Sample records for few-layer epitaxial graphene

  1. Growth of boron-doped few-layer graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Soares, G. V.; Nakhaie, S.; Heilmann, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    We investigated the growth of boron-doped few-layer graphene on α-Al2O3 (0001) substrates by molecular beam epitaxy using two different growth approaches: one where boron was provided during the entire graphene synthesis and the second where boron was provided only during the second half of the graphene growth run. Electrical measurements show a higher p-type carrier concentration for samples fabricated utilizing the second approach, with a remarkable modulation in the carrier concentration of almost two orders of magnitude in comparison to the pristine graphene film. The results concerning the influence of the boron flux at different growth stages of graphene on the electrical and physicochemical properties of the films are presented.

  2. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  3. Symmetry Breaking in Few Layer Graphene Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostwick, A.; Ohta, T.; McChesney, J.L.

    2007-05-25

    Recently, it was demonstrated that the quasiparticledynamics, the layer-dependent charge and potential, and the c-axisscreening coefficient could be extracted from measurements of thespectral function of few layer graphene films grown epitaxially on SiCusing angle-resolved photoemission spectroscopy (ARPES). In this articlewe review these findings, and present detailed methodology for extractingsuch parameters from ARPES. We also present detailed arguments againstthe possibility of an energy gap at the Dirac crossing ED.

  4. Epitaxial graphene

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  5. Epitaxially Self-Assembled Alkane Layers for Graphene Electronics.

    PubMed

    Yu, Young-Jun; Lee, Gwan-Hyoung; Choi, Ji Il; Shim, Yoon Su; Lee, Chul-Ho; Kang, Seok Ju; Lee, Sunwoo; Rim, Kwang Taeg; Flynn, George W; Hone, James; Kim, Yong-Hoon; Kim, Philip; Nuckolls, Colin; Ahn, Seokhoon

    2017-02-01

    The epitaxially grown alkane layers on graphene are prepared by a simple drop-casting method and greatly reduce the environmentally driven doping and charge impurities in graphene. Multiscale simulation studies show that this enhancement of charge homogeneity in graphene originates from the lifting of graphene from the SiO 2 surface toward the well-ordered and rigid alkane self-assembled layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manipulation of Dirac cones in metal-intercalated epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming

    Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.

  7. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    PubMed

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  8. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    NASA Astrophysics Data System (ADS)

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  9. Few layer epitaxial germanene: a novel two-dimensional Dirac material.

    PubMed

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-10

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  10. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    PubMed Central

    Dávila, María Eugenia; Le Lay, Guy

    2016-01-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing. PMID:26860590

  11. Electrostatic transfer of epitaxial graphene to glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environmentmore » [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.« less

  12. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Epitaxial Graphene: A New Material for Electronics

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  14. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  15. Chemical storage of hydrogen in few-layer graphene

    PubMed Central

    Subrahmanyam, K. S.; Kumar, Prashant; Maitra, Urmimala; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, Umesh V.; Rao, C. N. R.

    2011-01-01

    Birch reduction of few-layer graphene samples gives rise to hydrogenated samples containing up to 5 wt % of hydrogen. Spectroscopic studies reveal the presence of sp3 C-H bonds in the hydrogenated graphenes. They, however, decompose readily on heating to 500 °C or on irradiation with UV or laser radiation releasing all the hydrogen, thereby demonstrating the possible use of few-layer graphene for chemical storage of hydrogen. First-principles calculations throw light on the mechanism of dehydrogenation that appears to involve a significant reconstruction and relaxation of the lattice. PMID:21282617

  16. Epitaxial ferromagnetic single clusters and smooth continuous layers on large area MgO/CVD graphene substrates

    NASA Astrophysics Data System (ADS)

    Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David

    2018-02-01

    We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.

  17. GaN epitaxial layers grown on multilayer graphene by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  18. Molecular beam epitaxy of graphene on ultra-smooth nickel: growth mode and substrate interactions

    NASA Astrophysics Data System (ADS)

    Wofford, J. M.; Oliveira, M. H., Jr.; Schumann, T.; Jenichen, B.; Ramsteiner, M.; Jahn, U.; Fölsch, S.; Lopes, J. M. J.; Riechert, H.

    2014-09-01

    Graphene is grown by molecular beam epitaxy using epitaxial Ni films on MgO(111) as substrates. Raman spectroscopy and scanning tunneling microscopy reveal the graphene films to have few crystalline defects. While the layers are ultra-smooth over large areas, we find that Ni surface features lead to local non-uniformly thick graphene inclusions. The influence of the Ni surface structure on the position and morphology of these inclusions strongly suggests that multilayer graphene on Ni forms at the interface of the first complete layer and metal substrate in a growth-from-below mechanism. The interplay between Ni surface features and graphene growth behavior may facilitate the production of films with spatially resolved multilayer inclusions through engineered substrate surface morphology.

  19. Characterization of few-layered graphene grown by carbon implantation

    NASA Astrophysics Data System (ADS)

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-01

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  20. Free-standing epitaxial graphene on silicon carbide and transport barriers in layered materials

    NASA Astrophysics Data System (ADS)

    Shivaraman, Shriram

    This thesis is based on the topic of layered materials, in which different layers interact with each other via van der Waals forces. The majority of this thesis deals with epitaxial graphene (EG) obtained from silicon carbide (SiC). Free-standing epitaxial graphene (FSEG) structures are produced from EG using a photoelectrochemical (PEC) etching process developed for making suspended graphene structures on a large-scale. These structures are investigated for their mechanical and electrical properties. For doubly-clamped FSEG structures, a unique U-beam effect is observed which causes orders of magnitude increase in their mechanical resonance frequency compared to that expected using simple beam theory. Combined magnetotransport and Raman spectroscopy studies reveal that FSEG devices produced from nominally monolayer graphene on the Si-face of SiC exhibit properties of an inhomogeneously doped bilayer after becoming suspended. This suggests that the buffer layer which precedes graphene growth on the Si-face of SiC gets converted to a graphene layer after the PEC etching process. In the second theme of this thesis, transport barriers in layered materials are investigated. The EG-SiC interface is studied using a combination of electrical (I-V, C-V) and photocurrent spectroscopy techniques. It is shown that the interface may be described as having a Schottky barrier for electron transport with a Gaussian distribution of barrier heights. Another interface explored in this work is that between different layers of MoS 2, a layered material belonging to the class of transition metal dichalcogenides. This interface maybe thought of as a one-dimensional junction. Four-point transport measurements indicate the presence of a barrier for electron transport at this interface. A simple model of the junction as a region with an increased threshold voltage and degraded mobility is suggested. The final chapter is a collection of works based on the topic of layered materials, which

  1. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.

    PubMed

    Zhan, Cheng; Jiang, De-en

    2016-03-03

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  2. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites.

    PubMed

    Gong, Lei; Young, Robert J; Kinloch, Ian A; Haigh, Sarah J; Warner, Jamie H; Hinks, Jonathan A; Xu, Ziwei; Li, Li; Ding, Feng; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S

    2013-08-27

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (~0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed.

  3. Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites

    PubMed Central

    2013-01-01

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (∼0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed. PMID:23899378

  4. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  5. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE PAGES

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.; ...

    2017-07-12

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  6. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    DOE PAGES

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (C Q) and EDL capacitance (C EDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (C Dielec). We find that C Dielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is moremore » than three. In conclusion, our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.« less

  7. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G., E-mail: kowal@fuw.edu.pl; Tokarczyk, M.; Dąbrowski, P.

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) andmore » the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.« less

  8. Electronic Properties of Suspended Few-Layer Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Myhro, Kevin Scott

    Graphene, the two-dimensional (2D) honeycomb lattice of sp2-hybrized carbon atoms, has emerged as a "wonder" material with unique properties, such as its linear energy dispersion with massless Dirac fermions, so-called half-integer quantum Hall (QH) effect, unparalleled tensile strength, and high optical transparency and thermal conductivity. Its few-layer counterparts have similar mechanical but remarkably different electrical properties, including layer- and stacking-dependent band structures, massive charge carriers, and energy gaps that may arise from single particle effect as well as electronic interactions. This dissertation reports my six year study of dual-gated suspended few-layer graphene (FLG) field effect transistor (FET) devices. In particular, we focus on their electronic transport properties at low temperature as a function of out-of-plane electric field E⊥ and interlayer potential U⊥, charge carrier density n, temperature T, and out-of-plane (B ⊥) and parallel (B∥) magnetic fields. A number of broken symmetry states in the absence and presence of external fields are observed in rhombohedral-stacked bilayer- (BLG), trilayer- (r-TLG), and tetralayer graphene (r-4LG). We also study the morphological deformation of suspended graphene membranes under electrostatic and thermal manipulation, which is relevant for analyzing low temperature transport data. In particular, in BLG, r-TLG and r-4LG, we observe intrinsic insulating states in the absence of external fields, with energy gaps of 2, 40, and 80 meV, respectively. We attribute this increasing gap size with number of layers N to enhanced electronic-interactions near the charge neutrality point, due to the layer-dependent energy dispersions kN in r-FLG, which give rise to increasingly diverging density of states and interaction strength with increasing N, at least up to four layers. Our observations of the spontaneous insulating state in r-FLG are consistent with a layer antiferromagnetic state

  9. Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiong; Department of Medical Imaging, The University of Arizona, Tucson, Arizona 85724; School of Information Science and Technology, ShanghaiTech University, Shanghai 200031

    2016-04-04

    We characterized the thermoacoustic and photoacoustic properties of large-area, few-layer graphene by pulsed microwave and optical excitations. Due to its high electric conductivity and low heat capacity per unit area, graphene lends itself to excellent microwave and optical energy absorption and acoustic signal emanation due to the thermoacoustic effect. When exposed to pulsed microwave or optical radiation, distinct thermoacoustic and photoacoustic signals generated by the few-layer graphene are obtained due to microwave and laser absorption of the graphene, respectively. Clear thermoacoustic and photoacoustic images of large-area graphene sample are achieved. A numerical model is developed and the simulated results aremore » in good accordance with the measured ones. This characterization work may find applications in ultrasound generator and detectors for microwave and optical radiation. It may also become an alternative characterization approach for graphene and other types of two-dimensional materials.« less

  10. Bending stiffness and interlayer shear modulus of few-layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoming; Yi, Chenglin; Ke, Changhong, E-mail: cke@binghamton.edu

    2015-03-09

    Interlayer shear deformation occurs in the bending of multilayer graphene with unconstrained ends, thus influencing its bending rigidity. Here, we investigate the bending stiffness and interlayer shear modulus of few-layer graphene through examining its self-folding conformation on a flat substrate using atomic force microscopy in conjunction with nonlinear mechanics modeling. The results reveal that the bending stiffness of 2–6 layers graphene follows a square-power relationship with its thickness. The interlayer shear modulus is found to be in the range of 0.36–0.49 GPa. The research findings show that the weak interlayer shear interaction has a substantial stiffening effect for multilayer graphene.

  11. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  12. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  13. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE PAGES

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; ...

    2016-10-19

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  14. Synthesis and characterization of intercalated few-layer graphenes

    NASA Astrophysics Data System (ADS)

    Sato, Shogo; Ichikawa, Hiroaki; Iwata, Nobuyuki; Yamamoto, Hiroshi

    2014-02-01

    Toward achieving room-temperature superconductivity, FeCl3-intercalated few-layer graphenes (FeCl3-FLGs) and Ca-intercalated few-layer graphenes (Ca-FLGs) were synthesized. FeCl3-FLGs were synthesized by the two-zone method and Ca-FLGs were synthesized using Ca-Li alloy. The Raman spectra of the FeCl3-FLGs showed a lower-intensity peak at 1607 cm-1 than that of the corresponding bare G. The peak at 1607 cm-1 suggested that the sample was stage 4-5 FeCl3-FLGs. The room-temperature electrical resistivity of FeCl3-FLGs was 2.65 × 10-5 Ω·m, which linearly decreased with decreasing temperature with a marked change occurring at approximately 200 K. From a XRD pattern of Ca-FLGs, we concluded that Ca is intercalated in FLGs. The room-temperature resistivity of Ca-FLGs was 3.45 × 10-5 Ω·m, which increased with decreasing temperature.

  15. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene.

    PubMed

    Ren, Jun; Meng, Sheng; Wang, Yi-Lin; Ma, Xu-Cun; Xue, Qi-Kun; Kaxiras, Efthimios

    2011-05-21

    We investigate the atomic structure and electronic properties of monolayers of copper phthalocyanines (CuPc) deposited on epitaxial graphene substrate. We focus in particular on hexadecafluorophthalocyanine (F(16)CuPc), using both theoretical and experimental (scanning tunneling microscopy - STM) studies. For the individual CuPc and F(16)CuPc molecules, we calculated the electronic and optical properties using density functional theory (DFT) and time-dependent DFT and found a red-shift in the absorption peaks of F(16)CuPc relative to those of CuPc. In F(16)CuPc, the electronic wavefunctions are more polarized toward the electronegative fluorine atoms and away from the Cu atom at the center of the molecule. When adsorbed on graphene, the molecules lie flat and form closely packed patterns: F(16)CuPc forms a hexagonal pattern with two well-ordered alternating α and β stripes while CuPc arranges into a square lattice. The competition between molecule-substrate and intermolecular van der Waals interactions plays a crucial role in establishing the molecular patterns leading to tunable electron transfer from graphene to the molecules. This transfer is controlled by the layer thickness of, or the applied voltage on, epitaxial graphene resulting in selective F(16)CuPc adsorption, as observed in STM experiments. In addition, phthalocyanine adsorption modifies the electronic structure of the underlying graphene substrate introducing intensity smoothing in the range of 2-3 eV below the Dirac point (E(D)) and a small peak in the density of states at ∼0.4 eV above E(D). © 2011 American Institute of Physics.

  16. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    PubMed

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  17. Monolayer and/or few-layer graphene on metal or metal-coated substrates

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2015-04-14

    Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.

  18. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    PubMed Central

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-01-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024

  19. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  20. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Cheng; Zhan, Cheng; Jiang, De-en

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  1. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE PAGES

    Lian, Cheng; Zhan, Cheng; Jiang, De-en; ...

    2017-06-09

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  2. Liquid-phase growth of few-layered graphene on sapphire substrates using SiC micropowder source

    NASA Astrophysics Data System (ADS)

    Maruyama, Takahiro; Yamashita, Yutaka; Saida, Takahiro; Tanaka, Shin-ichiro; Naritsuka, Shigeya

    2017-06-01

    We demonstrated direct synthesis of graphene films consisting of a few layers (few-layered graphene) on sapphire substrates by liquid-phase growth (LPG), using liquid Ga as the melt and SiC micropowder as the source material. When the dissolution temperature was above 700 °C, almost all Si atoms of SiC diffused into the Ga melt and only carbon atoms remained at the interface beneath the liquid Ga. Above 800 °C, X-ray photoelectron spectra showed that most of the remaining carbon was graphitized. When the dissolution temperature was 1000 °C, Raman spectra showed that few-layered graphene films grew on the sapphire substrates.

  3. Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2

    NASA Astrophysics Data System (ADS)

    Neves, Bernardo; Barboza, Ana Paula; Chacham, Helio; Oliveira, Camilla; Fernandes, Thales; Martins Ferreira, Erlon; Archanjo, Braulio; Batista, Ronaldo; Oliveira, Alan

    2013-03-01

    We report a novel mechanical response of few-layer graphene, h-BN, and MoS2 to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%. The effect is null in the absence of shear, increases with tip velocity, and is anisotropic. It also has similar magnitudes in these solid lubricant materials (few-layer graphene, h-BN, and MoS2), but it is absent in single-layer graphene and in few-layer mica and Bi2Se3. We propose a physical mechanism for the effect where the combined compressive and shear stresses from the tip induce dynamical wrinkling on the upper material layers, leading to the observed flake thickening. The new effect (and, therefore, the proposed wrinkling) is reversible in the three materials where it is observed.[2] Financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono

  4. Magneto-transport properties of a random distribution of few-layer graphene patches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  5. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.

    PubMed

    Androulidakis, Charalampos; Koukaras, Emmanuel N; Rahova, Jaroslava; Sampathkumar, Krishna; Parthenios, John; Papagelis, Konstantinos; Frank, Otakar; Galiotis, Costas

    2017-08-09

    Multilayered graphitic materials are not suitable as load-bearers due to their inherent weak interlayer bonding (for example, graphite is a solid lubricant in certain applications). This situation is largely improved when two-dimensional (2D) materials such as a monolayer (SLG) graphene are employed. The downside in these cases is the presence of thermally or mechanically induced wrinkles which are ubiquitous in 2D materials. Here we set out to examine the effect of extensive large wavelength/amplitude wrinkling on the stress transfer capabilities of exfoliated simply supported graphene flakes. Contrary to common belief we present clear evidence that this type of "corrugation" enhances the load-bearing capacity of few-layer graphene as compared to "flat" specimens. This effect is the result of the significant increase of the graphene/polymer interfacial shear stress per increment of applied strain due to wrinkling and paves the way for designing affordable graphene composites with highly improved stress-transfer efficiency.

  6. Layer Number and Stacking Order Imaging of Few-layer Graphenes by Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei; Fuhrer, Michael

    2012-02-01

    A method using transmission electron microscopy (TEM) selected area electron diffraction (SAED) patterns and dark field (DF) images is developed to identify graphene layer number and stacking order by comparing intensity ratios of SAED spots with theory. Graphene samples are synthesized by ambient pressure chemical vapor depostion and then etched by hydrogen in high temperature to produce samples with crystalline stacking but varying layer number on the nanometer scale. Combined DF images from first- and second-order diffraction spots are used to produce images with layer-number and stacking-order contrast with few-nanometer resolution. This method is proved to be accurate enough for quantative stacking-order-identification of graphenes up to at least four layers. This work was partially supported by Science of Precision Multifunctional Nanostructures for Elecrical Energy Storage, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160.

  7. Reliably counting atomic planes of few-layer graphene (n > 4).

    PubMed

    Koh, Yee Kan; Bae, Myung-Ho; Cahill, David G; Pop, Eric

    2011-01-25

    We demonstrate a reliable technique for counting atomic planes (n) of few-layer graphene (FLG) on SiO(2)/Si substrates by Raman spectroscopy. Our approach is based on measuring the ratio of the integrated intensity of the G graphene peak and the optical phonon peak of Si, I(G)/I(Si), and is particularly useful in the range n > 4 where few methods exist. We compare our results with atomic force microscopy (AFM) measurements and Fresnel equation calculations. Then, we apply our method to unambiguously identify n of FLG devices on SiO(2) and find that the mobility (μ ≈ 2000 cm(2) V(-1) s(-1)) is independent of layer thickness for n > 4. Our findings suggest that electrical transport in gated FLG devices is dominated by carriers near the FLG/SiO(2) interface and is thus limited by the environment, even for n > 4.

  8. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    PubMed

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  9. Spin-injection into epitaxial graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Cui, Zhixin; Hiraki, Takahiro; Yoh, Kanji

    2013-09-01

    We have studied the spin-injection properties in epitaxial graphene on SiC. The ferromagnetic metal (FM) electrodes were composed of a tunnel barrier layer AlOx (14 Å) and a ferromagnetic Co (600 Å) layer. We have successfully observed the clear resistance peaks indicating spin-injection both in the "local" and "non-local" spin measurement set-ups at low temperatures. We estimate spin-injection rate of 1% based on "non-local" measurement and 1.6% based on local measurements. Spin-injection rate of multilayer graphene by mechanical exfoliation method was twice as high as single layer graphene on SiC based on "local" measurement.

  10. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, B.; Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Gysin, U.

    2016-01-25

    Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.

  11. Van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties.

    PubMed

    Ben Aziza, Zeineb; Henck, Hugo; Pierucci, Debora; Silly, Mathieu G; Lhuillier, Emmanuel; Patriarche, Gilles; Sirotti, Fausto; Eddrief, Mahmoud; Ouerghi, Abdelkarim

    2016-10-07

    Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems which are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by Molecular beam Epitaxy (MBE) on graphene. Reflection high-energy electron diffraction (RHEED) images exhibited sharp streaky features indicative of high quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW hetero-interface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of few layers of GaSe are located at the Γ point at a binding energy of about -0.73 eV relatively to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = -1.1 was determined. By coupling the ARPES data with high resolution X-ray photoemission spectroscopy (HR-XPS) measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow deeper understanding of the interlayer interactions and the electronic structure of GaSe/graphene vdW heterostructure.

  12. Ultrahard carbon film from epitaxial two-layer graphene

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo

    2018-02-01

    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2 to sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.

  13. A 3D insight on the catalytic nanostructuration of few-layer graphene

    NASA Astrophysics Data System (ADS)

    Melinte, G.; Florea, I.; Moldovan, S.; Janowska, I.; Baaziz, W.; Arenal, R.; Wisnet, A.; Scheu, C.; Begin-Colin, S.; Begin, D.; Pham-Huu, C.; Ersen, O.

    2014-06-01

    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting.

  14. Magnetotransport properties of a few-layer graphene-ferromagnetic metal junctions in vertical spin valve devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entani, Shiro, E-mail: entani.shiro@jaea.go.jp; Naramoto, Hiroshi; Sakai, Seiji

    2015-05-07

    Magnetotransport properties were studied for the vertical spin valve devices with two junctions of permalloy electrodes and a few-layer graphene interlayer. The graphene layer was directly grown on the bottom electrode by chemical vapor deposition. X-ray photoelectron spectroscopy showed that the permalloy surface fully covered with a few-layer graphene is kept free from oxidation and contamination even after dispensing and removing photoresist. This enabled fabrication of the current perpendicular to plane spin valve devices with a well-defined interface between graphene and permalloy. Spin-dependent electron transport measurements revealed a distinct spin valve effect in the devices. The magnetotransport ratio was 0.8%more » at room temperature and increased to 1.75% at 50 K. Linear current-voltage characteristics and resistance increase with temperature indicated that ohmic contacts are realized at the relevant interfaces.« less

  15. In-plane x-ray diffraction for characterization of monolayer and few-layer transition metal dichalcogenide films

    NASA Astrophysics Data System (ADS)

    Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.

    2018-02-01

    There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low

  16. Selective Epitaxial Graphene Growth on SiC via AlN Capping

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana; Rubio-Roy, Miguel; Moseley, Michael; Lowder, Jonathan; Doolittle, William; Berger, Claire; Dong, Rui; Meindl, James; de Heer, Walt; Georgia Institute of Technology Team

    2011-03-01

    Electronic-quality graphene is epitaxially grown by graphitization of carbon-face silicon carbide (SiC) by the sublimation of silicon atoms from selected regions uncapped by aluminum nitride (AlN). AlN (deposited by molecular beam epitaxy) withstands high graphitization temperatures of 1420o C, hence acting as an effective capping layer preventing the growth of graphene under it. The AlN is patterned and etched to open up windows onto the SiC surface for subsequent graphitization. Such selective epitaxial growth leads to the formation of high-quality graphene in desired patterns without the need for etching and lithographic patterning of graphene itself. No detrimental contact of the graphene with external chemicals occurs throughout the fabrication-process. The impact of process-conditions on the mobility of graphene is investigated. Graphene hall-bars were fabricated and characterized by scanning Raman spectroscopy, ellipsometry, and transport measurements. This controlled growth of graphene in selected regions represents a viable approach to fabrication of high-mobility graphene as the channel material for fast-switching field-effect transistors.

  17. Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, P. B., E-mail: p.pillai@sheffield.ac.uk, E-mail: m.desouza@sheffield.ac.uk; DeSouza, M., E-mail: p.pillai@sheffield.ac.uk, E-mail: m.desouza@sheffield.ac.uk; Narula, R.

    Signatures of a superlattice structure composed of a quasi periodic arrangement of atomic gold clusters below an epitaxied graphene (EG) layer are examined using dispersive Raman spectroscopy. The gold-graphene system exhibits a laser excitation energy dependant red shift of the 2D mode as compared to pristine epitaxial graphene. The phonon dispersions in both the systems are mapped using the experimentally observed Raman signatures and a third-nearest neighbour tight binding electronic band structure model. Our results reveal that the observed excitation dependent Raman red shift in gold EG primarily arise from the modifications of the phonon dispersion in gold-graphene and showsmore » that the extent of decoupling of graphene from the underlying SiC substrate can be monitored from the dispersive nature of the Raman 2D modes. The intercalated gold atoms restore the phonon band structure of epitaxial graphene towards free standing graphene.« less

  18. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy

    PubMed Central

    Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Korolkov, Vladimir V.; Cho, YongJin; Mellor, Christopher J.; Foxon, C. Thomas; Khlobystov, Andrei N.; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novikov, Sergei V.; Beton, Peter H.

    2016-01-01

    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene. PMID:26928710

  19. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory.

    PubMed

    Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin

    2016-01-13

    Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.

  20. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene

    DOE PAGES

    Han, Meng; Yuan, Pengyu; Liu, Jing; ...

    2017-09-22

    We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm -1K -1 which is much smaller than that of α-phase tungsten (174 Wm -1K -1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and comparedmore » using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m -2K -1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m -2K -1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.« less

  1. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Meng; Yuan, Pengyu; Liu, Jing

    We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm -1K -1 which is much smaller than that of α-phase tungsten (174 Wm -1K -1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and comparedmore » using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m -2K -1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m -2K -1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.« less

  2. Jellyfish-like few-layer graphene nanoflakes: Synthesis, oxidation, and hydrothermal N-doping

    NASA Astrophysics Data System (ADS)

    Chernyak, Sergei A.; Podgornova, Angelina M.; Arkhipova, Ekaterina A.; Novotortsev, Roman O.; Egorova, Tolganay B.; Ivanov, Anton S.; Maslakov, Konstantin I.; Savilov, Serguei V.; Lunin, Valery V.

    2018-05-01

    Few-layer graphene nanoflakes with the bent edges, diameter of 15-40 nm and thickness of 6-7 graphene layers have been synthesized using MgO-templated CVD growth. Their oxidation by nitric acid led to the high oxygen content of 18 at.%, a third of which was attributed to carboxylic groups. Oxidized nanoflakes were post-doped by nitrogen groups using hydrothermal treatment at 220 °C with ammonia and urea water solutions resulting in corresponding nitrogen content of 7 and 5 at.%. Synthesized and treated materials were characterized by XPS, Raman spectroscopy and electron microscopy.

  3. Superconductivity at 7.4 K in few layer graphene by Li-intercalation.

    PubMed

    Tiwari, Anand P; Shin, Soohyeon; Hwang, Eunhee; Jung, Soon-Gil; Park, Tuson; Lee, Hyoyoung

    2017-11-08

    Superconductivity in graphene has been highly sought after for its promise in various device applications and for general scientific interest. Ironically, the simple electronic structure of graphene, which is responsible for novel quantum phenomena, hinders the emergence of superconductivity. Theory predicts that doping the surface of the graphene effectively alters the electronic structure, thus promoting propensity towards Cooper pair instability (Profeta et al (2012) Nat. Phys. 8 131-4; Nandkishore et al (2012) Nat. Phys. 8 158-63) [1, 2]. Here we report the emergence of superconductivity at 7.4 K in Li-intercalated few-layer-graphene (FLG). The absence of superconductivity in 3D Li-doped graphite underlines that superconductivity in Li-FLG arises from the novel electronic properties of the 2D graphene layer. These results are expected to guide future research on graphene-based superconductivity, both in theory and experiments. In addition, easy control of the Li-doping process holds promise for various device applications.

  4. Vacancies in epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: Sergei-Davydov@mail.ru

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphenemore » to the substrate increases.« less

  5. The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.

    2015-09-01

    We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.

  6. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    NASA Astrophysics Data System (ADS)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  7. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot.

    PubMed

    Song, Yipu; Xiong, Haonan; Jiang, Wentao; Zhang, Hongyi; Xue, Xiao; Ma, Cheng; Ma, Yulin; Sun, Luyan; Wang, Haiyan; Duan, Luming

    2016-10-12

    Graphene quantum dots could be an ideal host for spin qubits and thus have been extensively investigated based on graphene nanoribbons and etched nanostructures; however, edge and substrate-induced disorders severely limit device functionality. Here, we report the confinement of quantum dots in few-layer graphene with tunable barriers, defined by local strain and electrostatic gating. Transport measurements unambiguously reveal that confinement barriers are formed by inducing a band gap via the electrostatic gating together with local strain induced constriction. Numerical simulations according to the local top-gate geometry confirm the band gap opening by a perpendicular electric field. We investigate the magnetic field dependence of the energy-level spectra in these graphene quantum dots. Experimental results reveal a complex evolution of Coulomb oscillations with the magnetic field, featuring kinks at level crossings. The simulation of energy spectrum shows that the kink features and the magnetic field dependence are consistent with experimental observations, implying the hybridized nature of energy-level spectrum of these graphene quantum dots.

  8. Measuring the complex optical conductivity of graphene by Fabry-Pérot reflectance spectroscopy [Determination of the optical index for few-layer graphene by reflectivity spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito

    Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less

  9. Measuring the complex optical conductivity of graphene by Fabry-Pérot reflectance spectroscopy [Determination of the optical index for few-layer graphene by reflectivity spectroscopy

    DOE PAGES

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; ...

    2016-09-29

    Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less

  10. Self-propagated combustion synthesis of few-layered graphene: an optical properties perspective.

    PubMed

    Mohandoss, Manonmani; Sen Gupta, Soujit; Kumar, Ramesh; Islam, Md Rabiul; Som, Anirban; Mohd, Azhardin Ganayee; Pradeep, T; Maliyekkal, Shihabudheen M

    2018-04-26

    This paper describes a labour efficient and cost-effective strategy to prepare few-layered of reduced graphene oxide like (RGOL) sheets from graphite. The self-propagated combustion route enables the bulk production of RGOL sheets. Microscopic and spectroscopic analyses confirmed the formation of few-layer graphene sheets of an average thickness of ∼3 nm and the presence of some oxygen functional groups with a C/O ratio of 8.74. A possible mechanistic pathway for the formation of RGOL sheets is proposed. The optical properties of the RGOL sample were studied in detail by means of Spectroscopic Ellipsometry (SE). The experimental abilities of SE in relating the optical properties with the number of oxygen functionalities present in the samples are explored. The data were analysed by a double-layered optical model along with the Drude-Lorentz oscillatory dispersion relation. The refractive index (n = 2.24), extinction coefficient (k = 2.03), and dielectric functions are obtained using point-by-point analysis and are also checked for Kramers-Kronig (KK) consistency.

  11. Graphene-silicon layered structures on single-crystalline Ir(111) thin films

    DOE PAGES

    Que, Yande D.; Tao, Jing; Zhang, Yong; ...

    2015-01-20

    Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore » metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾« less

  12. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE PAGES

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  13. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  14. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    NASA Astrophysics Data System (ADS)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J. R.; Gerbaldi, C.; Bruna, M.; Borini, S.; Daghero, D.; Gonnelli, R. S.

    2017-02-01

    We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  15. STM/STS study of ridges on epitaxial graphene/SiC

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Liu, Y.; Weinert, M.; Li, L.

    2012-02-01

    The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of wafer-sized graphene for mass device production. During later stages of growth, ridges are often observed on the graphene layers as a result of bending and buckling to relieve the strain between the graphene and SiC substrate. In this work, we show, by atomic resolution STM/STS, that these ridges are in fact bulged regions of the graphene layer, forming one-dimentional (nanowire) and zero-dimentional (quantum dot) nanostructures. We further show that their structures can be manipulated by the pressure exerted by the STM tip during imaging. These results and their impact on the electronic properties of epitaxial graphene on SiC(0001) will be presented at the meeting.

  16. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    PubMed

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  17. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties

    PubMed Central

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  18. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  19. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  20. Raman spectroscopy of few-layer graphene prepared by C2-C6 cluster ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Z. S.; Zhang, R.; Zhang, Z. D.; Huang, Z. H.; Liu, C. S.; Fu, D. J.; Liu, J. R.

    2013-07-01

    Few-layer graphene has been prepared on 300 nm-thick Ni films by C2-C6 cluster ion implantation at 20 keV/cluster. Raman spectroscopy reveals significant influence of the number of atoms in the cluster, the implantation dose, and thermal treatment on the structure of the graphene layers. In particular, the graphene samples exhibit a sharp G peak at 1584 cm-1 and 2D peaks at 2711-2717 cm-1. The IG/I2D ratios higher than 1.70 and IG/ID ratio as high as 1.95 confirm that graphene sheets with low density of defects have been synthesized with much improved quality by ion implantation with larger clusters of C4-C6.

  1. Microwave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization

    NASA Astrophysics Data System (ADS)

    Amiri, Ahmad; Ahmadi, Goodarz; Shanbedi, Mehdi; Savari, Maryam; Kazi, S. N.; Chew, B. T.

    2015-12-01

    Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications.

  2. Intercalated europium metal in epitaxial graphene on SiC

    DOE PAGES

    Anderson, Nathaniel; Hupalo, Myron; Keavney, David; ...

    2017-10-25

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). Intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M 4,5 edges at T = 15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈ 90 K, which may be related to the Nèel transition, T N = 91 K, of bulk metalmore » Eu. Here, we find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu 2 O 3, indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.« less

  3. Intercalated europium metal in epitaxial graphene on SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel; Hupalo, Myron; Keavney, David

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). Intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M 4,5 edges at T = 15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈ 90 K, which may be related to the Nèel transition, T N = 91 K, of bulk metalmore » Eu. Here, we find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu 2 O 3, indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.« less

  4. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BNmore » until it may cover entire h-BN flakes.« less

  5. Carrier lifetime in exfoliated few-layer graphene determined from intersubband optical transitions.

    PubMed

    Limmer, Thomas; Feldmann, Jochen; Da Como, Enrico

    2013-05-24

    We report a femtosecond transient spectroscopy study in the near to middle infrared range, 0.8-0.35 eV photon energy, on graphene and few layer graphene single flakes. The spectra show an evolving structure of photoinduced absorption bands superimposed on the bleaching caused by Pauli blocking of the interband optically coupled states. Supported by tight-binding model calculations, we assign the photoinduced absorption features to intersubband transitions as the number of layers is increased. Interestingly, the intersubband photoinduced resonances show a longer dynamics than the interband bleaching, because of their independence from the absolute energy of the carriers with respect to the Dirac point. The dynamic of these intersubband transitions reflects the lifetime of the hot carriers and provides an elegant method to access it in this important class of semimetals.

  6. Carrier Lifetime in Exfoliated Few-Layer Graphene Determined from Intersubband Optical Transitions

    NASA Astrophysics Data System (ADS)

    Limmer, Thomas; Feldmann, Jochen; Da Como, Enrico

    2013-05-01

    We report a femtosecond transient spectroscopy study in the near to middle infrared range, 0.8-0.35 eV photon energy, on graphene and few layer graphene single flakes. The spectra show an evolving structure of photoinduced absorption bands superimposed on the bleaching caused by Pauli blocking of the interband optically coupled states. Supported by tight-binding model calculations, we assign the photoinduced absorption features to intersubband transitions as the number of layers is increased. Interestingly, the intersubband photoinduced resonances show a longer dynamics than the interband bleaching, because of their independence from the absolute energy of the carriers with respect to the Dirac point. The dynamic of these intersubband transitions reflects the lifetime of the hot carriers and provides an elegant method to access it in this important class of semimetals.

  7. Calculation of electron spectra and some problems in the thermodynamics of graphene layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alisultanov, Z. Z., E-mail: zaur0102@gmail.com

    The expressions for the energy spectra of monolayer, bilayer, and multilayer graphene, as well as epitaxial graphene, are derived using the quantum Green’s functions method. Analytic expressions are obtained for the densities of states of these systems. It is shown that a bandgap can appear the spectrum of an epitaxial graphene bilayer. A number of problems in the thermodynamics of electrons in free and epitaxial graphene layers are considered as applications. Analytic expressions are obtained for the chemical potential and heat capacity in the limiting cases of low and high temperatures. Quantum oscillations of heat capacity in graphene are analyzedmore » taking into account the Coulomb interaction. The Berry phase of epitaxial graphene is investigated.« less

  8. Epitaxial growth mechanisms of graphene and effects of substrates

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  9. Tunneling Spectroscopy Studies of Epitaxial Graphene on Silicon Carbide(0001) and Its Interfaces

    NASA Astrophysics Data System (ADS)

    Sandin, Andreas Axel Tomas

    A two dimensional network of sp2 bonded carbon atoms is defined as graphene. This novel material possesses remarkable electronic properties due to its unique band structure at the vicinity of the Fermi energy. The toughest challenge to bring use of graphene electronic properties in device geometries is that graphene is exceptionally sensitive to its electrical environment for integration into macroscopic system of electrical contacts and substrates. One of the most promising substrates for graphene is the polar surfaces of SiC for the reason it can be grown epitaxially by sublimating Si from the top-most SiC atomic layers. In this work, the interfaces of graphene grown on the Si-terminated polar surface SiC(0001) is studied in UHV using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), low energy electron diffraction (LEED) and auger electron Spectroscopy (AES). STM is used image the graphene surface and interfaces with the capability of atomic resolution. LEED is used to study surface atomic reciprocal ordering and AES is used to determine surface atomic composition during the graphene formation. Interfacial layer (Buffer layer), Single layer graphene and bilayer graphene are identified electronically by means of probing the first member of the image potential derived state. This state is found by dZ/dV spectroscopy in the high energy unoccupied states and is exceptionally sensitive to electrostatic changes to the surface which is detected by energy shifts of image potential states (IPS). This sensitivity is utilized to probe the graphene screening of external electric fields by varying the electric field in the tunneling junction and addresses the fact that charged impurity scattering is likely to be crucial for epitaxial graphene on SiC(0001) when it comes to transport parameters. Shifts of IPS energy position has also been used verify work function changes for identification of several Sodium Intercalation structures of epitaxial

  10. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  11. The role of electron-electron repulsion in the problem of epitaxial graphene on a metal: Simple estimates

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.

    2017-08-01

    For single-layer graphene placed on a metal substrate, the influence of intra- and interatomic Coulomb repulsion of electrons ( U and G, respectively) on its phase diagram is considered in the framework of an extended Hartree-Fock theory. The general solution of the problem is presented, on the basis of which special cases allowing for analytical consideration are analyzed: free and epitaxial graphene with and without regard for the energy of the electron transition between neighboring atoms of graphene. Three regions of the phase diagram are considered: spin and charge density waves (SDW and CDW, respectively) and the semimetal (SM) state uniform in the spin and charge. The main attention is paid to undoped graphene. It is shown that the allowance for the interaction with a metal substrate expands the SM existence domain. However, in all the considered cases, the boundary between the SDW and CDW states is described by the equation U = zG, where z = 3 is the number of nearest neighbors in graphene. The widening of the SM state region also results from the doping of graphene, and the effect is independent of the sign of free carriers introduced into epitaxial graphene by the substrate. According to estimates made, the only state possible in the buffer layer is the metal-type SM state, whereas, in epitaxial graphene, the CDW state is possible. The influence of temperature on the phase diagram of epitaxial graphene is discussed.

  12. Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene

    NASA Astrophysics Data System (ADS)

    Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.

    2018-06-01

    The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.

  13. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  14. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metalmore » organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.« less

  15. Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup.

    PubMed

    Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen

    2017-11-22

    We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

  16. Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, Jonathan D., E-mail: jdemery@anl.gov, E-mail: bedzyk@northwestern.edu; Johns, James E.; McBriarty, Martin E.

    2014-10-20

    The intercalation of various atomic species, such as hydrogen, to the interface between epitaxial graphene (EG) and its SiC substrate is known to significantly influence the electronic properties of the graphene overlayers. Here, we use high-resolution X-ray reflectivity to investigate the structural consequences of the hydrogen intercalation process used in the formation of quasi-free-standing (QFS) EG/SiC(0001). We confirm that the interfacial layer is converted to a layer structurally indistinguishable from that of the overlying graphene layers. This newly formed graphene layer becomes decoupled from the SiC substrate and, along with the other graphene layers within the film, is vertically displacedmore » by ∼2.1 Å. The number of total carbon layers is conserved during the process, and we observe no other structural changes such as interlayer intercalation or expansion of the graphene d-spacing. These results clarify the under-determined structure of hydrogen intercalated QFS-EG/SiC(0001) and provide a precise model to inform further fundamental and practical understanding of the system.« less

  17. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    PubMed

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  18. Spin transport in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  19. Epitaxial graphene growth on FIB patterned 3C-SiC nanostructures on Si (111): reducing milling damage.

    PubMed

    Amjadipour, Mojtaba; MacLeod, Jennifer; Lipton-Duffin, Josh; Iacopi, Francesca; Motta, Nunzio

    2017-08-25

    Epitaxial growth of graphene on SiC is a scalable procedure that does not require any further transfer step, making this an ideal platform for graphene nanostructure fabrication. Focused ion beam (FIB) is a very promising tool for exploring the reduction of the lateral dimension of graphene on SiC to the nanometre scale. However, exposure of graphene to the Ga + beam causes significant surface damage through amorphisation and contamination, preventing epitaxial graphene growth. In this paper we demonstrate that combining a protective silicon layer with FIB patterning implemented prior to graphene growth can significantly reduce the damage associated with FIB milling. Using this approach, we successfully achieved graphene growth over 3C-SiC/Si FIB patterned nanostructures.

  20. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  1. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

    PubMed

    Liu, Zhi-Bo; He, Xiaoying; Wang, D N

    2011-08-15

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system. © 2011 Optical Society of America

  2. Direct imaging of atomic-scale ripples in few-layer graphene.

    PubMed

    Wang, Wei L; Bhandari, Sagar; Yi, Wei; Bell, David C; Westervelt, Robert; Kaxiras, Efthimios

    2012-05-09

    Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range.

  3. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-01

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  4. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene.

    PubMed

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-27

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  5. Free-standing epitaxial graphene.

    PubMed

    Shivaraman, Shriram; Barton, Robert A; Yu, Xun; Alden, Jonathan; Herman, Lihong; Chandrashekhar, Mvs; Park, Jiwoong; McEuen, Paul L; Parpia, Jeevak M; Craighead, Harold G; Spencer, Michael G

    2009-09-01

    We report on a method to produce free-standing graphene sheets from epitaxial graphene on silicon carbide (SiC) substrate. Doubly clamped nanomechanical resonators with lengths up to 20 microm were patterned using this technique and their resonant motion was actuated and detected optically. Resonance frequencies of the order of tens of megahertz were measured for most devices, indicating that the resonators are much stiffer than expected for beams under no tension. Raman spectroscopy suggests that the graphene is not chemically modified during the release of the devices, demonstrating that the technique is a robust means of fabricating large-area suspended graphene structures.

  6. PREFACE: Ultrathin layers of graphene, h-BN and other honeycomb structures Ultrathin layers of graphene, h-BN and other honeycomb structures

    NASA Astrophysics Data System (ADS)

    Geber, Thomas; Oshima, Chuhei

    2012-08-01

    Since ancient times, pure carbon materials have been familiar in human society—not only diamonds in jewellery and graphite in pencils, but also charcoal and coal which have been used for centuries as fuel for living and industry. Carbon fibers are stronger, tougher and lighter than steel and increase material efficiency because of their lower weight. Today, carbon fibers and related composite materials are used to make the frames of bicycles, cars and even airplane parts. The two-dimensional allotrope, now called graphene, is just a single layer of carbon atoms, locked together in a strongly bonded honeycomb lattice. In plane, graphene is stiffer than diamond, but out-of-plane it is soft, like rubber. It is virtually invisible, may conduct electricity (heat) better than copper and weighs next to nothing. Carbon compounds with two carbon atoms as a base, such as graphene, graphite or diamond, have isoelectronic sister compounds made of boron-nitrogen pairs: hexagonal and cubic boron nitride, with almost the same lattice constant. Although the two 2D sisters, graphene and h-BN, have the same number of valence electrons, their electronic properties are very different: freestanding h-BN is an insulator, while charge carriers in graphene are highly mobile. The past ten years have seen a great expansion in studies of single-layer and few-layer graphene. This activity has been concerned with the π electron transport in graphene, in electric and magnetic fields. More than 30 years ago, however, single-layer graphene and h-BN on solid surfaces were widely investigated. It was noted that they drastically changed the chemical reactivity of surfaces, and they were known to 'poison' heterogeneous catalysts, to passivate surfaces, to prevent oxidation of surfaces and to act as surfactants. Also, it was realized that the controlled growth of h-BN and graphene on substrates yields the formation of mismatch driven superstructures with peculiar template functionality on the

  7. Hybrid nanomaterial of α-Co(OH)2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors.

    PubMed

    Cheng, J P; Liu, L; Ma, K Y; Wang, X; Li, Q Q; Wu, J S; Liu, F

    2017-01-15

    Supercapacitor with metal hydroxide nanosheets as electrode can have high capacitance. However, the cycling stability and high rate capacity is low due to the low electrical conductivity. Here, the exfoliated α-Co(OH) 2 nanosheets with high capacitance has been assembled on few-layer graphene with high electric conductivity by a facile yet effective and scalable solution method. Exfoliated hydrotalcite-like α-Co(OH) 2 nanosheets and few-layer graphene suspensions were prepared by a simple ultrasonication in formamide and N-methyl-2-pyrrolidone, respectively. Subsequently, a hybrid was made by self-assembly of α-Co(OH) 2 and few-layer graphene when the two dispersions were mixed at room temperature. The hybrid material provided a high specific capacitance of 567.1F/g at 1A/g, while a better rate capability and better stability were achieved compared to that mad of pristine and single exfoliated α-Co(OH) 2 . When the hybrid nanocomposite was used as a positive electrode and activated carbon was applied as negative electrode to assembly an asymmetric capacitor, an energy density of 21.2Wh/kg at a power density of 0.41kW/kg within a potential of 1.65V was delivered. The high electrochemical performance and facile solution-based synthesis method suggested that the hybrid of exfoliated α-Co(OH) 2 /few-layer graphene could be a potential electrode material for electrochemical capacitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Epitaxial Growth of Graphene on 6H-SiC (0001) by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Liu, Zhong-Liang; Kang, Chao-Yang; Pan, Hai-Bin; Wei, Shi-Qiang; Xu, Peng-Shou; Gao, Yu-Qiang; Xu, Xian-Gang

    2009-08-01

    An epitaxial graphene (EG) layer is successfully grown on a Si-terminated 6H-SiC (0001) substrate by the method of thermal annealing in an ultrahigh vacuum molecular beam epitaxy chamber. The structure and morphology of the EG sample are characterized by reflection high energy diffraction (RHEED), Raman spectroscopy and atomic force microscopy (AFM). Graphene diffraction streaks can be seen in RHEED. The G and 2D peaks of graphene are clearly observed in the Raman spectrum. The AFM results show that the graphene nominal thickness is about 4-10 layers.

  9. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layersmore » were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.« less

  10. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  11. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid

    NASA Astrophysics Data System (ADS)

    Jothiramalingam Sankaran, Kamatchi; Yeh, Chien-Jui; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K.; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2017-02-01

    Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V μm-1 and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.

  12. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    PubMed

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  13. Electric double-layer capacitance between an ionic liquid and few-layer graphene

    PubMed Central

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208

  14. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide

    PubMed Central

    de Heer, Walt A.; Berger, Claire; Ruan, Ming; Sprinkle, Mike; Li, Xuebin; Hu, Yike; Zhang, Baiqian; Hankinson, John; Conrad, Edward

    2011-01-01

    After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas physics. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultrahigh vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The Georgia Tech team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high-quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the “furnace grown” graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present for the first time the CCS method that outperforms other epitaxial graphene production methods. PMID:21960446

  15. Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Hill, Heather M.; Rigosi, Albert F.; Chowdhury, Sugata; Yang, Yanfei; Nguyen, Nhan V.; Tavazza, Francesca; Elmquist, Randolph E.; Newell, David B.; Hight Walker, Angela R.

    2017-11-01

    Monolayer epitaxial graphene (EG) is a suitable candidate for a variety of electronic applications. One advantage of EG growth on the Si face of SiC is that it develops as a single crystal, as does the layer below, referred to as the interfacial buffer layer (IBL), whose properties include an electronic band gap. Although much research has been conducted to learn about the electrical properties of the IBL, not nearly as much work has been reported on the optical properties of the IBL. In this work, we combine measurements from Mueller matrix ellipsometry, differential reflectance contrast, atomic force microscopy, and Raman spectroscopy, as well as calculations from Kramers-Kronig analyses and density-functional theory, to determine the dielectric function of the IBL within the energy range of 1 eV to 8.5 eV.

  16. State memory in solution gated epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.

    2018-06-01

    We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.

  17. Dark field photoelectron emission microscopy of micron scale few layer graphene

    NASA Astrophysics Data System (ADS)

    Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.

    2012-08-01

    We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.

  18. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    NASA Astrophysics Data System (ADS)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  19. The Assembling of Poly (3-Octyl-Thiophene) on CVD Grown Single Layer Graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Yanqiu; Yang, Ling; Guo, Zongxia; Lei, Shengbin

    2015-12-01

    The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we have used scanning tunneling microscopy to investigate the poly (3-octyl-thiophene) (P3OT)-graphene interface. Our results reveal the dynamic assembling of P3OT on single layer graphene. As on other substrates the epitaxial effect plays a role in determining the orientation of the P3OT assembling, however, the inter-thiophene distance along the backbone is consistent with that optimized in vaccum, no compression was observed. Adsorption of P3OT on ripples is weaker due to local curvature, which has been verified both by scanning tunneling microscopy and density functional theory simulation. Scanning tunneling microscopy also reveals that P3OT tends to form hairpin folds when meets a ripple.

  20. Controlling the morphology of MBE-grown WSe2 on epitaxial graphene/SiC(0001).

    NASA Astrophysics Data System (ADS)

    Liu, Liwei; Moghadam, Afsaneh; Weinert, Michael; Li, Lian

    Controlling the morphology of transition metal dichalcogenides (TMDs) during molecular beam epitaxy is critical for their potential device applications. In this work, by systematically changing the substrate temperature and W/Se flux ratio, the growth of sub-monolayer to few layers WSe2 on graphene/SiC(0001) is investigated by in situ scanning tunneling microscopy, x-ray photoelectron spectroscopy, and Raman spectroscopy. The results indicate that the morphology of the WSe2 films can be controlled from fractal to compact triangular. These findings and their implication for the controlled growth of TMD heterostructures will be discussed at the meeting. This research was supported by NSF (DMR-1508560).

  1. Wafer-scale epitaxial graphene on SiC for sensing applications

    NASA Astrophysics Data System (ADS)

    Karlsson, Mikael; Wang, Qin; Zhao, Yichen; Zhao, Wei; Toprak, Muhammet S.; Iakimov, Tihomir; Ali, Amer; Yakimova, Rositza; Syväjärvi, Mikael; Ivanov, Ivan G.

    2015-12-01

    The epitaxial graphene-on-silicon carbide (SiC-G) has advantages of high quality and large area coverage owing to a natural interface between graphene and SiC substrate with dimension up to 100 mm. It enables cost effective and reliable solutions for bridging the graphene-based sensors/devices from lab to industrial applications and commercialization. In this work, the structural, optical and electrical properties of wafer-scale graphene grown on 2'' 4H semi-insulating (SI) SiC utilizing sublimation process were systemically investigated with focus on evaluation of the graphene's uniformity across the wafer. As proof of concept, two types of glucose sensors based on SiC-G/Nafion/Glucose-oxidase (GOx) and SiC-G/Nafion/Chitosan/GOx were fabricated and their electrochemical properties were characterized by cyclic voltammetry (CV) measurements. In addition, a few similar glucose sensors based on graphene by chemical synthesis using modified Hummer's method were also fabricated for comparison.

  2. Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating

    PubMed Central

    Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.

    2015-01-01

    The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088

  3. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    PubMed

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  4. Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current

    NASA Astrophysics Data System (ADS)

    Kim, Sung Min; Song, Emil B.; Lee, Sejoon; Seo, Sunae; Seo, David H.; Hwang, Yongha; Candler, R.; Wang, Kang L.

    2011-07-01

    Suspended few-layer graphene beam electro-mechanical switches (SGSs) with 0.15 μm air-gap are fabricated and electrically characterized. The SGS shows an abrupt on/off current characteristics with minimal off current. In conjunction with the narrow air-gap, the outstanding mechanical properties of graphene enable the mechanical switch to operate at a very low pull-in voltage (VPI) of 1.85 V, which is compatible with conventional complimentary metal-oxide-semiconductor (CMOS) circuit requirements. In addition, we show that the pull-in voltage exhibits an inverse dependence on the beam length.

  5. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  6. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  7. Investigations of the Electronic, Vibrational and Structural Properties of Single and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Lui, Chun Hung

    Single and few-layer graphene (SLG and FLG) have stimulated great scientific interest because of their distinctive properties and potential for novel applications. In this dissertation, we investigate the mechanical, electronic and vibrational properties of these remarkable materials by various techniques, including atomic-force microscopy (AFM) and Raman, infrared (IR), and ultrafast optical spectroscopy. With respect to its mechanical properties, SLG is known to be capable of undergoing significant mechanical deformation. We have applied AFM to investigate how the morphology of SLG is influenced by the substrate on which it is deposited. We have found that SLG is strongly affected by the morphology of the underlying supporting surface. In particular, SLG deposited on atomically flat surfaces of mica substrates exhibits an ultraflat morphology, with height variation essentially indistinguishable from that observed for the surface of cleaved graphite. One of the most distinctive aspects of SLG is its spectrum of electronic excitations, with its characteristic linear energy-momentum dispersion relation. We have examined the dynamics of the corresponding Dirac fermions by optical emission spectroscopy. By analyzing the spectra of light emission induced in the spectral visible range by 30-femtosecond laser pulses, we find that the charge carriers in graphene cool by the emission of strongly coupled optical phonons in a few 10's of femtoseconds and thermalize among themselves even more rapidly. The charge carriers and the strongly coupled optical phonons are thus essentially in thermal equilibrium with one another on the picosecond time scale, but can be driven strongly out of equilibrium with the other phonons in the system. Temperatures exceeding 3000 K are achieved for the subsystem of the charge carriers and optical phonons under femtosecond laser excitation. While SLG exhibits remarkable physical properties, its few-layer counterparts are also of great interest

  8. Selective growth of Pb islands on graphene/SiC buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less

  9. The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes

    PubMed Central

    2012-01-01

    We report the formation and characterization of graphene dispersions in two organosilanes, 3-glycidoxypropyl trimethoxysilane (GPTMS) and phenyl triethoxysilane (PhTES) as new reactive solvents. The preparation method was mild and easy and does not produce any chemical modification. The dispersions, which exhibit the Tyndall effect, were characterized by TEM and Raman spectroscopy to confirm the presence of few-layer graphene. Concentrations as high as 0.66 and 8.00 mg/ml were found for PhTES and GPTMS, respectively. The latter is one of the highest values reported for a dispersion of graphene obtained by any method. This finding paves the way for the direct synthesis of polymer nanofiller-containing composites consisting of graphene and reactive silanes to be used in sol–gel synthesis, without any need for solvent removal, thus preventing graphene reaggregation to form graphite flakes. PMID:23237423

  10. Fabrication of few-layer graphene film based field effect transistor and its application for trace-detection of herbicide atrazine

    NASA Astrophysics Data System (ADS)

    Thanh Cao, Thi; Chuc Nguyen, Van; Binh Nguyen, Hai; Thang Bui, Hung; Thu Vu, Thi; Phan, Ngoc Hong; Thang Phan, Bach; Hoang, Le; Bayle, Maxime; Paillet, Matthieu; Sauvajol, Jean Louis; Phan, Ngoc Minh; Tran, Dai Lam

    2016-09-01

    We describe the fabrication of highly sensitive graphene-based field effect transistor (FET) enzymatic biosensor for trace-detection of atrazine. The few-layers graphene films were prepared on polycrystalline copper foils by atmospheric pressure chemical vapor deposition method using an argon/hydrogen/methane mixture. The characteristics of graphene films were investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results indicated low uniformity of graphene layers, which is probably induced by heterogeneous distribution of graphene nucleation sites on the Cu surface. The pesticide detection is accomplished through the measurement of the drain-source current variations of the FET sensor upon the urea enzymatic hydrolysis reaction. The obtained biosensor is able to detect atrazine with a sensitivity of 56 μA/logCATZ in range between 2 × 10-4 and 20 ppb and has a limit of detection as low as 0.05 ppt. The elaboration of such highly sensitive biosensors will provide better biosensing performances for the detection of biochemical targets.

  11. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  12. Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Thirugnanam, Lavanya; Sundara, Ramaprabhu

    2018-06-01

    A combination of favorable composition and optimized anatase/rutile mixed-phase TiO2 (MPTNF)/Hydrogen exfoliated graphene (HEG) composite nanofibers (MPTNF/HEG) and anatase/rutile mixed-phase TiO2/reduced graphene oxide (rGO) composite nanofibers (MPTNF/rGO) have been reported to enhance the electrochemical properties for supercapacitor applications. These composite nanofibers have been synthesized by an efficient route of electrospinning together with the help of easy chemical methods. Both the composites exhibit good charge storage capability with enhanced pseudocapacitance and electric double-layer capacitance (EDLC) as confirmed by cyclic voltammetry studies. MPTNF/HEG composite showed maximum specific capacitance of 210.5 F/g at the current density of 1 A/g, which was mainly due to its availability of the more active sites for ions adsorption on a few layers of graphene wrapped TiO2 nanofiber surface. The synergistic effect of anatase/rutile mixed phase with one dimensional nanostructure and the electronic interaction between TiO2 and few layer graphene provided the subsequent improvement of ion adsorption capacity. Also exhibit excellent electrochemical performance to improve the capacitive properties of TiO2 electrode materials which is required for the development of flexible electrodes in energy storage devices and open up new opportunities for high performance supercapacitors.

  13. Quantum plasmons with optical-range frequencies in doped few-layer graphene

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Mattheakis, Marios; Cazeaux, Paul; Narang, Prineha; Soljačić, Marin; Kaxiras, Efthimios

    2018-05-01

    Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.

  14. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  15. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles.

    PubMed

    Carles, R; Bayle, M; Bonafos, C

    2018-04-27

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  16. Top-gate dielectric induced doping and scattering of charge carriers in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Puls, Conor P.; Staley, Neal E.; Moon, Jeong-Sun; Robinson, Joshua A.; Campbell, Paul M.; Tedesco, Joseph L.; Myers-Ward, Rachael L.; Eddy, Charles R.; Gaskill, D. Kurt; Liu, Ying

    2011-07-01

    We show that an e-gun deposited dielectric impose severe limits on epitaxial graphene-based device performance based on Raman spectroscopy and low-temperature transport measurements. Specifically, we show from studies of epitaxial graphene Hall bars covered by SiO2 that the measured carrier density is strongly inhomogenous and predominantly induced by charged impurities at the grapheme/dielectric interface that limit mobility via Coulomb interactions. Our work emphasizes that material integration of epitaxial graphene and a gate dielectric is the next major road block towards the realization of graphene-based electronics.

  17. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  18. Facile and Scalable Synthesis Method for High-Quality Few-Layer Graphene through Solution-Based Exfoliation of Graphite.

    PubMed

    Wee, Boon-Hong; Wu, Tong-Fei; Hong, Jong-Dal

    2017-02-08

    Here we describe a facile and scalable method for preparing defect-free graphene sheets exfoliated from graphite using the positively charged polyelectrolyte precursor poly(p-phenylenevinylene) (PPV-pre) as a stabilizer in an aqueous solution. The graphene exfoliated by PPV-pre was apparently stabilized in the solution as a form of graphene/PPV-pre (denoted to GPPV-pre), which remains in a homogeneous dispersion over a year. The thickness values of 300 selected 76% GPPV-pre flakes ranged from 1 to 10 nm, corresponding to between one and a few layers of graphene in the lateral dimensions of 1 to 2 μm. Furthermore, this approach was expected to yield a marked decrease in the density of defects in the electronic conjugation of graphene compared to that of graphene oxide (GO) obtained by Hummers' method. The positively charged GPPV-pre was employed to fabricate a poly(ethylene terephthalate) (PET) electrode layer-by-layer with negatively charged GO, yielding (GPPV-pre/GO) n film electrode. The PPV-pre and GO in the (GPPV-pre/GO) n films were simultaneously converted using hydroiodic acid vapor to fully conjugated PPV and reduced graphene oxide (RGO), respectively. The electrical conductivity of (GPPV/RGO) 23 multilayer films was 483 S/cm, about three times greater than that of the (PPV/RGO) 23 multilayer films (166 S/cm) comprising RGO (prepared by Hummers method). Furthermore, the superior electrical properties of GPPV were made evident, when comparing the capacitive performances of two supercapacitor systems; (polyaniline PANi/RGO) 30 /(GPPV/RGO) 23 /PET (volumetric capacitance = 216 F/cm 3 ; energy density = 19 mWh/cm 3 ; maximum power density = 498 W/cm 3 ) and (PANi/RGO) 30 /(PPV/RGO) 23 /PET (152 F/cm 3 ; 9 mWh/cm 3 ; 80 W/cm 3 ).

  19. An atomic carbon source for high temperature molecular beam epitaxy of graphene.

    PubMed

    Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V

    2017-07-26

    We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

  20. Quantum Hall effect in epitaxial graphene with permanent magnets.

    PubMed

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  1. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite.

    PubMed

    Pettes, Michael Thompson; Ji, Hengxing; Ruoff, Rodney S; Shi, Li

    2012-06-13

    At a very low solid concentration of 0.45 ± 0.09 vol %, the room-temperature thermal conductivity (κ(GF)) of freestanding graphene-based foams (GF), comprised of few-layer graphene (FLG) and ultrathin graphite (UG) synthesized through the use of methane chemical vapor deposition on reticulated nickel foams, was increased from 0.26 to 1.7 W m(-1) K(-1) after the etchant for the sacrificial nickel support was changed from an aggressive hydrochloric acid solution to a slow ammonium persulfate etchant. In addition, κ(GF) showed a quadratic dependence on temperature between 11 and 75 K and peaked at about 150 K, where the solid thermal conductivity (κ(G)) of the FLG and UG constituents reached about 1600 W m(-1) K(-1), revealing the benefit of eliminating internal contact thermal resistance in the continuous GF structure.

  2. Extraordinary epitaxial alignment of graphene islands on Au(111)

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Starodub, Elena; Walter, Andrew L.; Nie, Shu; Bostwick, Aaron; Bartelt, Norman C.; Thürmer, Konrad; Rotenberg, Eli; McCarty, Kevin F.; Dubon, Oscar D.

    2012-05-01

    Pristine, single-crystalline graphene displays a unique collection of remarkable electronic properties that arise from its two-dimensional, honeycomb structure. Using in situ low-energy electron microscopy, we show that when deposited on the (111) surface of Au carbon forms such a structure. The resulting monolayer, epitaxial film is formed by the coalescence of dendritic graphene islands that nucleate at a high density. Over 95% of these islands can be identically aligned with respect to each other and to the Au substrate. Remarkably, the dominant island orientation is not the better lattice-matched 30° rotated orientation but instead one in which the graphene [01] and Au [011] in-plane directions are parallel. The epitaxial graphene film is only weakly coupled to the Au surface, which maintains its reconstruction under the slightly p-type doped graphene. The linear electronic dispersion characteristic of free-standing graphene is retained regardless of orientation. That a weakly interacting, non-lattice matched substrate is able to lock graphene into a particular orientation is surprising. This ability, however, makes Au(111) a promising substrate for the growth of single crystalline graphene films.

  3. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source.

    PubMed

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K; Ray, Samit K; Shivakiran, Bhaktha B N

    2016-02-05

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  4. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  5. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    NASA Astrophysics Data System (ADS)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  6. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (..theta..-2..theta.. scan, ..omega..-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smoothmore » GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.« less

  7. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    NASA Astrophysics Data System (ADS)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  8. Quasi free-standing epitaxial graphene fabrication on 3C-SiC/Si(111)

    NASA Astrophysics Data System (ADS)

    Amjadipour, Mojtaba; Tadich, Anton; Boeckl, John J.; Lipton-Duffin, Josh; MacLeod, Jennifer; Iacopi, Francesca; Motta, Nunzio

    2018-04-01

    Growing graphene on SiC thin films on Si is a cheaper alternative to the growth on bulk SiC, and for this reason it has been recently intensively investigated. Here we study the effect of hydrogen intercalation on epitaxial graphene obtained by high temperature annealing on 3C-SiC/Si(111) in ultra-high vacuum. By using a combination of core-level photoelectron spectroscopy, low energy electron diffraction, and near-edge x-ray absorption fine structure (NEXAFS) we find that hydrogen saturates the Si atoms at the topmost layer of the substrate, leading to free-standing graphene on 3C-SiC/Si(111). The intercalated hydrogen fully desorbs after heating the sample at 850 °C and the buffer layer appears again, similar to what has been reported for bulk SiC. However, the NEXAFS analysis sheds new light on the effect of hydrogen intercalation, showing an improvement of graphene’s flatness after annealing in atomic H at 600 °C. These results provide new insight into free-standing graphene fabrication on SiC/Si thin films.

  9. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  10. Metal-doped graphene layers composed with boron nitride-graphene as an insulator: a nano-capacitor.

    PubMed

    Monajjemi, Majid

    2014-11-01

    A model of a nanoscale dielectric capacitor composed of a few dopants has been investigated in this study. This capacitor includes metallic graphene layers which are separated by an insulating medium containing a few h-BN layers. It has been observed that the elements from group IIIA of the periodic table are more suitable as dopants for hetero-structures of the {metallic graphene/hBN/metallic graphene} capacitors compared to those from groups IA or IIA. In this study, we have specifically focused on the dielectric properties of different graphene/h-BN/graphene including their hetero-structure counterparts, i.e., Boron-graphene/h-BN/Boron-graphene, Al-graphene/h-BN/Al-graphene, Mg-graphene/h-BN/Mg-graphene, and Be-graphene/h-BN/Be-graphene stacks for monolayer form of dielectrics. Moreover, we studied the multi dielectric properties of different (h-BN)n/graphene hetero-structures of Boron-graphene/(h-BN)n/Boron-graphene.

  11. Method of depositing epitaxial layers on a substrate

    DOEpatents

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  12. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    DOE PAGES

    Li, Xufan; Basile, Leonardo; Huang, Bing; ...

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigationsmore » of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E 2 1g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.« less

  13. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xufan; Basile, Leonardo; Huang, Bing

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigationsmore » of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E 2 1g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.« less

  14. Colloidal properties and stability of aqueous suspensions of few-layer graphene: Importance of graphene concentration

    PubMed Central

    Su, Yu; Yang, Guoqing; Lu, Kun; Petersen, Elijah J.; Mao, Liang

    2017-01-01

    Understanding the colloidal stability of graphene is essential for predicting its transport and ecological risks in aquatic environments. We investigated the agglomeration of 14C-labeled few-layer graphene (FLG) at concentrations spanning nearly four orders of magnitude (2 μg/L to 10 mg/L) using dynamic light scattering and sedimentation measurements. FLG agglomerates formed rapidly in deionized water at concentrations > 3 mg/L. From 1 mg/L to 3 mg/L, salt-induced agglomeration was decreased with dilution of FLG suspensions; the critical coagulation concentration of the more concentrated suspension (3 mg/L) was significantly lower than the dilute suspension (1 mg/L) in the presence of NaCl (1.6 mmol/L and 10 mmol/L, respectively). In contrast, FLG underwent slow agglomeration and settling at concentrations ≤ 0.1 mg/L in NaCl solutions and ambient waters with low ionic strength (< 10 mmol/L). Although salt-induced agglomeration led to 67 % reduction in number of small FLG (25 nm to 50 nm) according to atomic force microscopy characterization, transition from concentrated to dilute suspension retarded the removal of the small FLG. Additionally, the small FLG exhibited greater bioaccumulation in zebrafish embryo and stronger chorion penetration ability than larger ones. These findings suggest that FLG at more environmentally relevant concentration is relatively stable and may have implications for exposure of small FLG to ecological receptors. PMID:27720543

  15. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    PubMed

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  16. Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo

    2012-06-01

    Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.

  17. Nucleation of uniform mono- and bilayer epitaxial graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong; Zhang, Rui; Dong, Yunliang; Guo, Shuai; Kong, Wenjie; Liao, Zhimin; Yu, Dapeng

    2012-02-01

    Early stage of epitaxial graphene growth on SiC(0001) has been investigated. Using the confinement controlled sublimation (CCS) method, we has achieved well controlled growth and been able to see the formation of mono- and bilayer graphene islands. The growth features reveal the intriguing growth mechanism. In particular, a new ``stepdown'' growth mode has been identified. Graphene can propagate tens of micrometers across many SiC steps, while, most importantly, step bunching is avoided and the initial regular stepped SiC surface morphology is preserved. The stepdown growth demonstrates a route towards uniform epitaxial graphene in wafer size without sacrificing the initial substrate surface morphology.

  18. Infrared fingerprints of few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V. Ongun; Low, Tony; Yan, Hugen

    2017-01-01

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics. PMID:28059084

  19. Infrared fingerprints of few-layer black phosphorus.

    PubMed

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V Ongun; Low, Tony; Yan, Hugen

    2017-01-06

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.

  20. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    PubMed Central

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  1. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Jung, Seong Jun; Jang, Sung Kyu; Lee, Joohyun; Jeon, Insu; Suh, Hwansoo; Kim, Yong Ho; Lee, Young Hee; Lee, Sungjoo; Song, Young Jae

    2015-06-01

    We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 μm, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for engineering the band structures of large-area graphene for electronic device applications.We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 μm, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for

  2. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    PubMed

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided

  3. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    PubMed

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film-forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Layer-Dependent Third-Harmonic Generation in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guan, Honghua; Dadap, Jerry; Osgood, Richard; Richard Osgood Team

    Graphene has become a subject of intense interest and study because of its remarkable 2D electronic properties. Multilayer graphene also offers an array of properties that are also of interest for optical physics and devices. Despite its second-order-nonlinear optical response is intrinsically weak, third-order nonlinear optical effects in graphene are symmetry-allowed thus leading to studies of several third-order process in few-layer graphene. In this work, we report third-harmonic generation in multilayer graphene mounted on fused silica and with thicknesses which approach the bulk continuum. THG signals show cubic power dependence with respect to the intensity of fundamental beam. Third-harmonic generation spectroscopy enables a good fit using linear optical detection, which shows strong contrast for different layer number graphene. The maximum THG efficiency appears at layer number around 30. Two models are used for describing this layer dependent phenomenon and shows absorption plays a key role in THG of multilayer graphene. This work also provides a new imaging technology for graphene detection and identification with better contrast and resolution. U.S. Department of Energy under Contract No. DE-FG 02-04-ER-46157.

  5. Number of graphene layers exhibiting an influence on oxidation of DNA bases: analytical parameters.

    PubMed

    Goh, Madeline Shuhua; Pumera, Martin

    2012-01-20

    This article investigates the analytical performance of double-, few- and multi-layer graphene upon oxidation of adenine and guanine. We observed that the sensitivity of differential pulse voltammetric response of guanine and adenine is significantly higher at few-layer graphene surface than single-layer graphene. We use glassy carbon electrode as substrate coated with graphenes. Our findings shall have profound influence on construction of graphene based genosensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Voltage Scaling of Graphene Device on SrTiO3 Epitaxial Thin Film.

    PubMed

    Park, Jeongmin; Kang, Haeyong; Kang, Kyeong Tae; Yun, Yoojoo; Lee, Young Hee; Choi, Woo Seok; Suh, Dongseok

    2016-03-09

    Electrical transport in monolayer graphene on SrTiO3 (STO) thin film is examined in order to promote gate-voltage scaling using a high-k dielectric material. The atomically flat surface of thin STO layer epitaxially grown on Nb-doped STO single-crystal substrate offers good adhesion between the high-k film and graphene, resulting in nonhysteretic conductance as a function of gate voltage at all temperatures down to 2 K. The two-terminal conductance quantization under magnetic fields corresponding to quantum Hall states survives up to 200 K at a magnetic field of 14 T. In addition, the substantial shift of charge neutrality point in graphene seems to correlate with the temperature-dependent dielectric constant of the STO thin film, and its effective dielectric properties could be deduced from the universality of quantum phenomena in graphene. Our experimental data prove that the operating voltage reduction can be successfully realized due to the underlying high-k STO thin film, without any noticeable degradation of graphene device performance.

  7. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  8. Room temperature LPG resistive sensor based on the use of a few-layer graphene/SnO2 nanocomposite.

    PubMed

    Goutham, Solleti; Bykkam, Satish; Sadasivuni, Kishor Kumar; Kumar, Devarai Santhosh; Ahmadipour, Mohsen; Ahmad, Zainal Arifin; Rao, Kalagadda Venkateswara

    2017-12-20

    A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO 2 ) was prepared by ultrasound-assisted synthesis. The uniform SnO 2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO 2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors. Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO 2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.

  9. Molecular Beam Epitaxial Growth and Characterization of Graphene and Hexagonal Boron Nitride Two-Dimensional Layers

    NASA Astrophysics Data System (ADS)

    Zheng, Renjing

    Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials' quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation. The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what's more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it's possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE. The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and

  10. A first-principles study of the electrically tunable band gap in few-layer penta-graphene.

    PubMed

    Wang, Jinjin; Wang, Zhanyu; Zhang, R J; Zheng, Y X; Chen, L Y; Wang, S Y; Tsoo, Chia-Chin; Huang, Hung-Ji; Su, Wan-Sheng

    2018-06-25

    The structural and electronic properties of bilayer (AA- and AB-stacked) and tri-layer (AAA-, ABA- and AAB-stacked) penta-graphene (PG) have been investigated in the framework of density functional theory. The present results demonstrate that the ground state energy in AB stacking is lower than that in AA stacking, whereas ABA stacking is found to be the most energetically favorable, followed by AAB and AAA stackings. All considered model configurations are found to be semiconducting, independent of the stacking sequence. In the presence of a perpendicular electric field, their band gaps can be significantly reduced and completely closed at a specific critical electric field strength, demonstrating a Stark effect. These findings show that few-layer PG will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices owing to its tunable band gap.

  11. The Ordering and Electronic Structure of Multilayer Epitaxial Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Conrad, Edward

    2011-03-01

    The structural definition of graphene as a single sheet of hexagonal carbon limits how we view this material. It is the electronic properties of a single isolated graphene sheet that actually defines and motivates current graphene research. Remarkably, the best example of the idealized band structure of graphene comes does not come from a single graphene layer but from multilayer films grown on SiC. Multilayer epitaxial graphene (MEG) not only shows all the 2D properties expected for an isolated graphene sheet, but it the scalability to large scale integrated carbon circuits. I will show that the reason for this remarkable property, i.e. that a multilayer graphene films behaving like a single graphene sheet, is due to MEG's unique stacking. MEG films have a quasi-ordered rotational stacking that breaks the Bernal stacking symmetry associated with graphite. Angle resolved photoemission spectroscopy (ARPES) data demonstrates that the bands are linear at the K-point of these films. We can also show that the rotated stacking is highly ordered and that less than 20% of the graphene sheets in the film are Bernal stacked. I will also show that ARPES measurements on MEG films demonstrate serious inadequacies with both tight binding and ab initio formalisms. In particular the data shows no reductions in the Fermi velocity or the formation of Van Hove singularity that have been consistently predicted for this material. I wish to acknowledge funding from the NSF under Grants No. DMR-0820382 and DMR-1005880.

  12. Strained-layer epitaxy of germanium-silicon alloys

    NASA Astrophysics Data System (ADS)

    Bean, J. C.

    1985-10-01

    Strained-layer epitaxy is presented as a developing technique for combining Si with other materials in order to obtain semiconductors with enhanced electronic properties. The method involves applying layers sufficiently thin so that the atoms deposited match the bonding configurations of the substrate crystal. When deposited on Si, a four-fold bonding pattern is retained, with a lowered interfacial energy and augmented stored strain energy in the epitaxial layer. The main problem which remains is building an epitaxial layer thick enough to yield desired epitaxial properties while avoiding a reversion to an unstrained structure. The application of a Ge layer to Si using MBE is described, along with the formation of heterojunction multi-layer superlattices, which can reduce the dislocation effects in some homojunctions. The technique shows promise for developing materials of use as bipolar transistors, optical detectors and fiber optic transmission devices.

  13. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  14. Quasi-free-standing bilayer epitaxial graphene field-effect transistors on 4H-SiC (0001) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, C.; Li, J.; Song, X. B.

    2016-01-04

    Quasi-free-standing epitaxial graphene grown on wide band gap semiconductor SiC demonstrates high carrier mobility and good material uniformity, which make it promising for graphene-based electronic devices. In this work, quasi-free-standing bilayer epitaxial graphene is prepared and its transistors with gate lengths of 100 nm and 200 nm are fabricated and characterized. The 100 nm gate length graphene transistor shows improved DC and RF performances including a maximum current density I{sub ds} of 4.2 A/mm, and a peak transconductance g{sub m} of 2880 mS/mm. Intrinsic current-gain cutoff frequency f{sub T} of 407 GHz is obtained. The exciting DC and RF performances obtained in the quasi-free-standingmore » bilayer epitaxial graphene transistor show the great application potential of this material system.« less

  15. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers

    PubMed Central

    Peng, Kaung-Jay; Lin, Yung-Hsiang; Wu, Chung-Lun; Lin, Sheng-Fong; Yang, Chun-Yu; Lin, Shih-Meng; Tsai, Din-Ping; Lin, Gong-Ru

    2015-01-01

    The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design. PMID:26328535

  16. Tailoring graphene layer-to-layer growth

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi

    2017-06-01

    A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.

  17. Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates

    PubMed Central

    Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi

    2013-01-01

    The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289

  18. Infrared spectroscopy of wafer-scale graphene.

    PubMed

    Yan, Hugen; Xia, Fengnian; Zhu, Wenjuan; Freitag, Marcus; Dimitrakopoulos, Christos; Bol, Ageeth A; Tulevski, George; Avouris, Phaedon

    2011-12-27

    We report spectroscopy results from the mid- to far-infrared on wafer-scale graphene, grown either epitaxially on silicon carbide or by chemical vapor deposition. The free carrier absorption (Drude peak) is simultaneously obtained with the universal optical conductivity (due to interband transitions) and the wavelength at which Pauli blocking occurs due to band filling. From these, the graphene layer number, doping level, sheet resistivity, carrier mobility, and scattering rate can be inferred. The mid-IR absorption of epitaxial two-layer graphene shows a less pronounced peak at 0.37 ± 0.02 eV compared to that in exfoliated bilayer graphene. In heavily chemically doped single-layer graphene, a record high transmission reduction due to free carriers approaching 40% at 250 μm (40 cm(-1)) is measured in this atomically thin material, supporting the great potential of graphene in far-infrared and terahertz optoelectronics.

  19. Microwave studies of weak localization and antilocalization in epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta; Kamińska, Maria; Wołoś, Agnieszka

    2013-12-04

    A microwave detection method was applied to study weak localization and antilocalization in epitaxial graphene sheets grown on both polarities of SiC substrates. Both coherence and scattering length values were obtained. The scattering lengths were found to be smaller for graphene grown on C-face of SiC. The decoherence rate was found to depend linearly on temperature, showing the electron-electron scattering mechanism.

  20. Lattice-Matched Epitaxial Graphene Grown on Boron Nitride.

    PubMed

    Davies, Andrew; Albar, Juan D; Summerfield, Alex; Thomas, James C; Cheng, Tin S; Korolkov, Vladimir V; Stapleton, Emily; Wrigley, James; Goodey, Nathan L; Mellor, Christopher J; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Foxon, C Thomas; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H

    2018-01-10

    Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls and also the topological defects where they terminate. We relate these results to theoretical models of band gap formation in graphene/boron nitride heterostructures.

  1. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  2. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements

    NASA Astrophysics Data System (ADS)

    Volcheck, V. S.; Stempitsky, V. R.

    2017-11-01

    Self-heating has an adverse effect on characteristics of gallium nitride (GaN) high electron mobility transistors (HEMTs). Various solutions to the problem have been proposed, however, a temperature rise due to dissipated electrical power still hinders the production of high power and high speed GaN devices. In this paper, thermal management of GaN HEMT via few-layer graphene (FLG) heat spreading elements is investigated. It is shown that integration of the FLG elements on top of the device structure considerably reduces the maximum temperature and improves the DC and small signal AC performance.

  3. Controlled epitaxial graphene growth within removable amorphous carbon corrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, James; Hu, Yike; Hankinson, John

    2014-07-14

    We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200 °C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth atmore » temperatures above 1330 °C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.« less

  4. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  5. Damage evaluation in graphene underlying atomic layer deposition dielectrics

    PubMed Central

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.

    2015-01-01

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors. PMID:26311131

  6. Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Tuocheng; Jia, Zhenzhao; Yan, Baoming

    2015-01-05

    We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickness variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effectmore » results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.« less

  7. Resonant tunneling structures based on epitaxial graphene on SiC

    NASA Astrophysics Data System (ADS)

    Nguyen, V. Hung; Bournel, A.; Dollfus, P.

    2011-12-01

    Recently some experiments have suggested that graphene epitaxially grown on SiC can exhibit an energy bandgap of 260 meV, which enhances the potential of this material for electronic applications. On this basis, we propose to use spatial doping to generate graphene-on-SiC double-barrier structures. The non-equilibrium Green's function technique for solving the massive Dirac model is applied to highlight typical transport phenomena such as the electron confinement and the resonant tunneling effects. The I-V characteristics of graphene resonant tunneling diodes were then investigated and the effect of different device parameters was discussed. It is finally shown that this kind of double-barrier junction provides an efficient way to confine the charge carriers in graphene and to design graphene resonant tunneling structures.

  8. Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds

    NASA Astrophysics Data System (ADS)

    Huang, Tao; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-01-01

    A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications.A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with

  9. Electronic Structure and Morphology of Graphene Layers on SiC

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke

    2008-03-01

    Recent years have witnessed the discovery and the unique electronic properties of graphene, a sheet of carbon atoms arranged in a honeycomb lattice. The unique linear dispersion relation of charge carriers near the Fermi level (``Dirac Fermions'') lead to exciting transport properties, such as an unusual quantum Hall effect, and have aroused scientific and technological interests. On the way towards graphene-based electronics, a knowledge of the electronic band structure and the morphology of epitaxial graphene films on silicon carbide substrates is imperative. We have studied the evolution of the occupied band structure and the morphology of graphene layers on silicon carbide by systematically increasing the layer thickness. Using angle-resolved photoemission spectroscopy (ARPES), we examine this unique 2D system in its development from single layer to multilayers, by characteristic changes in the π band, the highest occupied state, and the dispersion relation in the out-of-plane electron wave vector in particular. The evolution of the film morphology is evaluated by the combination of low-energy electron microscopy and ARPES. By exploiting the sensitivity of graphene's electronic states to the charge carrier concentration, changes in the on-site Coulomb potential leading to a change of π and π* bands can be examined using ARPES. We demonstrate that, in a graphene bilayer, the gap between π and π* bands can be controlled by selectively adjusting relative carrier concentrations, which suggests a possible application of the graphene bilayer for switching functions in electronic devices. This work was done in collaboration with A. Bostwick, J. L. McChesney, and E. Rotenberg at Advanced Light Source, Lawrence Berkeley National Laboratory, K. Horn at Fritz-Haber-Institut, K. V. Emtsev and Th. Seyller at Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, and F. El Gabaly and A. K. Schmid at National Center for Electron Microscopy, Lawrence Berkeley

  10. Epitaxially grown strained pentacene thin film on graphene membrane.

    PubMed

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene

    NASA Astrophysics Data System (ADS)

    Asshoff, P. U.; Sambricio, J. L.; Rooney, A. P.; Slizovskiy, S.; Mishchenko, A.; Rakowski, A. M.; Hill, E. W.; Geim, A. K.; Haigh, S. J.; Fal'ko, V. I.; Vera-Marun, I. J.; Grigorieva, I. V.

    2017-09-01

    Graphene is hailed as an ideal material for spintronics due to weak intrinsic spin-orbit interaction that facilitates lateral spin transport and tunability of its electronic properties, including a possibility to induce magnetism in graphene. Another promising application of graphene is related to its use as a spacer separating ferromagnetic metals (FMs) in vertical magnetoresistive devices, the most prominent class of spintronic devices widely used as magnetic sensors. In particular, few-layer graphene was predicted to act as a perfect spin filter. Here we show that the role of graphene in such devices (at least in the absence of epitaxial alignment between graphene and the FMs) is different and determined by proximity-induced spin splitting and charge transfer with adjacent ferromagnetic metals, making graphene a weak FM electrode rather than a spin filter. To this end, we report observations of magnetoresistance (MR) in vertical Co-graphene-NiFe junctions with 1-4 graphene layers separating the ferromagnets, and demonstrate that the dependence of the MR sign on the number of layers and its inversion at relatively small bias voltages is consistent with spin transport between weakly doped and differently spin-polarized layers of graphene. The proposed interpretation is supported by the observation of an MR sign reversal in biased Co-graphene-hBN-NiFe devices and by comprehensive structural characterization. Our results suggest a new architecture for vertical devices with electrically controlled MR.

  12. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.

    PubMed

    Goh, Madeline Shuhua; Pumera, Martin

    2011-01-01

    The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.

  13. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects,more » like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.« less

  14. Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol

    PubMed Central

    Arcelus-Arrillaga, Pedro; Millan, Marcos; Suelves, Isabel

    2017-01-01

    A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol enhanced FLGO oxygen removal by up to 59% due to the in situ hydrogen generation as compared to the use of SCW only. Physicochemical characterization of the reduced FLGO (rFLGO) showed a high restoration of the sp2-conjugated carbon network. FLGO sheets with a starting C/O ratio of 2.5 are reduced by SCW gasification of glycerol to rFLGO with a C/O ratio of 28.2, above those reported for hydrazine-based methods. Additionally, simultaneous glycerol gasification resulted in the concurrent production of H2, CO, CH4 and valuable hydrocarbons such as alkylated and non-alkylated long chain hydrocarbon (C12–C31), polycyclic aromatic hydrocarbons (PAH), and phthalate, phenol, cresol and furan based compounds. PMID:29240720

  15. Designing Two-Dimensional Dirac Heterointerfaces of Few-Layer Graphene and Tetradymite-Type Sb2Te3 for Thermoelectric Applications.

    PubMed

    Jang, Woosun; Lee, Jiwoo; In, Chihun; Choi, Hyunyong; Soon, Aloysius

    2017-12-06

    Despite the ubiquitous nature of the Peltier effect in low-dimensional thermoelectric devices, the influence of finite temperature on the electronic structure and transport in the Dirac heterointerfaces of the few-layer graphene and layered tetradymite, Sb 2 Te 3 (which coincidently have excellent thermoelectric properties) are not well understood. In this work, using the first-principles density-functional theory calculations, we investigate the detailed atomic and electronic structure of these Dirac heterointerfaces of graphene and Sb 2 Te 3 and further re-examine the effect of finite temperature on the electronic band structures using a phenomenological temperature-broadening model based on Fermi-Dirac statistics. We then proceed to understand the underlying charge redistribution process in this Dirac heterointerfaces and through solving the Boltzmann transport equation, we present the theoretical evidence of electron-hole asymmetry in its electrical conductivity as a consequence of this charge redistribution mechanism. We finally propose that the hexagonal-stacked Dirac heterointerfaces are useful as efficient p-n junction building blocks in the next-generation thermoelectric devices where the electron-hole asymmetry promotes the thermoelectric transport by "hot" excited charge carriers.

  16. Nucleation of graphene layers on magnetic oxides: Co 3O 4(111) and Cr 2O 3(0001) from theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, John; Cheng, Tao; Cao, Yuan

    We report directly grown strongly adherent graphene on Co 3O 4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co 3O 4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co 3O 4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer,more » in agreement with DFT. In contrast, for Cr 2O 3 DFT finds no strong bonding to the surface and C MBE on Cr 2O 3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less

  17. Nucleation of graphene layers on magnetic oxides: Co 3O 4(111) and Cr 2O 3(0001) from theory and experiment

    DOE PAGES

    Beatty, John; Cheng, Tao; Cao, Yuan; ...

    2016-12-14

    We report directly grown strongly adherent graphene on Co 3O 4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co 3O 4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co 3O 4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer,more » in agreement with DFT. In contrast, for Cr 2O 3 DFT finds no strong bonding to the surface and C MBE on Cr 2O 3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less

  18. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Fan, Zhongli; Zeng, Gaofeng; Lai, Zhiping

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices.

  19. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.

    PubMed

    Schumacher, Christoph M; Grass, Robert N; Rossier, Michael; Athanassiou, Evagelos K; Stark, Wendelin J

    2012-03-06

    A systematical examination of the chemical stability of cobalt metal nanomagnets with a graphene-like carbon coating is used to study the otherwise rather elusive formation of nanometer-sized physical defects in few layer graphene as a result of acid treatments. We therefore first exposed the core-shell nanomaterial to well-controlled solutions of altering acidity and temperature. The release of cobalt into these solutions over time offered a simple tool to monitor the progress of particle degradation. The results suggested that the oxidative damage of the graphene-like coatings was the rate-limiting step during particle degradation since only fully intact or entirely emptied carbon shells were found after the experiments. If ionic noble metal species were additionally present in the acidic solutions, the noble metal was found to reduce on the surface of specific, defective particles. The altered electrochemical gradients across the carbon shells were however not found to lead to a faster release of cobalt from the particles. The suggested mechanistic insight was further confirmed by the covalent chemical functionalization of the particle surface with chemically inert aryl species, which leads to an additional thickening of the shells. This leads to reduced cobalt release rates as well as slower noble metal reduction rates depending on the augmentation of the shell thickness.

  20. Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method

    NASA Astrophysics Data System (ADS)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Tahir, Paridah Md; Yunus, Robiah

    2016-11-01

    In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had been related to the nature of the Cu, which promotes the growth of graphene with high quality and quantity at low temperature and time. The reaction temperature and run time, as the most important parameters of the CVD method, were varied, and thus led to the synthesis of different layers of graphene. Moreover, the presence of single-, few-, and multi-layer graphene was confirmed by employing two techniques, namely transmission electron microscopy (TEM) and Raman spectroscopy. On top of that, electron dispersive X-ray (EDX) was further applied to establish the influence of the CVD parameters on the growth of graphene.

  1. Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method.

    PubMed

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Tahir, Paridah Md; Yunus, Robiah

    2016-12-01

    In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had been related to the nature of the Cu, which promotes the growth of graphene with high quality and quantity at low temperature and time. The reaction temperature and run time, as the most important parameters of the CVD method, were varied, and thus led to the synthesis of different layers of graphene. Moreover, the presence of single-, few-, and multi-layer graphene was confirmed by employing two techniques, namely transmission electron microscopy (TEM) and Raman spectroscopy. On top of that, electron dispersive X-ray (EDX) was further applied to establish the influence of the CVD parameters on the growth of graphene.

  2. Reducing the layer number of AB stacked multilayer graphene grown on nickel by annealing at low temperature.

    PubMed

    Velasco, J Marquez; Giamini, S A; Kelaidis, N; Tsipas, P; Tsoutsou, D; Kordas, G; Raptis, Y S; Boukos, N; Dimoulas, A

    2015-10-09

    Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.

  3. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less

  4. Polymer coating and stress test for carrier density stabilization in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Rigosi, Albert; Liu, Chieh-I.; Yang, Yanfei; Obrzut, Jan; Lee, Hsin Yen; Bittle, Emily; Elmquist, Randolph

    Homogeneous monolayer epitaxial graphene (EG) is an ideal candidate for the development of a quantum Hall resistance (QHR) standard. A clean fabrication process was used to produce EG-QHR devices with a n-type doping level of order 1011 cm-2, which delivers the metrological accuracy at the ν = 2 plateau in a moderate magnetic field (<9 T). However, the ν = 2 plateau deviates from h/2e2 quickly as the carrier density shifts close to the Dirac point (<1010 cm-2) , and this observation occurs over time as EG is exposed to air, allowing for complexation with p-type molecular dopants. Here we report experimental results on the use of parylene C as an encapsulation layer, whereby EG can maintain its carrier density level under ambient laboratory conditions for a few months. Furthermore, we varied the parylene C thicknesses and the controllable temperatures (up to 85° C) and humidities (up to 85%). We monitored the electronic properties of our EG samples by low temperature magnetotransport measurements in a 9 T superconducting magnet cryostat, and room temperature surface conductance in a resonant microwave cavity. We will compare parylene C, Cytop, and PMMA and show that polymer encapsulation may offer a solution to the problem of carrier density instability from atmospheric doping.

  5. Graphene nanoribbons epitaxy on boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BNmore » substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.« less

  6. Organic doping of rotated double layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in

    2016-05-06

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less

  7. Low temperature laser molecular beam epitaxy and characterization of AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Tyagi, Prashant; Ch., Ramesh; Kushvaha, S. S.; Kumar, M. Senthil

    2017-05-01

    We have grown AlGaN (0001) epitaxial layers on sapphire (0001) by using laser molecular beam epitaxy (LMBE) technique. The growth was carried out using laser ablation of AlxGa1-x liquid metal alloy under r.f. nitrogen plasma ambient. Before epilayer growth, the sapphire nitradation was performed at 700 °C using r.f nitrogen plasma followed by AlGaN layer growth. The in-situ reflection high energy electron diffraction (RHEED) was employed to monitor the substrate nitridation and AlGaN epitaxial growth. High resolution x-ray diffraction showed wurtzite hexagonal growth of AlGaN layer along c-axis. An absorption bandgap of 3.97 eV is obtained for the grown AlGaN layer indicating an Al composition of more than 20 %. Using ellipsometry, a refractive index (n) value of about 2.19 is obtained in the visible region.

  8. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  9. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  10. Ion sensitivity of large-area epitaxial graphene film on SiC substrate

    NASA Astrophysics Data System (ADS)

    Mitsuno, Takanori; Taniguchi, Yoshiaki; Ohno, Yasuhide; Nagase, Masao

    2017-11-01

    We investigated the intrinsic ion sensitivity of graphene field-effect transistors (FETs) fabricated by a resist-free stencil mask lithography process from a large-scale graphene film epitaxially grown on a SiC substrate. A pH-adjusted phosphate-buffered solution was used for the measurement to eliminate the interference of other ions on the graphene FET's ion sensitivity. The charge neutrality point shifted negligibly with changing pH for the pH-adjusted phosphate-buffered solution, whereas for the mixed buffer solution, it shifted toward the negative gate voltage owing to the decrease in the concentration of phthalate ions. This phenomenon is contrary to that observed in previous reports. Overall, our results indicate that the graphene film is intrinsically insensitive to ions except for those with functional groups that interact with the graphene surface.

  11. Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Shelke, Nitin T.; Karche, B. R.

    2017-10-01

    Reduced graphene oxide (RGO), a two-dimensional (2D) system, has attracted much interest in photonic applications owing to its ability to absorb light over a broad wavelength. This leads to several studies on RGO-based photosensors. In this paper, chemical oxidation of graphite was carried out at room temperature for the preparation of large area reduced graphene oxide using a modified Hummer's method. The as-prepared reduced graphene oxide was characterized by XRD, Raman spectroscopy, FESEM, and TEM to confirm the absence of impurities and to ascertain their morphology. In addition, the as-prepared reduced graphene oxide for its possible application as UV photosensor is reported. The electric and optoelectronic properties of RGO based UV photosensor shows a fast response and recovery time of 1 s and 3 s; high photoresponsitivity (3.74 AW-1) and quantum efficiency (1274%) indicating that the graphene oxide is an important material for high performance photosensor. This work demonstrates the ultrafast photoresponse with high photoresponsivity, proving its potential as a promising material for optoelectronic devices.

  12. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention

    NASA Astrophysics Data System (ADS)

    Torres, D.; Pinilla, J. L.; Suelves, I.

    2017-12-01

    Few-layer graphene oxide (FLGO) was obtained by chemical unzipping of multi-wall carbon nanotubes (MWCNT) of different diameter distributions. MWCNT were synthesized by catalytic decomposition of methane using Fe-Mo/MgO catalysts. The variation in the Fe/Mo ratio (1, 2 and 5) was very influential in MWCNT diameter distribution and type of MWCNT obtained, including textural, chemical, structural and morphological characteristics. MWCNT diameter distribution and surface defects content had a profound impact on the characteristics of the resulting FLGO. Thus, MWCNT obtained with the catalyst with a Fe/Mo: 5 and presenting a narrow diameter distribution centered at 8.6 ± 3.3 nm led to FLGO maintaining non-oxidized graphite stacking (according to XRD analysis), lower specific surface area and higher thermostability as compared to FLGO obtained from MWCNT showing wider diameter distributions. The presence of more oxygen-containing functionalities and structural defects in large diameter nanotubes promotes the intercalation of species towards the inner layers of the nanotube, resulting in an enhanced MWCNT oxidation and opening into FLGO, what improves both micro- and mesoporosity.

  13. Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer

    DOEpatents

    Mandal, Krishna C.; Terry, J. Russell

    2016-12-06

    A detection device, along with methods of its manufacture and use, is provided. The detection device can include: a SiC substrate defining a substrate surface cut from planar to about 12.degree.; a buffer epitaxial layer on the substrate surface; a n-type epitaxial layer on the buffer epitaxial layer; and a top contact on the n-type epitaxial layer. The buffer epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.15 cm.sup.-3 to about 5.times.10.sup.18 cm.sup.-3 with nitrogen, boron, aluminum, or a mixture thereof. The n-type epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.13 cm.sup.-3 to about 5.times.10.sup.15 cm.sup.-3 with nitrogen. The top contact can have a thickness of about 8 nm to about 15 nm.

  14. The effect of adsorbates on the electrical stability of graphene studied by transient photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalkan, S. B.; Aydın, H.; Özkendir, D.; ćelebi, C.

    2018-01-01

    Adsorbate induced variations in the electrical conductivity of graphene layers with two different types of charge carriers are investigated by using the Transient Photocurrent Spectroscopy (TPS) measurement technique. In-vacuum TPS measurements taken for a duration of 5 ks revealed that the adsorption/desorption of atmospheric adsorbates leads to more than a 110% increment and a 45% decrement in the conductivity of epitaxial graphene (n-type) and chemical vapor deposition graphene (p-type) layers on semi-insulating silicon carbide (SiC) substrates, respectively. The graphene layers on SiC are encapsulated and passivated with a thin SiO2 film grown by the Pulsed Electron Deposition method. The measurements conducted for short periods and a few cycles showed that the encapsulation process completely suppresses the time dependent conductivity instability of graphene independent of its charge carrier type. The obtained results are used to construct an experimental model for identifying adsorbate related conductivity variations in graphene and also in other 2D materials with an inherently high surface-to-volume ratio.

  15. A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Nakhaie, Siamak; Krause, Thilo; Liu, Xianjie; Ramsteiner, Manfred; Hanke, Michael; Riechert, Henning; J. Lopes, J. Marcelo

    2017-02-01

    Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials.

  16. Capture Zone Distributions and Island Morphologies in Organic Epitaxy and Graphene Formation

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Einstein, T. L.

    2013-03-01

    Stating that island nucleation is an essential step in the formation of an epitaxial or supported layer may appear trivially obvious. However, less trivial is the observation that the size of the critical nucleus plays a crucial role in that it determines both the island density (and therefore the size of domains) and the evolution of the island morphology. In this talk we will describe recent developments in the analysis of capture zone distributions (CZD) specifically tailored for application to organic materials. We will also describe specific features of organic and graphene island morphologies, and discuss how they are related to the nucleation process and to the size of the critical nucleus. Work at UMD supported by NSF-MRSEC, Grant DMR 05-20471 and NSF CHE 07-49949

  17. The influence of selective chemical doping on clean, low-carrier density SiC epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Chuang, Chiashain; Yang, Yanfei; Huang, Lung-I.; Liang, Chi-Te; Elmquist, Randolph E.; National Institute of of Standards; Technology Collaboration; National Taiwan University, Department of Physics Collaboration

    2015-03-01

    The charge-transfer effect of ambient air on magneto-transport in polymer-free SiC graphene was investigated. Interestingly, adsorption of atmospheric gas molecules on clean epitaxial graphene can reduce the carrier density to near charge neutrality, allowing observation of highly precise v = 2 quantum Hall plateaus. The atmospheric adsorbates were reproducibly removed and pure gases (N2, O2, CO2, H2O) were used to form new individual adsorbates on SiC graphene. Our experimental results (τt/τq ~ 2) support the theoretical predictions for the ratio of transport relaxation time τt to quantum lifetime τq in clean graphene. The analysis of Shubnikov-de Haas oscillations at intermediate doping levels indicates that the carrier scattering is reduced by water and oxygen so as to increase both the classical and quantum mobility. This study points to the key dopant gases in ambient air and also paves the way towards extremely precise quantized Hall resistance standards in epitaxial graphene systems with carrier density tuned by exposure to highly pure gases and vacuum annealing treatment. National Institute of Standard and Technology.

  18. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.

    PubMed

    Lv, Ruitao; Robinson, Joshua A; Schaak, Raymond E; Sun, Du; Sun, Yifan; Mallouk, Thomas E; Terrones, Mauricio

    2015-01-20

    CONSPECTUS: In the wake of the discovery of the remarkable electronic and physical properties of graphene, a vibrant research area on two-dimensional (2D) layered materials has emerged during the past decade. Transition metal dichalcogenides (TMDs) represent an alternative group of 2D layered materials that differ from the semimetallic character of graphene. They exhibit diverse properties that depend on their composition and can be semiconductors (e.g., MoS2, WS2), semimetals (e.g., WTe2, TiSe2), true metals (e.g., NbS2, VSe2), and superconductors (e.g., NbSe2, TaS2). The properties of TMDs can also be tailored according to the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. For example, 2H-MoS2 is semiconducting, whereas 1T-MoS2 is metallic. Bulk 2H-MoS2 possesses an indirect band gap, but when 2H-MoS2 is exfoliated into monolayers, it exhibits direct electronic and optical band gaps, which leads to enhanced photoluminescence. Therefore, it is important to learn to control the growth of 2D TMD structures in order to exploit their properties in energy conversion and storage, catalysis, sensing, memory devices, and other applications. In this Account, we first introduce the history and structural basics of TMDs. We then briefly introduce the Raman fingerprints of TMDs of different layer numbers. Then, we summarize our progress on the controlled synthesis of 2D layered materials using wet chemical approaches, chemical exfoliation, and chemical vapor deposition (CVD). It is now possible to control the number of layers when synthesizing these materials, and novel van der Waals heterostructures (e.g., MoS2/graphene, WSe2/graphene, hBN/graphene) have recently been successfully assembled. Finally, the unique optical, electrical, photovoltaic, and catalytic properties of few-layered TMDs are summarized and discussed. In particular, their enhanced photoluminescence (PL), photosensing, photovoltaic conversion, and

  19. Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yu; Meng, Dechao; Wang, Jianlin

    2015-07-06

    There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high qualitymore » Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.« less

  20. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.

    PubMed

    Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li

    2012-01-01

    Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.

  1. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Yuan, Haoran; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-01-10

    Herein we develop a facile strategy for fabricating nickel particle encapsulated in few-layer nitrogen-doped graphene supported by graphite carbon sheets as a high-performance electromagnetic wave (EMW) absorbing material. The obtained material exhibits sheetlike morphology with a lateral length ranging from a hundred nanometers to 2 μm and a thickness of about 23 nm. Nickel nanoparticles with a diameter of approximately 20 nm were encapsulated in about six layers of nitrogen-doped graphene. As applied for electromagnetic absorbing material, the heteronanostructures exhibit excellent electromagnetic wave absorption property, comparable to most EMW absorbing materials previously reported. Typically, the effective absorption bandwidth (the frequency region falls within the reflection loss below -10 dB) is up to 8.5 GHz at the thicknesses of 3.0 mm for the heteronanostructures with the optimized Ni content. Furthermore, two processes, carbonization at a high temperature and subsequent treatment in hot acid solution, were involved in the preparation of the heteronanostructures, and thus, mass production was achieved easily, facilitating their practical applications.

  2. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  3. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing

    2017-12-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.

  4. Blinking suppression of CdTe quantum dots on epitaxial graphene and the analysis with Marcus electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Takuya; Tamai, Naoto, E-mail: tamai@kwansei.ac.jp; Kutsuma, Yasunori

    We have prepared epitaxial graphene by a Si sublimation method from 4H-SiC. Single-particle spectroscopy of CdTe quantum dots (QDs) on epitaxial graphene covered with polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) showed the suppression of luminescence blinking and ∼10 times decreased luminescence intensity as compared with those on a glass. The electronic coupling constant, H{sub 01}, between CdTe QDs and graphene was calculated to be (3.3 ± 0.4) × 10{sup 2 }cm{sup −1} in PVP and (3.7 ± 0.8) × 10{sup 2 }cm{sup −1} in PEG based on Marcus theory of electron transfer and Tang-Marcus model of blinking with statistical distribution.

  5. Electronic resonant tunneling on graphene superlattice heterostructures with a tunable graphene layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shan; Cui, Liyong; Liu, Fen

    We have theoretically investigated the electronic resonant tunneling effect in graphene superlattice heterostructures, where a tunable graphene layer is inserted between two different superlattices. It is found that a complete tunneling state appears inside the enlarged forbidden gap of the heterostructure by changing the thickness of the inserted graphene layer and the transmittance of the tunneling state depends on the thickness of the inserted layer. Furthermore, the frequency of the tunneling state changes with the thickness of the inserted graphene layer but it always located in the little overlapped forbidden gap of two graphene superlattices. Therefore, both a perfect tunnelingmore » state and an ultrawide forbidden gap are realized in such heterostrutures. Since maximum probability densities of the perfect tunneling state are highly localized near the interface between the inserted graphene layer and one graphene superlattice, it can be named as an interface-like state. Such structures are important to fabricate high-Q narrowband electron wave filters.« less

  6. Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol.

    PubMed

    Esteve-Adell, Iván; Bakker, Nadia; Primo, Ana; Hensen, Emiel; García, Hermenegildo

    2016-12-14

    Pt nanoparticles (NPs) strongly grafted on few-layers graphene (G) have been prepared by pyrolysis under inert atmosphere at 900 °C of chitosan films (70-120 nm thickness) containing adsorbed H 2 PtCl 6 . Preferential orientation of exposed Pt facets was assessed by X-ray diffraction of films having high Pt loading where the 111 and 222 diffraction lines were observed and also by SEM imaging comparing elemental Pt mapping with the image of the 111 oriented particles. Characterization techniques allow determination of the Pt content (from 45 ng to 1 μg cm -2 , depending on the preparation conditions), particle size distribution (9 ± 2 nm), and thickness of the films (12-20 nm). Oriented Pt NPs on G exhibit at least 2 orders of magnitude higher catalytic activity for aqueous-phase reforming of ethylene glycol to H 2 and CO 2 compared to analogous samples of randomly oriented Pt NPs supported on preformed graphene. Oriented [Formula: see text]/fl-G undergoes deactivation upon reuse, the most probable cause being Pt particle growth, probably due to the presence of high concentrations of carboxylic acids acting as mobilizing agents during the course of the reaction.

  7. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy

    PubMed Central

    Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha

    2015-01-01

    Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113

  8. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such asmore » the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.« less

  9. Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene

    NASA Astrophysics Data System (ADS)

    Hou, Dandan; Liu, Qinfu; Wang, Xianshuai; Qiao, Zhichuan; Wu, Yingke; Xu, Bohui; Ding, Shuli

    2018-05-01

    The mass production of graphene with high quality is desirable for its wide applications. Here, we demonstrated a facile method to exfoliate natural graphite into graphene in organic solvent by assisting of urea. The exfoliation of graphite may originate from the "molecular wedge" effect of urea, which can intercalate into the edge of natural graphite, thus facilitating the production of graphene dispersion with a high concentration up to 1.2 mg/mL. The obtained graphene is non-oxidized with negligible defects. Therefore, this approach has great promise in bulk production of graphene with superior quality for a variety of applications.

  10. Surface morphological evolution of epitaxial CrN(001) layers

    NASA Astrophysics Data System (ADS)

    Frederick, J. R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at Ts=600-800 °C by ultrahigh-vacuum magnetron sputter deposition in pure N2 discharges from an oblique deposition angle α=80°. Layers grown at 600 °C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 °C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 °C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as Ts is raised from 600 to 700 to 800 °C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 °C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent β>0.5. In contrast, kinetic roughening controls the surface morphology for Ts=800 °C, as well as the epitaxial fraction of the layers grown at 600 and 700 °C, yielding relatively smooth surfaces and β<=0.27.

  11. Few-layer and symmetry-breaking effects on the electrical properties of ordered CF3Cl phases on graphene

    NASA Astrophysics Data System (ADS)

    Morales-Cifuentes, Josue; Wang, Yilin; Reutt-Robey, Janice; Einstein, T. L.

    2014-03-01

    An effective pseudopotential mechanism for breaking the inherent sub-lattice symmetry of graphene has been studied using DFT calculations on hexagonal boron nitride. Electrical detection of CF3Cl phase transitions on graphene shows the existence of a commensurate ordered phase in which this can be tested. We study the electronic properties of this phase using VASP ver 5.3.3, with ab initio van der Waals density functionals (vdW-DF1 and vdW-DF2). Consistent with a physisorbed phase, binding energies and charge transfer per CF3Cl molecule are calculated to be on the order of 280meV and 0.01e, respectively. By exploring different coverages and orientations of this ordered phase we are able to open a band gap in some configurations; said gap is in the range of 8 to 80meV depending on the strength of the effective pseudopotential. Furthermore, we calculate the screening of these effects in bi-layer and tri-layer graphene. Work supported by NSF-MRSEC at UMD, grant DMR 05-20471 and NSF-CHE 13-05892.

  12. Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

    PubMed Central

    Ademi, Abdulakim; Grozdanov, Anita; Paunović, Perica; Dimitrov, Aleksandar T

    2015-01-01

    Summary A model consisting of an equation that includes graphene thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current regime. Herein, the model is enhanced by a partitioning of the corresponding 2θ interval, resulting in significantly improved accuracy of the results. The model curves obtained exhibit excellent fitting to the XRD intensities curves of the studied graphene samples. The employed equation parameters make it possible to calculate the j-layer graphene region coverage of the graphene samples, and hence the number of graphene layers. The results of the thorough analysis are in agreement with the calculated number of graphene layers from Raman spectra C-peak position values and indicate that the graphene samples studied are few-layered. PMID:26665083

  13. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches

    PubMed Central

    Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng

    2017-01-01

    Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532

  14. STM/STS investigation of edge structure in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Ridene, M.; Girard, J. C.; Travers, L.; David, C.; Ouerghi, A.

    2012-08-01

    In this paper, we have used low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) to study zigzag or armchair edges of epitaxial graphene on 6H-SiC (0001). The monolayer carbon structures exhibit occasionally one-dimensional ridge (1D) in close vicinity to step edge. This ridge exhibits different edges orientations in armchair-zigzag transition which give rise to different local density of states (LDOS) along this 1D structure. This ridge formation is likely explained by residual compressive in-plane stresses.

  15. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    PubMed

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  16. Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers

    NASA Astrophysics Data System (ADS)

    Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.

    2015-05-01

    The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.

  17. Concurrent agglomeration and straining govern the transport of 14C-labeled few-layer graphene in saturated porous media.

    PubMed

    Su, Yu; Gao, Bin; Mao, Liang

    2017-05-15

    Deposition of graphene on environmental surfaces will dictate its transport and risks. In this work, the deposition, mobilization, and transport of 14 C-labeled few-layer graphene (FLG) in saturated quartz sand were systematically examined. Increasing solution ionic strength (IS) (1-100 mmol/L NaCl) resulted in greater retention of FLG (33-89%) in the sand and more hyper-exponential distribution of FLG along the sand column. Only a small fraction (≤7.4%) of the retained FLG was remobilized due to perturbation of IS by deionized water. These results indicate that trapping in pore spaces (i.e., physical straining) plays a dominant role in FLG deposition rather than attachment onto the surfaces of the sand. When IS, FLG input concentration, and flow velocity favor particle-particle interaction over particle-collector interaction, concurrent agglomeration within the pores promotes straining. In addition, electrostatic and steric repulsion that derived from the adsorbed organic macromolecules on FLG effectively reduced agglomeration and thereby enhanced transport and release of FLG. Moreover, the recovery of FLG (that deposited at 100 mmol/L NaCl) in the effluent reached 33% after speeding up the deionized water flushing rate. These findings highlight the need for FLG management in view of variations in transport behavior when assessing water quality and associated risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  19. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirikumara, Hansika I., E-mail: hansi.sirikumara@siu.edu; Jayasekera, Thushari, E-mail: thushari@siu.edu

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is idealmore » for achieving charge-neutral EG.« less

  20. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  1. Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.

    PubMed

    Hong, Hyo-Ki; Jo, Junhyeon; Hwang, Daeyeon; Lee, Jongyeong; Kim, Na Yeon; Son, Seungwoo; Kim, Jung Hwa; Jin, Mi-Jin; Jun, Young Chul; Erni, Rolf; Kwak, Sang Kyu; Yoo, Jung-Woo; Lee, Zonghoon

    2017-01-11

    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.

  2. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hong, Min; Chen, Jiafu; Hu, Tianzhao; Xu, Qun

    2018-06-01

    Porous amorphous carbons with large number of defects and dangling bonds indicate great potential application in energy storage due to high specific surface area and strong adsorption properties, but poor conductivity and pore connection limit their practical application. Here few-layer graphene framework with high electrical conductivity is embedded and meanwhile hierarchical porous structure is constructed in amorphous hollow carbon spheres (HCSs) by catalysis of Fe clusters of angstrom scale, which are loaded in the interior of crosslinked polystyrene via a novel method. These unique HCSs effectively integrate the inherent properties from two-dimensional sp2-hybridized carbon, porous amorphous carbon, hierarchical pore structure and thin shell, leading to high specific capacitance up to 561 F g-1 at a current density of 0.5 A g-1 as an electrode of supercapacitor with excellent recyclability, which is much higher than those of other reported porous carbon materials up to present.

  3. Dislocations in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Butz, Benjamin; Dolle, Christian; Niekiel, Florian; Weber, Konstantin; Waldmann, Daniel; Weber, Heiko B.; Meyer, Bernd; Spiecker, Erdmann

    2014-01-01

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating ABAC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and

  4. Dislocations in bilayer graphene.

    PubMed

    Butz, Benjamin; Dolle, Christian; Niekiel, Florian; Weber, Konstantin; Waldmann, Daniel; Weber, Heiko B; Meyer, Bernd; Spiecker, Erdmann

    2014-01-23

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB B[Symbol: see text]AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic

  5. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    PubMed

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  6. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    PubMed

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  7. SERS substrate based on silver nanoparticles and graphene: Dependence on the layer number of graphene

    NASA Astrophysics Data System (ADS)

    Garg, Preeti; Soni, R. K.; Raman, R.

    2018-05-01

    In this report, we describe a low-cost fabrication process for highly sensitive SERS substrate by using thermal evaporation technique. The SERS substrate structure consists of silver nanoparticles deposited on monolayer, bilayer and few layer graphene. The fabricated SERS substrates are investigated by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), and confocal Raman spectroscope. From the surface morphology we have verified that the fabricated SERS substrate consist of high-density of silver nanoparticles with their size distribution varies from 10 to 150 nm. The surface-enhanced Raman scattering activities of these nanostructures is highest for monolayer graphene.

  8. Epitaxial graphene on SiC(0001): functional electrical microscopy studies and effect of atmosphere.

    PubMed

    Kazakova, O; Burnett, T L; Patten, J; Yang, L; Yakimova, R

    2013-05-31

    Surface potential distribution, V(CPD), and evolution of atmospheric adsorbates on few and multiple layers (FLG and MLG) of graphene grown on SiC(0001) substrate have been investigated by electrostatic and Kelvin force microscopy techniques at T = 20-120 °C. The change of the surface potential distribution, ΔV(CPD), between FLG and MLG is shown to be temperature dependent. The enhanced ΔV(CPD) value at 120 °C is associated with desorption of adsorbates at high temperatures and the corresponding change of the carrier balance. The nature of the adsorbates and their evolution with temperature are considered to be related to the process of adsorption and desorption of the atmospheric water on MLG domains. We demonstrate that both the nano- and microscale wettability of the material are strongly dependent on the number of graphene layers.

  9. Integration of the ferromagnetic insulator EuO onto graphene.

    PubMed

    Swartz, Adrian G; Odenthal, Patrick M; Hao, Yufeng; Ruoff, Rodney S; Kawakami, Roland K

    2012-11-27

    We have demonstrated the deposition of EuO films on graphene by reactive molecular beam epitaxy in a special adsorption-controlled and oxygen-limited regime, which is a critical advance toward the realization of the exchange proximity interaction (EPI). It has been predicted that when the ferromagnetic insulator (FMI) EuO is brought into contact with graphene, an overlap of electronic wave functions at the FMI/graphene interface can induce a large spin splitting inside the graphene. Experimental realization of this effect could lead to new routes for spin manipulation, which is a necessary requirement for a functional spin transistor. Furthermore, EPI could lead to novel spintronic behavior such as controllable magnetoresistance, gate tunable exchange bias, and quantized anomalous Hall effect. However, experimentally, EuO has not yet been integrated onto graphene. Here we report the successful growth of high-quality crystalline EuO on highly oriented pyrolytic graphite and single-layer graphene. The epitaxial EuO layers have (001) orientation and do not induce an observable D peak (defect) in the Raman spectra. Magneto-optic measurements indicate ferromagnetism with a Curie temperature of 69 K, which is the value for bulk EuO. Transport measurements on exfoliated graphene before and after EuO deposition indicate only a slight decrease in mobility.

  10. Tuning carrier density across Dirac point in epitaxial graphene on SiC by corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lartsev, Arseniy; Yager, Tom; Lara-Avila, Samuel, E-mail: samuel.lara@chalmers.se

    We demonstrate reversible carrier density control across the Dirac point (Δn ∼ 10{sup 13 }cm{sup −2}) in epitaxial graphene on SiC (SiC/G) via high electrostatic potential gating with ions produced by corona discharge. The method is attractive for applications where graphene with a fixed carrier density is needed, such as quantum metrology, and more generally as a simple method of gating 2DEGs formed at semiconductor interfaces and in topological insulators.

  11. Surface conductance of graphene from non-contact resonant cavity.

    PubMed

    Obrzut, Jan; Emiroglu, Caglar; Kirillov, Oleg; Yang, Yanfei; Elmquist, Randolph E

    2016-06-01

    A method is established to reliably determine surface conductance of single-layer or multi-layer atomically thin nano-carbon graphene structures. The measurements are made in an air filled standard R100 rectangular waveguide configuration at one of the resonant frequency modes, typically at TE 103 mode of 7.4543 GHz. Surface conductance measurement involves monitoring a change in the quality factor of the cavity as the specimen is progressively inserted into the cavity in quantitative correlation with the specimen surface area. The specimen consists of a nano-carbon-layer supported on a low loss dielectric substrate. The thickness of the conducting nano-carbon layer does not need to be explicitly known, but it is assumed that the lateral dimension is uniform over the specimen area. The non-contact surface conductance measurements are illustrated for a typical graphene grown by chemical vapor deposition process, and for a high quality monolayer epitaxial graphene grown on silicon carbide wafers for which we performed non-gated quantum Hall resistance measurements. The sequence of quantized transverse Hall resistance at the Landau filling factors ν = ±6 and ±2, and the absence of the Hall plateau at ν = 4 indicate that the epitaxially grown graphene is a high quality mono-layer. The resonant microwave cavity measurement is sensitive to the surface and bulk conductivity, and since no additional processing is required, it preserves the integrity of the conductive graphene layer. It allows characterization with high speed, precision and efficiency, compared to transport measurements where sample contacts must be defined and applied in multiple processing steps.

  12. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  13. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold.

    PubMed

    Leicht, Philipp; Zielke, Lukas; Bouvron, Samuel; Moroni, Riko; Voloshina, Elena; Hammerschmidt, Lukas; Dedkov, Yuriy S; Fonin, Mikhail

    2014-04-22

    Addressing the multitude of electronic phenomena theoretically predicted for confined graphene structures requires appropriate in situ fabrication procedures yielding graphene nanoflakes (GNFs) with well-defined geometries and accessible electronic properties. Here, we present a simple strategy to fabricate quasi-free-standing GNFs of variable sizes, performing temperature programmed growth of graphene flakes on the Ir(111) surface and subsequent intercalation of gold. Using scanning tunneling microscopy (STM), we show that epitaxial GNFs on a perfectly ordered Au(111) surface are formed while maintaining an unreconstructed, singly hydrogen-terminated edge structure, as confirmed by the accompanying density functional theory (DFT) calculations. Using tip-induced lateral displacement of GNFs, we demonstrate that GNFs on Au(111) are to a large extent decoupled from the Au(111) substrate. The direct accessibility of the electronic states of a single GNF is demonstrated upon analysis of the quasiparticle interference patterns obtained by low-temperature STM. These findings open up an interesting playground for diverse investigations of graphene nanostructures with possible implications for device fabrication.

  14. Layer-controllable graphene by plasma thinning and post-annealing

    NASA Astrophysics Data System (ADS)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  15. A structural and electronic comparison of armchair and zigzag epitaxial graphene sidewall nanoribbons

    NASA Astrophysics Data System (ADS)

    Nevius, Meredith; Wang, F.; Palacio, I.; Celis, A.; Tejeda, A.; Taleb-Ibrahimi, A.; de Heer, W.; Berger, C.; Conrad, E.

    2014-03-01

    Graphene grown on sidewalls of trenches etched in SiC shows particular promise as a candidate for post-Si CMOS electronics because of its ballistic transport, exceptional mobilities, low intrinsic doping, and the opening of a large band gap. However, before definitive progress can be made toward epitaxial graphene-based transistors, we must fully understand the nuances of graphene ribbon growth on different SiC facets. We have now confirmed that sidewall ribbons grown in graphene's two primary crystallographic directions (``armchair'' and ``zigzag'') differ greatly in both structure and electronic band-structure. We present data from both geometries obtained using low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), angle-resolved photoemission spectroscopy (ARPES), photoemission electron microscopy (PEEM), micro-ARPES and dark-field micro-ARPES. We demonstrate that while graphene grows on stable facets of trenches oriented for armchair edge growth, trenches oriented for zigzag edge growth prefer narrow ribbons of graphene on the (0001) surface near the trench edge. The structure of these zigzag edge graphene ribbons is complex and paramount to understanding their transport. This work was supported by the NSF under grants DMR-1005880 and DMR-0820382, the W. M. Keck Foundation and the Partner University Fund from the Embassy of France

  16. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-08

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

  17. Towards Lego Snapping; Integration of Carbon Nanotubes and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Nasseri, Mohsen; Boland, Mathias; Farrokhi, M. Javad; Strachan, Douglas

    Integration of semiconducting, conducting, and insulating nanomaterials into precisely aligned complicated systems is one of the main challenges to the ultimate size scaling of electronic devices, which is a key goal in nanoscience and nanotechnology. This integration could be made more effective through controlled alignment of the crystallographic lattices of the nanoscale components. Of the vast number of materials of atomically-thin materials, two of the sp2 bonded carbon structures, graphene and carbon nanotubes, are ideal candidates for this type of application since they are built from the same backbone carbon lattice. Here we report carbon nanotube and graphene hybrid nanostructures fabricated through their catalytic synthesis and etching. The growth formations we have investigated through various high-resolution microscopy techniques provide evidence of lego-snapped interfaces between nanotubes and graphene into device-relevant orientations. We will finish with a discussion of the various size and energy regimes relevant to these lego-snapped interfaces and their implications on developing these integrated formations.

  18. Large-area, laterally-grown epitaxial semiconductor layers

    DOEpatents

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  19. Determining the Mechanism of Low Temperature Graphene Growth

    DTIC Science & Technology

    2014-05-27

    layer graphene over cobalt film crystallized on sapphire. ACS Nano, 2010. 4: p. 7407-7414. 8. Sutter, P.W., J. I. Flege and E. A. Sutter, Epitaxial...111). Journal of Physics, 2009. 11: p. 1-25. 15. Sukhdeo, D., Large area CVD of graphene over thin films of cobalt . 2009, Columbia University. p...B.R. Luo, W.P. Hu, G. Yu, Y.Q. Liu, Low Temperature Growth of Highly Nitrogen- doped Single Crystal Graphene Arrays by Chemical Vapor Deposition

  20. Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene

    PubMed Central

    Zhou, Yangbo; Fox, Daniel S; Maguire, Pierce; O’Connell, Robert; Masters, Robert; Rodenburg, Cornelia; Wu, Hanchun; Dapor, Maurizio; Chen, Ying; Zhang, Hongzhou

    2016-01-01

    Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy. PMID:26878907

  1. Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper

    PubMed Central

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1–10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics. PMID:25582557

  2. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper.

    PubMed

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J; Liu, Hua Kun

    2015-01-13

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics.

  3. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Daniels, Kevin M.; Jadidi, M. Mehdi; Sushkov, Andrei B.; Nath, Anindya; Boyd, Anthony K.; Sridhara, Karthik; Drew, H. Dennis; Murphy, Thomas E.; Myers-Ward, Rachael L.; Gaskill, D. Kurt

    2017-06-01

    Exploiting the underdeveloped terahertz range (~1012-1013 Hz) of the electromagnetic spectrum could advance many scientific fields (e.g. medical imaging for the identification of tumors and other biological tissues, non-destructive evaluation of hidden objects or ultra-broadband communication). Despite the benefits of operating in this regime, generation, detection and manipulation have proven difficult, as few materials have functional interactions with THz radiation. In contrast, graphene supports resonances in the THz regime through structural confinement of surface plasmons, which can lead to enhanced absorption. In prior work, the achievable plasmon resonances in such structures have been limited by multiple electron scattering mechanisms (i.e. large carrier scattering rates) which greatly broaden the resonance (>100 cm-1 3 THz). We report the narrowest room temperature Drude response to-date, 30 cm-1 (0.87 THz), obtained using quasi-free standing bilayer epitaxial graphene (QFS BLG) synthesized on (0 0 0 1)6H-SiC. This narrow response is due to a 4-fold increase in carrier mobility and improved thickness and electronic uniformity of QFS BLG. Moreover, QFS BLG samples patterned into microribbons targeting 1.8-5.7 THz plasmon resonances also exhibit low scattering rates (37-53 cm-1). Due to the improved THz properties of QFS BLG, the effects of e-beam processing on carrier scattering rates was determined and we found that fabrication conditions can be tuned to minimize the impact on optoelectronic properties. In addition, electrostatic gating of patterned QFS BLG shows narrow band THz amplitude modulation. Taken together, these properties of QFS BLG should facilitate future development of THz optoelectronic devices for monochromatic applications.

  4. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    PubMed

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  5. Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures

    PubMed Central

    Astuti, Budi; Tanikawa, Masahiro; Rahman, Shaharin Fadzli Abd; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI) structure by utilizing polycrystalline single layer graphene (SLG) as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD) technique. Cubic SiC (3C-SiC) thin film in (111) domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities.

  6. Nondestructive and in situ determination of graphene layers using optical fiber Fabry-Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun

    2017-02-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.

  7. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  8. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Winata, Toto, E-mail: toto@fi.itb.ac.id

    2016-04-19

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 – 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which relatedmore » with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.« less

  9. Incorporating isolated molybdenum (Mo) atoms into Bilayer Epitaxial Graphene on 4H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Huang, Han; Wan, Wen; Li, Hui; Wong, Swee Liang; Lv, Lu; Gao, Yongli; Wee, Andrew T. S.

    2014-03-01

    The atomic structures and electronic properties of isolated Mo atoms in bilayer epitaxial graphene (BLEG) on 4H-SiC(0001) are investigated by low temperature scanning tunneling microscopy (LT-STM). LT-STM results reveal that isolated Mo dopants prefer to substitute C atoms at α-sites, and preferentially locate between the graphene bilayers. First-principles calculations confirm that the embedding of single Mo dopants within BLEG is energetically favorable as compared to monolayer graphene. The calculated bandstructures show that Mo-doped BLEG is n-doped, and each Mo atom introduces a local magnetic moment of 1.81 μB. Our findings demonstrate a simple and stable method to incorporate single transition metal dopants into the graphene lattice to tune its electronic and magnetic properties for possible use in graphene spin devices. NRF-CRP (Singapore) grants R-143-000-360-281and R-144-000-295-281. ``Shenghua Professorship'' startup funding from CSU and the support from the NSF of China (Grant No.11304398).

  10. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOEpatents

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  11. Reducing graphene device variability with yttrium sacrificial layers

    NASA Astrophysics Data System (ADS)

    Wang, Ning C.; Carrion, Enrique A.; Tung, Maryann C.; Pop, Eric

    2017-05-01

    Graphene technology has made great strides since the material was isolated more than a decade ago. However, despite improvements in growth quality and numerous "hero" devices, challenges of uniformity remain, restricting the large-scale development of graphene-based technologies. Here, we investigate and reduce the variability of graphene transistors by studying the effects of contact metals (with and without a Ti layer), resist, and yttrium (Y) sacrificial layers during the fabrication of hundreds of devices. We find that with optical photolithography, residual resist and process contamination are unavoidable, ultimately limiting the device performance and yield. However, using Y sacrificial layers to isolate the graphene from processing conditions improves the yield (from 73% to 97%), the average device performance (three-fold increase of mobility and 58% lower contact resistance), and the device-to-device variability (standard deviation of Dirac voltage reduced by 20%). In contrast to other sacrificial layer techniques, the removal of the Y sacrificial layer with dilute HCl does not harm surrounding materials, simplifying large-scale graphene fabrication.

  12. Dual functional passivating layer of graphene/TiO2 for improved performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad Umair; Mohamed, Norani Muti; Muhsan, Ali Samer; Khatani, Mehboob; Bashiri, Robabeh; Zaine, Siti Nur Azella; Shamsudin, Adel Eskandar

    2018-02-01

    The FTO/TiO2 interface plays a crucial role in the performance of dye-sensitized solar cells (DSSCs). The uneven microstructure morphology of FTO (fluorine-doped tin oxide) glass surface and high porosity of TiO2 layer produce tiny gaps and voids at the FTO/TiO2 interface that breaks the connectivity, leading to an increase in the recombination process. In the current work, a dual functional passivating layer is introduced by the combination of the graphene/TiO2 compact layer. The excellent mobility and flexibility of graphene is capitalized using its layer to fill the voids in the FTO surface, which can consequently reduce the charge transfer resistance at the interface, while the added TiO2 compact layer avoids direct contact with the electrolyte thus reducing the recombination. Graphene was synthesized by the facile solvent exfoliation method with the assistance of the probe sonication process. The parameters of sonication were optimized to achieve high-quality concentrated graphene inks (0.177-0.51 mg/ml). Raman spectroscopy and transmission electron microscopy (TEM) revealed that the graphene obtained is of a few-layer type. Electrochemical impedance spectroscopy (EIS) analysis indicated that the incorporated compact layer of graphene/TiO2 was capable of accelerating the charge transfer and reducing the recombination process at the FTO/TiO2 interface. Consequently, the photoconversion efficiency (PCE) for the device (1 cm2 active area) with double-coated graphene layer under one sun irradiation (AM 1.5) was found to be 49.49% higher than the conventional one.

  13. Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces.

    PubMed

    Al-Harthi, Salim Hamood; Elzain, Mohammed; Al-Barwani, Muataz; Kora'a, Amal; Hysen, Thomas; Myint, Myo Tay Zar; Anantharaman, Maliemadom Ramaswamy

    2012-08-19

    Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously.

  14. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    DOE PAGES

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; ...

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled usingmore » cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.« less

  15. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cui; Liu, Qingbin; Li, Jia

    2014-11-03

    We investigate the temperature dependent electrical transport properties of quasi-free standing bilayer graphene on 4H-SiC (0001) substrate. Three groups of monolayer epitaxial graphene and corresponding quasi-free standing bilayer graphene with different crystal quality and layer number homogeneity are prepared. Raman spectroscopy and atomic-force microscopy are used to obtain their morphologies and layer number, and verify the complete translation of buffer layer into graphene. The highest room temperature mobility reaches 3700 cm{sup 2}/V·s for the quasi-free standing graphene. The scattering mechanism analysis shows that poor crystal quality and layer number inhomogeneity introduce stronger interacting of SiC substrate to the graphene layer andmore » more impurities, which limit the carrier mobility of the quasi-free standing bilayer graphene samples.« less

  16. Identification of dominant scattering mechanism in epitaxial graphene on SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jingjing; Guo, Liwei, E-mail: lwguo@iphy.ac.cn, E-mail: chenx29@aphy.iphy.ac.cn; Jia, Yuping

    2014-05-05

    A scheme of identification of scattering mechanisms in epitaxial graphene (EG) on SiC substrate is developed and applied to three EG samples grown on SiC (0001), (112{sup ¯}0), and (101{sup ¯}0) substrates. Hall measurements combined with defect detection technique enable us to evaluate the individual contributions to the carrier scatterings by defects and by substrates. It is found that the dominant scatterings can be due to either substrate or defects, dependent on the substrate orientations. The EG on SiC (112{sup ¯}0) exhibits a better control over the two major scattering mechanisms and achieves the highest mobility even with a highmore » carrier concentration, promising for high performance graphene-based electronic devices. The method developed here will shed light on major aspects in governing carrier transport in EG to harness it effectively.« less

  17. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication.

    PubMed

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  18. Weakly doped InP layers prepared by liquid phase epitaxy using a modulated cooling rate

    NASA Astrophysics Data System (ADS)

    Krukovskyi, R.; Mykhashchuk, Y.; Kost, Y.; Krukovskyi, S.; Saldan, I.

    2017-04-01

    Epitaxial structures based on InP are widely used to manufacture a number of devices such as microwave transistors, light-emitting diodes, lasers and Gunn diodes. However, their temporary instability caused by heterogeneity of resistivity along the layer thickness and the influence of various external or internal factors prompts the need for the development of a new reliable technology for their preparation. Weak doping by Yb, Al and Sn together with modulation of the cooling rate applied to prepare InP epitaxial layers is suggested to be adopted within the liquid phase epitaxy (LPE) method. The experimental results confirm the optimized conditions created to get a uniform electron concentration in the active n-InP layer. A sharp profile of electron concentration in the n+-InP(substrate)/n-InP/n+-InP epitaxial structure was observed experimentally at the proposed modulated cooling rate of 0.3 °С-1.5 °С min-1. The proposed technological method can be used to control the electrical and physical properties of InP epitaxial layers to be used in Gunn diodes.

  19. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  20. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  1. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-01

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  2. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    PubMed

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  3. Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range

    NASA Astrophysics Data System (ADS)

    González-Campuzano, R.; Saniger, J. M.; Mendoza, D.

    2017-11-01

    The size-controllable and ordered Al nanocavities and nanodomes arrays were synthesized by electrochemical anodization of aluminum using phosphoric acid, citric acid and mixture both acids. Few layer graphene (FLG) was transferred directly on top of Al nanostructures and their morphology were evaluated by scanning electron microscopy. The interaction between FLG and the plasmonic properties of Al nanostructures arrays were investigated based on specular reflectivity in the ultraviolet-visible-infrared range and Raman spectroscopy. We found that their optical reflectivity was dramatically reduced as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 200-896 nm wavelength range, which were ascribed to plasmonic resonances. The plasmonic properties of these nanostructures do not exhibit evident changes by the presence of FLG in the UV-vis range of the electromagnetic spectrum. By contrast, the surface-enhanced Raman spectroscopy of FLG was observed in nanocavities and nanodomes structures that result in an intensity increase of the characteristic G and 2D bands of FLG induced by the plasmonic properties of Al nanostructures.

  4. Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Speck, Florian; Seyller, Thomas; Lopes, Joao Marcelo J.; Riechert, Henning

    2016-07-01

    The efficacy of Ni as a surfactant to improve the crystalline quality of graphene grown directly on dielectric Al2O3(0001) substrates by molecular beam epitaxy is examined. Simultaneously exposing the substrate to a Ni flux throughout C deposition at 950 °C led to improved charge carrier mobility and a Raman spectrum indicating less structural disorder in the resulting nanocrystalline graphene film. X-ray photoelectron spectroscopy confirmed that no residual Ni could be detected in the film and showed a decrease in the intensity of the defect-related component of the C1s level. Similar improvements were not observed when a lower substrate temperature (850 °C) was used. A close examination of the Raman spectra suggests that Ni reduces the concentration of lattice vacancies in the film, possibly by catalytically assisting adatom incorporation.

  5. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.

    PubMed

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Song, Eui Sang; Yu, Bin

    2014-11-07

    Schottky barriers formed by graphene (monolayer, bilayer, and multilayer) on 2D layered semiconductor tungsten disulfide (WS2) nanosheets are explored for solar energy harvesting. The characteristics of the graphene-WS2 Schottky junction vary significantly with the number of graphene layers on WS2, resulting in differences in solar cell performance. Compared with monolayer or stacked bilayer graphene, multilayer graphene helps in achieving improved solar cell performance due to superior electrical conductivity. The all-layered-material Schottky barrier solar cell employing WS2 as a photoactive semiconductor exhibits efficient photon absorption in the visible spectral range, yielding 3.3% photoelectric conversion efficiency with multilayer graphene as the Schottky contact. Carrier transport at the graphene/WS2 interface and the interfacial recombination process in the Schottky barrier solar cells are examined.

  6. Precision calibration of the silicon doping level in gallium arsenide epitaxial layers

    NASA Astrophysics Data System (ADS)

    Mokhov, D. V.; Berezovskaya, T. N.; Kuzmenkov, A. G.; Maleev, N. A.; Timoshnev, S. N.; Ustinov, V. M.

    2017-10-01

    An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.

  7. Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.

    PubMed

    Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon

    2018-06-01

    Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In situ monitoring of atomic layer epitaxy via optical ellipsometry

    NASA Astrophysics Data System (ADS)

    Lyzwa, F.; Marsik, P.; Roddatis, V.; Bernhard, C.; Jungbauer, M.; Moshnyaga, V.

    2018-03-01

    We report on the use of time-resolved optical ellipsometry to monitor the deposition of single atomic layers with subatomic sensitivity. Ruddlesden-Popper thin films of SrO(SrTiO3) n=4 were grown by means of metalorganic aerosol deposition in the atomic layer epitaxy mode on SrTiO3(1 0 0), LSAT(1 0 0) and DyScO3(1 1 0) substrates. The measured time dependences of ellipsometric angles, Δ(t) and Ψ(t), were described by using a simple optical model, considering the sequence of atomic layers SrO and TiO2 with corresponding bulk refractive indices. As a result, valuable online information on the atomic layer epitaxy process was obtained. Ex situ characterization techniques, i.e. transmission electron microscopy, x-ray diffraction and x-ray reflectometry verify the crystal structure and confirm the predictions of optical ellipsometry.

  9. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. © 2012 American Chemical Society

  10. Layer-selective synthesis of bilayer graphene via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Choi, Kyoungjun; Robertson, John; Park, Hyung Gyu

    2017-09-01

    A controlled synthesis of high-quality AB-stacked bilayer graphene by chemical vapor deposition demands a detailed understanding of the mechanism and kinetics. By decoupling the growth of the two layers via a growth-and-regrowth scheme, we report the kinetics and termination mechanisms of the bilayer graphene growth on copper. We observe, for the first time, that the secondary layer growth follows Gompertzian kinetics. Our observations affirm the postulate of a time-variant transition from a mass-transport-limited to a reaction-limited regimes and identify the mechanistic disparity between the monolayer growth and the secondary-layer expansion underneath the monolayer cover. It is the continuous carbon supply that drives the expansion of the graphene secondary layer, rather than the initially captured carbon amount, suggesting an essential role of the surface diffusion of reactant adsorbates in the interspace between the top graphene layer and the underneath copper surface. We anticipate that the layer selectivity of the growth relies on the entrance energetics of the adsorbed reactants to the graphene-copper interspace across the primary-layer edge, which could be engineered by tailoring the edge termination state. The temperature-reliant saturation area of the secondary-layer expansion is understood as a result of competitive attachment of carbon and hydrogen adatoms to the secondary-layer graphene edge.

  11. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  12. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    PubMed

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  13. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.

    PubMed

    Jana, Dipankar; Porwal, S; Sharma, T K; Kumar, Shailendra; Oak, S M

    2014-04-01

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.

  14. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    PubMed Central

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  15. Effects of aluminum on epitaxial graphene grown on C-face SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chao, E-mail: chaxi@ifm.liu.se; Johansson, Leif I.; Hultman, Lars

    The effects of Al layers deposited on graphene grown on C-face SiC substrates are investigated before and after subsequent annealing using low energy electron diffraction (LEED), photoelectron spectroscopy, and angle resolved photoemission. As-deposited layers appear inert. Annealing at a temperature of about 400 °C initiates migration of Al through the graphene into the graphene/SiC interface. Further annealing at temperatures from 500 °C to 700 °C induces formation of an ordered compound, producing a two domain √7× √7R19° LEED pattern and significant changes in the core level spectra that suggest formation of an Al-Si-C compound. Decomposition of this compound starts after annealing at 800 °C, andmore » at 1000 °C, Al is no longer possible to detect at the surface. On Si-face graphene, deposited Al layers did not form such an Al-Si-C compound, and Al was still detectable after annealing above 1000 °C.« less

  16. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene

    PubMed Central

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-01-01

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586

  17. Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker

    NASA Astrophysics Data System (ADS)

    Tehrani, Z.; Burwell, G.; Mohd Azmi, M. A.; Castaing, A.; Rickman, R.; Almarashi, J.; Dunstan, P.; Miran Beigi, A.; Doak, S. H.; Guy, O. J.

    2014-09-01

    A generic electrochemical method of ‘bioreceptor’ antibody attachment to phenyl amine functionalized graphitic surfaces is demonstrated. Micro-channels of chemically modified multi-layer epitaxial graphene (MLEG) have been used to provide a repeatable and reliable response to nano-molar (nM) concentrations of the cancer risk (oxidative stress) biomarker 8-hydroxydeoxyguanosine (8-OHdG). X-ray photoelectron spectroscopy, Raman spectroscopy are used to characterize the functionalized MLEG. Confocal fluorescence microscopy using fluorescent-labelled antibodies indicates that the anti-8-OHdG antibody selectively binds to the phenyl amine-functionalized MLEG’s channel. Current-voltage measurements on functionalized channels showed repeatable current responses from antibody-biomarker binding events. This technique is scalable, reliable, and capable of providing a rapid, quantitative, label-free assessment of biomarkers at nano-molar (<20 nM) concentrations in analyte solutions. The sensitivity of the sensor device was investigated using varying concentrations of 8-OHdG, with changes in the sensor’s channel resistance observed upon exposure to 8-OHdG. Detection of 8-OHdG concentrations as low as 0.1 ng ml-1 (0.35 nM) has been demonstrated. This is five times more sensitive than reported enzyme linked immunosorbent assay tests (0.5 ng ml-1).

  18. Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2014-03-01

    Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.

  19. Moving towards the magnetoelectric graphene transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shi; Xiao, Zhiyong; Kwan, Chun -Pui

    Here, the interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr 2O 3 (0001) surfaces has been investigated. Electrostatic force microscopy and Kelvin probe force microscopy studies point to hole doping of few-layer graphene, with up to a 150 meV shift in the Fermi level, an aspect that is confirmed by Raman spectroscopy. Density functional theory calculations furthermore confirm the p-type nature of the graphene/chromia interface and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. A large magnetoelectrically controlled magneto-resistance can therefore be anticipated in transistor structures based on thismore » system, a finding important for developing graphene-based spintronic applications.« less

  20. Moving towards the magnetoelectric graphene transistor

    DOE PAGES

    Cao, Shi; Xiao, Zhiyong; Kwan, Chun -Pui; ...

    2017-10-30

    Here, the interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr 2O 3 (0001) surfaces has been investigated. Electrostatic force microscopy and Kelvin probe force microscopy studies point to hole doping of few-layer graphene, with up to a 150 meV shift in the Fermi level, an aspect that is confirmed by Raman spectroscopy. Density functional theory calculations furthermore confirm the p-type nature of the graphene/chromia interface and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. A large magnetoelectrically controlled magneto-resistance can therefore be anticipated in transistor structures based on thismore » system, a finding important for developing graphene-based spintronic applications.« less

  1. Anisotropic diffusion of oxygen on a few layers of black phosphorous

    NASA Astrophysics Data System (ADS)

    Fernández-Escamilla, Hector Noe; González-Chávez, Víctor Hugo; Martínez-Guerra, Eduardo; Garay-Tapia, Andrés; Martínez-Guerra, Edgar

    Recently, phosporene has also been scored well as a functional material for two-dimensional electronic and optoelectronic devices. That is, because in contrast to graphene, black phosphorous has an inherent, direct and appreciable band gap that can be modulated with the numbers of layes. However, the presence of exposed lone pairs at the surface makes phosphorous very reactive to air and humidity and consequently, degradation of its properties. No such fundamental explanation have been made, thus corresponding first principle predictions to evaluate diffusion of O over and along a mono- and a few layers are indispensable. Energy barriers and the mechanisms of oxygen diffusion on mono- and a few layer of black phosphorous were calculated using the NEB(Nudge Elastic band) method as implemented in Quantum Espresso. The electronic states are expanded in plane waves with kinetic-energy cutoffs of 25 and 200 Ry for the wave function and charge density, respectively. Also, as the H2O and O2 are polar molecules, spin-polarized calculations have been carried out. We evaluated the diffusion barriers for O2 and H2O on phosphorene along zigzag, armchair and intermediated directions. Our calculations show that diffusion of O is preferred on zigzag directions and dissociation of O2 is favored as a result of energy gains of about 2 eV. Also, apparently diffusion pathways are blocked along layers.

  2. Step edge influence on barrier height and contact area in vertical heterojunctions between epitaxial graphene and n-type 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadjer, M. J., E-mail: marko.tadjer.ctr@nrl.navy.mil; Nyakiti, L. O.; Robinson, Z.

    2014-02-17

    Vertical rectifying contacts of epitaxial graphene grown by Si sublimation on the Si-face of 4H-SiC epilayers were investigated. Forward bias preferential conduction through the step edges was correlated by linear current density normalization. This phenomenon was observed on samples with 2.7–5.8 monolayers of epitaxial graphene as determined by X-ray photoelectron spectroscopy. A modified Richardson plot was implemented to extract the barrier height (0.81 eV at 290 K, 0.99 eV at 30 K) and the electrically dominant SiC step length of a Ti/Al contact overlapping a known region of approximately 0.52 μm wide SiC terraces.

  3. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  4. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

    NASA Astrophysics Data System (ADS)

    Jang, Wonjun; Chung, Il Jun; Kim, Junwoo; Seo, Seongmin; Park, Yong Tae; Choi, Kyungwho

    2018-05-01

    In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These antiflammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

  5. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe₂ nanostructures.

    PubMed

    Bradley, Aaron J; Ugeda, Miguel M; da Jornada, Felipe H; Qiu, Diana Y; Ruan, Wei; Zhang, Yi; Wickenburg, Sebastian; Riss, Alexander; Lu, Jiong; Mo, Sung-Kwan; Hussain, Zahid; Shen, Zhi-Xun; Louie, Steven G; Crommie, Michael F

    2015-04-08

    Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures and helps to clarify how their electronic properties might be tuned in future 2D nanodevices.

  6. A comparative density functional study on electrical properties of layered penta-graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less

  7. Gallenene epitaxially grown on Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Tao, Min-Long; Tu, Yu-Bing; Sun, Kai; Wang, Ya-Li; Xie, Zheng-Bo; Liu, Lei; Shi, Ming-Xia; Wang, Jun-Zhong

    2018-07-01

    Gallenene, an analogue of graphene composed of gallium, is epitaxially grown on Si(1 1 1) surface and studied by low temperature scanning tunneling microscopy (LT-STM). The STM images display that the buffer layer has a superstructure with respect to the substrate lattice and the gallenene layer has a hexagonal honeycomb structure. The scanning tunneling spectra (STS) of the gallenene show that it behaves as a metallic layer. First-principles calculations give the proposed configuration. Our results provide a method to synthesize the gallenene and shed important light on the growth mechanism of it.

  8. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO 2f /SiO 2 (SiO 2f /SiO 2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO 2f /SiO 2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO 2f /SiO 2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO 2f /SiO 2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO 2f /SiO 2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  9. Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene

    DTIC Science & Technology

    2015-11-13

    at the monolayer MoS2 edges. KEYWORDS: transition metal dichalcogenide, silicon carbide , scanning tunneling microscopy, synchrotron X-ray scattering... silicon from SiC not only offers uniform large-area synthesis of graphene but also provides technological advantages over alternative methods such as...Röhrl, J.; et al. Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide . Nat. Mater. 2009, 8, 203−207. (18) Çelebi

  10. Electrochemistry at Edge of Single Graphene Layer in a Nanopore

    PubMed Central

    Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127

  11. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  12. Effect of Few-Layered Graphene-Based CdO Nanocomposite-Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Bykkam, Satish; Kalagadda, Bikshalu; Kalagadda, Venkateswara Rao; Ahmadipour, Mohsen; Chakra, Ch. Shilpa; Rajendar, V.

    2018-01-01

    A few-layered graphene (FLG)/cadmium oxide (CdO) nanocomposite was sucessfully prepared through ultrasonic-assisted synthesis. The morphology of FLG (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%)/CdO nanocomposites were characterized using high-resolution transmission electron microscopy and field emission scanning electron microscopy techniques. The optical properties were studied with the help of UV-Vis diffuse reflectance spectroscopy and Raman spectroscopy, while the crystalline phases were analyzed using x-ray diffraction. The doctor blade method was used to deposit FLG/CdO nanocomposites on fluorine-doped tin oxide conductive glass substrates. The effect of FLG weight percentage (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%) was studied on the power conversion efficiency of dye-sensitized solar cell applications. The photovoltaic characteristics, current density-voltage curves were measured with ruthenium (II)-based dye under air mass condition 1.5G, 100 m W m-2 of a solar simulator. The results showed that higher power conversion efficiency of 3.54% was achieved at the appropriate weight percentage of FLG (1.0 wt.%)/CdO nanocomposite, compared to the CdO and other nanocomposite working electrodes FLG (2.0 wt.%, and 3.0 wt.%)/CdO.

  13. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    PubMed

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively.

  14. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    PubMed

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.

  15. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  16. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.

    PubMed

    Barbera, Vincenzina; Guerra, Silvia; Brambilla, Luigi; Maggio, Mario; Serafini, Andrea; Conzatti, Lucia; Vitale, Alessandra; Galimberti, Maurizio

    2017-12-11

    In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp 2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.

  17. Mini array of quantum Hall devices based on epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed thatmore » the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.« less

  18. Graphene: from functionalization to devices

    NASA Astrophysics Data System (ADS)

    Tejeda, Antonio; Soukiassian, Patrick G.

    2014-03-01

    The year 2014 marks the first decade of the rise of graphene. Graphene, a single atomic layer of carbon atoms in sp2 bonding configuration having a honeycomb structure, has now become a well-known and well-established material. Among some of its many outstanding fundamental properties, one can mention a very high carrier mobility, a very large spin diffusion length, unsurpassed mechanical properties as graphene is the strongest material ever measured and an exceptional thermal conductivity scaling more than one order of magnitude above that of copper. After the first years of the graphene rush, graphene growth is now well controlled using various methods like epitaxial growth on silicon carbide substrate, chemical vapour deposition (CVD) or plasma techniques on metal, insulator or semiconductor substrates. More applied research is now taking over the initial studies on graphene production. Indeed, graphene is a promising material for many advanced applications such as, but not limited to, electronic, spintronics, sensors, photonics, micro/nano-electromechanical (MEMS/NEMS) systems, super-capacitors or touch-screen technologies. In this context, this Special Issue of the Journal of Physics D: Applied Physics on graphene reviews some of the recent achievements, progress and prospects in this field. It includes a collection of seventeen invited articles covering the current status and future prospects of some selected topics of strong current interest. This Special Issue is organized in four sections. The first section is dedicated to graphene devices, and opens with an article by de Heer et al on an investigation of integrating graphene devices with silicon complementary metal-oxide-semiconductor (CMOS) technology. Then, a study by Svintsov et al proposes a lateral all-graphene tunnel field-effect transistor (FET) with a high on/off current switching ratio. Next, Tsukagoshi et al present how a band-gap opening occurs in a graphene bilayer by using a perpendicular

  19. Graphene-Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy.

    PubMed

    Boucherif, Abderrahim Rahim; Boucherif, Abderraouf; Kolhatkar, Gitanjali; Ruediger, Andreas; Arès, Richard

    2017-05-01

    The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene-porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect-free new epitaxial semiconductor alloys and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy

    PubMed Central

    Xu, Zhongguang; Tian, Hao; Khanaki, Alireza; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin

    2017-01-01

    Two-dimensional (2D) hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is promising as a dielectric material for a wide variety of potential applications based on 2D materials. Synthesis of high-quality, large-size and single-crystalline h-BN domains is of vital importance for fundamental research as well as practical applications. In this work, we report the growth of h-BN films on mechanically polished cobalt (Co) foils using plasma-assisted molecular beam epitaxy. Under appropriate growth conditions, the coverage of h-BN layers can be readily controlled by growth time. A large-area, multi-layer h-BN film with a thickness of 5~6 nm is confirmed by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. In addition, the size of h-BN single domains is 20~100 μm. Dielectric property of as-grown h-BN film is evaluated by characterization of Co(foil)/h-BN/Co(contact) capacitor devices. Breakdown electric field is in the range of 3.0~3.3 MV/cm, which indicates that the epitaxial h-BN film has good insulating characteristics. In addition, the effect of substrate morphology on h-BN growth is discussed regarding different domain density, lateral size, and thickness of the h-BN films grown on unpolished and polished Co foils. PMID:28230178

  1. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111).

    PubMed

    Teeter, Jacob D; Costa, Paulo S; Mehdi Pour, Mohammad; Miller, Daniel P; Zurek, Eva; Enders, Axel; Sinitskii, Alexander

    2017-07-25

    Atomically precise chevron graphene nanoribbons (GNRs) have been synthesized on Cu(111) substrates by the surface-assisted coupling of 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (C 42 Br 2 H 26 ) and thermal cyclodehydrogenation of the resulting polymer. The GNRs form on Cu(111) epitaxially along the 〈112〉 crystallographic directions, which was found to be in agreement with the computational results, and at lower temperatures than on Au(111). This work demonstrates that the substrate plays an important role in the on-surface synthesis of GNRs and can result in new assembly modes of GNR structures.

  2. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  3. Accumulation of Background Impurities in Hydride Vapor Phase Epitaxy Grown GaN Layers

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander; Soukhoveev, Vitali; Kovalenkov, Oleg; Syrkin, Alexander; Shapovalov, Liza; Volkova, Anna; Ivantsov, Vladimir

    2013-08-01

    We report on accumulation of background Si and O impurities measured by secondary ion mass spectrometry (SIMS) at the sub-interfaces in undoped, Zn- and Mg-doped multi-layer GaN structures grown by hydride vapor phase epitaxy (HVPE) on sapphire substrates with growth interruptions. The impurities accumulation is attributed to reaction of ammonia with the rector quartz ware during the growth interruptions. Because of this effect, HVPE-grown GaN layers had excessive Si and O concentration on the surface that may hamper forming of ohmic contacts especially in the case of p-type layers and may complicate homo-epitaxial growth of a device structure.

  4. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  5. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  6. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  7. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Virojanadara, C.

    2012-02-01

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  8. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling.

    PubMed

    Boukhvalov, D W; Virojanadara, C

    2012-03-07

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  9. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    DOE PAGES

    Wang, Gang; Zhang, Miao; Liu, Su; ...

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substratemore » surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.« less

  10. Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobanov, D. N., E-mail: dima@ipmras.ru; Novikov, A. V.; Yunin, P. A.

    2016-11-15

    In this publication, the results of development of the technology of the epitaxial growth of GaN on single-crystal langasite substrates La{sub 3}Ga{sub 5}SiO{sub 14} (0001) by the plasma-assisted molecular-beam epitaxy (PA MBE) method are reported. An investigation of the effect of the growth temperature at the initial stage of deposition on the crystal quality and morphology of the obtained GaN layer is performed. It is demonstrated that the optimal temperature for deposition of the initial GaN layer onto the langasite substrate is about ~520°C. A decrease in the growth temperature to this value allows the suppression of oxygen diffusion frommore » langasite into the growing layer and a decrease in the dislocation density in the main GaN layer upon its subsequent high-temperature deposition (~700°C). Further lowering of the growth temperature of the nucleation layer leads to sharp degradation of the GaN/LGS layer crystal quality. As a result of the performed research, an epitaxial GaN/LGS layer with a dislocation density of ~10{sup 11} cm{sup –2} and low surface roughness (<2 nm) is obtained.« less

  11. Improved radiation tolerance of MAPS using a depleted epitaxial layer

    NASA Astrophysics Data System (ADS)

    Dorokhov, A.; Bertolone, G.; Baudot, J.; Brogna, A. S.; Colledani, C.; Claus, G.; De Masi, R.; Deveaux, M.; Dozière, G.; Dulinski, W.; Fontaine, J.-C.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I.; Voutsinas, G.; Wagner, F. M.; Winter, M.

    2010-12-01

    Tracking performance of Monolithic Active Pixel Sensors (MAPS) developed at IPHC (Turchetta, et al., 2001) [1] have been extensively studied (Winter, et al., 2001; Gornushkin, et al., 2002) [2,3]. Numerous sensor prototypes, called MIMOSA, were fabricated and tested since 1999 in order to optimise the charge collection efficiency and power dissipation, to minimise the noise and to increase the readout speed. The radiation tolerance was also investigated. The highest fluence tolerable for a 10 μm pitch device was found to be ˜1013 neq/cm2, while it was only 2×1012 neq/cm2 for a 20 μm pitch device. The purpose of this paper is to show that the tolerance to non-ionising radiation may be extended up to O(10 14) n eq/cm 2. This goal relies on a fabrication process featuring a 15 μm thin, high resistivity ( ˜1 kΩ cm) epitaxial layer. A sensor prototype (MIMOSA-25) was fabricated in this process to explore its detection performance. The depletion depth of the epitaxial layer at standard CMOS voltages ( <5 V) is similar to the layer thickness. Measurements with m.i.p.s show that the charge collected in the seed pixel is at least twice larger for the depleted epitaxial layer than for the undepleted one, translating into a signal-to-noise ratio (SNR) of ˜50. Tests after irradiation have shown that this excellent performance is maintained up to the highest fluence considered ( 3×1013 neq/cm2), making evidence of a significant extension of the radiation tolerance limits of MAPS. Standing for minimum ionising particle.

  12. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Tianhong

    2011-02-01

    The flexible cancer sensor based on layer-by-layer self-assembled graphene reported in this letter demonstrates features including ultrahigh sensitivity and low cost due to graphene material properties in nature, self-assembly technique, and polyethylene terephthalate substrate. According to the conductance change of self-assembled graphene, the label free and labeled graphene sensors are capable of detecting very low concentrations of prostate specific antigen down to 4 fg/ml (0.11 fM) and 0.4 pg/ml (11 fM), respectively, which are three orders of magnitude lower than carbon nanotube sensors under the same conditions of design, manufacture, and measurement.

  13. High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension.

    PubMed

    Park, Won Kyu; Yoon, Yeojoon; Song, Young Hyun; Choi, Su Yeon; Kim, Seungdu; Do, Youngjin; Lee, Junghyun; Park, Hyesung; Yoon, Dae Ho; Yang, Woo Seok

    2017-11-27

    In this work, we introduce a novel and facile method of exfoliating large-area, single-layer graphene oxide using a shearing stress. The shearing stress reactor consists of two concentric cylinders, where the inner cylinder rotates at controlled speed while the outer cylinder is kept stationary. We found that the formation of Taylor vortex flow with shearing stress can effectively exfoliate the graphite oxide, resulting in large-area single- or few-layer graphene oxide (GO) platelets with high yields (>90%) within 60 min of reaction time. Moreover, the lateral size of exfoliated GO sheets was readily tunable by simply controlling the rotational speed of the reactor and reaction time. Our approach for high-efficiency exfoliation of GO with controlled dimension may find its utility in numerous industrial applications including energy storage, conducting composite, electronic device, and supporting frameworks of catalyst.

  14. Terahertz magneto-optical properties of bi- and tri-layer graphene

    NASA Astrophysics Data System (ADS)

    Mei, Hongying; Xu, Wen; Wang, Chao; Yuan, Haifeng; Zhang, Chao; Ding, Lan; Zhang, Jin; Deng, Chao; Wang, Yifan; Peeters, Francois M.

    2018-05-01

    Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time τ for bi- and tri-layer graphene increases with magnetic field B roughly in a form τ∼ B2 . Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.

  15. Transfer of Graphene Layers Grown on SiC Wafers to Other Substrates and Their Integration into Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar; Kim, Hoon-Sik; MacLaren, Scott; Mason, Nadya; Petrov, Ivan; Rogers, John

    2010-03-01

    An approach to produce graphene films by epitaxial growth on silicon carbide substrate is promising, but its current implementation requires the use of SiC as the device substrate. We present a simple method for transferring epitaxial sheets of graphene on SiC to other substrates. The graphene was grown on the (0001) face of 6H-SiC by thermal annealing in a hydrogen atmosphere. Transfer was accomplished using a peeling process with a bilayer film of Gold/polyimide, to yield graphene with square millimeters of coverage on the target substrate. Back gated field-effect transistors fabricated on oxidized silicon substrates with Cr/Au as source-drain electrodes exhibited ambipolar characteristics with hole mobilities of ˜100 cm^2/V-s, and negligible influence of resistance at the contacts. This work was supported by the U.S. DOE, under Award No. DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  16. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.

    PubMed

    Politano, Antonio; de Juan, Fernando; Chiarello, Gennaro; Fertig, Herbert A

    2015-08-14

    In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.

  17. Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off

    NASA Astrophysics Data System (ADS)

    Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo

    2015-03-01

    We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.

  18. Optical transparency of graphene layers grown on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S., E-mail: sheshenayket@gmail.ru

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electronmore » transfer between graphene and the metal substrate.« less

  19. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1-xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fullymore » relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.« less

  20. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to bemore » nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.« less

  1. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  2. Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2017-10-01

    The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.

  3. Deposition of thin silicon layers on transferred large area graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupina, Grzegorz, E-mail: lupina@ihp-microelectronics.com; Kitzmann, Julia; Lukosius, Mindaugas

    2013-12-23

    Physical vapor deposition of Si onto transferred graphene is investigated. At elevated temperatures, Si nucleates preferably on wrinkles and multilayer graphene islands. In some cases, however, Si can be quasi-selectively grown only on the monolayer graphene regions while the multilayer islands remain uncovered. Experimental insights and ab initio calculations show that variations in the removal efficiency of carbon residuals after the transfer process can be responsible for this behavior. Low-temperature Si seed layer results in improved wetting and enables homogeneous growth. This is an important step towards realization of electronic devices in which graphene is embedded between two Si layers.

  4. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Thakur, Rajesh; Ahluwalia, P. K.

    2016-05-23

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  5. Plasmon enhanced terahertz emission from single layer graphene.

    PubMed

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  6. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  7. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B.; Woo, S. H.; Ahn, J. R.

    2016-08-01

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.

  8. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  9. Watering Graphene for Devices and Electricity

    NASA Astrophysics Data System (ADS)

    Guo, Wanlin; Yin, Jun; Li, Xuemei; Zhang, Zhuhua

    2013-03-01

    Graphene bring us into a fantastic two-dimensional (2D) age of nanotechnology, which can be fabricated and applied at wafer scale, visible at single layer but showing exceptional properties distinguished from its bulk form graphite, linking the properties of atomic layers with the engineering scale of our mankind. We shown that flow-induced-voltage in graphene can be 20 folds higher than in graphite, not only due to the giant Seebeck coefficient of single layer graphene, but also the exceptional interlayer interaction in few layer graphene. Extremely excitingly, water flow over graphene can generate electricity through unexpected interaction of the ions in the water with the graphene. We also find extraordinary mechanical-electric-magnetic coupling effects in graphene and BN systems. Such extraordinary multifield coupling effects in graphene and functional nanosystems open up new vistas in nanotechnology for efficient energy conversion, self-powering flexible devices and novel functional systems.

  10. The preparation and application of white graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Chenghong

    2014-12-01

    In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.

  11. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning.

    PubMed

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-26

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  12. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

    NASA Astrophysics Data System (ADS)

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-01

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  13. Synthesis and characterization of 2D graphene sheets from graphite powder

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh V.; Patel, R. H.; Chaki, S. H.

    2018-05-01

    Graphene is 2D material composed of one atom thick hexagonal layer. This material has attracted great attention among scientific community because of its high surface area, excellent mechanical properties and conductivity due to free electrons in the 2D lattice. There are various approaches to prepare graphene nanosheets such as top-down approach where graphite exfoliation and nanotube unwrapping can be done. The bottom up approach involves deposition of hydrocarbon through CVD, epitaxial method and organo-synthesis etc.. In present studies top down approach method was used to prepare graphene. The graphite powder with around 20 µm to 150µm particle size was subjected to concentrated strong acid in presence of strong oxidizing agent in order to increase the d-spacing between layers which leads to the disruption of crystal lattice as confirmed by XRD (X'pert Philips). FT Raman spectra taken via (Renishaw InVia microscope) of pristine powder and Graphene oxide revealed the increase in D-band and reduction in G-Band. These exfoliated sheets have oxygen rich complexes at the surface of the layers as characterised by FTIR technique. The GO powder was ultrasonicated to prepare the stable suspension of Graphene. The graphene layers were observed under TEM (Philips Tecnai 20) as 2dimensional sheets with around 1µm sizes.

  14. Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films

    DOE PAGES

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...

    2016-09-12

    Few-layer thick MoSe 2 and WSe 2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe 2 and WSe 2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricatemore » coupling between the spin and orbital degrees of freedom in this class of material.« less

  15. Superconductivity in few-layer stanene

    NASA Astrophysics Data System (ADS)

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; Li, Haiwei; Gong, Yan; Zhu, Kejing; Hu, Xiao-Peng; Zhang, Ding; Xu, Yong; Wang, Ya-Yu; He, Ke; Ma, Xu-Cun; Zhang, Shou-Cheng; Xue, Qi-Kun

    2018-04-01

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.

  16. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum

    PubMed Central

    Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole

    2015-01-01

    Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062

  17. Utilization of plasmas for graphene synthesis

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Keidar, Michael

    2013-10-01

    Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed in a honeycomb crystal lattice. Grapheen has tremendous range of potential applications ranging from high-speed transistors to electrochemical energy storage devices and biochemical sensors. Methods of graphene synthesis include mechanical exfoliation, epitaxial growth on SiC, CVD and colloidal suspensions. In this work the utilization of plasmas in synthesis process is considered. Types of carbonaceous structures produced by the anodic arc and regions of their synthesis were studied. Ultimate role of substrate temperature and transformations occurring with various carbonaceous structures generated in plasma discharge were considered. Formation of graphene film on copper substrate was detected at temperatures around the copper melting point. The film was consisted of several layers graphene flakes having typical sizes of about 200 nm. Time required for crystallization of graphene on externally heated substrates was determined. This work was supported by National Science Foundation (NSF Grant No. CBET-1249213).

  18. Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlayer Interactions in Few Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H.; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-01

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A3g shows a large redshift with increasing thickness; the experimental and theoretical results agreeing well. This thickness dependence is two times larger than that in the chalcogenide materials such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that in graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers, and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP, and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  19. Large Frequency Change with Thickness in Interlayer Breathing Mode--Significant Interlayer Interactions in Few Layer Black Phosphorus.

    PubMed

    Luo, Xin; Lu, Xin; Koon, Gavin Kok Wai; Castro Neto, Antonio H; Özyilmaz, Barbaros; Xiong, Qihua; Quek, Su Ying

    2015-06-10

    Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A(3)g shows a large redshift with increasing thickness; the experimental and theoretical results agree well. This thickness dependence is two times larger than that in the chalcogenide materials, such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that of graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

  20. Integration of graphene onto silicon through electrochemical reduction of graphene oxide layers in non-aqueous medium

    NASA Astrophysics Data System (ADS)

    Marrani, Andrea Giacomo; Coico, Anna Chiara; Giacco, Daniela; Zanoni, Robertino; Scaramuzzo, Francesca Anna; Schrebler, Ricardo; Dini, Danilo; Bonomo, Matteo; Dalchiele, Enrique A.

    2018-07-01

    Wafer-scale integration of reduced graphene oxide with H-terminated Si(1 1 1) surfaces has been accomplished by electrochemical reduction of a thin film of graphene oxide deposited onto Si by drop casting. Two reduction methods have been assayed and carried out in an acetonitrile solution. The initial deposit was subjected either to potential cycling in a 0.1 M TBAPF6/CH3CN solution at scan rates values of 20 mV s-1 and 50 mV s-1, or to a potentiostatic polarization at Eλ,c = -3 V for 450 s. The resulting interface has been characterized in its surface composition, morphology and electrochemical behavior by X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy and electrochemical measurements. The results evidence that few-layer graphene deposits on H-Si(1 1 1) were obtained after reduction, and use of organic instead of aqueous medium led to a very limited surface oxidation of the Si substrate and a very low oxygen-to-carbon ratio. The described approach is fast, simple, economic, scalable and straightforward, as one reduction cycle is already effective in promoting the establishment of a graphene-Si interface. It avoids thermal treatments at high temperatures, use of aggressive chemicals and the presence of metal contaminants, and enables preservation of Si(1 1 1) surface from oxidation.

  1. Plasmons in spatially separated double-layer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  2. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.

    PubMed

    Zhao, Pei; Kim, Sungjin; Chen, Xiao; Einarsson, Erik; Wang, Miao; Song, Yenan; Wang, Hongtao; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2014-11-25

    Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.

  3. Graphene-Based Flexible and Transparent Tunable Capacitors.

    PubMed

    Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen

    2015-12-01

    We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.

  4. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  5. MBE growth of few-layer 2H-MoTe2 on 3D substrates

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Sundar, Aditya; Liu, Xinyu; Azcatl, Angelica; Lochocki, Edward; Woll, Arthur R.; Rouvimov, Sergei; Hwang, Wan Sik; Lu, Ning; Peng, Xin; Lien, Huai-Hsun; Weisenberger, John; McDonnell, Stephen; Kim, Moon J.; Dobrowolska, Margaret; Furdyna, Jacek K.; Shen, Kyle; Wallace, Robert M.; Jena, Debdeep; Xing, Huili Grace

    2018-01-01

    MoTe2 is the least explored material in the Molybdenum-chalcogen family. Molecular beam epitaxy (MBE) provides a unique opportunity to tackle the small electronegativity difference between Mo and Te while growing layer by layer away from thermodynamic equilibrium. We find that for a few-layer MoTe2 grown at a moderate rate of ∼6 min per monolayer, a narrow window in temperature (above Te cell temperature) and Te:Mo ratio exists, where we can obtain pure phase 2H-MoTe2. This is confirmed using reflection high-energy electron diffraction (RHEED), Raman spectroscopy and X-ray photoemission spectroscopy (XPS). For growth on CaF2, Grazing incidence X-ray diffraction (GI-XRD) reveals a grain size of ∼90 Å and presence of twinned grains. In this work, we hypothesis the presence of excess Te incorporation in MBE grown few layer 2H-MoTe2. For film on CaF2, it is based on >2 Te:Mo stoichiometry using XPS as well as 'a' and 'c' lattice spacing greater than bulk 2H-MoTe2. On GaAs, its based on observations of Te crystallite formation on film surface, 2 × 2 superstructure observed in RHEED and low energy electron diffraction, larger than bulk c-lattice spacing as well as the lack of electrical conductivity modulation by field effect. Finally, thermal stability and air sensitivity of MBE 2H-MoTe2 is investigated by temperature dependent XRD and XPS, respectively.

  6. Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate

    PubMed Central

    Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, M. F.; Fekete, Paula

    2016-01-01

    We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below , the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor’s surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice. PMID:26883086

  7. Superconductivity in few-layer stanene

    DOE PAGES

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; ...

    2018-01-15

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less

  8. Superconductivity in few-layer stanene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less

  9. Observation of room-temperature high-energy resonant excitonic effects in graphene

    NASA Astrophysics Data System (ADS)

    Santoso, I.; Gogoi, P. K.; Su, H. B.; Huang, H.; Lu, Y.; Qi, D.; Chen, W.; Majidi, M. A.; Feng, Y. P.; Wee, A. T. S.; Loh, K. P.; Venkatesan, T.; Saichu, R. P.; Goos, A.; Kotlov, A.; Rübhausen, M.; Rusydi, A.

    2011-08-01

    Using a combination of ultraviolet-vacuum ultraviolet reflectivity and spectroscopic ellipsometry, we observe a resonant exciton at an unusually high energy of 6.3 eV in epitaxial graphene. Surprisingly, the resonant exciton occurs at room temperature and for a very large number of graphene layers N≈75, thus suggesting a poor screening in graphene. The optical conductivity (σ1) of a resonant exciton scales linearly with the number of graphene layers (up to at least 8 layers), implying the quantum character of electrons in graphene. Furthermore, a prominent excitation at 5.4 eV, which is a mixture of interband transitions from π to π* at the M point and a π plasmonic excitation, is observed. In contrast, for graphite the resonant exciton is not observable but strong interband transitions are seen instead. Supported by theoretical calculations, for N⩽ 28 the σ1 is dominated by the resonant exciton, while for N> 28 it is a mixture between exitonic and interband transitions. The latter is characteristic for graphite, indicating a crossover in the electronic structure. Our study shows that important elementary excitations in graphene occur at high binding energies and elucidate the differences in the way electrons interact in graphene and graphite.

  10. Graphene-copper composite with micro-layered grains and ultrahigh strength

    PubMed Central

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-01-01

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance. PMID:28169306

  11. Structure and magnetic properties of mono- and bi-layer graphene films on ultraprecision figured 4H-SiC(0001) surfaces.

    PubMed

    Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto

    2011-04-01

    Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.

  12. Electrostatic force assisted deposition of graphene

    DOEpatents

    Liang, Xiaogan [Berkeley, CA

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  13. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper

    PubMed Central

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Dauber, Jan; Oellers, Martin; Haupt, Federica; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2015-01-01

    Graphene research has prospered impressively in the past few years, and promising applications such as high-frequency transistors, magnetic field sensors, and flexible optoelectronics are just waiting for a scalable and cost-efficient fabrication technology to produce high-mobility graphene. Although significant progress has been made in chemical vapor deposition (CVD) and epitaxial growth of graphene, the carrier mobility obtained with these techniques is still significantly lower than what is achieved using exfoliated graphene. We show that the quality of CVD-grown graphene depends critically on the used transfer process, and we report on an advanced transfer technique that allows both reusing the copper substrate of the CVD growth and making devices with mobilities as high as 350,000 cm2 V–1 s–1, thus rivaling exfoliated graphene. PMID:26601221

  14. Aqueous proton transfer across single-layer graphene

    DOE PAGES

    Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...

    2015-03-17

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused ​silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while ​pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and ​hydrogen transfer indicate the process is selective for aqueous protons.« less

  15. Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions.

    PubMed

    Chou, Yi-Chia; Tang, Wei; Chiou, Chien-Jyun; Chen, Kai; Minor, Andrew M; Tu, K N

    2015-06-10

    Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.

  16. Direct synthesis of multilayer graphene on an insulator by Ni-induced layer exchange growth of amorphous carbon

    NASA Astrophysics Data System (ADS)

    Murata, H.; Toko, K.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2017-01-01

    Multilayer graphene (MLG) growth on arbitrary substrates is desired for incorporating carbon wiring and heat spreaders into electronic devices. We investigated the metal-induced layer exchange growth of a sputtered amorphous C layer using Ni as a catalyst. A MLG layer uniformly formed on a SiO2 substrate at 600 °C by layer exchange between the C and Ni layers. Raman spectroscopy and electron microscopy showed that the resulting MLG layer was highly oriented and contained relatively few defects. The present investigation will pave the way for advanced electronic devices integrated with carbon materials.

  17. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.

    PubMed

    Iyer, Ganjigunte R Swathi; Wang, Jian; Wells, Garth; Guruvenket, Srinivasan; Payne, Scott; Bradley, Michael; Borondics, Ferenc

    2014-06-24

    Graphene-based plasmonic devices have recently drawn great attention. However, practical limitations in fabrication and device architectures prevent studies from being carried out on the intrinsic properties of graphene and their change by plasmonic structures. The influence of a quasi-infinite object (i.e., the substrate) on graphene, being a single sheet of carbon atoms, and the plasmonic device is overwhelming. To address this and put the intrinsic properties of the graphene-plasmonic nanostructures in focus, we fabricate large-area, freestanding, single-layer graphene-gold (LFG-Au) sandwich structures and Au nanoparticle decorated graphene (formed via thermal treatment) hybrid plasmonic nanostructures. We observed two distinct plasmonic enhancement routes of graphene unique to each structure via surface-enhanced Raman spectroscopy. The localized electronic structure variation in the LFG due to graphene-Au interaction at the nanoscale is mapped using scanning transmission X-ray microscopy. The measurements show an optical density of ∼0.007, which is the smallest experimentally determined for single-layer graphene thus far. Our results on freestanding graphene-Au plasmonic structures provide great insight for the rational design and future fabrication of graphene plasmonic hybrid nanostructures.

  18. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  19. Point Defects and Grain Boundaries in Rotationally Commensurate MoS 2 on Epitaxial Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia

    2016-03-28

    With reduced degrees of freedom, structural defects are expected to play a greater role in two-dimensional materials in comparison to their bulk counterparts. In particular, mechanical strength, electronic properties, and chemical reactivity are strongly affected by crystal imperfections in the atomically thin limit. Here, ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) are employed to interrogate point and line defects in monolayer MoS2 grown on epitaxial graphene (EG) at the atomic scale. Five types of point defects are observed with the majority species showing apparent structures that are consistent with vacancy and interstitial models. The total defect densitymore » is observed to be lower than MoS2 grown on other substrates and is likely attributed to the van der Waals epitaxy of MoS2 on EG. Grain boundaries (GBs) with 30° and 60° tilt angles resulting from the rotational commensurability of MoS2 on EG are more easily resolved by STM than atomic force microscopy at similar scales due to the enhanced contrast from their distinct electronic states. For example, band gap reduction to ~0.8 and ~0.5 eV is observed with STS for 30° and 60° GBs, respectively. In addition, atomic resolution STM images of these GBs are found to agree well with proposed structure models. This work offers quantitative insight into the structure and properties of common defects in MoS2 and suggests pathways for tailoring the performance of MoS2/graphene heterostructures via defect engineering.« less

  20. Role of humidity in reducing the friction of graphene layers on textured surfaces

    NASA Astrophysics Data System (ADS)

    Li, Zheng-yang; Yang, Wen-jing; Wu, Yan-ping; Wu, Song-bo; Cai, Zhen-bing

    2017-05-01

    A multiple-layer graphene was prepared on steel surface to reduce friction and wear. A graphene-containing ethanol solution was dripped on the steel surface, and several layers of graphene flakes were deposited on the surface after ethanol evaporated. Tribological performance of graphene-contained surface (GCS) was induced by reciprocating ball against plate contact in different RH (0% (dry nitrogen), 30%, 60%, and 90%). Morphology and wear scar were analyzed by OM, 2D profile, SEM, Raman spectroscopy, and XPS. Results show that GCS can substantially reduce the wear and coefficient of friction (COF) in 60% relative humidity (RH). Low COF occurs due to graphene layer providing a small shear stress on the friction interface. Meanwhile, conditions of high RH and textured surface could make the low COF persist for a longer time. High moisture content can stabilize and protect the graphene C-network from damage due to water dissociative chemisorption with carbon dangling bonds, and the textured surface was attributed to release graphene layer stored in the dimple.

  1. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    NASA Astrophysics Data System (ADS)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  2. Work Function Variations in Twisted Graphene Layers

    DOE PAGES

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...

    2018-01-31

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  3. Work Function Variations in Twisted Graphene Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  4. Epitaxial growth of highly strained antimonene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Mao, Ya-Hui; Zhang, Li-Fu; Wang, Hui-Li; Shan, Huan; Zhai, Xiao-Fang; Hu, Zhen-Peng; Zhao, Ai-Di; Wang, Bing

    2018-06-01

    The synthesis of antimonene, which is a promising group-V 2D material for both fundamental studies and technological applications, remains highly challenging. Thus far, it has been synthesized only by exfoliation or growth on a few substrates. In this study, we show that thin layers of antimonene can be grown on Ag(111) by molecular beam epitaxy. High-resolution scanning tunneling microscopy combined with theoretical calculations revealed that the submonolayer Sb deposited on a Ag(111) surface forms a layer of AgSb2 surface alloy upon annealing. Further deposition of Sb on the AgSb2 surface alloy causes an epitaxial layer of Sb to form, which is identified as antimonene with a buckled honeycomb structure. More interestingly, the lattice constant of the epitaxial antimonene (5 Å) is much larger than that of freestanding antimonene, indicating a high tensile strain of more than 20%. This kind of large strain is expected to make the antimonene a highly promising candidate for roomtemperature quantum spin Hall material.

  5. Preparation of graphene by electrical explosion of graphite sticks.

    PubMed

    Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan

    2017-08-03

    Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.

  6. Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, H.-C.; Ahn, S. J.; Kim, H. W.

    2016-08-22

    Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalatedmore » at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.« less

  7. Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material

    NASA Astrophysics Data System (ADS)

    Butz, Benjamin

    2015-03-01

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB <--> BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research

  8. Observing the Heterogeneous Electro-redox of Individual Single-Layer Graphene Sheets.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-27

    Electro-redox-induced heterogeneous fluorescence of an individual single-layer graphene sheet was observed in real time by a total internal reflection fluorescence microscope. It was found that the fluorescence intensity of an individual sheet can be tuned reversibly by applying periodic voltages to control the redox degree of graphene sheets. Accordingly, the oxidation and reduction kinetics of an individual single-layer graphene sheet was studied at different voltages. The electro-redox-induced reversible variation of fluorescence intensity of individual sheets indicates a reversible band gap tuning strategy. Furthermore, correlation analysis of redox rate constants on individual graphene sheets revealed a redox-induced spatiotemporal heterogeneity or dynamics of graphene sheets. The observed controllable redox kinetics can rationally guide the precise band gap tuning of individual graphene sheets and then help their extensive applications in optoelectronics and devices for renewable energy.

  9. Effect of layer number and metal-chloride dopant on multiple layers of graphene/porous Si solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Kim, Sung; Choi, Suk-Ho

    2018-03-01

    Porous silicon (PSi) is an attractive building block for Si-based solar cells due to its low reflectance. Here, PSi is prepared by metal-assisted chemical etching of a Si wafer on which Au nanoparticles are formed by sputtering for 5 s. The layer number (Ln) of graphene is varied to optimize multiple layers of graphene/PSi Schottky junction solar cells because the sheet resistance, work function, transmittance, and reflectance of graphene strongly depend on Ln. At Ln = 2, the best condition for the highest power conversion efficiency (PCE), various metal chlorides are employed as dopants for graphene. The PCE is maximally enhanced to 9.15% by doping the graphene with RhCl3 and is reduced by only 20% of its original value (absolutely from 9.15% to 7.23%) during 10 days in air. These results are very meaningful in that even a single doping for graphene can be effective for achieving high PCE from graphene/PSi solar cells by controlling Ln.

  10. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with

  11. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the signmore » reversal of the measured magnetoresistance.« less

  12. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  13. Nanoscale measurements of unoccupied band dispersion in few-layer graphene.

    PubMed

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M; van der Molen, Sense Jan

    2015-11-26

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only.

  14. Nanoscale measurements of unoccupied band dispersion in few-layer graphene

    PubMed Central

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M.; van der Molen, Sense Jan

    2015-01-01

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only. PMID:26608712

  15. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    PubMed

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene.

    PubMed

    Rigosi, Albert F; Hill, Heather M; Glavin, Nicholas R; Pookpanratana, Sujitra J; Yang, Yanfei; Boosalis, Alexander G; Hu, Jiuning; Rice, Anthony; Allerman, Andrew A; Nguyen, Nhan V; Hacker, Christina A; Elmquist, Randolph E; Hight Walker, Angela R; Newell, David B

    2018-01-01

    Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride ( a -BN and h -BN) films. The a -BN is formed with pulsed laser deposition and the h -BN is grown with triethylboron (TEB) and NH 3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a -BN, and h -BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h -BN heterostructure.

  17. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  18. Continuous roll-to-roll growth of graphene films by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hesjedal, Thorsten

    2011-03-01

    Few-layer graphene is obtained in atmospheric chemical vapor deposition on polycrystalline copper in a roll-to-roll process. Raman and x-ray photoelectron spectroscopy were employed to confirm the few-layer nature of the graphene film, to map the inhomogeneities, and to study and optimize the growth process. This continuous growth process can be easily scaled up and enables the low-cost fabrication of graphene films for industrial applications.

  19. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability

    NASA Astrophysics Data System (ADS)

    Song, Yufeng; Liang, Zhiming; Jiang, Xiantao; Chen, Yunxiang; Li, Zhongjun; Lu, Lu; Ge, Yanqi; Wang, Ke; Zheng, Jilin; Lu, Shunbin; Ji, Jianhua; Zhang, Han

    2017-12-01

    Antimonene, a new type of mono/few-layer two-dimensional (2D) mono-elemental material purely consisting of antimony similar as graphene and phosphorene, has been theoretically predicted with excellent optical response and enhanced stability. Herein, we experimentally investigated the broadband nonlinear optical response of highly stable few-layer antimonene (FLA) by performing an open-aperture Z-scan laser measurement. Thanks to the direct bandgap and resonant absorption at the telecommunication band, we demonstrated the feasibility of FLA-decorated microfiber not only as an optical saturable absorber for ultrafast photonics operation, but also as a stable all-optical pulse thresholder that can effectively suppress the transmission noise, boost the signal-to-noise ratio (SNR), and reshape the deteriorated input signal. Our findings, as the first prototypic device of absorption of antimonene, might facilitate the development of antimonene-based optical communication technologies towards high stability and practical applications in the future.

  20. Development of buffer layer structure for epitaxial growth of (100)/(001)Pb(Zr,Ti)O3-based thin film on (111)Si wafer

    NASA Astrophysics Data System (ADS)

    Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji

    2017-07-01

    This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.

  1. Quantitative tunneling spectroscopy of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]).more » Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics« less

  2. Mass production of highly-porous graphene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Amiri, Ahmad; Shanbedi, Mehdi; Ahmadi, Goodarz; Eshghi, Hossein; Kazi, S. N.; Chew, B. T.; Savari, Maryam; Zubir, Mohd Nashrul Mohd

    2016-09-01

    This study reports on a facile and economical method for the scalable synthesis of few-layered graphene sheets by the microwave-assisted functionalization. Herein, single-layered and few-layered graphene sheets were produced by dispersion and exfoliation of functionalized graphite in ethylene glycol. Thermal treatment was used to prepare pure graphene without functional groups, and the pure graphene was labeled as thermally-treated graphene (T-GR). The morphological and statistical studies about the distribution of the number of layers showed that more than 90% of the flakes of T-GR had less than two layers and about 84% of T-GR were single-layered. The microwave-assisted exfoliation approach presents us with a possibility for a mass production of graphene at low cost and great potentials in energy storage applications of graphene-based materials. Owing to unique surface chemistry, the T-GR demonstrates an excellent energy storage performance, and the electrochemical capacitance is much higher than that of the other carbon-based nanostructures. The nanoscopic porous morphology of the T-GR-based electrodes made a significant contribution in increasing the BET surface as well as the specific capacitance of graphene. T-GR, with a capacitance of 354.1 Fg-1 at 5 mVs-1 and 264 Fg-1 at 100 mVs-1, exhibits excellent performance as a supercapacitor.

  3. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2

    DOE PAGES

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...

    2017-02-17

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  4. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    NASA Astrophysics Data System (ADS)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  5. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    PubMed Central

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  6. Atomic layer epitaxy of YBaCuO for optoelectronic applications

    NASA Technical Reports Server (NTRS)

    Skogman, R. A.; Khan, M. A.; Van Hove, J. M.; Bhattarai, A.; Boord, W. T.

    1992-01-01

    An MOCVD-based atomic-layer epitaxy process is being developed as a potential solution to the problems of film-thickness and interface-abruptness control which are encountered when fabricating superconductor-insulator-superconductor devices using YBa2Cu3O(7-x). In initial studies, the atomic-layer MOCVD process yields superconducting YBa2Cu3O(7-x) films with substrate temperatures of 605 C during film growth, and no postdeposition anneal. The low temperature process yields a smooth film surface and can reduce interface degradation due to diffusion.

  7. Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression

    NASA Astrophysics Data System (ADS)

    Farajpour, Ali; Arab Solghar, Alireza; Shahidi, Alireza

    2013-01-01

    In this article, the nonlinear buckling characteristics of multi-layered graphene sheets are investigated. The graphene sheet is modeled as an orthotropic nanoplate with size-dependent material properties. The graphene film is subjected by non-uniformly distributed in-plane load through its thickness. To include the small scale and the geometrical nonlinearity effects, the governing differential equations are derived based on the nonlocal elasticity theory in conjunction with the von Karman geometrical model. Explicit expressions for the postbuckling loads of single- and double-layered graphene sheets with simply supported edges under biaxial compression are obtained. For numerical results, six types of armchair and zigzag graphene sheets with different aspect ratio are considered. The present formulation and method of solution are validated by comparing the results, in the limit cases, with those available in the open literature. Excellent agreement between the obtained and available results is observed. Finally, the effects of nonlocal parameter, buckling mode number, compression ratio and non-uniform parameter on the postbuckling behavior of multi-layered graphene sheets are studied.

  8. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- andmore » ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.« less

  9. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun

    2015-12-01

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  10. Graphene Calisthenics: Straintronics of Graphene with Light-Reactive Azobenzene Polymer

    NASA Astrophysics Data System (ADS)

    Meaker, Kacey; Cao, Peigen; Huo, Mandy; Crommie, Michael

    2014-03-01

    Although a promising target for next-generation electronics, graphene's lack of a band gap is a severe hindrance. There are many ways of opening a gap, and one controllable way is through application of specific non-uniform strains which can produce extremely large pseudomagnetic fields. This effect was predicted and verified experimentally, but so far there have been few methods developed that reliably control the size, location, separation and amount of strain in graphene. We have used a layer of light-reactive azobenzene polymer beneath the graphene to produce strained monolayer graphene with light exposure. Using Raman spectroscopy, we have measured a shift of up to 20 cm-1 in the 2D peak when the graphene and polymer sample was exposed to 532 nm laser illumination indicating that the graphene is undergoing a strain from deformation of the azobenzene layer below. AFM topographic measurements and COMSOL simulations were used to verify this assertion. Use of polymeric materials to reliably strain graphene in non-uniform ways could result in controllable production of large pseudomagnetic fields in graphene and more control over graphene's low-energy charge carriers.

  11. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  12. Optical control of graphene plasmon using liquid crystal layer 29K New One

    DTIC Science & Technology

    2017-03-01

    AFRL-AFOSR-UK-TR-2017-0014 Optical control of graphene plasmon using liquid crystal layer 29K New One Viktor Yuriyovych Reshetnyak SCIENCE AND... plasmon using liquid crystal layer 29K New One 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER STCU-P652 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Viktor...the basic research and establishes possible optical ways to control the surface plasmon polariton in graphene layer. A system comprises the graphene

  13. Process stability and morphology optimization of very thick 4H-SiC epitaxial layers grown by chloride-based CVD

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Stenberg, P.; Booker, I. D.; Ivanov, I. G.; Kordina, O.; Pedersen, H.; Janzén, E.

    2013-10-01

    The development of a chemical vapor deposition (CVD) process for very thick silicon carbide (SiC) epitaxial layers suitable for high power devices is demonstrated by epitaxial growth of 200 μm thick, low doped 4H-SiC layers with excellent morphology at growth rates exceeding 100 μm/h. The process development was done in a hot wall CVD reactor without rotation using both SiCl4 and SiH4+HCl precursor approaches to chloride based growth chemistry. A C/Si ratio <1 and an optimized in-situ etch are shown to be the key parameters to achieve 200 μm thick, low doped epitaxial layers with excellent morphology.

  14. Growth of Graphene by Catalytic Dissociation of Ethylene on CuNi(111)

    NASA Astrophysics Data System (ADS)

    Tyagi, Parul; Mowll, Tyler; Robinson, Zachary; Ventrice, Carl

    2013-03-01

    Copper foil is one of the most common substrates for growing large area graphene films. The main reason for this is that Cu has a very low carbon solubility, which results in the self-termination of a single layer of graphene when grown using hydrocarbon precursors at low pressure. Our previous results on Cu(111) substrates has found that temperatures of at least 900 °C are needed to form single domain epitaxial films. By using a CuNi alloy, the catalytic activity of the substrate is expected to increase, which will allow the catalytic decomposition of the hydrocarbon precursor at lower temperatures. In this study, the growth of graphene by the catalytic decomposition of ethylene on a 90:10 CuNi(111) substrate was attempted. The growths were done in an ultra-high vacuum system by either heating the substrate to the growth temperature followed by introducing the ethylene precursor or by introducing the ethylene precursor and subsequently heating it to the growth temperature. The growth using the former method results in a two-domain epitaxial graphene overlayer. However, introducing the ethylene before heating the substrate resulted in considerable rotational disorder within the graphene film. This has been attributed to the deposition of carbon atoms on the surface at temperatures too low for the carbon to crystallize into graphene. This research was supported by the NSF (DMR-1006411).

  15. Femtosecond laser induced periodic surface structures on multi-layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltaos, Angela, E-mail: abeltaos@ualberta.ca; Kovačević, Aleksander G.; Matković, Aleksandar

    2014-11-28

    In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength λ of 840 nm, pulse duration τ of ∼150 fs, and a fluence F of ∼4.3–4.4 mJ/cm{sup 2}. The observed LIPSS were perpendicular tomore » the laser polarization and had dimensions of width w of ∼30–40 nm and length l of ∼0.5–1.5 μm, and spatial periods Λ of ∼70–100 nm (∼λ/8–λ/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications.« less

  16. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  17. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage.

    PubMed

    Wang, Hua; Feng, Hongbin; Li, Jinghong

    2014-06-12

    Being confronted with the energy crisis and environmental problems, the exploration of clean and renewable energy materials as well as their devices are urgently demanded. Two-dimensional (2D) atomically-thick materials, graphene and grpahene-like layered transition metal dichalcogenides (TMDs), have showed vast potential as novel energy materials due to their unique physicochemical properties. In this Review, we outline the typical application of graphene and grpahene-like TMDs in energy conversion and storage fields, and hope to promote the development of 2D TMDs in this field through the analysis and comparisons with the relatively natural graphene. First, a brief introduction of electronic structures and basic properties of graphene and TMDs are presented. Then, we summarize the exciting progress of these materials made in both energy conversion and storage field including solar cells, electrocatalysis, supercapacitors and lithium ions batteries. Finally, the prospects and further developments in these exciting fields of graphene and graphene-like TMDs materials are also suggested. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atomic layer deposited high-k dielectric on graphene by functionalization through atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan

    2018-05-01

    Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO2. The ALD ZrO2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.

  19. Atomic layer deposited high-k dielectric on graphene by functionalization through atmospheric plasma treatment.

    PubMed

    Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan

    2018-05-11

    Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO 2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO 2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO 2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO 2 . The ALD ZrO 2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.

  20. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  1. Superconducting Ga/GaSe layers grown by van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Desrat, W.; Moret, M.; Briot, O.; Ngo, T.-H.; Piot, B. A.; Jabakhanji, B.; Gil, B.

    2018-04-01

    We report on the growth of GaSe films by molecular beam epitaxy on both (111)B GaAs and sapphire substrates. X-ray diffraction reveals the perfect crystallinity of GaSe with the c-axis normal to the substrate surface. The samples grown under Ga rich conditions possess an additional gallium film on top of the monochalcogenide layer. This metallic film shows two normal-to-superconducting transitions which are detected at T c ≈ 1.1 K and 6.0 K. They correspond likely to the β and α-phases of gallium in the form of bulk and droplets respectively. Our results demonstrate that van der Waals epitaxy can lead to future high quality hybrid superconductor/monochalcogenide heterostructures.

  2. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Luo, G.; Tung, I. C.; ...

    2014-08-03

    The A n+1B nO 3n+1 Ruddlesden–Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of themore » intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden–Popper phases. Lastly, we demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La 3Ni 2O 7.« less

  3. Water on graphene: review of recent progress

    NASA Astrophysics Data System (ADS)

    Melios, C.; Giusca, C. E.; Panchal, V.; Kazakova, O.

    2018-04-01

    The sensitivity of graphene to the surrounding environment is given by its π electrons, which are directly exposed to molecules in the ambient air. The high sensitivity of graphene to the local environment has shown to be both advantageous and problematic for graphene-based devices, such as transistors and sensors, where the graphene carrier concentration and mobility changes due to ambient humidity variations. In this review, recent progress is presented in understanding the effects of water on different types of graphene: epitaxially grown and quasi-free standing on SiC(0 0 0 1), grown by chemical vapour deposition and transfered on SiO2, and exfoliated flakes. It is demonstrated that water withdraws electrons from graphene, but the graphene-water interaction highly depends on the thickness, layer stacking, underlying substrate and substrate-induced doping. Moreover, we highlight the importance of clear and unambiguous description of the environmental conditions (i.e. relative humidity) whenever a routine characterisation for carrier concentration and mobility is reported (often presented as a simple figure-of-merit), as these electrical characteristics are highly dependent on the adsorbed molecules and the surrounding environment.

  4. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    PubMed Central

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  5. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    PubMed

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  6. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    NASA Astrophysics Data System (ADS)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  7. Graphene device and method of using graphene device

    DOEpatents

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  8. Graphene as discharge layer for electron beam lithography on insulating substrate

    NASA Astrophysics Data System (ADS)

    Liu, Junku; Li, Qunqing; Ren, Mengxin; Zhang, Lihui; Chen, Mo; Fan, Shoushan

    2013-09-01

    Charging of insulating substrates is a common problem during Electron Beam lithography (EBL), which deflects the beam and distorts the pattern. A homogeneous, electrically conductive, and transparent graphene layer is used as a discharge layer for EBL processes on insulating substrates. The EBL resolution is improved compared with the metal discharge layer. Dense arrays of holes with diameters of 50 nm and gratings with line/space of 50/30 nm are obtained on quartz substrate. The pattern placement errors and proximity effect are suppressed over a large area and high quality complex nanostructures are fabricated using graphene as a conductive layer.

  9. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    NASA Astrophysics Data System (ADS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-05-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior.

  10. Self-heating and failure in scalable graphene devices

    DOE PAGES

    Beechem, Thomas E.; Shaffer, Ryan A.; Nogan, John; ...

    2016-06-09

    Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. As a result, morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.

  11. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    PubMed

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  12. Porous graphene-based membranes for water purification from metal ions at low differential pressures

    NASA Astrophysics Data System (ADS)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-01

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  13. Metal-Free CVD Graphene Synthesis on 200 mm Ge/Si(001) Substrates.

    PubMed

    Lukosius, M; Dabrowski, J; Kitzmann, J; Fursenko, O; Akhtar, F; Lisker, M; Lippert, G; Schulze, S; Yamamoto, Y; Schubert, M A; Krause, H M; Wolff, A; Mai, A; Schroeder, T; Lupina, G

    2016-12-14

    Good quality, complementary-metal-oxide-semiconductor (CMOS) technology compatible, 200 mm graphene was obtained on Ge(001)/Si(001) wafers in this work. Chemical vapor depositions were carried out at the deposition temperatures of 885 °C using CH 4 as carbon source on epitaxial Ge(100) layers, which were grown on Si(100), prior to the graphene synthesis. Graphene layer with the 2D/G ratio ∼3 and low D mode (i.e., low concentration of defects) was measured over the entire 200 mm wafer by Raman spectroscopy. A typical full-width-at-half-maximum value of 39 cm -1 was extracted for the 2D mode, further indicating that graphene of good structural quality was produced. The study also revealed that the lack of interfacial oxide correlates with superior properties of graphene. In order to evaluate electrical properties of graphene, its 2 × 2 cm 2 pieces were transferred onto SiO 2 /Si substrates from Ge/Si wafers. The extracted sheet resistance and mobility values of transferred graphene layers were ∼1500 ± 100 Ω/sq and μ ≈ 400 ± 20 cm 2 /V s, respectively. The transferred graphene was free of metallic contaminations or mechanical damage. On the basis of results of DFT calculations, we attribute the high structural quality of graphene grown by CVD on Ge to hydrogen-induced reduction of nucleation probability, explain the appearance of graphene-induced facets on Ge(001) as a kinetic effect caused by surface step pinning at linear graphene nuclei, and clarify the orientation of graphene domains on Ge(001) as resulting from good lattice matching between Ge(001) and graphene nucleated on such nuclei.

  14. Determination of layer-dependent exciton binding energies in few-layer black phosphorus

    PubMed Central

    Zhang, Guowei; Chaves, Andrey; Huang, Shenyang; Wang, Fanjie; Xing, Qiaoxia; Low, Tony; Yan, Hugen

    2018-01-01

    The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited. We report the first systematic measurement of exciton binding energies in ultrahigh-quality few-layer BP by infrared absorption spectroscopy, with layer (L) thickness ranging from 2 to 6 layers. Our experiments allow us to determine the exciton binding energy, decreasing from 213 meV (2L) to 106 meV (6L). The scaling behavior with layer numbers can be well described by an analytical model, which takes into account the nonlocal screening effect. Extrapolation to free-standing monolayer yields a large binding energy of ~800 meV. Our study provides insights into 2D excitons and their crossover from 2D to 3D, and demonstrates that few-layer BP is a promising high-quality optoelectronic material for potential infrared applications. PMID:29556530

  15. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    DOE PAGES

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; ...

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less

  17. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    NASA Astrophysics Data System (ADS)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  18. Spotting 2D atomic layers on aluminum nitride thin films.

    PubMed

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  19. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    PubMed

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  20. Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroshi; Aoki, Masaharu

    1981-01-01

    Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850°C for ZnS and 700-800°C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (˜1 μm) and smooth, had low, uniform Te concentrations (˜0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 μm) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.

  1. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  2. Green conversion of graphene oxide to graphene nanosheets and its biosafety study

    PubMed Central

    Dasgupta, Adhiraj; Sarkar, Joy; Ghosh, Manosij; Bhattacharya, Amartya; Mukherjee, Anita; Chattopadhyay, Dipankar

    2017-01-01

    Chemical reduction of graphene oxide (GO) to graphene employs the use of toxic and environmentally harmful reducing agents, hindering mass production of graphene which is of tremendous technological importance. In this study we report a green approach to the synthesis of graphene, bio-reduced by crude polysaccharide. The polysaccharide reduces exfoliated GO to graphene at room temperature in an aqueous medium. Transmission electron microscopy image provides clear evidence for the formation of few layer graphene. Characterization of the resulting polysaccharide reduced GO by Raman spectroscopy, Fourier transform infrared spectroscopy and Energy dispersive X-ray analysis confirms reduction of GO to graphene. We also investigated the degree of biosafety of the reduced GO and found it to be safe under 100 μg/ml. PMID:28158272

  3. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    NASA Astrophysics Data System (ADS)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  4. Two-dimensional antimonene single crystals grown by van der Waals epitaxy.

    PubMed

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-11-15

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 10 4  S m -1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.

  5. Two-dimensional antimonene single crystals grown by van der Waals epitaxy

    PubMed Central

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-01-01

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327

  6. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  7. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy.

    PubMed

    Hashemi, Mohadeseh; Omidi, Meisam; Muralidharan, Bharadwaj; Tayebi, Lobat; Herpin, Matthew J; Mohagheghi, Mohammad Ali; Mohammadi, Javad; Smyth, Hugh D C; Milner, Thomas E

    2018-01-01

    Stimuli responsive polyelectrolyte nanoparticles have been developed for chemo-photothermal destruction of breast cancer cells. This novel system, called layer by layer Lipo-graph (LBL Lipo-graph), is composed of alternate layers of graphene oxide (GO) and graphene oxide conjugated poly (l-lysine) (GO-PLL) deposited on cationic liposomes encapsulating doxorubicin. Various concentrations of GO and GO-PLL were examined and the optimal LBL Lipo-graph was found to have a particle size of 267.9 ± 13 nm, zeta potential of +43.9 ± 6.9 mV and encapsulation efficiency of 86.4 ± 4.7%. The morphology of LBL Lipo-graph was examined by cryogenic-transmission electron microscopy (Cryo-TEM), atomic force microcopy (AFM) and scanning electron microscopy (SEM). The buildup of LBL Lipo-graph was confirmed via ultraviolet-visible (UV-Vis) spectrophotometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. Infra-red (IR) response suggests that four layers are sufficient to induce a gel-to-liquid phase transition in response to near infra-red (NIR) laser irradiation. Light-matter interaction of LBL Lipo-graph was studied by calculating the absorption cross section in the frequency domain by utilizing Fourier analysis. Drug release assay indicates that the LBL Lipo-graph releases much faster in an acidic environment than a liposome control. A cytotoxicity assay was conducted to prove the efficacy of LBL Lipo-graph to destroy MD-MB-231 cells in response to NIR laser emission. Also, image stream flow cytometry and two photon microcopy provide supportive data for the potential application of LBL Lipo-graph for photothermal therapy. Study results suggest the novel dual-sensitive nanoparticles allow intracellular doxorubin delivery and respond to either acidic environments or NIR excitation. Stimuli sensitive hybrid nanoparticles have been synthesized using a layer-by-layer technique and demonstrated for dual chemo

  8. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    DOE PAGES

    Chen, Wei; Cui, Ping; Zhu, Wenguang; ...

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast,more » the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.« less

  9. Sub-bandgap response of graphene/SiC Schottky emitter bipolar phototransistor examined by scanning photocurrent microscopy

    NASA Astrophysics Data System (ADS)

    Barker, Bobby G., Jr.; Chava, Venkata Surya N.; Daniels, Kevin M.; Chandrashekhar, M. V. S.; Greytak, Andrew B.

    2018-01-01

    Graphene layers grown epitaxially on SiC substrates are attractive for a variety of sensing and optoelectronic applications because the graphene acts as a transparent, conductive, and chemically responsive layer that is mated to a wide-bandgap semiconductor with large breakdown voltage. Recent advances in control of epitaxial growth and doping of SiC epilayers have increased the range of electronic device architectures that are accessible with this system. In particular, a recently-introduced Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common emitter current gain of 113 and a UV responsivity of 7.1 A W-1. The behavior of this device, formed on an n +-SiC substrate that serves as the collector, was attributed to a very large minority carrier injection efficiency at the EG/p-SiC Schottky contact. This large minority carrier injection efficiency is in turn related to the large built-in potential found at a EG/p-SiC Schottky junction. The high performance of this device makes it critically important to analyze the sub bandgap visible response of the device, which provides information on impurity states and polytype inclusions in the crystal. Here, we employ scanning photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other techniques to clearly demonstrate a localized response based on the graphene transparent electrode and an approximately 1000-fold difference in responsivity between 365 nm and 444 nm excitation. A stacking fault propagating from the substrate/epilayer interface, assigned as a single layer of the 8H-SiC polytype within the 4H-SiC matrix, is found to locally increase the photocurrent substantially. The discovery of this polytype heterojunction opens the potential for further development of heteropolytype devices based on the SEPT architecture.

  10. Directed Assembly of Molecules on Graphene/Ru(0001)

    NASA Astrophysics Data System (ADS)

    Zhang, L. Z.; Zhang, H. G.; Sun, J. T.; Pan, Y.; Liu, Q.; Mao, J. H.; Zhou, H. T.; Low, T.; Guo, H. M.; Du, S. X.; Gao, H.-J.

    2012-02-01

    Recently, the graphene monolayers have been seen to adopt a superstructure - moir'e pattern - on Ru(0001). By using low temperature scanning tunneling spectroscopy, we identified the laterally localized electronic states on this system. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances with energies that relate to the corrugation of the graphene layer. By using scanning tunneling microscopy/spectroscopy, we demonstrate the selective adsorption and formation of ordered molecular arrays of FePc and pentacene molecules on the graphene/Ru(0001) templates. With in-depth investigations of the molecular adsorption and assembly processes we reveal the existence lateral electric dipoles in the epitaxial graphene monolayers and the capability of the dipoles in directing and driving the molecular adsorption and assembly. When increasing the molecular coverage, we observed the formation of regular Kagome lattices that duplicate the lattice of the moir'e pattern of monolayer graphene.

  11. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  12. Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Manohara, Harish

    2008-01-01

    This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one

  13. Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin

    2017-12-01

    In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.

  14. Near Infrared Emission from Defects in Few-Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Aghaeimeibodi, Shahriar; Kim, Je-Hyung; Waks, Edo

    Atomically thin films of black phosphorus have recently received significant attention as low dimensional optical materials with a direct exciton emission whose wavelength is tunable by controlling the number of layers. In addition to this excitonic emission, recent work has revealed emission from defect states and reported new methods to manipulate them. Monolayer phosphorene exhibits emission from localized defect states at wavelengths near 920 nm. Increasing the number of layers should shift defect emission to longer wavelengths, enabling the material to span a broader spectral range. But defect emission from few-layer phosphorene has not yet been reported. Here, we demonstrate a new class of near infrared defects in few layer phosphorene. Photoluminescence measurement shows a bright emission around 1240 nm with a sublinear growth of emission intensity with linear increase of excitation intensity, confirming the defect nature of this emission. From time-resolved lifetime measurements we determine an emission lifetime of 1.2 ns, in contrast to exciton and trion lifetimes from few layer phosphorene previously reported to be in the range of a few hundred picoseconds. This work highlights the potential of bright defects of phosphorene for near infrared optoelectronic applications.

  15. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    goenv.o -,y la)ers were YIG (yttrium iron garnet ) films grown by liquid phase epitaxy w:* ( LPE ) on gadolinium gallium garnet (GGG) substrates. Magnetic...containing three epitaxial layers. In addition to the MSW work oil garnets , LPE of lithium ferrite and hexagonal fertites was studied. A substituted lead...of a stripline. The other layers are epitaxial films , generally YIG (yttrium iron garnet ) with magnetic properties adjusted by suitable modifications

  16. Epitaxial CoSi2 on MOS devices

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Petrov, Ivan Georgiev; Greene, Joseph E.

    2005-01-25

    An Si.sub.x N.sub.y or SiO.sub.x N.sub.y liner is formed on a MOS device. Cobalt is then deposited and reacts to form an epitaxial CoSi.sub.2 layer underneath the liner. The CoSi.sub.2 layer may be formed through a solid phase epitaxy or reactive deposition epitaxy salicide process. In addition to high quality epitaxial CoSi.sub.2 layers, the liner formed during the invention can protect device portions during etching processes used to form device contacts. The liner can act as an etch stop layer to prevent excessive removal of the shallow trench isolation, and protect against excessive loss of the CoSi.sub.2 layer.

  17. Graphene-based membranes.

    PubMed

    Liu, Gongping; Jin, Wanqin; Xu, Nanping

    2015-08-07

    Graphene is a well-known two-dimensional material that exhibits preeminent electrical, mechanical and thermal properties owing to its unique one-atom-thick structure. Graphene and its derivatives (e.g., graphene oxide) have become emerging nano-building blocks for separation membranes featuring distinct laminar structures and tunable physicochemical properties. Extraordinary molecular separation properties for purifying water and gases have been demonstrated by graphene-based membranes, which have attracted a huge surge of interest during the past few years. This tutorial review aims to present the latest groundbreaking advances in both the theoretical and experimental chemical science and engineering of graphene-based membranes, including their design, fabrication and application. Special attention will be given to the progresses in processing graphene and its derivatives into separation membranes with three distinct forms: a porous graphene layer, assembled graphene laminates and graphene-based composites. Moreover, critical views on separation mechanisms within graphene-based membranes will be provided based on discussing the effect of inter-layer nanochannels, defects/pores and functional groups on molecular transport. Furthermore, the separation performance of graphene-based membranes applied in pressure filtration, pervaporation and gas separation will be summarized. This article is expected to provide a compact source of relevant and timely information and will be of great interest to all chemists, physicists, materials scientists, engineers and students entering or already working in the field of graphene-based membranes and functional films.

  18. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  19. Temperature Dependence of Raman-Active In-Plane E2g Phonons in Layered Graphene and h-BN Flakes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Liu, Jian; Ding, Kai; Zhao, Xiaohui; Li, Shuai; Zhou, Wenguang; Liang, Baolai

    2018-01-01

    Thermal properties of sp2 systems such as graphene and hexagonal boron nitride (h-BN) have attracted significant attention because of both systems being excellent thermal conductors. This research reports micro-Raman measurements on the in-plane E2g optical phonon peaks ( 1580 cm-1 in graphene layers and 1362 cm-1 in h-BN layers) as a function of temperature from - 194 to 200 °C. The h-BN flakes show higher sensitivity to temperature-dependent frequency shifts and broadenings than graphene flakes. Moreover, the thermal effect in the c direction on phonon frequency in h-BN layers is more sensitive than that in graphene layers but on phonon broadening in h-BN layers is similar as that in graphene layers. These results are very useful to understand the thermal properties and related physical mechanisms in h-BN and graphene flakes for applications of thermal devices.

  20. Magnetic moment of single layer graphene rings

    NASA Astrophysics Data System (ADS)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  1. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  2. Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes.

    PubMed

    Kwon, Se Ra; Elinski, Meagan B; Batteas, James D; Lutkenhaus, Jodie L

    2017-05-24

    Aramid nanofibers (ANFs), or nanoscale Kevlar fibers, are of interest for their high mechanical performance and functional nanostructure. The dispersible nature of ANFs opens up processing opportunities for creating mechanically robust and flexible nanocomposites, particularly for energy and power applications. The challenge is to manipulate ANFs into an electrode structure that balances mechanical and electrochemical performance to yield a robust and flexible electrode. Here, ANFs and graphene oxide (GO) sheets are blended using layer-by-layer (LbL) assembly to achieve mechanically flexible supercapacitor electrodes. After reduction, the resulting electrodes exhibit an ANF-rich structure where ANFs act as a polymer matrix that interfacially interacts with reduced graphene oxide sheets. It is shown that ANF/GO deposition proceeds by hydrogen bonding and π-π interactions, leading to linear growth (1.2 nm/layer pairs) and a composition of 75 wt % ANFs and 25 wt % GO sheets. Chemical reduction leads to a high areal capacitance of 221 μF/cm 2 , corresponding to 78 F/cm 3 . Nanomechanical testing shows that the electrodes have a modulus intermediate between those of the two native materials. No cracks or defects are observed upon flexing ANF/GO films 1000 times at a radius of 5 mm, whereas a GO control shows extensive cracking. These results demonstrate that electrodes containing ANFs and reduced GO sheets are promising for flexible, mechanically robust energy and power.

  3. Local, global, and nonlinear screening in twisted double-layer graphene

    DOE PAGES

    Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong; ...

    2016-06-02

    One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less

  4. Local, global, and nonlinear screening in twisted double-layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong

    One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less

  5. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries.

    PubMed

    Tai, Zhixin; Subramaniyam, Chandrasekar M; Chou, Shu-Lei; Chen, Lingna; Liu, Hua-Kun; Dou, Shi-Xue

    2017-09-01

    The most promising cathode materials, including LiCoO 2 (layered), LiMn 2 O 4 (spinel), and LiFePO 4 (olivine), have been the focus of intense research to develop rechargeable lithium-ion batteries (LIBs) for portable electronic devices. Sluggish lithium diffusion, however, and unsatisfactory long-term cycling performance still limit the development of present LIBs for several applications, such as plug-in/hybrid electric vehicles. Motivated by the success of graphene and novel 2D materials with unique physical and chemical properties, herein, a simple shear-assisted mechanical exfoliation method to synthesize few-layered nanosheets of LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 is used. Importantly, these as-prepared nanosheets with preferred orientations and optimized stable structures exhibit excellent C-rate capability and long-term cycling performance with much reduced volume expansion during cycling. In particular, the zero-strain insertion phenomenon could be achieved in 2-3 such layers of LiCoO 2 electrode materials, which could open up a new way to the further development of next-generation long-life and high-rate batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces.

    PubMed

    Ravikumar, Abhilash; Kladnik, Gregor; Müller, Moritz; Cossaro, Albano; Bavdek, Gregor; Patera, Laerte L; Sánchez-Portal, Daniel; Venkataraman, Latha; Morgante, Alberto; Brivio, Gian Paolo; Cvetko, Dean; Fratesi, Guido

    2018-05-03

    We compare the ultrafast charge transfer dynamics of molecules on epitaxial graphene and bilayer graphene grown on Ni(111) interfaces through first principles calculations and X-ray resonant photoemission spectroscopy. We use 4,4'-bipyridine as a prototypical molecule for these explorations as the energy level alignment of core-excited molecular orbitals allows ultrafast injection of electrons from a substrate to a molecule on a femtosecond timescale. We show that the ultrafast injection of electrons from the substrate to the molecule is ∼4 times slower on weakly coupled bilayer graphene than on epitaxial graphene. Through our experiments and calculations, we can attribute this to a difference in the density of states close to the Fermi level between graphene and bilayer graphene. We therefore show how graphene coupling with the substrate influences charge transfer dynamics between organic molecules and graphene interfaces.

  7. Vertically grown nanowire crystals of dibenzotetrathienocoronene (DBTTC) on large-area graphene

    DOE PAGES

    Kim, B.; Chiu, C. -Y.; Kang, S. J.; ...

    2016-06-01

    Here we demonstrate controlled growth of vertical organic crystal nanowires on single layer graphene. Using Scanning Electron Microscopy (SEM), high-resolution transition electron microscopy (TEM), and Grazing Incidence X-ray Diffraction (GIXD), we probe the microstructure and morphology of dibenzotetrathienocoronene (DBTTC) nanowires epitaxially grown on graphene. The investigation is performed at both the ensemble and single nanowire level, and as function of growth parameters, providing insight of and control over the formation mechanism. Finally, the size, density and height of the nanowires can be tuned via growth conditions, opening new avenues for tailoring three-dimensional (3-D) nanostructured architectures for organic electronics with improvedmore » functional performance.« less

  8. Epitaxial growth of a mono-crystalline metastable AuIn layer at the Au/InP(001) interface

    NASA Astrophysics Data System (ADS)

    Renda, M.; Morita, K.

    1990-01-01

    Thermal annealing of a gold layer deposited on the InP(001)-p(2×4) surface has been studied in-situ by means of LEED, AES and RBS techniques and by post analysis of RBS-channeling and glancing incidence X-ray diffraction. A clean LEED pattern of p(2×2) spots was observed for the specimen annealed for 10 min at 300°C. The composition ratio of Au/In in the epitaxial compound layer was found to be 49/51 by RBS and several at% of P was also detected by post sputter-AES analysis. It was also found that the epitaxial layer shows a clear channeling dip for an incident ion beam which is aligned along the <001> axis of InP substrate. The glancing incidence X-ray diffraction analysis indicates diffraction peaks from the pseudo-orthorombic phase of AuIn. From these experimental results, it is concluded that the epitaxial Au-compound layer is a mono-crystalline metastable phase of AuIn, of which every three atomic rows of Au or In in the [110] direction would be situated on every four atomic rows in the [010] direction of the In(001) face of the InP crystal.

  9. Changes in the reflectivity of a lithium niobate crystal decorated with a graphene layer

    NASA Astrophysics Data System (ADS)

    Salas, O.; Garcés, E.; Castillo, F. L.; Magaña, L. F.

    2017-01-01

    Density functional theory and molecular dynamics were used to study the interaction of a graphene layer with the surface of lithium niobate. The simulations were performed at atmospheric pressure and 300K. We found that the graphene layer is physisorbed with an adsorption energy of -0.8205 eV/C-atom. Subsequently, the optical absorption of the graphene-(lithium niobate) system was calculated and compared with that of graphene solo and lithium niobate alone, respectively. The calculations were performed using the Quantum Espresso code with the GGA approximation and Vdw-DF2 (which includes long-range correlation effects as Van der Waals interactions).

  10. The role of Energy Deposition in the Epitaxial Layer in Triggering SEGR in Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Selva, L.; Swift, G.; Taylor, W.; Edmonds, L.

    1999-01-01

    In these SEGR experiments, three identical-oxide MOSFET types were irradiated with six ions of significantly different ranges. Results show the prime importance of the total energy deposited in the epitaxial layer.

  11. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  12. Sprayable, Paintable Layer-by-Layer Polyaniline Nanofiber/Graphene Electrodes for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Kwon, Se Ra; Jeon, Ju-Won; Lutkenhus, Jodie

    2015-03-01

    Sprayable batteries are growing in interest for applications in structural energy storage and power or flexible power. Spray-assisted layer-by-layer (LbL) assembly, in which complementary species are alternately sprayed onto a surface, is particularly amenable toward this application. Here, we report on the fabrication of composite films containing polyaniline nanofibers (PANI NF) and graphene oxide (GO) sheets fabricated via spray-assisted LbL assembly. The resulting films are electrochemical reduced to yield PANI NF/electrochemically reduced graphene (ERGO) electrodes for use as a cathode in non-aqueous energy storage systems. Through the spray-assisted LbL process, the hybrid electrodes could be fabricated 74 times faster than competing dip-assisted LbL assembly. The resulting electrodes are highly porous (0.72 void fraction), and are comprised of 67 wt% PANI NF and 33 wt% ERGO. The sprayed electrodes showed better rate capability, higher specific power, as well as more stable cycle life than dip-assisted LbL electrodes. It is shown here that the spray-assisted LbL approach is well-suited towards the fabrication of paintable electrodes containing polyaniline nanofibers and electrochemically reduced graphene oxide sheets.

  13. Green reduction of graphene oxide via Lycium barbarum extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dandan, E-mail: houdandan114@163.com; Liu, Qinfu, E-mail: lqf@cumtb.edu.cn; Cheng, Hongfei, E-mail: h.cheng@cumtb.edu.cn

    The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may bemore » due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials. - Graphical abstract: Schematic illustration of the preparation of reduced graphene by Lycium barbarum extract. - Highlights: • The Lycium barbarum extract was used for the reduction of graphene oxide. • The obtained few layered graphene exhibited high carbon to oxygen ratio. • This approach can be applied in the preparation of graphene-based bio-materials.« less

  14. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons

    NASA Astrophysics Data System (ADS)

    Xu, Zenghui; Wu, Dong; Liu, Yumin; Liu, Chang; Yu, Zhongyuan; Yu, Li; Ye, Han

    2018-05-01

    We propose and numerically demonstrate an ultra-broadband graphene-based metamaterial absorber, which consists of multi-layer graphene/dielectric on the SiO2 layer supported by a metal substrate. The simulated result shows that the proposed absorber can achieve a near-perfect absorption above 90% with a bandwidth of 4.8 Thz. Owing to the flexible tunability of graphene sheet, the state of the absorber can be switched from on (absorption > 90%) to off (reflection > 90%) in the frequencies range of 3-7.8 Thz by controlling the Fermi energy of graphene. Moreover, the absorber is insensitive to the incident angles. The broadband absorption can be maintained over 90% up to 50°. Importantly, the design is scalable to develop broader tunable terahertz absorbers by adding more graphene layers which may have wide applications in imaging, sensors, photodetectors, and modulators.

  15. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    PubMed

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  16. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  17. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block

    PubMed Central

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V. PMID:20596315

  18. Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaut, Annette S.; Wurstbauer, Ulrich; Wang, Sheng

    We demonstrate growth of single-layer graphene (SLG) on hexagonal boron nitride (h-BN) by molecular beam epitaxy (MBE), only limited in area by the finite size of the h-BN flakes. Using atomic force microscopy and micro-Raman spectroscopy, we show that for growth over a wide range of temperatures (500 °C – 1000 °C) the deposited carbon atoms spill off the edge of the h-BN flakes. We attribute this spillage to the very high mobility of the carbon atoms on the BN basal plane, consistent with van der Waals MBE. The h-BN flakes vary in size from 30 μm to 100 μm,more » thus demonstrating that the migration length of carbon atoms on h-BN is greater than 100 μm. When sufficient carbon is supplied to compensate for this loss, which is largely due to this fast migration of the carbon atoms to and off the edges of the h-BN flake, we find that the best growth temperature for MBE SLG on h-BN is ~950 °C. Self-limiting graphene growth appears to be facilitated by topographic h-BN surface features: We have thereby grown MBE self-limited SLG on an h-BN ridge. This opens up future avenues for precisely tailored fabrication of nano- and hetero-structures on pre-patterned h-BN surfaces for device applications.« less

  19. Electronic Spectrum of Twisted Graphene Layers under Heterostrain

    NASA Astrophysics Data System (ADS)

    Huder, Loïc; Artaud, Alexandre; Le Quang, Toai; de Laissardière, Guy Trambly; Jansen, Aloysius G. M.; Lapertot, Gérard; Chapelier, Claude; Renard, Vincent T.

    2018-04-01

    We demonstrate that stacking layered materials allows a strain engineering where each layer is strained independently, which we call heterostrain. We combine detailed structural and spectroscopic measurements with tight-binding calculations to show that small uniaxial heterostrain suppresses Dirac cones and leads to the emergence of flat bands in twisted graphene layers (TGLs). Moreover, we demonstrate that heterostrain reconstructs, much more severely, the energy spectrum of TGLs than homostrain for which both layers are strained identically, a result which should apply to virtually all van der Waals structures opening exciting possibilities for straintronics with 2D materials.

  20. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    NASA Astrophysics Data System (ADS)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2012-03-01

    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  1. Atomic composition and electrical characteristics of epitaxial CVD diamond layers doped with boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surovegina, E. A., E-mail: suroveginaka@ipmras.ru; Demidov, E. V.; Drozdov, M. N.

    2016-12-15

    The results of analysis of the atomic composition, doping level, and hole mobility in epitaxial diamond layers when doped with boron are reported. The layers are produced by chemical-vapor deposition. The possibilities of uniform doping with boron to a level in the range 5 × 10{sup 17} to ~10{sup 20} at cm{sup –3} and of δ doping to the surface concentration (0.3–5) × 10{sup 13} at cm{sup –3} are shown. The conditions for precision ion etching of the structures are determined, and barrier and ohmic contacts to the layers are formed.

  2. Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric.

    PubMed

    Basu, Sarbani; Adriyanto, Feri; Wang, Yeong-Her

    2014-02-28

    Solution processible poly(4-vinylphenol) is employed as a transistor dielectric material for low cost processing on flexible substrates at low temperatures. A 6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene-graphene hybrid semiconductor is drop cast to fabricate bottom-gate and bottom-contact field-effect transistor devices on flexible and glass substrates under an ambient air environment. A few layers of graphene flakes increase the area in the conduction channel, and form bridge connections between the crystalline regions of the semiconductor layer which can change the surface morphology of TIPS pentacene films. The TIPS pentacene-graphene hybrid semiconductor-based organic thin film transistors (OTFTs) cross-linked with a poly(4-vinylphenol) gate dielectric exhibit an effective field-effect mobility of 0.076 cm(2) V(-1) s(-1) and a threshold voltage of -0.7 V at V(gs) = -40 V. By contrast, typical TIPS pentacene shows four times lower mobility of 0.019 cm(2) V(-1) s(-1) and a threshold voltage of 5 V. The graphene/TIPS pentacene hybrids presented in this paper can enhance the electrical characteristics of OTFTs due to their high crystallinity, uniform large-grain distribution, and effective reduction of crystal misorientation of the organic semiconductor layer, as confirmed by x-ray diffraction spectroscopy, atomic force microscopy, and optical microscopy studies.

  3. Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries.

    PubMed

    Thangavel, Ranjith; Samuthira Pandian, Amaresh; Ramasamy, Hari Vignesh; Lee, Yun-Sung

    2017-11-22

    The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS 2 over graphene sheets in a few minutes. SnS 2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g -1 ), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS 2 //Na 3 V 2 (PO 4 ) 3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg -1 and an ultrahigh specific power of ∼8.3 kW kg -1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS 2 could be a promising candidate for practical realization of high-power SIBs.

  4. The barrier to misfit dislocation glide in continuous, strained, epitaxial layers on patterned substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, G.P.; Ast, D.G.; Anderson, T.J.

    1993-09-01

    In a previous report [G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett. [bold 58], 2517 (1991)] we demonstrated that the motion of misfit dislocations in InGaAs, grown by organometallic vapor phase epitaxy on patterned GaAs substrates, can be impeded even if the strained epitaxial layer is continuous. Trenches etched into GaAs before growth are known to act as a barrier to misfit dislocation propagation [E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. [bold 65], 2220 (1989)]more » when those trenches create discontinuities in the epitaxial layers; but even shallow trenches, with continuous strained layers following the surface features, can act as barriers. By considering the strain energy required to change the length of the dislocation glide segments that stretch from the interface to the free surface, a simple model is developed that explains the major features of the unique blocking action observed at the trench edges. The trench wall angle is found to be an important parameter in determining whether or not a trench will block dislocation glide. The predicted blocking angles are consistent with observations made on continuous 300 and 600 nm thick In[sub 0.04]Ga[sub 0.96]As films on patterned GaAs. Based on the model, a structure is proposed that may be used as a filter to yield misfit dislocations with identical Burgers vectors or dislocations which slip in only one glide plane.« less

  5. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less

  6. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less

  7. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    PubMed

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  8. Characterization and growth of epitaxial layers of Gs exhibiting high resistivity for ionic implantation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Either classical or low temperature epitaxial growth techniques can be used to control the deposition of buffer layers of GaAs on semiconducting substrates and to obtain the resistivity and purity desired. Techniques developed to study, as a function of thickness, the evolution of mobilities by photoHall, and the spectroscopy of shallow and deep centers by cathodoluminescence and current transients reveal one very pure layer of medium resistivity and high mobility, and another "dead layer" of elevated resistivity far from the surface. The highly resistive layer remains pure over several microns, which appears interesting for implantation.

  9. Fast solid-phase synthesis of large-area few-layer 1T'-MoTe2 films

    NASA Astrophysics Data System (ADS)

    Xie, Sheng; Chen, Lin; Zhang, Tian-Bao; Nie, Xin-Ran; Zhu, Hao; Ding, Shi-Jin; Sun, Qing-Qing; Zhang, David Wei

    2017-06-01

    In this study, we report on a novel approach to produce ∼12 nm thick few-layer monoclinic 1T'-MoTe2 films. The deposition method comprised sputtering of Mo, molecular beam epitaxy of Te, and rapid thermal processing to effect tellurization of the Mo into 1T'-MoTe2. The heating rate and annealing time are the critical factors. 30 °C s-1 heating rate and 2 min annealing at 470 °C were adopted in this work. X-ray photoelectron spectroscopy confirmed the formation of stoichiometric 1T'-MoTe2 films, while X-ray diffraction confirmed the monoclinic polymorph. Raman spectroscopy confirmed spatial uniformity over the sample size of 1 cm × 1.5 cm. Our fast synthesis approach to realize high-quality 1T'-MoTe2 paves the way towards the large-scale application of 1T'-MoTe2 in high-performance nanoelectronics and optoelectronics.

  10. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons.

    PubMed

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey

    2018-05-23

    In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell's equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.

  11. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey

    2018-05-01

    In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.

  12. A pentacene monolayer trapped between graphene and a substrate.

    PubMed

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  13. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yastrubchak, O.; Sadowski, J.; Gluba, L.; Domagala, J. Z.; Rawski, M.; Żuk, J.; Kulik, M.; Andrearczyk, T.; Wosinski, T.

    2014-08-01

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  14. New insights into the opening band gap of graphene oxides

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa

    Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.

  15. Slater-Koster Tight-Binding parametrization of single and few-layer Black-Phosphorus from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos; Capaz, Rodrigo

    Black Phosphorus (BP) is a promising material for applications in electronics, especially due to the tuning of its band gap by increasing the number of layers. In single-layer BP, also called Phosphorene, the P atoms form two staggered chains bonded by sp3 hybridization, while neighboring layers are bonded by Van-der-Waals interactions. In this work, we present a Tight-Binding (TB) parametrization of the electronic structure of single and few-layer BP, based on the Slater-Koster model within the two-center approximation. Our model includes all 3s and 3p orbitals, which makes this problem more complex than that of graphene, where only 2pz orbitals are needed for most purposes. The TB parameters are obtained from a least-squares fit of DFT calculations carried on the SIESTA code. We compare the results for different basis-sets used to expand the ab-initio wavefunctions and discuss their applicability. Our model can fit a larger number of bands than previously reported calculations based on Wannier functions. Moreover, our parameters have a clear physical interpretation based on chemical bonding. As such, we expect our results to be useful in a further understanding of multilayer BP and other 2D-materials characterized by strong sp3 hybridization. CNPq, FAPERJ, INCT-Nanomateriais de Carbono.

  16. Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf

    2016-02-01

    A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.

  17. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  18. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    PubMed

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  19. The Effect of Buffer Types on the In0.82Ga0.18As Epitaxial Layer Grown on an InP (100) Substrate.

    PubMed

    Zhang, Min; Guo, Zuoxing; Zhao, Liang; Yang, Shen; Zhao, Lei

    2018-06-08

    In 0.82 Ga 0.18 As epitaxial layers were grown on InP (100) substrates at 530 °C by a low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. The effects of different buffer structures, such as a single buffer layer, compositionally graded buffer layers, and superlattice buffer layers, on the crystalline quality and property were investigated. Double-crystal X-ray diffraction (DC-XRD) measurement, Raman scattering spectrum, and Hall measurements were used to evaluate the crystalline quality and electrical property. Scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) were used to characterize the surface morphology and microstructure, respectively. Compared with the In 0.82 Ga 0.18 As epitaxial layer directly grown on an InP substrate, the quality of the sample is not obviously improved by using a single In 0.82 Ga 0.18 As buffer layer. By introducing the graded In x Ga 1−x As buffer layers, it was found that the dislocation density in the epitaxial layer significantly decreased and the surface quality improved remarkably. In addition, the number of dislocations in the epitaxial layer greatly decreased under the combined action of multi-potential wells and potential barriers by the introduction of a In 0.82 Ga 0.18 As/In 0.82 Al 0.18 As superlattice buffer. However, the surface subsequently roughened, which may be explained by surface undulation.

  20. Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil

    NASA Astrophysics Data System (ADS)

    Yan, Yuping; Lv, Jiajiang; Liu, Sheng

    2018-04-01

    We investigate chirality and grain boundary (GB) effects on indentation mechanical properties of graphene coated on nickel foil using molecular dynamics simulations. The models of graphene with different chirality angles, different numbers of layers and tilt GBs were established. It was found that the chirality angle of few-layer graphene had a significant effect on the load bearing capacity of graphene/nickel systems, and this turns out to be more significant when the number of layers is greater than one. The enhancement to the contact stiffness, elastic capacity and the load bearing capacity of graphene with tilt GBs was lower than that of pristine graphene.