  3. Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete.

    PubMed

    Moon, Ki Hwan; Hobbs, Gerry; Motaleb, M A

    2016-06-01

    Borrelia burgdorferi possesses a sophisticated chemotaxis signaling system; however, the roles of the majority of the chemotaxis proteins in the infectious life cycle have not yet been demonstrated. Specifically, the role of CheD during host colonization has not been demonstrated in any bacterium. Here, we systematically characterized the B. burgdorferi CheD homolog using genetics and biochemical and mouse-tick-mouse infection cycle studies. Bacillus subtilis CheD plays an important role in chemotaxis by deamidation of methyl-accepting chemotaxis protein receptors (MCPs) and by increasing the receptor kinase activity or enhancing CheC phosphatase activity, thereby regulating the levels of the CheY response regulator. Our biochemical analysis indicates that B. burgdorferi CheD significantly enhances CheX phosphatase activity by specifically interacting with the phosphatase. Moreover, CheD specifically binds two of the six MCPs, indicating that CheD may also modulate the receptor proteins. Although the motility of the cheD mutant cells was indistinguishable from that of the wild-type cells, the mutant did exhibit reduced chemotaxis. Importantly, the mutant showed significantly reduced infectivity in C3H/HeN mice via needle inoculation. Mouse-tick-mouse infection assays indicated that CheD is dispensable for acquisition or transmission of spirochetes; however, the viability of cheD mutants in ticks is marginally reduced compared to that of the wild-type or complemented cheD spirochetes. These data suggest that CheD plays an important role in the chemotaxis and pathogenesis of B. burgdorferi We propose potential connections between CheD, CheX, and MCPs and discuss how these interactions play critical roles during the infectious life cycle of the spirochete.

  4. Large Linear Plasmids of Borrelia Species That Cause Relapsing Fever

    PubMed Central

    Porcella, Stephen F.; Raffel, Sandra J.; Schwan, Tom G.; Barbour, Alan G.

    2013-01-01

    Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids. PMID:23749977

  5. Large linear plasmids of Borrelia species that cause relapsing fever.

    PubMed

    Miller, Shelley Campeau; Porcella, Stephen F; Raffel, Sandra J; Schwan, Tom G; Barbour, Alan G

    2013-08-01

    Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.

  6. Antigenic variation among Borrelia spp. in relapsing fever.

    PubMed Central

    Kehl, K S; Farmer, S G; Komorowski, R A; Knox, K K

    1986-01-01

    Seven antigens of Borrelia hermsii, B. parkeri, and B. turicatae with isoelectric points in the range of 4.4 to 5.0 and molecular masses of 40 to 43 kilodaltons played a role in the relapse phenomenon of relapsing fever. Based upon location of the antigens in the outer envelope, the molecular weight, and Western blot analysis, the antigens from each phase of spirochetemia appeared to be a mixture of the serotype-specific antigens of cloned B. hermsii. Images PMID:3536750

  7. Isolation and characterization of Borrelia hermsii associated with two foci of tick-borne relapsing fever in California.

    PubMed

    Fritz, Curtis L; Bronson, Lawrence R; Smith, Charles R; Schriefer, Martin E; Tucker, James R; Schwan, Tom G

    2004-03-01

    Relapsing fever, caused by the spirochete Borrelia hermsii and transmitted by the soft tick Ornithodoros hermsi, is endemic in many rural mountainous areas of California. Between 1996 and 1998, 12 cases of relapsing fever associated with two exposure sites in northern California were investigated. Follow-up at exposure sites included collection of soft ticks and serum specimens from sylvatic rodents. Attempts to cultivate spirochetes were made through inoculation of patient blood into mice and by feeding Ornithodoros ticks on mice. Three isolates of B. hermsii were recovered from two blood specimens and one pool of ticks. The protein and plasmid profiles of the three isolates were comparable to those of previous B. hermsii isolates from the western United States. Western immunoblotting of patient sera demonstrated an expanding immunologic response to antigens within four distinct molecular weight regions by 3 to 4 weeks postonset. Antibody to B. hermsii was detected in sera from 4 of 11 yellow-pine chipmunks (Tamias amoenus); no other rodent species collected were seropositive.

  8. Isolation and Characterization of Borrelia hermsii Associated with Two Foci of Tick-Borne Relapsing Fever in California

    PubMed Central

    Fritz, Curtis L.; Bronson, Lawrence R.; Smith, Charles R.; Schriefer, Martin E.; Tucker, James R.; Schwan, Tom G.

    2004-01-01

    Relapsing fever, caused by the spirochete Borrelia hermsii and transmitted by the soft tick Ornithodoros hermsi, is endemic in many rural mountainous areas of California. Between 1996 and 1998, 12 cases of relapsing fever associated with two exposure sites in northern California were investigated. Follow-up at exposure sites included collection of soft ticks and serum specimens from sylvatic rodents. Attempts to cultivate spirochetes were made through inoculation of patient blood into mice and by feeding Ornithodoros ticks on mice. Three isolates of B. hermsii were recovered from two blood specimens and one pool of ticks. The protein and plasmid profiles of the three isolates were comparable to those of previous B. hermsii isolates from the western United States. Western immunoblotting of patient sera demonstrated an expanding immunologic response to antigens within four distinct molecular weight regions by 3 to 4 weeks postonset. Antibody to B. hermsii was detected in sera from 4 of 11 yellow-pine chipmunks (Tamias amoenus); no other rodent species collected were seropositive. PMID:15004063

  9. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States.

    PubMed Central

    Qiu, Wei-Gang; Dykhuizen, Daniel E; Acosta, Michael S; Luft, Benjamin J

    2002-01-01

    Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks. PMID:11901105

  10. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    SciTech Connect

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  11. Prevalence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Blacklegged Ticks, Ixodes scapularis at Hamilton-Wentworth, Ontario

    PubMed Central

    Scott, John D.; Anderson, John F.; Durden, Lance A.; Smith, Morgan L.; Manord, Jodi M.; Clark, Kerry L.

    2016-01-01

    Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region. PMID:27226771

  12. Evidence of a conjugal erythromycin resistance element in the Lyme disease spirochete Borrelia burgdorferi

    PubMed Central

    Jackson, Charlene R.; Boylan, Julie; Frye, Jonathan G.; Gherardini, Frank C.

    2007-01-01

    We report the identification of isolates of Borrelia burgdorferi strain B31 that exhibit an unusual macrolide–lincosamide (ML) or macrolide–lincosamide–streptogramin A (MLSA) antibiotic resistance pattern. Low-passage isolates were resistant to high levels (>100 μg/mL) of erythromycin, spiramycin and the lincosamides but were sensitive to dalfopristin, an analogue of streptogramin B. Interestingly, the high-passage erythromycin-resistant strain B31 was resistant to quinupristin, an analogue of streptogramin A (25 μg/mL). Biochemical analysis revealed that resistance was not due to antibiotic inactivation or energy-dependent efflux but was instead due to modification of ribosomes in these isolates. Interestingly, we were able to demonstrate high-frequency transfer of the resistance phenotype via conjugation from B. burgdorferi to Bacillus subtilis (10−2–10−4) or Enterococcus faecalis (10−5). An intergeneric conjugal system in B. burgdorferi suggests that horizontal gene transfer may play a role in its evolution and is a potential tool for developing new genetic systems to study the pathogenesis of Lyme disease. PMID:17905571

  13. Whole-Genome Sequences of Borrelia bissettii Borrelia valaisiana and Borrelia spielmanii

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett C. M.; Qiu W.-G.; Kraiczy P.; Mongodin E. F.; Luft B. J.; Casjens S. R.

    2012-01-01

    It has been known for decades that human Lyme disease is caused by the three spirochete species Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii. Recently, Borrelia valaisiana, Borrelia spielmanii, and Borrelia bissettii have been associated with Lyme disease. We report the complete genome sequences of B. valaisiana VS116, B. spielmanii A14S, and B. bissettii DN127.

  14. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex).

    PubMed

    Adeolu, Mobolaji; Gupta, Radhey S

    2014-06-01

    The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing

  15. Molecular Typing of Borrelia burgdorferi.

    PubMed

    Wang, Guiqing; Liveris, Dionysios; Mukherjee, Priyanka; Jungnick, Sabrina; Margos, Gabriele; Schwartz, Ira

    2014-08-01

    Borrelia burgdorferi sensu lato is a group of spirochetes belonging to the genus Borrelia in the family of Spirochaetaceae. The spirochete is transmitted between reservoirs and hosts by ticks of the family Ixodidae. Infection with B. burgdorferi in humans causes Lyme disease or Lyme borreliosis. Currently, 20 Lyme disease-associated Borrelia species and more than 20 relapsing fever-associated Borrelia species have been described. Identification and differentiation of different Borrelia species and strains is largely dependent on analyses of their genetic characteristics. A variety of molecular techniques have been described for Borrelia isolate speciation, molecular epidemiology, and pathogenicity studies. In this unit, we focus on three basic protocols, PCR-RFLP-based typing of the rrs-rrlA and rrfA-rrlB ribosomal spacer, ospC typing, and MLST. These protocols can be employed alone or in combination for characterization of B. burgdorferi isolates or directly on uncultivated organisms in ticks, mammalian host reservoirs, and human clinical specimens.

  16. Population Structure of the Lyme Borreliosis Spirochete Borrelia burgdorferi in the Western Black-Legged Tick (Ixodes pacificus) in Northern California ▿

    PubMed Central

    Girard, Yvette A.; Travinsky, Bridgit; Schotthoefer, Anna; Fedorova, Natalia; Eisen, Rebecca J.; Eisen, Lars; Barbour, Alan G.; Lane, Robert S.

    2009-01-01

    Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients. PMID:19783741

  17. Borrelia miyamotoi–Associated Neuroborreliosis in Immunocompromised Person

    PubMed Central

    Lobenstein, Sabine; Hermann, Beate; Margos, Gabriele; Fingerle, Volker

    2016-01-01

    Borrelia miyamotoi is a newly recognized human pathogen in the relapsing fever group of spirochetes. We investigated a case of B. miyamotoi infection of the central nervous system resembling B. burgdorferi–induced Lyme neuroborreliosis and determined that this emergent agent of central nervous system infection can be diagnosed with existing methods. PMID:27533748

  18. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector

    PubMed Central

    Revel, Andrew T.; Blevins, Jon S.; Almazán, Consuelo; Neil, Lori; Kocan, Katherine M.; de la Fuente, José; Hagman, Kayla E.; Norgard, Michael V.

    2005-01-01

    Borrelia burgdorferi (Bb), the agent of Lyme disease, is a zoonotic spirochetal bacterium that depends on arthropod (Ixodes ticks) and mammalian (rodent) hosts for its persistence in nature. The quest to identify borrelial genes responsible for Bb's parasitic dependence on these two diverse hosts has been hampered by limitations in the ability to genetically manipulate virulent strains of Bb. Despite this constraint, we report herein the inactivation and genetic complementation of a linear plasmid-25-encoded gene (bbe16) to assess its role in the virulence, pathogenesis, and survival of Bb during its natural life cycle. bbe16 was found to potentiate the virulence of Bb in the murine model of Lyme borreliosis and was essential for the persistence of Bb in Ixodes scapularis ticks. As such, we have renamed bbe16 a gene encoding borrelial persistence in ticks (bpt)A. Although protease accessibility experiments suggested that BptA as a putative lipoprotein is surface-exposed on the outer membrane of Bb, the molecular mechanism(s) by which BptA promotes Bb persistence within its tick vector remains to be elucidated. BptA also was shown to be highly conserved (>88% similarity and >74% identity at the deduced amino acid levels) in all Bb sensu lato strains tested, suggesting that BptA may be widely used by Lyme borreliosis spirochetes for persistence in nature. Given Bb's absolute dependence on and intimate association with its arthropod and mammalian hosts, BptA should be considered a virulence factor critical for Bb's overall parasitic strategy. PMID:15860579

  19. Borrelia burgdorferi CheY2 Is Dispensable for Chemotaxis or Motility but Crucial for the Infectious Life Cycle of the Spirochete.

    PubMed

    Xu, Hui; Sultan, Syed; Yerke, Aaron; Moon, Ki Hwan; Wooten, R Mark; Motaleb, M A

    2017-01-01

    The requirements for bacterial chemotaxis and motility range from dispensable to crucial for host colonization. Even though more than 50% of all sequenced prokaryotic genomes possess at least one chemotaxis signaling system, many of those genomes contain multiple copies of a chemotaxis gene. However, the functions of most of those additional genes are unknown. Most motile bacteria possess at least one CheY response regulator that is typically dedicated to the control of motility and which is usually essential for virulence. Borrelia burgdorferi appears to be notably different, in that it has three cheY genes, and our current studies on cheY2 suggests that it has varied effects on different aspects of the natural infection cycle. Mutants deficient in this protein exhibit normal motility and chemotaxis in vitro but show reduced virulence in mice. Specifically, the cheY2 mutants were severely attenuated in murine infection and dissemination to distant tissues after needle inoculation. Moreover, while ΔcheY2 spirochetes are able to survive normally in the Ixodes ticks, mice fed upon by the ΔcheY2-infected ticks did not develop a persistent infection in the murine host. Our data suggest that CheY2, despite resembling a typical response regulator, functions distinctively from most other chemotaxis CheY proteins. We propose that CheY2 serves as a regulator for a B. burgdorferi virulence determinant that is required for productive infection within vertebrate, but not tick, hosts.

  20. Expression of the Tick-Associated Vtp Protein of Borrelia hermsii in a Murine Model of Relapsing Fever

    PubMed Central

    Marcsisin, Renee A.; Lewis, Eric R. G.; Barbour, Alan G.

    2016-01-01

    Borrelia hermsii, a spirochete and cause of relapsing fever, is notable for its immune evasion by multiphasic antigenic variation within its vertebrate host. This is based on a diverse repertoire of surface antigen genes, only one of which is expressed at a time. Another major surface protein, the Variable Tick Protein (Vtp), is expressed in the tick vector and is invariable at its genetic locus. Given the limited immune systems of ticks, the finding of considerable diversity among the Vtp proteins of different strains of B. hermsii was unexpected. We investigated one explanation for this diversity of Vtp proteins, namely expression of the protein in mammals and a consequent elicitation of a specific immune response. Mice were infected with B. hermsii of either the HS1 or CC1 strain, which have antigenically distinctive Vtp proteins but otherwise have similar repertoires of the variable surface antigens. Subsequently collected sera were examined for antibody reactivities against Vtp and other antigens using Western blot analysis, dot blot, and protein microarray. Week-6 sera of infected mice contained antibodies that were largely specific for the Vtp of the infecting strain and were not attributable to antibody cross-reactivities. The antibody responses of the mice infected with different strains were otherwise similar. Further evidence of in vivo expression of the vtp gene was from enumeration of cDNA sequence reads that mapped to a set of selected B. hermsii genes. This measure of transcription of the infecting strain’s vtp gene was ~10% of that for the abundantly-expressed, serotype-defining variable antigen gene but similar to that of genes known for in vivo expression. The findings of Vtp expression in a vertebrate host and elicitation of a specific anti-Vtp antibody response support the view that balancing selection by host adaptive immunity accounts in part for the observed diversity of Vtp proteins. PMID:26918760

  1. Borrelia miyamotoi disease (BMD): Neither Lyme disease nor relapsing fever

    PubMed Central

    Telford, Sam R.; Goethert, Heidi K.; Molloy, Philip; Berardi, Victor; Chowdri, Hanumara Ram; Gugliotta, Joseph L.; Lepore, Timothy J.

    2015-01-01

    Synopsis Borrelia miyamotoi disease (BMD) is a newly recognized borreliosis globally transmitted by ticks of the Ixodes persulcatus species complex. Once considered to be a tick symbiont with no public health implications, B. miyamotoi is increasingly being recognized as the agent of a nonspecific febrile illness often misdiagnosed as acute Lyme disease without rash, or as ehrlichiosis. The frequency of its diagnosis in the northeastern U.S. is similar to that of HGA. A diagnosis of BMD may be confirmed by PCR analysis of acute blood samples, or by seroconversion using a recombinant GlpQ enzyme immunoassay. As with Lyme disease or HGA, BMD is successfully treated with oral doxycycline or amoxicillin. PMID:26593262

  2. Louse-borne relapsing fever in a refugee from Somalia arriving in Belgium.

    PubMed

    Darcis, Gilles; Hayette, Marie-Pierre; Bontems, Sebastien; Sauvage, Anne-Sophie; Meuris, Christelle; Van Esbroeck, Marjan; Leonard, Philippe

    2016-03-01

    We report a case of louse-borne relapsing fever (LBRF) in a refugee from Somalia who had arrived in Belgium a few days earlier. He complained of myalgia and secondarily presented fever. Blood smears revealed spirochetes later identified as Borrelia recurrentis. LBRF should be considered in countries hosting refugees, particularly those who transit through endemic regions.

  3. Borrelia crocidurae in Ornithodoros ticks from northwestern Morocco: a range extension in relation to climatic change?

    PubMed

    Souidi, Yassine; Boudebouch, Najma; Ezikouri, Sayeh; Belghyti, Driss; Trape, Jean-François; Sarih, M'hammed

    2014-12-01

    Tick-borne relapsing fever (TBRF) is caused by Borrelia spirochetes transmitted to humans by Argasid soft ticks of the genus Ornithodoros. We investigated the presence of Ornithodoros ticks in rodent burrows in nine sites of the Gharb region of northwestern Morocco where we recently documented a high incidence of TBRF in humans. We assessed the Borrelia infection rate by nested PCR and sequencing. All sites investigated were colonized by ticks of the Ornithodoros marocanus complex and a high proportion of burrows (38.4%) were found to be infested. Borrelia infections were observed in 6.8% of the ticks tested. Two Borrelia species were identified by sequencing: B. hispanica and B. crocidurae. The discovery in northwestern Morocco of Ornithodoros ticks infected by B. crocidurae represents a 350 km range extension of this Sahelo-Saharan spirochete in North Africa. The spread of B. crocidurae may be related to the increasing aridity of northwestern Morocco in relation to climate change.

  4. Fibronectin-binding protein of Borrelia hermsii expressed in the blood of mice with relapsing fever.

    PubMed

    Lewis, Eric R G; Marcsisin, Renee A; Campeau Miller, Shelley A; Hue, Fong; Phillips, April; Aucoin, David P; Barbour, Alan G

    2014-06-01

    To identify and characterize surface proteins expressed by the relapsing fever (RF) agent Borrelia hermsii in the blood of infected mice, we used a cell-free filtrate of their blood to immunize congenic naive mice. The resultant antiserum was used for Western blotting of cell lysates, and gel slices corresponding to reactive bands were subjected to liquid chromatography-tandem mass spectrometry, followed by a search of the proteome database with the peptides. One of the immunogens was identified as the BHA007 protein, which is encoded by a 174-kb linear plasmid. BHA007 had sequence features of lipoproteins, was surface exposed by the criteria of in situ protease susceptibility and agglutination of Vtp(-) cells by anti-BHA007 antibodies, and was not essential for in vitro growth. BHA007 elicited antibodies during experimental infection of mice, but immunization with recombinant protein did not confer protection against needle-delivered infection. Open reading frames (ORFs) orthologous to BHA007 were found on large plasmids of other RF species, including the coding sequences for the CihC proteins of Borrelia duttonii and B. recurrentis, but not in Lyme disease Borrelia species. Recombinant BHA007 bound both human and bovine fibronectin with Kd (dissociation constant) values of 22 and 33 nM, respectively, and bound to C4-binding protein with less affinity. The distant homology of BHA007 and its orthologs to BBK32 proteins of Lyme disease species, as well as to previously described BBK32-like proteins in relapsing fever species, indicates that BHA007 is a member of a large family of multifunctional proteins in Borrelia species that bind to fibronectin as well as other host proteins.

  5. Phylogeny of a relapsing fever Borrelia species transmitted by the hard tick Ixodes scapularis.

    PubMed

    Barbour, Alan G

    2014-10-01

    The discovery of Borrelia species that were related to the agents of relapsing fever but were transmitted by hard ticks rather than soft ticks challenged previous taxonomies based largely on microbe-host specificities and geographic considerations. One of these newly-identified organisms is the Borrelia miyamotoi sensu lato strain LB-2001 from North America and transmitted by Ixodes scapularis. This or related strains have been identified as the cause of human disease, but comparatively little is known about their biology or genetics. Using recently acquired chromosome sequence of LB-2001 together with database sequences and additional sequences determined here, I carried out comparisons of the several species of Borrelia, including those in the two major clades: the relapsing fever group of species and the Lyme disease group of species. Phylogenetic inference at the species level was based on four data sets: whole chromosomes of ∼1Mb each, and concatenated sequences of 19 ribosomal protein genes, 3 conserved nucleic acid enzymes (rpoC, recC, and dnaE), and 4 contiguous genes for nucleotide salvage on a large plasmid. Analyses using neighbor-joining, maximum likelihood, and Bayesian methods were largely concordant for each of the trees. They showed that LB-2001 and related hard tick-associated organisms, like Borrelia lonestari, are deeply positioned within the RF group of species and that these organisms did not, as some earlier estimations had suggested, constitute a paraphyletic group. The analyses also provided further evidence that major changes in host ranges and life cycles, such as hard to soft ticks or vice versa, may not correlate well with overall sequence differences. The genetic differences between LB-2001 and B. miyamotoi sensu stricto justify provisional use of the "sensu lato" designation for LB-2001.

  6. Fibronectin-Binding Protein of Borrelia hermsii Expressed in the Blood of Mice with Relapsing Fever

    PubMed Central

    Lewis, Eric R. G.; Marcsisin, Renee A.; Campeau Miller, Shelley A.; Hue, Fong; Phillips, April; AuCoin, David P.

    2014-01-01

    To identify and characterize surface proteins expressed by the relapsing fever (RF) agent Borrelia hermsii in the blood of infected mice, we used a cell-free filtrate of their blood to immunize congenic naive mice. The resultant antiserum was used for Western blotting of cell lysates, and gel slices corresponding to reactive bands were subjected to liquid chromatography-tandem mass spectrometry, followed by a search of the proteome database with the peptides. One of the immunogens was identified as the BHA007 protein, which is encoded by a 174-kb linear plasmid. BHA007 had sequence features of lipoproteins, was surface exposed by the criteria of in situ protease susceptibility and agglutination of Vtp− cells by anti-BHA007 antibodies, and was not essential for in vitro growth. BHA007 elicited antibodies during experimental infection of mice, but immunization with recombinant protein did not confer protection against needle-delivered infection. Open reading frames (ORFs) orthologous to BHA007 were found on large plasmids of other RF species, including the coding sequences for the CihC proteins of Borrelia duttonii and B. recurrentis, but not in Lyme disease Borrelia species. Recombinant BHA007 bound both human and bovine fibronectin with Kd (dissociation constant) values of 22 and 33 nM, respectively, and bound to C4-binding protein with less affinity. The distant homology of BHA007 and its orthologs to BBK32 proteins of Lyme disease species, as well as to previously described BBK32-like proteins in relapsing fever species, indicates that BHA007 is a member of a large family of multifunctional proteins in Borrelia species that bind to fibronectin as well as other host proteins. PMID:24686059

  7. Molecular identification of Borrelia genus in questing hard ticks from Portugal: Phylogenetic characterization of two novel Relapsing Fever-like Borrelia sp.

    PubMed

    Nunes, Mónica; Parreira, Ricardo; Maia, Carla; Lopes, Nádia; Fingerle, Volker; Vieira, M Luísa

    2016-06-01

    In the last decades, several studies have reported pathogenic species of Borrelia related to those that cause Tick-borne Relapsing Fever (RF), but unexpectedly suggesting their transmission by hard ticks, known vectors of Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species, rather than by soft ticks. This study was designed to update the presence of B. burgdorferi s.l. species in ticks from several districts of mainland Portugal, where Ixodes ricinus had been previously described. Ticks (a total of 2915 specimens) were collected in seven districts throughout the country, and analyzed using molecular methods. Three nested-PCR protocols, targeting the flagellin gene (flaB), the intergenic spacer region (IGS) located between 5S and 23S rRNA, and the glpQ gene, and a conventional PCR targeting the 16S rRNA, were used for Borrelia DNA detection. Borrelia DNA was detected in 3% of the ticks from Braga, Vila Real, Lisboa, Setúbal, Évora and Faro districts. The obtained amplicons were sequenced and analyzed by BLASTn, and 15/63 (24%) matched with homologous sequences from Borrelia lusitaniae and 15/63 (24%) with B. garinii, being these the most prevalent species. DNA from B. burgdorferi sensu stricto (s.s.), B. valaisiana and B. afzelii were detected in 7/63 (11%), 6/63 (10%), and 2/63 (3%) of the specimens, respectively. Unexpectedly, DNA sequence (flaB) analysis from eight (13%) samples, two from Rhipicephalus sanguineus and six from Haemaphysalis punctata tick species, revealed high homology with RF-like Borrelia. Phylogenetic analyses obtained from three genetic markers (16S rRNA, flaB, and glpQ) confirmed their congruent inclusion in a strongly supported RF cluster, where they segregated in two subgroups which differ from the other Relapsing Fever species. Therefore, the results confirm the circulation of multiple species of B. burgdorferi s.l. over a wide geographic range, covering most of the Portuguese mainland territory. Surprisingly, the obtained data

  8. Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.

    DTIC Science & Technology

    1979-11-30

    ANTIBIOTIC-ENHANCED P)4ASOCYTOSIS OF ’ BORRELIA RECURRENT!S* BY B-ETC(U) UCNOV 79 T BUTLER N00014-77-C-0050 W4CLASSIFIEO TR-3 N LIM,1 li 13 2 . 1112...enhanced Phagocytosis of Borrelia recurrentis by Blood Polymorphonuclear Leukocytes 0 ( ---- by rm 046omas / t’e Prepared for Publication in W Infection...jo? Butler 2 Abstract. "The removal of Borrelia spirochetes from the blood in relapsing fever was studied by examining patients’ blood phagocytic

  9. Borrelia burgdorferi enzyme-linked immunosorbent assay for discrimination of OspA vaccination from spirochete infection.

    PubMed Central

    Zhang, Y Q; Mathiesen, D; Kolbert, C P; Anderson, J; Schoen, R T; Fikrig, E; Persing, D H

    1997-01-01

    Recombinant Lyme disease vaccines based on purified preparations of outer surface protein A (OspA) have been shown to be effective in preventing transmission of Borrelia burgdorferi in experimental animal models and are now being tested in humans. Since the most widely used screening tests for Lyme disease are based on a whole-cell sonicate of B. burgdorferi, serologic false positivity in vaccinated persons could result from reactivity to OspA within the antigen preparation. In order to avoid serologic false positivity in vaccinated subjects, we developed an immunoassay based on a low-passage-number, naturally occurring variant of B. burgdorferi which lacks the plasmid encoding OspA and OspB. The use of an antigen preparation derived from this organism provided sensitive and specific detection of B. burgdorferi seropositivity in experimental animals and in human Lyme disease cases. The OspA-B-negative enzyme-linked immunosorbent assay (ELISA) also appeared to be capable of discriminating the vaccinated state from vaccine failure and natural infection in experimental animals. Sera from human subjects participating in a vaccine trial gave false-positive results with an ELISA based on an OspA-containing strain, but no such reactivity was observed when the OspA-negative ELISA was used. We conclude that low-passage-number OspA-B-negative isolates in immunoassays may become useful for the immunologic discrimination of the vaccinated state, natural infection, and vaccine failure. PMID:8968914

  10. The multifaceted responses of primary human astrocytes and brain microvascular endothelial cells to the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed

    Brissette, Catherine A; Kees, Eric D; Burke, Margaret M; Gaultney, Robert A; Floden, Angela M; Watt, John A

    2013-08-16

    The vector-borne pathogen, Borrelia burgdorferi, causes a multi-system disorder including neurological complications. These neurological disorders, collectively termed neuroborreliosis, can occur in up to 15% of untreated patients. The neurological symptoms are probably a result of a glial-driven, host inflammatory response to the bacterium. However, the specific contributions of individual glial and other support cell types to the pathogenesis of neuroborreliosis are relatively unexplored. The goal of this project was to characterize specific astrocyte and endothelial cell responses to B. burgdorferi. Primary human astrocytes and primary HBMEC (human brain microvascular endothelial cells) were incubated with B. burgdorferi over a 72-h period and the transcriptional responses to the bacterium were analyzed by real-time PCR arrays. There was a robust increase in several surveyed chemokine and related genes, including IL (interleukin)-8, for both primary astrocytes and HBMEC. Array results were confirmed with individual sets of PCR primers. The production of specific chemokines by both astrocytes and HBMEC in response to B. burgdorferi, including IL-8, CXCL-1, and CXCL-10, were confirmed by ELISA. These results demonstrate that primary astrocytes and HBMEC respond to virulent B. burgdorferi by producing a number of chemokines. These data suggest that infiltrating phagocytic cells, particularly neutrophils, attracted by chemokines expressed at the BBB (blood-brain barrier) may be important contributors to the early inflammatory events associated with neuroborreliosis.

  11. Serologic surveillance for the Lyme disease spirochete, Borrelia burgdorferi, in Minnesota by using white-tailed deer as sentinel animals.

    PubMed Central

    Gill, J S; McLean, R G; Shriner, R B; Johnson, R C

    1994-01-01

    To determine the effectiveness of white-tailed deer as sentinel animals in serologic surveillance programs for Borrelia burgdorferi, we performed enzyme-linked immunosorbent assay (ELISA) and Western immunoblotting analyses on 467 deer serum samples. The seropositivity rate in the ELISA was 5% for the 150 samples collected at the three sites in which the tick Ixodes scapularis was absent. The three sites with established I. scapularis populations had a seropositivity rate of 80% for 317 samples. Results were similar for two closely situated sites, one with an established I. scapularis population and one without; these sites were only 15 km apart. Rates of seropositivity were significantly higher in yearling and adult deer than in fawns. The mean numbers of bands seen on Western immunoblots were 3.0 for samples negative in the ELISA and 13.8 for samples positive in the ELISA; all of these samples were collected from sites in which I. scapularis was established. At sites in which I. scapularis was absent, the mean numbers of bands seen were 1.6 for samples negative in the ELISA and 8.2 for samples positive in the ELISA. There were 14 different B. burgdorferi antigens that reacted with more than 50% of the ELISA-positive samples from areas with I. scapularis. A 19.5-kDa antigen reacted with 94% of the ELISA-positive samples. Reactivity against OspA and OspB was weak a infrequent (2%). Serologic analysis of white-tailed deer sera appears to be an accurate and sensitive surveillance method for determining whether B. burgdorferi is present in specific geographic locations. Images PMID:8150955

  12. Phylogeny of a relapsing fever Borrelia species transmitted by the hard tick Ixodes scapularis

    PubMed Central

    Barbour, Alan G.

    2014-01-01

    The discovery of Borrelia species that were related to the agents of relapsing fever but were transmitted by hard ticks rather than soft ticks challenged previous taxonomies based largely on microbe-host specificities and geographic considerations. One of these newly-identified organisms is the Borrelia miyamotoi sensu lato strain LB-2001 from North America and transmitted by Ixodes scapularis. This or related strains have been identified as the cause of human disease, but comparatively little is known about their biology or genetics. Using recently acquired chromosome sequence of LB-2001 together with database sequences and additional sequences determined here, I carried out comparisons of the several species of Borrelia, including those in the two major clades: the relapsing fever group of species and the Lyme disease group of species. Phylogenetic inference at the species level was based on four data sets: whole chromosomes of ~1 Mb each, and concatenated sequences of 19 ribosomal protein genes, 3 conserved nucleic acid enzymes (rpoC, recC, and dnaE), and 4 contiguous genes for nucleotide salvage on a large plasmid. Analyses using neighbor-joining, maximum likelihood, and Bayesian methods were largely concordant for each of the trees. They showed that LB-2001 and related hard tick-associated organisms, like B. lonestari, are deeply positioned within the RF group of species and that these organisms did not, as some earlier estimations had suggested, constitute a paraphyletic group. The analyses also provided further evidence that major changes in host ranges and life cycles, such as hard to soft ticks or vice versa, may not correlate well with overall sequence differences. The genetic differences between LB-2001 and B. miyamotoi sensu stricto justify provisional use of the “sensu lato” designation for LB-2001. PMID:24813576

  13. Tickborne Relapsing Fever, Bitterroot Valley, Montana, USA

    PubMed Central

    Christensen, Joshua; Fischer, Robert J.; McCoy, Brandi N.; Raffel, Sandra J.

    2015-01-01

    In July 2013, a resident of the Bitterroot Valley in western Montana, USA, contracted tickborne relapsing fever caused by an infection with the spirochete Borrelia hermsii. The patient’s travel history and activities before onset of illness indicated a possible exposure on his residential property on the eastern side of the valley. An onsite investigation of the potential exposure site found the vector, Ornithodoros hermsi ticks, and 1 chipmunk infected with spirochetes, which on the basis of multilocus sequence typing were identical to the spirochete isolated from the patient. Field studies in other locations found additional serologic evidence and an infected tick that demonstrated a wider distribution of spirochetes circulating among the small mammal populations. Our study demonstrates that this area of Montana represents a previously unrecognized focus of relapsing fever and poses a risk for persons of acquiring this tickborne disease. PMID:25625502

  14. Fatal spirochetosis due to a relapsing fever-like Borrelia sp. in northern spotted owl

    USGS Publications Warehouse

    Thomas, N.J.; Bunikis, J.; Barbour, A.G.; Wolcott, M.J.

    2002-01-01

    Acute septicemic spirochetosis was diagnosed in an adult male northern spotted owl (Strix occidentalis caurina) found dead in Kittitas County, Washington, USA. Gross necropsy findings included marked enlargement of the liver and spleen and serofibrinous deposits on the serous membranes lining the body cavities and the pericardial and perihepatic sacs. Microscopic observations included macrophage infiltration in the liver and spleen with mild thrombosis and multifocal necrosis, as well as hemorrhage and acute inflammation in the choroid plexus of the brain. No viruses or pathogenic bacteria were isolated from brain, liver, or spleen, and no parasites were found in blood smears or impression smears of the liver. Chlamydial culture attempts were unsuccessful and no chlamydial antibodies were detected in serum. In silver-stained microscopic sections and by transmission electron microscopy of liver, numerous long, thin, spiral-shaped bacteria were seen in the liver, spleen, cerebral ventricles, and within blood vessels in many organs. The organism was identified as a member of the Borrelia genus by sequence analysis of the PCR-amplified 16S rRNA gene. The most closely related species is B. hermsii, an agent of relapsing fever in humans in the western United States. This is the first report of a relapsing fever-related Borrelia in a wild bird.

  15. Fatal spirochetosis due to a relapsing fever-like Borrelia sp. in a northern spotted owl.

    PubMed

    Thomas, Nancy J; Bunikis, Jonas; Barbour, Alan G; Wolcott, Mark J

    2002-01-01

    Acute septicemic spirochetosis was diagnosed in an adult male northern spotted owl (Strix occidentalis caurina) found dead in Kittitas County, Washington, USA. Gross necropsy findings included marked enlargement of the liver and spleen and serofibrinous deposits on the serous membranes lining the body cavities and the pericardial and perihepatic sacs. Microscopic observations included macrophage infiltration in the liver and spleen with mild thrombosis and multifocal necrosis, as well as hemorrhage and acute inflammation in the choroid plexus of the brain. No viruses or pathogenic bacteria were isolated from brain, liver, or spleen, and no parasites were found in blood smears or impression smears of the liver. Chlamydial culture attempts were unsuccessful and no chlamydial antibodies were detected in serum. In silver-stained microscopic sections and by transmission electron microscopy of liver, numerous long, thin, spiral-shaped bacteria were seen in the liver, spleen, cerebral ventricles, and within blood vessels in many organs. The organism was identified as a member of the Borrelia genus by sequence analysis of the PCR-amplified 16S rRNA gene. The most closely related species is B. hermsii, an agent of relapsing fever in humans in the western United States. This is the first report of a relapsing fever-related Borrelia in a wild bird.

  16. Insights into Borrelia miyamotoi infection from an untreated case demonstrating relapsing fever, monocytosis and a positive C6 Lyme serology.

    PubMed

    Sudhindra, Praveen; Wang, Guiqing; Schriefer, Martin E; McKenna, Donna; Zhuge, Jian; Krause, Peter J; Marques, Adriana R; Wormser, Gary P

    2016-09-01

    We describe a patient from the United States with PCR- and serology-confirmed Borrelia miyamotoi infection who recovered without antibiotics. Our findings suggest that B. miyamotoi infection may cause relapsing fever, blood monocytosis and antibody reactivity to the C6 peptide. Further studies are required to better define the spectrum of clinical and laboratory findings for this emerging tick-transmitted infection.

  17. Detection of a Borrelia species in questing Gulf Coast ticks, Amblyomma maculatum

    PubMed Central

    Lee, Jung Keun; Smith, Whitney Crow; McIntosh, Chelsea; Ferrari, Flavia Girao; Moore-Henderson, Brittany; Varela-Stokes, Andrea

    2015-01-01

    Borrelia spp. are agents of Lyme disease and relapsing fever, diseases which use Ixodes hard ticks and Ornithodoros soft ticks, respectively, as primary vectors. Some relapsing fever spirochetes, such as B. miyamotoi, are also found in hard ticks. To date, no Borrelia sp. is known to use the hard tick, Amblyomma maculatum, as a vector. However, both B. burgdorferi and B. lonestari were recently detected in A. maculatum removed from hosts. In our study, DNA extracts from 306 questing adult A. maculatum collected in Mississippi in 2009 and 2010 were tested for Borrelia spp. DNA by PCR amplification of flaB and 16S rRNA gene targets. An additional 97 A. maculatum collected in 2013 were tested by amplification of 16S rRNA gene target. Two ticks, one collected in 2009 and the other in 2010, were positive by PCR of the flaB and 16S rRNA gene targets; both were collected from the same location in central Mississippi. Interestingly, 16S rRNA gene amplicons from these two tick extracts were 98% identical to twelve Borrelia spp. including the reptile-associated spirochete B. turcica and Borrelia sp. “tAG158M”; flaB amplicons from these two ticks shared closest identity (89%) to the reptile-associated spirochete, B. turcica. These results demonstrate a Borrelia sp. in unfed A. maculatum ticks that is unique from other species in the NCBI database and in a clade with reptile-associated Borrelia species. Detection of a previously unrecognized Borrelia in a hard tick species generates additional questions regarding the bacterial fauna in these arthropods and warrants further studies to better understand this fauna. PMID:24844970

  18. Detection of a Borrelia species in questing Gulf Coast ticks, Amblyomma maculatum.

    PubMed

    Lee, Jung Keun; Smith, Whitney Crow; McIntosh, Chelsea; Ferrari, Flavia Girao; Moore-Henderson, Brittany; Varela-Stokes, Andrea

    2014-06-01

    Borrelia spp. are agents of Lyme disease and relapsing fever, diseases which use Ixodes hard ticks and Ornithodoros soft ticks, respectively, as primary vectors. Some relapsing fever spirochetes, such as B. miyamotoi, are also found in hard ticks. To date, no Borrelia sp. is known to use the hard tick, Amblyomma maculatum, as a vector. However, both B. burgdorferi and B. lonestari were recently detected in A. maculatum removed from hosts. In our study, DNA extracts from 306 questing adult A. maculatum collected in Mississippi in 2009 and 2010 were tested for Borrelia spp. DNA by PCR amplification of flaB and 16S rRNA gene targets. An additional 97 A. maculatum collected in 2013 were tested by amplification of 16S rRNA gene target. Two ticks, one collected in 2009 and the other in 2010, were positive by PCR of the flaB and 16S rRNA gene targets; both were collected from the same location in central Mississippi. Interestingly, 16S rRNA gene amplicons from these two tick extracts were 98% identical to twelve Borrelia spp. including the reptile-associated spirochete B. turcica and Borrelia sp. "tAG158M"; flaB amplicons from these two ticks shared closest identity (89%) to the reptile-associated spirochete, B. turcica. These results demonstrate a Borrelia sp. in unfed A. maculatum ticks that is unique from other species in the NCBI database and in a clade with reptile-associated Borrelia species. Detection of a previously unrecognized Borrelia in a hard tick species generates additional questions regarding the bacterial fauna in these arthropods and warrants further studies to better understand this fauna.

  19. Endotoxin-like activity associated with Lyme disease Borrelia.

    PubMed

    Fumarola, D; Munno, I; Marcuccio, C; Miragliotta, G

    1986-12-01

    The newly recognized spirochete, Borrelia burgdorferi, the causative agent of Lyme Disease, has been examined for endotoxin-like activities as measured by the standard Farmacopea Ufficiale della Republica Italiana rabbit fever test and the Limulus amoebocyte lysate assay. The suspension of heat-killed microorganism caused a febrile response at a dose of 1 X 10(8) bacteria pro kilo. Similar results were obtained in the Limulus assay where the heat-killed spirochetes stimulated formation of solid clot until the concentration of 1 X 10(5) per ml. Both in pyrogen test and in Limulus assay heat-killed Escherichia coli exhibited a higher degree of potency. These results show that LD-Borrelia possess endotoxin-like activities which could help in understanding the pathogenesis of the clinical symptomatology of the disease.

  20. Laboratory Diagnosis of Tick-Borne African Relapsing Fevers: Latest Developments

    PubMed Central

    Fotso Fotso, Aurélien; Drancourt, Michel

    2015-01-01

    In Africa, relapsing fevers caused by ectoparasite-borne Borrelia species are transmitted by ticks, with the exception of Borrelia recurrentis, which is a louse-borne spirochete. These tropical diseases are responsible for mild to deadly spirochetemia. Cultured Borrelia crocidurae, Borrelia duttonii, and Borrelia hispanica circulate alongside at least six species that have not yet been cultured in vectors. Direct diagnosis is hindered by the use of non-specific laboratory tools. Indeed, microscopic observation of Borrelia spirochaeta in smears of peripheral blood taken from febrile patients lacks sensitivity and specificity. Although best visualized using dark-field microscopy, the organisms can also be detected using Wright–Giemsa or acridine orange stains. PCR-based detection of specific sequences in total DNA extracted from a specimen can be used to discriminate different relapsing fever Borreliae. In our laboratory, we developed a multiplex real-time PCR assay for the specific detection of B. duttonii/recurrentis and B. crocidurae: multispacer sequence typing accurately identified cultured relapsing fever borreliae and revealed diversity among them. Other molecular typing techniques, such as multilocus sequence analysis of tick-borne relapsing fever borreliae, showed the potential risk of human infection in Africa. Recent efforts to culture and sequence relapsing fever borreliae have provided new information for reassessment of the diversity of these bacteria. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been reported as a means of identifying cultured borreliae and of identifying both vectors and vectorized pathogens such as detecting relapsing fever borreliae directly in ticks. The lack of a rapid diagnosis test restricts the management of such diseases. We produced monoclonal antibodies against B. crocidurae in order to develop cheap assays for the rapid detection of relapsing fever borreliae. In this paper, we

  1. A Novel Animal Model of Borrelia recurrentis Louse-Borne Relapsing Fever Borreliosis Using Immunodeficient Mice

    PubMed Central

    Larsson, Christer; Lundqvist, Jenny; van Rooijen, Nico; Bergström, Sven

    2009-01-01

    Louse-borne relapsing fever (LBRF) borreliosis is caused by Borrelia recurrentis, and it is a deadly although treatable disease that is endemic in the Horn of Africa but has epidemic potential. Research on LBRF has been severely hampered because successful infection with B. recurrentis has been achieved only in primates (i.e., not in other laboratory or domestic animals). Here, we present the first non-primate animal model of LBRF, using SCID (-B, -T cells) and SCID BEIGE (-B, -T, -NK cells) immunocompromised mice. These animals were infected with B. recurrentis A11 or A17, or with B. duttonii 1120K3 as controls. B. recurrentis caused a relatively mild but persistent infection in SCID and SCID BEIGE mice, but did not proliferate in NUDE (-T) and BALB/c (wild-type) mice. B. duttonii was infectious but not lethal in all animals. These findings demonstrate that the immune response can limit relapsing fever even in the absence of humoral defense mechanisms. To study the significance of phagocytic cells in this context, we induced systemic depletion of such cells in the experimental mice by injecting them with clodronate liposomes, which resulted in uncontrolled B. duttonii growth and a one-hundred-fold increase in B. recurrentis titers in blood. This observation highlights the role of macrophages and other phagocytes in controlling relapsing fever infection. B. recurrentis evolved from B. duttonii to become a primate-specific pathogen that has lost the ability to infect immunocompetent rodents, probably through genetic degeneration. Here, we describe a novel animal model of B. recurrentis based on B- and T-cell-deficient mice, which we believe will be very valuable in future research on LBRF. Our study also reveals the importance of B-cells and phagocytes in controlling relapsing fever infection. PMID:19787030

  2. Molecular Identification of Borrelia miyamotoi in Ixodes ricinus from Portugal.

    PubMed

    Nunes, Mónica; Parreira, Ricardo; Lopes, Nádia; Maia, Carla; Carreira, Teresa; Sousa, Carmelita; Faria, Sofia; Campino, Lenea; Vieira, M Luísa

    2015-08-01

    Borrelia miyamotoi, a relapsing fever spirochete, has been found recently in Ixodes ricinus ticks; however, little is known about its spatial distribution and potential local impact on human health. A total of 640 ticks (447 nymphs and 193 adults) collected throughout Portugal were analyzed using two nested PCR protocols, one targeting the flagellin gene and the other the internal transcribed space region between the 5S and the 23S rRNA. As a result, B. miyamotoi was detected, for the first time, in one guesting I. ricinus nymph collected in the Lisboa district. In addition, a prevalence of 11% (71/640) for B. burgdorferi sensu lato was obtained. Even though no human relapsing fever cases due to infection by B. miyamotoi have been reported yet in Portugal, surveillance must be improved to provide better insight into the prevalence and distribution of this spirochete in ticks.

  3. Association of spirochetal infection with Morgellons disease.

    PubMed

    Middelveen, Marianne J; Burugu, Divya; Poruri, Akhila; Burke, Jennie; Mayne, Peter J; Sapi, Eva; Kahn, Douglas G; Stricker, Raphael B

    2013-01-01

    Morgellons disease (MD) is an emerging multisystem illness characterized by skin lesions with unusual filaments embedded in or projecting from epithelial tissue. Filament formation results from abnormal keratin and collagen expression by epithelial-based keratinocytes and fibroblasts. Recent research comparing MD to bovine digital dermatitis, an animal infectious disease with similar skin features, provided clues that spirochetal infection could play an important role in the human disease as it does in the animal illness. Based on histological staining, immunofluorescent staining, electron microscopic imaging and polymerase chain reaction, we report the detection of Borrelia spirochetes in dermatological tissue of  four randomly-selected MD patients. The association of MD with spirochetal infection provides evidence that this infection may be a significant factor in the illness and refutes claims that MD lesions are self-inflicted and that people suffering from this disorder are delusional. Molecular characterization of the Borrelia spirochetes found in MD patients is warranted.

  4. Association of spirochetal infection with Morgellons disease

    PubMed Central

    Stricker, Raphael B

    2013-01-01

    Morgellons disease (MD) is an emerging multisystem illness characterized by skin lesions with unusual filaments embedded in or projecting from epithelial tissue. Filament formation results from abnormal keratin and collagen expression by epithelial-based keratinocytes and fibroblasts. Recent research comparing MD to bovine digital dermatitis, an animal infectious disease with similar skin features, provided clues that spirochetal infection could play an important role in the human disease as it does in the animal illness. Based on histological staining, immunofluorescent staining, electron microscopic imaging and polymerase chain reaction, we report the detection of Borrelia spirochetes in dermatological tissue of  four randomly-selected MD patients. The association of MD with spirochetal infection provides evidence that this infection may be a significant factor in the illness and refutes claims that MD lesions are self-inflicted and that people suffering from this disorder are delusional. Molecular characterization of the Borrelia spirochetes found in MD patients is warranted. PMID:24715950

  5. Real-time monitoring of disease progression in rhesus macaques infected with Borrelia turicatae by tick bite.

    PubMed

    Lopez, Job E; Vinet-Oliphant, Heather; Wilder, Hannah K; Brooks, Christopher P; Grasperge, Britton J; Morgan, Timothy W; Stuckey, Kerstan J; Embers, Monica E

    2014-11-15

    The hallmark of disease caused by tick- and louse-borne relapsing fever due to Borrelia infection is cyclic febrile episodes, which in humans results in severe malaise and may lead to death. To evaluate the pathogenesis of relapsing fever due to spirochetes in an animal model closely related to humans, disease caused by Borrelia turicatae after tick bite was compared in 2 rhesus macaques in which radiotelemetry devices that recorded body temperatures in 24-hour increments were implanted. The radiotelemetry devices enabled real-time acquisition of core body temperatures and changes in heart rates and electrocardiogram intervals for 28 consecutive days without the need to constantly manipulate the animals. Blood specimens were also collected from all animals for 14 days after tick bite, and spirochete densities were assessed by quantitative polymerase chain reaction. The complexity of disease caused by relapsing-fever spirochetes was demonstrated in the nonhuman primates monitored in real time. The animals experienced prolonged episodes of hyperthermia and hypothermia; disruptions in their diurnal patterns and repolarization of the heart were also observed. This is the first report of the characterizing disease progression with continuous monitoring in an animal model of relapsing fever due to Borrelia infection.

  6. The Genome of Borrelia recurrentis, the Agent of Deadly Louse-Borne Relapsing Fever, Is a Degraded Subset of Tick-Borne Borrelia duttonii

    PubMed Central

    Lescot, Magali; Audic, Stéphane; Robert, Catherine; Nguyen, Thi Tien; Blanc, Guillaume; Cutler, Sally J.; Wincker, Patrick; Couloux, Arnaud; Claverie, Jean-Michel; Raoult, Didier; Drancourt, Michel

    2008-01-01

    In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163–1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains. PMID:18787695

  7. Head Lice of Pygmies Reveal the Presence of Relapsing Fever Borreliae in the Republic of Congo

    PubMed Central

    Amanzougaghene, Nadia; Akiana, Jean; Mongo Ndombe, Géor; Davoust, Bernard; Nsana, Nardiouf Sjelin; Parra, Henri-Joseph; Fenollar, Florence; Raoult, Didier; Mediannikov, Oleg

    2016-01-01

    Background Head lice, Pediculus humanus capitis, occur in four divergent mitochondrial clades (A, B, C and D), each having particular geographical distributions. Recent studies suggest that head lice, as is the case of body lice, can act as a vector for louse-borne diseases. Therefore, understanding the genetic diversity of lice worldwide is of critical importance to our understanding of the risk of louse-borne diseases. Methodology/Principal Findings Here, we report the results of the first molecular screening of pygmies’ head lice in the Republic of Congo for seven pathogens and an analysis of lice mitochondrial clades. We developed two duplex clade-specific real-time PCRs and identified three major mitochondrial clades: A, C, and D indicating high diversity among the head lice studied. We identified the presence of a dangerous human pathogen, Borrelia recurrentis, the causative agent of relapsing fever, in ten clade A head lice, which was not reported in the Republic of Congo, and B. theileri in one head louse. The results also show widespread infection among head lice with several species of Acinetobacter. A. junii was the most prevalent, followed by A. ursingii, A. baumannii, A. johnsonii, A. schindleri, A. lwoffii, A. nosocomialis and A. towneri. Conclusions/Significance Our study is the first to show the presence of B. recurrentis in African pygmies’ head lice in the Republic of Congo. This study is also the first to report the presence of DNAs of B. theileri and several species of Acinetobacter in human head lice. Further studies are needed to determine whether the head lice can transmit these pathogenic bacteria from person to another. PMID:27911894

  8. Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division

    PubMed Central

    Gao, Lihui; Zhao, Xiaowei; Liu, Jun; Norris, Steven J.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH and FliI in B. burgdorferi have not been reported. In this study, fliH and fliI transposon mutants were utilized to dissect the mechanism of the Borrelia type III secretion system. The fliH and fliI mutants exhibited rod-shaped or string-like morphology, greatly reduced motility, division defects (resulting in elongated organisms with incomplete division points), and noninfectivity in mice by needle inoculation. Mutants in fliH and fliI were incapable of translational motion in 1% methylcellulose or soft agar. Inactivation of either fliH or fliI resulted in the loss of the FliH-FliI complex from otherwise intact flagellar motors, as determined by cryo-electron tomography (cryo-ET). Flagellar assemblies were still present in the mutant cells, albeit in lower numbers than in wild-type cells and with truncated flagella. Genetic complementation of fliH and fliI mutants in trans restored their wild-type morphology, motility, and flagellar motor structure; however, full-length flagella and infectivity were not recovered in these complemented mutants. Based on these results, disruption of either fliH or fliI in B. burgdorferi results in a severe defect in flagellar structure and function and cell division but does not completely block the export and assembly of flagellar hook and filament proteins. PMID:25968649

  9. Microbiology of Borrelia burgdorferi.

    PubMed

    Rosa, P A

    1997-03-01

    This article reviews the natural history, taxonomy, physical structure, growth requirements, and molecular structure of Borrelia burgdorferi sensu lato, the causative agent of Lyme disease. These spirochetal bacteria are maintained in nature through an infectious cycle between wild mammals and ticks. Borreliae are fastidious, slow-growing bacteria, found only in association with their arthropod or mammalian hosts in nature, and propagatable in the laboratory in a rich growth medium. The characteristic shape of borreliae is imposed by periplasmic flagella, located beneath the outer membrane and attached to the protoplasmic cylinder. The outer membrane of borreliae contains a number of abundant lipoproteins that are of serodiagnostic utility and currently under consideration as vaccine targets. The borrelial genome is unique in structure, organization, and copy number. Recent experiments demonstrate the feasibility of specific gene inactivation as a means with which to study the biology of borreliae and the pathogenesis of Lyme disease.

  10. Mobilifilum chasei: morphology and ecology of a spirochete from an intertidal stratified microbial mat community

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; Stolz, J.; Craft, F.; Esteve, I.; Guerrero, R.

    1990-01-01

    Spirochetes were found in the lower anoxiphototrophic layer of a stratified microbial mat (North Pond, Laguna Figueroa, Baja California, Mexico). Ultra-structural analysis of thin sections of field samples revealed spirochetes approximately 0.25 micrometer in diameter with 10 or more periplasmic flagella, leading to the interpretation that these spirochetes bear 10 flagellar insertions on each end. Morphometric study showed these free-living spirochetes greatly resemble certain symbiotic ones, i.e., Borrelia and certain termite spirochetes, the transverse sections of which are presented here. The ultrastructure of this spirochete also resembles Hollandina and Diplocalyx (spirochetes symbiotic in arthropods) more than it does Spirochaeta, the well known genus of mud-dwelling spirochetes. The new spirochete was detected in mat material collected both in 1985 and in 1987. Unique morphology (i.e., conspicuous outer coat of inner membrane, large number of periplasmic flagella) and ecology prompt us to name a new free-living spirochete.

  11. Meningoencephalitis from Borrelia miyamotoi in an immunocompromised patient.

    PubMed

    Gugliotta, Joseph L; Goethert, Heidi K; Berardi, Victor P; Telford, Sam R

    2013-01-17

    Ixodes ticks serve as vectors for Borrelia burgdorferi, the agent of Lyme disease. Globally, these ticks often concurrently harbor B. miyamotoi, a spirochete that is classified within the relapsing-fever group of spirochetes. Although humans presumably are exposed to B. miyamotoi, there are limited data suggesting disease attributable to it. We report a case of progressive mental deterioration in an older, immunocompromised patient, and even though Koch's postulates were not met, we posit B. miyamotoi as the cause, owing to its direct detection in cerebrospinal fluid (CSF) with the use of microscopy and a polymerase-chain-reaction (PCR) assay. It is likely that B. miyamotoi is an underrecognized cause of disease, especially in sites where Lyme disease is endemic.

  12. Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host

    PubMed Central

    Colarusso, Pina; Bankhead, Troy; Kubes, Paul; Chaconas, George

    2008-01-01

    Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood–brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo. PMID:18566656

  13. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    PubMed

    Moriarty, Tara J; Norman, M Ursula; Colarusso, Pina; Bankhead, Troy; Kubes, Paul; Chaconas, George

    2008-06-20

    Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.

  14. Bloodmeal Size and Spirochete Acquisition of Ornithodoros hermsi (Acari: Argasidae) During Feeding

    PubMed Central

    McCoy, Brandi N.; Raffel, Sandra J.; Lopez, Job E.; Schwan, Tom G.

    2011-01-01

    Ornithodoros hermsi Wheeler (Acari: Argasidae) is the vector of Borrelia hermsii, the primary cause of tick-borne relapsing fever in North America. This tick is one of the smallest Ornithodoros species involved with the biological transmission of spirochetes; yet, the amount of blood ingested while feeding is unknown. Therefore, we determined the amount of blood O. hermsi ingested during a bloodmeal to establish its potential for spirochete acquisition while feeding on an infected host. Ticks at different developmental stages were weighed before and after feeding and the volume of blood ingested was calculated. Females ingested the most blood, averaging ≈15 µl per meal, but late-stage nymphs took in the most blood in proportion to unfed body weight. A cohort of nymphs was weighed three more times during the 48 h after feeding, which demonstrated that O. hermsi may have excreted coxal fluid ranging from 24 –36% of the bloodmeal weight. We also developed a quantitative polymerase chain reaction method to determine the number of spirochetes ingested and maintained within the ticks after feeding. The density of spirochetes in ticks having just engorged was slightly less than in the host’s blood. In the first 5 d after feeding, the number of spirochetes within the ticks declined from the number initially ingested but then remained constant through 15 d. These observations establish a basis for future studies to determine the minimum number of spirochetes required in the host’s blood to allow O. hermsi to become persistently infected and transmit during subsequent bloodmeals. PMID:21175068

  15. The Presence of Borrelia miyamotoi, A Relapsing Fever Spirochaete, in Questing Ixodes ricinus in Belgium and in The Netherlands.

    PubMed

    Cochez, C; Heyman, P; Heylen, D; Fonville, M; Hengeveld, P; Takken, W; Simons, L; Sprong, H

    2015-08-01

    Borrelia miyamotoi is a tick-borne bacterium that may cause relapsing fever in humans. As this pathogen has been discovered in Europe only recently, only little is known about its local impact on human health and its spatial distribution. In this study, we show the results of PCR screenings for B. miyamotoi in flagged Ixodes ricinus from Belgium and the Netherlands. B. miyamotoi was detected in nine of thirteen, and three of five locations from the Netherlands and Belgium, respectively. These outcomes indicate that B. miyamotoi is more spread than previously thought. The mean infection rate B. miyamotoi was 1.14% for Belgium and 3.84% for the Netherlands.

  16. Borrelia miyamotoi infection in nature and in humans.

    PubMed

    Krause, P J; Fish, D; Narasimhan, S; Barbour, A G

    2015-07-01

    Borrelia miyamotoi is a relapsing fever Borrelia group spirochete that is transmitted by the same hard-bodied (ixodid) tick species that transmit the agents of Lyme disease. It was discovered in 1994 in Ixodes persulcatus ticks in Japan. B. miyamotoi species phylogenetically cluster with the relapsing fever group spirochetes, which usually are transmitted by soft-bodied (argasid) ticks or lice. B. miyamotoi infects at least six Ixodes tick species in North America and Eurasia that transmit Lyme disease group spirochetes and may use small rodents and birds as reservoirs. Human cases of B. miyamotoi infection were first reported in 2011 in Russia and subsequently in the United States, Europe and Japan. These reports document the public health importance of B. miyamotoi, as human B. miyamotoi infection appears to be comparable in frequency to babesiosis or human granulocytic anaplasmosis in some areas and may cause severe disease, including meningoencephalitis. The most common clinical manifestations of B. miyamotoi infection are fever, fatigue, headache, chills, myalgia, arthralgia, and nausea. Symptoms of B. miyamotoi infection generally resolve within a week of the start of antibiotic therapy. B. miyamotoi infection should be considered in patients with acute febrile illness who have been exposed to Ixodes ticks in a region where Lyme disease occurs. Because clinical manifestations are nonspecific, etiologic diagnosis requires confirmation by blood smear examination, PCR, antibody assay, in vitro cultivation, and/or isolation by animal inoculation. Antibiotics that have been used effectively include doxycycline for uncomplicated B. miyamotoi infection in adults and ceftriaxone or penicillin G for meningoencephalitis.

  17. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  18. "Candidatus Borrelia kalaharica" Detected from a Febrile Traveller Returning to Germany from Vacation in Southern Africa

    PubMed Central

    Wächtler, Martin; Margos, Gabriele; Ruske, Sabine; Jung, Jette; Löscher, Thomas; Wendtner, Clemens; Wieser, Andreas

    2016-01-01

    A 26 year-old female patient presented to the Tropical Medicine outpatient unit of the Ludwig Maximilians-University in Munich with febrile illness after returning from Southern Africa, where she contracted a bite by a large mite-like arthropod, most likely a soft-tick. Spirochetes were detected in Giemsa stained blood smears and treatment was started with doxycycline for suspected tick-borne relapsing fever. The patient eventually recovered after developing a slight Jarisch-Herxheimer reaction during therapy. PCR reactions performed from EDTA-blood revealed a 16S rRNA sequence with 99.4% similarity to both, Borrelia duttonii, and B. parkeri. Further sequences obtained from the flagellin gene (flaB) demonstrated genetic distances of 0.066 and 0.097 to B. parkeri and B. duttonii, respectively. Fragments of the uvrA gene revealed genetic distance of 0.086 to B. hermsii in genetic analysis and only distant relations with classic Old World relapsing fever species. This revealed the presence of a novel species of tick-borne relapsing fever spirochetes that we propose to name “Candidatus Borrelia kalaharica”, as it was contracted from an arthropod bite in the Kalahari Desert belonging to both, Botswana and Namibia, a region where to our knowledge no relapsing fever has been described so far. Interestingly, the novel species shows more homology to New World relapsing fever Borrelia such as B. parkeri or B. hermsii than to known Old World species such as B. duttonii or B. crocidurae. PMID:27031729

  19. "Candidatus Borrelia kalaharica" Detected from a Febrile Traveller Returning to Germany from Vacation in Southern Africa.

    PubMed

    Fingerle, Volker; Pritsch, Michael; Wächtler, Martin; Margos, Gabriele; Ruske, Sabine; Jung, Jette; Löscher, Thomas; Wendtner, Clemens; Wieser, Andreas

    2016-03-01

    A 26 year-old female patient presented to the Tropical Medicine outpatient unit of the Ludwig Maximilians-University in Munich with febrile illness after returning from Southern Africa, where she contracted a bite by a large mite-like arthropod, most likely a soft-tick. Spirochetes were detected in Giemsa stained blood smears and treatment was started with doxycycline for suspected tick-borne relapsing fever. The patient eventually recovered after developing a slight Jarisch-Herxheimer reaction during therapy. PCR reactions performed from EDTA-blood revealed a 16S rRNA sequence with 99.4% similarity to both, Borrelia duttonii, and B. parkeri. Further sequences obtained from the flagellin gene (flaB) demonstrated genetic distances of 0.066 and 0.097 to B. parkeri and B. duttonii, respectively. Fragments of the uvrA gene revealed genetic distance of 0.086 to B. hermsii in genetic analysis and only distant relations with classic Old World relapsing fever species. This revealed the presence of a novel species of tick-borne relapsing fever spirochetes that we propose to name "Candidatus Borrelia kalaharica", as it was contracted from an arthropod bite in the Kalahari Desert belonging to both, Botswana and Namibia, a region where to our knowledge no relapsing fever has been described so far. Interestingly, the novel species shows more homology to New World relapsing fever Borrelia such as B. parkeri or B. hermsii than to known Old World species such as B. duttonii or B. crocidurae.

  20. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. These organisms can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in motility and function by rotating within the periplasmic space (1). The present talk focuses on the spirochete that causes Lyme disease, Borrelia burgdorferi. In many bacterial species, cell shape is usually dictated by the peptidoyglycan layer of the cell wall. In the first part of the talk, results will be presented that the morphology of B. burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella resulting in a cell with a flat-wave morphology. Backward moving, propagating waves enable these bacteria to swim and translate in a given direction. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were non-motile, but were rod-shaped (2). Western blot analysis indicated that flaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology The latter part of the talk concerns the basis for asymmetrical rotation of the periplasmic flagella of B

  1. Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe.

    PubMed

    Taragel'ová, Veronika; Koci, Juraj; Hanincová, Klára; Kurtenbach, Klaus; Derdáková, Markéta; Ogden, Nick H; Literák, Ivan; Kocianová, Elena; Labuda, Milan

    2008-02-01

    Blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were found to carry 95% of all spirochete-infected tick larvae among 40 bird species captured in Central Europe. More than 90% of the infections were typed as Borrelia garinii and Borrelia valaisiana. We conclude that thrushes are key players in the maintenance of these spirochete species in this region of Central Europe.

  2. Transcriptional Profiling the 150 kb Linear Megaplasmid of Borrelia turicatae Suggests a Role in Vector Colonization and Initiating Mammalian Infection

    PubMed Central

    Wilder, Hannah K.; Raffel, Sandra J.; Barbour, Alan G.; Porcella, Stephen F.; Sturdevant, Daniel E.; Vaisvil, Benjamin; Kapatral, Vinayak; Schmitt, Daniel P.; Schwan, Tom G.; Lopez, Job E.

    2016-01-01

    Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in understanding the mechanisms of vector colonization and transmission. We utilized recent advances in genome sequencing to generate the most complete version of the Borrelia turicatae 150 kb linear megaplasmid (lp150). Additionally, a transcriptional analysis of open reading frames (ORFs) in lp150 was conducted and identified regions that were up-regulated during in vitro cultivation at tick-like growth temperatures (22°C), relative to bacteria grown at 35°C and infected murine blood. Evaluation of the 3’ end of lp150 identified a cluster of ORFs that code for putative surface lipoproteins. With a microbe’s surface proteome serving important roles in pathogenesis, we confirmed the ORFs expression in vitro and in the tick compared to spirochetes infecting murine blood. Transcriptional evaluation of lp150 indicates the plasmid likely has essential roles in vector colonization and/or initiating mammalian infection. These results also provide a much needed transcriptional framework to delineate the molecular mechanisms utilized by relapsing fever spirochetes during their enzootic cycle. PMID:26845332

  3. Borrelia persica Infection in Immunocompetent Mice--A New Tool to Study the Infection Kinetics In Vivo.

    PubMed

    Schwarzer, Sandra; Overzier, Evelyn; Hermanns, Walter; Baneth, Gad; Straubinger, Reinhard K

    2016-02-01

    Borrelia persica, a bacterium transmitted by the soft tick Ornithodoros tholozani, causes tick-borne relapsing fever in humans in the Middle East, Central Asia and the Indian peninsula. Immunocompetent C3H/HeOuJ mice were infected intradermally with B. persica at varying doses: 1 x 10(6), 1 x 10(4), 1 x 10(2) and 4 x 10(0) spirochetes/mouse. Subsequently, blood samples were collected and screened for the presence of B. persica DNA. Spirochetes were detected in all mice infected with 1 x 10(6), 1 x 10(4) and 1 x 10(2) borrelia by real-time PCR targeting the flaB gene of the bacterium. Spirochetemia developed with a one- to two-day delay when 1 x 10(4) and 1 x 10(2) borrelia were inoculated. Mice injected with only four organisms were negative in all tests. No clinical signs were observed when infected mice were compared to negative control animals. Organs (heart, spleen, urinary bladder, tarsal joint, skin and brain) were tested for B. persica-specific DNA and cultured for the detection of viable spirochetes. Compiled data show that the target organs of B. persica infections are the brain and the skin. A newly developed serological two-tiered test system (ELISA and western blot) for the detection of murine IgM, IgG and IgA antibody titers against B. persica showed a vigorous antibody response of the mice during infection. In conclusion, the infection model described here for B. persica is a platform for in vivo studies to decipher the so far unexplored survival strategies of this Borrelia species.

  4. The unique paradigm of spirochete motility and chemotaxis.

    PubMed

    Charon, Nyles W; Cockburn, Andrew; Li, Chunhao; Liu, Jun; Miller, Kelly A; Miller, Michael R; Motaleb, Md A; Wolgemuth, Charles W

    2012-01-01

    Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helix-shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria.

  5. Identification of a new Borrelia species among small mammals in areas of northern Spain where Lyme disease is endemic.

    PubMed

    Gil, Horacio; Barral, Marta; Escudero, Raquel; García-Pérez, Ana L; Anda, Pedro

    2005-03-01

    The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.

  6. Identification of a New Borrelia Species among Small Mammals in Areas of Northern Spain Where Lyme Disease Is Endemic

    PubMed Central

    Gil, Horacio; Barral, Marta; Escudero, Raquel; García-Pérez, Ana L.; Anda, Pedro

    2005-01-01

    The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57. PMID:15746336

  7. A New Borrelia Species Defined by Multilocus Sequence Analysis of Housekeeping Genes▿ †

    PubMed Central

    Margos, Gabriele; Vollmer, Stephanie A.; Cornet, Muriel; Garnier, Martine; Fingerle, Volker; Wilske, Bettina; Bormane, Antra; Vitorino, Liliana; Collares-Pereira, Margarida; Drancourt, Michel; Kurtenbach, Klaus

    2009-01-01

    Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes. PMID:19542332

  8. A new Borrelia species defined by multilocus sequence analysis of housekeeping genes.

    PubMed

    Margos, Gabriele; Vollmer, Stephanie A; Cornet, Muriel; Garnier, Martine; Fingerle, Volker; Wilske, Bettina; Bormane, Antra; Vitorino, Liliana; Collares-Pereira, Margarida; Drancourt, Michel; Kurtenbach, Klaus

    2009-08-01

    Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.

  9. Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates

    SciTech Connect

    Casjens, S.R.; Dunn, J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Fraser-Liggett, C. M.; Schutzer, S. E.

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  10. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates.

    PubMed

    Casjens, Sherwood R; Mongodin, Emmanuel F; Qiu, Wei-Gang; Dunn, John J; Luft, Benjamin J; Fraser-Liggett, Claire M; Schutzer, Steve E

    2011-12-01

    Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.

  11. Louse-borne relapsing fever in Finland in two asylum seekers from Somalia.

    PubMed

    Hytönen, Jukka; Khawaja, Tamim; Grönroos, Juha O; Jalava, Anna; Meri, Seppo; Oksi, Jarmo

    2017-01-01

    We report two cases of louse-borne relapsing fever (LBRF) in young Somali asylum seekers having recently arrived to Finland. They had sought medical attention for a febrile illness. Blood smears were examined for suspected malaria, but instead, spirochete shaped bacteria were observed. The bacteria were confirmed as Borrelia recurrentis by PCR and sequencing. The patients survived, but their treatment was complicated by Jarisch-Herxheimer reaction. We conclude that LBRF must be considered as a diagnostic option in febrile refugees also in the northernmost parts of Europe.

  12. Epidemiological study of relapsing fever borreliae detected in Haemaphysalis ticks and wild animals in the western part of Japan

    PubMed Central

    Itoh, Yukie; Suzuki, Kazuo; Yonemitsu, Kenzo; Kuwata, Ryusei; Shimoda, Hiroshi; Watarai, Masahisa; Maeda, Ken

    2017-01-01

    The genus Borrelia comprises arthropod-borne bacteria, which are infectious agents in vertebrates. They are mainly transmitted by ixodid or argasid ticks. In Hokkaido, Japan, Borrelia spp. were found in deer and Haemaphysalis ticks between 2011 and 2013; however, the study was limited to a particular area. Therefore, in the present study, we conducted large-scale surveillance of ticks and wild animals in the western part of the main island of Japan. We collected 6,407 host-seeking ticks from two regions and 1,598 larvae obtained from 32 engorged female ticks and examined them to elucidate transovarial transmission. In addition, we examined whole blood samples from 190 wild boars and 276 sika deer, as well as sera from 120 wild raccoons. We detected Borrelia spp. in Haemaphysalis flava, Haemaphysalis megaspinosa, Haemaphysalis kitaokai, Haemaphysalis longicornis, and Haemaphysalis formosensis. In addition, we isolated a strain from H. megaspinosa using Barbour-Stoenner-Kelly medium. The minimum infection rate of ticks was less than 5%. Transovarial transmission was observed in H. kitaokai. Phylogenetic analysis of the isolated strain and DNA fragments amplified from ticks identified at least four bacterial genotypes, which corresponded to the tick species detected. Bacteria were detected in 8.4%, 15%, and 0.8% of wild boars, sika deer, and raccoons, respectively. In this study, we found seasonal differences in the prevalence of bacterial genotypes in sika deer during the winter and summer. The tick activity season corresponds to the season with a high prevalence of animals. The present study suggests that a particular bacterial genotype detected in this study are defined by a particular tick species in which they are present. PMID:28362864

  13. Notes from the Field: Tickborne Relapsing Fever Outbreak at an Outdoor Education Camp - Arizona, 2014.

    PubMed

    Jones, Jefferson M; Schumacher, Mare; Peoples, Marie; Souders, Nina; Horn, Kimberly; Fox, Lisa; Scott, Michele; Brady, Shane; Weiss, Joli; Komatsu, Ken; Nieto, Nathan

    2015-06-19

    Tickborne relapsing fever (TBRF) is a bacterial infection characterized by recurring episodes of fever, headache, muscle and joint aches, and nausea. In North America, TBRF primarily is caused by Borrelia hermsii spirochetes transmitted by Ornithodoros hermsii ticks. Once infected, these soft ticks are infectious for life and transmit the spirochete to sleeping humans quickly (possibly within 30 seconds) during short feeds (15-90 minutes). On August 10, 2014, the Coconino County Public Health Services District in Arizona was notified by a local hospital that five high school students who attended the same outdoor education camp had been hospitalized with fever, headache, and myalgias. Hantavirus infection initially was suspected because of reported exposure to rodent droppings, but after detecting spirochetes on peripheral blood smears from all five hospitalized students, TBRF was diagnosed. The camp was instructed to close immediately, and the health department, in collaboration with local university experts, investigated to identify additional cases, determine the cause, and prevent further infections. A total of 11 cases (six confirmed and five probable) were identified.

  14. Spirochetes in mammals and ticks (Acari: Ixodidae) from a focus of Lyme borreliosis in California.

    PubMed

    Lane, R S; Burgdorfer, W

    1988-01-01

    In northern California, antibodies to Borrelia burgdorferi were detected in 58 of 73 (79%), and spirochetemias in one of 26 (4%) black-tailed jackrabbits (Lepus californicus californicus), by indirect and direct immunofluorescence, respectively. Five species of ticks (Dermacentor occidentalis, D. parumapertus, Ixodes neotomae, I. pacificus, and Haemaphysalis leporispalustris) were collected from rabbits. Two of these species of ticks were found to contain spirochetes; two of 10 (20%) I. neotomae and two of 174 (1%) H. leporispalustris. A strain of B. burgdorferi was recovered from I. neotomae. One infected H. leporispalustris female passed spirochetes via eggs to about 67% of her progeny. The widespread distribution of the black-tailed jackrabbit, its infestation by at least four ticks (D. occidentalis, D. parumapertus, I. neotomae, and I. pacificus) known to be infected naturally with B. burgdorferi, and the high prevalence of spirochetal antibody in this lagomorph suggest that it might be useful as a sentinel for surveillance of Lyme borreliosis. Spirochetes were detected in 15% of 40 Columbian black-tailed deer (Odocoileus hemionus columbianus) by direct immunofluorescence bound with a Borrelia-specific monoclonal antibody (H9724), but not with a monoclonal antibody (H5332) specific for B. burgdorferi. The geographical overlap of different borreliae in ticks that bite wildlife such as deer may confound spirochetal serosurveys, and underscores the need for more specific serologic tests than those currently available.

  15. Prevalence of Borrelia miyamotoi in Ixodes ticks in Europe and the United States.

    PubMed

    Crowder, Chris D; Carolan, Heather E; Rounds, Megan A; Honig, Vaclav; Mothes, Benedikt; Haag, Heike; Nolte, Oliver; Luft, Ben J; Grubhoffer, Libor; Ecker, David J; Schutzer, Steven E; Eshoo, Mark W

    2014-10-01

    Borrelia miyamotoi, a relapsing fever-related spirochete transmitted by Ixodes ticks, has been recently shown to be a human pathogen. To characterize the prevalence of this organism in questing Ixodes ticks, we tested 2,754 ticks for a variety of tickborne pathogens by PCR and electrospray-ionization mass spectrometry. Ticks were collected from California, New York, Connecticut, Pennsylvania, and Indiana in the United States and from Germany and the Czech Republic in Europe from 2008 through 2012. In addition, an isolate from Japan was characterized. We found 3 distinct genotypes, 1 for North America, 1 for Europe, and 1 for Japan. We found B. miyamotoi infection in ticks in 16 of the 26 sites surveyed, with infection prevalence as high as 15.4%. These results show the widespread distribution of the pathogen, indicating an exposure risk to humans in areas where Ixodes ticks reside.

  16. A newly established real-time PCR for detection of Borrelia miyamotoi in Ixodes ricinus ticks.

    PubMed

    Reiter, Michael; Schötta, Anna-Margarita; Müller, Andreas; Stockinger, Hannes; Stanek, Gerold

    2015-04-01

    A total of 350 ticks collected in Austria were analyzed for the presence of DNA sequences of B. miyamotoi. Three ticks gave positive results in a B. miyamotoi-specific nested PCR. Results were confirmed by sequencing the amplified glpQ gene from the positive samples. Moreover we developed a real-time PCR which unambiguously detected B. miyamotoi in all positive samples. Further genotyping of the samples found 100% identity of the 16S-23S intergenic spacer region with Swedish B. miyamotoi sequences. This is the first detection of the relapsing fever spirochete Borrelia miyamotoi in hard ticks in Austria. The results consolidate the picture of a European-wide distribution of B. miyamotoi and again underscore the need for clinical awareness to clarify possible involvement of this species in human disease.

  17. Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016) There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001717).

    PubMed

    Barbour, Alan G; Adeolu, Mobolaji; Gupta, Radhey S

    2017-01-27

    This rebuttal Letter responds to a Letter in the IJSEM by Margos et al. challenging division of the genus Borrelia into two genera. We discuss here point-by-point the issues raised by Margos et al. and show that much of their criticism is unfounded and in several cases based on misreading of the presented results. We summarize here the extensive evidence based on genomic, genetic and phenotypic properties showing that the members of the family Borreliaceae (containing mainly the genus Borrelia) comprises two distinct and cohesive groups of microbes, differing in diseases they cause and other phenotypes. Prior to the proposed division, Borrelia spp. causing Lyme disease (LD) were already functionally treated as a distinct group, referred to as "B. burgdorferi sensu lato" to distinguish them from the other cluster of Borrelia spp. which includes all known species causing relapsing fever (RF). With the more explicit division of Borreliaceae species into two genus level groups, which are distinguishable from each other based on numerous unique genetic and molecular characteristics, the attention can now be focused on the biological significance of different molecular characteristics differentiating the two groups. The clear distinction of the LD and the RF groups of microbes based on numerous highly reliable markers, which are expected to be present even in uncharacterized members of these two groups, should aid in the improved diagnosis as well treatment of both these diseases, which is hindered by the conflation of a common name for agents causing two different types of diseases.

  18. The Epidemiology and Geographic Distribution of Relapsing Fever Borreliosis in West and North Africa, with a Review of the Ornithodoros erraticus Complex (Acari: Ixodida)

    PubMed Central

    Trape, Jean-François; Diatta, Georges; Arnathau, Céline; Bitam, Idir; Sarih, M’hammed; Belghyti, Driss; Bouattour, Ali; Elguero, Eric; Vial, Laurence; Mané, Youssouph; Baldé, Cellou; Pugnolle, Franck; Chauvancy, Gilles; Mahé, Gil; Granjon, Laurent; Duplantier, Jean-Marc

    2013-01-01

    Background Relapsing fever is the most frequent bacterial disease in Africa. Four main vector / pathogen complexes are classically recognized, with the louse Pediculus humanus acting as vector for B. recurrentis and the soft ticks Ornithodoros sonrai, O. erraticus and O. moubata acting as vectors for Borrelia crocidurae, B. hispanica and B. duttonii, respectively. Our aim was to investigate the epidemiology of the disease in West, North and Central Africa. Methods And Findings From 2002 to 2012, we conducted field surveys in 17 African countries and in Spain. We investigated the occurrence of Ornithodoros ticks in rodent burrows in 282 study sites. We collected 1,629 small mammals that may act as reservoir for Borrelia infections. Using molecular methods we studied genetic diversity among Ornithodoros ticks and Borrelia infections in ticks and small mammals. Of 9,870 burrows investigated, 1,196 (12.1%) were inhabited by Ornithodoros ticks. In West Africa, the southern and eastern limits of the vectors and Borrelia infections in ticks and small mammals were 13°N and 01°E, respectively. Molecular studies revealed the occurrence of nine different Ornithodoros species, including five species new for science, with six of them harboring Borrelia infections. Only B. crocidurae was found in West Africa and three Borrelia species were identified in North Africa: B. crocidurae, B. hispanica, and B. merionesi. Conclusions Borrelia Spirochetes responsible for relapsing fever in humans are highly prevalent both in Ornithodoros ticks and small mammals in North and West Africa but Ornithodoros ticks seem absent south of 13°N and small mammals are not infected in these regions. The number of Ornithodoros species acting as vector of relapsing fever is much higher than previously known. PMID:24223812

  19. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    SciTech Connect

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  20. Seasonal prevalence of Lyme disease spirochetes in a heterothermic mammal, the edible dormouse (Glis glis).

    PubMed

    Fietz, Joanna; Tomiuk, Jürgen; Matuschka, Franz-Rainer; Richter, Dania

    2014-06-01

    In Europe, dormice serve as competent reservoir hosts for particular genospecies of the tick-borne agent of Lyme disease (LD) and seem to support them more efficiently than do mice or voles. The longevity of edible dormice (Glis glis) and their attractiveness for ticks may result in a predominance of LD spirochetes in ticks questing in dormouse habitats. To investigate the role of edible dormice in the transmission cycle of LD spirochetes, we sampled skin tissue from the ear pinnae of dormice inhabiting five different study sites in south western Germany. Of 501 edible dormice, 12.6% harbored DNA of LD spirochetes. Edible dormice were infected most frequently with the pathogenic LD spirochete Borrelia afzelii. The DNA of B. garinii and B. bavariensis was detected in ca. 0.5% of the examined individuals. No spirochetal DNA was detectable in the skin of edible dormice until July, 6 weeks after they generally start to emerge from their obligate hibernation. Thereafter, the prevalence of spirochetal DNA in edible dormice increased during the remaining period of their 4 to 5 months of activity, reaching nearly 40% in September. Males were more than four times more likely to harbor LD spirochetes than females, and yearlings were almost twice more likely to be infected than adults. The seasonality of the prevalence of LD spirochetes in edible dormice was pronounced and may affect their role as a reservoir host in respect to other hosts.

  1. Seasonal Prevalence of Lyme Disease Spirochetes in a Heterothermic Mammal, the Edible Dormouse (Glis glis)

    PubMed Central

    Fietz, Joanna; Tomiuk, Jürgen; Matuschka, Franz-Rainer

    2014-01-01

    In Europe, dormice serve as competent reservoir hosts for particular genospecies of the tick-borne agent of Lyme disease (LD) and seem to support them more efficiently than do mice or voles. The longevity of edible dormice (Glis glis) and their attractiveness for ticks may result in a predominance of LD spirochetes in ticks questing in dormouse habitats. To investigate the role of edible dormice in the transmission cycle of LD spirochetes, we sampled skin tissue from the ear pinnae of dormice inhabiting five different study sites in south western Germany. Of 501 edible dormice, 12.6% harbored DNA of LD spirochetes. Edible dormice were infected most frequently with the pathogenic LD spirochete Borrelia afzelii. The DNA of B. garinii and B. bavariensis was detected in ca. 0.5% of the examined individuals. No spirochetal DNA was detectable in the skin of edible dormice until July, 6 weeks after they generally start to emerge from their obligate hibernation. Thereafter, the prevalence of spirochetal DNA in edible dormice increased during the remaining period of their 4 to 5 months of activity, reaching nearly 40% in September. Males were more than four times more likely to harbor LD spirochetes than females, and yearlings were almost twice more likely to be infected than adults. The seasonality of the prevalence of LD spirochetes in edible dormice was pronounced and may affect their role as a reservoir host in respect to other hosts. PMID:24705325

  2. Forces and torques on rotating spirochete flagella.

    PubMed

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W

    2011-12-23

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  3. Swimming Dynamics of the Lyme Disease Spirochete

    NASA Astrophysics Data System (ADS)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  4. Forces and Torques on Rotating Spirochete Flagella

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W.

    2011-12-01

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  5. Borrelia burgdorferi induces chemokines in human monocytes.

    PubMed Central

    Sprenger, H; Krause, A; Kaufmann, A; Priem, S; Fabian, D; Burmester, G R; Gemsa, D; Rittig, M G

    1997-01-01

    Lyme disease is clinically and histologically characterized by strong inflammatory reactions that contrast the paucity of spirochetes at lesional sites, indicating that borreliae induce mechanisms that amplify the inflammatory response. To reveal the underlying mechanisms of chemoattraction and activation of responding leukocytes, we investigated the induction of chemokines in human monocytes exposed to Borrelia burgdorferi by a dose-response and kinetic analysis. Lipopolysaccharide (LPS) derived from Escherichia coli was used as a positive control stimulus. The release of the CXC chemokines interleukin-8 (IL-8) and GRO-alpha and the CC chemokines MIP-1alpha, MCP-1, and RANTES was determined by specific enzyme-linked immunosorbent assays, and the corresponding gene expression patterns were determined by Northern blot analysis. The results showed a rapid and strong borrelia-inducible gene expression which was followed by the release of chemokines with peak levels after 12 to 16 h. Spirochetes and LPS were comparably effective in stimulating IL-8, GRO-alpha, MCP-1, and RANTES expression, whereas MIP-1alpha production preceded and exceeded chemokine levels induced by LPS. Unlike other bacteria, the spirochetes themselves did not bear or release factors with intrinsic chemotactic activity for monocytes or neutrophils. Thus, B. burgdorferi appears to be a strong inducer of chemokines which may, by the attraction and activation of phagocytic leukocytes, significantly contribute to inflammation and tissue damage observed in Lyme disease. PMID:9353009

  6. Tick-borne Relapsing Fever in Children in the North-west of Iran, Qazvin.

    PubMed

    Ayazi, Parviz; Mahyar, Abolfazl; Oveisi, Sonia; Esmailzadehha, Neda; Nooroozi, Sadralnesa

    2015-01-01

    Relapsing fever is caused by the Borrelia species of spirochetes. Louse-borne epidemics of the disease may happen but the endemic disease is generally transmitted to humans by the bite of an infected tick (Ornithodorus). Clinical and laboratory findings of tick-borne relapsing fever in children in the north-west of Iran, Qazvin, were evaluated. This study was conducted from September 1992 to September 2012. Records from 53 cases of tick-borne relapsing fever (TBRF) were reviewed. In positive cases, febrile illness, and spirochetes were recognized in peripheral blood preparations. Of the 53 children younger than 12 years, fifty two percent were male and about one third (34%) of the patients were in the age range of 7-12 years. The disease is recorded through the whole year but its peak occurs during summer (52.8%) and autumn (32.1%). Sixty eight percent of patients were living in urban areas but had frequent travel to rural area. Thirty two percent of the cases were living in rural areas where their dwellings were close to animal shelters. All (100%) of the 53 subjects were febrile. Travellers to the rural areas with high prevalence of the disease should be attentive of the risk of tick-borne relapsing fever and use suitable control measures. Consequently relapsing fever should be considered when patients who live in or have vacationed in north-west of Iran show a recurring febrile illness.

  7. Differential associations of Borrelia species with European badgers (Meles meles) and raccoon dogs (Nyctereutes procyonoides) in western Poland.

    PubMed

    Wodecka, Beata; Michalik, Jerzy; Lane, Robert S; Nowak-Chmura, Magdalena; Wierzbicka, Anna

    2016-07-01

    European badgers and raccoon dogs and their associated ticks and lice were assayed for the presence of Lyme borreliosis and relapsing fever-group spirochete DNA in western Poland. Analyses of blood, ear-biopsy and liver samples revealed that 25% of 28 raccoon dogs and 12% of 34 badgers were PCR positive for borreliae. Borrelia garinii was the dominant species in raccoon dogs (62.5%), followed by B. afzelii (25%) and B. valaisiana (12.5%). PCR-positive badgers were infected only with B. afzelii. A total of 351 attached ticks was recovered from 23 (82%) of the raccoon dogs and 13 (38%) of the badgers. Using a nested PCR targeting the ITS2 fragments of Ixodes DNA, four Ixodes species were identified: I. ricinus, I. canisuga, I. hexagonus, and one provisionally named I. cf. kaiseri. Ixodes canisuga and I. ricinus prevailed on both host species. The highest infection prevalence was detected in I. ricinus, followed by I. canisuga and I. cf. kaiseri. Borrelia garinii and B. afzelii accounted for 61.6% and 30.1% of the infections detected in all PCR-positive ticks, respectively. Four other Borrelia species (B. burgdorferi sensu stricto, B. valaisiana, B. lusitaniae and B. miyamotoi) were detected only in I. ricinus from raccoon dogs. Moreover, Borrelia DNA, mostly B. garinii, was detected in 57 (81.4%) of 70 Trichodectes melis lice derived from 12 badgers. The detection of B. afzelii in one-half of PCR-positive biopsies reconfirms previous associations of this species with mammalian hosts, whereas the high prevalence of B. garinii in feeding lice and I. ricinus ticks (including larvae) demonstrates that both carnivores serve as hosts for B. garinii. The lack of B. garinii DNA in the tissues of badgers versus its prevalence in raccoon-dog biopsies, however, incriminates only the latter carnivore as a potential reservoir host.

  8. Evidence of In Vivo Existence of Borrelia Biofilm in Borrelial Lymphocytomas

    PubMed Central

    Sapi, E.; Balasubramanian, K.; Poruri, A.; Maghsoudlou, J. S.; Socarras, K. M.; Timmaraju, A. V.; Filush, K. R.; Gupta, K.; Shaikh, S.; Theophilus, P. A. S.; Luecke, D. F.; MacDonald, A.; Zelger, B.

    2016-01-01

    Lyme borreliosis, caused by the spirochete Borrelia burgdorferi sensu lato, has grown into a major public health problem. We recently identified a novel morphological form of B. burgdorferi, called biofilm, a structure that is well known to be highly resistant to antibiotics. However, there is no evidence of the existence of Borrelia biofilm in vivo; therefore, the main goal of this study was to determine the presence of Borrelia biofilm in infected human skin tissues. Archived skin biopsy tissues from borrelial lymphocytomas (BL) were reexamined for the presence of B. burgdorferi sensu lato using Borrelia-specific immunohistochemical staining (IHC), fluorescent in situ hybridization, combined fluorescent in situ hybridization (FISH)–IHC, polymerase chain reaction (PCR), and fluorescent and atomic force microscopy methods. Our morphological and histological analyses showed that significant amounts of Borrelia-positive spirochetes and aggregates exist in the BL tissues. Analyzing structures positive for Borrelia showed that aggregates, but not spirochetes, expressed biofilm markers such as protective layers of different mucopolysaccharides, especially alginate. Atomic force microscopy revealed additional hallmark biofilm features of the Borrelia/alginate-positive aggregates such as inside channels and surface protrusions. In summary, this is the first study that demonstrates the presence of Borrelia biofilm in human infected skin tissues. PMID:27141311

  9. Cooperation of Doxycycline with Phytochemicals and Micronutrients Against Active and Persistent Forms of Borrelia sp.

    PubMed

    Goc, Anna; Niedzwiecki, Alexandra; Rath, Matthias

    2016-01-01

    Phytochemicals and micronutrients represent a growing theme in antimicrobial defense; however, little is known about their anti-borreliae effects of reciprocal cooperation with antibiotics. A better understanding of this aspect could advance our knowledge and help improve the efficacy of current approaches towards Borrelia sp. In this study, phytochemicals and micronutrients such as baicalein, luteolin, 10-HAD, iodine, rosmarinic acid, and monolaurin, as well as, vitamins D3 and C were tested in a combinations with doxycycline for their in vitro effectiveness against vegetative (spirochetes) and latent (rounded bodies, biofilm) forms of Borrelia burgdorferi and Borrelia garinii. Anti-borreliae effects were evaluated according to checkerboard assays and supported by statistical analysis. The results showed that combination of doxycycline with flavones such as baicalein and luteolin exhibited additive effects against all morphological forms of studied Borrelia sp. Doxycycline combined with iodine demonstrated additive effects against spirochetes and biofilm, whereas with fatty acids such as monolaurin and 10-HAD it produced FICIs of indifference. Additive anti-spirochetal effects were also observed when doxycycline was used with rosmarinic acid and both vitamins D3 and C. Antagonism was not observed in any of the cases. This data revealed the intrinsic anti-borreliae activity of doxycycline with tested phytochemicals and micronutrients indicating that their addition may enhance efficacy of this antibiotic in combating Borrelia sp. Especially the addition of flavones balcalein and luteolin to a doxycycline regimen could be explored further in defining more effective treatments against these bacteria.

  10. Cooperation of Doxycycline with Phytochemicals and Micronutrients Against Active and Persistent Forms of Borrelia sp

    PubMed Central

    Goc, Anna; Niedzwiecki, Alexandra; Rath, Matthias

    2016-01-01

    Phytochemicals and micronutrients represent a growing theme in antimicrobial defense; however, little is known about their anti-borreliae effects of reciprocal cooperation with antibiotics. A better understanding of this aspect could advance our knowledge and help improve the efficacy of current approaches towards Borrelia sp. In this study, phytochemicals and micronutrients such as baicalein, luteolin, 10-HAD, iodine, rosmarinic acid, and monolaurin, as well as, vitamins D3 and C were tested in a combinations with doxycycline for their in vitro effectiveness against vegetative (spirochetes) and latent (rounded bodies, biofilm) forms of Borrelia burgdorferi and Borrelia garinii. Anti-borreliae effects were evaluated according to checkerboard assays and supported by statistical analysis. The results showed that combination of doxycycline with flavones such as baicalein and luteolin exhibited additive effects against all morphological forms of studied Borrelia sp. Doxycycline combined with iodine demonstrated additive effects against spirochetes and biofilm, whereas with fatty acids such as monolaurin and 10-HAD it produced FICIs of indifference. Additive anti-spirochetal effects were also observed when doxycycline was used with rosmarinic acid and both vitamins D3 and C. Antagonism was not observed in any of the cases. This data revealed the intrinsic anti-borreliae activity of doxycycline with tested phytochemicals and micronutrients indicating that their addition may enhance efficacy of this antibiotic in combating Borrelia sp. Especially the addition of flavones balcalein and luteolin to a doxycycline regimen could be explored further in defining more effective treatments against these bacteria. PMID:27570483

  11. Monoclonal Antibodies for the Diagnosis of Borrelia crocidurae.

    PubMed

    Fotso Fotso, Aurélien; Mediannikov, Oleg; Nappez, Claude; Azza, Saïd; Raoult, Didier; Drancourt, Michel

    2016-01-01

    Relapsing fever borreliae, produced by ectoparasite-borne Borrelia species, cause mild to deadly bacteremia and miscarriage. In the perspective of developing inexpensive assays for the rapid detection of relapsing fever borreliae, we produced 12 monoclonal antibodies (MAbs) against Borrelia crocidurae and characterized the two exhibiting the highest titers. P3A10 MAb reacts with the 35.6-kDa flagellin B (flaB) of B. crocidurae while P6D9 MAb recognizes a 35.1-kDa variable-like protein (Vlp) in B. crocidurae and a 35.2-kDa Vlp in Borrelia duttonii. Indirect immunofluorescence assay incorporating relapsing fever and Lyme group borreliae and 11 blood-borne organisms responsible for fever in West Africa confirmed the reactivity of these two MAbs. Combining these two MAbs in indirect immunofluorescence assays detected relapsing fever borreliae including B. crocidurae in ticks and the blood of febrile Senegalese patients. Both antibodies could be incorporated into inexpensive and stable formats suited for the rapid point-of-care diagnosis of relapsing fever. These first-ever MAbs directed against African relapsing fever borreliae are available for the scientific community to promote research in this neglected field.

  12. Sensitivity of Lyme Borreliosis Spirochetes to Serum Complement of Regular Zoo Animals: Potential Reservoir Competence of Some Exotic Vertebrates.

    PubMed

    Ticha, Lucie; Golovchenko, Maryna; Oliver, James H; Grubhoffer, Libor; Rudenko, Nataliia

    2016-01-01

    Reaction of vertebrate serum complement with different Borrelia burgdorferi sensu lato species is used as a basis in determining reservoir hosts among domesticated and wild animals. Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii were tested for their sensitivity to sera of exotic vertebrate species housed in five zoos located in the Czech Republic. We confirmed that different Borrelia species have different sensitivity to host serum. We found that tolerance to Borrelia infection possessed by hosts might differ among individuals of the same genera or species and is not affected by host age or sex. Of all zoo animals included in our study, carnivores demonstrated the highest apparent reservoir competency for Lyme borreliosis spirochetes. We showed that selected exotic ungulate species are tolerant to Borrelia infection. For the first time we showed the high tolerance of Siamese crocodile to Borrelia as compared to the other studied reptile species. While exotic vertebrates present a limited risk to the European human population as reservoirs for the causative agents of Lyme borreliosis, cases of incidental spillover infection could lead to successful replication of the pathogens in a new host, changing the status of selected exotic species and their role in pathogen emergence or maintenance. The question if being tolerant to pathogen means to be a competent reservoir host still needs an answer, simply because the majority of exotic animals might never be exposed to spirochetes in their natural environment.

  13. Serologic Evidence for Borrelia hermsii Infection in Rodents on Federally Owned Recreational Areas in California

    PubMed Central

    Payne, Jessica R.; Schwan, Tom G.

    2013-01-01

    Abstract Tick-borne relapsing fever (TBRF) is endemic in mountainous regions of the western United States. In California, the principal agent is the spirochete Borrelia hermsii, which is transmitted by the argasid tick Ornithodoros hermsi. Humans are at risk of TBRF when infected ticks leave an abandoned rodent nest in quest of a blood meal. Rodents are the primary vertebrate hosts for B. hermsii. Sciurid rodents were collected from 23 sites in California between August, 2006, and September, 2008, and tested for serum antibodies to B. hermsii by immunoblot using a whole-cell sonicate and a specific antigen, glycerophosphodiester phosphodiesterase (GlpQ). Antibodies were detected in 20% of rodents; seroprevalence was highest (36%) in chipmunks (Tamias spp). Seroprevalence in chipmunks was highest in the Sierra Nevada (41%) and Mono (43%) ecoregions and between 1900 and 2300 meters elevation (43%). The serological studies described here are effective in implicating the primary vertebrate hosts involved in the maintenance of the ticks and spirochetes in regions endemic for TBRF. PMID:23488454

  14. Molecular Typing of Borrelia burgdorferi Sensu Lato: Taxonomic, Epidemiological, and Clinical Implications

    PubMed Central

    Wang, Guiqing; van Dam, Alje P.; Schwartz, Ira; Dankert, Jacob

    1999-01-01

    Borrelia burgdorferi sensu lato, the spirochete that causes human Lyme borreliosis (LB), is a genetically and phenotypically divergent species. In the past several years, various molecular approaches have been developed and used to determine the phenotypic and genetic heterogeneity within the LB-related spirochetes and their potential association with distinct clinical syndromes. These methods include serotyping, multilocus enzyme electrophoresis, DNA-DNA reassociation analysis, rRNA gene restriction analysis (ribotyping), pulsed-field gel electrophoresis, plasmid fingerprinting, randomly amplified polymorphic DNA fingerprinting analysis, species-specific PCR and PCR-based restriction fragment length polymorphism (RFLP) analysis, and sequence analysis of 16S rRNA and other conserved genes. On the basis of DNA-DNA reassociation analysis, 10 different Borrelia species have been described within the B. burgdorferi sensu lato complex: B. burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, Borrelia japonica, Borrelia andersonii, Borrelia valaisiana, Borrelia lusitaniae, Borrelia tanukii, Borrelia turdi, and Borrelia bissettii sp. nov. To date, only B. burgdorferi sensu stricto, B. garinii, and B. afzelii are well known to be responsible for causing human disease. Different Borrelia species have been associated with distinct clinical manifestations of LB. In addition, Borrelia species are differentially distributed worldwide and may be maintained through different transmission cycles in nature. In this paper, the molecular methods used for typing of B. burgdorferi sensu lato are reviewed. The current taxonomic status of B. burgdorferi sensu lato and its epidemiological and clinical implications, especiallly correlation between the variable clinical presentations and the infecting Borrelia species, are discussed in detail. PMID:10515907

  15. Large Scale Spatial Risk and Comparative Prevalence of Borrelia miyamotoi and Borrelia burgdorferi Sensu Lato in Ixodes pacificus

    PubMed Central

    Padgett, Kerry; Bonilla, Denise; Kjemtrup, Anne; Vilcins, Inger-Marie; Yoshimizu, Melissa Hardstone; Hui, Lucia; Sola, Milagros; Quintana, Miguel; Kramer, Vicki

    2014-01-01

    Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n = 70) and nymphal (n = 36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America. PMID:25333277

  16. Large scale spatial risk and comparative prevalence of Borrelia miyamotoi and Borrelia burgdorferi sensu lato in Ixodes pacificus.

    PubMed

    Padgett, Kerry; Bonilla, Denise; Kjemtrup, Anne; Vilcins, Inger-Marie; Yoshimizu, Melissa Hardstone; Hui, Lucia; Sola, Milagros; Quintana, Miguel; Kramer, Vicki

    2014-01-01

    Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n=70) and nymphal (n=36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America.

  17. Borrelia hermsii acquisition order in superinfected ticks determines transmission efficiency.

    PubMed

    Policastro, Paul F; Raffel, Sandra J; Schwan, Tom G

    2013-08-01

    Multilocus sequence typing of Borrelia hermsii isolates reveals its divergence into two major genomic groups (GG), but no differences in transmission efficiency or host pathogenicity are associated with these genotypes. To compare GGI and GGII in the tick-host infection cycle, we first determined if spirochetes from the two groups could superinfect the tick vector Ornithodoros hermsi. We infected mice with isolates from each group and fed ticks sequentially on these mice. We then fed the infected ticks on naive mice and measured GGI and GGII spirochete densities in vector and host, using quantitative PCR of genotype-specific chromosomal DNA sequences. Sequential feedings resulted in dual tick infections, showing that GGI or GGII primary acquisition did not block superinfection by a secondary agent. On transmission to naive mice at short intervals after acquisition, ticks with primary GGI and secondary GGII spirochete infections caused mixed GGI and GGII infections in mice. However, ticks with primary GGII and secondary GGI spirochete infections caused only GGII infections with all isolate pairs examined. At longer intervals after acquisition, the exclusion of GGI by GGII spirochetes declined and cotransmission predominated. We then examined GGI and GGII spirochetemia in mice following single inoculation and coinoculation by needle and found that GGI spirochete densities were reduced on multiple days when coinoculated with GGII. These findings indicate that dual GGI-GGII spirochete infections can persist in ticks and that transmission to a vertebrate host is dependent on the order of tick acquisition and the interval between acquisition and transmission events.

  18. Distinct Combinations of Borrelia burgdorferi Sensu Lato Genospecies Found in Individual Questing Ticks from Europe

    PubMed Central

    Kurtenbach, Klaus; De Michelis, Simona; Sewell, Henna-Sisko; Etti, Susanne; Schäfer, Stefanie M.; Hails, Rosie; Collares-Pereira, Margarida; Santos-Reis, Margarida; Haninçová, Klára; Labuda, Milan; Bormane, Antra; Donaghy, Michael

    2001-01-01

    The genetic diversity of Borrelia burgdorferi sensu lato was assessed in individual adult Ixodes ricinus ticks from Europe by direct PCR amplification of spirochetal DNA followed by genospecies-specific hybridization. Analysis of mixed infections in the ticks showed that B. garinii and B. valaisiana segregate from B. afzelii. This and previous findings suggest that host complement interacts with spirochetes in the tick, thereby playing an important role in the ecology of Lyme borreliosis. PMID:11571205

  19. Borrelia burgdorferi tissue morphologies and imaging methodologies.

    PubMed

    MacDonald, A B

    2013-08-01

    This manuscript offers an image presentation of diverse forms of Borrelia burgdorferi spirochetes which are not spiral or corkscrew shaped. Explanations are offered to justify the legitimacy of tissue forms of Borrelia which may confuse the inexperienced microscopic examiner and which may lead to the misdiagnosis of non-spiral forms as artifacts. Images from the author's personal collection of Borrelia burgdorferi images and a few select images of Borrelia burgdorferi from the peer-reviewed published literature are presented. A commentary justifying each of the image profiles and a survey of the imaging modalities utilized provides the reader with a frame of reference. Regularly spiraled Borrelia are rarely seen in solid tissues. A variety of straightened, undulating, and clipped-off profiles are demonstrated, and the structural basis for each image is explained. Tissue examination is a diagnostic tool and a quality control for judging the eradication or the persistence of borreliosis following attempts to eradicate the infection with antibiotic therapy. The presence or absence of chronic Lyme borreliosis may be objectively adjudicated by tissue examinations which demonstrate or which fail to show pathogenic microbes in patients who have received a full course of antibiotics.

  20. Spirochete flagella hook protein self-catalyze a lysinoalanine covalent cross-link for motility

    PubMed Central

    Miller, Michael R.; Miller, Kelly A.; Bian, Jiang; James, Milinda E.; Zhang, Sheng; Lynch, Michael; Callery, Patrick S.; Hettick, Justin M.; Cockburn, Andrew; Liu, Jun; Li, Chunhao; Crane, Brian R.; Charon, Nyles W.

    2016-01-01

    Spirochetes are bacteria responsible for several serious diseases that include Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum), leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)1. These spirochetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochete flagella (periplasmic flagella, PFs) reside and rotate within the periplasmic space2–11. The universal joint or hook that links the rotary motor to the filament is composed of approximately 120–130 FlgE proteins, which in spirochetes form an unusually stable, high-molecular weight complex (HMWC)9,12–17. In other bacteria, the hook can be readily dissociated by treatments such as heat18. In contrast, spirochete hooks are resistant to these treatments, and several lines of evidence indicate that the HMWC is the consequence of covalent cross-linking12,13,17. Here we show that T. denticola FlgE self-catalyzes an interpeptide cross-linking reaction between conserved lysine and cysteine resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine cross-links are not needed for flagellar assembly, but they are required for cell motility, and hence infection. The self-catalytic nature of FlgE cross-linking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochetes. PMID:27670115

  1. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate Colonization of the Lyme Disease Spirochete

    PubMed Central

    Narasimhan, Sukanya; Rajeevan, Nallakkandi; Liu, Lei; Zhao, Yang O.; Heisig, Julia; Pan, Jingyi; Eppler-Epstein, Rebecca; DePonte, Kathleen; Fish, Durland; Fikrig, Erol

    2014-01-01

    SUMMARY Arthopods, such as Ixodes ticks, serve as vectors for many human pathogens. The arthropod gut presents a pivotal microbial entry point and determines pathogen colonization and survival. We show that the gut microbiota of Ixodes scapularis, a major vector of the Lyme disease spirochete Borrelia burgdorferi, influence spirochete colonization of ticks. Perturbing the gut microbiota of larval ticks reduced Borrelia colonization, with dysbiosed larvae displaying decreased expression of the transcription factor STAT. Diminished STAT expression corresponded to lower expression of peritrophin, a key glycoprotein scaffold of the glycan-rich mucus-like peritrophic matrix (PM) that separates the gut lumen from the epithelium. The integrity of the I. scapularis PM was essential for B. burgdorferi to efficiently colonize the gut epithelium. These data elucidate a functional link between the gut microbiota, STAT-signaling, and pathogen colonization in the context of the gut epithelial barrier of an arthropod vector. PMID:24439898

  2. Composite, large spirochetes from microbial mats: spirochete structure review

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Ashen, J. B.; Sole, M.; Guerrero, R.

    1993-01-01

    Phenomena previously unknown in free-living spirochetes are reported: large-sized cells with variable diameter (length to 100 microns, width between 0.4 and 3.0 microns), composite structure (smaller spirochetes inside larger ones), and positive phototropic behavior. These bacteria, Spirosymplokos, are compared with all other spirochete genera. The large spirochete, grown in mixed culture, was studied live and by transmission EM. The protoplasmic cylinder was replete with spherical granules 20-32 nm in diameter, and three to six periplasmic 26-nm flagella were inserted subterminally. Comparably granulated and flagellated small spirochetes were located inside the protoplasmic cylinder and in the periplasm of the large ones. When exposed to air, movement became erratic, protoplasmic cylinders retracted to lie folded inside the outer membrane, and refractile membranous structures formed. From one to four structures per still-moving spirochete were seen. Spirosymplokos was enriched from laboratory samples exposed to oxygen-rich and desiccating, but not dry, conditions for at least 4 mo after removal of microbial mat from the field.

  3. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    PubMed

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ.

  4. Transstadial Transmission of Borrelia turcica in Hyalomma aegyptium Ticks

    PubMed Central

    Kalmár, Zsuzsa; Cozma, Vasile; Sprong, Hein; Jahfari, Setareh; D’Amico, Gianluca; Mărcuțan, Daniel I.; Ionică, Angela M.; Magdaş, Cristian; Modrý, David; Mihalca, Andrei D.

    2015-01-01

    Borrelia turcica comprises the third major group of arthropod-transmitted borreliae and is phylogenetically divergent from other Borrelia groups. The novel group of Borrelia was initially isolated from Hyalomma aegyptium ticks in Turkey and it was recently found in blood and multiple organs of tortoises exported from Jordan to Japan. However, the ecology of these spirochetes and their development in ticks or the vertebrate hosts were not investigated in detail; our aims were to isolate the pathogen and to evaluate the possibility of transstadial transmission of Borrelia turcica by H. aegyptium ticks. Ticks were collected from Testudo graeca tortoises during the summer of 2013 from southeastern Romania. Engorged nymphs were successfully molted to the adult stage. Alive B. turcica was isolated from molted ticks by using Barbour-Stoenner-Kelly (BSK) II medium. Four pure cultures of spirochetes were obtained and analyzed by PCR and sequencing. Sequence analysis of glpQ, gyrB and flaB revealed 98%–100% similarities with B. turcica. H. aegyptium ticks collected from T. graeca tortoises were able to pass the infection with B. turcica via transstadial route, suggesting its vectorial capacity. PMID:25695663

  5. Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks.

    PubMed

    Kalmár, Zsuzsa; Cozma, Vasile; Sprong, Hein; Jahfari, Setareh; D'Amico, Gianluca; Mărcuțan, Daniel I; Ionică, Angela M; Magdaş, Cristian; Modrý, David; Mihalca, Andrei D

    2015-01-01

    Borrelia turcica comprises the third major group of arthropod-transmitted borreliae and is phylogenetically divergent from other Borrelia groups. The novel group of Borrelia was initially isolated from Hyalomma aegyptium ticks in Turkey and it was recently found in blood and multiple organs of tortoises exported from Jordan to Japan. However, the ecology of these spirochetes and their development in ticks or the vertebrate hosts were not investigated in detail; our aims were to isolate the pathogen and to evaluate the possibility of transstadial transmission of Borrelia turcica by H. aegyptium ticks. Ticks were collected from Testudo graeca tortoises during the summer of 2013 from southeastern Romania. Engorged nymphs were successfully molted to the adult stage. Alive B. turcica was isolated from molted ticks by using Barbour-Stoenner-Kelly (BSK) II medium. Four pure cultures of spirochetes were obtained and analyzed by PCR and sequencing. Sequence analysis of glpQ, gyrB and flaB revealed 98%-100% similarities with B. turcica. H. aegyptium ticks collected from T. graeca tortoises were able to pass the infection with B. turcica via transstadial route, suggesting its vectorial capacity.

  6. Fever

    MedlinePlus

    A fever is a body temperature that is higher than normal. It is not an illness. It is part of your body's defense against infection. Most bacteria ... cause infections do well at the body's normal temperature (98.6 F). A slight fever can make ...

  7. Fever

    MedlinePlus

    ... Shortfall Questionnaire FeverA fever is defined as a temperature 1° or more above the normal 98.6°. Minor infections may cause mild or short-term temperature elevations. Temperatures of 103° and above are considered ...

  8. Survey of ticks collected in Mississippi for Rickettsia, Ehrlichia, and Borrelia species.

    PubMed

    Goddard, Jerome; Sumner, John W; Nicholson, William L; Paddock, Christopher D; Shen, John; Piesman, Joseph

    2003-12-01

    From November 1999 through October 2000, we tested ticks collected from vegetation as well as from deer, dogs, and humans for spotted fever group (SFG) rickettsiae, Ehrlichia chaffeensis, and Borrelia spp. spirochetes. A total of 149 adult ticks representing four species was collected from 11 collection sites from southwestern to northern Mississippi. Amblyomma americanum was most commonly collected (n=68), followed by Ixodes scapularis (n=53). The bird tick, Ixodes brunneus (usually rare), was the third most commonly collected tick (n=17). Eleven Dermacentor variabilis were also collected. Ticks were cut longitudinally to make smears on three microscope slides. The remaining body parts were frozen at -65 degrees C for additional testing. Tick smears were stained by direct immunofluorescence assays (DFA) for Rickettsia spp. and Borrelia spp., while indirect immunofluorescence assays (IFA) were used for Ehrlichia spp. The corresponding tick for each positive smear was evaluated using PCR analysis. None of the 149 ticks tested was DFA positive for Borrelia spp. However, smears of 30 (20%) and 32 (22%) ticks reacted with anti-E. chaffeensis sera and anti-R. rickettsii conjugate (known to react with several members of the spotted fever group), respectively. None of the ticks staining with the IFA for Ehrlichia was positive for E. chaffeensis using PCR. However, 23 (72%) of 32 FA-positive ticks for SFG rickettsiae yielded amplicons of the appropriate size when tested using a PCR assay for SFG rickettsiae, corresponding to an overall infection rate with SFG rickettsiae among the collected ticks of 15%. Smears of 12 (71%) of 17 I. brunneus revealed abundant bacilliform bacteria. PCR amplification of DNA from a single I. brunneus containing these bacteria was performed using universal primers for the 16S rRNA gene as well as Borrelia-specific primers. The predominant sequence obtained using the universal primers did not match any sequence in GenBank, but it showed 91

  9. Pyruvate protects pathogenic spirochetes from H2O2 killing.

    PubMed

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M; Yang, X Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection.

  10. Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing

    PubMed Central

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J.; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M.; Yang, X. Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection. PMID:24392147

  11. Infection of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa

    USGS Publications Warehouse

    Zhioua, E.; Bouattour, A.; Hu, C.M.; Gharbi, M.; Aeschliman, A.; Ginsberg, H.S.; Gern, L.

    1999-01-01

    Free-living adult Ixodes ricinus L. were collected in Amdoun, situated in the Kroumiry mountains in northwestern Tunisia (North Africa). Using direct fluorescence antibody assay, the infection rate of field-collected I. ricinus by Borrelia burgdorferi sensu lato was 30.5% (n = 72). No difference in infection rate was observed between male and female ticks. Spirochetes that had been isolated from I. ricinus from Ain Drahim (Kroumiry Mountains) in 1988 were identified as Borrelia lusitaniae (formerly genospecies PotiB2). This is the first identification of a genospecies of Borrelia burgdorferi sensu lato from the continent of Africa.

  12. Molecular Identification and Analysis of Borrelia burgdorferi Sensu Lato in Lizards in the Southeastern United States

    PubMed Central

    Clark, Kerry; Hendricks, Amanda; Burge, David

    2005-01-01

    Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States. PMID:15870353

  13. Borrelia recurrentis in head lice, Ethiopia.

    PubMed

    Boutellis, Amina; Mediannikov, Oleg; Bilcha, Kassahun Desalegn; Ali, Jemal; Campelo, Dayana; Barker, Stephen C; Raoult, Didier

    2013-05-01

    Since the 1800s, the only known vector of Borrelia recurrentis has been the body louse. In 2011, we found B. recurrentis DNA in 23% of head lice from patients with louse-borne relapsing fever in Ethiopia. Whether head lice can transmit these bacteria from one person to another remains to be determined.

  14. Human Infections with Borrelia miyamotoi, Japan

    PubMed Central

    Sato, Kozue; Takano, Ai; Konnai, Satoru; Nakao, Minoru; Ito, Takuya; Koyama, Kojiro; Kaneko, Minoru; Ohnishi, Makoto

    2014-01-01

    We confirmed infection of 2 patients with Borrelia miyamotoi in Japan by retrospective surveillance of Lyme disease patients and detection of B. miyamotoi DNA in serum samples. One patient also showed seroconversion for antibody against recombinant glycerophosphodiester phosphodiesterase of B. miyamotoi. Indigenous relapsing fever should be considered a health concern in Japan. PMID:25061761

  15. Borrelia recurrentis in Head Lice, Ethiopia

    PubMed Central

    Boutellis, Amina; Mediannikov, Oleg; Bilcha, Kassahun Desalegn; Ali, Jemal; Campelo, Dayana; Barker, Stephen C.

    2013-01-01

    Since the 1800s, the only known vector of Borrelia recurrentis has been the body louse. In 2011, we found B. recurrentis DNA in 23% of head lice from patients with louse-borne relapsing fever in Ethiopia. Whether head lice can transmit these bacteria from one person to another remains to be determined. PMID:23648147

  16. Borrelia lusitaniae and green lizards (Lacerta viridis), Karst Region, Slovakia.

    PubMed

    Majláthová, Viktória; Majláth, Igor; Derdáková, Marketa; Víchová, Bronislava; Pet'ko, Branislav

    2006-12-01

    In Europe, spirochetes within the Borrelia burgdorferi sensu lato complex are transmitted by Ixodes ricinus ticks. Specific associations are described between reservoir hosts and individual genospecies. We focused on green lizard (Lacerta viridis) as a host for ticks and potential host for borreliae. In 2004 and 2005, a total of 146 green lizards infested by ticks were captured, and 469 I. ricinus ticks were removed. Borrelial infection was detected in 16.6% of ticks from lizards. Of 102 skin biopsy specimens collected from lizards, 18.6% tested positive. The most frequently detected genospecies was B. lusitaniae (77.9%-94.7%). More than 19% of questing I. ricinus collected in areas where lizards were sampled tested positive for borreliae. B. garinii was the dominant species, and B. lusitaniae represented 11.1%. The presence of B. lusitaniae in skin biopsy specimens and in ticks that had fed on green lizards implicates this species in the transmission cycle of B. lusitaniae.

  17. Periplasmal Physics: The Rotational Dynamics of Spirochetal Flagella

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    2012-02-01

    Spirochetes are distinguished by the location of their flagella, which reside within the periplasm: the tiny space between the bacterial cell wall and the outer membrane. In Borrelia burgdorferi/ (the causative agent of Lyme Disease), rotation of the flagella leads to cellular undulations that drive swimming. Exactly how these shape changes arise due to the forces and torques acting between the flagella and the cell body is unknown. By applying low-Reynolds number hydrodynamic theory to the motion of an elastic flagellum rotating in the periplasm, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. We obtain analytical solutions for the force and torque on the rotating flagellum through lubrication analysis, as well as through scaling analysis, and find results are in close agreement numerical simulations. (Joint work with J. Yang and C.W. Wolgemuth.)

  18. Rickettsiae of spotted fever group, Borrelia valaisiana, and Coxiella burnetii in ticks on passerine birds and mammals from the Camargue in the south of France.

    PubMed

    Socolovschi, Cristina; Reynaud, Pierre; Kernif, Tahar; Raoult, Didier; Parola, Philippe

    2012-12-01

    Ticks are obligate hematophagous arthropods that have a limited mobility, but can be transported over large geographical distances by wild and domestic mammals and birds. In this study, we analyze the presence of emerging zoonotic bacteria in ticks collected from passerine birds and mammals present in the Camargue, in the south of France, which is a major rallying point for birds migrating from Eurasia and Africa. The presence of Coxiella burnetii, Rickettsia, Borrelia, and Bartonella was examined by real-time PCR on DNA samples extracted from 118 ticks. Rickettsia massiliae was detected in ticks from Passer domesticus, Ri. aeschlimannii in ticks from Acrocephalus scirpaceus and Luscinia megarhynchos, and Borrelia valaisiana in one tick from Turdus merula. In addition, Ri. massiliae, Ri. slovaca, Candidatus Ri. barbariae, and C. burnetii were detected in ticks from dogs, horses, cats, and humans. No Bartonella DNA was detected in these samples. The migratory birds may play a role in the transmission of infectious diseases and contribute to the geographic distribution of Ri. aeschlimannii, Bo. valaisiana, and C. burnetii. The role of birds in spreading Rh. sanguineus ticks infected with Ri. massiliae needs to be clarified by complementary studies. This is the first detection of Candidatus Ri. barbariae in Rh. sanguineus from the south of France.

  19. Spatial stratification of various Lyme disease spirochetes in a Central European site.

    PubMed

    Richter, Dania; Schröder, Boris; Hartmann, Niklas K; Matuschka, Franz-Rainer

    2013-03-01

    To determine whether the genospecies composition of Lyme disease spirochetes is spatially stratified, we collected questing Ixodes ricinus ticks in neighboring plots where rodents, birds, and lizards were present as reservoir host and compared the prevalence of various genospecies. The overall prevalence of spirochetes in questing ticks varied across the study site. Borrelia lusitaniae appeared to infect adult ticks in one plot at the same frequency as did Borrelia afzelii in the other plots. The relative density of questing nymphal and adult ticks varied profoundly. Where lizards were exceedingly abundant, these vertebrates seemed to constitute the dominant host for nymphal ticks, contributing the majority of infected adult ticks. Because lizards support solely B. lusitaniae and appear to exclude other genospecies, their narrow genospecies association results in predominance of B. lusitaniae in sites where lizards are abundant, while limiting its spread to the host's habitat range. To the extent that Central European B. lusitaniae strains are nonpathogenic, the presence of numerous lizards should locally decrease risk of infection for people. Evaluation of regional risk of infection by Lyme disease spirochetes should take the spatial effect of hosts into consideration, which stratify the distribution of specifically infected ticks on a small scale.

  20. Community ecology and disease risk: lizards, squirrels, and the Lyme disease spirochete in California, USA.

    PubMed

    Salkeld, Daniel J; Lane, Robert S

    2010-01-01

    Vector-borne zoonotic diseases are often maintained in complex transmission cycles involving multiple vertebrate hosts and their arthropod vectors. In the state of California, U.S.A., the spirochete Borrelia burgdorferi, which causes Lyme disease, is transmitted between vertebrate hosts by the western black-legged tick, Ixodes pacificus. Several mammalian species serve as reservoir hosts of the spirochete, but levels of tick infestation, reservoir competence, and Borrelia-infection prevalence vary widely among such hosts. Here, we model the host (lizards, Peromyscus mice, Californian meadow voles, dusky-footed wood rats, and western gray squirrels), vector, and pathogen community of oak woodlands in northwestern California to determine the relative importance of different tick hosts. Observed infection prevalence of B. burgdorferi in host-seeking I. pacificus nymphs was 1.8-5.3%, and our host-community model estimated an infection prevalence of 1.6-2.2%. The western gray squirrel (Sciurus griseus) was the only source of infected nymphs. Lizards, which are refractory to Borrelia infection, are important in feeding subadult ticks but reduce disease risk (nymphal infection prevalence). Species identity is therefore critical in understanding and determining the local disease ecology.

  1. Borrelia miyamotoi is widespread in Ixodes ricinus ticks in southern Norway.

    PubMed

    Kjelland, Vivian; Rollum, Rikke; Korslund, Lars; Slettan, Audun; Tveitnes, Dag

    2015-06-01

    From April to October 2007, host-seeking Ixodes ricinus ticks were collected from four locations in southern Norway; Farsund, Mandal, Søgne and Tromøy, respectively. Larvae (n=210), nymphs (n=1130) and adults (n=449) were investigated for infection with Borrelia miyamotoi by real-time polymerase chain reaction (PCR) amplification of part of the 16S rRNA gene. Results were verified by direct sequencing of the PCR amplicon generated from the rrs (16S)-rrl (23S) intergenetic spacer. B. miyamotoi was detected at all sites and throughout the period of questing activity, with infection prevalence (≤1.26%) similar to what has been seen in other European countries. Detection of the relapsing fever spirochete at all locations indicates a wide distribution in southern Norway. This is the first report of B. miyamotoi prevalence in ticks collected from Norway. As not much is known about the spatiotemporal dynamics of this relatively recently discovered pathogen, the conclusions of this study significantly add to the knowledge regarding B. miyamotoi in this region.

  2. Tick-Borne Relapsing Fever Outbreak Among a High School Football Team at an Outdoor Education Camping Trip, Arizona, 2014.

    PubMed

    Jones, Jefferson M; Hranac, Carter R; Schumacher, Mare; Horn, Kim; Lee, Darlene M; Terriquez, Joel; Engelthaler, David M; Peoples, Marie; Corrigan, Jennifer; Replogle, Adam; Souders, Nina; Komatsu, Kenneth K; Nieto, Nathan C

    2016-09-07

    During August 2014, five high school students who had attended an outdoor education camp were hospitalized with a febrile illness, prompting further investigation. Ten total cases of tick-borne relapsing fever (TBRF) were identified-six cases confirmed by culture or visualization of spirochetes on blood smear and four probable cases with compatible symptoms (attack rate: 23%). All patients had slept in the campsite's only cabin. Before the camp, a professional pest control company had rodent proofed the cabin, but no acaricides had been applied. Cabin inspection after the camp found rodents and Ornithodoros ticks, the vector of TBRF. Blood samples from a chipmunk trapped near the cabin and from patients contained Borrelia hermsii with identical gene sequences (100% over 630 base pairs). Health departments in TBRF endemic areas should consider educating cabin owners and pest control companies to apply acaricides during or following rodent proofing, because ticks that lack rodents for a blood meal might feed on humans.

  3. Isolation and transmission of the Lyme disease spirochete from the southeastern United States.

    PubMed

    Oliver, J H; Chandler, F W; Luttrell, M P; James, A M; Stallknecht, D E; McGuire, B S; Hutcheson, H J; Cummins, G A; Lane, R S

    1993-08-01

    The isolation of the Lyme disease spirochete (Borrelia burgdorferi) from the southeastern United States is reported. Three isolates, two from cotton mice (Peromyscus gossypinus) and one from the black-legged tick (Ixodes scapularis), were recovered from Sapelo Island, Georgia, in July and September 1991. The spirochetes were characterized by indirect fluorescent antibody assay using a battery of five monoclonal antibodies, by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of whole cell lysates, and by the polymerase chain reaction (PCR) assay using primers for three DNA target sequences found in B. burgdorferi reference strain B-31. Transmission experiments indicate that the three Georgia isolates can infect experimentally inoculated hamsters and mice. Tick transmission of one of the isolates has been attempted so far; I. scapularis transmitted isolate SI-1 from hamsters to mice, but the lone-star tick, Amblyomma americanum, did not.

  4. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  5. Bridging of cryptic Borrelia cycles in European songbirds.

    PubMed

    Heylen, Dieter; Krawczyk, Aleksandra; Lopes de Carvalho, Isabel; Núncio, Maria Sofia; Sprong, Hein; Norte, Ana Cláudia

    2017-02-02

    The principal European vector for Borrelia burgdorferi s.l., the causative agents of Lyme disease, is the host-generalist tick Ixodes ricinus. Almost all terrestrial host-specialist ticks have been supposed not to contribute to the terrestrial Borrelia transmission cycles. Through an experiment with blackbirds, we show successful transmission by the widespread I. frontalis, an abundant bird-specialized tick that infests a broad range of songbirds. In the first phase of the experiment, we obtained Borrelia-infected I. frontalis (infection rate: 19%) and I. ricinus (17%) nymphs by exposing larvae to wild blackbirds that carried several genospecies (Borrelia turdi, B. valaisiana, B. burgdorferi s.s.). In the second phase, pathogen-free blackbirds were exposed to these infected nymphs. Both tick species were able to infect the birds, as indicated by the analysis of xenodiagnostic I. ricinus larvae which provided evidence for both co-feeding and systemic transmission (infection rates: 10%-60%). Ixodes frontalis was shown to transmit B. turdi spirochetes, while I. ricinus transmitted both B. turdi and B. valaisiana. Neither species transmitted B. burgdorferi s.s. European enzootic cycles of Borrelia between songbirds and their ornithophilic ticks do exist, with I. ricinus potentially acting as a bridging vector towards mammals, including man.

  6. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles

    PubMed Central

    Tsao, Jean I.

    2009-01-01

    Lyme borreliosis (LB) is caused by a group of pathogenic spirochetes – most often Borrelia burgdorferi, B. afzelii, and B. garinii – that are vectored by hard ticks in the Ixodes ricinus-persulcatus complex, which feed on a variety of mammals, birds, and lizards. Although LB is one of the best-studied vector-borne zoonoses, the annual incidence in North America and Europe leads other vector-borne diseases and continues to increase. What factors make the LB system so successful, and how can researchers hope to reduce disease risk – either through vaccinating humans or reducing the risk of contacting infected ticks in nature? Discoveries of molecular interactions involved in the transmission of LB spirochetes have accelerated recently, revealing complex interactions among the spirochete-tick-vertebrate triad. These interactions involve multiple, and often redundant, pathways that reflect the evolution of general and specific mechanisms by which the spirochetes survive and reproduce. Previous reviews have focused on the molecular interactions or population biology of the system. Here molecular interactions among the LB spirochete, its vector, and vertebrate hosts are reviewed in the context of natural maintenance cycles, which represent the ecological and evolutionary contexts that shape these interactions. This holistic system approach may help researchers develop additional testable hypotheses about transmission processes, interpret laboratory results, and guide development of future LB control measures and management. PMID:19368764

  7. [Louse-borne-relapsing-fever in refugees from the Horn of Africa; a case series of 25 patients].

    PubMed

    Seilmaier, M; Guggemos, W; Wieser, A; Fingerle, V; Balzer, L; Fenzl, T; Hoch, M; von Both, U; Schmidt, H U; Wendtner, C M; Strobel, E

    2016-07-01

    Background | Relapsing fever is divided into tick borne relapsing fever (TBRF) and louse borne relapsing fever (LBRF). This report describes 25 refugees from East Africa who were diagnosed to suffer from LBRF within a period of 6 month only at a single hospital in Munich / Germany. Material & Methods | The aim was to point out common clinical features as well as laboratory findings and clinical symptoms before and after initiation of treatment in 25 patients with louse borne relapsing fever (LBRF) who were diagnosed and treated at Klinikum München Schwabing from August 2015 to January 2016. To the best of our knowledge this is the largest case series of LBRF in the western world for decades. Main focus of the investigation was put on clinical aspects. Results | All 25 patients suffered from acute onset of high fever with chills, headache and severe prostration. Laboratory analysis showed high CRP and a marked thrombocytopenia. A Giemsa blood stain was procured immediately in order to look for malaria. In the blood smear spirochetes with typical shape and aspect of borrelia species could be detected.The further PCR analysis confirmed infection with Borrelia recurrentis. Treatment with Doxycycline was started forthwith. The condition improved already on the second day after treatment was started and all were restored to health in less than a week. Apart from a mild to moderate Jarisch-Herxheimer-reaction we didn`t see any side effects of the therapy. Conclusion | LBRF has to be taken into account in feverish patients who come as refugees from East-Africa. It seems that our patients belong to a cluster which probably has its origin in Libya and more patients are to be expected in the near future. As LBRF might cause outbreaks in refugee camps it is pivotal to be aware of this emerging infectious disease in refugees from East-Africa.

  8. Detection of a new Borrelia species in ticks taken from cattle in Southwest Ethiopia.

    PubMed

    Mediannikov, Oleg; Abdissa, Alemseged; Socolovschi, Cristina; Diatta, Georges; Trape, Jean-François; Raoult, Didier

    2013-04-01

    We collected 284 ticks in Ethiopia (109 Amblyomma cohaerens, 173 Rhipicephalus decoloratus, and 2 Rhipicephalus praetextatus). We found no rickettsiae and bartonellae. In 7.3% of the A. cohaerens, we found a Borrelia sp. that may represent a new species distant from both relapsing fever group and Lyme borreliae.

  9. Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds.

    PubMed Central

    Olsén, B; Jaenson, T G; Bergström, S

    1995-01-01

    The prevalence of Lyme disease Borrelia-infected ticks on migrating birds was studied in Scandinavia. A total of 22,998 birds were caught at eight different bird observatories and examined for ticks. Five different species of ticks were found infesting the birds. The dominant species, Ixodesricinus, constituted 98.3% of the ticks collected. The presence of spirochetes was determined by an immunofluorescence assay of tick larvae and DNA amplification by PCR on all ticks. To determine which Borrelia burgdorferi sensu lato species were present, a species classification was performed by DNA amplification with species-specific 16S rDNA primers and by DNA sequencing (rDNA is DNA coding for rRNA). Flagellin gene sequences of all species of B. burgdorferi sensu lato previously recorded in Europe were observed. Borrelia garinii was the most prevalent Lyme disease Borrelia species in ticks collected from birds arriving from the South or Southeast in the spring, whereas the distribution was more heterogeneous in ticks from birds migrating from the Southwest. These data support the notion that birds are partly responsible for the heterogeneous distribution of Lyme disease Borrelia spirochetes in Europe. PMID:7487041

  10. Detection of Borrelia theileri in Rhipicephalus geigyi from Mali.

    PubMed

    McCoy, Brandi N; Maïga, Ousmane; Schwan, Tom G

    2014-06-01

    Disease burden within cattle is a concern around the world. Bovine borreliosis, one such disease, is caused by the spirochete Borrelia theileri transmitted by the bite of an infected Rhipicephalus (Boophilus) species tick. A number of species within the genus are capable of transmitting the agent and are found on multiple continents. Cattle in the West African nation of Mali are infested with four species of Rhipicephalus ticks of the subgenus Boophilus: Rhipicephalus annulatus, Rhipicephalus microplus, Rhipicephalus decoloratus, and Rhipicephalus geigyi. To date, no reports of B. theileri within Mali have been documented. We tested 184 Rhipicephalus spp. ticks by PCR that were removed from cattle at a market near Bamako, Mali. One tick, R. geigyi, was positive for B. theileri, which confirmed the presence of this spirochete in Mali.

  11. What Ticks Do Under Your Skin: Two-Photon Intravital Imaging of Ixodes Scapularis Feeding in the Presence of the Lyme Disease Spirochete

    PubMed Central

    Bockenstedt, Linda K.; Gonzalez, David; Mao, Jialing; Li, Ming; Belperron, Alexia A.; Haberman, Ann

    2014-01-01

    Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding. PMID:24600332

  12. Differential tick burdens may explain differential Borrelia afzelii and Borrelia garinii infection rates among four, wild, rodent species in Hokkaido, Japan.

    PubMed

    Taylor, Kyle R; Takano, Ai; Konnai, Satoru; Shimozuru, Michito; Kawabata, Hiroki; Tsubota, Toshio

    2013-01-01

    The ecologies of Lyme disease Borrelia spp. are very specific to location, as they are dependent upon the spirochete species and genotypes, the vectors and the host vertebrates present. In Hokkaido, Japan, where two human pathogenic, Lyme disease Borrelia spp. are present, and human cases are reported annually, the ecologies have been poorly studied. Our goal was to determine whether variation in borrelial infection rates among rodent species sharing an environment, is due to immunological or ecological differences. To this end, we examined the relationships between tick burden and borrelial infection, by including examination of agreement between nested PCR, as a test for infection, and serology, as a test for exposure. We collected 868 rodents, comprised of four species commonly found in Hokkaido, and tested for infection rates with Borrelia spp. using PCR for the borrelial flaB gene, seroprevalence of Borrelia afzelii and Borrelia garinii using ELISA, and attachment of ticks by direct counts. We noted a correlation between differential nymph and larval burdens and the borrelial infection rates found among the four rodent species. Furthermore, there was significant correlation between infection and seroprevalence of B. afzelii and B. garinii (P<0.01), between infection and Ixodes persulcatus nymph burden (P<0.01), and between seroprevalence and I. persulcatus nymph burden (P<0.01). The close agreement among rodent species seroprevalences with infection rates and tick burdens suggest the differences in infection rates of Borrelia spp. may largely be a direct consequence of differential exposure to vectors.

  13. CD4+ cell-derived interleukin-17 in a model of dysregulated, Borrelia-induced arthritis.

    PubMed

    Hansen, Emily S; Johnson, Megan E; Schell, Ronald F; Nardelli, Dean T

    2016-10-01

    Lyme borreliosis, which is caused in the United States by the spirochete Borrelia burgdorferi, may manifest as different arrays of signs, symptoms and severities between infected individuals. Recent studies have indicated that particularly severe forms of Lyme borreliosis in humans are associated with an increased Th17 response. Here, we hypothesized that a murine model combining the dysregulated immune response of an environment lacking interleukin-10 (IL-10) with a robust T-cell-driven inflammatory response would reflect arthritis associated with the production of IL-17 by CD4+ cells. We demonstrate that IL-10 regulates the production of IL-17 by Borrelia-primed CD4+ cells early after interaction with Lyme spirochetes in vitro and that infection of Borrelia-primed mice with B. burgdorferi leads to significant production of IL-17 that contributes to the development of severe arthritis. These results extend our previous findings by demonstrating that a dysregulated adaptive immune response to Lyme spirochetes can contribute to severe, Th17-associated arthritis. These findings may lead to therapeutic measures for individuals with particularly severe symptoms of Lyme borreliosis.

  14. [The role of complement factor H in the pathogenesis of Borrelia infection].

    PubMed

    Gęca, Aleksandra; Mazurek, Urszula; Muc-Wierzgoń, Małgorzata; Nowakowska-Zajdel, Ewa; Niedworok, Elżbieta; Ziółko, Ewa; Kokot, Teresa

    2012-07-20

    Complement factor H (CFH) is one of the most important negative regulators of the alternative pathway of the complement system. It is a glycoprotein belonging to the protein H family, which is synthesized mainly in the liver and is composed into a globular protein consisting of 60 amino acid domains in the serum. It shows specificity for C3b molecule of the complement system present in the serum or bound to the cell surface. It inhibits the steady formation of C3 convertase enzymes and the binding of C2 to C4b and factor B to C3b. It accelerates the decomposition of C2a into C4b and the displacement of Bb from C3b. The present paper discusses the composition, properties and functions of the complement factor and the family it belongs to. The paper focuses in particular on its role in the pathogenesis of an infection caused by the spirochetes of the Borrelia genus. Through binding CFH and other related proteins, bacteria of the Borrelia species inhibit the key effect of the alternative pathway of the complement system - the lysis of spirochete cells dependent on the complement's activation. The mechanism enables pathogens to spread in the host organism and facilitates the evolution of the disease. Discovering the immune mechanisms of the infection caused by the spirochetes of the Borrelia genus may allow for implementing a therapy blocking the binding of complement factor H early enough, apart from the standard treatment of the disease.

  15. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete.

    PubMed

    Lin, Yi-Pin; Benoit, Vivian; Yang, Xiuli; Martínez-Herranz, Raúl; Pal, Utpal; Leong, John M

    2014-07-01

    Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the U.S., is closely associated with arthritis. The attachment of microbial pathogens to cells or to the extracellular matrix of target tissues may promote colonization and disease, and the Lyme disease spirochete encodes several surface proteins, including the decorin- and dermatan sulfate-binding adhesin DbpA, which vary among strains and have been postulated to contribute to strain-specific differences in tissue tropism. DbpA variants differ in their ability to bind to its host ligands and to cultured mammalian cells. To directly test whether variation in dbpA influences tissue tropism, we analyzed murine infection by isogenic B. burgdorferi strains that encode different dbpA alleles. Compared to dbpA alleles of B. afzelii strain VS461 or B. burgdorferi strain N40-D10/E9, dbpA of B. garinii strain PBr conferred the greatest decorin- and dermatan sulfate-binding activity, promoted the greatest colonization at the inoculation site and heart, and caused the most severe carditis. The dbpA of strain N40-D10/E9 conferred the weakest decorin- and GAG-binding activity, but the most robust joint colonization and was the only dbpA allele capable of conferring significant joint disease. Thus, dbpA mediates colonization and disease by the Lyme disease spirochete in an allele-dependent manner and may contribute to the etiology of distinct clinical manifestations associated with different Lyme disease strains. This study provides important support for the long-postulated model that strain-specific variations of Borrelia surface proteins influence tissue tropism.

  16. Emerging borreliae - Expanding beyond Lyme borreliosis.

    PubMed

    Cutler, Sally J; Ruzic-Sabljic, Eva; Potkonjak, Aleksandar

    2017-02-01

    Lyme borreliosis (or Lyme disease) has become a virtual household term to the exclusion of other forgotten, emerging or re-emerging borreliae. We review current knowledge regarding these other borreliae, exploring their ecology, epidemiology and pathological potential, for example, for the newly described B. mayonii. These bacteria range from tick-borne, relapsing fever-inducing strains detected in some soft ticks, such as B. mvumii, to those from bat ticks resembling B. turicatae. Some of these emerging pathogens remain unnamed, such as the borrelial strains found in South African penguins and some African cattle ticks. Others, such as B. microti and unnamed Iranian strains, have not been recognised through a lack of discriminatory diagnostic methods. Technical improvements in phylogenetic methods have allowed the differentiation of B. merionesi from other borrelial species that co-circulate in the same region. Furthermore, we discuss members that challenge the existing dogma that Lyme disease-inducing strains are transmitted by hard ticks, whilst the relapsing fever-inducing spirochaetes are transmitted by soft ticks. Controversially, the genus has now been split with Lyme disease-associated members being transferred to Borreliella, whilst the relapsing fever species retain the Borrelia genus name. It took some 60 years for the correlation with clinical presentations now known as Lyme borreliosis to be attributed to their spirochaetal cause. Many of the borreliae discussed here are currently considered exotic curiosities, whilst others, such as B. miyamotoi, are emerging as significant causes of morbidity. To elucidate their role as potential pathogenic agents, we first need to recognise their presence through suitable diagnostic approaches.

  17. Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal

    PubMed Central

    Hoxmeier, J. Charles; Fleshman, Amy C.; Broeckling, Corey D.; Prenni, Jessica E.; Dolan, Marc C.; Gage, Kenneth L.; Eisen, Lars

    2017-01-01

    The causal agents of Lyme disease in North America, Borrelia burgdorferi and Borrelia mayonii, are transmitted primarily by Ixodes scapularis ticks. Due to their limited metabolic capacity, spirochetes rely on the tick blood meal for nutrients and metabolic intermediates while residing in the tick vector, competing with the tick for nutrients in the blood meal. Metabolomics is an effective methodology to explore dynamics of spirochete survival and multiplication in tick vectors before transmission to a vertebrate host via tick saliva. Using gas chromatography coupled to mass spectrometry, we identified statistically significant differences in the metabolic profile among uninfected I. scapularis nymphal ticks, B. burgdorferi-infected nymphal ticks and B. mayonii-infected nymphal ticks by measuring metabolism every 24 hours over the course of their up to 96 hour blood meals. Specifically, differences in the abundance of purines, amino acids, carbohydrates, and fatty acids during the blood meal among the three groups of nymphal ticks suggest that B. mayonii and B. burgdorferi may have different metabolic capabilities, especially during later stages of nymphal feeding. Understanding mechanisms underlying variable metabolic requirements of different Lyme disease spirochetes within tick vectors could potentially aid development of novel methods to control spirochete transmission. PMID:28287618

  18. Loss of Lyme disease spirochetes from Ixodes ricinus ticks feeding on European blackbirds.

    PubMed

    Matuschka, F R; Spielman, A

    1992-03-01

    To determine whether blackbirds (Turdus merula), the most abundant and most abundantly tick-infested ecotonal bird of Central Europe, may contribute to the transmission of the Lyme disease spirochete (Borrelia burgdorferi), we compared the infectivity to ticks of naturally as well as experimentally infected blackbirds and rodents. European blackbirds experience intense exposure to Ixodes ricinus ticks and to the pathogens that they transmit. In nature, subadult I. ricinus ticks found feeding on these birds generally contain no spirochetes, although infection is universal in those found on black-striped mice (Apodemus agrarius). Those found on yellow-necked mice (A. flavicollis) are less frequently infected. Ticks lose infection in the course of feeding on blackbirds and fail to infect them. Subadult I. ricinus ticks readily feed on blackbirds, black-striped mice, and jirds (Meriones unguiculatus), but engorge less fully on the bird than on the rodents. Although birds may burden human health by establishing new infestations of I. ricinus ticks, our observations indicate that particular birds may benefit health by locally diminishing transmission of the Lyme disease spirochete.

  19. Borrelia-induced cytokine production is mediated by spleen tyrosine kinase (Syk) but is Dectin-1 and Dectin-2 independent.

    PubMed

    Oosting, Marije; Buffen, Kathrin; Cheng, Shih-Chin; Verschueren, Ineke C; Koentgen, Frank; van de Veerdonk, Frank L; Netea, Mihai G; Joosten, Leo A B

    2015-12-01

    Although it is known that Borrelia species express sugar-like structures on their outer surface, not much is known about the role of these structures in immune recognition by host cells. Fungi, like Candida albicans, are mainly recognized by C-type lectin receptors, in specific Dectin-1 and Dectin-2. In this study we assessed the role of Dectin-1 and Dectin-2 in the recognition process of Borrelia spirochetes. Using specific inhibitors against these receptors on human cells did not influenced cytokine production. Individuals carrying a SNP leading to an early stop codon in the DECTIN-1 gene also did not lead to differential induction of Borrelia-dependent cytokines. After injection of live Borrelia into knee joints of Dectin-2 deficient mice a trend towards lower inflammation was observed. Inhibition of Syk in human cells resulted in lower cytokine production after Borrelia stimulation. In conclusion, Dectin-1 and Dectin-2 seem not to play a major role in Borrelia recognition or Borrelia-induced inflammation. However, Syk seems to be involved in Borrelia-induced cytokine production.

  20. Borrelia burgdorferi Induces the Production and Release of Proinflammatory Cytokines in Canine Synovial Explant Cultures

    PubMed Central

    Straubinger, Reinhard K.; Straubinger, Alix F.; Summers, Brian A.; Erb, Hollis N.; Härter, Luc; Appel, Max J. G.

    1998-01-01

    Canine synovial membrane explants were exposed to high- or low-passage Borrelia burgdorferi for 3, 6, 12, and 24 h. Spirochetes received no treatment, were UV light irradiated for 16 h, or were sonicated prior to addition to synovial explant cultures. In explant tissues, mRNA levels for the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), IL-1β, and IL-8 were surveyed semiquantitatively by reverse transcription-PCR. Culture supernatants were examined for numbers of total and motile (i.e., viable) spirochetes, TNF-like and IL-1-like activities, polymorphonuclear neutrophil (PMN) chemotaxis-inducing activities, and IL-8. During exposure to synovial explant tissues, the total number of spirochetes in the supernatants decreased gradually by ∼30%, and the viability also declined. mRNAs for TNF-α, IL-1α, IL-1β, and IL-8 were up-regulated in synovial explant tissues within 3 h after infection with untreated or UV light-irradiated B. burgdorferi, and mRNA levels corresponded to the results obtained with bioassays. During 24 h of coincubation, cultures challenged with untreated or UV light-irradiated spirochetes produced similar levels of TNF-like and IL-1-like activities. In contrast, explant tissues exposed to untreated B. burgdorferi generated significantly higher levels of chemotactic factors after 24 h of incubation than did explant tissues exposed to UV light-treated spirochetes. In identical samples, a specific signal for IL-8 was identified by Western blot analysis. High- and low-passage borreliae did not differ in their abilities to induce proinflammatory cytokines. No difference in cytokine induction between untreated and sonicated high-passage spirochetes was observed, suggesting that fractions of the organism can trigger the production and release of inflammatory mediators. The titration of spirochetes revealed a dose-independent cytokine response, where 103 to 107 B. burgdorferi organisms induced similar TNF

  1. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    PubMed

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  2. The anti-borreliae efficacy of phytochemicals and micronutrients: an update

    PubMed Central

    Goc, Anna; Rath, Matthias

    2016-01-01

    Naturally occurring substances have been used for centuries to fight against various pathogens. They serve as a source for new chemical entities or provide options to already existing therapeutics. While there is an increasing interest in studying antimicrobial properties of naturally derived agents, little is known about their effects against Borrelia burgdorferi sensu lato, the causative pathogens of Lyme disease. A better understanding of this aspect could advance knowledge about pathophysiology of these bacteria and help improve the efficacy of current approaches against Lyme disease. Here, we review all naturally occurring substances scientifically evaluated to date, including plant extracts, their metabolites, and micronutrients, against vegetative (spirochetes) and latent (rounded bodies, biofilm) forms of Borrelia sp. This summary reveals the potent anti-borreliae activity of several of these natural compounds indicating their potential in enhancing the efficacy of current treatments for Lyme disease, and offering new options to already existing therapeutic regiments. PMID:27536352

  3. Borrelia burgdorferi strain-specific Osp C-mediated immunity in mice.

    PubMed Central

    Bockenstedt, L K; Hodzic, E; Feng, S; Bourrel, K W; de Silva, A; Montgomery, R R; Fikrig, E; Radolf, J D; Barthold, S W

    1997-01-01

    Antibodies to the outer surface proteins (Osps) A, B, and C of the spirochete Borrelia burgdorferi can prevent infection in animal models of Lyme borreliosis. We have previously demonstrated that immune serum from mice infected with B. burgdorferi N40 can also prevent challenge infection and induce disease regression in infected mice. The antigens targeted by protective and disease-modulating antibodies are presently unknown, but they do not include Osp A or Osp B. Because Osp C antibodies are present in immune mouse serum, we investigated the ability of hyperimmune serum to recombinant Osp C (N40) to protect mice against challenge infection with N40 spirochetes. In both active and passive immunization studies, Osp C (N40) antiserum failed to protect mice from challenge infection with cultured organisms. Mice actively immunized with recombinant Osp C (N40) were susceptible to tick-borne challenge infection, and nymphal ticks remained infected after feeding on Osp C-hyperimmunized mice. In contrast, similar immunization studies performed with Osp C (PKo) antiserum prevented challenge infection of mice with a clone of PKo spirochetes pathogenic for mice. Both Osp C (N40) and Osp C (PKo) antisera showed minimal in vitro borreliacidal activity, and immunofluorescence studies localized Osp C beneath the outer membrane of both N40 and PKo spirochetes. We conclude that Osp C antibody-mediated immunity is strain specific and propose that differences in Osp C surface expression by spirochetes in vivo may account for strain-specific immunity. PMID:9353047

  4. [An experimental study of the capacity of the rat mite Ornithonyssus bacoti (Hirst, 1913) to ingest, maintain and transmit Borrelia].

    PubMed

    Lopatina, Iu V; Vasil'eva, I S; Gutova, V P; Ershova, A S; Burakova, O V; Naumov, R L; Petrova, A D

    1999-01-01

    For the first time a possibility of the gamasina mites' O. bacoti participation in Lyme disease spirochetes' circulation has been demonstrated. It has been experimentally shown that Borrelia burgdorferi s.l. are received by O. bacoti, survive in them for at least 21 days and are transmitted to white mice through mites' bites. Mice's infestation has occurred in 23% of cases. It is suggested that other bloodsucking gamasina mites inhabiting the Lyme borreliosis reservoir rodents nests may be capable of participating in borrelia circulation in the Lyme disease endemic areas.

  5. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere

    PubMed Central

    Ivanova, Larisa B.; Tomova, Alexandra; González-Acuña, Daniel; Murúa, Roberto; Moreno, Claudia X.; Hernández, Claudio; Cabello, Javier; Cabello, Carlos; Daniels, Thomas J.; Godfrey, Henry P.; Cabello, Felipe C.

    2014-01-01

    Summary Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by PCR and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group Borrelia chilensis VA1, in honor of its country of origin. PMID:24148079

  6. Lyme Borreliosis: is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains?

    PubMed Central

    Hodzic, Emir

    2015-01-01

    The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes. PMID:26295288

  7. In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice

    PubMed Central

    Ellis, Tisha Choudhury; Jain, Sunny; Linowski, Angelika K.; Rike, Kelli; Bestor, Aaron; Rosa, Patricia A.; Halpern, Micah; Kurhanewicz, Stephanie; Jewett, Mollie W.

    2013-01-01

    Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice. PMID:24009501

  8. Tick-borne relapsing fever: an interstate outbreak originating at Grand Canyon National Park.

    PubMed

    Boyer, K M; Munford, R S; Maupin, G O; Pattison, C P; Fox, M D; Barnes, A M; Jones, W L; Maynard, J E

    1977-05-01

    During the 1973 summer season, 27 employees and 35 overnight guests at the North Rim, Grand Canyon National Park, Arizona, acquired febrile illnesses compatibel with relapsing fever. Sixteen cases were confirmed by finding Borrelia spirochetes in peripheral blood smears or inoculated Swiss mice. Retrospective surveys of 278 employees and 7247 guests at the park revealed that acquisition of illness was significantly associated with the persons sleeping in rustic log cabins and acquiring bites of "unknown" insects. From rodent nesting materials found in the walls and attics of cabins where cases had occurred, infective Ornithodoros hermsi ticks were recovered. Exceptional activity of ticks in human populations appeared to have resulted from a decreased population of the ticks' usual rodent hosts. Vector control activities consisted of spraying the cabins with residual insecticide, removing nesting materials, and "rodent proofing." This outbreak, the largest yet identified in North America, extends the known range of a principal vector and establishes the North Rim as an endemic source of tick-borne relapsing fever.

  9. Borrelia burgdorferi sensu lato detected in skin of Norwegian mountain hares (Lepus timidus) without signs of dissemination.

    PubMed

    Kjelland, Vivian; Ytrehus, Bjørnar; Vikørren, Turid; Stuen, Snorre; Skarpaas, Tone; Slettan, Audun

    2011-04-01

    The mountain hare (Lepus timidus) population in southern Norway appears to be in decline. Necropsy and laboratory examinations of 36 hares found dead or diseased during 2007-2009 in Vest- and Aust-Agder counties showed that disease and deaths were attributed to multiple causes, with no specific etiology emerging as a cause for population decline. To investigate whether Borrelia burgdorferi sensu lato (s.l.) infection is associated with mortality in mountain hares, tissues and ticks collected from hares were investigated for infection with the spirochete. Borrelia burgdorferi s.l. DNA was not detected in samples from internal organs, whereas Borrelia afzelii, B. burgdorferi sensu stricto (s.s.), and the not-yet-defined Borrelia sp. SV1 were found in skin samples from hares and in adult and nymphal Ixodes ricinus feeding on hares. Only B. burgdorferi s.s. and Borrelia sp. SV1 were detected in larvae feeding on hares. Our results indicate that disseminated Borrelia infection in hares rarely occurs and, presumably, does not play a central role in the suspected population decline. The results also suggest that the mountain hare to some degree functions as a transmission host for B. burgdorferi s.s. and Borrelia sp. SV1.

  10. Borrelia lusitaniae and Green Lizards (Lacerta viridis), Karst Region, Slovakia

    PubMed Central

    Majláth, Igor; Derdáková, Marketa; Víchová, Bronislava; Peťko, Branislav

    2006-01-01

    In Europe, spirochetes within the Borrelia burgdorferi sensu lato complex are transmitted by Ixodes ricinus ticks. Specific associations are described between reservoir hosts and individual genospecies. We focused on green lizard (Lacerta viridis) as a host for ticks and potential host for borreliae. In 2004 and 2005, a total of 146 green lizards infested by ticks were captured, and 469 I. ricinus ticks were removed. Borrelial infection was detected in 16.6% of ticks from lizards. Of 102 skin biopsy specimens collected from lizards, 18.6% tested positive. The most frequently detected genospecies was B. lusitaniae (77.9%–94.7%). More than 19% of questing I. ricinus collected in areas where lizards were sampled tested positive for borreliae. B. garinii was the dominant species, and B. lusitaniae represented 11.1%. The presence of B. lusitaniae in skin biopsy specimens and in ticks that had fed on green lizards implicates this species in the transmission cycle of B. lusitaniae. PMID:17326941

  11. Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines

    PubMed Central

    Teixeira, R.C.; Baêta, B.A.; Ferreira, J.S.; Medeiros, R.C.; Maya-Monteiro, C.M.; Lara, F.A.; Bell-Sakyi, L.; Fonseca, A.H.

    2016-01-01

    This study aimed to describe the association of Borrelia burgdorferi s.s. with ixodid tick cell lines by flow cytometry and fluorescence and confocal microscopy. Spirochetes were stained with a fluorescent membrane marker (PKH67 or PKH26), inoculated into 8 different tick cell lines and incubated at 30°C for 24 h. PKH efficiently stained B. burgdorferi without affecting bacterial viability or motility. Among the tick cell lines tested, the Rhipicephalus appendiculatus cell line RA243 achieved the highest percentage of association/internalization, with both high (90%) and low (10%) concentrations of BSK-H medium in tick cell culture medium. Treatment with cytochalasin D dramatically reduced the average percentage of cells with internalized spirochetes, which passed through a dramatic morphological change during their internalization by the host cell as observed in time-lapse photography. Almost all of the fluorescent bacteria were seen to be inside the tick cells. PKH labeling of borreliae proved to be a reliable and valuable tool to analyze the association of spirochetes with host cells by flow cytometry, confocal and fluorescence microscopy. PMID:27332772

  12. Imaging of rickettsial, spirochetal, and parasitic infections.

    PubMed

    Akgoz, Ayca; Mukundan, Srini; Lee, Thomas C

    2012-11-01

    This article is an update and literature review of the clinical and neuroimaging findings of the commonly known rickettsial, spirochetal, and eukaryotic parasitic infections. Being familiar with clinical presentation and imaging findings of these infections is crucial for early diagnosis and treatment especially in patients who live in or have a travel history to endemic regions or are immunocompromised.

  13. Vaccination with the ospA- and ospB-Negative Borrelia burgdorferi Strain 50772 Provides Significant Protection against Canine Lyme Disease

    PubMed Central

    LaFleur, Rhonda L.; Dant, Jennifer C.; Wasmoen, Terri L.; Jobe, Dean A.; Lovrich, Steven D.

    2015-01-01

    Beagles received placebo or ospA- and ospB-negative Borrelia burgdorferi before a tick challenge. A total of 28 (41%) ticks and skin biopsy specimens from each control dog (n = 10) contained B. burgdorferi. In contrast, 12 (19%) ticks recovered from the vaccine recipients (n = 10) were infected (P = 0.0077), and 5 dogs yielded spirochetes from the skin biopsy specimens (P = 0.0325). In addition, 9 (90%) placebo recipients and 4 (40%) vaccine recipients developed joint abnormalities (P = 0.0573). Therefore, vaccination with the ospA- and ospB-negative spirochete provided significant protection against Lyme disease. PMID:25972405

  14. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis

    PubMed Central

    Miklossy, Judith; Kasas, Sandor; Zurn, Anne D; McCall, Sherman; Yu, Sheng; McGeer, Patrick L

    2008-01-01

    Background The long latent stage seen in syphilis, followed by chronic central nervous system infection and inflammation, can be explained by the persistence of atypical cystic and granular forms of Treponema pallidum. We investigated whether a similar situation may occur in Lyme neuroborreliosis. Method Atypical forms of Borrelia burgdorferi spirochetes were induced exposing cultures of Borrelia burgdorferi (strains B31 and ADB1) to such unfavorable conditions as osmotic and heat shock, and exposure to the binding agents Thioflavin S and Congo red. We also analyzed whether these forms may be induced in vitro, following infection of primary chicken and rat neurons, as well as rat and human astrocytes. We further analyzed whether atypical forms similar to those induced in vitro may also occur in vivo, in brains of three patients with Lyme neuroborreliosis. We used immunohistochemical methods to detect evidence of neuroinflammation in the form of reactive microglia and astrocytes. Results Under these conditions we observed atypical cystic, rolled and granular forms of these spirochetes. We characterized these abnormal forms by histochemical, immunohistochemical, dark field and atomic force microscopy (AFM) methods. The atypical and cystic forms found in the brains of three patients with neuropathologically confirmed Lyme neuroborreliosis were identical to those induced in vitro. We also observed nuclear fragmentation of the infected astrocytes using the TUNEL method. Abundant HLA-DR positive microglia and GFAP positive reactive astrocytes were present in the cerebral cortex. Conclusion The results indicate that atypical extra- and intracellular pleomorphic and cystic forms of Borrelia burgdorferi and local neuroinflammation occur in the brain in chronic Lyme neuroborreliosis. The persistence of these more resistant spirochete forms, and their intracellular location in neurons and glial cells, may explain the long latent stage and persistence of Borrelia infection

  15. Genetic Variability within Borrelia burgdorferi Sensu Lato Genospecies Established by PCR-Single-Strand Conformation Polymorphism Analysis of the rrfA-rrlB Intergenic Spacer in Ixodes ricinus Ticks from the Czech Republic

    PubMed Central

    Derdáková, Markéta; Beati, Lorenza; Pet'ko, Branislav; Stanko, Michal; Fish, Durland

    2003-01-01

    In Europe the Borrelia burgdorferi sensu lato complex is represented by five distinct genospecies: Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, and Borrelia lusitaniae. These taxonomic entities are known to differ in their specific associations with vertebrate hosts and to provoke distinct clinical manifestations in human patients. However, exceptions to these rules have often been observed, indicating that strains belonging to a single genospecies may be more heterogeneous than expected. It is, therefore, important to develop alternative identification tools which are able to distinguish Borrelia strains not only at the specific level but also at the intraspecific level. DNA from a sample of 370 Ixodes ricinus ticks collected in the Czech Republic was analyzed by PCR for the presence of a ∼230-bp fragment of the rrfA-rrlB intergenic spacer of Borrelia spp. A total of 20.5% of the ticks were found to be positive. The infecting genospecies were identified by analyzing the amplified products by the restriction fragment length polymorphism (RFLP) method with restriction enzyme MseI and by single-strand conformation polymorphism (SSCP) analysis. The two methods were compared, and PCR-SSCP analysis appeared to be a valuable tool for rapid identification of spirochetes at the intraspecific level, particularly when large samples are examined. Furthermore, by using PCR-SSCP analysis we identified a previously unknown Borrelia genotype, genotype I-77, which would have gone unnoticed if RFLP analysis alone had been used. PMID:12514035

  16. Genetic variability within Borrelia burgdorferi sensu lato genospecies established by PCR-single-strand conformation polymorphism analysis of the rrfA-rrlB intergenic spacer in ixodes ricinus ticks from the Czech Republic.

    PubMed

    Derdáková, Markéta; Beati, Lorenza; Pet'ko, Branislav; Stanko, Michal; Fish, Durland

    2003-01-01

    In Europe the Borrelia burgdorferi sensu lato complex is represented by five distinct genospecies: Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, and Borrelia lusitaniae. These taxonomic entities are known to differ in their specific associations with vertebrate hosts and to provoke distinct clinical manifestations in human patients. However, exceptions to these rules have often been observed, indicating that strains belonging to a single genospecies may be more heterogeneous than expected. It is, therefore, important to develop alternative identification tools which are able to distinguish Borrelia strains not only at the specific level but also at the intraspecific level. DNA from a sample of 370 Ixodes ricinus ticks collected in the Czech Republic was analyzed by PCR for the presence of a approximately 230-bp fragment of the rrfA-rrlB intergenic spacer of Borrelia spp. A total of 20.5% of the ticks were found to be positive. The infecting genospecies were identified by analyzing the amplified products by the restriction fragment length polymorphism (RFLP) method with restriction enzyme MseI and by single-strand conformation polymorphism (SSCP) analysis. The two methods were compared, and PCR-SSCP analysis appeared to be a valuable tool for rapid identification of spirochetes at the intraspecific level, particularly when large samples are examined. Furthermore, by using PCR-SSCP analysis we identified a previously unknown Borrelia genotype, genotype I-77, which would have gone unnoticed if RFLP analysis alone had been used.

  17. Borrelia burgdorferi infection and Lyme disease in children.

    PubMed

    Esposito, Susanna; Bosis, Samantha; Sabatini, Caterina; Tagliaferri, Laura; Principi, Nicola

    2013-03-01

    Lyme disease is a multisystem disease that frequently affects children. It is caused by a group of related spirochetes, Borrelia burgdorferi sensu lato, that are transmitted by ticks belonging to species of the genus Ixodes. The clinical characteristics of Lyme disease in pediatrics resemble those observed in adults, although the symptoms may last for a shorter time and the outcome may be better. However, identifying Lyme disease in children can be significantly more difficult because some of its signs and symptoms can be similar to those of other common pediatric clinical manifestations. Finally, the diagnostic and therapeutic approach to childhood Lyme disease is frequently not codified, and guidelines specifically prepared for adults are used for children without having been validated. This review of the currently available data will evaluate what may be the best approach to the diagnosis and treatment of B. burgdorferi infection and disease in the pediatric population.

  18. New Borrelia species detected in ixodid ticks in Oromia, Ethiopia.

    PubMed

    Kumsa, Bersissa; Socolovschi, Cristina; Raoult, Didier; Parola, Philippe

    2015-04-01

    Little is known about Borrelia species transmitted by hard ticks in Ethiopia. The present study was conducted from November 2011 through March 2014 to address the occurrence and molecular identity of these bacteria in ixodid ticks infesting domestic animals in Oromia, Ethiopia. A total of 767 ixodid ticks collected from domestic animals were screened for Borrelia DNA by quantitative (q) real-time PCR followed by standard PCR and sequencing to identify the species. Overall, 3.8% (29/767) of the tested ticks were positive for Borrelia DNA, including 8/119 (6.7%) Amblyomma cohaerens, 1/42 (2.4%) Am. gemma, 3/53 (5.7%) Am. variegatum, 5/22 (22.7%) Amblyomma larvae, 3/60 (5%) Amblyomma nymphs, 2/139 (1.4%) Rhipicephalus (Boophilus) decoloratus, 2/31 (6.4%) Rh. decoloratus nymphs, and 5/118 (4.2%) Rh. pulchellus using 16S genus-specific qPCR. The prevalence of Borrelia DNA was significantly higher in genus Amblyomma (20/298, 6.7%) than in the genus Rhipicephalus (9/417, 2.1%) ticks (P=0.001). Sequencing of PCR products from the flaB and 16S rRNA genes of Borrelia spp. from Amblyomma ticks showed the presence of a new species between the relapsing fever and Lyme disease groups. However, Borrelia sp. detected in Rhipicephalus ticks clustered with B. theileri/B. lonestari. The human pathogenicity of the Borrelia sp. detected in Amblyomma ticks from Ethiopia has not yet been investigated, whereas the Borrelia sp. detected in Rhipicephalus ticks in our study is the causative agent of bovine borreliosis in cattle and may have veterinary importance in different parts of Ethiopia. Furthermore, the detection of previously unrecognized Borrelia species in Amblyomma and Rhipicephalus ticks in Ethiopia generates additional questions concerning the bacterial fauna in hard ticks and will prompt researchers to perform detailed studies for better understanding of ixodid ticks associated bacteria.

  19. Detection of Borrelia lonestari in Amblyomma americanum (Acari: Ixodidae) from Tennessee.

    PubMed

    Stegall-Faulk, T; Clark, D C; Wright, S M

    2003-01-01

    Genetic sequences characteristic of Borrelia lonestari (Barbour et al. 1996) were detected in two pools of adult Amblyomma americanum (L.) from Tennessee, corresponding to an estimated minimum field infection rate of 8.4 infected ticks/1000 adults. DNA amplification was conducted using primers derived from the B. lonestari flagellin gene that would also amplify Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Species-specific, internal probes were then used to differentiate between genetic sequences of the spirochetes. Subsequent nucleotide sequencing confirmed the presence of B. lonestari in A. americanum; B. burgdorferi was not detected. This represents the first report of B. lonestari from Tennessee, and suggests that Lyme-like illness may occur in Tennessee.

  20. Identification of Borrelia species after creation of an in-house MALDI-TOF MS database.

    PubMed

    Calderaro, Adriana; Gorrini, Chiara; Piccolo, Giovanna; Montecchini, Sara; Buttrini, Mirko; Rossi, Sabina; Piergianni, Maddalena; Arcangeletti, Maria Cristina; De Conto, Flora; Chezzi, Carlo; Medici, Maria Cristina

    2014-01-01

    Lyme borreliosis (LB) is a multisystemic disease caused by Borrelia burgdorferi sensu lato (sl) complex transmitted to humans by Ixodes ticks. B. burgdorferi sl complex, currently comprising at least 19 genospecies, includes the main pathogenic species responsible for human disease in Europe: B. burgdorferi sensu stricto (ss), B. afzelii, and B. garinii. In this study, for the first time, MALDI-TOF MS was applied to Borrelia spp., supplementing the existing database, limited to the species B. burgdorferi ss, B . spielmanii and B. garinii, with the species B. afzelii, in order to enable the identification of all the species potentially implicated in LB in Europe. Moreover, we supplemented the database also with B. hermsii, which is the primary cause of tick-borne relapsing fever in western North America, B. japonica, circulating in Asia, and another reference strain of B. burgdorferi ss (B31 strain). The dendrogram obtained by analyzing the protein profiles of the different Borrelia species reflected Borrelia taxonomy, showing that all the species included in the Borrelia sl complex clustered in a unique branch, while Borrelia hermsii clustered separately. In conclusion, in this study MALDI-TOF MS proved a useful tool suitable for identification of Borrelia spp. both for diagnostic purpose and epidemiological surveillance.

  1. Proteomic Analysis of Lyme Disease: Global Protein Comparison of Three Strains of Borrelia burgdorferi

    SciTech Connect

    Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.; Dunn, John J.; Camp, David G.; Smith, Richard D.

    2005-04-01

    The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31 genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.

  2. Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii.

    PubMed

    Jacquet, Maxime; Durand, Jonas; Rais, Olivier; Voordouw, Maarten J

    2015-12-01

    Cross-reactive acquired immunity in the vertebrate host induces indirect competition between strains of a given pathogen species and is critical for understanding the ecology of mixed infections. In vector-borne diseases, cross-reactive antibodies can reduce pathogen transmission at the vector-to-host and the host-to-vector lifecycle transition. The highly polymorphic, immunodominant, outer surface protein C (OspC) of the tick-borne spirochete bacterium Borrelia afzelii induces a strong antibody response in the vertebrate host. To test how cross-immunity in the vertebrate host influences tick-to-host and host-to-tick transmission, mice were immunized with one of two strain-specific recombinant OspC proteins (A3, A10), challenged via tick bite with one of the two B. afzelii ospC strains (A3, A10), and infested with xenodiagnostic ticks. Immunization with a given rOspC antigen protected mice against homologous strains carrying the same major ospC group allele but provided little or no cross-protection against heterologous strains carrying a different major ospC group allele. There were cross-immunity effects on the tick spirochete load but not on the probability of host-to-tick transmission. The spirochete load in ticks that had fed on mice with cross-immune experience was reduced by a factor of two compared to ticks that had fed on naive control mice. In addition, strain-specific differences in mouse spirochete load, host-to-tick transmission, tick spirochete load, and the OspC-specific IgG response revealed the mechanisms that determine variation in transmission success between strains of B. afzelii. This study shows that cross-immunity in infected vertebrate hosts can reduce pathogen load in the arthropod vector with potential consequences for vector-to-host pathogen transmission.

  3. Borrelia burgdorferi Requires Glycerol for Maximum Fitness During The Tick Phase of the Enzootic Cycle

    PubMed Central

    Pappas, Christopher J.; Iyer, Radha; Petzke, Mary M.; Caimano, Melissa J.; Radolf, Justin D.; Schwartz, Ira

    2011-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness. PMID:21750672

  4. [Antibody titers against Borrelia in horses in serum and in eyes and occurrence of equine recurrent uveitis].

    PubMed

    Gerhards, H; Wollanke, B

    1996-08-01

    In Germany very little is known about antibody titers against Borrelia burgdorferi in the horse. In the USA there exist some studies on the titer levels and symptoms due to borrelia infections. Beside lameness, fever, polyarthritis, pneumonia and dullness there is a study showing a connection between panuveitis and Borrelia infection in the horse. In human medicine the infection with Borrelia burgdorferi becomes more and more important. Uveitis and other eye diseases due to Borrelia burgdorferi are proved and documented. The goal of this study was to find a connection between antibodies to Borrelia burgdorferi and cases of equine recurrent uveitis (ERU). The antibody titer against Borrelia burgdorferi was determined by IFT in 153 horses with no sign of disease of the eye and in 79 horses with equine recurrent uveitis (ERU). 48% of all horses were found to be positive (titer 1:64 or higher). In addition 22 sera were tested in western-blot for antibody titers. There was no significant correlation between signs of ERU and increased antibody titers against Borrelia burgdorferi (p > 0.05). No clinical signs were seen in horses with elevated titers. No correlation between the age of the horses and the antibody level could be found. There was a connection between the antibody titer and the month of examination (p < 0.05). Highest titer levels were seen in May and November. This is both one month later than the activity of the transmitting ticks (I. ricinus).

  5. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences.

    PubMed

    Wilhelmsson, Peter; Lindblom, Pontus; Fryland, Linda; Ernerudh, Jan; Forsberg, Pia; Lindgren, Per-Eric

    2013-01-01

    The incidence of Lyme borreliosis (LB) in a region may reflect the prevalence of Borrelia in the tick population. Our aim was to investigate if regions with different LB incidences can be distinguished by studying the prevalence and diversity of Borrelia species in their respective tick populations. The Borrelia load in a feeding tick increases with the duration of feeding, which may facilitate a transmission of Borrelia Spirochetes from tick to host. Therefore, we also wanted to investigate how the Borrelia load in ticks that have fed on humans varies with the duration of tick feeding. During 2008 and 2009, ticks that had bitten humans were collected from four regions of Sweden and Finland, regions with expected differences in LB incidence. The duration of tick feeding was estimated and Borrelia were detected and quantified by a quantitative PCR assay followed by species determination. Out of the 2,154 Ixodes ricinus ticks analyzed, 26% were infected with Borrelia and seven species were identified. B. spielmanii was detected for the first time in the regions. The tick populations collected from the four regions exhibited only minor differences in both prevalence and diversity of Borrelia species, indicating that these variables alone cannot explain the regions' different LB incidences. The number of Borrelia cells in the infected ticks ranged from fewer than ten to more than a million. We also found a lower number of Borrelia cells in adult female ticks that had fed for more than 36 hours, compared to the number of Borrelia cells found in adult female ticks that had fed for less than 36 hours.

  6. A Coding Variant of ANO10, Affecting Volume Regulation of Macrophages, Is Associated with Borrelia Seropositivity.

    PubMed

    Hammer, Christian; Wanitchakool, Podchanart; Sirianant, Lalida; Papiol, Sergi; Monnheimer, Mathieu; Faria, Diana; Ousingsawat, Jiraporn; Schramek, Natalie; Schmitt, Corinna; Margos, Gabriele; Michel, Angelika; Kraiczy, Peter; Pawlita, Michael; Schreiber, Rainer; Schulz, Thomas F; Fingerle, Volker; Tumani, Hayrettin; Ehrenreich, Hannelore; Kunzelmann, Karl

    2015-02-23

    In a first genome-wide association study (GWAS) approach to anti-Borrelia seropositivity, we identified two significant single nucleotide polymorphisms (SNPs) (rs17850869, P = 4.17E-09; rs41289586, P = 7.18E-08). Both markers, located on chromosomes 16 and 3, respectively, are within or close to genes previously connected to spinocerebellar ataxia. The risk SNP rs41289586 represents a missense variant (R263H) of anoctamin 10 (ANO10), a member of a protein family encoding Cl(-) channels and phospholipid scramblases. ANO10 augments volume-regulated Cl(-) currents (IHypo) in Xenopus oocytes, HEK293 cells, lymphocytes and macrophages and controls volume regulation by enhancing regulatory volume decrease (RVD). ANO10 supports migration of macrophages and phagocytosis of spirochetes. The R263H variant is inhibitory on IHypo, RVD and intracellular Ca(2+) signals, which may delay spirochete clearance, thereby sensitizing adaptive immunity. Our data demonstrate for the first time that ANO10 has a central role in innate immune defense against Borrelia infection.

  7. Possibilities for Relapsing Fever Reemergence

    PubMed Central

    2006-01-01

    Relapsing fever Borrelia infections have attracted little attention in recent years; however, where endemic, these infections still result in considerable illness and death. Despite the marked antimicrobial drug susceptibility of these organisms, therapy is often delayed through lack of clinical suspicion. With increasing travel, infections may be imported, through exotic relapsing fever infection or through resurgence of infected disease vectors. Although louseborne relapsing fever is now geographically limited, it was once of global importance. The possibility for reemergence was recently highlighted by the probable reemergence of louseborne relapsing fever in homeless persons from France. Host limitations enforced through louseborne transmission are less applicable for the tickborne forms of relapsing fever. Although the latter have reduced potential for epidemic spread, they have the ability to infect diverse hosts, thus establishing reservoirs of infection and presenting greater challenges for their control. PMID:16704771

  8. First Detection of Borrelia burgdorferi sensu lato DNA in Serum of the Wild Boar (Sus scrofa) in Northern Portugal by Nested-PCR.

    PubMed

    Faria, Ana S; Paiva-Cardoso, Maria das Neves; Nunes, Mónica; Carreira, Teresa; Vale-Gonçalves, Hélia M; Veloso, Octávia; Coelho, Catarina; Cabral, João A; Vieira-Pinto, Madalena; Vieira, Maria L

    2015-03-01

    Lyme borreliosis is the most common tick-borne zoonosis in the northern hemisphere. Several vertebrates are crucial in the epidemiological cycle of Borrelia burgdorferi sensu lato, but the role of wild boar as a reservoir is still unknown. Sera were collected from 90 wild boars shot in the Trás-os-Montes region, Northern Portugal (hunting season 2011/2012). In this study, Borrelia DNA was detected for the first time by nested-PCR in three different sera, suggesting that the wild boar may be a potential reservoir for this spirochete. Sequencing results show 100% similarity with Borrelia afzelii. Further studies are needed to evaluate the public health risks associated with boar hunting.

  9. Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes

    PubMed Central

    Maaz, Denny; Rausch, Sebastian; Richter, Dania; Krücken, Jürgen; Kühl, Anja A.; Demeler, Janina; Blümke, Julia; Matuschka, Franz-Rainer; von Samson-Himmelstjerna, Georg

    2016-01-01

    Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides. We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii. Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii. An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease. PMID:26883594

  10. Borrelia burgdorferi in eastern Virginia: comparison between a coastal and inland locality.

    PubMed

    Sonenshine, D E; Ratzlaff, R E; Troyer, J; Demmerle, S; Demmerle, E R; Austin, W E; Tan, S; Annis, B A; Jenkins, S

    1995-08-01

    In Virginia, Borrelia burgdorferi was more prevalent in a site along the Atlantic Ocean, near Maryland, than in an inland site near Williamsburg and Yorktown. At the coastal site on Assateague Island, B. burgdorferi was isolated from 4.2% of 475 animals sampled, including four species of small mammals. Serologic tests indicated that 25-37% of the small rodents assayed had been exposed to B. burgdorferi. Immunofluorescence antibody assays specific for B. burgdorferi showed spirochete infection in Ixodes scapularis and Dermacentor variabilis but not in other species of ticks also examined from this site. At another coastal site (Parramore Island), no evidence of Peromyscus leucopus was found, no immature specimens of I. scapularis were collected, and no isolations were made from numerous raccoons or small mammals sampled. Borrelia burgdorferi infection was found in one I. cookei nymph, but not in numerous specimens of I. scapularis or other tick species from this locality. At the inland site between Williamsburg and Yorktown, B. burgdorferi was isolated from two small mammal species and antibodies to B. burgdorferi were found in only 7-10% of the small mammals sampled. Ixodes scapularis were less abundant at this locality than at the Assateague Island site. Borrelia burgdorferi spirochetes were found in I. scapularis and a single nymph of Amblyomma americanum, but not in any of numerous specimens of four other species. Infection with B. burgdorferi was found in 20% of unfed adult I. scapularis from vegetation, but in only 0.2% of numerous adults from hunter-killed deer. Infection in immature ticks was much lower than at Assateague Island. Borrelia burgdorferi may be more prevalent along the Atlantic coast than in inland areas. Isolations, seroprevalence, immature I. scapularis densities, and spirochete infection rates in ticks were higher at the Assateague Island site than the Williamsburg/Yorktown site. Consequently, the risk of human exposure to Lyme disease may be

  11. Dermal inflammation elicited by synthetic analogs of Treponema pallidum and Borrelia burgdorferi lipoproteins.

    PubMed

    Norgard, M V; Riley, B S; Richardson, J A; Radolf, J D

    1995-04-01

    The membrane lipoproteins of Treponema pallidum and Borrelia burgdorferi have potent immunostimulatory properties in vitro, implicating them as major inflammatory mediators in syphilis and Lyme disease. Recently, we reported that synthetic lipohexapeptide analogs (lipopeptides) of the lipoproteins could be used as surrogates for native spirochetal lipoproteins in immune cell activation studies in vitro. The present study was designed to evaluate the inflammatory properties of the lipopeptides in vivo and to correlate the cellular responses to these synthetic analogs with the histopathology of syphilis and Lyme disease. Lipopeptides corresponding to the 47-kDa major membrane lipoprotein of T. pallidum and the outer surface protein A of B. burgdorferi injected intradermally induced dose-dependent dermal inflammation in mice; the initial predominantly neutrophilic (mice) or heterophilic (rabbits) cellular infiltrates were followed by infiltrates consisting predominantly of mononuclear cells. The intradermal response of rabbits to the 47-kDa lipopeptide was strikingly similar to that observed for animals infected intradermally with T. pallidum. In all cases, lipopolysaccharide was substantially more potent as an inflammatory mediator than the spirochetal lipopeptides. In contrast to the lipopeptides, nonacylated hexapeptides elicited minimal or no dermal lesions in mice or rabbits, underscoring the importance of acyl modification to the inflammatory properties of the lipopeptides. This study provides the first in vivo evidence that the spirochetal lipoproteins/lipopeptides contribute to the immunopathogenesis of syphilis and Lyme disease.

  12. Cyclic di-GMP Modulates Gene Expression in Lyme Disease Spirochetes at the Tick-Mammal Interface To Promote Spirochete Survival during the Blood Meal and Tick-to-Mammal Transmission

    PubMed Central

    Dunham-Ems, Star; Allard, Anna M.; Cassera, Maria B.; Kenedy, Melisha; Radolf, Justin D.

    2015-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission. PMID:25987708

  13. STUDIES ON THE LIFE CYCLE OF SPIROCHETES

    PubMed Central

    DeLamater, Edward D.; Wiggall, Richter H.; Haanes, Merle

    1950-01-01

    A series of observations with the phase contrast microscope on the occurrence of a complex life cycle in the pathogenic Treponema pallidum as it occurs in the syphilitic rabbit testis has been presented and it seems likely from these observations that there are two means of vegetative reproduction, consisting of (1) transverse division (the most important under usual conditions); and (2) the production of gemmae or buds which eventuate into unispirochetal cysts comparable to those described for saprophytic forms, within each of which single spirochetes develop and differentiate, and from which they subsequently emerge. In addition preliminary evidence is presented which suggests that a more complex process is involved in which multispirochetal cysts develop following aggregation of two or more organisms. Within each of these larger cysts numerous organisms develop and subsequently emerge as tangled ropes. Following emergence, they subsequently undergo transverse division and gemmae formation, and so reproduce vegetatively. Subsequent papers will elaborate upon these processes. PMID:15436933

  14. Why are there several species of Borrelia burgdorferi sensu lato detected in dogs and humans?

    PubMed

    Skotarczak, Bogumiła

    2014-04-01

    Borrelia burgdorferi sensu lato is a group of spirochete bacteria species some of which cause borreliosis in humans and dogs. Humans and dogs are susceptible to illness from many of the same tick-borne pathogens, including B. burgdorferi s.l. (Bbsl). Little is known about the pathogenic role of the species of Bbsl in canines. The molecular methods which detect and amplify the DNA of borreliae and allow differentiating borreliae species or strains have not been used in canine diagnostics yet. Until now, it has been believed that in European dogs, like in humans, at least three pathogenic species occur but the most frequently described symptoms may be associated with the infection caused by B. burgdorferi sensu stricto species. A dog as well as a human is a host for many species of Bbsl, because borreliacidal ability of serum of dogs and humans is evident only in certain genospecies of Bbsl. Therefore both a dog and a human harbor more species than in case of some wild animal species which create older phylogenetic Bbsl species-host systems and these animals may act even as a non-competent reservoir host. Apart from many genospecies of Bbsl, a dog harbors other tick-borne agents and dual or triple infections may occur.

  15. Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi.

    PubMed

    Miller, Kelly A; Motaleb, Md A; Liu, Jun; Hu, Bo; Caimano, Melissa J; Miller, Michael R; Charon, Nyles W

    2014-01-01

    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.

  16. Molecular detection of Rickettsia, Borrelia, and Babesia species in Ixodes ricinus sampled in northeastern, central, and insular areas of Italy.

    PubMed

    Castro, Lyda R; Gabrielli, Simona; Iori, Albertina; Cancrini, Gabriella

    2015-07-01

    The aim of the present study was to provide insight into the diversity of tick-borne pathogens circulating in Italy, carried/transmitted by Ixodes ricinus, one of the most abundant tick species in the country. A total of 447 specimens sampled in five areas of northeastern, central and insular Italy were analysed by polymerase chain reaction and sequencing for the presence of rickettsiae, borreliae and babesiae. Several rickettsial species of the spotted fever group of zoonotic concern and other zoonotic pathogens were found, such as Borrelia burgdorferi s.s., Borrelia afzelii, Borrelia garinii, and Babesia venatorum. These findings confirm a wide distribution of tick-borne bacterial and protozoan species in Italy, and highlight the sanitary importance of I. ricinus, often recorded as feeding on humans.

  17. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  18. [Eye involvement of borrelia aetiology].

    PubMed

    Krbková, Lenka; Vodicková, Kristýna; Pellarová, Hana; Bednárová, Jana; Cápová, Iva

    2007-06-01

    We present a case of eye involvement -- intermediate uveitis -- during tick-borne borreliosis in a 10-year-old boy. Ophthalmologic examination revealed impaired vision, apparent thick floating whitish opacity in the vitreous humour of the left eye and fine fibres in the vitreous humour of the right eye. Sonographic examination confirmed hyperechogenic opacity in the vitreous humour. An autoimmune process was suspected but not confirmed. Serological examination showed IgG antibodies against three pathogenic borreliae and borderline values of IgM antibodies against Borrelia garinii were found by immunoblot. The boy was treated with intravenous ceftriaxone for 21 days. The subsequent sonographic examination showed only minute sporadic echogenicity. Biomicroscopically, only residual opacity in the vitreous humour was found. Isolated eye involvement of borrelia aetiology is rare. The discussion provides a review of similar cases of uveitis including diagnosis of the eye form as published in literature.

  19. Search for Borrelia sp. in ticks collected from potential reservoirs in an urban forest reserve in the State of Mato Grosso do Sul, Brazil: a short report.

    PubMed

    Costa, I P da; Bonoldi, V L N; Yoshinari, N H

    2002-07-01

    A total of 128 ticks of the genus Amblyomma were recovered from 5 marsupials (Didelphis albiventris) - with 4 recaptures - and 17 rodents (16 Bolomys lasiurus and 1 Rattus norvegicus) captured in an urban forest reserve in Campo Grande, State of Mato Grosso do Sul, Brazil. Of the ticks collected, 95 (78.9%) were in larval form and 22 (21.1%) were nymphs; the only adult (0.8%) was identified as A. cajennense. Viewed under dark-field microscopy in the fourth month after seeding, 9 cultures prepared from spleens and livers of the rodents, blood of the marsupials, and macerates of Amblyomma sp. nymphs revealed spiral-shaped, spirochete-like structures resembling those of Borrelia sp. Some of them showed little motility, while others were non-motile. No such structures could be found either in positive Giemsa-stained culture smears or under electron microscopy. No PCR amplification of DNA from those cultures could be obtained by employing Leptospira sp., B. burgdorferi, and Borrelia sp. primers. These aspects suggest that the spirochete-like structures found in this study do not fit into the genera Borrelia or Leptospira, requiring instead to be isolated for proper identification.

  20. Recombinant constructs of Borrelia burgdorferi

    DOEpatents

    Dattwyler, Raymond J.; Gomes-Solecki, Maria J. C.; Luft, Benjamin J.; Dunn, John J.

    2007-02-20

    Novel chimeric nucleic acids, encoding chimeric Borrelia proteins comprising OspC or an antigenic fragment thereof and OspA or an antigenic fragment thereof, are disclosed. Chimeric proteins encoded by the nucleic acid sequences are also disclosed. The chimeric proteins are useful as vaccine immunogens against Lyme borreliosis, as well as for immunodiagnostic reagents.

  1. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro

    PubMed Central

    Theophilus, P. A. S.; Victoria, M. J.; Socarras, K. M.; Filush, K. R.; Gupta, K.; Luecke, D. F.; Sapi, E.

    2015-01-01

    Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi. PMID:26716015

  2. Suppression of fibroblast proliferation by oral spirochetes.

    PubMed Central

    Boehringer, H; Taichman, N S; Shenker, B J

    1984-01-01

    Soluble sonic extracts of several strains of Treponema denticola and Treponema vincentii were examined for their abilities to alter proliferation of both murine and human fibroblasts. We found that sonic extracts of all tested strains of T. denticola caused a dose-dependent inhibition of murine and human fibroblast proliferation when assessed by both DNA synthesis ([3H]thymidine incorporation) and direct cell counts. T. vincentii had only a minimal inhibitory effect at comparable doses. No inhibition was observed when sonic extracts were added simultaneously with [3H]thymidine, indicating that suppression was not due to the presence of excessive amounts of cold thymidine in the extract, nonspecific effects on thymidine utilization by the cells (transport and incorporation), or degradation of label. RNA ([3H]uridine incorporation) and protein ([3H]leucine incorporation) synthesis were similarly altered after exposure to the T. denticola sonic extracts. There was no effect on cell viability as measured by trypan blue exclusion. Inhibition could be reversed by extensive washing of the cells within the first few hours of exposure to sonic extracts. Preliminary characterization and purification indicated that the inhibitory factor(s) is not endotoxin since it is heat labile, and elutes in a single, well-defined peak on a Sephadex G-150 chromatography column corresponding to a molecular weight of approximately 50,000. Since oral spirochetes have been implicated in the pathogenesis of periodontal disorders, it is possible that they contribute to the disease process by inhibition of fibroblast growth and therefore may, at least in part, account for the loss of collagen seen in diseased tissue. PMID:6735466

  3. Dengue Fever

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Dengue Fever KidsHealth > For Parents > Dengue Fever Print A ... can help lower the chances of infection. About Dengue Fever Dengue (DEN-gee) fever is caused by ...

  4. Evidence supporting the presence of Borrelia burgdorferi in Missouri.

    PubMed

    Feir, D; Santanello, C R; Li, B W; Xie, C S; Masters, E; Marconi, R; Weil, G

    1994-10-01

    Although Lyme disease is commonly seen in the southcentral United States, the epidemiology of the disease is poorly defined there. The purpose of this study was to document the presence of Borrelia burgdorferi in ticks collected in southeastern Missouri and around the city of St. Louis. Spirochetes were detected and identified as B. burgdorferi by immunofluorescent antibody (IFA) tests using the monoclonal antibody H5332 in 1.9% of Amblyomma americanum and 2.0% of Dermacentor variabilis ticks collected. The identity of IFA-positive organisms was verified by polymerase chain reactions (PCRs) with two different sets of B. burgdorferi-specific primers followed by Southern blotting. The DNA sequences of amplified 371-basepair PCR products from two positive Missouri ticks showed 97-98% identity with that obtained by the same method for the B31 strain of B. burgdorferi. These results confirm that B. burgdorferi is present in questing D. variabilis and A. americanum ticks in areas of Missouri where Lyme disease occurs. Additional studies are needed to determine the role of these ticks in the epidemiology of Lyme disease in Missouri and neighboring states.

  5. Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    SciTech Connect

    Angel, Thomas E.; Luft, Benjamin J.; Yang, Xiaohua; Nicora, Carrie D.; Camp, David G.; Jacobs, Jon M.; Smith, Richard D.

    2010-11-02

    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism’s life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals.

  6. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling.

    PubMed

    Petnicki-Ocwieja, Tanja; Kern, Aurelie

    2014-01-01

    Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis, and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs). However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs). Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.

  7. Tick Thioester-Containing Proteins and Phagocytosis Do Not Affect Transmission of Borrelia afzelii from the Competent Vector Ixodes ricinus

    PubMed Central

    Urbanová, Veronika; Hajdušek, Ondřej; Hönig Mondeková, Helena; Šíma, Radek; Kopáček, Petr

    2017-01-01

    The present concept of the transmission of Lyme disease from Borrelia-infected Ixodes sp. ticks to the naïve host assumes that a low number of spirochetes that manage to penetrate the midgut epithelium migrate through the hemocoel to the salivary glands and subsequently infect the host with the aid of immunomodulatory compounds present in tick saliva. Therefore, humoral and/or cellular immune reactions within the tick hemocoel may play an important role in tick competence to act as a vector for borreliosis. To test this hypothesis we have examined complement-like reactions in the hemolymph of the hard tick Ixodes ricinus against Borrelia afzelii (the most common vector and causative agent of Lyme disease in Europe). We demonstrate that I. ricinus hemolymph does not exhibit borreliacidal effects comparable to complement-mediated lysis of bovine sera. However, after injection of B. afzelii into the tick hemocoel, the spirochetes were efficiently phagocytosed by tick hemocytes and this cellular defense was completely eliminated by pre-injection of latex beads. As tick thioester-containing proteins (T-TEPs) are components of the tick complement system, we performed RNAi-mediated silencing of all nine genes encoding individual T-TEPs followed by in vitro phagocytosis assays. Silencing of two molecules related to the C3 complement component (IrC3-2 and IrC3-3) significantly suppressed phagocytosis of B. afzelii, while knockdown of IrTep (insect type TEP) led to its stimulation. However, RNAi-mediated silencing of T-TEPs or elimination of phagocytosis by injection of latex beads in B. afzelii-infected I. ricinus nymphs had no obvious impact on the transmission of spirochetes to naïve mice, as determined by B. afzelii infection of murine tissues following tick infestation. This result supports the concept that Borrelia spirochetes are capable of avoiding complement-related reactions within the hemocoel of ticks competent to transmit Lyme disease. PMID:28361038

  8. Motor Rotation Is Essential for the Formation of the Periplasmic Flagellar Ribbon, Cellular Morphology, and Borrelia burgdorferi Persistence within Ixodes scapularis Tick and Murine Hosts

    PubMed Central

    Sultan, Syed Z.; Sekar, Padmapriya; Zhao, Xiaowei; Manne, Akarsh; Liu, Jun; Wooten, R. Mark

    2015-01-01

    Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts. PMID:25690096

  9. Coevolution of symbiotic spirochete diversity in lower termites.

    PubMed

    Berlanga, Mercedes; Paster, Bruce J; Guerrero, Ricardo

    2007-06-01

    The phylogenetic relationships of symbiotic spirochetes from five dry-wood feeding lower termites (Cryptotermes cavifrons, Heterotermes tenuis, Kalotermes flavicollis, Neotermes mona, and Reticulitermes grassei) was compared to those described in previous reports. The 16S rDNA bacterial genes were PCR-amplified from DNA isolated from intestinal samples using a spirochete-selective primer, and the 16S amplicons were cloned into Escherichia coli. Sequences of the cloned inserts were then used to determine closest relatives by comparison with published sequences. Clones sharing more than 97% sequence identity were grouped into the same phylotype. Forty-three new phylotypes were identified. These termite whole-gut-spirochetes fell into two previous defined clusters, designated as Treponema Clusters I and II, and one new Cluster III. Thirty-seven phylotypes were grouped in Cluster I. Cluster II comprised three phylotypes, two from Reticulitermes grassei (LJ029 and LJ012) and one from Heterotermes tenuis (LQ016). Three phylotypes, LK057, LK050 and LK028, were affiliated to Cluster III. Members of Cluster I showed the following characteristics: (i) spirochete phylotypes from a particular species of termite were more closely related to each other than to phylotypes of other termite species; (ii) spirochetes obtained from different genera of the same family, such as Cryptotermes sp., Kalotermes sp., and Neotermes sp., all from the family Kalotermitidae, were also related to each other. It was therefore concluded that spirochetes are specific symbionts that have coevolved with their respective species of termites, are stably harbored, and are closely related to members of the same termite family.

  10. Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States.

    PubMed

    Pritt, Bobbi S; Respicio-Kingry, Laurel B; Sloan, Lynne M; Schriefer, Martin E; Replogle, Adam J; Bjork, Jenna; Liu, Gongping; Kingry, Luke C; Mead, Paul S; Neitzel, David F; Schiffman, Elizabeth; Hoang Johnson, Diep K; Davis, Jeffrey P; Paskewitz, Susan M; Boxrud, David; Deedon, Alecia; Lee, Xia; Miller, Tracy K; Feist, Michelle A; Steward, Christopher R; Theel, Elitza S; Patel, Robin; Irish, Cole L; Petersen, Jeannine M

    2016-11-01

    Lyme borreliosis (LB) is a multisystem disease caused by spirochetes in the Borrelia burgdorferisensu lato (Bbsl) genospecies complex. We previously described a novel Bbsl genospecies (type strain MN14-1420T) that causes LB among patients with exposures to ticks in the upper midwestern USA. Patients infected with the novel Bbsl genospecies demonstrated higher levels of spirochetemia and somewhat differing clinical symptoms as compared with those infected with other Bbsl genospecies. The organism was detected from human specimens using PCR, microscopy, serology and culture. The taxonomic status was determined using an eight-housekeeping-gene (uvrA, rplB, recG, pyrG, pepX, clpX, clpA and nifS) multi-locus sequence analysis (MLSA) and comparison of 16S rRNA gene, flaB, rrf-rrl, ospC and oppA2 nucleotide sequences. Using a system threshold of 98.3 % similarity for delineation of Bbsl genospecies by MLSA, we demonstrated that the novel species is a member of the Bbsl genospecies complex, most closely related to B. burgdorferisensu stricto (94.7-94.9 % similarity). This same species was identified in Ixodes scapularis ticks collected in Minnesota and Wisconsin. This novel species, Borrelia mayonii sp. nov, is formally described here. The type strain, MN14-1420, is available through the Deutsche Sammlung von Mikroorganismen und Zelkulturen GmbH (DSM 102811) and the American Type Culture Collection (ATCC BAA-2743).

  11. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)--Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence.

    PubMed

    Hönig, V; Svec, P; Halas, P; Vavruskova, Z; Tykalova, H; Kilian, P; Vetiskova, V; Dornakova, V; Sterbova, J; Simonova, Z; Erhart, J; Sterba, J; Golovchenko, M; Rudenko, N; Grubhoffer, L

    2015-07-01

    Spatial distribution of Ixodes ricinus tick host-seeking activity, as well as prevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV) were studied in the TBE endemic area of South Bohemia (Czech Republic). High variability in tick abundance detected in a network of 30 study sites was most closely associated with characteristics of vegetation cover. Of 11,182 tested tick samples, 12% carried DNA of spirochete from B. burgdorferi s.l. complex. B. afzelii and B. garinii prevailed among spirochete species. The presence of B. spielmanii in the region was confirmed. The median number of borrelial genome copies in positive samples reached 6.6 × 10(3) by real-time PCR. The total prevalence of TBEV in pooled samples reached 0.32% (20,057 samples tested), at least one TBEV positive tick was present in 21 out of 30 sampling sites.

  12. Minimal role of eastern fence lizards in Borrelia burgdorferi transmission in central New Jersey oak/pine woodlands.

    PubMed

    Rulison, Eric L; Kerr, Kaetlyn T; Dyer, Megan C; Han, Seungeun; Burke, Russell L; Tsao, Jean I; Ginsberg, Howard S

    2014-10-01

    The eastern fence lizard, Sceloporus undulatus , is widely distributed in eastern and central North America, ranging through areas with high levels of Lyme disease, as well as areas where Lyme disease is rare or absent. We studied the potential role of S. undulatus in transmission dynamics of Lyme spirochetes by sampling ticks from a variety of natural hosts at field sites in central New Jersey, and by testing the reservoir competence of S. undulatus for Borrelia burgdorferi in the laboratory. The infestation rate of ticks on fence lizards was extremely low (prevalence = 0.087, n = 23) compared to that on white-footed mice and other small mammals (prevalence = 0.53, n = 140). Of 159 nymphs that had fed as larvae on lizards that had previously been exposed to infected nymphs, none was infected with B. burgdorferi , compared with 79.9% of 209 nymphs that had fed as larvae on infected control mice. Simulations suggest that changes in the numbers of fence lizards in a natural habitat would have little effect on the infection rate of nymphal ticks with Lyme spirochetes. We conclude that in central New Jersey, S. undulatus plays a minimal role in the enzootic transmission cycle of Lyme spirochetes.

  13. Infestation of the southern alligator lizard (Squamata: Anguidae) by Ixodes pacificus (Acari: Ixodidae) and its susceptibility to Borrelia burgdorferi.

    PubMed

    Wright, S A; Lane, R S; Clover, J R

    1998-11-01

    To investigate the reservoir potential of the southern alligator lizard, Elgaria multicarinata (Blainville), for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner, 14 lizards were collected from 1 county on each side of the northern Central Valley of California. Seven animals were collected from a Placer County site (Drivers Flat) and a Yolo County site (Cache Creek) where B. burgdorferi had been isolated previously from Ixodes pacificus Cooley & Kohls. Overall, the mean abundance of I. pacificus on all 14 lizards was 34.1 (range, 3-63) for larvae and 11.0 (range, 1-28) for nymphs. In captivity, field-attached I. pacificus larvae and nymphs required, on average, 12.6 (range, 1-37) and 14.4 (range, 5-44) d to feed to repletion, respectively. The prevalence of B. burgdorferi infection in host-seeking I. pacificus nymphs was 1.4% in Cache Creek Canyon and 9.9% in Drivers Flat. Attempts to isolate spirochetes from lizard blood or ticks that had fed on lizards and subsequently molted were unsuccessful as were efforts to cultivate spirochetes in lizard sera. These data suggest that the southern alligator lizard is not a competent reservoir for B. burgdorferi, although it is an important host for I. pacificus subadults.

  14. Competitive advantage of Borrelia burgdorferi with outer surface protein BBA03 during tick-mediated infection of the mammalian host.

    PubMed

    Bestor, Aaron; Rego, Ryan O M; Tilly, Kit; Rosa, Patricia A

    2012-10-01

    Linear plasmid lp54 is one of the most highly conserved and differentially expressed elements of the segmented genome of the Lyme disease spirochete Borrelia burgdorferi. We previously reported that deletion of a 4.1-kb region of lp54 (bba01 to bba07 [bba01-bba07]) led to a slight attenuation of tick-transmitted infection in mice following challenge with a large number of infected ticks. In the current study, we reduced the number of ticks in the challenge to more closely mimic the natural dose and found a profound defect in tick-transmitted infection of the bba01-bba07 mutant relative to wild-type B. burgdorferi. We next focused on deletion of bba03 as the most likely cause of this mutant phenotype, as previous studies have shown that expression of bba03 is increased by culture conditions that simulate tick feeding. Consistent with this hypothesis, we demonstrated increased expression of bba03 by spirochetes in fed relative to unfed ticks. We also observed that a bba03 deletion mutant, although fully competent by itself, did not efficiently infect mice when transmitted by ticks that were simultaneously coinfected with wild-type B. burgdorferi. These results suggest that BBA03 provides a competitive advantage to spirochetes carrying this protein during tick transmission to a mammalian host in the natural infectious cycle.

  15. Minimal role of eastern fence lizards in Borrelia burgdorferi transmission in central New Jersey oak/pine woodlands

    USGS Publications Warehouse

    Rulison, Eric L.; Kerr, Kaetlyn T; Dyer, Megan C; Han, Seungeun; Burke, Russell L.; Tsao, Jean I.; Ginsberg, Howard S.

    2014-01-01

    The Eastern fence lizard, Sceloporus undulatus, is widely distributed in eastern and central North America, ranging through areas with high levels of Lyme disease, as well as areas where Lyme disease is rare or absent. We studied the potential role of S. undulatus in transmission dynamics of Lyme spirochetes by sampling ticks from a variety of natural hosts at field sites in central New Jersey, and by testing the reservoir competence of S. undulatus for Borrelia burgdorferi in the laboratory. The infestation rate of ticks on fence lizards was extremely low (proportion infested = 0.087, n = 23) compared to that on white footed mice and other small mammals (proportion infested = 0.53, n = 140). Of 159 nymphs that had fed as larvae on lizards that had previously been exposed to infected nymphs, none was infected with B. burgdorferi, compared with 79.9% of 209 nymphs that had fed as larvae on infected control mice. Simulations suggest that changes in the numbers of fence lizards in a natural habitat would have little effect on the infection rate of nymphal ticks with Lyme spirochetes. We conclude that in central New Jersey S. undulatus plays a minimal role in the enzootic transmission cycle of Lyme spirochetes.

  16. Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes.

    PubMed

    Parthasarathy, Geetha; Fevrier, Helene B; Philipp, Mario T

    2013-11-27

    In previous studies, exposure to live Borrelia burgdorferi was shown to induce inflammation and apoptosis of human oligodendrocytes. In this study we assessed the ability of non-viable bacteria (heat killed or sonicated) to induce inflammatory mediators and cell death. Both heat-killed and sonicated bacteria induced release of CCL2, IL-6, and CXCL8 from oligodendrocytes in a dose dependent manner. In addition, non-viable B. burgdorferi also induced cell death as evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and another cell viability assay. These results suggest that spirochetal residues left after bacterial demise, due to treatment or otherwise, may continue to be pathogenic to the central nervous system.

  17. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel

    PubMed Central

    Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.

    2015-01-01

    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365

  18. Borrelia burgdorferi: Carbon Metabolism and the Tick-Mammal Enzootic Cycle.

    PubMed

    Corona, Arianna; Schwartz, Ira

    2015-06-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a zoonotic pathogen that is maintained in a natural cycle that typically involves mammalian reservoir hosts and a tick vector of the Ixodes species. During each stage of the enzootic cycle, B. burgdorferi is exposed to environments that differ in temperature, pH, small molecules, and most important, nutrient sources. B. burgdorferi has a highly restricted metabolic capacity because it does not contain a tricarboxylic acid cycle, oxidative phosphorylation, or any pathways for de novo biosynthesis of carbohydrates, amino acids, or lipids. Thus, B. burgdorferi relies solely on glycolysis for ATP production and is completely dependent on the transport of nutrients and cofactors from extracellular sources. Herein, pathways for carbohydrate uptake and utilization in B. burgdorferi are described. Regulation of these pathways during the different phases of the enzootic cycle is discussed. In addition, a model for differential control of nutrient flux through the glycolytic pathway as the spirochete transits through the enzootic cycle is presented.

  19. Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    PubMed Central

    Vitorino, Liliana R.; Margos, Gabriele; Feil, Edward J.; Collares-Pereira, Margarida; Zé-Zé, Libia; Kurtenbach, Klaus

    2008-01-01

    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∼130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites. PMID:19104655

  20. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

    PubMed Central

    Bourret, Travis J.; Lawrence, Kevin A.; Shaw, Jeff A.; Lin, Tao; Norris, Steven J.; Gherardini, Frank C.

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks. PMID:27656169

  1. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  2. Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds

    PubMed Central

    Heylen, Dieter J. A.; Sprong, Hein; Krawczyk, Aleksandra; Van Houtte, Natalie; Genné, Dolores; Gomez-Chamorro, Andrea; van Oers, Kees; Voordouw, Maarten J.

    2017-01-01

    The spirochete bacterium Borrelia afzelii is the most common cause of Lyme borreliosis in Europe. This tick-borne pathogen can establish systemic infections in rodents but not in birds. However, several field studies have recovered larval Ixodes ricinus ticks infected with B. afzelii from songbirds suggesting successful transmission of B. afzelii. We reviewed the literature to determine which songbird species were the most frequent carriers of B. afzelii-infected I. ricinus larvae and nymphs. We tested experimentally whether B. afzelii is capable of co-feeding transmission on two common European bird species, the blackbird (Turdus merula) and the great tit (Parus major). For each bird species, four naïve individuals were infested with B. afzelii-infected I. ricinus nymphal ticks and pathogen-free larval ticks. None of the co-feeding larvae tested positive for B. afzelii in blackbirds, but a low percentage of infected larvae (3.33%) was observed in great tits. Transstadial transmission of B. afzelii DNA from the engorged nymphs to the adult ticks was observed in both bird species. However, BSK culture found that these spirochetes were not viable. Our study suggests that co-feeding transmission of B. afzelii is not efficient in these two songbird species. PMID:28054584

  3. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi.

    PubMed

    Tupin, Emmanuel; Benhnia, Mohammed Rafii-El-Idrissi; Kinjo, Yuki; Patsey, Rebeca; Lena, Christopher J; Haller, Matthew C; Caimano, Melissa J; Imamura, Masakazu; Wong, Chi-Huey; Crotty, Shane; Radolf, Justin D; Sellati, Timothy J; Kronenberg, Mitchell

    2008-12-16

    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR alpha chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Valpha14i NKT cell-deficient (Jalpha18(-/-)) BALB/c mice. On tick inoculation with B. burgdorferi, Jalpha18(-/-) mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Valpha14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Valpha14i NKT cells. Valpha14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNgamma in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Valpha14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution.

  4. Borrelia burgdorferi upregulates expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro.

    PubMed Central

    Sellati, T J; Burns, M J; Ficazzola, M A; Furie, M B

    1995-01-01

    The accumulation of leukocytic infiltrates in perivascular tissues is a key step in the pathogenesis of Lyme disease, a chronic inflammatory disorder caused by Borrelia burgdorferi. During an inflammatory response, endothelial cell adhesion molecules mediate the attachment of circulating leukocytes to the blood vessel wall and their subsequent extravasation into perivascular tissues. Using cultured human umbilical vein endothelial cells (HUVEC) in a whole-cell enzyme-linked immunosorbent assay, we demonstrated that B. burgdorferi activated endothelium in a dose- and time-dependent fashion as measured by upregulation of the adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1). As few as one spirochete per endothelial cell stimulated increased expression of these molecules. Expression of E-selectin peaked after spirochetes and HUVEC were coincubated for 4 h and returned to near-basal levels by 24 h. In contrast, expression of VCAM-1 and ICAM-1 peaked at 12 h and remained elevated at 24 h. HUVEC monolayers cultured on acellular amniotic tissue were used to investigate the consequences of endothelial cell activation by spirochetes. After incubation of HUVEC-amnion cultures with B. burgdorferi, subsequently added neutrophils migrated across the endothelial monolayers. This process was mediated by E-selectin and by CD11/CD18 leukocytic integrins. The extent of migration depended on both the number of spirochetes used to stimulate the HUVEC and the length of the coincubation period. These results raise the possibility that B. burgdorferi induces a host inflammatory response and accompanying perivascular damage through activation of vascular endothelium. PMID:7591083

  5. Annular Lichenoid Dermatitis (of Youth) Immunohistochemical and Serological Evidence for Another Clinical Presentation of Borrelia Infection in Patients of Western Austria.

    PubMed

    Wilk, Michael; Zelger, Bettina G; Emberger, Michael; Zelger, Bernhard

    2017-03-01

    Annular lichenoid dermatitis of youth (ALDY) is a more recently described inflammatory disease of the skin of unknown etiology with clinical similarities to morphea. The authors clinically, histopathologically, and immunohistochemically investigated 14 biopsies from 12 patients in western Austria with this disease. There were 6 female and 6 male patients with solitary (n = 7) and multiple lesions (n = 5) affecting the trunk (n = 11), upper arm (n = 2), thigh (n = 1), and calf (n = 1). Clinically, early lesions were erythematous in nature leading to central paleness, scaling, wrinkling, dermal atrophy, slight pigmentation, and telangiectasia later on. Histopathologically, all specimens showed the typical features of ALDY with a superficial lichenoid process with sprinkling of lymphocytes along the basal cell layer and within the epidermis accompanied by mild fibrosis. Pigment incontinence, superficial fibrosis, and dilatation of superficial capillary vessels are prominent features in more advanced stages of disease. Immunohistologically, using a polyclonal antibody against Borrelia, 11/14 specimens revealed spirochetes, either vital (n = 4) or degenerated (n = 7), in close proximity to collagen bundles. Thirteen of 14 specimens in addition showed focal (n = 4) or clustered (n = 9) positivity for CD20 in the papillary dermis. Nine of 12 sera tested for Borrelia with an enzyme-linked immunosorbent assay were positive. Lichen sclerosus et atrophicus and morphea have previously been reported to be possibly related to Borrelia infection. We postulate that a similar relationship to Borrelia infection may be true for ALDY implying that ALDY may be an early superficial stage of morphea.

  6. Effect of RpoN, RpoS and LuxS Pathways on the Biofilm Formation and Antibiotic Sensitivity of Borrelia Burgdorferi

    PubMed Central

    Sapi, Eva; Theophilus, Priyanka A. S.; Pham, Truc V.; Burugu, Divya; Luecke, David F.

    2016-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, is capable of forming biofilm in vivo and in vitro, a structure well known for its resistance to antimicrobial agents. For the formation of biofilm, signaling processes are required to communicate with the surrounding environment such as it was shown for the RpoN–RpoS alternative sigma factor and for the LuxS quorum-sensing pathways. Therefore, in this study, the wild-type B. burgdorferi and different mutant strains lacking RpoN, RpoS, and LuxS genes were studied for their growth characteristic and development of biofilm structures and markers as well as for their antibiotic sensitivity. Our results showed that all three mutants formed small, loosely formed aggregates, which expressed previously identified Borrelia biofilm markers such as alginate, extracellular DNA, and calcium. All three mutants had significantly different sensitivity to doxycyline in the early log phase spirochete cultures; however, in the biofilm rich stationary cultures, only LuxS mutant showed increased sensitivity to doxycyline compared to the wild-type strain. Our findings indicate that all three mutants have some effect on Borrelia biofilm, but the most dramatic effect was found with LuxS mutant, suggesting that the quorum-sensing pathway plays an important role of Borrelia biofilm formation and antibiotic sensitivity. PMID:27980856

  7. Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation.

    PubMed

    Gautam, Aarti; Dixit, Saurabh; Philipp, Mario T; Singh, Shree R; Morici, Lisa A; Kaushal, Deepak; Dennis, Vida A

    2011-12-01

    Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1β, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation.

  8. The Borrelia burgdorferi telomere resolvase, ResT, possesses ATP-dependent DNA unwinding activity.

    PubMed

    Huang, Shu Hui; Cozart, McKayla R; Hart, Madison A; Kobryn, Kerri

    2016-12-09

    Spirochetes of the genus Borrelia possess unusual genomes harboring multiple linear and circular replicons. The linear replicons are terminated by covalently closed hairpin (hp) telomeres. Hairpin telomeres are formed from replicated intermediates by the telomere resolvase, ResT, in a phosphoryl transfer reaction with mechanistic similarities to those promoted by type 1B topoisomerases and tyrosine recombinases. There is growing evidence that ResT is multifunctional. Upon ResT depletion DNA replication unexpectedly ceases. Additionally, ResT possesses RecO-like biochemical activities being able to promote single-strand annealing on both free ssDNA and ssDNA complexed with cognate single-stranded DNA binding protein. We report here that ResT possesses DNA-dependent ATPase activity that promotes DNA unwinding with a 3'-5' polarity. ResT can unwind a variety of substrates including synthetic replication forks and D-loops. We demonstrate that ResT's twin activities of DNA unwinding and annealing can drive regression of a model replication fork. These properties are similar to those of the RecQ helicase of the RecF pathway involved in DNA gap repair. We propose that ResT's combination of activities implicates it in replication and recombination processes operating on the linear chromosome and plasmids of Borrelia burgdorferi.

  9. Geographic distribution of white-tailed deer with ticks and antibodies to Borrelia burgdorferi in Connecticut.

    PubMed Central

    Magnarelli, L. A.; Anderson, J. F.; Cartter, M. L.

    1993-01-01

    Ticks and blood specimens were collected from white-tailed deer (Odocoileus virginianus) in Connecticut and analyzed to identify foci for Lyme borreliosis. Males and females of Ixodes scapularis, the chief vector of Borrelia burgdorferi, were collected from deer in five of eight counties during 1989-1991. Analysis by indirect fluorescent antibody (IFA) staining of midgut tissues showed that prevalence of infection was highest (9.5% of 367 ticks) in south central and southeastern Connecticut. Infected I. scapularis also were collected from southwestern regions of the state (12.1% of 99 ticks), but prevalence of infection in northern counties was considerably lower (0.8% of 124 ticks). Deer sera, obtained in 1980 and 1989-1991, were analyzed by an enzyme-linked immunosorbent assay or by IFA staining methods. Antibodies to B. burgdorferi were detected in sera collected from all eight counties in Connecticut. Deer had been infected by this spirochete in at least 50 towns, 17 (34%) of which are in south central and southeastern parts of the state. Borrelia burgdorferi is widely distributed in I. scapularis populations in Connecticut. PMID:8256460

  10. Antigenic characteristics of Borrelia burgdorferi isolates from ixodid ticks in California.

    PubMed Central

    Lane, R S; Pascocello, J A

    1989-01-01

    Twenty (1.4%) of 1,421 adult Ixodes pacificus ticks and 2 (20%) of 10 adult Ixodes neotomae ticks collected in five counties of northern California were found to contain spirochetes by direct immunofluorescence examination of their tissues with a polyvalent conjugate. Borreliae isolated from the tissues of nine of these ticks (I. pacificus, 8; I. neotomae, 1) were identified as Borrelia burgdorferi with specific monoclonal antibodies and characterized further by polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. The isolate from I. neotomae was the first to be characterized from a tick other than I. pacificus in western North America. All strains were relatively homogeneous with respect to the kind of OspA proteins they produced, whereas they were heterogeneous with regard to their OspB proteins and to several low-molecular-weight proteins in the 21,500-to-24,000 region. Significant phenotypic variation was observed among isolates obtained within and between populations of I. pacificus. This investigation nearly doubles the number of isolates of B. burgdorferi that have been characterized from ixodid ticks in the far western United States. Images PMID:2685030

  11. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default.

    PubMed

    Schulze, Ryan J; Zückert, Wolfram R

    2006-03-01

    Borrelia spirochaetes are unique among diderm bacteria in their abundance of surface-displayed lipoproteins, some of which play important roles in the pathogenesis of Lyme disease and relapsing fever. To identify the lipoprotein-sorting signals in Borrelia burgdorferi, we generated chimeras between the outer surface lipoprotein OspA, the periplasmic oligopeptide-binding lipoprotein OppAIV and mRFP1, a monomeric red fluorescent reporter protein. Localization of OspA and OppAIV point mutants showed that Borrelia lipoproteins do not follow the '+2' sorting rule which targets lipoproteins to the cytoplasmic or outer membrane of Gram-negative bacteria via the Lol pathway. Fusions of mRFP1 to short N-terminal lipopeptides of OspA, and surprisingly OppAIV, were targeted to the spirochaetal surface. Mutagenesis of the OspA N-terminus defined less than five N-terminal amino acids as the minimal secretion-facilitating signal. With the exception of negative charges, which can act as partial subsurface retention signals in certain peptide contexts, lipoprotein secretion occurs independent of N-terminal sequence. Together, these data indicate that Borrelia lipoproteins are targeted to the bacterial surface by default, but can be retained in the periplasm by sequence-specific signals.

  12. Novel methods for surveying reservoir hosts and vectors of Borrelia burgdorferi in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Seifert, Veronica Aili

    Lyme disease is the most prevalent tick-borne disease in North America and presents challenges to clinicians, researchers and the public in diagnosis, treatment and prevention. Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is a zoonotic pathogen obligate upon hematophagous arthropod vectors and propagates in small mammal reservoir hosts. Identifying factors governing zoonotic diseases within regions of high-risk provides local health and agricultural agencies with necessary information to formulate public policy and implement treatment protocols to abate the rise and expansion of infectious disease outbreaks. In the United States, the documented primary reservoir host of Lyme disease is the white-footed mouse, Peromyscus leucopus, and the arthropod vector is the deer tick, Ixodes scapularis. Reducing the impact of Lyme disease will need novel methods for identifying both the reservoir host and the tick vector. The reservoir host, Peromyscus leucopus is difficult to distinguish from the virtually identical Peromyscus maniculatus that also is present in Northern Minnesota, a region where Lyme disease is endemic. Collection of the Ixodes tick, the Lyme disease vector, is difficult as this is season dependent and differs from year to year. This study develops new strategies to assess the extent of Borrelia burgdorferi in the local environment of Northern Minnesota. A selective and precise method to identify Peromyscus species was developed. This assay provides a reliable and definitive method to identify the reservoir host, Peromyscus leucopus from a physically identical and sympatric Peromyscus species, Peromyscus maniculatus. A new strategy to collect ticks for measuring the disbursement of Borrelia was employed. Students from local high schools were recruited to collect ticks. This strategy increased the available manpower to cover greater terrain, provided students with valuable experience in research methodology, and highlighted the

  13. Cristispira from oyster styles: complex morphology of large symbiotic spirochetes

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Nault, L.; Sieburth, J. M.

    1991-01-01

    Crystalline styles (digestive organs) of bivalve mollusks provide the habitat for highly motile bacteria. Styles from freshly-collected oysters, Crassostrea virginica, were studied by electron microscopy; Cristispira spirochetes were abundant in these organs. Detailed study reveals these spirochetes to be among the most complex prokaryotic cells known. More than 600 periplasmic flagella and an adhering outer lipoprotein membrane (e.g., a 270 degrees sillon) form the ultrastructural basis for the "crista," first described by light microscopy. Unique rosette structures corresponding to the "chambers" or "ovoid inclusions" of light microscopy were detected at the periphery of all protoplasmic cylinders. Polar organelles and linearly aligned flagellar insertions are conspicuous. In size and complexity, Cristispira more resembles Pillotina, Diplocalyx, Clevelandina and Hollandina (large spirochetes symbiotic in termites) than it does Treponema. Cristispira pectinis (Gross, 1910), the type species; Spirillum ostrea (Noguchi, 1921); and another, less frequent bacterial symbiont are the predominant inhabitants of the dense style matrix. The ultrastructure of the spirillum and an electron micrograph of the third bacterium are shown.

  14. Delineation of a new species of the Borrelia burgdorferi Sensu Lato Complex, Borrelia americana sp. nov.

    PubMed

    Rudenko, Nataliia; Golovchenko, Maryna; Lin, Tao; Gao, Lihui; Grubhoffer, Libor; Oliver, James H

    2009-12-01

    Analysis of borrelia isolates collected from ticks, birds, and rodents from the southeastern United States revealed the presence of well-established populations of Borrelia burgdorferi sensu stricto, Borrelia bissettii, Borrelia carolinensis, and Borrelia sp. nov. Multilocus sequence analysis of five genomic loci from seven samples representing Borrelia sp. nov. isolated from nymphal Ixodes minor collected in South Carolina showed their close relatedness to California strains known as genomospecies 1 and separation from any other known species of the B. burgdorferi sensu lato complex. One nucleotide difference in the size of the 5S-23S intergenic spacer region, one substitution in 16S rRNA gene signature nucleotides, and silent nucleotide substitutions in sequences of the gene encoding flagellin and the gene p66 clearly separate Borrelia sp. nov. isolates from South Carolina into two subgroups. The sequences of isolates of each subgroup share the same restriction fragment length polymorphism patterns of the 5S-23S intergenic spacer region and contain unique signature nucleotides in the 16S rRNA gene. We propose that seven Borrelia sp. nov. isolates from South Carolina and two California isolates designated as genomospecies 1 comprise a single species, which we name Borrelia americana sp. nov. The currently recognized geographic distribution of B. americana is South Carolina and California. All strains are associated with Ixodes pacificus or Ixodes minor and their rodent and bird hosts.

  15. Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States.

    PubMed

    Krause, Peter J; Narasimhan, Sukanya; Wormser, Gary P; Barbour, Alan G; Platonov, Alexander E; Brancato, Janna; Lepore, Timothy; Dardick, Kenneth; Mamula, Mark; Rollend, Lindsay; Steeves, Tanner K; Diuk-Wasser, Maria; Usmani-Brown, Sahar; Williamson, Phillip; Sarksyan, Denis S; Fikrig, Erol; Fish, Durland

    2014-07-01

    Borrelia miyamotoi sensu lato, a relapsing fever Borrelia sp., is transmitted by the same ticks that transmit B. burgdorferi (the Lyme disease pathogen) and occurs in all Lyme disease-endemic areas of the United States. To determine the seroprevalence of IgG against B. miyamotoi sensu lato in the northeastern United States and assess whether serum from B. miyamotoi sensu lato-infected persons is reactive to B. burgdorferi antigens, we tested archived serum samples from area residents during 1991-2012. Of 639 samples from healthy persons, 25 were positive for B. miyamotoi sensu lato and 60 for B. burgdorferi. Samples from ≈10% of B. miyamotoi sensu lato-seropositive persons without a recent history of Lyme disease were seropositive for B. burgdorferi. Our results suggest that human B. miyamotoi sensu lato infection may be common in southern New England and that B. burgdorferi antibody testing is not an effective surrogate for detecting B. miyamotoi sensu lato infection.

  16. Biofilm formation by Borrelia burgdorferi sensu lato.

    PubMed

    Timmaraju, Venkata Arun; Theophilus, Priyanka A S; Balasubramanian, Kunthavai; Shakih, Shafiq; Luecke, David F; Sapi, Eva

    2015-08-01

    Bacterial biofilms are microbial communities held together by an extracellular polymeric substance matrix predominantly composed of polysaccharides, proteins and nucleic acids. We had previously shown that Borrelia burgdorferi sensu stricto, the causative organism of Lyme disease in the United States is capable of forming biofilms in vitro. Here, we investigated biofilm formation by B. afzelii and B. garinii, which cause Lyme disease in Europe. Using various histochemistry and microscopy techniques, we show that B. afzelii and B. garinii form biofilms, which resemble biofilms formed by B. burgdorferi sensu stricto. High-resolution atomic force microscopy revealed similarities in the ultrastructural organization of the biofilms form by three Borrelia species. Histochemical experiments revealed a heterogeneous organization of exopolysaccharides among the three Borrelia species. These results suggest that biofilm formation might be a common trait of Borrelia genera physiology.

  17. Multiple and Diverse vsp and vlp Sequences in Borrelia miyamotoi, a Hard Tick-Borne Zoonotic Pathogen.

    PubMed

    Barbour, Alan G

    2016-01-01

    Based on chromosome sequences, the human pathogen Borrelia miyamotoi phylogenetically clusters with species that cause relapsing fever. But atypically for relapsing fever agents, B. miyamotoi is transmitted not by soft ticks but by hard ticks, which also are vectors of Lyme disease Borrelia species. To further assess the relationships of B. miyamotoi to species that cause relapsing fever, I investigated extrachromosomal sequences of a North American strain with specific attention on plasmid-borne vsp and vlp genes, which are the underpinnings of antigenic variation during relapsing fever. For a hybrid approach to achieve assemblies that spanned more than one of the paralogous vsp and vlp genes, a database of short-reads from next-generation sequencing was supplemented with long-reads obtained with real-time DNA sequencing from single polymerase molecules. This yielded three contigs of 31, 16, and 11 kb, which each contained multiple and diverse sequences that were homologous to vsp and vlp genes of the relapsing fever agent B. hermsii. Two plasmid fragments had coding sequences for plasmid partition proteins that differed from each other from paralogous proteins for the megaplasmid and a small plasmid of B. miyamotoi. One of 4 vsp genes, vsp1, was present at two loci, one of which was downstream of a candiate prokaryotic promoter. A limited RNA-seq analysis of a population growing in the blood of mice indicated that of the 4 different vsp genes vsp1 was the one that was expressed. The findings indicate that B. miyamotoi has at least four types of plasmids, two or more of which bear vsp and vlp gene sequences that are as numerous and diverse as those of relapsing fever Borrelia. The database and insights from these findings provide a foundation for further investigations of the immune responses to this pathogen and of the capability of B. miyamotoi for antigenic variation.

  18. Hay Fever

    MedlinePlus

    ... This can trigger a type of allergy called hay fever. Symptoms can include Sneezing, often with a runny ... the eyes Your health care provider may diagnose hay fever based on a physical exam and your symptoms. ...

  19. Yellow Fever

    MedlinePlus

    ... on symptoms, physical findings, laboratory testing, and travel history, including the possibility of exposure to infected mosquitoes. There is no specific treatment for yellow fever; care is based on symptoms. Steps to prevent yellow fever virus infection ... and ...

  20. Hemorrhagic Fevers

    MedlinePlus

    ... by four families of viruses. These include the Ebola and Marburg, Lassa fever, and yellow fever viruses. ... Some VHFs cause mild disease, but some, like Ebola or Marburg, cause severe disease and death. VHFs ...

  1. Dengue Fever

    MedlinePlus

    ... away from areas that have a dengue fever epidemic, the risk of contracting dengue fever is small for international travelers./p> Reviewed by: Elana ... Transfusions Cholera West Nile Virus First Aid: Vomiting Are Insect ...

  2. Multiple-exposure photographic analysis of a motile spirochete.

    PubMed Central

    Goldstein, S F; Charon, N W

    1990-01-01

    The Leptospiraceae are thin spirochetes with a unique mode of motility. These spiral-shaped bacteria have internal periplasmic flagella that propel the cells in low-viscosity and gel-like high-viscosity media. A model of Leptospiraceae motility has been previously proposed that states that the subterminally attached periplasmic flagella rotate between the outer sheath and the helical protoplasmic cylinder. The shape of the cell ends and the direction of gyration of these ends are determined by the direction of rotation of the internal periplasmic flagella. Rotation of the periplasmic flagella in one direction causes that end to be spiral-shaped, and rotation in the other direction causes that end to be hook-shaped. One prediction of the model is that these right-handed spirochetes roll clockwise when swimming away from an observer. For maximum swimming efficiency, the model predicts that the sense of the spiral-shaped end is left-handed and gyrates counterclockwise. The present study presents direct evidence that the cell rolls clockwise (protoplasmic cylinder helix diameter = 0.24 micron; pitch = 0.69 micron), the ends gyrate counterclockwise, and the spiral-shaped end is left-handed (helix diameter = 0.6 micron; pitch = 2.7 microns)--as predicted by the model. The hook-shaped end appears approximately planar. The approach used was to illuminate stroboscopically cells slowed by Ficoll and analyze the resultant multiple-exposure photographs focused above and below the axis of the cell. The methodology used should be helpful in analyzing the motility of the larger and more complex spirochetes. Images PMID:2367518

  3. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease

    PubMed Central

    Miklossy, Judith

    2015-01-01

    Following previous observations a statistically significant association between various types of spirochetes and Alzheimer’s disease (AD) fulfilled Hill’s criteria in favor of a causal relationship. If spirochetal infections can indeed cause AD, the pathological and biological hallmarks of AD should also occur in syphilitic dementia. To answer this question, observations and illustrations on the detection of spirochetes in the atrophic form of general paresis, which is known to be associated with slowly progressive dementia, were reviewed and compared with the characteristic pathology of AD. Historic observations and illustrations published in the first half of the 20th Century indeed confirm that the pathological hallmarks, which define AD, are also present in syphilitic dementia. Cortical spirochetal colonies are made up by innumerable tightly spiraled Treponema pallidum spirochetes, which are morphologically indistinguishable from senile plaques, using conventional light microscopy. Local brain amyloidosis also occurs in general paresis and, as in AD, corresponds to amyloid beta. These historic observations enable us to conclude that chronic spirochetal infections can cause dementia and reproduce the defining hallmarks of AD. They represent further evidence in support a causal relationship between various spirochetal infections and AD. They also indicate that local invasion of the brain by these helically shaped bacteria reproduce the filamentous pathology characteristic of AD. Chronic infection by spirochetes, and co-infection with other bacteria and viruses should be included in our current view on the etiology of AD. Prompt action is needed as AD might be prevented. PMID:25932012

  4. Borrelia burgdorferi Induces TLR2-Mediated Migration of Activated Dendritic Cells in an Ex Vivo Human Skin Model

    PubMed Central

    Wagemakers, Alex; van ‘t Veer, Cornelis; Oei, Anneke; van der Pot, Wouter J.; Ahmed, Kalam; van der Poll, Tom; Geijtenbeek, Teunis B. H.; Hovius, Joppe W. R.

    2016-01-01

    Borrelia burgdorferi is transmitted into the skin of the host where it encounters and interacts with two dendritic cell (DC) subsets; Langerhans cells (LCs) and dermal DCs (DDCs). These cells recognize pathogens via pattern recognition receptors, mature and migrate out of the skin into draining lymph nodes, where they orchestrate adaptive immune responses. In order to investigate the response of skin DCs during the early immunopathogenesis of Lyme borreliosis, we injected B. burgdorferi intradermally into full-thickness human skin and studied the migration of DCs out of the skin, the activation profile and phenotype of migrated cells. We found a significant increase in the migration of LCs and DDCs in response to B. burgdorferi. Notably, migration was prevented by blocking TLR2. DCs migrated from skin inoculated with higher numbers of spirochetes expressed significantly higher levels of CD83 and produced pro-inflammatory cytokines. No difference was observed in the expression of HLA-DR, CD86, CD38, or CCR7. To conclude, we have established an ex vivo human skin model to study DC-B. burgdorferi interactions. Using this model, we have demonstrated that B. burgdorferi-induced DC migration is mediated by TLR2. Our findings underscore the utility of this model as a valuable tool to study immunity to spirochetal infections. PMID:27695100

  5. Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii

    PubMed Central

    Margos, Gabriele; Hojgaard, Andrias; Lane, Robert S.; Cornet, Muriel; Fingerle, Volker; Rudenko, Nataliia; Ogden, Nicholas; Aanensen, David M.; Fish, Durland; Piesman, Joseph

    2010-01-01

    Using multilocus sequence analyses (MLSA), we investigated the phylogenetic relationship of spirochaete strains from North America previously assigned to the genospecies Borrelia bissettii. We amplified internal fragments of 8 housekeeping genes (clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA) located on the main linear chromosome by polymerase chain reaction. Phylogenetic analysis of concatenated sequences of the 8 loci showed that the B. bissettii clade consisted of 4 closely related clusters which included strains from California (including the type strain DN127-Cl9-2/p7) and Colorado that were isolated from Ixodes pacificus, I. spinipalpis, or infected reservoir hosts. Several strains isolated from I. scapularis clustered distantly from B. bissettii. Genetic distance analyses confirmed that these strains are more distant to B. bissettii than they are to B. carolinensis, a recently described Borrelia species, which suggests that they constitute a new Borrelia genospecies. We propose that it be named Borrelia kurtenbachii sp. nov. in honour of the late Klaus Kurtenbach. The data suggest that ecological differences between B. bissettii and the new Borrelia genospecies reflect different transmission cycles. In view of these findings, the distinct vertebrate host-tick vector associations and the distributions of B. bissettii and B. kurtenbachii require further investigation. PMID:21157575

  6. Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii.

    PubMed

    Margos, Gabriele; Hojgaard, Andrias; Lane, Robert S; Cornet, Muriel; Fingerle, Volker; Rudenko, Nataliia; Ogden, Nicholas; Aanensen, David M; Fish, Durland; Piesman, Joseph

    2010-12-01

    Using multilocus sequence analyses (MLSA), we investigated the phylogenetic relationship of spirochaete strains from North America previously assigned to the genospecies Borrelia bissettii. We amplified internal fragments of 8 housekeeping genes (clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA) located on the main linear chromosome by polymerase chain reaction. Phylogenetic analysis of concatenated sequences of the 8 loci showed that the B. bissettii clade consisted of 4 closely related clusters which included strains from California (including the type strain DN127-Cl9-2/p7) and Colorado that were isolated from Ixodes pacificus, I. spinipalpis, or infected reservoir hosts. Several strains isolated from I. scapularis clustered distantly from B. bissettii. Genetic distance analyses confirmed that these strains are more distant to B. bissettii than they are to B. carolinensis, a recently described Borrelia species, which suggests that they constitute a new Borrelia genospecies. We propose that it be named Borrelia kurtenbachii sp. nov. in honour of the late Klaus Kurtenbach. The data suggest that ecological differences between B. bissettii and the new Borrelia genospecies reflect different transmission cycles. In view of these findings, the distinct vertebrate host-tick vector associations and the distributions of B. bissettii and B. kurtenbachii require further investigation.

  7. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi.

    PubMed

    Rogovskyy, Artem S; Casselli, Timothy; Tourand, Yvonne; Jones, Cami R; Owen, Jeb P; Mason, Kathleen L; Scoles, Glen A; Bankhead, Troy

    2015-01-01

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.

  8. Emergence of tick-borne pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Ricketsia raoultii and Babesia microti) in the Kyiv urban parks, Ukraine.

    PubMed

    Didyk, Yuliya M; Blaňárová, Lucia; Pogrebnyak, Svyatoslav; Akimov, Igor; Peťko, Branislav; Víchová, Bronislava

    2017-02-01

    To date, only limited data about the presence of ticks and circulation of tick-borne pathogens in urban parks of Kyiv in northern Ukraine are available. In total, 767 ticks (696 Ixodes ricinus and 69 Dermacentor reticulatus) collected in seven urban parks and one suburban oak wood park in Kyiv were individually analyzed by the PCR assays. Tick-borne pathogens, namely spirochetes from Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum, and Babesia microti, were detected in 11.1% of tested I. ricinus ticks. In total, 4% of I. ricinus ticks tested positive for the presence of B. burdorferi s.l. (Borrelia afzelii and Borrelia garinii), 5.2% for A. phagocytophilum, and Ba. microti was confirmed in 1.9% of examined ticks. Mixed infections were recorded in four DNA samples, representing the prevalence of 0.6%. One female and two I. ricinus nymphs were simultaneously infected with B. afzelii and A. phagocytophilum, and one female carried B. afzelii and Ba. microti. In addition, 10.1% of D. reticulatus ticks tested positive for Rickettsia raoultii. Identification of infectious agents and their diversity, assessment of the relative epidemiological importance and determination of the prevalence in questing ticks from central parts of the cities are crucial steps towards the tick-borne diseases surveillance in urban environment.

  9. Demonstration of a B-lymphocyte mitogen produced by the Lyme disease pathogen, Borrelia burgdorferi.

    PubMed Central

    Schoenfeld, R; Araneo, B; Ma, Y; Yang, L M; Weis, J J

    1992-01-01

    Lyme disease refers to the multisymptomatic illness in humans which results from infection with the tick-borne spirochete Borrelia burgdorferi. The white-footed mouse is the major reservoir for B. burgdorferi and, upon infection, certain inbred mice develop symptoms similar to those reported in human disease. Sonicated preparations of washed spirochetes were found to have potent mitogenic activity when cultured with lymphocytes from naive C57BL/6, C3H/HeJ, or BALB/c mice. The activity of the B. burgdorferi sonicate was approximately fourfold greater than that of a similarly prepared Escherichia coli sonicate. Polymyxin B efficiently inhibited the mitogenic activity of the E. coli sonicate but only slightly inhibited that of the B. burgdorferi sonicate, suggesting that a lipid A-containing lipopolysaccharide was not responsible for the B. burgdorferi activity. Kinetic analysis indicated peak proliferation at 2 to 3 days of culturing, suggesting polyclonal activation. B- and T-lymphocyte depletion experiments indicated that the major cell type responding to the B. burgdorferi mitogen was the B lymphocyte. This mitogen stimulated murine B cells not only to proliferate but also to differentiate into antibody-secreting cells, as demonstrated by the production of immunoglobulin by stimulated splenocytes. Furthermore, the sonicated preparation stimulated the B-cell tumor line CH12.LX to secrete immunoglobulin in the absence of accessory cells. B. burgdorferi also stimulated interleukin-6 production in splenocyte cultures. The observation that B. burgdorferi can stimulate activation of and immunoglobulin production by normal B lymphocytes may directly reflect on the development of arthritis associated with persistent infection by this organism. Images PMID:1730476

  10. Detection and characterization of Borrelia bissettii in rodents from the central California coast.

    PubMed

    Vredevoe, Larisa K; Stevens, Jennifer R; Schneider, Bradley S

    2004-07-01

    This is the first report of Borrelia burgdorferi sensu lato in rodents from San Luis Obispo county, with most isolates obtained from a previously unreported host, Neotoma lepida Thomas. B. burgdorferi sensu lato was identified in seven rodent species, including the California vole, Microtus californicus Peale; dusky-footed woodrat, Neotoma fuscipes Baird; desert woodrat, Neotoma lepida Thomas; brush mouse, Peromyscus boylii Baird; California mouse, Peromyscus californicus Gambel; deer mouse, Peromyscus maniculatus Wagner; and western harvest mouse, Reithrodontomys megalotis Baird. Ear punch biopsies were cultured in BSK-H medium from 179 rodents trapped at six different study sites. Overall, prevalence of rodent infection was 44/179 (24.6%), with 34 of these isolates from N. lepida. Spirochete isolates were obtained from rodents at all study sites, indicating widespread prevalence of B. burgdorferi sensu lato across rodent species and habitats. Nucleotide sequences for 14 of these isolates have been submitted to GenBank. Isolates from three N. lepida and one P. boylii had identical flagellin gene sequences, and phylogenetic analysis placed these spirochetes in B. burgdorferi sensu lato group DN127, now known as B. bissettii Postic, Marti Ras, Lane, Hendson & Baranton. Additional sequencing of the intergenic spacer regions between the 5S and 23S ribosomal genes was performed on three of these isolates. Phylogenetic analysis separated these isolates into two clusters that grouped with Colorado or California isolates. The role of B. bissettii and related species other than B. burgdorferi sensu stricto Johnson, Schmid, Hyde, Steigerwalt & Brenner as human pathogens in the United States warrants further investigation.

  11. Xenodiagnosis to Detect Borrelia burgdorferi Infection: A First-in-Human Study

    PubMed Central

    Marques, Adriana; Telford, Sam R.; Turk, Siu-Ping; Chung, Erin; Williams, Carla; Dardick, Kenneth; Krause, Peter J.; Brandeburg, Christina; Crowder, Christopher D.; Carolan, Heather E.; Eshoo, Mark W.; Shaw, Pamela A.; Hu, Linden T.

    2014-01-01

    Background. Animal studies suggest that Borrelia burgdorferi, the agent of Lyme disease, may persist after antibiotic therapy and can be detected by various means including xenodiagnosis using the natural tick vector (Ixodes scapularis). No convincing evidence exists for the persistence of viable spirochetes after recommended courses of antibiotic therapy in humans. We determined the safety of using I. scapularis larvae for the xenodiagnosis of B. burgdorferi infection in humans. Methods. Laboratory-reared larval I. scapularis ticks were placed on 36 subjects and allowed to feed to repletion. Ticks were tested for B. burgdorferi by polymerase chain reaction (PCR), culture, and/or isothermal amplification followed by PCR and electrospray ionization mass spectroscopy. In addition, attempts were made to infect immunodeficient mice by tick bite or inoculation of tick contents. Xenodiagnosis was repeated in 7 individuals. Results. Xenodiagnosis was well tolerated with no severe adverse events. The most common adverse event was mild itching at the tick attachment site. Xenodiagnosis was negative in 16 patients with posttreatment Lyme disease syndrome (PTLDS) and/or high C6 antibody levels and in 5 patients after completing antibiotic therapy for erythema migrans. Xenodiagnosis was positive for B. burgdorferi DNA in a patient with erythema migrans early during therapy and in a patient with PTLDS. There is insufficient evidence, however, to conclude that viable spirochetes were present in either patient. Conclusions. Xenodiagnosis using Ixodes scapularis larvae was safe and well tolerated. Further studies are needed to determine the sensitivity of xenodiagnosis in patients with Lyme disease and the significance of a positive result. Clinical Trials Registration NCT01143558. PMID:24523212

  12. Isolation and Characterization of the Outer Membrane of Borrelia hermsii

    PubMed Central

    Shang, Ellen S.; Skare, Jonathan T.; Exner, Maurice M.; Blanco, David R.; Kagan, Bruce L.; Miller, James N.; Lovett, Michael A.

    1998-01-01

    The outer membrane of Borrelia hermsii has been shown by freeze-fracture analysis to contain a low density of membrane-spanning outer membrane proteins which have not yet been isolated or identified. In this study, we report the purification of outer membrane vesicles (OMV) from B. hermsii HS-1 and the subsequent identification of their constituent outer membrane proteins. The B. hermsii outer membranes were released by vigorous vortexing of whole organisms in low-pH, hypotonic citrate buffer and isolated by isopycnic sucrose gradient centrifugation. The isolated OMV exhibited porin activities ranging from 0.2 to 7.2 nS, consistent with their outer membrane origin. Purified OMV were shown to be relatively free of inner membrane contamination by the absence of measurable β-NADH oxidase activity and the absence of protoplasmic cylinder-associated proteins observed by Coomassie blue staining. Approximately 60 protein spots (some of which are putative isoelectric isomers) with 25 distinct molecular weights were identified as constituents of the OMV enrichment. The majority of these proteins were also shown to be antigenic with sera from B. hermsii-infected mice. Seven of these antigenic proteins were labeled with [3H]palmitate, including the surface-exposed glycerophosphodiester phosphodiesterase, the variable major proteins 7 and 33, and proteins of 15, 17, 38, 42, and 67 kDa, indicating that they are lipoprotein constituents of the outer membrane. In addition, immunoblot analysis of the OMV probed with antiserum to the Borrelia garinii surface-exposed p66/Oms66 porin protein demonstrated the presence of a p66 (Oms66) outer membrane homolog. Treatment of intact B. hermsii with proteinase K resulted in the partial proteolysis of the Oms66/p66 homolog, indicating that it is surface exposed. This identification and characterization of the OMV proteins should aid in further studies of pathogenesis and immunity of tick-borne relapsing fever. PMID:9488399

  13. Lyme Disease-Causing Borrelia Species Encode Multiple Lipoproteins Homologous to Peptide-Binding Proteins of ABC-Type Transporters

    PubMed Central

    Kornacki, Jon A.; Oliver, Donald B.

    1998-01-01

    To identify cell envelope proteins of Borrelia burgdorferi, the causative agent of Lyme disease, we constructed a library of B. burgdorferi genes fused to the Escherichia coli phoA gene, which expresses enzymatically active alkaline phosphatase. One such gene, oppA-1, encodes a predicted polypeptide with significant similarities to various peptide-binding proteins of ABC-type transporters. Immediately downstream of oppA-1 are two genes, oppA-2 and oppA-3, whose predicted polypeptide products show strong similarities in their amino acid sequences to OppA-1, including a sequence that resembles the most highly conserved region in peptide-binding proteins. By labeling with [3H]palmitate, OppA-1, OppA-2, and OppA-3 were shown to be lipoproteins. DNA hybridization analysis showed that the oppA-1 oppA-2 oppA-3 region is located on the linear chromosome of B. burgdorferi, and the genes are conserved among different Borrelia species that cause Lyme disease (B. burgdorferi, B. garinii, and B. afzelli), suggesting that all three homologous genes are important to the maintenance of Lyme disease spirochetes in one or more of their hosts. PMID:9712756

  14. Isolation of Borrelia burgdorferi sensu lato from the skin of the European badger (Meles meles) in Switzerland.

    PubMed

    Gern, Lise; Sell, Katy

    2009-04-01

    No data are available on the role of badgers in the ecology of Lyme borreliosis spirochetes in Europe. In a recent study describing validation of a molecular method allowing host DNA identification and Borrelia burgdorferi sensu lato detection in Ixodes ricinus, the simultaneous presence of B. afzelii DNA and of European badger (Meles meles) DNA was detected in I. ricinus ticks in Switzerland. This suggested that badgers might be reservoir hosts for B. afzelii. Here, we present results obtained in a study on badgers conducted in 1996-1997. Thirty-one tissue samples (ear biopsy: n = 25, aspiration fluid: n = 6) from 8 badgers were placed in BSK medium to isolate B. burgdorferi sensu lato and were then examined by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). Globally, six Borrelia isolates (6/31, 19.4%) were obtained from 3/8 (37.5%) badgers. These isolates were identified as B. afzelii (n = 3) and B. valaisiana (n = 3).

  15. Evaluation of Borrelia burgdorferi BbHtrA Protease as a Vaccine Candidate for Lyme Borreliosis in Mice.

    PubMed

    Ullmann, Amy J; Russell, Theresa M; Dolan, Marc C; Williams, Martin; Hojgaard, Andrias; Weiner, Zachary P; Johnson, Barbara J B

    2015-01-01

    Borrelia burgdorferi synthesizes an HtrA protease (BbHtrA) which is a surface-exposed, conserved protein within Lyme disease spirochetes with activity toward CheX and BmpD of Borrelia spp, as well as aggrecan, fibronectin and proteoglycans found in skin, joints and neural tissues of vertebrates. An antibody response against BbHtrA is observed in Lyme disease patients and in experimentally infected laboratory mice and rabbits. Given the surface location of BbHtrA on B. burgdorferi and its ability to elicit an antibody response in infected hosts, we explored recombinant BbHtrA as a potential vaccine candidate in a mouse model of tick-transmitted Lyme disease. We immunized mice with two forms of BbHtrA: the proteolytically active native form and BbHtrA ablated of activity by a serine to alanine mutation at amino acid 226 (BbHtrA(S226A)). Although inoculation with either BbHtrA or BbHtrA(S226A) produced high-titer antibody responses in C3H/HeJ mice, neither antigen was successful in protecting mice from B. burgdorferi challenge. These results indicate that the search for novel vaccine candidates against Lyme borreliosis remains a challenge.

  16. Geographical distribution and prevalence of Borrelia burgdorferi genospecies in questing Ixodes ricinus from Romania: a countrywide study.

    PubMed

    Kalmár, Zsuzsa; Mihalca, Andrei D; Dumitrache, Mirabela O; Gherman, Călin M; Magdaş, Cristian; Mircean, Viorica; Oltean, Miruna; Domşa, Cristian; Matei, Ioana A; Mărcuţan, Daniel I; Sándor, Attila D; D'Amico, Gianluca; Paştiu, Anamaria; Györke, Adriana; Gavrea, Raluca; Marosi, Béla; Ionică, Angela; Burkhardt, Etelka; Toriay, Hortenzia; Cozma, Vasile

    2013-09-01

    The paper reports the prevalence and geographical distribution of Borrelia burgdorferi sensu lato (s.l.) and its genospecies in 12,221 questing Ixodes ricinus ticks collected at 183 locations from all the 41 counties of Romania. The unfed ticks were examined for the presence of B. burgdorferi s.l. by PCR targeting the intergenic spacer 5S-23S. Reverse line blot hybridization (RLB) and restriction fragment length polymorphism (RFLP) analysis were performed for identification of B. burgdorferi genospecies. The overall prevalence of infection was 1.4%, with an average local prevalence between 0.75% and 18.8%. B. burgdorferi s.l. was found in ticks of 55 of the 183 localities. The overall prevalence B. burgdorferi s.l. in ticks in the infected localities was 3.8%. The total infection prevalence was higher in female ticks than in other developmental stages. Three Borrelia genospecies were detected. The most widely distributed genospecies was B. afzelii, followed by B. garinii and B. burgdorferi sensu stricto (s.s.). The study is the first countrywide study and the first report of B. burgdorferi s.s. in Romania. The distribution maps show that higher prevalences were recorded in hilly areas, but Lyme borreliosis spirochetes were also present in forested lowlands, albeit with a lower prevalence.

  17. Structural mechanisms underlying sequence-dependent variations in GAG affinities of decorin binding protein A, a Borrelia burgdorferi adhesin.

    PubMed

    Morgan, Ashli M; Wang, Xu

    2015-05-01

    Decorin-binding protein A (DBPA) is an important surface adhesin of the bacterium Borrelia burgdorferi, the causative agent of Lyme disease. DBPA facilitates the bacteria's colonization of human tissue by adhering to glycosaminoglycan (GAG), a sulfated polysaccharide. Interestingly, DBPA sequence variation among different strains of Borrelia spirochetes is high, resulting in significant differences in their GAG affinities. However, the structural mechanisms contributing to these differences are unknown. We determined the solution structures of DBPAs from strain N40 of B. burgdorferi and strain PBr of Borrelia garinii, two DBPA variants whose GAG affinities deviate significantly from strain B31, the best characterized version of DBPA. Our structures revealed that significant differences exist between PBr DBPA and B31/N40 DBPAs. In particular, the C-terminus of PBr DBPA, unlike C-termini from B31 and N40 DBPAs, is positioned away from the GAG-binding pocket and the linker between helices one and two of PBr DBPA is highly structured and retracted from the GAG-binding pocket. The repositioning of the C-terminus allowed the formation of an extra GAG-binding epitope in PBr DBPA and the retracted linker gave GAG ligands more access to the GAG-binding epitopes than other DBPAs. Characterization of GAG ligands' interactions with wild-type (WT) PBr and mutants confirmed the importance of the second major GAG-binding epitope and established the fact that the two epitopes are independent of one another and the new epitope is as important to GAG binding as the traditional epitope.

  18. Spirosymplokos deltaeiberi nov. gen., nov. sp.: variable-diameter composite spirochete from microbial mats

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Ashen, J.; Sole, M.; Margulis, L.

    1993-01-01

    Large (up to 100 micrometers long), loosely coiled, free-living spirochetes with variable diameters (from 0.4 to 3 micrometers in the same cell) were seen at least 40 times between August 1990 and January 1993. These spirochetes were observed in mud water and enrichment media from highly specific habitats in intertidal evaporite flats at three disjunct localities, one in Spain and two in Mexico. All three are sites of commercial saltworks. Associated with Microcoleus chthonoplastes the large spirochetes from Spain display phototaxis and a composite organization. Shorter and smaller-diameter spirochetes are seen inside both healthy and spent periplasm of larger ones. Small spirochetes attached to large ones have been observed live. From two to twelve spirochete protoplasmic cylinders were seen inside a single common outer membrane. A distinctive granulated cytoplasm in which the granules are of similar diameter (20-32 nanometers) to that of the flagella (26 nanometers) was present. Granule diameters were measured in thin section and in negatively-stained whole-mount preparations. Based on their ultrastructure, large size, variable diameter, number of flagella (3 to 6), and phototactic behavior these unique spirochetes are formally named Spirosymplokos deltaeiberi. Under anoxic (or low oxygen) conditions they formed blooms in mixed culture in media selective for spirochetes. Cellobiose was the major carbon source in 80% seawater, the antibiotic rifampicin was added, mat from the original field site was present and tubes were incubated in the light at from 18-31 degrees C. Within 1-2 weeks populations of the large spirochete developed at 25 degrees C but they could not be transferred to fresh medium.

  19. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    NASA Astrophysics Data System (ADS)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  20. Study on Presence of Borrelia persica in Soft Ticks in Western Iran

    PubMed Central

    Barmaki, A; Rafinejad, J; Vatandoost, H; Telmadarraiy, Z; Mohtarami, F; Leghaei, SH; Oshaghi, MA

    2010-01-01

    Background: A molecular survey was conducted to investigate the presence of pathogenic Borrelia persica species causing the tick borne relapsing fever (TBRF) in Takistan district Qazvin Province, western Iran. Methods: A number of 1021 soft ticks were collected from 31 villages including previously reported infected and none-infected TBRF cases and individually examined for the presence of B. persica DNA by conventional PCR targeting the 16S rRNA. Results: A total of 1021 soft ticks of three species of Ornithodouros tholozani (120: 11.75%), O. lahorensis (461: 45.15%) and Argas persicus (440: 43.1%) were collected and tested against Borrelia infection. Soft ticks were more prevalent (67%) in infected areas than none infected areas. The rate O. tholozani in infected areas was much greater (29 times) than none infected areas. Ninety seven percent of soft ticks in none infected areas were of O. tholozani. Sixteen (16.7%) ticks of tested (n=95) O. tholozani were infected with B. persica. Three (1.3%) out of 205 soft ticks of O. lahorensis were positive for Borrelia sp., and no infection was observed in A. persicus. TaqI RFLP analysis and sequence analysis of the positive PCR products showed the presence of B. persica. The RFLP analysis showed that the positive ticks of O. lahorensis were infected with unknown Borrelia species. Conclusion: This study showed that although there were no TBRF cases in Takisan, but still infected O. tholozani, the known vector of TBRF, presented in the region. Control measures needs to be fulfilled in Thakisan. PMID:22808396

  1. Yellow fever.

    PubMed

    Monath, Thomas P; Vasconcelos, Pedro F C

    2015-03-01

    Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed.

  2. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence

    PubMed Central

    James, Allison E.; Rogovskyy, Artem S.; Crowley, Michael A.; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  3. Identification of host blood-meal sources and Borrelia in field-collected Ixodes ricinus ticks in north-western Poland.

    PubMed

    Wodecka, Beata; Skotarczak, Bogumila

    2016-01-01

    Forest animals play fundamental roles in the maintenance of Ixodes ricinus and Borrelia species in the forest biotope. To identify the forest vertebrate species that are host for I. ricinus and for the recognition of the reservoirs of Borrelia species, the blood-meal of 325 I. ricinus ticks collected at two forest sites in north-western Poland were analysed. Nested PCR was used to detect polymorphisms in a fragment of the mitochondrial 12S rRNA gene for the identification of the hosts species. The products were digested with the restriction enzymes, a combination that allows the identification of 60 vertebrate species, comprising 17 bird, 4 reptile and 39 mammalian species. Host DNA was detected in 244 (75%) I. ricinus individuals, with the species being detected and classified for 210 (86%) samples. The restriction patterns resulted in the identification of 14 vertebrate species, including 2 species of birds, lizard, badger, rabbit, deer; most of the samples contained DNA from wild boar (Sus scrofa), red fox (Vulpes vulpes), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Identification of Borrelia species was based on the flaB gene using nested PCR coupled to RFLP. This method allows the identification of all Borrelia species transmitted by I. ricinus in Europe, including B. miyamotoi and 3 genetic variants of B. garinii. In the studied isolates, 2 species belonging to B. burgdorferi sensu lato were identified--B. garinii and B. afzelii, and B. miyamotoi, which are related to relapsing fever borreliae.

  4. Molecular characterization of a large Borrelia burgdorferi motility operon which is initiated by a consensus sigma70 promoter.

    PubMed Central

    Ge, Y; Old, I G; Saint Girons, I; Charon, N W

    1997-01-01

    A large motility operon, referred to as the flgB operon, was identified, characterized, and mapped at 310 to 320 kb on the linear chromosome of the spirochete Borrelia burgdorferi. This is the first report that a sigma70-like promoter rather than a sigma28-like promoter is involved in the transcription of a major motility operon in bacteria. From these results in conjunction with results from a previous study (Y. Ge and N. W. Charon, Gene, in press), we have identified 26 genes in this operon that are relevant to motility and flagellar synthesis. With few exceptions, the gene order and deduced gene products were most similar to those of other spirochetes and Bacillus subtilis. Primer extension analysis indicated that transcription initiated from a conserved sigma70-like promoter immediately upstream of flgB; this promoter mapped within the heat-shock-induced protease gene hslU. Reverse transcriptase PCR analysis indicated that a single transcript of 21 kb initiated at this promoter and extended through flgE and (with our previous results) onto the putative motility gene flbE. The flgB promoter element had strong activity in both Escherichia coli and Salmonella typhimurium. As expected, a mutant of S. typhimurium with an inactivated flagellum-specific sigma28 factor did not affect the function of this promoter. Western blot analysis indicated that B. burgdorferi recombinant FliG and FliI were antigenically similar to those of E. coli and other spirochetes. Although complementation of E. coli or S. typhimurium fliG or fliI mutants with the B. burgdorferi genes was unsuccessful, B. burgdorferi recombinant FliI completely inhibited flagellar synthesis and motility of wild-type E. coli and S. typhimurium. These results show that spirochete motility genes can influence flagellar synthesis in other species of bacteria. Finally, Western blot analysis with sera from infected humans and animals indicated a weak or nondetectable response to recombinant FliG and FliI. These

  5. Rheumatic fever

    MedlinePlus

    ... to trigger rheumatic fever. Symptoms Rheumatic fever mainly affects children ages 5 to 15 who have had strep ... of this condition are: Loss of control of emotions, with bouts of unusual crying or laughing Quick, jerky movements that mainly affect the face, feet, and hands Exams and Tests ...

  6. Oligoarthritis caused by Borrelia bavariensis, Austria, 2014.

    PubMed

    Markowicz, Mateusz; Ladstatter, Stefan; Schotta, Anna M; Reiter, Michael; Pomberger, Gerhard; Stanek, Gerold

    2015-06-01

    A case of Lyme oligoarthritis occurred in an 11-year-old boy in Vienna, Austria. DNA of Borrelia bavariensis was detected by PCR in 2 aspirates obtained from different joints. Complete recovery was achieved after a 4-week course with amoxicillin. Lyme arthritis must be considered in patients from Europe who have persisting joint effusions.

  7. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor

    SciTech Connect

    Benach, J.L.; Fleit, H.B.; Habicht, G.S.; Coleman, J.L.; Bosler, E.M.; Lane, B.P.

    1984-10-01

    The phagocytic capacity of murine and human mononuclear and polymorphonuclear phagocytes (including peripheral blood monocytes and neutrophils), rabbit and murine peritoneal exudate cells, and the murine macrophage cell line P388D1 against the Lyme disease spirochete was studied. All of these cells were capable of phagocytosing the spirochete; phagocytosis was measured by the uptake of radiolabeled spirochetes, the appearance of immunofluorescent bodies in phagocytic cells, and electron microscopy. Both opsonized and nonopsonized organisms were phagocytosed. The uptake of opsonized organisms by neutrophils was blocked by a monoclonal antibody specific for the Fc receptor and by immune complexes; these findings suggested that most phagocytosis is mediated by the Fc receptor. Similarly, the uptake of opsonized organisms by human monocytes was inhibited by human monomeric IgG1 and by immune complexes. These results illustrate the role of immune phagocytosis of spirochetes in host defense against Lyme disease.

  8. Four Clones of Borrelia burgdorferi Sensu Stricto Cause Invasive Infection in Humans

    PubMed Central

    Seinost, Gerald; Dykhuizen, Daniel E.; Dattwyler, Raymond J.; Golde, William T.; Dunn, John J.; Wang, Ing-Nang; Wormser, Gary P.; Schriefer, Martin E.; Luft, Benjamin J.

    1999-01-01

    Lyme disease begins at the site of a tick bite, producing a primary infection with spread of the organism to secondary sites occurring early in the course of infection. A major outer surface protein expressed by the spirochete early in infection is outer surface protein C (OspC). In Borrelia burgdorferi sensu stricto, OspC is highly variable. Based on sequence divergence, alleles of ospC can be divided into 21 major groups. To assess whether strain differences defined by ospC group are linked to invasiveness and pathogenicity, we compared the frequency distributions of major ospC groups from ticks, from the primary erythema migrans skin lesion, and from secondary sites, principally from blood and spinal fluid. The frequency distribution of ospC groups from ticks is significantly different from that from primary sites, which in turn is significantly different from that from secondary sites. The major groups A, B, I, and K had higher frequencies in the primary sites than in ticks and were the only groups found in secondary sites. We define three categories of major ospC groups: one that is common in ticks but very rarely if ever causes human disease, a second that causes only local infection at the tick bite site, and a third that causes systemic disease. The finding that all systemic B. burgdorferi sensu stricto infections are associated with four ospC groups has importance in the diagnosis, treatment, and prevention of Lyme disease. PMID:10377134

  9. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defenses

    PubMed Central

    Xu, Qilong; McShan, Kristy; Liang, Fang Ting

    2008-01-01

    Summary To initiate infection, a microbial pathogen must be able to evade innate immunity. Here we show that the Lyme disease spirochete Borrelia burgdorferi depends on its surface lipoproteins for protection against innate defenses. The deficiency for OspC, an abundantly expressed surface lipoprotein during early infection, led to quick clearance of B. burgdorferi after inoculation into the skin of SCID mice. Increasing expression of any of the four randomly chosen surface lipoproteins, OspA, OspE, VlsE or DbpA, fully protected the ospC mutant from elimination from the skin tissue of SCID mice; moreover, increased OspA, OspE, or VlsE expression allowed the mutant to cause disseminated infection and restored the ability to effectively colonize both joint and skin tissues, albeit the dissemination process was much slower than that of the mutant restored with OspC expression. When the ospC mutant was modified to express OspA under control of the ospC regulatory elements, it registered only a slight increase in the 50% infectious dose than the control in SCID mice but a dramatic increase in immunocompetent mice. Taken together, the study demonstrated that the surface lipoproteins provide B. burgdorferi with an essential protective function against host innate elimination. PMID:18452586

  10. Outer Surface Protein C Is a Dissemination-Facilitating Factor of Borrelia burgdorferi during Mammalian Infection

    PubMed Central

    Seemanapalli, Sunita V.; Xu, Qilong; McShan, Kristy; Liang, Fang Ting

    2010-01-01

    Background The Lyme disease spirochete Borrelia burgdorferi dramatically upregulates outer surface protein C (OspC) in response to fresh bloodmeal during transmission from the tick vector to a mammal, and abundantly produces the antigen during early infection. As OspC is an effective immune target, to evade the immune system B. burgdorferi downregulates the antigen once the anti-OspC humoral response has developed, suggesting an important role for OspC during early infection. Methodology/Principal Findings In this study, a borrelial mutant producing an OspC antigen with a 5-amino-acid deletion was generated. The deletion didn't significantly increase the 50% infectious dose or reduce the tissue bacterial burden during infection of the murine host, indicating that the truncated OspC can effectively protect B. burgdorferi against innate elimination. However, the deletion greatly impaired the ability of B. burgdorferi to disseminate to remote tissues after inoculation into mice. Conclusions/Significance The study indicates that OspC plays an important role in dissemination of B. burgdorferi during mammalian infection. PMID:21209822

  11. Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis.

    PubMed

    Carrasco, Sebastian E; Yang, Youyun; Troxell, Bryan; Yang, Xiuli; Pal, Utpal; Yang, X Frank

    2015-09-02

    Borrelia burgdorferi, the etiological agent of Lyme disease, does not produce lipopolysaccharide but expresses a large number of lipoproteins on its cell surface. These outer membrane lipoproteins are highly immunogenic and have been used for serodiagnosis of Lyme disease. Recent studies have shown that highly conserved cytosolic proteins such as enolase and elongation factor Tu (EF-Tu) unexpectedly localized on the surface of bacteria including B. burgdorferi, and surface-localized enolase has shown to contribute to the enzootic cycle of B. burgdorferi. In this study, we studied the immunogenicity, surface localization, and function of B. burgdorferi EF-Tu. We found that EF-Tu is highly immunogenic in mice, and EF-Tu antibodies were readily detected in Lyme disease patients. On the other hand, active immunization studies showed that EF-Tu antibodies did not protect mice from infection when challenged with B. burgdorferi via either needle inoculation or tick bites. Borrelial mouse-tick cycle studies showed that EF-Tu antibodies also did not block B. burgdorferi migration and survival in ticks. Consistent with these findings, we found that EF-Tu primarily localizes in the protoplasmic cylinder of spirochetes and is not on the surface of B. burgdorferi. Taken together, our studies suggest that B. burgdorferi EF-Tu is not surfaced exposed, but it is highly immunogenic and is a potential serodiagnostic marker for Lyme borreliosis.

  12. Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection

    NASA Astrophysics Data System (ADS)

    Valdés, James J.; Cabezas-Cruz, Alejandro; Sima, Radek; Butterill, Philip T.; Růžek, Daniel; Nuttall, Patricia A.

    2016-09-01

    Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.

  13. Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection

    PubMed Central

    Valdés, James J.; Cabezas-Cruz, Alejandro; Sima, Radek; Butterill, Philip T.; Růžek, Daniel; Nuttall, Patricia A.

    2016-01-01

    Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia. PMID:27584086

  14. Use of recombinant OspC from Borrelia burgdorferi for serodiagnosis of early Lyme disease.

    PubMed Central

    Padula, S J; Dias, F; Sampieri, A; Craven, R B; Ryan, R W

    1994-01-01

    Infection with Borrelia burgdorferi, the etiologic agent of Lyme disease, is associated with an early and dominant humoral response to the spirochete's 23-kDa outer surface protein C (OspC). We have cloned and expressed OspC as a fusion protein in Escherichia coli and have shown that patient serum samples react with it in an enzyme-linked immunosorbent assay (ELISA) (S. J. Padula, A. Sampieri, F. Dias, A. Szczepanski, and R. W. Ryan, Infect. Immun. 61:5097-5105, 1993). Now we have compared the detection of B. burgdorferi-specific immunoglobulin M antibodies in 74 individuals with culture-positive erythema migrans by a whole-cell ELISA, immunoblot, and the recombinant OspC (rOspC) ELISA. Seventy-six negative controls were also studied. With all of the tests, there was a statistically significant association between the duration of disease and the frequency of a positive result. With the rOspC ELISA, the predictive value of a positive test was 100% and the predictive value of a negative test was 74%. Similar results were obtained with the whole-cell ELISA and with the immunoblot using as the source of test antigen a strain of B. burgdorferi which expresses abundant levels of OspC. We conclude that the use of rOspC in an ELISA is a convenient, readily automated, and easily standardized test for the serodiagnosis of early Lyme disease. PMID:7929767

  15. Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China.

    PubMed

    Masuzawa, T; Takada, N; Kudeken, M; Fukui, T; Yano, Y; Ishiguro, F; Kawamura, Y; Imai, Y; Ezaki, T

    2001-09-01

    A survey was performed for Lyme disease borrelia in the southern part of China, in Zhejiang, Sichuan and Anhui provinces, along the Yangtze River valley, in May of 1997 and 1998. Twenty isolates from Ixodes granulatus, Ixodes ovatus, Apodemus agrarius and Niviventer confucianus were obtained. These isolates were characterized by RFLP of the 5S-23S rDNA intergenic spacer, sequence analysis of the intergenic spacer, 16S rDNA and flagellin gene, DNA-DNA hybridization analysis, SDS-PAGE and Western blotting with mAbs. Six isolates from A. agrarius, five from I. granulatus collected in Zhejiang province and one from N. confucianus in Sichuan province were highly similar to strains 10MT and 5MT isolated in Korea and classified as Borrelia valaisiana. Four isolates from A. agrarius and I. granulatus collected in Zhejiang province generated unique RFLP patterns and phylogenetic analysis of the 16S rDNA and flagellin gene sequences suggested that the isolates should be classified as B. valaisiana. Furthermore, three isolates (CMN1a, CNM2, CMN3T) from N. confucianus captured in Sichuan province and one (CWO1) from I. ovatus in Anhui province showed lower 165 rDNA sequence similarity (less than 99.0%) to sequences of previously described Lyme disease-related Borrelia species. DNA-DNA hybridization results revealed that strains CMN3T and CMN1a were clearly distinct from all other known Lyme disease Borrelia species. Electron microscope observation showed the spirochaetes to be morphologically similar to those of Borrelia, but the cells contained only four periplasmic flagella inserted at each end of the spirochaetes. Based on these results, a new Borrelia species, Borrelia sinica sp. nov., is proposed. Strain CMN3T is the type strain of this new species.

  16. Cosmopolitan distribution of the large composite microbial mat spirochete, Spirosymplokos deltaeiberi

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Navarrete, A.; Sole, M.

    1998-01-01

    Inocula from organic-rich black muds immediately underlying intertidal laminated microbial mats dominated by Microcoleus chthonoplastes yielded large, variable diameter spirochetes. These unusual spirochetes, previously reported only from the Alfacs Peninsula at the delta of the Ebro river in northeast Spain, contain striking arrays of cytoplasmic granules packed into their protoplasmic cylinders. On several occasions, both in summer and winter, the huge spirochetes were recognized in samples from mats growing in the Sippewissett salt marsh at Woods Hole Massachusetts. They were also seen in similar samples from microbial mats at North Pond, Laguna Figueroa, Baja California Norte, Mexico. The identity of these spirochetes was confirmed by electron microscopy: number and disposition of flagella, composite structure, measurements of their distinctive cytoplasmic granules. The granules, larger, more conspicuous and present in addition to ribosomes, are hypothesized to contain ATPases. As culture conditions worsen, these spirochetes retract into membrane-bounded round bodies in which they form refractile inclusions. From morphology and behavior we conclude the North American spirochetes from both Atlantic and Pacific intertidal microbial mats are indistinguishable from those at the delta of the Ebro river. We conclude a cosmopolitan distribution for Spirosymplokos deltaeiberi.

  17. Biochemical and biophysical characterization of the major outer surface protein, OSP-A from North American and European isolates of Borrelia burgdorferi

    SciTech Connect

    McGrath, B.C.; Dunn, J.J.; France, L.L.; Jaing, W.; Polin, D.; Gorgone, G.; Luft, B.; Dykhuizen, D.

    1995-12-31

    Lyme borreliosis, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America and Western Europe. As the major delayed immune response in humans, a better understanding of the major outer surface lipoproteins OspA and OspB are of much interest. These proteins have been shown to exhibit three distinct phylogenetic genotypes based on their DNA sequences. This paper describes the cloning of genomic DNA for each variant and amplification of PCR. DNA sequence data was used to derive computer driven phylogenetic analysis and deduced amino acid sequences. Overproduction of variant OspAs was carried out in E. coli using a T7-based expression system. Circular dichroism and fluorescence studies was carried out on the recombinant B31 PspA yielding evidence supporting a B31 protein containing 11% alpha-helix, 34% antiparallel beta-sheet, 12% parallel beta sheet.

  18. Culture of the entire mouse to determine whether cultivable Borrelia burgdorferi persists in infected mice treated with a five-day course of Ceftriaxone.

    PubMed

    Pavia, Charles S; Wormser, Gary P

    2014-11-01

    Although controversial, it has been suggested that antibiotic treatment of laboratory animals infected with Borrelia burgdorferi often leads to the persistence of residual spirochetes that are claimed to be viable but noncultivable. If viable cells of B. burgdorferi do persist following antibiotic therapy, one possible explanation for the lack of cultivability is that too few organisms persist in any given tissue site that might be sampled and cultured. In this study, we treated SKH (hairless) mice, with B. burgdorferi infection of 3 months' duration, with either ceftriaxone or saline for 5 days and then cultured a suspension extract of nearly the entire mouse using a combined in vivo/in vitro culture method. All of the saline-treated (control) mice were culture positive, compared with none of the antibiotic-treated mice. Our findings further document the effectiveness of antibiotic therapy in eradicating cultivable cells of B. burgdorferi, irrespective of tissue or organ site.

  19. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    PubMed

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  20. Virulence of recurrent infestations with Borrelia-infected ticks in a Borrelia-amplifying bird

    PubMed Central

    Heylen, Dieter J. A.; Müller, Wendt; Vermeulen, Anke; Sprong, Hein; Matthysen, Erik

    2015-01-01

    Lyme disease cases caused by Borrelia burgdorferi s.l. bacteria is increasing steadily in Europe, in part due to the expansion of the vector, Ixodes ricinus. Wild reservoir hosts are typically recurrently infested. Understanding the impact of these cumulative parasite exposures on the host’s health is, therefore, central to predict the distribution of tick populations and their pathogens. Here, we have experimentally investigated the symptoms of disease caused by recurrent infestations in a common songbird (Parus major). Birds were exposed three times in succession to ticks collected in a Borrelia endemic area. Health and immune measures were analyzed in order to investigate changes in response to tick infestation and Borrelia infection rate. Nitric oxide levels increased with the Borrelia infection rate, but this effect was increasingly counteracted by mounting tick infestation rates. Tick infestations equally reduced haematocrit during each cycle. But birds overcompensated in their response to tick feeding, having higher haematocrit values during tick-free periods depending on the number of ticks they had been previously exposed to. Body condition showed a similar overshooting response in function of the severity of the Borrelia infection. The observed overcompensation increases the bird’s energetic needs, which may result in an increase in transmission events. PMID:26553505

  1. Virulence of recurrent infestations with Borrelia-infected ticks in a Borrelia-amplifying bird

    NASA Astrophysics Data System (ADS)

    Heylen, Dieter J. A.; Müller, Wendt; Vermeulen, Anke; Sprong, Hein; Matthysen, Erik

    2015-11-01

    Lyme disease cases caused by Borrelia burgdorferi s.l. bacteria is increasing steadily in Europe, in part due to the expansion of the vector, Ixodes ricinus. Wild reservoir hosts are typically recurrently infested. Understanding the impact of these cumulative parasite exposures on the host’s health is, therefore, central to predict the distribution of tick populations and their pathogens. Here, we have experimentally investigated the symptoms of disease caused by recurrent infestations in a common songbird (Parus major). Birds were exposed three times in succession to ticks collected in a Borrelia endemic area. Health and immune measures were analyzed in order to investigate changes in response to tick infestation and Borrelia infection rate. Nitric oxide levels increased with the Borrelia infection rate, but this effect was increasingly counteracted by mounting tick infestation rates. Tick infestations equally reduced haematocrit during each cycle. But birds overcompensated in their response to tick feeding, having higher haematocrit values during tick-free periods depending on the number of ticks they had been previously exposed to. Body condition showed a similar overshooting response in function of the severity of the Borrelia infection. The observed overcompensation increases the bird’s energetic needs, which may result in an increase in transmission events.

  2. Enteric Fever.

    PubMed

    Kumar, Praveen; Kumar, Ruchika

    2017-03-01

    Enteric fever is an important public-health problem in India. The clinical presentation of typhoid fever is very variable, ranging from fever with little other morbidities to marked toxemia and associated multisystem complications. Fever is present in majority of patients (>90 %) irrespective of their age group. Mortality is higher in younger children. Blood culture remains gold standard for diagnosis. Widal test has low sensitivity and specificity but may be used in second week to support the diagnosis. Emerging resistance to several antibiotics should be kept in mind when selecting antibiotics or revising the treatment. The key preventive strategies are safe water, safe food, personal hygiene, and appropriate sanitation. Vaccination is an additional effective tool for prevention.

  3. Yellow fever

    MedlinePlus

    ... liver, and kidney. Bleeding disorders, seizures, coma, and delirium may also occur. Symptoms may include: Fever, headache, ... tongue Yellow skin and eyes (jaundice) Decreased urination Delirium Irregular heartbeats (arrhythmias) Bleeding (may progress to hemorrhage) ...

  4. Lassa Fever

    MedlinePlus

    ... an acute viral illness that occurs in west Africa. The illness was discovered in 1969 when two ... Lassa fever is endemic in parts of west Africa including Sierra Leone, Liberia, Guinea and Nigeria; however, ...

  5. Typhoid fever

    MedlinePlus

    ... most commonly caused due to a bacteria called Salmonella typhi ( S typhi ). Causes S typhi is spread through contaminated ... as food handlers. Alternative Names Enteric fever Images Salmonella typhi organism Fly Digestive system organs References Harris ...

  6. Q fever

    MedlinePlus

    ... bacteria can infect: Sheep Goats Cattle Dogs Cats Birds Rodents Ticks Infected animals shed these bacteria in: ... from becoming chronic. Alternative Names Query fever Images Temperature measurement References Marrie TJ, Raoult D. Coxiella burnetii ( ...

  7. Q Fever

    MedlinePlus

    ... infects some animals, such as goats, sheep and cattle. C. burnetii bacteria are found in the birth ... your physician... Diagnosis and Testing Recommended tests… Treatment Antibiotics to treat Q fever... Prevention Avoid getting infected... ...

  8. Q Fever

    PubMed Central

    Maurin, M.; Raoult, D.

    1999-01-01

    Q fever is a zoonosis with a worldwide distribution with the exception of New Zealand. The disease is caused by Coxiella burnetii, a strictly intracellular, gram-negative bacterium. Many species of mammals, birds, and ticks are reservoirs of C. burnetii in nature. C. burnetii infection is most often latent in animals, with persistent shedding of bacteria into the environment. However, in females intermittent high-level shedding occurs at the time of parturition, with millions of bacteria being released per gram of placenta. Humans are usually infected by contaminated aerosols from domestic animals, particularly after contact with parturient females and their birth products. Although often asymptomatic, Q fever may manifest in humans as an acute disease (mainly as a self-limited febrile illness, pneumonia, or hepatitis) or as a chronic disease (mainly endocarditis), especially in patients with previous valvulopathy and to a lesser extent in immunocompromised hosts and in pregnant women. Specific diagnosis of Q fever remains based upon serology. Immunoglobulin M (IgM) and IgG antiphase II antibodies are detected 2 to 3 weeks after infection with C. burnetii, whereas the presence of IgG antiphase I C. burnetii antibodies at titers of ≥1:800 by microimmunofluorescence is indicative of chronic Q fever. The tetracyclines are still considered the mainstay of antibiotic therapy of acute Q fever, whereas antibiotic combinations administered over prolonged periods are necessary to prevent relapses in Q fever endocarditis patients. Although the protective role of Q fever vaccination with whole-cell extracts has been established, the population which should be primarily vaccinated remains to be clearly identified. Vaccination should probably be considered in the population at high risk for Q fever endocarditis. PMID:10515901

  9. Tick-Borne Relapsing Fever

    MedlinePlus

    ... bite from a tick that carries the bacteria Borrelia hermsii. In the United States, these ticks are ... was contributed by: familydoctor.org editorial staff Tags: borrelia hermsii, illness from ticks, recurring, TBRF, tick, tick ...

  10. Familial Mediterranean Fever

    MedlinePlus

    Diseases and Conditions Familial Mediterranean fever By Mayo Clinic Staff Familial Mediterranean fever is an inflammatory disorder that causes recurrent fevers and painful inflammation of your abdomen, ...

  11. Resolution of experimental and tick-borne Borrelia burgdorferi infection in mice by passive, but not active immunization using recombinant OspC.

    PubMed

    Zhong, W; Gern, L; Stehle, T; Museteanu, C; Kramer, M; Wallich, R; Simon, M M

    1999-03-01

    Vaccination with outer surface protein A (OspA) of Borrelia burgdorferi prevents subsequent infection and disease in both laboratory animals and humans with high efficacy. OspA-based immunity, however, does not affect established infection due to the loss of OspA expression in the vertebrate host. We show here that repeated passive transfer of mouse and/or rabbit immune sera to recombinant GST-OspC fusion protein resulted in a dose-dependent resolution (1) of fully established arthritis and carditis as well as infection in needle-challenged C.B-17 SCID and (2) of infection in both experimentally and tick-infected BALB/c mice. Unexpectedly, active immunization of disease-susceptible AKR/N mice with GST-OspC only led to prevention but not resolution of disease and infection, in spite of high serum titers of OspC-specific Ab and the expression of ospC in tissue-derived spirochetes. The data suggest that the efficacy of OspC antibody-mediated immunity depends on the immunological history of the recipient and/or environment-dependent regulation of OspC surface expression by spirochetes in vivo. The results encourage further attempts to develop therapeutic vaccination protocols against Lyme disease.

  12. CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate.

    PubMed

    Motaleb, M A; Sultan, Syed Z; Miller, Michael R; Li, Chunhao; Charon, Nyles W

    2011-07-01

    Spirochetes have a unique cell structure: These bacteria have internal periplasmic flagella subterminally attached at each cell end. How spirochetes coordinate the rotation of the periplasmic flagella for chemotaxis is poorly understood. In other bacteria, modulation of flagellar rotation is essential for chemotaxis, and phosphorylation-dephosphorylation of the response regulator CheY plays a key role in regulating this rotary motion. The genome of the Lyme disease spirochete Borrelia burgdorferi contains multiple homologues of chemotaxis genes, including three copies of cheY, referred to as cheY1, cheY2, and cheY3. To investigate the function of these genes, we targeted them separately or in combination by allelic exchange mutagenesis. Whereas wild-type cells ran, paused (flexed), and reversed, cells of all single, double, and triple mutants that contained an inactivated cheY3 gene constantly ran. Capillary tube chemotaxis assays indicated that only those strains with a mutation in cheY3 were deficient in chemotaxis, and cheY3 complementation restored chemotactic ability. In vitro phosphorylation assays indicated that CheY3 was more efficiently phosphorylated by CheA2 than by CheA1, and the CheY3-P intermediate generated was considerably more stable than the CheY-P proteins found in most other bacteria. The results point toward CheY3 being the key response regulator essential for chemotaxis in B. burgdorferi. In addition, the stability of CheY3-P may be critical for coordination of the rotation of the periplasmic flagella.

  13. Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-β

    PubMed Central

    Salazar, Juan C.; Duhnam-Ems, Star; La Vake, Carson; Cruz, Adriana R.; Moore, Meagan W.; Caimano, Melissa J.; Velez-Climent, Leonor; Shupe, Jonathan; Krueger, Winfried; Radolf, Justin D.

    2009-01-01

    It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-β and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-α, IL-6, IL-10 and IL-1β in monocytes than did lysates. Secreted IL-18, which, like IL-1β, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-β and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs. PMID:19461888

  14. Assessment of the geographic distribution of Ornithodoros turicata (Argasidae): climate variation and host diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ornithodoros turicata is an argasid, or soft tick of medical and veterinary importance because it is a known vector of the relapsing fever spirochete, Borrelia turicatae, and potentially African swine fever virus. Historic collections of O. turicata have been recorded from Latin America to the south...

  15. Enhancement of immune response towards non-lipidized Borrelia burgdorferi recombinant OspC antigen by binding onto the surface of metallochelating nanoliposomes with entrapped lipophilic derivatives of norAbuMDP.

    PubMed

    Křupka, Michal; Mašek, Josef; Bartheldyová, Eliška; Turánek Knötigová, Pavlína; Plocková, Jana; Korvasová, Zina; Škrabalová, Michaela; Koudelka, Štěpán; Kulich, Pavel; Zachová, Kateřina; Czerneková, Lýdie; Strouhal, Ondřej; Horynová, Milada; Šebela, Marek; Miller, Andrew D; Ledvina, Miroslav; Raška, Milan; Turánek, Jaroslav

    2012-06-10

    Lyme disease caused by spirochete Borrelia burgdorferi sensu lato, is a tick-born illness. If the infection is not eliminated by the host immune system and/or antibiotics, it may further disseminate and cause severe chronic complications. The immune response to Borrelia is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies associated with Th1 cell activation. A new experimental vaccine was constructed using non-lipidized form of recombinant B. burgdorferi s.s. OspC protein was anchored by metallochelating bond onto the surface of nanoliposomes containing novel nonpyrogenic lipophilized norAbuMDP analogues denoted MT05 and MT06. After i.d. immunization, the experimental vaccines surpassed Alum with respect to OspC-specific titers of IgG2a, IgG2b isotypes when MT06 was used and IgG3, IgM isotypes when MT05 was used. Both adjuvants exerted a high adjuvant effect comparable or better than MDP and proved themselves as nonpyrogenic.

  16. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure.

    PubMed

    Sal, Melanie S; Li, Chunhao; Motalab, M A; Shibata, Satoshi; Aizawa, Shin-ichi; Charon, Nyles W

    2008-03-01

    Borrelia burgdorferi is a flat-wave, motile spirochete that causes Lyme disease. Motility is provided by periplasmic flagella (PFs) located between the cell cylinder and an outer membrane sheath. The structure of these PFs, which are composed of a basal body, a hook, and a filament, is similar to the structure of flagella of other bacteria. To determine if hook formation influences flagellin gene transcription in B. burgdorferi, we inactivated the hook structural gene flgE by targeted mutagenesis. In many bacteria, completion of the hook structure serves as a checkpoint for transcriptional control of flagellum synthesis and other chemotaxis and motility genes. Specifically, the hook allows secretion of the anti-sigma factor FlgM and concomitant late gene transcription promoted by sigma28. However, the control of B. burgdorferi PF synthesis differs from the control of flagellum synthesis in other bacteria; the gene encoding sigma28 is not present in the genome of B. burgdorferi, nor are any sigma28 promoter recognition sequences associated with the motility genes. We found that B. burgdorferi flgE mutants lacked PFs, were rod shaped, and were nonmotile, which substantiates previous evidence that PFs are involved in both cell morphology and motility. Although most motility and chemotaxis gene products accumulated at wild-type levels in the absence of FlgE, mutant cells had markedly decreased levels of the flagellar filament proteins FlaA and FlaB. Further analyses showed that the reduction in the levels of flagellin proteins in the spirochetes lacking FlgE was mediated at the posttranscriptional level. Taken together, our results indicate that in B. burgdorferi, the completion of the hook does not serve as a checkpoint for transcriptional regulation of flagellum synthesis. In addition, we also present evidence that the hook protein in B. burgdorferi forms a high-molecular-weight complex and that formation of this complex occurs in the periplasmic space.

  17. First isolation of Borrelia lusitaniae from a human patient.

    PubMed

    Collares-Pereira, M; Couceiro, S; Franca, I; Kurtenbach, K; Schäfer, S M; Vitorino, L; Gonçalves, L; Baptista, S; Vieira, M L; Cunha, C

    2004-03-01

    The first human isolate of Borrelia lusitaniae recovered from a Portuguese patient with suspected Lyme borreliosis is described. This isolate, from a chronic skin lesion, is also the first human isolate of Borrelia in Portugal. Different phenotypic and molecular methods are used to characterize it.

  18. First Isolation of Borrelia lusitaniae from a Human Patient

    PubMed Central

    Collares-Pereira, M.; Couceiro, S.; Franca, I.; Kurtenbach, K.; Schäfer, S. M.; Vitorino, L.; Gonçalves, L.; Baptista, S.; Vieira, M. L.; Cunha, C.

    2004-01-01

    The first human isolate of Borrelia lusitaniae recovered from a Portuguese patient with suspected Lyme borreliosis is described. This isolate, from a chronic skin lesion, is also the first human isolate of Borrelia in Portugal. Different phenotypic and molecular methods are used to characterize it. PMID:15004107

  19. Exploitation of complement regulatory proteins by Borrelia and Francisella.

    PubMed

    Madar, Marian; Bencurova, Elena; Mlynarcik, Patrik; Almeida, André M; Soares, Renata; Bhide, Katarina; Pulzova, Lucia; Kovac, Andrej; Coelho, Ana V; Bhide, Mangesh

    2015-06-01

    Pathogens have developed sophisticated mechanisms of complement evasion such as binding to the host complement regulatory proteins (CRPs) on their surface or expression of CRP mimicking molecules. The ability of pathogens to evade the complement system has been correlated with pathogenesis and host selectivity. Hitherto, little work has been undertaken to determine whether Borrelia and Francisella exploit various CRPs to block complement attack. Seventeen Borrelia (twelve species) and six Francisella (three subspecies) strains were used to assess their ability to bind human, sheep and cattle CRPs or mimic membrane associated complement regulators. A series of experiments including affinity ligand binding experiments, pull-down assays and mass spectrometry based protein identification, revealed an array of CRP binding proteins of Borrelia and Francisella. Unlike Francisella, Borrelia strains were able to bind multiple human CRPs. Three strains of Borrelia (SKT-4, SKT-2 and HO14) showed the presence of a human CD46-homologous motif, indicating their ability to possess putative human CD46 mimicking molecules. Similarly, five strains of Borrelia and two strains of Francisella may have surface proteins with human CD59-homologous motifs. Among ovine and bovine CRPs, the only CRP bound by Francisella (LVS, Tul4 strain) was vitronectin, while ovine C4BP, ovine factor H and bovine factor H were bound to Borrelia strains SKT-2, DN127 and Co53. This study presents an array of proteins of Borrelia and Francisella that bind CRPs or may mimic membrane-CRPs, thus enabling multiphasic complement evasion strategies of these pathogens.

  20. Long-term in vitro cultivation of Borrelia miyamotoi.

    PubMed

    Margos, Gabriele; Stockmeier, Sylvia; Hizo-Teufel, Cecilia; Hepner, Sabrina; Fish, Durland; Dautel, Hans; Sing, Andreas; Dzaferovic, Eldina; Rieger, Melissa; Jungnick, Sabrina; Binder, Katrin; Straubinger, Reinhard K; Fingerle, Volker

    2015-03-01

    Borrelia are fastidious bacteria some of which are difficult to grow in vitro. Here, we report a method for successful continuous in vitro cultivation of the emerging pathogen Borrelia miyamotoi. The type and quantity of serum as well as the atmosphere were critical for successful in vitro cultivation. Optimal growth was achieved using 50% pooled human serum and an atmosphere of 6% CO2.

  1. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    NASA Technical Reports Server (NTRS)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  2. [Zika fever].

    PubMed

    Eftekhari-Hassanlouie, S; Le Guern, A; Oehler, E

    2017-02-08

    Zika virus infection is an emerging arboviral disease which presented as a mild flu-like or algo-eruptive syndrome with fever, arthralgia, myalgia and a maculopapulous eruption. Severe neurological and fetal complications have recently been highlighted. Diagnosis is established by detection of viral RNA by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). Many publications report on the progress of knowledge on zika and its complications. Treatment is symptomatic, mainly with analgesics. Prevention is essential through individual and collective vector control. Faced with this emerging arbovirus, health authorities of many countries have implemented significant resources to accelerate research efforts including on diagnostic tests and on the development of vaccines. In Europe, the presence of Aedes albopictus, a mosquito vector of the virus zika, runs the risk of autochthonous cases as well as autochthonous dengue or chikungunya fever. Hence, autochthonous zika fever is not excluded to appear during the warmest months in metropolitan French departments colonized by A. albopictus.

  3. Rat-bite fever

    MedlinePlus

    Streptobacillary fever; Streptobacillosis; Haverhill fever; Epidemic arthritic erythema; Spirillary fever; Sodoku ... Rat-bite fever can be caused by 2 different bacteria, Streptobacillus moniliformis or Spirillum minus. Both of these are found in ...

  4. Dengue fever (image)

    MedlinePlus

    Dengue fever, or West Nile fever, is a mild viral illness transmitted by mosquitoes which causes fever, ... second exposure to the virus can result in Dengue hemorrhagic fever, a life-threatening illness.

  5. Dengue Fever Treatment

    MedlinePlus

    ... linkedin Dengue Fever Treatment Dengue Fever Dengue Fever Biology and Transmission Prevention Diagnosis Treatment Featured Research NIAID- ... last reviewed on February 8, 2011 Dengue Fever Biology and Transmission Prevention Diagnosis Treatment Featured Research ^ Return ...

  6. Dual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice.

    PubMed

    Belperron, Alexia A; Liu, Nengyin; Booth, Carmen J; Bockenstedt, Linda K

    2014-01-01

    Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR) interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR) are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ(-/-) mice) harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88(-/-) mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ(-/-) MyD88(-/-) mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC), Xcr1 (Gpr5), IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi-infected MyD88

  7. The Borrelia burgdorferi telomere resolvase, ResT, anneals ssDNA complexed with its cognate ssDNA-binding protein

    PubMed Central

    Huang, Shu Hui; Kobryn, Kerri

    2016-01-01

    Spirochetes of the genus Borrelia possess unusual genomes that consist in a linear chromosome and multiple linear and circular plasmids. The linear replicons are terminated by covalently closed hairpin ends, referred to as hairpin telomeres. The hairpin telomeres represent a simple solution to the end-replication problem. Deoxyribonucleic acid replication initiates internally and proceeds bidirectionally toward the hairpin telomeres. The telomere resolvase, ResT, forms the hairpin telomeres from replicated telomere intermediates in a reaction with similarities to those promoted by type IB topoisomerases and tyrosine recombinases. ResT has also been shown to possess DNA single-strand annealing activity. We report here that ResT promotes single-strand annealing of both free DNA strands and ssDNA complexed with single-stranded DNA binding protein (SSB). The annealing of complementary strands bound by SSB requires a ResT–SSB interaction that is mediated by the conserved amphipathic C-terminal tail of SSB. These properties of ResT are similar to those demonstrated for the recombination mediator protein, RecO, of the RecF pathway. Borrelia burgdorferi is unusual in lacking identifiable homologs of the RecFOR proteins. We propose that ResT may provide missing RecFOR functions. PMID:27131360

  8. Follistatin-like protein 1 is a critical mediator of experimental Lyme arthritis and the humoral response to Borrelia burgdorferi infection.

    PubMed

    Campfield, Brian T; Nolder, Christi L; Marinov, Anthony; Bushnell, Daniel; Davis, Amy; Spychala, Caressa; Hirsch, Raphael; Nowalk, Andrew J

    2014-08-01

    Follistatin-like protein 1 (FSTL-1) has recently been described as a critical mediator of CIA and a marker of disease activity. Lyme arthritis, caused by Borrelia burgdorferi, shares similarities with autoimmune arthritis and the experimental murine model collagen-induced arthritis (CIA). Because FSTL-1 is important in CIA and autoimmune arthritides, and Lyme arthritis shares similarities with CIA, we hypothesized that FSTL-1 may be an important mediator of Lyme arthritis. We demonstrate for the first time that FSTL-1 is induced by B. burgdorferi infection and is required for the development of Lyme arthritis in a murine model, utilizing a gene insertion to generate FSTL-1 hypomorphic mice. Using qPCR and qRT-PCR, we found that despite similar early infectious burden, FSTL-1 hypomorphic mice have improved spirochetal clearance in the face of attenuated arthritis and inflammatory cytokine production. Further, FSTL-1 mediates pathogen-specific antibody production and antigen recognition when assessed by ELISA and one- and two-dimensional immunoblotting. This study is the first to describe a role for FSTL-1 in the development of Lyme arthritis and anti-Borrelia response, and the first to demonstrate a role for FSTL-1 in response to infection, highlighting the potential for FSTL-1 as a target in the treatment of B. burgdorferi infection.

  9. Yellow Fever Vaccine

    MedlinePlus

    What is yellow fever?Yellow fever is a serious disease caused by the yellow fever virus. It is found in certain parts of Africa ... How can I prevent yellow fever?Yellow fever vaccine can prevent yellow fever. ... only at designated vaccination centers. After getting the vaccine, you ...

  10. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease.

    PubMed

    Motaleb, Md A; Liu, Jun; Wooten, R Mark

    2015-12-01

    Two-thirds of all bacterial genomes sequenced to-date possess an organelle for locomotion, referred to as flagella, periplasmic flagella or type IV pili. These genomes may also contain a chemotaxis-signaling system which governs flagellar rotation, thus leading a coordinated function for motility. Motility and chemotaxis are often crucial for infection or disease process caused by pathogenic bacteria. Although motility-associated genes are well-characterized in some organisms, the highly orchestrated synthesis, regulation, and assembly of periplasmic flagella in spirochetes are just being delineated. Recent advances were fostered by development of unique genetic manipulations in spirochetes coupled with cutting-edge imaging techniques. These contemporary advances in understanding the role of spirochetal motility and chemotaxis in host persistence and disease development are highlighted in this review.

  11. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease

    PubMed Central

    MOTALEB, MD A.; LIU, JUN; WOOTEN, R. MARK

    2015-01-01

    Two-thirds of all bacterial genomes sequenced to-date possess an organelle for locomotion, referred to as flagella, periplasmic flagella or type IV pili. These genomes may also contain a chemotaxis-signaling system which governs flagellar rotation, thus leading a coordinated function for motility. Motility and chemotaxis are often crucial for infection or disease process caused by pathogenic bacteria. Although motility-associated genes are well-characterized in some organisms, the highly-orchestrated synthesis, regulation, and assembly of periplasmic flagella in spirochetes are just being delineated. Recent advances were fostered by development of unique genetic manipulations in spirochetes coupled with cutting-edge imaging techniques. These contemporary advances in understanding the role of spirochetal motility and chemotaxis in host persistence and disease development are highlighted in this review. PMID:26519910

  12. Orchid Fever

    ERIC Educational Resources Information Center

    Oliver, Phillip

    2004-01-01

    Exotic, captivating, and seductive, orchids have long fascinated plant lovers. They first attracted the attention of Westerners in the 17th century, when explorers brought back samples from South America and Asia. By the mid-1800s, orchid collecting had reached a fever pitch, not unlike that of the Dutch tulip craze of the 1630s, with rich (and…

  13. Typhoid Fever

    DTIC Science & Technology

    2005-01-01

    pediatric ward for gram negative bacteremia. After several days, urine and fecal cultures showed no growth, but both blood cultures grew Salmonella typhi . DISCUSSION...Typhoid fever is caused by ingesting food or water contaminated with feces or urine containing the bacterium Salmonella typhi . While common

  14. Dengue fever

    MedlinePlus

    ... to occur and you have symptoms of the disease. Prevention Clothing, mosquito repellent, and netting can help reduce the risk of mosquito bites that can spread dengue fever and other infections. Limit outdoor activity during mosquito season, especially when they are most active, at ... Mosquito, adult feeding on the ...

  15. Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California

    PubMed Central

    Lane, Robert S.; Mun, Jeomhee; Peribáñez, Miguel A.; Fedorova, Natalia

    2010-01-01

    Previous studies revealed that the Pacific Coast tick (Dermacentor occidentalis) is infected occasionally with the agents of Lyme disease (Borrelia burgdorferi) or human granulocytic anaplasmosis (Anaplasma phagocytophilum) and that it is an inefficient experimental vector of B. burgdorferi. The relationship of the pajahuello tick (Ornithodoros coriaceus) to each of these bacterial zoonotic agents has not been reported. The primary bridging vector of both bacterial zoonotic agents to humans is the western black-legged tick (Ixodes pacificus). Because of the spatial and temporal overlap of D. occidentalis and O. coriaceus populations with those of I. pacificus in natural foci of B. burgdorferi and A. phagocytophilum in northwestern California, we conducted field and laboratory studies to determine if the Pacific Coast tick or the pajahuello tick potentially may serve as secondary vectors of either bacterium. Our findings reconfirmed that wild-caught D. occidentalis ticks are infected infrequently with B. burgdorferi or A. phagocytophilum, but some adult ticks from dense woodlands or chaparral were found to contain 2 important veterinary pathogens for the first time (Anaplasma bovis, A. ovis). The high prevalence of A. bovis infection (4.3%, n=185 ticks) within chaparral-derived ticks suggests that D. occidentalis could be an efficient vector of this rickettsia. Experimental attempts to transmit borreliae or Anaplasma spp. that may have been present in >100 wild-caught D. occidentalis adults to naïve rabbits were unsuccessful. Anaplasma spp. were not detected in O. coriaceus, but one (4.3%) of 23 nymphs was infected with B. bissettii. This finding and an antecedent report of a B. burgdorferi-like spirochete from the same tick species demonstrate that O. coriaceus sometimes acquires and transstadially passes Lyme disease group spirochetes. I. pacificus nymphs inhabiting a woodland nidus of B. burgdorferi and A. phagocytophilum had a 5-fold higher prevalence of

  16. Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California.

    PubMed

    Lane, Robert S; Mun, Jeomhee; Peribáñez, Miguel A; Fedorova, Natalia

    2010-12-01

    Previous studies revealed that the Pacific Coast tick (Dermacentor occidentalis) is infected occasionally with the agents of Lyme disease (Borrelia burgdorferi) or human granulocytic anaplasmosis (Anaplasma phagocytophilum) and that it is an inefficient experimental vector of B. burgdorferi. The relationship of the pajahuello tick (Ornithodoros coriaceus) to each of these bacterial zoonotic agents has not been reported. The primary bridging vector of both bacterial zoonotic agents to humans is the western black-legged tick (Ixodes pacificus). Because of the spatial and temporal overlap of D. occidentalis and O. coriaceus populations with those of I. pacificus in natural foci of B. burgdorferi and A. phagocytophilum in northwestern California, we conducted field and laboratory studies to determine if the Pacific Coast tick or the pajahuello tick potentially may serve as secondary vectors of either bacterium. Our findings reconfirmed that wild-caught D. occidentalis ticks are infected infrequently with B. burgdorferi or A. phagocytophilum, but some adult ticks from dense woodlands or chaparral were found to contain 2 important veterinary pathogens for the first time (Anaplasma bovis, A. ovis). The high prevalence of A. bovis infection (4.3%, n=185 ticks) within chaparral-derived ticks suggests that D. occidentalis could be an efficient vector of this rickettsia. Experimental attempts to transmit borreliae or Anaplasma spp. that may have been present in >100 wild-caught D. occidentalis adults to naïve rabbits were unsuccessful. Anaplasma spp. were not detected in O. coriaceus, but one (4.3%) of 23 nymphs was infected with B. bissettii. This finding and an antecedent report of a B. burgdorferi-like spirochete from the same tick species demonstrate that O. coriaceus sometimes acquires and transstadially passes Lyme disease group spirochetes. I. pacificus nymphs inhabiting a woodland nidus of B. burgdorferi and A. phagocytophilum had a 5-fold higher prevalence of

  17. Influence of MKP medium stored for prolonged periods on growth and morphology of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi sensu stricto.

    PubMed

    Veinović, Gorana; Cerar, Tjaša; Strle, Franc; Ružić-Sabljić, Eva

    2014-03-01

    Modified Kelly-Pettenkofer (MKP) medium is one of the several media used for isolation and cultivation of Borrelia. The aim of the study was to assess whether particular Borrelia species (B. afzelii, B. garinii, and B. burgdorferi sensu stricto) have the ability to grow in MKP medium stored at +4 °C for periods for 1 month up to 1 year, and how prolonged storage may influences Borrelia growth and morphology. The growth of Borrelia was evaluated after 5 days of incubation at 33 °C: cell count per mL, morphology, and motility were assessed. The results of this study showed that the duration of storage of MKP medium had statistically significant influence on growth of B. afzelii (p = 0.021) and B. garinii (p = 0.004), but not on growth of B. burgdorferi sensu stricto (p = 0.204), whereas duration of storage of the medium had no impact on Borrelia morphology and motility. The results of the study indicate that medium stored for more than 1 and up to 12 months supports Borrelia growth.

  18. Genomic Characteristics of Chinese Borrelia burgdorferi Isolates.

    PubMed

    Hao, Qin; Du, Pengcheng; Zhang, Wen; Hou, Xuexia; Zhang, Lin; Zhang, Yuanyuan; Liu, Huixin; Liu, Wei; Chen, Chen; Wan, Kanglin

    2016-01-01

    In China, B. burgdorferi, B.garinii, B. afzelii and B. yangtze sp. nov have been reported; B.garinii and B. afzelii are the main pathogenic genotypes. But until now only one Chinese strain was reported with whole genome sequence. In order to further understand the genomic characteristics and diversity of Chinese Borrelia strains, 5 isolates from China were sequenced and compared with the whole genome sequences of strains in other areas. The results showed a high degree of conservation within the linear chromosome of Chinese strains, whereas plasmid showed a much larger diversity according to the majority genomic information of plasmids. The genome sequences of the five Chinese strains were compared with the corresponding reference strains, respectively, according to the genospecies. Pairwise analysis demonstrates that there are only 70 SNPs between the genomes of CS4 and B31. However, there are many more SNPs between the genomes of QX-S13 and VS116, PD91 and PBi, FP1 and PKo, R9 and Pko, respectively. Gene comparison showed some important different genes. OspA was one of the important different genes. Comparative genomic studies have found that OspA gene sequences of PD91 and R9 had great differences compared with the sequence of B31. OspA gene sequence of R9 had a 96bp deletion; OspA gene of PD91 had two deletions: 9bp and 10 bp. To conclude, we showed the genomic characteristics of four genotype Chinese B. burgdorferi strains. The genomic sequence of B. yangtze sp. nov and differences from B. valaisiana were first reported. Comparative analysis of Chinese strains with the different Borrelia species from other areas will help us to understand evolution and pathogenesis of Chinese Borrelia burgdorferi strains.

  19. The propensity of voles and mice to transmit Borrelia burgdorferi sensu lato infection to feeding ticks.

    PubMed

    Radzijevskaja, Jana; Paulauskas, Algimantas; Rosef, Olav; Petkevičius, Saulius; Mažeika, Vytautas; Rekašius, Tomas

    2013-10-18

    Lyme borreliosis (LB) caused by the spirochete Borrelia burgdorferi sensu lato is the most common tick-borne zoonosis in the Northern Hemisphere. B. burgdorferi s.l. can infect humans and wild and domestic animals. Ixodes ricinus is the main vector, and small rodents are the most important mammalian reservoirs hosts of B. burgdorferi s.l. in Europe. The prevalence of B. burgdorferi s.l. in I. ricinus ticks from captured rodents, calculated specific infectivities, and transmission coefficients were estimated in order to investigate the role of voles and mice in transmission of the LB causative agent. A total of 12.3% (53 out of 431) of immature I. ricinus ticks from rodents in Lithuania and 3.25% (21 out of 646) in Norway were infected with B. burgdorferi s.l. In Lithuania a total of 40% infested Microtus arvalis, 29% of Myodes glareolus and 4.8% of Apodemus flavicollis carried infected larvae and 67% of M. glareolus, 36% of M. arvalis but none of A. flavicollis carried infected nymphs. In Norway, 2.4% of larvae and 12.1% of nymphs feeding on A. flavicollis were infected. A total of 9% of infested A. flavicollis carried infected larvae and 13% - infected nymphs. Borrelia afzelii was the single genospecies identified in ticks feeding on rodents in Lithuania, and was predominant in ticks collected from rodents in Norway. According to calculated indices of specific infectivity and tick-to host transmission coefficient, M. arvalis and M. glareolus voles were found to be more efficient in transmitting B. burgdorferi s.l. to ticks than A. flavicollis mice. GLMM analysis showed that rodent species significantly influenced the probability of a larva being infected with B. burgdorferi s.l. The larvae feeding on M. arvalis and M. glareolus were more likely to be infected with B. burgdorferi s.l. than those feeding on A. flavicollis. This is the first study to report the quantitative roles of voles and mice in the transmission of B. burgdorferi s.l. to larval ticks in

  20. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii

    PubMed Central

    Batra, Dhwani; Replogle, Adam; Rowe, Lori A.; Pritt, Bobbi S.; Petersen, Jeannine M.

    2016-01-01

    Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp in size (26.9% average GC content) and is comprised of a linear chromosome, 8 linear and 7 circular plasmids. Consistent with its taxonomic designation as a new Bbsl genospecies, the B. mayonii linear chromosome shares only 93.83% average nucleotide identity with other genospecies. Both B. mayonii genomes contain plasmids similar to B. burgdorferi sensu stricto lp54, lp36, lp28-3, lp28-4, lp25, lp17, lp5, 5 cp32s, cp26, and cp9. The vls locus present on lp28-10 of B. mayonii MN14-1420 is remarkably long, being comprised of 24 silent vls cassettes. Genetic differences between the two B. mayonii genomes are limited and include 15 single nucleotide variations as well as 7 fewer silent vls cassettes and a lack of the lp5 plasmid in MN14-1539. Notably, 68 homologs to proteins present in B. burgdorferi sensu stricto appear to be lacking from the B. mayonii genomes. These include the complement inhibitor, CspZ (BB_H06), the fibronectin binding protein, BB_K32, as well as multiple lipoproteins and proteins of unknown function. This study shows the utility of long read sequencing for full genome assembly of Bbsl genomes, identifies putative genome regions of B. mayonii that may be linked to clinical manifestation or tissue tropism, and provides a valuable resource for pathogenicity, diagnostic and

  1. Sequence analysis and characterization of a 40-kilodalton Borrelia hermsii glycerophosphodiester phosphodiesterase homolog.

    PubMed Central

    Shang, E S; Skare, J T; Erdjument-Bromage, H; Blanco, D R; Tempst, P; Miller, J N; Lovett, M A

    1997-01-01

    We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fast-performance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity antibodies generated against the purified native protein. The deduced amino acid sequence included a 20-amino-acid signal peptide encoding a putative leader peptidase II cleavage site, indicating that the 40-kDa protein was a lipoprotein. Based on significant homology (31 to 52% identity) of the 40-kDa protein to glycerophosphodiester phosphodiesterases of Escherichia coli (GlpQ), Bacillus subtilis (GlpQ), and Haemophilus influenzae (Hpd; protein D), we have designated this B. hermsii 40-kDa lipoprotein a glycerophosphodiester phosphodiesterase (Gpd) homolog, the first B. hermsii lipoprotein to have a putative functional assignment. A nonlipidated form of the Gpd homolog was overproduced as a fusion protein in E. coli BL21(DE3)(pLysE) and was used to immunize rabbits to generate specific antiserum. Immunoblot analysis with anti-Gpd serum recognized recombinant H. influenzae protein D, and conversely, antiserum to H. influenzae protein D recognized recombinant B. hermsii Gpd (rGpd), indicating antigenic conservation between these proteins. Antiserum to rGpd also identified native Gpd as a constituent of purified outer membrane vesicles prepared from B. hermsii. Screening of other pathogenic spirochetes with anti-rGpd serum revealed the presence of antigenically related proteins in Borrelia burgdorferi, Treponema pallidum, and Leptospira kirschneri. Further sequence analysis both upstream and downstream of the Gpd homolog showed additional homologs of glycerol metabolism

  2. Sequence analysis and characterization of a 40-kilodalton Borrelia hermsii glycerophosphodiester phosphodiesterase homolog.

    PubMed

    Shang, E S; Skare, J T; Erdjument-Bromage, H; Blanco, D R; Tempst, P; Miller, J N; Lovett, M A

    1997-04-01

    We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fast-performance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity antibodies generated against the purified native protein. The deduced amino acid sequence included a 20-amino-acid signal peptide encoding a putative leader peptidase II cleavage site, indicating that the 40-kDa protein was a lipoprotein. Based on significant homology (31 to 52% identity) of the 40-kDa protein to glycerophosphodiester phosphodiesterases of Escherichia coli (GlpQ), Bacillus subtilis (GlpQ), and Haemophilus influenzae (Hpd; protein D), we have designated this B. hermsii 40-kDa lipoprotein a glycerophosphodiester phosphodiesterase (Gpd) homolog, the first B. hermsii lipoprotein to have a putative functional assignment. A nonlipidated form of the Gpd homolog was overproduced as a fusion protein in E. coli BL21(DE3)(pLysE) and was used to immunize rabbits to generate specific antiserum. Immunoblot analysis with anti-Gpd serum recognized recombinant H. influenzae protein D, and conversely, antiserum to H. influenzae protein D recognized recombinant B. hermsii Gpd (rGpd), indicating antigenic conservation between these proteins. Antiserum to rGpd also identified native Gpd as a constituent of purified outer membrane vesicles prepared from B. hermsii. Screening of other pathogenic spirochetes with anti-rGpd serum revealed the presence of antigenically related proteins in Borrelia burgdorferi, Treponema pallidum, and Leptospira kirschneri. Further sequence analysis both upstream and downstream of the Gpd homolog showed additional homologs of glycerol metabolism

  3. Q fever.

    PubMed Central

    Reimer, L G

    1993-01-01

    Q fever is an acute febrile illness first described in 1935 and now seen in many parts of the world. Human infection follows exposure to animals, especially domestic livestock. Recent outbreaks in metropolitan areas have implicated cats as the carrier of disease to humans. The etiologic agent, Coxiella burnetti, belongs to the family Rickettsiaceae, although it has distinct genetic characteristics and modes of transmission. Most recent attention has been focused on a number of large outbreaks of Q fever associated with medical research involving pregnant sheep. Although most infections are self-limited, some patients require prolonged treatment. Recent vaccines have had encouraging success in the prevention of disease in individuals at high risk of exposure. PMID:8358703

  4. Typhoid fever.

    PubMed

    Wain, John; Hendriksen, Rene S; Mikoleit, Matthew L; Keddy, Karen H; Ochiai, R Leon

    2015-03-21

    Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas, especially those in Africa. The main barriers to control are vaccines that are not immunogenic in very young children and the development of multidrug resistance, which threatens efficacy of antimicrobial chemotherapy. Clinicians, microbiologists, and epidemiologists worldwide need to be familiar with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow surveillance and to implement control measures.

  5. Comparison of infectivities of six tick-derived isolates of Borrelia burgdorferi for rodents and ticks.

    PubMed Central

    Peavey, C A; Lane, R S

    1996-01-01

    The infectivity and dissemination to the skin of six isolates of Borrelia burgdorferi were evaluated by inoculating them into groups of deer mice (Peromyscus maniculatus), hamsters, and Swiss Webster mice. Rodent infection was assayed by culture of ear punch biopsy specimens taken at 4, 8, and 12 weeks postinoculation (p.i.). Spirochetes were detected in biopsy specimens from individuals of all three host species that had been inoculated with four isolates (CA3, CA4, CA7, and CA8). Ear punch biopsy specimens taken from Swiss Webster mice at 12 weeks p.i. yielded an additional reisolate (CA2), even though these animals did not seroconvert. The remaining isolate (CA9) was not recovered from any host. However, two deer mice and all hamsters and Swiss Webster mice inoculated with CA9 seroconverted. All six isolates were of low infectivity to ticks when inoculated intramuscularly into hosts. Only 4 (1.6%) of 250 Ixodes pacificus larvae acquired and transstadially maintained infection from hosts inoculated intramuscularly. Infectivity of three isolates for ticks also was tested in Swiss Webster mice injected intradermally. The mean prevalences of infection in xenodiagnostic ticks fed on these mice at 4 weeks p.i. were 47.9, 1.2, and 2.2% for isolates CA4, CA7, and CA8, respectively. The mean prevalences of infection for ticks fed on the same mice at 12 weeks p.i. were 36.4, 11.8, and 20.4%, respectively. Such differences in the infectivity and rate of dissemination of individual isolates of B. burgdorferi should be considered during studies of reservoir and vector competence. PMID:8748276

  6. Rrp2, a Prokaryotic Enhancer-Like Binding Protein, Is Essential for Viability of Borrelia burgdorferi

    PubMed Central

    Groshong, Ashley M.; Gibbons, Nora E.; Yang, X. Frank

    2012-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, exists in two diverse niches (i.e., an arthropod tick vector and mammalian host) during its enzootic life cycle. To effectively adapt to these unique environments, the bacterium alters the expression of numerous genes, including several major outer surface (lipo)proteins that are required for infection and transmission. An enhancer-binding protein (EBP), known as Rrp2, is one identified activator of the RpoN/RpoS alternative sigma factor cascade. Because initial efforts to generate an rrp2 deletion strain were unsuccessful, the role of Rrp2 in the activation of the RpoN/RpoS pathway was first defined using a strain of B. burgdorferi carrying an rrp2 point mutant that was defective in its ability to activate RpoN-dependent transcription. The fact that subsequent attempts to disrupt rrp2 have also been unsuccessful has led investigators to hypothesize that Rrp2 has other undefined functions which are essential for B. burgdorferi survival and independent of its EBP function. We used a lac-based inducible expression system to generate a conditional rrp2 mutant in virulent B. burgdorferi. In this strain, an isopropyl-β-d-thiogalactopyranoside-inducible copy of the rrp2 gene is expressed in trans from a borrelial shuttle vector. We found that the chromosomal copy of rrp2 could be inactivated only when rrp2 was induced, and the maintenance of rrp2 expression was required for the growth of the mutants. In addition, the overexpression of rrp2 is detrimental to B. burgdorferi growth in a manner that is independent of the RpoN/RpoS pathway. These studies provide the first direct evidence that rrp2 is an essential gene in B. burgdorferi. PMID:22544267

  7. In Vitro Culture of Borrelia garinii Results in Loss of Flagella and Decreased Invasiveness

    PubMed Central

    Sellek, Ricela E.; Escudero, Raquel; Gil, Horacio; Rodríguez, Isabel; Chaparro, Escolástica; Pérez-Pastrana, Esperanza; Vivo, Amparo; Anda, Pedro

    2002-01-01

    A virulent, low-passage culture of a tick-derived strain of Borrelia garinii was subjected to serial in vitro passages, from which inoculations were made into C3H/HeN mice. A full display of pathogenicity was observed through passage 4, as measured by cultures of ear punch biopsy samples and internal organs and determination of tibiotarsal joint swelling. Decreased dissemination through skin and infection of internal organs were observed beginning at passage 6. These losses correlated with both the selection of clones harboring 21% less flagella than the parent strain, as seen by electron microscopy, and loss of the motility of the higher passages, as demonstrated by a swarm assay. However, during the chronic phase (3 months after infection), spirochetes were cultured from the bladder and kidney of a mouse inoculated with passage 12. The kidney isolate had the same number of flagella and motility as the original low-passage isolate. Although we can't exclude the possibility that other subtle variations may be arising given the uncloned nature of the isolate, we have found a strong association between loss of flagella and decreased invasiveness. Arthritogenicity progressively decreased with passages, so that only 12.5% of chronically infected mice inoculated with passage 29 still presented with joint swelling, concurrent with a decrease in the staining intensity in a Southern blot with a vlsE-based probe. These results suggest a multifactorial model in which the number of flagella drives the invasiveness of this agent, while plasmid-associated factors are responsible for triggering arthritogenicity. PMID:12183529

  8. Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease.

    PubMed Central

    Lam, T T; Nguyen, T P; Montgomery, R R; Kantor, F S; Fikrig, E; Flavell, R A

    1994-01-01

    We report the cloning and characterization of two outer surface proteins (Osps), designated OspE and OspF, from strain N40 of Borrelia burgdorferi, the spirochetal agent of Lyme disease. The ospE and ospF genes are structurally arranged in tandem as one transcriptional unit under the control of a common promoter. The ospE gene, located at the 5' end of the operon, is 513 nucleotides in length and encodes a 171-amino-acid protein with a calculated molecular mass of 19.2 kDa. The ospF gene, located 27 bp downstream of the stop codon of the ospE gene, consists of 690 nucleotides and encodes a protein of 230 amino acids with a calculated molecular mass of 26.1 kDa. Pulsed-field gel electrophoresis showed that the ospE and ospF genes are located on a 45-kb plasmid. Comparison of the leader sequences of OspE and OspF with those of the four known B. burgdorferi Osps (OspA, OspB, OspC, and OspD) reveals a hydrophobic domain and a consensus cleavage sequence (L-X-Y-C) recognized by signal peptidase II, and [3H]palmitate labeling shows that OspE and OspF are lipoproteins. Immunofluorescence studies demonstrated that both the OspE and OspF proteins are surface exposed. These features are consistent with the finding that OspE and OspF are B. burgdorferi surface lipoproteins. Images PMID:8262642

  9. Borrelia burgdorferi Sensu Lato in Siberian chipmunks (Tamias sibiricus) introduced in suburban forests in France.

    PubMed

    Vourc'h, Gwenaël; Marmet, Julie; Chassagne, Michelle; Bord, Séverine; Chapuis, Jean-Louis

    2007-01-01

    Numerous vertebrate reservoirs have been described for Borrelia burgdorferi sensu lato (sl), which includes the etiological agents of Lyme Borreliosis (LB). The Siberian chipmunk (Tamias sibiricus) is a rodent originating from Asia, where it is suspected to be a B. burgdorferi reservoir. It has been intentionally released into the wild in Europe since the 1970s, but has not yet been subject to any study regarding its association with the LB agent. In this paper we studied Siberian chipmunk infestation with the LB vector (Ixodes ricinus) and infection prevalence by LB spirochetes in a suburban introduced population. We compared these findings with known competent reservoir hosts, the bank vole (Myodes [clethrionomys] glareolus) and wood mouse (Apodemus sylvaticus). All Siberian chipmunks were infested with larvae and larval abundance was higher in this species (mean number of larvae [95% Confidence Interval]: 73.5 [46.0, 117.2]) than in the two other rodent species (bank voles: 4.4 [3.0, 6.3] and wood mice: 10.2 [4.9, 21.2]). Significant factors affecting abundance of larvae were host species and sampling season. Nymphs were most prevalent on chipmunks (86.2%, mean: 5.1 [3.3, 8.0]), one vole carried only two nymphs, and none of the mice had any nymphs. Nymph abundance in chipmunks was affected by sampling season and sex. Furthermore, the infection prevalence of B. burgdorferi sl in the Siberian chipmunk was the highest (33.3%) and predominantly of B. afzelii. The infection prevalence was 14.1% in bank voles, but no wood mouse was found to be infected. Our results suggest that the Siberian chipmunk may be an important reservoir host for LB.

  10. Prevalence of serological response to Borrelia burgdorferi in farmers from eastern and central Poland.

    PubMed

    Zając, V; Pinkas, J; Wójcik-Fatla, A; Dutkiewicz, J; Owoc, A; Bojar, I

    2017-03-01

    Lyme borreliosis (Lyme disease) caused by the Borrelia burgdorferi sensu lato spirochete is the most common tick-borne infection manifested by a wide spectrum of clinical symptoms. In Poland, the preventive health care does not comprise individual farmers as it is practiced in foresters. The objective of this study was to evaluate the exposure of Polish farmers to infection with B. burgdorferi, based on serological screening test and epidemiological investigation. A total of 3,597 farmers were examined for the presence of B. burgdorferi antibodies, as well as interviewed regarding exposure to ticks and prophylaxis of tick-borne diseases. The prevalence varied between 18.2 and 50.7 % suggesting a focal occurrence of borreliosis. A significant increase in the frequency of positive reactions in the oldest age ranges was observed, equaling 30.9 % in the range of 60-69 years and 53.6 % in the range of 80-91 years. The prevalence of the anti-B. burgdorferi antibodies of IgG class (14.7 %) was similar to that of IgM class (16.0 %). Seroreactivity to B. burgdorferi antigen was significantly higher in the group of farmers exposed to repeated tick bites. Significant relationships were also found between some other risk factors and occurrence of seropositive reactions to B. burgdorferi. To the best of our knowledge, this is the first study concerning seroprevalence to B. burgdorferi carried out on such a large group of farmers. Results indicate a high risk of B. burgdorferi infection among Polish farmers and associations between some risk factors and the presence of seropositive reactions.

  11. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes

    PubMed Central

    Seshadri, Rekha; Myers, Garry S. A.; Tettelin, Hervé; Eisen, Jonathan A.; Heidelberg, John F.; Dodson, Robert J.; Davidsen, Tanja M.; DeBoy, Robert T.; Fouts, Derrick E.; Haft, Dan H.; Selengut, Jeremy; Ren, Qinghu; Brinkac, Lauren M.; Madupu, Ramana; Kolonay, Jamie; Durkin, Scott A.; Daugherty, Sean C.; Shetty, Jyoti; Shvartsbeyn, Alla; Gebregeorgis, Elizabeth; Geer, Keita; Tsegaye, Getahun; Malek, Joel; Ayodeji, Bola; Shatsman, Sofiya; McLeod, Michael P.; Šmajs, David; Howell, Jerrilyn K.; Pal, Sangita; Amin, Anita; Vashisth, Pankaj; McNeill, Thomas Z.; Xiang, Qin; Sodergren, Erica; Baca, Ernesto; Weinstock, George M.; Norris, Steven J.; Fraser, Claire M.; Paulsen, Ian T.

    2004-01-01

    We present the complete 2,843,201-bp genome sequence of Treponema denticola (ATCC 35405) an oral spirochete associated with periodontal disease. Analysis of the T. denticola genome reveals factors mediating coaggregation, cell signaling, stress protection, and other competitive and cooperative measures, consistent with its pathogenic nature and lifestyle within the mixed-species environment of subgingival dental plaque. Comparisons with previously sequenced spirochete genomes revealed specific factors contributing to differences and similarities in spirochete physiology as well as pathogenic potential. The T. denticola genome is considerably larger in size than the genome of the related syphilis-causing spirochete Treponema pallidum. The differences in gene content appear to be attributable to a combination of three phenomena: genome reduction, lineage-specific expansions, and horizontal gene transfer. Genes lost due to reductive evolution appear to be largely involved in metabolism and transport, whereas some of the genes that have arisen due to lineage-specific expansions are implicated in various pathogenic interactions, and genes acquired via horizontal gene transfer are largely phage-related or of unknown function. PMID:15064399

  12. Antigenic Targets of the Bovine Humoral Response to PDD-associated Spirochetes Change with Subsequent Exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papillomatous digital dermatitis (PDD), also known as hairy heel wart, is a major cause of lameness of cows in the U.S. dairy industry. Cattle are known to mount a humoral response to spirochetes isolated from PDD lesions. This study was undertaken to evaluate the progression of the bovine humoral i...

  13. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins.

    PubMed

    Riley, Sean P; Bykowski, Tomasz; Cooley, Anne E; Burns, Logan H; Babb, Kelly; Brissette, Catherine A; Bowman, Amy; Rotondi, Matthew; Miller, M Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G; Stevenson, Brian

    2009-04-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where 'n' can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5' of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel alpha-helical 'tweezer'-like structure.

  14. Tandem insertion sequence-like elements define the expression site for variable antigen genes of Borrelia hermsii.

    PubMed Central

    Barbour, A G; Carter, C J; Burman, N; Freitag, C S; Garon, C F; Bergström, S

    1991-01-01

    The spirochete Borrelia hermsii avoids the immune response of its mammalian host through multiphasic antigenic variation. Serotype specificity is determined by variable antigens, Vmp proteins, in the outer membrane. Through nonreciprocal recombination between linear plasmids, a formerly silent vmp gene replaces another vmp gene downstream from a common expression site. To further characterize this activating site, we determined the nucleotide sequence of 6.9 kb of the common upstream expression region of strain HS1 of B. hermsii. Preceding the vmp gene promoter and a poly(dT.dA) run were three imperfectly repeated segments of 2 kb. Each of the 2-kb segments contained 1-kb elements with inverted repeats of approximately 0.2 kb each at their termini. The potential of the 1-kb elements to form stem-and-loop structures was demonstrated by heteroduplex analysis. There was no evidence of the presence of the elements elsewhere in the genome of B. hermsii. One or more of these elements may confer the unidirectionality that characterizes vmp gene switches. Images PMID:1987053

  15. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil)

    PubMed Central

    Gonçalves, Daniela Dib; Carreira, Teresa; Nunes, Mónica; Benitez, Aline; Lopes-Mori, Fabiana Maria Ruiz; Vidotto, Odilon; de Freitas, Julio Cesar; Vieira, Maria Luísa

    2013-01-01

    The aim of this study was to investigate the presence of DNA of Borrelia burgdorferi sensu lato (s.l.) in ticks that feed on horses used for animal traction in rural Jataizinho, Parana, Brazil. Between February and June 2008, a total of 224 ticks was collected of which 75% were identified as Dermacentor nitens and 25% as Amblyomma cajenense. To amplify B. burgdorferi s.l. DNA, the intergenic space region (ISR) between the 5S (rrf) 23S (rrl) rRNA genes was used as targets for nested-PCR. Two ticks of the D. nitens species were positive for B. burgdorferi s.l. Both species showed a fragment of 184 bp, but the sequencing revealed 99.9% homology with the B. burgdorferi sensu stricto (s.s.) strain B31. These results showed, for the first time, the presence of spirochete DNA infecting ticks that parasitize horses used for animal traction, in the rural municipality mentioned. In conclusion, this study opens up promising prospects for determining the infection rate of B. burgdorferi s.s. genospecies or other species in the equine population, as well as the impact of the infection rate on Lyme disease in the state of Parana. PMID:24516456

  16. Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host Response in the Mouse Model of Lyme Disease

    PubMed Central

    Byram, Rebecca; Gaultney, Robert A.; Floden, Angela M.; Hellekson, Christopher; Stone, Brandee L.; Bowman, Amy; Stevenson, Brian; Johnson, Barbara J. B.

    2015-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to produce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Complementation of the mutant with a wild-type revA gene restored heart infectivity to wild-type levels. Additionally, revA mutants led to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced increased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the complemented strain. Therefore, while revA is not absolutely essential for infection, deletion of revA had distinct effects on dissemination, arthritis severity, and host response. PMID:26150536

  17. Comparison of Five Diagnostic Modalities for Direct Detection of Borrelia burgdorferi in Patients with Early Lyme Disease

    PubMed Central

    Liveris, Dionysios; Schwartz, Ira; McKenna, Donna; Nowakowski, John; Nadelman, Robert; DeMarco, Joseph; Iyer, Radha; Bittker, Susan; Cooper, Denise; Holmgren, Diane; Wormser, Gary P.

    2012-01-01

    Lyme disease, the most commonly reported tick-borne infection in North America, is caused by infection with the spirochete Borrelia burgdorferi. Although an accurate clinical diagnosis can often be made based on the presence of erythema migrans, in research studies microbiologic or molecular microbiologic confirmation of the diagnosis may be required. In this study, we evaluated the sensitivity of five direct diagnostic methods (culture and nested PCR of a 2 mm skin biopsy specimen, nested PCR and quantitative PCR (qPCR) performed on the same 1 mL aliquot of plasma and a novel qPCR-blood culture method) in 66 untreated adult patients with erythema migrans. One or more these tests were positive in 93.9% of the patients. Culture was more sensitive than PCR for both skin and blood, but the difference was only statistically significant for blood samples (p< 0.005). Blood culture was significantly more likely to be positive in patients with multiple erythema migrans skin lesions compared to those with a single lesion (p=0.001). Positive test results among the 48 patients for whom all five assays were performed invariably included either a positive blood or skin culture. The results of this study demonstrate that direct detection methods such as PCR and culture are highly sensitive in untreated adult patients with erythema migrans. This enabled microbiologic or molecular microbiologic confirmation of the diagnosis of B. burgdorferi infection in all but four (6.1%) of the 66 patients evaluated. PMID:22571973

  18. P13, an Integral Membrane Protein of Borrelia burgdorferi, Is C-Terminally Processed and Contains Surface-Exposed Domains

    PubMed Central

    Noppa, Laila; Östberg, Yngve; Lavrinovicha, Marija; Bergström, Sven

    2001-01-01

    To elucidate antigens present on the bacterial surface of Borrelia burgdorferi sensu lato that may be involved in pathogenesis, we characterized a protein, P13, with an apparent molecular mass of 13 kDa. The protein was immunogenic and was expressed in large amounts during in vitro cultivation compared to other known antigens. An immunofluorescence assay, immunoelectron microscopy, and protease sensitivity assays indicated that P13 is surface exposed. The deduced sequence of the P13 peptide revealed a possible signal peptidase type I cleavage site, and computer analysis predicted that P13 is an integral membrane protein with three transmembrane-spanning domains. Mass spectrometry, in vitro translation, and N- and C-terminal amino acid sequencing analyses indicated that P13 was posttranslationally processed at both ends and modified by an unknown mechanism. Furthermore, p13 belongs to a gene family with five additional members in B. burgdorferi sensu stricto. The p13 gene is located on the linear chromosome of the bacterium, in contrast to five paralogous genes, which are located on extrachromosomal plasmids. The size of the p13 transcript was consistent with a monocistronic transcript. This new gene family may be involved in functions that are specific for this spirochete and its pathogenesis. PMID:11292755

  19. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil).

    PubMed

    Gonçalves, Daniela Dib; Carreira, Teresa; Nunes, Mónica; Benitez, Aline; Lopes-Mori, Fabiana Maria Ruiz; Vidotto, Odilon; de Freitas, Julio Cesar; Vieira, Maria Luísa

    2013-01-01

    The aim of this study was to investigate the presence of DNA of Borrelia burgdorferi sensu lato (s.l.) in ticks that feed on horses used for animal traction in rural Jataizinho, Parana, Brazil. Between February and June 2008, a total of 224 ticks was collected of which 75% were identified as Dermacentor nitens and 25% as Amblyomma cajenense. To amplify B. burgdorferi s.l. DNA, the intergenic space region (ISR) between the 5S (rrf) 23S (rrl) rRNA genes was used as targets for nested-PCR. Two ticks of the D. nitens species were positive for B. burgdorferi s.l. Both species showed a fragment of 184 bp, but the sequencing revealed 99.9% homology with the B. burgdorferi sensu stricto (s.s.) strain B31. These results showed, for the first time, the presence of spirochete DNA infecting ticks that parasitize horses used for animal traction, in the rural municipality mentioned. In conclusion, this study opens up promising prospects for determining the infection rate of B. burgdorferi s.s. genospecies or other species in the equine population, as well as the impact of the infection rate on Lyme disease in the state of Parana.

  20. Complete Nucleotide Sequence of the LE1 Prophage from the Spirochete Leptospira biflexa and Characterization of Its Replication and Partition Functions

    PubMed Central

    Bourhy, Pascale; Frangeul, Lionel; Couvé, Elisabeth; Glaser, Philippe; Saint Girons, Isabelle; Picardeau, Mathieu

    2005-01-01

    The first and, to date, only extrachromosomal circular replicon identified in the spirochete Leptospira is the LE1 prophage from Leptospira biflexa. The 74-kb LE1 genome has a GC content of 36%, which is similar to the GC content of Leptospira spp. Most of the 79 predicted open reading frames (ORFs) showed no similarities to known ORFs. However 21 ORFs appeared to be organized in clusters that could code for head and tail structural proteins and immunity repressor proteins. In addition, the pattern of gene expression showed that several LE1 genes are expressed specifically either in LE1 prophage or in L. biflexa late after infection. Since the LE1 prophage replicates autonomously as a circular replicon in L. biflexa, we were able to engineer an L. biflexa-Escherichia coli shuttle vector from a 5.3-kb DNA fragment of LE1 (Saint Girons et al., J. Bacteriol. 182:5700-5705, 2000), opening this genus to genetic manipulation. In this study, base compositional asymmetry confirms the location of the LE1 replication region and suggests that LE1 replicates via a bidirectional Θ-like replication mechanism from this unique origin. By subcloning experiments, the replication region can be narrowed down to a 1-kb region. This minimal replication region consists of a rep encoding a protein of 180 amino acids. Upstream from rep, putative partitioning genes, called parA and parB, were found to be similar to the par loci in Borrelia plasmids. A significant increase of plasmid stability in L. biflexa can be seen only when both parA and parB are present. These results enable the construction of new shuttle vectors for studying the genetics of Leptospira spp. This study will also contribute to a better knowledge of phages unrelated to lambdoid phages. PMID:15937155

  1. Similarities in murine infection and immune response to Borrelia bissettii and Borrelia burgdorferi sensu stricto.

    PubMed

    Leydet, Brian F; Liang, Fang Ting

    2015-12-01

    In 1982, Borrelia burgdorferi sensu stricto (ss) was identified as the aetiological agent of Lyme disease. Since then an increasing number of Borrelia burgdorferi sensu lato (sl) species have been isolated in the United States. To date, many of these species remain understudied despite mounting evidence associating them with human illness. Borrelia bissettii is a spirochaete closely related to B. burgdorferi that has been loosely associated with human illness. Using an experimental murine infection model, we compared the infectivity and humoral immune response with a North American isolate of B. bissettii and B. burgdorferi using culture, molecular and serological methods. The original B. bissettii cultures were unable to infect immunocompetent mice, but were confirmed to be infectious after adaptation in immunodeficient animals. B. bissettii infection resulted in spirochaete burdens similar to B. burgdorferi in skin, heart and bladder whereas significantly lower burdens were observed in the joint tissues. B. bissettii induced an antibody response similar to B. burgdorferi as measured by both immunoblotting and the C6 ELISA. Additionally, this isolate of B. bissettii was sequenced on the Ion Torrent PGM, which successfully identified many genes orthologous to mammalian virulence factors described in B. burgdorferi. Similarities seen between both infections in this well-characterized murine model contribute to our understanding of the potential pathogenic nature of B. bissettii. Infection dynamics of B. bissettii, and especially the induced humoral response, are similar to B. burgdorferi, suggesting this species may contribute to the epidemiology of human borreliosis.

  2. Allergies and Hay Fever

    MedlinePlus

    ... Find an ENT Doctor Near You Allergies and Hay Fever Allergies and Hay Fever Patient Health Information News media interested in covering ... Americans suffer from nasal allergies, commonly known as hay fever. An ear, nose, and throat specialist can help ...

  3. Characterization of Biofilm Formation by Borrelia burgdorferi In Vitro

    PubMed Central

    Sapi, Eva; Bastian, Scott L.; Mpoy, Cedric M.; Scott, Shernea; Rattelle, Amy; Pabbati, Namrata; Poruri, Akhila; Burugu, Divya; Theophilus, Priyanka A. S.; Pham, Truc V.; Datar, Akshita; Dhaliwal, Navroop K.; MacDonald, Alan; Rossi, Michael J.; Sinha, Saion K.; Luecke, David F.

    2012-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS) matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells. PMID:23110225

  4. Borrelia burgdorferi sensu stricto and Borrelia afzelii: Population structure and differential pathogenicity.

    PubMed

    Jungnick, Sabrina; Margos, Gabriele; Rieger, Melissa; Dzaferovic, Eldina; Bent, Stephen J; Overzier, Evelyn; Silaghi, Cornelia; Walder, Gernot; Wex, Franziska; Koloczek, Johannes; Sing, Andreas; Fingerle, Volker

    2015-10-01

    MultiLocus sequence typing (MLST) is considered a powerful method to unveil relationships within bacterial populations and it constitutes an economical and fast alternative to whole genome sequencing. We used this method to understand whether there are differences in human pathogenicity within and between different Borrelia burgdorferi sensu lato species. Therefore, 136 strains from human patients or ticks from Europe were included in MLST analyses. The scheme employed used eight chromosomally located housekeeping genes (i.e. clpA, clpX, nifS, pepX, pyrG, recG, rplB and uvrA). We investigated Borrelia afzelii, one of the predominant species in Europe, and B. burgdorferi sensu stricto (s.s.), because it allowed comparative analysis to strains from the USA. We typed 113 patient isolates as well as 23 tick isolates. For further comparative purposes an additional 746 strains from Europe and the USA were included from the MLST website http://borrelia.mlst.net. We observed an overlap of the B. burgdorferi s.s. populations from Europe and the USA isolated from human patients while there was no overlap of the populations found in tick vectors. Further results indicate that B. afzelii was significantly less associated with disseminated infection than B. burgdorferi s.s. and that B. burgdorferi s.s. from Europe caused neuroborreliosis to a significantly greater extent than B. afzelii or B. burgdorferi s.s. in the USA. Our data suggest that there may be an evolutionary basis of differential interspecies pathogenicity in Borrelia. This was not evident within Borrelia species: we found the same sequence types in patients with disseminated or localized symptoms when the number of strains was sufficiently high. We hypothesize that the finding that B. burgdorferi s.s. in Europe is much more associated with neuroborreliosis than in the USA maybe linked to factor(s) related to the human host, the tick vector or the bacterium itself (e.g. plasmid content and structure).

  5. Psychogenic fever, functional fever, or psychogenic hyperthermia?

    PubMed

    Olivier, Berend

    2015-01-01

    Psychogenic fever reflects a phenomenon where core body temperature is high (up to 41°C) or low-grade high (37-38°C) during either acute or chronic stress. Underlying mechanisms are distinct from infection-induced fever and involve the central and sympathetic nervous systems. Psychogenic fever appears a complex psychological, physiological and endocrinological phenomenon.

  6. Use of Monoclonal Antibodies to Enumerate Spirochetes and Identify Treponema denticola in Dental Plaque of Children, Adolescents and Young Adults,

    DTIC Science & Technology

    1991-01-01

    ANTIBODIES TO ENUMERATE SPIROCHETES AND IDENTIFY TREPONEMA DENTICOLA IN DENTAL PLAQUE OF CHILDREN, ADOLESCENTS AND YOUNG ADULTS S. L. BARRON G. R...TREPONEMA DENTICOLA IN DENTAL PLAQUE OF CHILDREN, ADOLESCENTS AND YOUNG ADULTS S. L. BARRON G. R. RIVIERE L. G. SIMONSON S. A. LUKEHART D. E. TIRA D. W...enumerate spirochetes and identify Treponema denticola o . in dental plaque of children, adolescents and young adults. ’................. Oral Microbiol

  7. Whole-genome sequencing of Borrelia garinii BgVir, isolated from Taiga ticks (Ixodes persulcatus).

    PubMed

    Brenner, Evgeniy V; Kurilshikov, Alexander M; Stronin, Oleg V; Fomenko, Nataliya V

    2012-10-01

    Most Lyme borreliosis cases in Russia result from Borrelia garinii NT29 group infection. Borrelias of this group circulate exclusively in Ixodes persulcatus ticks, which are seldom found beyond Russia and the far east. Here we report the whole-genome sequence of Borrelia garinii BgVir isolated from an I. persulcatus female.

  8. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber.

    PubMed

    Wier, Andrew; Dolan, Michael; Grimaldi, David; Guerrero, Ricardo; Wagensberg, Jorge; Margulis, Lynn

    2002-02-05

    Extraordinary preservation in amber of the Miocene termite Mastotermes electrodominicus has led to the discovery of fossil symbiotic microbes. Spirochete bacteria and wood-digesting protists were identified in the intestinal tissue of the insect. Fossil wood (xylem: developing vessel-element cells, fibers, pit connections), protists (most likely xylophagic amitochondriates), an endospore (probably of the filamentous intestinal bacterium Arthromitus = Bacillus), and large spirochetes were seen in thin section by light and transmission electron microscopy. The intestinal microbiota of the living termite Mastotermes darwiniensis, a genus now restricted to northern Australia, markedly resembles that preserved in amber. This is a direct observation of a 20-million-year-old xylophagus termite fossil microbial community.

  9. ELECTRON MICROSCOPY OF AXIAL FIBRILS, OUTER ENVELOPE, AND CELL DIVISION OF CERTAIN ORAL SPIROCHETES

    PubMed Central

    Listgarten, M. A.; Socransky, S. S.

    1964-01-01

    Listgarten, M. A. (Harvard School of Dental Medicine and Forsyth Dental Center, Boston, Mass.), and S. S. Socransky. Electron microscopy of axial fibrils, outer envelope, and cell division of certain oral spirochetes. J. Bacteriol. 88:1087–1103. 1964.—The ultrastructure of axial fibrils and outer envelopes of a number of oral spirochetes was studied in thin sections and by negative contrast. The axial fibrils measured 150 to 200 A in diameter. Only one end of each fibril was inserted subterminally into the protoplasmic cylinder by means of a 400 A wide disc. The free ends of fibrils inserted near one end of the cylinder extended toward, and overlapped in close apposition, the free ends of fibrils inserted at the other end. In thin sections, some axial fibrils showed a substructure, suggestive of a dense central core. The outer envelopes of most spirochetes appeared to consist of 80 A wide polygonal structural subunits. However, in one large spirochete, the outer envelope demonstrated a “pin-striped” pattern. Cell division in a pure culture of Treponema microdentium was studied by negative contrast. Results suggested that this organism divides by transverse fission, the outer envelope being last to divide. During the course of division, new axial fibrils appeared to originate on either side of the point of constriction of the protoplasmic cylinder. Flagellalike extensions which were found in rapidly dividing organisms were due to protruding axial fibrils, and appeared to be the result of cell division. Some evidence is presented to support the concept of a homologous origin for axial fibrils and flagella. Images PMID:14219024

  10. Ticks (Acari: Ixodidae) and spirochetes (spirochaetaceae: spirochaetales) recovered from birds on a Georgia Barrier Island.

    PubMed

    Durden, L A; Oliver, J H; Kinsey, A A

    2001-03-01

    From September 1997 through July 1999, 300 individuals and 46 species of birds were mist-netted and screened for ticks and spirochetes on St. Catherine's Island, Liberty County, GA. Seventy-six (25%) of the birds were parasitized by a meal intensity of 4.6 ticks. Seasonally, more birds were infested with ticks during the summer (50% in 1998, 34% in 1999) than in spring (15% in 1998, 11% in 1999) or fall (21% in 1997, 20% in 1998), mainly because of severe infestations on some birds by immature stages of the lone star tick, Amblyomma americanum (L.), during this season. Eight species ofticks were recovered from 14 species of birds during this study: A. americanum (74 nymphs, 168 larvae); the blacklegged tick, Ixodes scapularis Say (11 nymphs, 28 larvae), the Gulf Coast tick, Amblyomma maculatum Koch (two nymphs, 29 larvae); Ixodes minor Neumann (16 larvae); the rabbit tick. Haemaphysalis leporispalustris (Packard) (one nymph, 14 larvae); the bird tick Ixodes brunneus Koch (two larvae); the American dog tick, Dermacentor variabilis (Say) (one nymph); and Ixodes affinis Neumann (one larva). The Carolina wren was parasitized by more species of ticks (seven) than any other bird species, followed by the northern cardinal (five), white-throated sparrow (four) and painted bunting (three). Spirochetes were isolated in BSK II medium from one tick (a nymphal A. americanum) and from skin biopsies of 12 (4%) of the individual birds (three downy woodpeckers, three northern waterthrushes, two Carolina wrens, one American redstart, one pine warbler, one Swainson's thrush, and one white-eyed vireo) all in fall 1997. This concentrated phenology of spirochete isolations might reflect periodic amplification or recrudescence of spirochetes in reservoir avian hosts.

  11. [Viral hemorrhagic fever].

    PubMed

    Kager, P A

    1998-02-28

    Viral haemorrhagic fevers, such as Lassa fever and yellow fever, cause tens of thousands of deaths annually outside the Netherlands. The viruses are mostly transmitted by mosquitoes, ticks or via excreta of rodents. Important to travellers are yellow fever, dengue and Lassa and Ebola fever. For yellow fever there is an efficacious vaccine. Dengue is frequently observed in travellers; prevention consists in avoiding mosquito bites, the treatment is symptomatic. Lassa and Ebola fever are extremely rare among travellers; a management protocol can be obtained from the Netherlands Ministry of Health, Welfare and Sports. Diagnostics of a patient from the tropics with fever and haemorrhagic diathesis should be aimed at treatable disorders such as malaria, typhoid fever, rickettsiosis or bacterial sepsis, because the probability of such a disease is much higher than that of Lassa or Ebola fever.

  12. Survey of birds and lizards for ixodid ticks (Acari) and spirochetal infection in northern California.

    PubMed

    Manweiler, S A; Lane, R S; Block, W M; Morrison, M L

    1990-11-01

    A total of 138 birds (24 species) was captured in an oak woodland between December 1988 and June 1989 at the University of California, Sierra Foothill Range Field Station, Yuba County, Calif. Ticks were not found on 71 birds captured between December 1988 and March 1989. Five subadult Ixodes pacificus Cooley & Kohls were removed from 3 of 67 birds caught between April and June 1989. These three birds, an orange-crowned warbler (Vermivora celata (Say], a lazuli bunting (Passerina amoena (Say], and a chipping sparrow (Spizella passerina (Bechstein], represent new host records for I. pacificus in California. Tissues from two ticks and thick blood films prepared from 126 birds tested negative for spirochetes by direct immunofluorescence (DI). A total of 172 larval and 197 nymphal I. pacificus was removed from 15 of 16 western fence lizards (Sceloporus occidentalis Baird & Girard) caught between April and June 1989 in the same location as were birds. Thick blood films prepared from all 16 lizards and tissue smears from 334 of the ticks (143 larvae and 191 nymphs) were DI test-negative for spirochetes. One (1.1%) of 93 adult I. pacificus collected at the bird-lizard capture site in February 1989 was infected with spirochetes that resembled B. burgdorferi.

  13. Rheumatic Fever.

    PubMed

    Visvanathan; Manjarez; Zabriskie

    1999-10-01

    There have been numerous reports stating that treatment of acute rheumatic fever with either aspirin or corticosteroids does not alter the long-term outcome of rheumatic heart disease. Yet, it should be emphasized that most of these studies were carried out with the first generic corticosteroids before the advent of the more active and more potent corticosteroid agents. In spite of this caveat, there is no question that all the clinical and laboratory parameters of inflammation (erythrocyte sedimentation rate, C-reactive protein) return to normal much more rapidly with corticosteroids than with aspirin alone. It is therefore our belief that steroids should be used when clinical and laboratory evidence of carditis exists, and aspirin should be reserved for cases of acute rheumatic arthritis with no evidence of carditis. The incidence of long-term valvular disease in active carditis may be decreased with steroid therapy. For example, the number of valve replacements differs markedly in centers that do use steroids and in those that do not. In Capetown, South Africa, where steroids are routinely used for carditis, valve replacement is quite rare. In contrast, in Johannesburg, where steroids are rarely used, the rate of valve replacement is quite high. The racial backgrounds of both groups of patients are similar, thus eliminating the question of racial differences. Concerning secondary prophylaxis, there is also controversy concerning the best second-line therapy. It is now well known that monthly intramuscular injections of benzathine penicillin are really effective for only 20 days. Thus, there is a window in which penicillin coverage is not adequate. To circumvent this problem, some investigators give benzathine penicillin every 3 weeks. These injections are quite painful, however, and it has been our "rule" that compliance with this treatment is inversely proportional to the ratio of the size of the child to the mother. In our own experience over 30 years with the

  14. Multilocus spacer analysis revealed highly homogeneous genetic background of Asian type of Borrelia miyamotoi.

    PubMed

    Mukhacheva, Tatyana A; Salikhova, Irina I; Kovalev, Sergey Y

    2015-04-01

    Borrelia miyamotoi, a member of the relapsing fever group borreliae, was first isolated in Japan and subsequently found in Ixodes ticks in North America, Europe and Russia. Currently, there are three types of B. miyamotoi: Asian or Siberian (transmitted mainly by Ixodes persulcatus), European (Ixodesricinus) and American (Ixodesscapularis and Ixodespacificus). Despite the great genetic distances between B. miyamotoi types, isolates within a type are characterised by an extremely low genetic variability. In particular, strains of B. miyamotoi of Asian type, isolated in Russia from the Baltic sea to the Far East, have been shown to be identical based on the analysis of several conventional genetic markers, such as 16S rRNA, flagellin, outer membrane protein p66 and glpQ genes. Thus, protein or rRNA - coding genes were shown not to be informative enough in studying genetic diversity of B. miyamotoi within a type. In the present paper, we have attempted to design a new multilocus technique based on eight non-coding intergenic spacers (3686bp in total) and have applied it to the analysis of intra-type genetic variability of В. miyamotoi detected in different regions of Russia and from two tick species, I. persulcatus and Ixodespavlovskyi. However, even though potentially the most variable loci were selected, no genetic variability between studied DNA samples was found, except for one nucleotide substitution in two of them. The sequences obtained were identical to those of the reference strain FR64b. Analysis of the data obtained with the GenBank sequences indicates a highly homogeneous genetic background of B. miyamotoi from the Baltic Sea to the Japanese Islands. In this paper, a hypothesis of clonal expansion of B. miyamotoi is discussed, as well as possible mechanisms for the rapid dissemination of one B. miyamotoi clone over large distances.

  15. [Rheumatic fever].

    PubMed

    Cherkashin, D V; Kumchin, A N; Shchulenin, S N; Svistov, A S

    2013-01-01

    This lecture-style paper highlights all major problems pertinent to rheumatic fever Definition of acute RF and chronic rheumatic heart disease is proposed and desirability of the use of these terms in clinical practice is explained. Present-day epidemiology of RF is described with reference to marked differences in its prevalence in developed and developing countries. Modern classification of acute RF is described as adopted by the Russian Association of Rheumatologists and recommended for the use in Russian medical facilities. Discussion of etiological issues is focused on such virulence factors as beta-hemolytic streptococcus A and genetic predisposition confirming hereditary nature of RE Its clinical features are described along with laboratory and instrumental methods applied for its diagnostics. Large and small diagnostic criteria of RF are considered. Special attention is given to the treatment of RF and its complications (antibiotic, pathogenetic, and drug therapy). Its primary and secondary prophylaxis is discussed in detail, preparations for the purpose are listed (with doses and duration of application). In conclusion, criteria for the efficacy of therapy are presented along with indications for hospitalization and emergency treatment.

  16. Serological survey of Borrelia infection of dogs in Sapporo, Japan, where Borrelia garinii infection was previously detected

    PubMed Central

    UESAKA, Karin; MAEZAWA, Masaki; INOKUMA, Hisashi

    2015-01-01

    A serological survey of Borrelia infection of dogs was performed in Sapporo, Japan, where Borrelia garinii infection in dogs was detected in 2011. A total of 314 serum samples were collected from dogs that visited three animal hospitals in Sapporo from 2012 to 2014. The two-step evaluation method, involving screening ELISA followed by Western blot analysis, was used to detect antibodies against Borrelia species. A total of 34 samples were positive by ELISA. Among those 34 samples, 32 were positive for Borrelia spp. by Western blot. These findings suggest that the 32 dogs (10.2%) generated antibodies against Borrelia burgdorferi sensu lato, such as B. garinii or B. afzelii. Antibody positivity was 7.6% and 13.3% for dogs living in urban and rural areas, respectively. Dogs with a history of tick infestation showed a positive rate of 16.7%, which was higher, although not significantly, than the 6.7% among dogs without a history. PMID:26522809

  17. Blackbirds Turdus merula as competent reservoirs for Borrelia turdi and Borrelia valaisiana in Portugal: evidence from a xenodiagnostic experiment.

    PubMed

    Norte, Ana C; Lopes de Carvalho, Isabel; Núncio, Maria S; Ramos, Jaime A; Gern, Lise

    2013-08-01

    To confirm that thrushes, such as blackbirds Turdus merula, play a role as reservoir for some Borrelia genospecies, we performed a xenodiagnostic experiment with blackbirds captured in a mixed wood located in Western Portugal where Borrelia turdi, an uncommon genospecies in Europe, was the most prevalent genospecies associated with birds. Two out of five birds harboured B. turdi infected Ixodes frontalis at the time of capture. Four out of five birds transmitted spirochaetes to Ixodes ricinus xenodiagnostic ticks: two birds transmitted Borrelia valaisiana to 25.7% and 10.5% of ticks, and two transmitted B. turdi to 6.4% and 5.4% of ticks. Our results showed that blackbirds transmit B. valaisiana and B. turdi to I. ricinus feeding larvae, acting as reservoir hosts for these genospecies in nature.

  18. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum?

    PubMed

    Burri, C; Schumann, O; Schumann, C; Gern, L

    2014-04-01

    In Europe, in addition to Borrelia burgdorferi sensu lato and tick-borne encephalitis (TBE) virus, other zoonotic pathogens, like B. miyamotoi, a species related to the relapsing fever spirochaetes, Candidatus Neoehrlichia mikurensis (N. mikurensis), Rickettsia helvetica, Rickettsia monacensis, and Anaplasma phagocytophilum have been reported in the ixodid tick Ixodes ricinus. No study was conducted to identify reservoir hosts for these pathogens. Here, we investigated the role played by wild rodents in the natural transmission cycle of B. miyamotoi, N. mikurensis, R. helvetica, R. monacensis, and A. phagocytophilum in Switzerland. In 2011 and 2012, small mammals were captured in an area where these pathogens occur in questing ticks. Ixodes ricinus ticks infesting captured small mammals were analysed after their moult by PCR followed by reverse line blot to detect the different pathogens. Xenodiagnostic larvae were used to evaluate the role of rodents as reservoirs and analysed after their moult. Most of the 108 captured rodents (95.4%) were infested by I. ricinus ticks; 4.9%, 3.9%, 24.0%, and 0% of the rodents were infested by Borrelia, N. mikurensis, Rickettsia spp., and A. phagocytophilum-infected larvae, respectively. Borrelia afzelii, B. miyamotoi, N. mikurensis, Rickettsia spp., and A. phagocytophilum were detected in 2.8%, 0.17%, 2.6%, 6.8%, and 0% of the ticks attached to rodents, respectively. Borrelia afzelii was transmitted by 4 rodents to 41.2% of the xenodiagnostic ticks, B. miyamotoi by 3 rodents to 23.8%, and N. mikurensis was transmitted by 6 rodents to 41.0% of the xenodiagnostic ticks. None of the tested rodent transmitted Rickettsia spp. or A. phagocytophilum to I. ricinus xenodiagnostic larvae. This study showed that rodents are reservoir hosts for B. miyamotoi and N. mikurensis in Europe.

  19. Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques

    PubMed Central

    Miklossy, Judith

    2016-01-01

    It has long been known that spirochetes form clumps or micro colonies in vitro and in vivo. Cortical spirochetal colonies in syphilitic dementia were considered as reproductive centers for spirochetes. Historic and recent data demonstrate that senile plaques in Alzheimer’s disease (AD) are made up by spirochetes. Spirochetes, are able to form biofilm in vitro. Senile plaques are also reported to contain elements of biofilm constituents. We expected that AβPP and Aβ (the main components of senile plaques) also occur in pure spirochetal biofilms, and bacterial DNA (an important component of biofilm) is also present in senile plaques. Histochemical, immunohistochemical, and in situ hybridization techniques and the TUNEL assay were used to answer these questions. The results obtained demonstrate that Aβ and DNA, including spirochete-specific DNA, are key components of both pure spirochetal biofilms and senile plaques in AD and confirm the biofilm nature of senile plaques. These results validate validate previous observations that AβPP and/or an AβPP-like amyloidogenic protein are an integral part of spirochetes, and indicate that bacterial and host derived Aβ are both constituents of senile plaques. DNA fragmentation in senile plaques further confirms their bacterial nature and provides biochemical evidence for spirochetal cell death. Spirochetes evade host defenses, locate intracellularly, form more resistant atypical forms and notably biofilms, which contribute to sustain chronic infection and inflammation and explain the slowly progressive course of dementia in AD. To consider co-infecting microorganisms is equally important, as multi-species biofilms result in a higher resistance to treatments and a more severe dementia. PMID:27314530

  20. Role of Osteopontin in Murine Lyme Arthritis and Host Defense against Borrelia burgdorferi

    PubMed Central

    Potter, Melissa R.; Rittling, Susan R.; Denhardt, David T.; Roper, Randall J.; Weis, John H.; Teuscher, Cory; Weis, Janis J.

    2002-01-01

    Several genetic loci in the mouse have been identified that regulate the severity of Lyme arthritis. The region of chromosome 5 including the osteopontin (OPN) gene (Opn) has been identified in intercross populations of C3H/HeN × C57BL/6 and C3H/HeJ × BALB/cAnN mice. OPN is of particular interest as it is involved in the maintenance and remodeling of tissue during inflammation, it regulates production of interleukin-10 (IL-10) and IL-12 (cytokines implicated in Lyme arthritis), it is necessary for host control of certain bacterial infections, and mice displaying different severities of Lyme arthritis possess different alleles of the OPN gene. Macrophages and splenocytes from OPN-deficient mice on mixed C57BL/6J-129S or inbred 129S backgrounds were stimulated with the Pam3Cys modified lipoprotein from Borrelia burgdorferi, OspA. OPN was not required for OspA-induced cytokine production; however, macrophages from 129S-Opn−/− mice displayed a reduced level of IL-10 production. OPN was also not required for resistance to severe arthritis, as B. burgdorferi-infected 129S-Opn−/− mice developed mild arthritis, as did their wild-type littermates. Arthritis was more severe in OPN-deficient mice on the mixed C57BL/6J-129S backgrounds than in inbred mice of either strain. This increase was most likely due to a gene(s) closely linked to Opn on chromosome 5 in conjunction with other randomly assorting genes. Deficiency in OPN did not influence the numbers of spirochetes in tissues from B. burgdorferi-infected mice, indicating OPN is not part of the host defense to this pathogen. Interestingly, there was no alteration in the B. burgdorferi-specific antibody isotypes in OPN-deficient mice, indicating that its effect on helper T-cell responses is not relevant to the host response to B. burgdorferi. PMID:11854223

  1. Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.

    PubMed

    Scott, John D; Anderson, John F; Durden, Lance A

    2012-02-01

    Millions of Lyme disease vector ticks are dispersed annually by songbirds across Canada, but often overlooked as the source of infection. For clarity on vector distribution, we sampled 481 ticks (12 species and 3 undetermined ticks) from 211 songbirds (42 species/subspecies) nationwide. Using PCR, 52 (29.5%) of 176 Ixodes ticks tested were positive for the Lyme disease spirochete, Borrelia burgdorferi s.l. Immature blacklegged ticks, Ixodes scapularis , collected from infested songbirds had a B. burgdorferi infection prevalence of 36% (larvae, 48%; nymphs, 31%). Notably, Ixodes affinis is reported in Canada for the first time and, similarly, Ixodes auritulus for the initial time in the Yukon. Firsts for bird-parasitizing ticks include I. scapularis in Quebec and Saskatchewan. We provide the first records of 3 tick species cofeeding on passerines (song sparrow, Swainson's thrush). New host records reveal I. scapularis on the blackpoll warbler and Nashville warbler. We furnish the following first Canadian reports of B. burgdorferi-positive ticks: I. scapularis on chipping sparrow, house wren, indigo bunting; I. auritulus on Bewick's wren; and I. spinipalpis on a Bewick's wren and song sparrow. First records of B. burgdorferi-infected ticks on songbirds include the following: the rabbit-associated tick, Ixodes dentatus, in western Canada; I. scapularis in Quebec, Saskatchewan, northern New Brunswick, northern Ontario; and Ixodes spinipalpis (collected in British Columbia). The presence of B. burgdorferi in Ixodes larvae suggests reservoir competency in 9 passerines (Bewick's wren, common yellowthroat, dark-eyed junco, Oregon junco, red-winged blackbird, song sparrow, Swainson's thrush, swamp sparrow, and white-throated sparrow). We report transstadial transmission (larva to nymph) of B. burgdorferi in I. auritulus. Data suggest a possible 4-tick, i.e., I. angustus, I. auritulus, I. pacificus, and I. spinipalpis, enzootic cycle of B. burgdorferi on Vancouver Island

  2. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion

    PubMed Central

    Hyde, Jenny A.

    2017-01-01

    Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood–brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown

  3. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study

    PubMed Central

    Pritt, Bobbi S; Mead, Paul S; Hoang Johnson, Diep K; Neitzel, David F; Respicio-Kingry, Laurel B; Davis, Jeffrey P; Schiffman, Elizabeth; Sloan, Lynne M; Schriefer, Martin E; Replogle, Adam J; Paskewitz, Susan M; Ray, Julie A; Bjork, Jenna; Steward, Christopher R; Deedon, Alecia; Lee, Xia; Kingry, Luke C; Miller, Tracy K; Feist, Michelle A; Theel, Elitza S; Patel, Robin; Irish, Cole L; Petersen, Jeannine M

    2016-01-01

    Summary Background Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. It is a multisystem disease caused by Borrelia burgdorferi sensu lato genospecies and characterised by tissue localisation and low spirochaetaemia. In this study we aimed to describe a novel Borrelia species causing Lyme borreliosis in the USA. Methods At the Mayo clinic, from 2003 to 2014, we tested routine clinical diagnostic specimens from patients in the USA with PCR targeting the oppA1 gene of B burgdorferi sensu lato. We identified positive specimens with an atypical PCR result (melting temperature outside of the expected range) by sequencing, microscopy, or culture. We collected Ixodes scapularis ticks from regions of suspected patient tick exposure and tested them by oppA1 PCR. Findings 100 545 specimens were submitted by physicians for routine PCR from Jan 1, 2003 to Sept 30, 2014. From these samples, six clinical specimens (five blood, one synovial fluid) yielded an atypical oppA1 PCR product, but no atypical results were detected before 2012. Five of the six patients with atypical PCR results had presented with fever, four had diffuse or focal rash, three had symptoms suggestive of neurological inclusion, and two were admitted to hospital. The sixth patient presented with knee pain and swelling. Motile spirochaetes were seen in blood samples from one patient and cultured from blood samples from two patients. Among the five blood specimens, the median oppA1 copy number was 180 times higher than that in 13 specimens that tested positive for B burgdorferi sensu stricto during the same time period. Multigene sequencing identified the spirochaete as a novel B burgdorferi sensu lato genospecies. This same genospecies was detected in ticks collected at a probable patient exposure site. Interpretation We describe a new pathogenic Borrelia burgdorferi sensu lato genospecies (candidatus Borrelia mayonii) in the upper midwestern USA, which causes Lyme borreliosis

  4. Rat Bite Fever

    MedlinePlus

    ... Ear Nose & Throat Emotional Problems Eyes Fever From Insects or Animals Genitals and Urinary Tract Glands & Growth ... Preventable Diseases Healthy Children > Health Issues > Conditions > From Insects or Animals > Rat Bite Fever Health Issues Listen ...

  5. Haemorrhagic Fevers, Viral

    MedlinePlus

    ... fever, dengue, Omsk haemorrhagic fever, Kyasanur forest disease). Ebola virus disease outbreak in West Africa in 2014-2015 All information on Ebola virus disease Ebola features map Dashboard - Progress update ...

  6. Viral Hemorrhagic Fevers

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Viral Hemorrhagic Fevers (VHFs) Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Viral Hemorrhagic Fevers (VHFs) Virus Families Arenaviruses Old World/New World ...

  7. Rocky Mountain spotted fever

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000654.htm Rocky Mountain spotted fever To use the sharing features on this page, please enable JavaScript. Rocky Mountain spotted fever is a disease caused by a type of ...

  8. [Acute rheumatic fever].

    PubMed

    Maier, Alexander; Kommer, Vera

    2016-03-01

    We report on a young women with acute rheumatic fever. Acute rheumatic fever has become a rare disease in Germany, especially in adults. This carries the risk that it can be missed in the differential diagnostic considerations of acute rheumatic disorders and febrile status. If rheumatic fever is not diagnosed and treated correctly, there is a considerable risk for rheumatic valvular heart disease. In this article diagnosis, differential diagnosis and therapy of rheumatic fever are discussed extensively.

  9. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection

    PubMed Central

    Skare, Jonathan T.; Shaw, Dana K.; Trzeciakowski, Jerome P.

    2016-01-01

    Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond

  10. The Western Progression of Lyme Disease: Infectious and Nonclonal Borrelia burgdorferi Sensu Lato Populations in Grand Forks County, North Dakota

    PubMed Central

    Stone, Brandee L.; Russart, Nathan M.; Gaultney, Robert A.; Floden, Angela M.; Vaughan, Jefferson A.

    2014-01-01

    Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota. PMID:25304515

  11. Assessment of Transcriptional Activity of Borrelia burgdorferi and Host Cytokine Genes During Early and Late Infection in a Mouse Model

    PubMed Central

    Feng, Sunlian; Barthold, Stephen W.

    2013-01-01

    Abstract Differential gene expression by Borrelia burgdorferi spirochetes during mammalian infection facilitates their dissemination as well as immune evasion. Modulation of gene transcription in response to host immunity has been documented with the outer surface protein C, but the influence of transcription of other genes is largely unknown. A low-density array (LDA) was developed to study transcriptional activity of 43 B. burgdorferi genes and 19 host genes that may be involved in various host–agent interactions. Gene transcription in heart, joint, and muscle tissue was compared in immunocompetent C3H and immunodeficient C3H-scid mice during early (3 weeks) and late (2 months) B. burgdorferi infection. Among all tissue types, levels of relative transcription of over 80% of B. burgdorferi genes tested were one- to nine-fold less in C3H mice compared to C3H-scid mice. At the later time point, all genes were transcribed in C3H-scid mice, whereas transcription of 16 genes out of 43 tested was not detected in analyzed tissues of C3H mice. Our data suggest that during infection of immunocompetent mice, a majority of B. burgdorferi genes tested are downregulated in response to acquired host immunity. LDA revealed variable patterns of host gene expression in different tissues and at different intervals in infected mice. Higher levels of relative expression for IL-10 during both early and late infection were detected in heart base, and it was unchanged in the tibiotarsal joint. Comparative analysis of B. burgdorferi and host genes transcriptional activity revealed that increased flaB mRNA during early infection was followed by increases of CCL7, CCL8, interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in all assessed tissue types. LDA represents a valuable approach for sensitive and quantitative gene transcription profiling and for understanding Lyme borreliosis. PMID:23930938

  12. Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi

    PubMed Central

    Xu, Haijun; Caimano, Melissa J.; Lin, Tao; He, Ming; Radolf, Justin D.; Norris, Steven J.; Gheradini, Frank; Wolfe, Alan J.; Yang, X. Frank

    2010-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis. PMID:20862323

  13. Decorin binding proteins of Borrelia burgdorferi promote arthritis development and joint specific post-treatment DNA persistence in mice.

    PubMed

    Salo, Jemiina; Jaatinen, Annukka; Söderström, Mirva; Viljanen, Matti K; Hytönen, Jukka

    2015-01-01

    Decorin binding proteins A and B (DbpA and B) of Borrelia burgdorferi are of critical importance for the virulence of the spirochete. The objective of the present study was to further clarify the contribution of DbpA and B to development of arthritis and persistence of B. burgdorferi after antibiotic treatment in a murine model of Lyme borreliosis. With that goal, mice were infected with B. burgdorferi strains expressing either DbpA or DbpB, or both DbpA and B, or with a strain lacking the adhesins. Arthritis development was monitored up to 15 weeks after infection, and bacterial persistence was studied after ceftriaxone and immunosuppressive treatments. Mice infected with the B. burgdorferi strain expressing both DbpA and B developed an early and prominent joint swelling. In contrast, while strains that expressed DbpA or B alone, or the strain that was DbpA and B deficient, were able to colonize mouse joints, they caused only negligible joint manifestations. Ceftriaxone treatment at two or six weeks of infection totally abolished joint swelling, and all ceftriaxone treated mice were B. burgdorferi culture negative. Antibiotic treated mice, which were immunosuppressed by anti-TNF-alpha, remained culture negative. Importantly, among ceftriaxone treated mice, B. burgdorferi DNA was detected by PCR uniformly in joint samples of mice infected with DbpA and B expressing bacteria, while this was not observed in mice infected with the DbpA and B deficient strain. In conclusion, these results show that both DbpA and B adhesins are crucial for early and prominent arthritis development in mice. Also, post-treatment borrelial DNA persistence appears to be dependent on the expression of DbpA and B on B. burgdorferi surface. Results of the immunosuppression studies suggest that the persisting material in the joints of antibiotic treated mice is DNA or DNA containing remnants rather than live bacteria.

  14. The Western progression of lyme disease: infectious and Nonclonal Borrelia burgdorferi Sensu Lato populations in Grand Forks County, North Dakota.

    PubMed

    Stone, Brandee L; Russart, Nathan M; Gaultney, Robert A; Floden, Angela M; Vaughan, Jefferson A; Brissette, Catherine A

    2015-01-01

    Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota.

  15. Borrelia crocidurae infection in acutely febrile patients, Senegal.

    PubMed

    Mediannikov, Oleg; Socolovschi, Cristina; Bassene, Hubert; Diatta, Georges; Ratmanov, Pavel; Fenollar, Florence; Sokhna, Cheikh; Raoult, Didier

    2014-08-01

    As malaria cases in Africa decline, other causes of acute febrile illness are being explored. To determine incidence of Borrelia crocidurae infection during June 2010-October 2011, we collected 1,566 blood specimens from febrile patients in Senegal. Incidence was high (7.3%). New treatment strategies, possibly doxycycline, might be indicated for febrile patients.

  16. Temporal and spatial distribution of Ixodes pacificus and Dermacentor occidentalis (Acari: Ixodidae) and prevalence of Borrelia burgdorferi in Contra Costa County, California.

    PubMed

    Kramer, V L; Beesley, C

    1993-05-01

    The seasonal activity and spatial distribution of adult and immature Ixodes pacificus Cooley & Kohls and Dermacentor occidentalis Marx were determined along trails and on hillsides in two parks in Contra Costa County, CA. I. pacificus and D. occidentalis adults were most numerous in January and May, respectively. Adult ticks were significantly more abundant along heavily vegetated trails than on open grassy hillsides, and on the uphill versus the downhill side of trails. Five species of rodents were captured, and numbers of I. pacificus and D. occidentalis larvae per rodent were highest in May-June and July, respectively. Few nymphs were recovered either by flagging or from captured rodents. An average of 2.2 and 2.8% of the I. pacificus adults collected from the two parks were infected with the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner. The greatest risk of contracting Lyme disease from adult I. pacificus in these two Contra Costa County parks is during the winter months, especially while hiking near the uphill side of trails.

  17. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease.

    PubMed

    Jacek, Elzbieta; Tang, Kevin S; Komorowski, Lars; Ajamian, Mary; Probst, Christian; Stevenson, Brian; Wormser, Gary P; Marques, Adriana R; Alaedini, Armin

    2016-02-01

    Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms.

  18. Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection.

    PubMed

    Yang, Xiuli; Lin, Yi-Pin; Heselpoth, Ryan D; Buyuktanir, Ozlem; Qin, Jinhong; Kung, Faith; Nelson, Daniel C; Leong, John M; Pal, Utpal

    2016-01-01

    Borrelia burgdorferi surface-located membrane protein 1, also known as Lmp1, has been shown to play critical roles in pathogen evasion of host-acquired immune defences, thereby facilitating persistent infection. Lmp1 possesses three regions representing potentially discrete domains: Lmp1N, Lmp1M and Lmp1C. Because of its insignificant homology to known proteins, how Lmp1 or its specific regions contribute to microbial biology and infection remains enigmatic. Here, we show that distinct from Lmp1N and Lmp1C, Lmp1M is composed of at least 70% alpha helices and completely lacks recognizable beta sheets. The region binds to host glycosaminoglycan chondroitin-6-sulfate molecules and facilitates mammalian cell attachment, suggesting an adhesin function of Lmp1M. Phenotypic analysis of the Lmp1-deficient mutant engineered to produce Lmp1M on the microbial surface suggests that Lmp1M can independently support B. burgdorferi infectivity in murine hosts. Further exploration of functions of Lmp1 distinct regions will shed new light on the intriguing biology and infectivity of spirochetes and help develop novel interventions to combat Lyme disease.

  19. Borrelia burgdorferi cp32 BpaB Modulates Expression of the Prophage NucP Nuclease and SsbP Single-Stranded DNA-Binding Protein

    PubMed Central

    Chenail, Alicia M.; Jutras, Brandon L.; Adams, Claire A.; Burns, Logan H.; Bowman, Amy; Verma, Ashutosh

    2012-01-01

    The Borrelia burgdorferi BpaB proteins of the spirochete's ubiquitous cp32 prophages are DNA-binding proteins, required both for maintenance of the bacteriophage episomes and for transcriptional regulation of the cp32 erp operons. Through use of DNase I footprinting, we demonstrate that BpaB binds the erp operator initially at the sequence 5′-TTATA-3′. Electrophoretic mobility shift assays indicated that BpaB also binds with high affinity to sites located in the 5′ noncoding regions of two additional cp32 genes. Characterization of the proteins encoded by those genes indicated that they are a single-stranded DNA-binding protein and a nuclease, which we named SsbP and NucP, respectively. Chromatin immunoprecipitation indicated that BpaB binds erp, ssbP, and nucP in live B. burgdorferi. A mutant bacterium that overexpressed BpaB produced significantly higher levels of ssbP and nucP transcript than did the wild-type parent. PMID:22730122

  20. Linkages of Weather and Climate With Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Ogden, Nicholas H; Beard, Charles B

    2016-03-01

    Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs.

  1. In vivo expression technology and 5′ end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection

    PubMed Central

    Adams, Philip P.; Flores Avile, Carlos; Popitsch, Niko; Bilusic, Ivana; Schroeder, Renée; Lybecker, Meghan; Jewett, Mollie W.

    2017-01-01

    Borrelia burgdorferi, the bacterial pathogen responsible for Lyme disease, modulates its gene expression profile in response to the environments encountered throughout its tick-mammal infectious cycle. To begin to characterize the B. burgdorferi transcriptome during murine infection, we previously employed an in vivo expression technology-based approach (BbIVET). This identified 233 putative promoters, many of which mapped to un-annotated regions of the complex, segmented genome. Herein, we globally identify the 5′ end transcriptome of B. burgdorferi grown in culture as a means to validate non-ORF associated promoters discovered through BbIVET. We demonstrate that 119 BbIVET promoters are associated with transcription start sites (TSSs) and validate novel RNA transcripts using Northern blots and luciferase promoter fusions. Strikingly, 49% of BbIVET promoters were not found to associate with TSSs. This finding suggests that these sequences may be primarily active in the mammalian host. Furthermore, characterization of the 6042 B. burgdorferi TSSs reveals a variety of RNAs including numerous antisense and intragenic transcripts, leaderless RNAs, long untranslated regions and a unique nucleotide frequency for initiating intragenic transcription. Collectively, this is the first comprehensive map of TSSs in B. burgdorferi and characterization of previously un-annotated RNA transcripts expressed by the spirochete during murine infection. PMID:27913725

  2. Linkages of Weather and Climate With Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America

    PubMed Central

    Eisen, Rebecca J.; Eisen, Lars; Ogden, Nicholas H.; Beard, Charles B.

    2016-01-01

    Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs. PMID:26681789

  3. Determination of members of a Borrelia afzelii-related group isolated from Ixodes nipponensis in Korea as Borrelia valaisiana.

    PubMed

    Masuzawa, T; Fukui, T; Miyake, M; Oh, H B; Cho, M K; Chang, W H; Imai, Y; Yanagihara, Y

    1999-10-01

    The 16S rRNA sequences of the Korean Borrelia strains 5MT and 9MT, isolated from Ixodes nipponensis, showed identities of 99.0-99.1% to that of B. afzelii. The strains were tentatively classified as belonging to the B. afzelii-related group. In this study, Korean isolates, including these strains, were characterized further and compared with recently described new species. These strains generated a RFLP pattern that has not been found previously in RFLP analysis of the 5S-23S rRNA intergenic spacer and the flagellin gene. When phylogenetic trees were constructed, based on the 5S-23S rRNA intergenic spacer, flagellin gene and 16S rRNA sequences, these Korean isolates formed a cluster with the Borrelia strain Am501 isolated from Ixodes columnae in Japan and Borrelia valaisiana strains VS116T and UK isolated from Ixodes ricinus in Europe and were distinguishable from the other species. However, these three groups of strains were divergent from each other in the molecular masses of the putative outer surface protein A (OspA) and in the sequences of the ospA gene. These findings suggest that these Korean isolates and one Japanese isolate are members of B. valaisiana and that OspA of this species is divergent, as is that of Borrelia garinii. This led to the speculation that B. valaisiana strains are adapted to the vector ticks found in each locality.

  4. Fever: is it beneficial?

    PubMed Central

    Blatteis, C. M.

    1986-01-01

    Data obtained in lizards infected with live bacteria suggest that fever may be beneficial to their survival. An adaptive value of fever has also been inferred in mammals, but the results are equivocal. Findings that certain leukocyte functions are enhanced in vitro at high temperatures have provided a possible explanation for the alleged benefits of fever. However, serious questions exist as to whether results from experiments in ectotherms and in vitro can properly be extrapolated to in vivo endothermic conditions. Indeed, various studies have yielded results inconsistent with the survival benefits attributed to fever, and fever is not an obligatory feature of all infections under all conditions. Certainly, the widespread use of antipyretics, without apparent adverse effects on the course of disease, argues against fever having great benefit to the host. In sum, although fever is a cardinal manifestation of infection, conclusive evidence that it has survival value in mammals is still lacking. PMID:3090790

  5. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions.

    PubMed

    Mason, Lauren M K; Veerman, Christiaan C; Geijtenbeek, Teunis B H; Hovius, Joppe W R

    2014-02-01

    Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is inoculated into the skin during an Ixodes tick bite where it is recognised and captured by dendritic cells (DCs). However, considering the propensity of Borrelia to disseminate, it would appear that DCs fall short in mounting a robust immune response against it. Many aspects of the DC-driven immune response to Borrelia have been examined. Recently, components of tick saliva have been identified that sabotage DC responses and aid Borrelia infection. In this review, we summarise what is currently known about the immune response of DCs to Borrelia and explore the mechanisms by which Borrelia manages to circumvent this immune response, with or without the help of tick salivary proteins.

  6. A case of canine borreliosis in Iran caused by Borrelia persica.

    PubMed

    Shirani, Darush; Rakhshanpoor, Alaleh; Cutler, Sally Jane; Ghazinezhad, Behnaz; Naddaf, Saied Reza

    2016-04-01

    Tick-borne relapsing fever is an endemic disease in Iran, with most cases attributed to infection by Borrelia persica, which is transmitted by Ornithodoros tholozani soft ticks. Here, we report spirochetemia in blood of a puppy residing in Tehran, Iran. The causative species was identified by use of highly discriminative IGS sequencing; the 489 bp IGS sequence obtained in our study showed 99% identity (100% coverage) when compared with B. persica sequences derived from clinical cases or from O. tholozani ticks. Our IGS sequence also showed 99% similarity over 414 bp (85% coverage) with a strain from a domestic dog, and 96% over 328 bp (69% coverage) with a strain from a domestic cat. Pet-keeping in cosmopolitan cities like Tehran has become increasingly popular in recent years. Animals are often transported into the city in cages or cardboard boxes that might also harbor minute tick larvae and/or early stages of the nymphs bringing them into the urban environment. This may pose a threat to household members who buy and keep these puppies and as a result may come into close contact with infected ticks.

  7. Spirochaeta americana sp. nov.: A New Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The gram-negative cells are motile and spirochete-shaped with sizes of 0.22 x 10-15 micron. Growth was observed over the temperature range of 10 C to 44 C (optimum 37 C), NaCl concentration range of greater than 1 - 12 % (wt/vol) (optimum 3%), and pH range 7.5 - 10.5 (optimum pH 9.5). The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. Main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain AspG1 is resistant to kanamycin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%. On the basis of its physiological and molecular properties, the isolate appears to be a novel species among the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA_392(sup T) = DSMZ 14872(sup T)).

  8. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate

    SciTech Connect

    Casjens, S.R.; Dunn, J.; Fraser-Liggett, C. M.; Mongodin, E. F.; Qiu, W. G.; Luft, B. J.; Schutzer, S. E.

    2011-03-01

    Human Lyme disease is caused by a number of related Borrelia burgdorferi sensu lato species. We report here the complete genome sequence of Borrelia sp. isolate SV1 from Finland. This isolate is to date the closest known relative of B. burgdorferi sensu stricto, but it is sufficiently genetically distinct from that species that it and its close relatives warrant its candidacy for new-species status. We suggest that this isolate should be named 'Borrelia finlandensis.'

  9. Prevalence of Borrelia burgdorferi Sensu Lato in Ticks Collected from Migratory Birds in Switzerland

    PubMed Central

    Poupon, Marie-Angèle; Lommano, Elena; Humair, Pierre-François; Douet, Véronique; Rais, Olivier; Schaad, Michael; Jenni, Lukas; Gern, Lise

    2006-01-01

    The prevalence of ticks infected by Borrelia burgdorferi sensu lato on birds during their migrations was studied in Switzerland. A total of 1,270 birds captured at two sites were examined for tick infestation. Ixodes ricinus was the dominant tick species. Prevalences of tick infestation were 6% and 18.2% for birds migrating northward and southward, respectively. Borrelia valaisiana was the species detected most frequently in ticks, followed by Borrelia garinii and Borrelia lusitaniae. Among birds infested by infected ticks, 23% (6/26) were infested by B. lusitaniae-infected larvae. Migratory birds appear to be reservoir hosts for B. lusitaniae. PMID:16391149

  10. Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community.

    PubMed

    Heylen, Dieter; Tijsse, Ellen; Fonville, Manoj; Matthysen, Erik; Sprong, Hein

    2013-02-01

    We examined the Borrelia burgdorferi sensu lato circulation in a tick community consisting of three species (Ixodes ricinus, I. frontalis, I. arboricola) with contrasting ecologies, but sharing two European songbird hosts (Parus major and Cyanistes caeruleus). Parus major had the highest infestation rates, primarily due to larger numbers of I. ricinus, and probably because of their greater low-level foraging. The prevalence of Borrelia in feeding ticks did not significantly differ between the two bird species; however, P. major in particular hosted large numbers of Borrelia-infected I. frontalis and I. ricinus larvae, suggesting that the species facilitates Borrelia transmission. The low but significant numbers of Borrelia in questing I. arboricola ticks also provides the first field data to suggest that it is competent in maintaining Borrelia. Aside from Borrelia garinii, a high number of less dominant genospecies was observed, including several mammalian genospecies and the first record of Borrelia turdi for North-Western Europe. Borrelia burgdorferi sensu lato IGS genotypes were shared between I. arboricola and I. ricinus and between I. frontalis and I. ricinus, but not between I. arboricola and I. frontalis. This suggests that the Borrelia spp. transmission cycles can be maintained by bird-specific ticks, and bridged by I. ricinus to other hosts outside bird-tick cycles.

  11. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1986-05-01

    the period 246 Lassa Fever Immune Plasma (LFIP) units were obtained by plasmapheresis , 106 were forwarded to USAMRIID. During the whole life of the...Fever in Plasmapheresis #20 - the inception of the Contract LV has been isolated from 139 of 213 LF patients and another 71 presumptive LF cases have...During the year plasmapheresis at Curran Lutheran Hospital (CLH) and Phebe Hospital (PH) resulted in the collection of 246 units of Lassa Fever

  12. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1983-08-01

    Lassa fever , a new virus disease of man from West Africa . Clinical... Lassa fever in missionaries stationed in West Africa . Bull. W.H.O. 52: 593-598 (1975). 5. Clayton, A.J. Lassa immune serum. Bull. W.H.O. 55: 435-439...1977). 6. Leifer, E., Gocke, D.J., & Bourne, H. Lassa fever , a new virus disease of man from West Africa . II. Report of a laboratory acquired

  13. Distribution of borreliae among ticks collected from eastern states.

    PubMed

    Taft, Sarah C; Miller, Melissa K; Wright, Stephen M

    2005-01-01

    Lyme disease is the most commonly reported vector-borne disease in the United States and is transmitted by Borrelia burgdorferi-infected Ixodes species. The disease is typically characterized by an erythema migrans (EM) rash at the site of tick feeding. EM rashes have also been associated with feeding by Amblyomma americanum ticks despite evidence suggesting that they are incompetent vectors for Lyme disease. In 1996, a Borrelia organism only recently cultivated in the laboratory was described in A. americanum ticks and designated B. lonestari. This Borrelia is believed to be the etiologic agent of a novel Lyme-like disease, southern tick associated rash illness (STARI). This study examined ticks collected from eight eastern states to evaluate the epidemiology of B. lonestari, B. burgdorferi, and their tick hosts. Three hundred individual or small pool samples were evaluated from tick genera that included Amblyomma, Ixodes, and Dermacentor. DNA was extracted following tick homogenization and the polymerase chain reaction (PCR) was performed using primers derived from the flagellin gene that amplify sequences from both B. burgdorferi and B. lonestari. Species specific digoxigenin labeled probes were designed and used to differentiate between B. burgdorferi and B. lonestari. Borrelia DNA was detected in approximately 10% of the A. americanum and I. scapularis tick samples, but none was present in any of the Dermacentor samples tested. Positive samples were detected in ticks collected from Kentucky, Maryland, Massachusetts, New Jersey, New York, and Virginia. This is the first known report of B. lonestari from Massachusetts and New York and the first detection in I. scapularis. This suggests that B. lonestari and its putative association with STARI may be more widespread than previously thought.

  14. Borrelia lonestari DNA in adult Amblyomma americanum ticks, Alabama.

    PubMed Central

    Burkot, T. R.; Mullen, G. R.; Anderson, R.; Schneider, B. S.; Happ, C. M.; Zeidner, N. S.

    2001-01-01

    Polymerase chain reaction analysis of 204 Amblyomma americanum and 28 A. maculatum ticks collected in August 1999 near the homes of patients with southern tick-associated rash illness and in control areas in Choctaw County, Alabama, showed Borrelia lonestari flagellin gene sequence from two adult A. americanum. The presence of B. lonestari in A. americanum ticks from Alabama suggests that this suspected pathogen may be widespread in the southeastern United States. PMID:11384533

  15. STUDIES UPON THE ETIOLOGY OF DENGUE FEVER

    PubMed Central

    Harris, William H.; Duval, Charles W.

    1924-01-01

    The dengue cases studied during this epidemic were, as a whole, typical examples of the disease. The onset was sudden, often of a violent character, ushered in with severe headache and backache, vague pains throughout the body, and fever ranging from 101–105°F. On the 2nd or 3rd day a maculopapular eruption appeared, generally on the neck, chest, and arms, but sometimes more widely disseminated. In most instances the fever remained for 3 or 4 days, after which it dropped to normal to rise again in 24 to 48 hours. The secondary rise, while occasionally higher than the primary one, was as a rule of a milder character. A few cases occurred in which marked jaundice existed. As reported for previous epidemics, no fatalities were recorded and hence no human material for histological study was available. Those cases caught in the fastigium of the disease were selected when possible as a source of material. The leucocytic count in all of the observed human cases was below normal. The experiments herein reported upon the transmission of dengue fever to the guinea pig are based upon the use of material secured from sixteen typical human cases of the disease, and upon the inoculation of many animals. Of the 143 animals used for the initial transmission, 42, representing eleven human cases out of the sixteen studied, reacted in a characteristic manner. The reaction occasioned in these animals by the inoculations closely resembles the symptoms seen in human dengue, differing only in the absence of exanthem. The primary pyrexia following regularly after a definite incubation period of 2 to 5 days, the secondary rise in temperature after a 24 to 48 hour remission ("saddleback"curve), and the concomitant fall in the circulating leucocytes present a syndrome identical with that of the human disease. Dark-field and special tinctorial studies of the dengue material, both human and experimental, have failed to reveal any visible spirochetal microorganism. It seems unlikely that an

  16. Detection of Borrelia burgdorferi sensu stricto and Borrelia garinii DNAs in patient with Hyperkeratosis lenticularis perstans (Flegel disease).

    PubMed

    Schwarzova, Katarina; Kozub, Peter; Szep, Zoltan; Golovchenko, Marina; Rudenko, Natasha

    2016-09-01

    Determination of the causative agent of erythema-like skin lesions in case of nonspecific superficial perivascular dermatitis was supported by histological examination and led to the latter diagnosis of Hyperkeratosis lenticularis perstans (Flegel disease) in patient. The presence of antibodies against Borrelia burgdorferi in patient serum was confirmed by a routine ELISA method and verified by Western blot technique. Skin biopsy and blood specimens were analyzed by PCR and multilocus sequence analysis (MLSA). Western blot method revealed IgG antibody response against two specific antigens, 17 and 83 kDa proteins. The recombinant test detected IgG antibody response against p100 and p41 antigens. The sequence analysis of amplicons from the selected genomic loci obtained from skin biopsy and serum samples revealed the presence of two species from B. burgdorferi sensu lato complex as a co-infection in this patient-B. burgdorferi sensu stricto (s.s.) and Borrelia garinii.

  17. Plasmid DNA and protein vaccination of mice to the outer surface protein A of Borrelia burgdorferi leads to induction of T helper cells with specificity for a major epitope and augmentation of protective IgG antibodies in vivo.

    PubMed

    Zhong, W; Wiesmüller, K H; Kramer, M D; Wallich, R; Simon, M M

    1996-11-01

    Plasmid DNA-based vaccination is an efficient way to evoke various forms of protective immunity in laboratory animals. Our previous experiments have shown that mice immunized with either plasmid DNA encoding the outer surface lipoprotein A (pOspA) of Borrelia burgdorferi or the respective lipoprotein (Lip-OspA) produce protective antibodies against subsequent challenge with virulent spirochetes. In the present study, we compared the specificity and function of T cells generated in AKR/N mice previously immunized to either pOspA or Lip-OspA. T cell populations derived by either of the two protocols consistently responded by proliferation in vitro to one (residues 186-203; B4) out of a panel of 27 overlapping 20-mer peptides spanning the entire OspA molecule of strain ZS7. B4 was shown to express allele-specific ligand motifs for I-Ek. Most of the other peptides produced variable and much less pronounced or marginal proliferative T cell responses. T cells reactive to B4 as well as to some minor epitopes were CD4+CD8- T cells which produced IFN-gamma but no detectable IL-4 upon antigen stimulation in vitro. Priming of AKR/N mice with B4 but not with inactive peptides of OspA led to an enhanced production of IgG antibodies, mainly of the IgG1 isotype, including those to a prominent protective epitope (LA-2) upon subsequent challenge with Lip-OspA or intact spirochetes. The data demonstrate that both plasmid DNA and protein immunization with OspA results in T cell responses with specificity for a dominant OspA epitope and suggest that priming of mice with immunodominant peptides accelerates the appearance of protective antibodies in vivo. The identification of T helper cell epitopes relevant for the induction of protective antibodies will also facilitate the design of more potent vaccines against Lyme disease.

  18. Classification of Italian isolates of Borrelia burgdorferi into three genomic groups.

    PubMed

    Cinco, M; De Giovannini, R; Fattorini, P; Florian, F; Graziosi, G

    1993-10-01

    In this study we investigated the genotypic characteristics of some locally isolated strains of B. burgdorferi by three different methodologies: restriction endonuclease analysis (REA), Southern blot hybridization with whole DNAs from Borrelia strains and Southern blot hybridization with rRNA 16 + 23S genes derived from E. coli. REA fingerprintings were evaluated by cluster analysis, according to the principles of numerical taxonomy. The genomas of the locally isolated strains were compared with borreliae originating from different countries of Europe, including Sweden and with the American reference strain B31. Among the European strains, some already described by Baranton (Baranton et al., 1992) as representatives of different genomic groups Borrelia sensu stricto and Borrelia garinii were used. By the different techniques the isolates were included in three genomic groups which could correspond to the three genospecies identified by Baranton, namely B. burgdorferi sensu stricto, B. garinii and B. group VS461: in fact two strains were included in a homogeneous group, probably corresponding to the VS461 genomic group, together with other European borreliae; one isolate was included in a group consisting of B31 and some other European strains already described as belonging to Borrelia burgdorferi in sensu stricto. Finally two isolates were ascribed to a third genomic group probably corresponding to the genospecies indicated as Borrelia garinii. These findings indicate that a small number of Borrelia strains isolated from a very restricted area can be genetically heterogeneous.

  19. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  20. Malignant Mediterranean spotted fever

    PubMed Central

    Lunge, Snehal Balvant; Patil, Vaibhav; Ambar, Sameer; Naik, Vishwas

    2015-01-01

    Fever with rash is one of the most common causes of referral to a dermatologist. A plethora of conditions need to be considered in the differential diagnosis. They may be broadly classified into infectious causes, drug reactions, and autoimmune disorders. Here we present a rare case of rickettsial fever with cardiac involvement in an elderly male patient with no comorbidities. PMID:26904440

  1. Venezuelan haemorrhagic fever.

    PubMed

    Salas, R; de Manzione, N; Tesh, R B; Rico-Hesse, R; Shope, R E; Betancourt, A; Godoy, O; Bruzual, R; Pacheco, M E; Ramos, B

    1991-10-26

    An outbreak of severe haemorrhagic illness began in the municipality of Guanarito, Portuguesa State, Venezuela, in September, 1989. Subsequent detailed study of 15 cases confirmed the presence of a new viral disease, designated Venezuelan haemorrhagic fever. Characteristic features are fever, toxicity, headache, arthralgia, diarrhoea, conjunctivitis, pharyngitis, leucopenia, thrombocytopenia, and haemorrhagic manifestations. Other features include facial oedema, cervical lymphadenopathy, nausea/vomiting, cough, chest or abdominal pain, and convulsions. The patients ranged in age from 6 to 54 years; all were residents of rural areas in central Venezuela, and 9 died. Infection with Guanarito virus, a newly recognised arenavirus, was shown by direct culture or by serological confirmation in all cases. Epidemiological studies suggest that the disease is endemic in some rural areas of central Venezuela and that it is rodent-borne. Venezuelan haemorrhagic fever has many similarities to Lassa fever and to the arenavirus haemorrhagic fevers that occur in Argentina and Bolivia.

  2. Borrelia burgdorferi sensu lato-infected Ixodes ricinus collected from vegetation near the Arctic Circle.

    PubMed

    Hvidsten, Dag; Stordal, Frode; Lager, Malin; Rognerud, Bjørg; Kristiansen, Bjørn-Erik; Matussek, Andreas; Gray, Jeremy; Stuen, Snorre

    2015-09-01

    This is the first study to determine the density of questing Ixodes ricinus in northern Norway. It was performed at two sites in Brønnøy, which has been known for its tick permissive habitats for decades and is one of the northernmost habitats with an abundant I. ricinus population in the world. From April to November 2011, all stages of host-seeking I. ricinus were collected from the two sites. The overall prevalence of nymphs infected with Borrelia burgdorferi sensu lato was 21% and that of adult ticks 46%. The rates of the genospecies Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana were similar to findings in most other studies in Scandinavia, with B. afzelii by far the most prevalent at 76%. The high Borrelia-infection prevalence in ticks from Brønnøy may explain the high incidence rate of reported Lyme borreliosis in the municipality.

  3. Borrelia burgdorferi migrates into joint capsules and causes an up-regulation of interleukin-8 in synovial membranes of dogs experimentally infected with ticks.

    PubMed Central

    Straubinger, R K; Straubinger, A F; Härter, L; Jacobson, R H; Chang, Y F; Summers, B A; Erb, H N; Appel, M J

    1997-01-01

    Twenty 6-week-old specific-pathogen-free beagles were infected with Borrelia burgdorferi by tick challenge, and five uninfected dogs served as controls. During the study, all dogs were monitored for infection, clinical signs, and antibody response against B. burgdorferi. During episodes of lameness or postmortem, synovial fluids from each dog were examined for volume, cell number, polymorphonuclear leukocyte (PMN) content, cell viability, and chemotactic activity. Twenty-five tissues collected postmortem from each dog were tested for interleukin-8 (IL-8) mRNA, tumor necrosis factor alpha (TNF-alpha) mRNA, presence of live spirochetes, and histopathological changes. Thirteen infected dogs (group A), which seroconverted rapidly (maximum titers within 50 to 90 days), developed acute and severe mono- or oligoarthritis almost exclusively in the limb closest to the tick bite (median incubation period, 66 days). Synovial fluids of the arthritic joints collected during episodes of lameness had significantly elevated volume, cell count, PMN proportion, cell viability, and chemotactic activity for PMNs. The remaining joints of the same animals contained synovial fluids with elevated chemotactic activity and cell viability. Twelve dogs tested positive for IL-8 mRNA in multiple tissues (synovia, pericardium, and peritoneum), and 10 dogs expressed TNF-alpha mRNA, but only in the tributary lymph nodes of the inflamed joints. Histological examinations revealed severe poly- or oligoarthritis and moderate to severe cortical hyperplasia in draining lymph nodes of the inflamed joints in all 13 dogs. Seven infected dogs with mild or no clinical signs (group B) seroconverted slowly (peak titers after 90 days), and only some joint fluids showed chemotactic activity, which on average was lower than that in inflamed and noninflamed joints from dogs in group A. Four dogs expressed IL-8 mRNA (in the synovia and pericardium), and three dogs had TNF-alpha mRNA in tributary lymph nodes

  4. Borrelia burgdorferi sensu lato and co-infections with Anaplasma phagocytophilum and Rickettsia spp. in Ixodes ricinus in Hamburg, Germany.

    PubMed

    May, K; Jordan, D; Fingerle, V; Strube, C

    2015-12-01

    To obtain initial data on Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) in Ixodes ricinus (Ixodida: Ixodidae) ticks in Hamburg, Germany, 1400 questing ticks were collected by flagging at 10 different public recreation areas in 2011 and analysed using probe-based quantitative real-time polymerase chain reaction. The overall rate of infection with B. burgdorferi s.l. was 34.1%; 30.0% of adults were infected (36.7% of females and 26.0% of males), as were 34.5% of nymphs. Significant differences in tick infection rates were observed between the spring and summer/autumn months, as well as among sampling locations. Borrelia genospecies identification by reverse line blotting was successful in 43.6% of positive tick samples. The most frequent genospecies was Borrelia garinii/Borrelia bavariensis, followed by Borrelia afzelii, Borrelia valaisiana, B. burgdorferi sensu stricto, Borrelia spielmanii, Borrelia bissettii and Borrelia lusitaniae. Based on previously published data, co-infection of Borrelia and Rickettsiales spp. was determined in 25.8% of ticks. Overall, 22.9% of ticks were co-infected with Rickettsia spp. (Rickettsiales: Rickettsiaceae), 1.7% with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and 1.2% with both pathogens. Study results show a high prevalence of Borrelia-positive ticks in recreation areas in the northern German city of Hamburg and the potential health risk to humans in these areas should not be underestimated.

  5. Tropical fevers: Management guidelines.

    PubMed

    Singhi, Sunit; Chaudhary, Dhruva; Varghese, George M; Bhalla, Ashish; Karthi, N; Kalantri, S; Peter, J V; Mishra, Rajesh; Bhagchandani, Rajesh; Munjal, M; Chugh, T D; Rungta, Narendra

    2014-02-01

    Tropical fevers were defined as infections that are prevalent in, or are unique to tropical and subtropical regions. Some of these occur throughout the year and some especially in rainy and post-rainy season. Concerned about high prevalence and morbidity and mortality caused by these infections, and overlapping clinical presentations, difficulties in arriving at specific diagnoses and need for early empiric treatment, Indian Society of Critical Care Medicine (ISCCM) constituted an expert committee to develop a consensus statement and guidelines for management of these diseases in the emergency and critical care. The committee decided to focus on most common infections on the basis of available epidemiologic data from India and overall experience of the group. These included dengue hemorrhagic fever, rickettsial infections/scrub typhus, malaria (usually falciparum), typhoid, and leptospira bacterial sepsis and common viral infections like influenza. The committee recommends a 'syndromic approach' to diagnosis and treatment of critical tropical infections and has identified five major clinical syndromes: undifferentiated fever, fever with rash / thrombocytopenia, fever with acute respiratory distress syndrome (ARDS), fever with encephalopathy and fever with multi organ dysfunction syndrome. Evidence based algorithms are presented to guide critical care specialists to choose reliable rapid diagnostic modalities and early empiric therapy based on clinical syndromes.

  6. Borrelia persica: In vitro cultivation and characterization via conventional PCR and multilocus sequence analysis of two strains isolated from a cat and ticks from Israel.

    PubMed

    Schwarzer, Sandra; Margos, Gabriele; Overzier, Evelyn; Fingerle, Volker; Baneth, Gad; Straubinger, Reinhard K

    2015-09-01

    Borrelia persica, one of the pathogenic agents of tick-borne relapsing fever, is transmitted by the soft tick Ornithodoros tholozani. It causes infections in humans as well as in animals. In this study, we developed a medium, termed Pettenkofer/LMU Bp, for reliable in vitro cultivation. Cell densities up to 5.2×10(7) viable cells/ml were achieved over at least 40 passages. The cultivable B. persica strain isolated from a cat was further analyzed by amplification of the flaB gene using conventional PCR. In addition, seven housekeeping genes (clpA, clpX, pepX, pyrG, recG, rplB and uvrA) of this B. persica strain and a second strain isolated out of pooled ticks from Israel were amplified and the phylogenetic relationships among Borrelia species were analyzed. The results of the conventional PCR and the multilocus sequence analysis confirmed our isolates as B. persica.

  7. Rift Valley fever vaccines

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2009-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines. PMID:19837291

  8. Hemorrhagic fever viruses.

    PubMed

    Pigott, David C

    2005-10-01

    This article reviews the epidemiology, pathophysiology, and clinical management of patients with suspected or confirmed viral hemorrhagic fever infection. The focus is on clinical management based on case series from naturally occuring outbreaks of viral hemorrhagic fever infection as well as imported cases of viral hemorrhagic fever encountered in industrialized nations. The potential risk of bioterrorism involving these agents is discussed as well as emergency department and critical care management of isolated cases or larger outbreaks. Important aspects of management, including recognition of infected patients, isolation and decontamination procedures, as well as available vaccines and therapies are emphasized.

  9. Is fever beneficial?

    PubMed Central

    Kluger, M. J.

    1986-01-01

    Fever, the regulation of body temperature at an elevated level, is a common response to infection throughout the vertebrates, as well as in many species of invertebrate animals. It is probable that fever evolved as an adaptive response to infection hundreds of millions of years ago. Many components of the nonspecific and specific host response to infection are enhanced by small elevations in temperature. Perhaps more important, studies of bacterial- and viral-infected animals have shown that, in general, moderate fevers decrease morbidity and increase survival rate. PMID:3488621

  10. [Rocky Mountain spotted fever].

    PubMed

    Reinauer, K M; Jaschonek, K; Kusch, G; Heizmann, W R; Döller, P C; Jenss, H

    1990-01-12

    After returning from a holiday in the USA a 24-year-old man fell ill with diarrhoea, high fever and marked rash including the palms of the hands and soles of the feet. When a history of a tick bite in the USA was elicited, a rickettsial infection was suspected. Treatment with doxycycline, 100 mg twice daily, was instituted finally and the fever slowly resolved. The patient became completely well again within four weeks. Serological tests confirmed the diagnosis of Rocky Mountain spotted fever.

  11. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1979-08-01

    1974. 5. Frame, J. D. Surveillance of Lassa Fever amohg missionaries stationed in West Africa . Bull. WVHO 52: 593-59a, 1975 6. Monath, T.- P. Lassa ...A883 049 COLUMBIA UNIV NEW YORK DIV OF TROPIAL MEDIC.NE F/S 6/5 LASSA FEVER IMMUNE PLASMA U) AUG 79 J D FRAME DAMD17-79-C-9024 UNCLASSIFIED...NL’mmmEmmEmmEE.inuuuuwi LLVIL j~~AD’ LEVEL REPORT NO. 1I 0) LASSA FEVER IMMUNE PLASMA Annual Summary Report John 0. Frame, M.D. i Division of Tropical

  12. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1980-08-01

    extension. *References 1. Frame, J.D., Baldwin, J.M., Jr., Gocke, J. and Troup, J.M. Lassa * fever , a new virus disease of man from West Africa . 1...missionaries stationed In West Africa . Bull. WHO 52: 593-598, 1975. 6. Monath, T.P. Lassa fever : review of epidemiology. Bull. WHO S2: 577-592, 1975. 7...A .2~ .!. . .~ *~ - ~ ~-~**~ 7 -7 - M~L - . Statement of the Problem: Investigations of Lassa fever , a recently discovered viral disease of West

  13. Lassa Fever Immune Plasma

    DTIC Science & Technology

    1990-10-31

    5. Frame, JD. Surveillance of Lassa fever in missionaries stationed in West Africa . Bull. W. H. 0. 52: 593-598 (1979). 6. Leifer, E, Gocke, D J...man from Africa . I. Clinical description and pathological findings. Am. J. TroD. Med. Hva. 19: 670-675. 2. White, HA Lassa fever . A study of 23...Bourne, H. Lassa fever , a new virus disease of man from Africa . II. Report of a laboratory acquired infection treated with plasma from a person recently

  14. Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari : Ixodidae) collected from nine states

    USGS Publications Warehouse

    Mixson, T.R.; Campbell, S.R.; Gill, J.S.; Ginsberg, H.S.; Reichard, M.V.; Schultz, T.L.; Dasch, G.A.

    2006-01-01

    Ambyomma antericanum (L.) (Acari: Ixodidae) is an aggressive tick that feeds on humans during all postembryonic life stages. In many regions of the United States, it is the tick most commonly found attached to humans. Public health interest has grown recently, due to the recognition of new human pathogens transmitted by A. antericanum and the expanding distribution of the tick. A. americanum is a vector of several bacteria pathogenic to humans. Ehrlichia chaffeensis and Ehrlichia ewingii cause moderate-to-severe febrile illness. 'Rickettsia amblyommii,' a member of the spotted fever group Rickettsia, also has recently been implicated as a possible human pathogen based on serologic evidence from persons recovering from illness after a tick bite. We have determined the prevalence of infection of Ehrlichia chaffeensis, E. ewingii, 'Borrelia lonestari,' and R. amblyommii within A. americanum ticks from 29 sites in nine states. Overall infection prevalences were 4.7% for E. chaffeensis (range, 0-27%), 3.5% for E. ewingii (range, 0-18.6%), 2.5% for B. lonestari (range, 0-12.2%), and 41.2% for R. amblyommii (range, 0-84.0%). In addition, 87 ticks (4.3%) were infected with two or more bacteria. This report documents new distribution records for E. ewingii, B. lonestari, and R. amblyommii and underscores the nonhomogeneous distribution of pathogen foci of infection. Additional surveillance throughout the range of A. antericanum is warranted to increase physician and public awareness of the risk of disease to humans from exposure to the agents transmitted by this tick.

  15. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  16. Kid's Guide to Fever

    MedlinePlus

    ... concerned when you have a fever. Shiver, Then Sweat Once your hypothalamus sets a new temperature for ... heat that's been in your body. You may sweat and decide to change into some lighter-weight ...

  17. Fever: First Aid

    MedlinePlus

    ... care strategies as listed for children. When to seek medical advice Get medical help for a fever ... or lasts longer than three days When to seek emergency care Seek emergency medical care if your ...

  18. Scarlet Fever (For Parents)

    MedlinePlus

    ... the throat may be covered with a whitish coating, or appear red, swollen, and dotted with whitish ... the tongue may have a whitish or yellowish coating. A child with scarlet fever also may have ...

  19. Simian hemorrhagic fever virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Simian hemorrhagic fever virus (SHFV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biological pro...

  20. Travelers' Health: Yellow Fever

    MedlinePlus

    ... to-human) transmission occurring. There are 3 transmission cycles for yellow fever: sylvatic (jungle), intermediate (savannah), and urban. The sylvatic (jungle) cycle involves transmission of the virus between nonhuman primates ...

  1. Spirochaeta coccoides sp. nov., a Novel Coccoid Spirochete from the Hindgut of the Termite Neotermes castaneus †

    PubMed Central

    Dröge, Stefan; Fröhlich, Jürgen; Radek, Renate; König, Helmut

    2006-01-01

    A novel spirochete strain, SPN1, was isolated from the hindgut contents of the termite Neotermes castaneus. The highest similarities (about 90%) of the strain SPN1 16S rRNA gene sequence are with spirochetes belonging to the genus Spirochaeta, and thus, the isolate could not be assigned to the so-called termite clusters of the treponemes or to a known species of the genus Spirochaeta. Therefore, it represents a novel species, which was named Spirochaeta coccoides. In contrast to all other known validly described spirochete species, strain SPN1 shows a coccoid morphology and is immotile. The isolated strain is obligately anaerobic and ferments different mono-, di-, and oligosaccharides by forming formate, acetate, and ethanol as the main fermentation end products. Furthermore, strain SPN1 is able to grow anaerobically with yeast extract as the sole carbon and energy source. The fastest growth was obtained at 30°C, the temperature at which the termites were also grown. The cells possess different enzymatic activities that are involved in the degradation of lignocellulose in the termite hindgut, such as β-d-glucosidase, α-l-arabinosidase, and β-d-xylosidase. Therefore, they may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. PMID:16391069

  2. Genetic heterogeneity among strains of Treponema phagedenis-like spirochetes isolated from dairy cattle with papillomatous digital dermatitis in Japan.

    PubMed

    Yano, Takahisa; Yamagami, Ryoko; Misumi, Kazuhiro; Kubota, Chikara; Moe, Kyaw Kyaw; Hayashi, Tetsuya; Yoshitani, Kazunori; Ohtake, Osamu; Misawa, Naoaki

    2009-03-01

    Papillomatous digital dermatitis (PDD) is an infectious foot disease of cattle that is prevalent throughout the world. Although it has been prevalent in Japan since the first case was reported in 1992, full epidemiological and bacteriological examinations have not been conducted. We collected 91 lesions of PDD from 80 dairy cattle on 12 farms in eight regions of Japan to isolate the spirochetes that are frequently detected in lesions. We isolated 40 strains of spirochetes from 24 cattle (30.0%) by a simple two-step culture technique, in which the biopsy samples were incubated at 4 degrees C for 48 to 72 h in an enrichment broth supplemented with antibiotics, which improved the rate of isolation, and then inoculated on selective agar plates. All spirochetes examined were catalase positive and oxidase negative and showed weak beta-hemolytic activity. Enzyme activities were identical to those of Treponema phagedenis ATCC 27087. Sequencing of the 16S rRNA gene showed that all strains isolated had >99% identity to those of the T. phagedenis type strain and of T. phagedenis-like strains isolated from PDD lesions in the United States and Europe. Pulsed-field gel electrophoresis and PCR-based random amplified polymorphism DNA methods revealed considerable diversity among strains isolated not only from different cattle but also from the same individuals. These findings may provide further evidence for the role of these treponemes in the pathogenesis of persistent PDD.

  3. Borrelia infection in Ixodes pararicinus ticks (Acari: Ixodidae) from northwestern Argentina.

    PubMed

    Nava, Santiago; Barbieri, Amalia M; Maya, Leticia; Colina, Rodney; Mangold, Atilio J; Labruna, Marcelo B; Venzal, José M

    2014-11-01

    The aim of this work was to describe for the first time the presence of Borrelia burgdorferi sensu lato infecting ticks in Argentina. Unfed specimens of Ixodes pararicinus collected from vegetation in Jujuy Province were tested for Borrelia infection by PCR targeting the gene flagellin (fla), the rrfA-rrlB intergenic spacer region (IGS) and the 16S rDNA (rrs) gene. One male and one female of I. pararicinus collected in Jujuy were found to be positive to Borrelia infection with the three molecular markers tested. Phylogenetically, the Borrelia found in I. pararicinus from Jujuy belongs to the B. burgdorferi s.l complex, and it was similar to one of the genospecies detected in I. aragaoi from Uruguay. Also, this genospecies is closely related to two genospecies known from USA, Borrelia americana and the Borrelia sp. genospecies 1. The epidemiological risk that implies the infection with Borrelia in I. paracinus ticks from Argentina appears to be low because the genospecies detected is not suspected of having clinical relevance and there are no records of Ixodes ticks biting humans in the southern cone of South America. Further studies are needed to assess accurately if there is risk of borreliosis transmitted by ticks in South America.

  4. Hay fever in pregnancy.

    PubMed

    Wiseberg, Max

    2014-05-01

    Spring and summer can bring misery to millions who suffer from allergic reactions to pollen. Hay fever can cause runny noses, streaming eyes and sore throats. Sadly, many treatments for this distressing condition are not recommended during pregnancy because of fears surrounding the effect on the unborn child. This article presents the causes and treatments of hay fever and explores the alternatives for use during pregnancy which may be able to relieve or minimise the unpleasant symptoms without harming the baby.

  5. Rocky Mountain spotted fever.

    PubMed

    Lacz, N L; Schwartz, R A; Kapila, R

    2006-04-01

    Rocky Mountain spotted fever (RMSF) is an unusual but important dermatological condition to identify without hesitation. The classic triad of headache, fever, and a rash that begins on the extremities and travels proximally to involve the trunk is found in a majority of patients. The cutaneous centripetal pattern is a result of cell to cell migration by the causative organism Rickettsia rickettsii. Such individuals should receive prompt antimicrobial therapy and supportive care to avoid serious and potentially fatal complications.

  6. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    PubMed

    Esteve-Gassent, Maria D; Smith, Trever C; Small, Christina M; Thomas, Derek P; Seshu, J

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sod

  7. Emergence of Q fever

    PubMed Central

    Angelakis, E; Raoult, D

    2011-01-01

    Q fever is a worldwide zoonosis with many acute and chronic manifestations caused by the pathogen Coxiella burnetii. Farm animals and pets are the main reservoirs of infection, and transmission to human beings is mainly accomplished through inhalation of contaminated aerosols. Persons at greatest risk are those in contact with farm animals and include farmers, abattoir workers, and veterinarians. The organs most commonly affected during Q fever are the heart, the arteries, the bones and the liver. The most common clinical presentation is an influenza-like illness with varying degrees of pneumonia and hepatitis. Although acute disease is usually self-limiting, people do occasionally die from this condition. Endocarditis is the most serious and most frequent clinical presentation of chronic Q fever. Vascular infection is the second most frequent presentation of Q fever. The diagnosis of Q fever is based on a significant increase in serum antibody titers. The treatment is effective and well tolerated, but must be adapted to the acute or chronic pattern with the tetracyclines to be considered the mainstay of antibiotic therapy. For the treatment of Q fever during pregnancy the use of long-term cotrimoxazole therapy is proposed. PMID:23113081

  8. Presence of Borrelia in different populations of Ixodes pararicinus from northwestern Argentina.

    PubMed

    Saracho Bottero, Maria N; Sebastian, Patrick S; Carvalho, Luis A; Claps, Leonor Guardia; Mastropaolo, Mariano; Mangold, Atilio J; Venzal, José M; Nava, Santiago

    2017-02-27

    This work was performed to evaluate the presence of Borrelia in different populations of Ixodes pararicinus from northwestern Argentina (Jujuy, Salta and Tucumán provinces). Questing adults and nymphs of I. pararicinus were collected from vegetation, and I. pararicinus nymphs were also collected on birds. Eighty-two ticks were tested for Borrelia presence by PCR targeting the gene flagellin and the rrfA-rrlB intergenic spacer region. Pools of ticks positive to Borrelia were formed by two nymphs collected on Turdus rufiventris in Tucumán, one nymph collected on Syndactyla rufosuperciliata in Jujuy, one nymph collected on Turdus nigriceps in Tucumán, three nymphs collected on T. nigriceps in Tucumán, and two females collected from vegetation in Salta. Two haplotypes of Borrelia sp. belonging to the Borrelia burgdorferi sensu lato complex were found. One of them is closely related to the haplotypes of Borrelia genospecies previously reported in I. aragaoi from Uruguay (haplotypes D and E) and in I. pararicinus from Jujuy Province in Argentina. The second haplotype (detected in the sample of Salta) is closely related to the haplotypes A, B and C associated with I. aragaoi from Uruguay. All these results suggest that the presence of B. burgdorferi s.l. genospecies in I. pararicinus ticks is widespread along the entire distribution of this tick species in northwestern Argentina. However, the Borrelia presence in I. pararicinus cannot be directly assumed as a phenomenon of medical relevance, because Ixodes ticks are not relevant as human parasites in South America, and none of the two Borrelia genospecies detected in this work is related to any of the Borrelia genospecies currently known to be pathogenic to humans.

  9. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks

    PubMed Central

    Raileanu, Cristian; Moutailler, Sara; Pavel, Ionuţ; Porea, Daniela; Mihalca, Andrei D.; Savuta, Gheorghe; Vayssier-Taussat, Muriel

    2017-01-01

    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The

  10. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells.

    PubMed

    Chung, Yutein; Zhang, Nan; Wooten, R Mark

    2013-01-01

    Borrelia burgdorferi (Bb) is a tick-borne spirochete that is the causative agent for Lyme disease. Our previous studies indicate that virulent Bb can potently enhance IL-10 production by macrophages (MØs) and that blocking IL-10 production significantly enhances bacterial clearance. We hypothesize that skin-associated APC types, such as MØs and dendritic cells (DCs) are potent producers of IL-10 in response to Bb, which may act in autocrine fashion to suppress APC responses critical for efficient Bb clearance. Our goal is to delineate which APC immune functions are dysregulated by Bb-elicited IL-10 using a murine model of Lyme disease. Our in vitro studies indicated that both APCs rapidly produce IL-10 upon exposure to Bb, that these levels inversely correlate with the production of many Lyme-relevant proinflammatory cytokines and chemokines, and that APCs derived from IL-10(-/-) mice produced greater amounts of these proinflammatory mediators than wild-type APCs. Phagocytosis assays determined that Bb-elicited IL-10 levels can diminish Bb uptake and trafficking by MØs, suppresses ROS production, but does not affect NO production; Bb-elicited IL-10 had little effect on phagocytosis, ROS, and NO production by DCs. In general, Bb exposure caused little-to-no upregulation of several critical surface co-stimulatory markers by MØs and DCs, however eliminating Bb-elicited IL-10 allowed a significant upregulation in many of these co-stimulatory receptors. These data indicate that IL-10 elicited from Bb-stimulated MØs and DCs results in decreased production of proinflammatory mediators and co-stimulatory molecules, and suppress phagocytosis-associated events that are important for mediating both innate and adaptive immune responses by APCs.

  11. Sera from OspA-vaccinated dogs, but not those from tick-infected dogs, inhibit in vitro growth of Borrelia burgdorferi.

    PubMed Central

    Straubinger, R K; Chang, Y F; Jacobson, R H; Appel, M J

    1995-01-01

    Dogs were challenged with Borrelia burgdorferi by exposure to ticks, with or without prior protection from infection by recombinant OspA (rOspA) vaccination. Sera from these dogs were tested for their capability to inhibit the growth of B. burgdorferi in vitro. Bacterial growth was detected by a color change in the culture medium, and the optical density was measured with a spectrophotometer in microtiter plates. By growth inhibition, which was complement dependent, the color change was lacking after 5 days of incubation. Over a 1-year study, nonvaccinated dogs infected by exposure to ticks showed high antibody titers to B. burgdorferi by kinetic enzyme-linked immunosorbent assay (KELA). The same sera did not inhibit spirochetal growth or did so only at a low dilution. These results corresponded to the lack of OspA and OspB antibodies seen in Western blots (immunoblots), and these dogs were not protected from infection or disease. In contrast, dogs immunized with rOspA prior to challenge with infected ticks produced high antibody titers, as determined by KELA, but their sera also had high growth-inhibiting antibody titers. Western blot analysis showed a strong band in the 32-kDa region when the sera of these dogs were tested. When adjuvant was administered with rOspA, antibody titers by both KELA and growth inhibition were higher and persisted longer in the immunized dogs. All dogs immunized with rOspA were protected from infection and disease. PMID:8567917

  12. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation

    PubMed Central

    Drecktrah, Dan; Lybecker, Meghan; Popitsch, Niko; Rescheneder, Philipp; Hall, Laura S.; Samuels, D. Scott

    2015-01-01

    As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick. PMID:26371761

  13. Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks collected from moose (Alces alces) and roe deer (Capreolus capreolus) in southern Norway.

    PubMed

    Kjelland, Vivian; Ytrehus, Bjørnar; Stuen, Snorre; Skarpaas, Tone; Slettan, Audun

    2011-06-01

    As part of a larger survey, ears from 18 roe deer (Capreolus capreolus) and 52 moose (Alces alces) shot in the 2 southernmost counties in Norway were collected and examined for Ixodes ricinus ticks. Seventy-two adult ticks, 595 nymphs, and 267 larvae from the roe deer, and 182 adult ticks, 433 nymphs, and 70 larvae from the moose were investigated for infection with Borrelia burgdorferi sensu lato (s.l.). The results showed the presence of B. burgdorferi s.l. DNA in 2.9% of the nymphs collected from roe deer and in 4.4% of the nymphs and 6.0% of the adults collected from moose. The spirochetes were not detected in adult ticks from roe deer, or in larvae feeding on roe deer or moose. In comparison, the mean infection prevalences in questing I. ricinus collected from the same geographical area were 0.5% infection in larvae, 24.5% in nymphs, and 26.9% in adults. The most prevalent B. burgdorferi genospecies identified in ticks collected from roe deer was B. afzelii (76.5%), followed by B. garinii (17.6%), and B. burgdorferi sensu stricto (5.9%). Only B. afzelii (76.7%) and B. garinii (23.3%) were detected in ticks collected from moose. The present study indicates a lower prevalence of B. burgdorferi infection in I. ricinus ticks feeding on roe deer and moose compared to questing ticks. This is the first study to report B. burgdorferi s.l. prevalence in ticks removed from cervids in Norway.

  14. Analysis of the Borrelia burgdorferi Cyclic-di-GMP-Binding Protein PlzA Reveals a Role in Motility and Virulence ▿

    PubMed Central

    Pitzer, Joshua E.; Sultan, Syed Z.; Hayakawa, Yoshihiro; Hobbs, Gerry; Miller, Michael R.; Motaleb, Md A.

    2011-01-01

    The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [Kd], 1.25 μM), consistent with Kd values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID50]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded. PMID:21357718

  15. Simultaneous expression of Borrelia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease.

    PubMed Central

    Schutzer, S E; Coyle, P K; Krupp, L B; Deng, Z; Belman, A L; Dattwyler, R; Luft, B J

    1997-01-01

    Lyme disease is the major tick-borne disease, caused by Borrelia burgdorferi (Bb). Neurological involvement is common in all stages. In vivo expression of Bb antigens (Ags) and the immune response to them has not been well investigated in the cerebrospinal fluid (CSF). Upregulation of outer surface protein (Osp) C and concomitant downregulation of OspA before tick inoculation of the spirochete has been reported in skin and blood in animals. CSF OspA Ag in early disease suggests otherwise in CSF. Early Ag expression and IgM response in human CSF was investigated here. Paired CSF and serum was collected from 16 early, predominantly erythema migrans Lyme disease patients with neurologic problems, 13 late Lyme disease patients, and 19 other neurologic disease (OND) controls. Samples were examined for IgM reactivity to recombinant Bb-specific Osps using ELISA and immunoblot. Of 12 early Lyme disease patients with neurologic involvement with both CSF and serum IgM against OspC, 7 (58%) had IgM to OspA (n = 5) or OspB (n = 2) that was restricted to the CSF, not serum. Overall, 12 of 16 (75%) of these early Lyme disease patients with neurologic involvement had CSF and serum IgM against OspC. Only 3 of 13 (23%) late Lyme disease patients and none of 19 OND controls had CSF IgM directed against OspC. In conclusion, in CSF, OspC and OspA can be coexpressed, and IgM response to them occurs in early Lyme disease patients with neurologic involvement. This biologic finding may also provide a discriminating marker for CNS infection in Lyme disease. PMID:9259573

  16. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation.

    PubMed

    Drecktrah, Dan; Lybecker, Meghan; Popitsch, Niko; Rescheneder, Philipp; Hall, Laura S; Samuels, D Scott

    2015-09-01

    As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick.

  17. Long-term study of the prevalence of Borrelia burgdorferi s.l. infection in ticks (Ixodes ricinus) feeding on blackbirds (Turdus merula) in NE Poland.

    PubMed

    Gryczyńska, Alicja; Welc-Falęciak, Renata

    2016-11-01

    Seeking evidence to confirm that blackbirds (Turdus merula) may be involved in environmental maintenance of Borrelia burgdorferi s.l. (the causative agent of Lyme borreliosis), we conducted a long-term study over three separate 2-year periods, together embracing a span of almost 20 years, all in the same area in northeastern Poland. We examined a total of 78 blackbirds and collected 623 Ixodes ricinus ticks feeding on them. The tick infestation prevalence was found to be very high (89.7 %). Among all ticks collected, 9.8 % individuals were infected with B. burgdorferi s.l. spirochetes. We found statistically significant growth in the prevalence of infected ticks as well as an increasing proportion of blackbirds hosting them in subsequent years of study. Ticks feeding on blackbirds were infected mainly with B. garinii (45.7 %), a genospecies commonly encountered in birds, and with B. afzelii (28.6 %), until recently considered rodent-associated. We also identified B. turdi (22.9 %), frequently found in recent years in ticks feeding on birds, and B. spielmanii (2.8 %), which had previously not been found in infected ticks feeding on blackbirds. We also found that ticks infected with genospecies associated with avian reservoir groups (B. garinii and B. turdi) were not randomly distributed on blackbirds, but instead focused on certain bird specimens. We therefore conjecture that this is a result of ticks becoming infected either from the host blackbird itself, or from other infected ticks feeding on the same host blackbird. We did not find any similar dependency for the rodent specialist B. afzelii.

  18. Sensitive and Specific Serodiagnosis of Lyme Disease by Enzyme-Linked Immunosorbent Assay with a Peptide Based on an Immunodominant Conserved Region of Borrelia burgdorferi VlsE

    PubMed Central

    Liang, Fang Ting; Steere, Allen C.; Marques, Adriana R.; Johnson, Barbara J. B.; Miller, James N.; Philipp, Mario T.

    1999-01-01

    VlsE, the variable surface antigen of Borrelia burgdorferi, contains an immunodominant conserved region named IR6. In the present study, the diagnostic performance of a peptide enzyme-linked immunosorbent assay (ELISA) based on a 26-mer synthetic peptide (C6) with the IR6 sequence was explored. Sensitivity was assessed with serum samples (n = 210) collected from patients with clinically defined Lyme disease at the acute (early localized or early disseminated disease), convalescent, or late disease phase. The sensitivities for acute-, convalescent-, and late-phase specimens were 74% (29 of 39), 85 to 90% (34 of 40 to 35 of 39), and 100% (59 of 59), respectively. Serum specimens from early neuroborreliosis patients were 95% positive (19 of 20), and those from an additional group of patients with posttreatment Lyme disease syndrome yielded a sensitivity of 62% (8 of 13). To assess the specificity of the peptide ELISA, 77 serum samples from patients with other spirochetal or chronic infections, autoimmune diseases, or neurologic diseases and 99 serum specimens from hospitalized patients in an area where Lyme disease is not endemic were examined. Only two potential false positives from the hospitalized patients were found, and the overall specificity was 99% (174 of 176). Precision, which was assessed with a panel of positive and negative serum specimens arranged in blinded duplicates, was 100%. Four serum samples with very high anti-OspA antibody titers obtained from four monkeys given the OspA vaccine did not react with the C6 peptide. This simple, sensitive, specific, and precise ELISA may contribute to alleviate some of the remaining problems in Lyme disease serodiagnosis. Because of its synthetic peptide base, it will be inexpensive to manufacture. It also will be applicable to serum specimens from OspA-vaccinated subjects. PMID:10565920

  19. Human pathogenic Borrelia spielmanii sp. nov. resists complement-mediated killing by direct binding of immune regulators factor H and factor H-like protein 1.

    PubMed

    Herzberger, Pia; Siegel, Corinna; Skerka, Christine; Fingerle, Volker; Schulte-Spechtel, Ulrike; van Dam, Alje; Wilske, Bettina; Brade, Volker; Zipfel, Peter F; Wallich, Reinhard; Kraiczy, Peter

    2007-10-01

    Borrelia spielmanii sp. nov. has recently been shown to be a novel human pathogenic genospecies that causes Lyme disease in Europe. In order to elucidate the immune evasion mechanisms of B. spielmanii, we compared the abilities of isolates obtained from Lyme disease patients and tick isolate PC-Eq17 to escape from complement-mediated bacteriolysis. Using a growth inhibition assay, we show that four B. spielmanii isolates, including PC-Eq17, are serum resistant, whereas a single isolate, PMew, was more sensitive to complement-mediated lysis. All isolates activated complement in vitro, as demonstrated by covalent attachment of C3 fragments; however, deposition of the later activation products C6 and C5b-9 was restricted to the moderately serum-resistant isolate PMew and the serum-sensitive B. garinii isolate G1. Furthermore, serum adsorption experiments revealed that all B. spielmanii isolates acquired the host alternative pathway regulators factor H and factor H-like protein (FHL-1) from human serum. Both complement regulators retained their factor I-mediated C3b inactivation activities when bound to spirochetes. In addition, two distinct factor H and FHL-1 binding proteins, BsCRASP-1 and BsCRASP-2, were identified, which we estimated to be approximately 23 to 25 kDa in mass. A further factor H binding protein, BsCRASP-3, was found exclusively in the tick isolate, PC-Eq17. This is the first report describing an immune evasion mechanism utilized by B. spielmanii sp. nov., and it demonstrates the capture of human immune regulators to resist complement-mediated killing.

  20. Identification of Borrelia burgdorferi ospC genotypes in canine tissue following tick infestation: Implications for Lyme disease vaccine and diagnostic assay design

    PubMed Central

    Rhodes, D.V.L.; Earnhart, C.G.; Mather, T.N.; Meeus, P.F.M; Marconi, R.T.

    2013-01-01

    In endemic regions, Lyme disease is a potential health threat to dogs. Canine Lyme disease manifests with arthritis-induced lameness, anorexia, fever, lethargy, lymphadenopathy and, in some cases, fatal glomerulonephritis. A recent study revealed that the regional mean for the percentage of seropositive dogs in the Northeast of the USA is 11.6%. The outer surface protein C (OspC) of Lyme disease spirochetes is an important virulence factor required for the establishment of infection in mammals. It is a leading candidate in human and canine Lyme disease vaccine development efforts. Over 30 distinct ospC phyletic types have been defined. It has been hypothesized that ospC genotype may influence mammalian host range. In this study, Ixodes scapularis ticks collected from the field in Rhode Island were assessed for infection with B. burgdorferi. Ticks were fed on purpose bred beagles to repletion and infection of the dogs was assessed through serology and PCR. Tissue biopsies (n = 2) were collected from each dog 49 days post-tick infestation (dpi) and the ospC genotype of the infecting strains determined by direct PCR of DNA extracted from tissue or by PCR after cultivation of spirochetes from biopsy samples. The dominant ospC types associated with B. burgdorferi canine infections differed from those associated with human infection, indicating a relationship between ospC sequence and preferred host range. Knowledge of the most common ospC genotypes associated specifically with infection of dogs will facilitate the rational design of OspC-based canine Lyme disease vaccines and diagnostic assays. PMID:23962611

  1. Identification of Borrelia burgdorferi ospC genotypes in canine tissue following tick infestation: implications for Lyme disease vaccine and diagnostic assay design.

    PubMed

    Rhodes, D V L; Earnhart, C G; Mather, T N; Meeus, P F M; Marconi, R T

    2013-11-01

    In endemic regions, Lyme disease is a potential health threat to dogs. Canine Lyme disease manifests with arthritis-induced lameness, anorexia, fever, lethargy, lymphadenopathy and, in some cases, fatal glomerulonephritis. A recent study revealed that the regional mean for the percentage of seropositive dogs in the north-east of the USA is 11.6%. The outer surface protein C (OspC) of Lyme disease spirochetes is an important virulence factor required for the establishment of infection in mammals. It is a leading candidate in human and canine Lyme disease vaccine development efforts. Over 30 distinct ospC phyletic types have been defined. It has been hypothesized that ospC genotype may influence mammalian host range. In this study, Ixodes scapularis ticks collected from the field in Rhode Island were assessed for infection with B. burgdorferi. Ticks were fed on purpose bred beagles to repletion and infection of the dogs was assessed through serology and PCR. Tissue biopsies (n=2) were collected from each dog 49 days post-tick infestation (dpi) and the ospC genotype of the infecting strains determined by direct PCR of DNA extracted from tissue or by PCR after cultivation of spirochetes from biopsy samples. The dominant ospC types associated with B. burgdorferi canine infections differed from those associated with human infection, indicating a relationship between ospC sequence and preferred host range. Knowledge of the most common ospC genotypes associated specifically with infection of dogs will facilitate the rational design of OspC-based canine Lyme disease vaccines and diagnostic assays.

  2. The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola.

    PubMed

    Bian, Jiang; Shen, Hongwu; Tu, Youbin; Yu, Aiming; Li, Chunhao

    2011-08-01

    Thiamine pyrophosphate (TPP), a biologically active form of thiamine (vitamin B₁), is an essential cofactor in all living systems. Microorganisms either synthesize TPP via de novo biosynthesis pathways or uptake exogenous thiamine from the environment via specific transporters. The oral spirochete Treponema denticola is an important pathogen that is associated with human periodontal diseases. It lacks a de novo TPP biosynthesis pathway and needs exogenous TPP for growth, suggesting that it may obtain exogenous TPP via a thiamine transporter. In this study, we identified a gene cluster that encodes a TPP ABC transporter which consists of a TPP-binding protein (TDE0143), a transmembrane permease (TDE0144), and a cytosolic ATPase (TDE0145). Transcriptional and translational analyses showed that the genes encoding these three proteins are cotranscribed and form an operon (tbpABC(Td)) that is initiated by a σ⁷⁰-like promoter. The expression level of this operon is negatively regulated by exogenous TPP and is mediated by a TPP-sensing riboswitch (Td(thi-)(box)). Genetic and biochemical studies revealed that the TDE0143 deletion mutant (T. denticola ΔtbpA) had a decreased ability to transport exogenous TPP, and the mutant failed to grow when exogenous TPP was insufficient. These results taken together indicate that the tbpABC(Td) operon encodes an ABC transporter that is required for the uptake of exogenous TPP and that the expression of this operon is regulated by a TPP-binding riboswitch via a feedback inhibition mechanism.

  3. Enzyme profiles of oral spirochetes in RapID-ANA system.

    PubMed Central

    Syed, S A; Salvador, S L; Loesche, W J

    1988-01-01

    Enzyme profiles of oral Treponema species were determined by using RapID-ANA (Innovative Diagnostic System, Atlanta, Ga.), a 4-h test system which detects 18 enzymatic reactions, including aminopeptidases and glycosidases. Seventy-two clinical isolates of Treponema denticola, four reference strains of T. denticola (ATCC 35404, ATCC 35405, ATCC 35520, and ATCC 33521), one strain of T. vincentii (ATCC 35580), and two strains of T. socranskii subspecies (T. socranskii subsp. buccale ATCC 35534 and T. socranskii subsp. socranskii ATCC 35536) were used in this study. All T. denticola strains produced indole and a variety of aminopeptidases and glycosidases. These organisms could be differentiated into two groups on the basis of tetrazolium reductase and serine, phenylalanine, and glycine aminopeptidase activities. T. vincentii produced N-acetylglucosaminidase and arginine aminopeptidase, which facilitated the differentiation of this organism from T. socranskii subspecies and the T. denticola group. T. socranskii subspecies gave positive reactions for alkaline phosphatase only. These findings suggest that the RapID-ANA system is useful for enzymatic characterization and differentiation of oral spirochetes. PMID:3183013

  4. Filament formation associated with spirochetal infection: a comparative approach to Morgellons disease.

    PubMed

    Middelveen, Marianne J; Stricker, Raphael B

    2011-01-01

    Bovine digital dermatitis is an emerging infectious disease that causes lameness, decreased milk production, and weight loss in livestock. Proliferative stages of bovine digital dermatitis demonstrate keratin filament formation in skin above the hooves in affected animals. The multifactorial etiology of digital dermatitis is not well understood, but spirochetes and other coinfecting microorganisms have been implicated in the pathogenesis of this veterinary illness. Morgellons disease is an emerging human dermopathy characterized by the presence of filamentous fibers of undetermined composition, both in lesions and subdermally. While the etiology of Morgellons disease is unknown, there is serological and clinical evidence linking this phenomenon to Lyme borreliosis and coinfecting tick-borne agents. Although the microscopy of Morgellons filaments has been described in the medical literature, the structure and pathogenesis of these fibers is poorly understood. In contrast, most microscopy of digital dermatitis has focused on associated pathogens and histology rather than the morphology of late-stage filamentous fibers. Clinical, laboratory, and microscopic characteristics of these two diseases are compared.

  5. Filament formation associated with spirochetal infection: a comparative approach to Morgellons disease

    PubMed Central

    Middelveen, Marianne J; Stricker, Raphael B

    2011-01-01

    Bovine digital dermatitis is an emerging infectious disease that causes lameness, decreased milk production, and weight loss in livestock. Proliferative stages of bovine digital dermatitis demonstrate keratin filament formation in skin above the hooves in affected animals. The multifactorial etiology of digital dermatitis is not well understood, but spirochetes and other coinfecting microorganisms have been implicated in the pathogenesis of this veterinary illness. Morgellons disease is an emerging human dermopathy characterized by the presence of filamentous fibers of undetermined composition, both in lesions and subdermally. While the etiology of Morgellons disease is unknown, there is serological and clinical evidence linking this phenomenon to Lyme borreliosis and coinfecting tick-borne agents. Although the microscopy of Morgellons filaments has been described in the medical literature, the structure and pathogenesis of these fibers is poorly understood. In contrast, most microscopy of digital dermatitis has focused on associated pathogens and histology rather than the morphology of late-stage filamentous fibers. Clinical, laboratory, and microscopic characteristics of these two diseases are compared. PMID:22253541

  6. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin.

    PubMed

    Zhang, Kai; Bian, Jiang; Deng, Yijie; Smith, Alexis; Nunez, Roy E; Li, Michael B; Pal, Utpal; Yu, Ai-Ming; Qiu, Weigang; Ealick, Steven E; Li, Chunhao

    2016-11-21

    Thiamin pyrophosphate (ThDP), the active form of thiamin (vitamin B1), is believed to be an essential cofactor for all living organisms(1,2). Here, we report the unprecedented result that thiamin is dispensable for the growth of the Lyme disease pathogen Borrelia burgdorferi (Bb)(3). Bb lacks genes for thiamin biosynthesis and transport as well as known ThDP-dependent enzymes(4), and we were unable to detect thiamin or its derivatives in Bb cells. We showed that eliminating thiamin in vitro and in vivo using BcmE, an enzyme that degrades thiamin, has no impact on Bb growth and survival during its enzootic infectious cycle. Finally, high-performance liquid chromatography analysis reveals that the level of thiamin and its derivatives in Ixodes scapularis ticks, the enzootic vector of Bb, is extremely low. These results suggest that by dispensing with use of thiamin, Borrelia, and perhaps other tick-transmitted bacterial pathogens, are uniquely adapted to survive in tick vectors before transmitting to mammalian hosts. To our knowledge, such a mechanism has not been reported previously in any living organisms.

  7. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin

    PubMed Central

    Zhang, Kai; Bian, Jiang; Deng, Yijie; Smith, Alexis; Nunez, Roy E.; Li, Michael B.; Pal, Utpal; Yu, Ai-Ming; Qiu, Weigang; Ealick, Steven E.; Li, Chunhao

    2016-01-01

    Thiamin pyrophosphate (ThDP), the active form of thiamin (vitamin B1), is believed to be an essential cofactor for all living organisms1,2. Here, we report the unprecedented result that thiamin is dispensable for the growth of the Lyme disease pathogen Borrelia burgdorferi (Bb)3. Bb lacks genes for thiamin biosynthesis and transport as well as known ThDP-dependent enzymes4, and we were unable to detect thiamin or its derivatives in Bb cells. We showed that eliminating thiamin in vitro and in vivo using BcmE, an enzyme that degrades thiamin, has no impact on Bb growth and survival during its enzootic infectious cycle. Finally, high-performance liquid chromatography analysis reveals that the level of thiamin and its derivatives in Ixodes scapularis ticks, the enzootic vector of Bb, is extremely low. These results suggest that by dispensing with use of thiamin, Borrelia, and perhaps other tick-transmitted bacterial pathogens, are uniquely adapted to survive in tick vectors before transmitting to mammalian hosts. To our knowledge, such a mechanism has not been reported previously in any living organisms. PMID:27869793

  8. Comparison of Protection in Rabbits against Host-Adapted and Cultivated Borrelia burgdorferi following Infection-Derived Immunity or Immunization with Outer Membrane Vesicles or Outer Surface Protein A

    PubMed Central

    Shang, Ellen S.; Champion, Cheryl I.; Wu, Xiao-Yang; Skare, Jonathan T.; Blanco, David R.; Miller, James N.; Lovett, Michael A.

    2000-01-01

    In this study, infection-derived immunity in the rabbit model of Lyme disease was compared to immunity following immunization with purified outer membrane vesicles (OMV) isolated from Borrelia burgdorferi and recombinant outer surface protein A (OspA). Immunization of rabbits with OMV isolated from virulent strain B31 and its avirulent derivative B313 (lacking OspA and DbpA) conferred highly significant protection against intradermal injection with 6 × 104 in vitro-cultivated virulent B. burgdorferi. This is the first demonstration of protective immunogenicity induced by OMV. While immunization with OspA and avirulent B31 OMV provided far less protection against this challenge, rabbits with infection-derived immunity were completely protected. Protection against host-adapted B. burgdorferi was assessed by implantation of skin biopsies taken from rabbit erythema migrans (a uniquely rich source of B. burgdorferi in vertebrate tissue) containing up to 108 spirochetes. While all of the OMV- and OspA-immunized rabbits were fully susceptible to skin and disseminated infection, rabbits with infection-derived immunity were completely protected. Analysis of the antibody responses to outer membrane proteins, including DbpA, OspA, and OspC, suggests that the remarkable protection exhibited by the infection-immune rabbits is due to antibodies directed at antigens unique to or markedly up-regulated in host-adapted B. burgdorferi. PMID:10858236

  9. Association of CD4+ CD25+ T cells with prevention of severe destructive arthritis in Borrelia burgdorferi-vaccinated and challenged gamma interferon-deficient mice treated with anti-interleukin-17 antibody.

    PubMed

    Nardelli, Dean T; Burchill, Matthew A; England, Douglas M; Torrealba, Jose; Callister, Steven M; Schell, Ronald F

    2004-11-01

    CD4+ CD25+ T cells are a population of regulatory T cells responsible for active suppression of autoimmunity. Specifically, CD4+ CD25+ T cells have been shown to prevent insulin-dependent diabetes mellitus, inflammatory bowel disease, and pancreatitis. Here, we present evidence that CD4+ CD25+ T cells also play a major role in controlling the severity of arthritis detected in Borrelia burgdorferi-vaccinated gamma interferon-deficient (IFN-gamma degrees ) C57BL/6 mice challenged with the Lyme spirochete. When B. burgdorferi-vaccinated and challenged IFN-gamma degrees mice were treated with anti-interleukin-17 (IL-17) antibody, the number of CD4+ CD25+ T cells increased in the local lymph nodes. Furthermore, histopathologic examination showed the mice to be free of destructive arthritis. When these anti-IL-17-treated B. burgdorferi-vaccinated and challenged mice were also administered anti-CD25 antibody, the number of CD4+ CD25+ T cells in the local lymph nodes decreased. More importantly, severe destructive arthropathy was induced. In addition, delayed administration of anti-CD25 antibody decreased the severity of the arthritis. These results suggest that CD4+ CD25+ T cells are involved in regulation of a severe destructive arthritis induced with an experimental model of vaccination and challenge with B. burgdorferi.

  10. Recurrent Fever in Children

    PubMed Central

    Torreggiani, Sofia; Filocamo, Giovanni; Esposito, Susanna

    2016-01-01

    Children presenting with recurrent fever may represent a diagnostic challenge. After excluding the most common etiologies, which include the consecutive occurrence of independent uncomplicated infections, a wide range of possible causes are considered. This article summarizes infectious and noninfectious causes of recurrent fever in pediatric patients. We highlight that, when investigating recurrent fever, it is important to consider age at onset, family history, duration of febrile episodes, length of interval between episodes, associated symptoms and response to treatment. Additionally, information regarding travel history and exposure to animals is helpful, especially with regard to infections. With the exclusion of repeated independent uncomplicated infections, many infective causes of recurrent fever are relatively rare in Western countries; therefore, clinicians should be attuned to suggestive case history data. It is important to rule out the possibility of an infectious process or a malignancy, in particular, if steroid therapy is being considered. After excluding an infectious or neoplastic etiology, immune-mediated and autoinflammatory diseases should be taken into consideration. Together with case history data, a careful physical exam during and between febrile episodes may give useful clues and guide laboratory investigations. However, despite a thorough evaluation, a recurrent fever may remain unexplained. A watchful follow-up is thus mandatory because new signs and symptoms may appear over time. PMID:27023528

  11. Recurrent Fever in Children.

    PubMed

    Torreggiani, Sofia; Filocamo, Giovanni; Esposito, Susanna

    2016-03-25

    Children presenting with recurrent fever may represent a diagnostic challenge. After excluding the most common etiologies, which include the consecutive occurrence of independent uncomplicated infections, a wide range of possible causes are considered. This article summarizes infectious and noninfectious causes of recurrent fever in pediatric patients. We highlight that, when investigating recurrent fever, it is important to consider age at onset, family history, duration of febrile episodes, length of interval between episodes, associated symptoms and response to treatment. Additionally, information regarding travel history and exposure to animals is helpful, especially with regard to infections. With the exclusion of repeated independent uncomplicated infections, many infective causes of recurrent fever are relatively rare in Western countries; therefore, clinicians should be attuned to suggestive case history data. It is important to rule out the possibility of an infectious process or a malignancy, in particular, if steroid therapy is being considered. After excluding an infectious or neoplastic etiology, immune-mediated and autoinflammatory diseases should be taken into consideration. Together with case history data, a careful physical exam during and between febrile episodes may give useful clues and guide laboratory investigations. However, despite a thorough evaluation, a recurrent fever may remain unexplained. A watchful follow-up is thus mandatory because new signs and symptoms may appear over time.

  12. Sensitivity of Borrelia genospecies to serum complement from different animals and human: a host-pathogen relationship.

    PubMed

    Bhide, Mangesh R; Travnicek, Milan; Levkutova, Maria; Curlik, Jan; Revajova, Viera; Levkut, Mikulas

    2005-02-01

    Different Borrelia species and serotypes were tested for their sensitivity to serum complement from various animals and human. Complement-mediated Borrelia killing in cattle, European bison and deer was higher irrespective of the Borrelia species whereas in other animals and human it was intermediate and Borrelia species-dependent. Activation of the alternative complement pathway by particular Borrelia strain was in correlation with its sensitivity or resistance. These results support the incompetent reservoir nature of cattle, European bison, red, roe and fallow deer, at the same time present the probable reservoir nature of mouflon, dog, wolf, cat and lynx. In short, this study reviews Borrelia-host relationship and its relevance in reservoir competence nature of animals.

  13. Vaccines against typhoid fever.

    PubMed

    Guzman, Carlos A; Borsutzky, Stefan; Griot-Wenk, Monika; Metcalfe, Ian C; Pearman, Jon; Collioud, Andre; Favre, Didier; Dietrich, Guido

    2006-05-01

    Because of high infectivity and significant disease burden, typhoid fever constitutes a major global health problem. Implementation of adequate food handling practices and establishment of safe water supplies are the cornerstone for the development of an effective prevention program. However, vaccination against typhoid fever remains an essential tool for the effective management of this disease. Currently, there are two well tolerated and effective licensed vaccines. One is based on defined subunit virulence (Vi) polysaccharide antigen and can be administered either intramuscularly or subcutaneously and the other is based on the use of live attenuated bacteria for oral administration. The advantages and disadvantages of the various approaches taken in the development of a vaccine against typhoid fever are discussed, along with the potential for future vaccine candidates.

  14. Pathogenesis of Lassa fever.

    PubMed

    Yun, Nadezhda E; Walker, David H

    2012-10-09

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host's immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents.

  15. Pathogenesis of Lassa Fever

    PubMed Central

    Yun, Nadezhda E.; Walker, David H.

    2012-01-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host’s immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents. PMID:23202452

  16. [Fever after travel return].

    PubMed

    Schedel, I

    2004-06-01

    Between 20 and 70 percent of the 50 million people who travel from the industrialized world to the developing world each year report some illness associated with their travel. Approximately 3 percent of people traveling internationally for short periods (<2 weeks) report fever even after travel. Careful assessment of the travel history, likely incubation period, exposure history, associated signs and symptoms, duration of fever, immunization status use or nonuse of antimalarial chemoprophylaxis, and degree of compliance with a chemoprophylactic regimen, if used, helps to establish the diagnosis. Determining an approximate incubation period can be particular helpful in ruling out possible causes of fever. Specific examinations targeting the individual infection, assumed to be responsible for the development of febrile disease may ascertain diagnosis and lead to effective treatment.

  17. Fever in honeybee colonies

    NASA Astrophysics Data System (ADS)

    Starks, P. T.; Blackie, Caroline A.; Seeley, Thomas D.

    Honeybees, Apis spp., maintain elevated temperatures inside their nests to accelerate brood development and to facilitate defense against predators. We present an additional defensive function of elevating nest temperature: honeybees generate a brood-comb fever in response to colonial infection by the heat-sensitive pathogen Ascosphaera apis. This response occurs before larvae are killed, suggesting that either honeybee workers detect the infection before symptoms are visible, or that larvae communicate the ingestion of the pathogen. This response is a striking example of convergent evolution between this "superorganism" and other fever-producing animals.

  18. Korean Hemorrhagic Fever.

    DTIC Science & Technology

    1980-03-01

    AD-A<m 761 KOREA UNIV SEOUL COLL OF MEDICINE KOREAN HEM0RRHA6IC FEVER.(U) MAR 80 H W LEE UNCLASSIFIED ICFI F/6 6/5 DAM017-79-6-9<*55 NL...I» > I,,iu. •Uli ••-. SUMMARY There were 364 hospitalized cases of Korean hemorrhagic fever (KHF) in 1979 in Korea . Lee et al...STANDARDS-1963-A ?H "LEVEtf® AD <o KOREAN HEMORRHAGIC F EVER A D A 09 47 Final Report HO WANG LEE, M. D. March 1980 i MIL. IIB«I . Mm k iw

  19. Travelers' Health: Viral Hemorrhagic Fevers

    MedlinePlus

    ... VHFs) are caused by several families of enveloped RNA viruses: filoviruses (Ebola and Marburg hemorrhagic fever), arenaviruses ( ... in hemorrhagic fever with high death rates. Old World (Eastern Hemisphere) and New World (Western Hemisphere) viruses ...

  20. Marburg Hemorrhagic Fever (Marburg HF)

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Marburg hemorrhagic fever (Marburg HF) Note: Javascript is disabled or is ... was first recognized in 1967, when outbreaks of hemorrhagic fever occurred simultaneously in laboratories in Marburg and Frankfurt, ...

  1. Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts.

    PubMed

    Graber, Joseph R; Breznak, John A

    2004-03-01

    Treponema primitia strains ZAS-1 and ZAS-2, the first spirochetes to be isolated from termite hindguts (J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283:686-689, 1999), were examined for nutritional, physiological, and biochemical properties relevant to growth and survival in their natural habitat. In addition to using H(2) plus CO(2) as substrates, these strains were capable of homoacetogenic growth on mono- and disaccharides and (in the case of ZAS-2) methoxylated benzenoids. Cells were also capable of mixotrophic growth (i.e., simultaneous utilization of H(2) and organic substrates). Cell extracts of T. primitia possessed enzyme activities of the Wood/Ljungdahl (acetyl coenzyme A) pathway of acetogenesis, including tetrahydrofolate-dependent enzymes of the methyl group-forming branch. However, a folate compound was required in the medium for growth. ZAS-1 and ZAS-2 growing on H(2) plus CO(2) displayed H(2) thresholds of 650 and 490 ppmv, respectively. Anoxic cultures of ZAS-1 and ZAS-2 maintained growth after the addition of as much as 0.5% (vol/vol) O(2) to the headspace atmosphere. Cell extracts exhibited NADH and NADPH peroxidase and NADH oxidase activities but neither catalase nor superoxide dismutase activity. Results indicate that (i) T. primitia is able to exploit a variety of substrates derived from the food of its termite hosts and in so doing contributes to termite nutrition via acetogenesis, (ii) in situ growth of T. primitia is likely dependent on secretion of a folate compound(s) by other members of the gut microbiota, and (iii) cells possess enzymatic adaptations to oxidative stress, which is likely to be encountered in peripheral regions of the termite hindgut.

  2. Typhus fever: an overlooked diagnosis.

    PubMed

    Mazumder, Ramendra N; Pietroni, Mark A C; Mosabbir, Nadira; Salam, M A

    2009-06-01

    A case of typhus fever is presented. On admission, the clinical diagnosis was typhoid fever. Forty-eight hours after admission, the presence of subconjunctival haemorrhage, malena, and jaundice raised the possibility of a different aetiology, the two most likely differentials being dengue and typhus. Finally, a co-infection of typhoid and typhus was discovered. This uncommon clinical scenario should be taken into account in the management of patients with high fever on admission being treated as a case of typhoid fever.

  3. Songbirds as general transmitters but selective amplifiers of Borrelia burgdorferi sensu lato genotypes in Ixodes rinicus ticks.

    PubMed

    Heylen, Dieter; Matthysen, Erik; Fonville, Manoj; Sprong, Hein

    2014-09-01

    We investigated to what extent a European songbird (Parus major) selectively transmits and amplifies Borrelia burgdorferi s.l. bacteria. Borrelia-naïve birds were recurrently exposed to Ixodes ricinus nymphs carrying a community of more than 34 5S-23S genotypes belonging to five genospecies (Borrelia garinii, Borrelia valaisiana, Borrelia afzelii, B. burgdorferi s.s. and Borrelia spielmanii). Fed ticks were screened for Borrelia after moulting. We found evidence for co-feeding transmission of avian and possibly also mammalian genotypes. Throughout the course of infestations, the infection rate of B. garinii and B. valaisiana increased, indicating successful amplification and transmission, while the infection rate for B. afzelii, B. burgdorferi s.s and B. spielmanii tended to decrease. Within the B. garinii and B. valaisiana genotype communities, certain genotypes were transmitted more than others. Moreover, birds were able to host mixed infections of B. garinii and B. valaisiana, as well as mixed infections of genotypes of the same genospecies. We experimentally show that resident songbirds transmit a broad range of Borrelia genotypes, but selectively amplify certain genotypes, and that one bird can transmit simultaneously several genotypes. Our results highlight the need to explicitly consider the association between genotypes and hosts, which may offer opportunities to point out which hosts are most responsible for the Borrelia presence in questing ticks.

  4. Bullying Borrelia: When the Culture of Science is Under Attack

    PubMed Central

    Auwaerter, Paul G.; Melia, Michael T.

    2012-01-01

    Although Lyme disease responds to short courses of antibiotics, tick-borne Borrelia burgdorferi has been advanced by some as a frequent explanation for medically unexplained symptoms such as continual fatigue, musculoskeletal pains, and subjective neurocognitive dysfunction. Often called “chronic Lyme disease” by adherents of this philosophy, it is loosely defined, and practitioners liberally prescribe nostrums, including prolonged antimicrobial therapies, in a belief that this eradicates suspected infection. Perhaps due to the lack of supportive data, proponents of t