Science.gov

Sample records for fgf signaling controls

  1. FGF10 signaling controls stomach morphogenesis

    PubMed Central

    Nyeng, Pia; Norgaard, Gitte Anker; Kobberup, Sune; Jensen, Jan

    2007-01-01

    Maintenance of progenitor cell properties in development is required for proper organogenesis of most organs, including those derived from the endoderm. FGF10 has been shown to play a role in both lung and pancreatic development. Here we find that FGF10 signaling controls stomach progenitor maintenance, morphogenesis and cellular differentiation. Through a characterization of the initiation of terminal differentiation of the three major gastric regions in the mouse, forestomach, corpus and antrum, we first describe the existence of a “secondary transition” event occurring in mouse stomach between E15.5-E16.5. This includes the formation of terminally differentiated squamous cells, parietal, chief a nd gastric endocrine cells from a pre-patterned gastric progenitor epithelium. Expression analysis of both FGF and Notch signaling components suggested a role of these networks in such progenitors, which was tested through ectopically expressing FGF10 in the developing posterior stomach. These data provide evidence that gastric gland specification and progenitor cell maintenance is controlled by FGF10. The glandular proliferative niche was disrupted in pPDX-FGF10FLAG mice leading to aberrant gland formation, and endocrine and parietal cell differentiation was attenuated. These effects were paralleled by changes in Hes1, Shh, and Wnt6 expression, suggesting that FGF10 acts in concert with multiple morphogenetic signaling systems during gastric development. PMID:17196193

  2. FGF9-Pitx2-FGF10 signaling controls cecal formation in mice.

    PubMed

    Al Alam, Denise; Sala, Frederic G; Baptista, Sheryl; Galzote, Rosanna; Danopoulos, Soula; Tiozzo, Caterina; Gage, Philip; Grikscheit, Tracy; Warburton, David; Frey, Mark R; Bellusci, Saverio

    2012-09-15

    Fibroblast growth factor (FGF) signaling to the epithelium and mesenchyme mediated by FGF10 and FGF9, respectively, controls cecal formation during embryonic development. In particular, mesenchymal FGF10 signals to the epithelium via FGFR2b to induce epithelial cecal progenitor cell proliferation. Yet the precise upstream mechanisms controlling mesenchymal FGF10 signaling are unknown. Complete deletion of Fgf9 as well as of Pitx2, a gene encoding a homeobox transcription factor, both lead to cecal agenesis. Herein, we used mouse genetic approaches to determine the precise contribution of the epithelium and/or mesenchyme tissue compartments in this process. Using tissue compartment specific Fgf9 versus Pitx2 loss of function approaches in the gut epithelium and/or mesenchyme, we determined that FGF9 signals to the mesenchyme via Pitx2 to induce mesenchymal Fgf10 expression, which in turn leads to epithelial cecal bud formation.

  3. FGF9-Pitx2-FGF10 signaling controls cecal formation in mice

    PubMed Central

    Alam, Denise Al; Sala, Frederic G; Baptista, Sheryl; Galzote, Rosanna; Danopoulos, Soula; Tiozzo, Caterina; Gage, Philip; Grikscheit, Tracy; Warburton, David; Frey, Mark R; Bellusci, Saverio

    2012-01-01

    Fibroblast growth factor (FGF) signaling to the epithelium and mesenchyme mediated by FGF10 and FGF9, respectively, controls cecal formation during embryonic development. In particular, mesenchymal FGF10 signals to the epithelium via FGFR2b to induce epithelial cecal progenitor cell proliferation. Yet the precise upstream mechanisms controlling mesenchymal FGF10 signaling are unknown. Complete deletion of Fgf9 as well as of Pitx2, a gene encoding a homeobox transcription factor, both lead to cecal agenesis. Herein, we used mouse genetic approaches to determine the precise contribution of the epithelium and/or mesenchyme tissue compartments in this process. Using tissue compartment specific Fgf9 versus Pitx2 loss of function approaches in the gut epithelium and/or mesenchyme, we determined that FGF9 signals to the mesenchyme via Pitx2 to induce mesenchymal Fgf10 expression, which in turn leads to epithelial cecal bud formation. PMID:22819677

  4. Fgf signalling controls diverse aspects of fin regeneration.

    PubMed

    Shibata, Eri; Yokota, Yuki; Horita, Natsumi; Kudo, Akira; Abe, Gembu; Kawakami, Koichi; Kawakami, Atsushi

    2016-08-15

    Studies have shown that fibroblast growth factor (Fgf) signalling is necessary for appendage regeneration, but its exact function and the ligands involved during regeneration have not yet been elucidated. Here, we performed comprehensive expression analyses and identified fgf20a and fgf3/10a as major Fgf ligands in the wound epidermis and blastema, respectively. To reveal the target cells and processes of Fgf signalling, we performed a transplantation experiment of mesenchymal cells that express the dominant-negative Fgf receptor 1 (dnfgfr1) under control of the heat-shock promoter. This mosaic knockdown analysis suggested that Fgf signalling is directly required for fin ray mesenchyme to form the blastema at the early pre-blastema stage and to activate the regenerative cell proliferation at a later post-blastema stage. These results raised the possibility that the early epidermal Fgf20a and the later blastemal Fgf3/10a could be responsible for these respective processes. We demonstrated by gain-of-function analyses that Fgf20a induces the expression of distal blastema marker junbl, and that Fgf3 promotes blastema cell proliferation. Our study highlights that Fgfs in the wound epidermis and blastema have distinct functions to regulate fin regeneration cooperatively.

  5. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    SciTech Connect

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  6. Systemic Control of Bone Homeostasis by FGF23 Signaling

    PubMed Central

    Clinkenbeard, Erica L.; White, Kenneth E.

    2016-01-01

    The regulation of phosphate metabolism as an influence on bone homeostasis is profound. Recent advances in understanding the systemic control of Fibroblast growth factor-23 (FGF23) has uncovered novel effectors of endocrine feedback loops for calcium, phosphate, and vitamin D balance that interact with ‘traditional’ feedback loops for mineral metabolism. Not only are these findings re-shaping research studying phosphate handling and skeletal interactions, they have provided new therapeutic interventions. Emerging data support that the control of FGF23 production in bone and its circulating concentrations is a multi-layered process, with some influences affecting FGF23 transcription and some post-translational modification of the secreted, bioactive protein. Additionally, the actions of FGF23 on its target tissues via its co-receptor αKlotho, are subject to regulatory events just coming to light. The recent findings of systemic influences on circulating FGF23 and the downstream manifestations on bone homeostasis will be reviewed herein. PMID:27134818

  7. Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates.

    PubMed

    Bertrand, Stéphanie; Aldea, Daniel; Oulion, Silvan; Subirana, Lucie; de Lera, Angel R; Somorjai, Ildiko; Escriva, Hector

    2015-01-01

    During vertebrate development, the paraxial mesoderm becomes segmented, forming somites that will give rise to dermis, axial skeleton and skeletal muscles. Although recently challenged, the "clock and wavefront" model for somitogenesis explains how interactions between several cell-cell communication pathways, including the FGF, RA, Wnt and Notch signals, control the formation of these bilateral symmetric blocks. In the cephalochordate amphioxus, which belongs to the chordate phylum together with tunicates and vertebrates, the dorsal paraxial mesendoderm also periodically forms somites, although this process is asymmetric and extends along the whole body. It has been previously shown that the formation of the most anterior somites in amphioxus is dependent upon FGF signalling. However, the signals controlling somitogenesis during posterior elongation in amphioxus are still unknown. Here we show that, contrary to vertebrates, RA and FGF signals act independently during posterior elongation and that they are not mandatory for posterior somites to form. Moreover, we show that RA is not able to buffer the left/right asymmetry machinery that is controlled through the asymmetric expression of Nodal pathway actors. Our results give new insights into the evolution of the somitogenesis process in chordates. They suggest that RA and FGF pathways have acquired specific functions in the control of somitogenesis in vertebrates. We propose that the "clock and wavefront" system was selected specifically in vertebrates in parallel to the development of more complex somite-derived structures but that it was not required for somitogenesis in the ancestor of chordates.

  8. Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates

    PubMed Central

    Bertrand, Stéphanie; Aldea, Daniel; Oulion, Silvan; Subirana, Lucie; de Lera, Angel R.; Somorjai, Ildiko; Escriva, Hector

    2015-01-01

    During vertebrate development, the paraxial mesoderm becomes segmented, forming somites that will give rise to dermis, axial skeleton and skeletal muscles. Although recently challenged, the "clock and wavefront" model for somitogenesis explains how interactions between several cell-cell communication pathways, including the FGF, RA, Wnt and Notch signals, control the formation of these bilateral symmetric blocks. In the cephalochordate amphioxus, which belongs to the chordate phylum together with tunicates and vertebrates, the dorsal paraxial mesendoderm also periodically forms somites, although this process is asymmetric and extends along the whole body. It has been previously shown that the formation of the most anterior somites in amphioxus is dependent upon FGF signalling. However, the signals controlling somitogenesis during posterior elongation in amphioxus are still unknown. Here we show that, contrary to vertebrates, RA and FGF signals act independently during posterior elongation and that they are not mandatory for posterior somites to form. Moreover, we show that RA is not able to buffer the left/right asymmetry machinery that is controlled through the asymmetric expression of Nodal pathway actors. Our results give new insights into the evolution of the somitogenesis process in chordates. They suggest that RA and FGF pathways have acquired specific functions in the control of somitogenesis in vertebrates. We propose that the "clock and wavefront" system was selected specifically in vertebrates in parallel to the development of more complex somite-derived structures but that it was not required for somitogenesis in the ancestor of chordates. PMID:26371756

  9. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans

    PubMed Central

    Minor, Paul J.; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R.; Sternberg, Paul W.

    2013-01-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans. PMID:23946444

  10. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans.

    PubMed

    Minor, Paul J; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R; Sternberg, Paul W

    2013-09-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans.

  11. FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium.

    PubMed

    Sharma, Rahul; Beermann, Anke; Schröder, Reinhard

    2013-09-01

    Fibroblast growth factor (FGF) signalling plays a key role in early embryonic development and cell migration in vertebrates and in invertebrates. To gain novel insights into FGF signalling in an arthropod, we characterized the fgf1b ortholog in the beetle Tribolium that is not represented in the Drosophila genome. We found that FGF1b dependent signalling organizes the anterior to posterior axis of the early embryo. The loss of Tc-fgf1b function in Tribolium by RNA interference resulted in the reduction of the anteriormost extraembryonic fate, in an anterior shift of embryonic fate and in the loss or malformation of anterior embryonic structures. Without intact extraembryonic membranes the serosa and the amnion, Tc-fgf1b(RNAi) embryos did not undergo morphogenetic movements and remained posteriorly localized throughout embryogenesis. Only weakly affected embryos developed into a cuticle that show dorsally curved bodies with head defects and a dorsal opening. Except for the posterior dorsal amnion, the overall topology of the dorsal-ventral axis seemed unaffected. Moreover, FGF signalling was not required for the onset of mesoderm formation but for fine-tuning this tissue during later development. We also show that in affected embryos the dorsal epidermis was expanded and expressed Tc-dpp at a higher level. We conclude that in the Tribolium blastoderm embryo, FGF1-signalling organizes patterning along the AP-axis and also balances the expression level of Dpp in the dorsal epidermis, a tissue critically involved in dorsal closure.

  12. Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila

    PubMed Central

    Miao, Guangxia

    2016-01-01

    Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior. PMID:27742749

  13. Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila.

    PubMed

    Miao, Guangxia; Hayashi, Shigeo

    2016-11-15

    Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior.

  14. Regulation of self-renewing neural progenitors by FGF/ERK signaling controls formation of the inferior colliculus.

    PubMed

    Dee, Alexander; Li, Kairong; Heng, Xin; Guo, Qiuxia; Li, James Y H

    2016-10-15

    The embryonic tectum displays an anteroposterior gradient in development and produces the superior colliculus and inferior colliculus. Studies suggest that partition of the tectum is controlled by different strengths and durations of FGF signals originated from the so-called isthmic organizer at the mid/hindbrain junction; however, the underlying mechanism is unclear. We show that deleting Ptpn11, which links FGF with the ERK pathway, prevents inferior colliculus formation by depleting a previously uncharacterized stem cell zone. The stem-zone loss is attributed to shortening of S phase and acceleration of cell cycle exit and neurogenesis. Expression of a constitutively active Mek1 (Mek1(DD)), the known ERK activator, restores the tectal stem zone and the inferior colliculus without Ptpn11. By contrast, Mek1(DD) expression fails to rescue the tectal stem zone and the inferior colliculus in the absence of Fgf8 and the isthmic organizer, indicating that FGF and Mek1(DD) initiate qualitatively and/or quantitatively distinctive signaling. Together, our data show that the formation of the inferior colliculus relies on the provision of new cells from the tectal stem zone. Furthermore, distinctive ERK signaling mediates Fgf8 in the control of cell survival, tissue polarity and cytogenetic gradient during the development of the tectum.

  15. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes.

    PubMed

    Mercader, N; Leonardo, E; Piedra, M E; Martínez-A, C; Ros, M A; Torres, M

    2000-09-01

    Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.

  16. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain

    PubMed Central

    Avet-Rochex, Amélie; Kaul, Aamna K.; Gatt, Ariana P.; McNeill, Helen; Bateman, Joseph M.

    2012-01-01

    Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific. PMID:22745312

  17. FGF21 is an endocrine signal of protein restriction.

    PubMed

    Laeger, Thomas; Henagan, Tara M; Albarado, Diana C; Redman, Leanne M; Bray, George A; Noland, Robert C; Münzberg, Heike; Hutson, Susan M; Gettys, Thomas W; Schwartz, Michael W; Morrison, Christopher D

    2014-09-01

    Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2α kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake.

  18. Ectodermal Wnt Controls Nasal Pit Morphogenesis Through Modulation of the BMP/FGF/JNK Signaling Axis

    PubMed Central

    Zhu, Xiao-Jing; Liu, Yudong; Yuan, Xueyan; Wang, Min; Zhao, Wanxin; Yang, Xueqin; Zhang, Xiaoyun; Hsu, Wei; Qiu, Mengsheng; Zhang, Ze; Zhang, Zunyi

    2016-01-01

    Background Mutations of WNT3, WNT5A, WNT9B, and WNT11 genes are associated with orofacial birth defects, including non-syndromic cleft lip with cleft palate in humans. However, the source of Wnt ligands and their signaling effects on the orofacial morphogenetic process remain elusive. Results Using Foxg1-Cre to impair Wnt secretion through the inactivation of Gpr177/mWls, we investigate the relevant regulation of Wnt production and signaling in nasal–facial development. Ectodermal ablation of Gpr177 leads to severe facial deformities resulting from dramatically reduced cell proliferation and increased cell death due to a combined loss of WNT, FGF and BMP signaling in the developing facial prominence. In the invaginating nasal pit, the Gpr177 disruption also causes a detrimental effect on migration of the olfactory epithelial cells into the mesenchymal region. The blockage of Wnt secretion apparently impairs the olfactory epithelial cells through modulation of JNK signaling. Conclusions Our study thus suggests the head ectoderm, including the facial ectoderm and the neuroectoderm, as the source of canonical as well as noncanonical Wnt ligands during early development of the nasal–facial prominence. Both β-catenin–dependent and –independent signaling pathways are required for proper development of these morphogenetic processes. PMID:26661618

  19. FGF/MAPK signaling sets the switching threshold of a bistable circuit controlling cell fate decisions in embryonic stem cells

    PubMed Central

    Schröter, Christian; Rué, Pau; Mackenzie, Jonathan Peter; Martinez Arias, Alfonso

    2015-01-01

    Intracellular transcriptional regulators and extracellular signaling pathways together regulate the allocation of cell fates during development, but how their molecular activities are integrated to establish the correct proportions of cells with particular fates is not known. Here we study this question in the context of the decision between the epiblast (Epi) and the primitive endoderm (PrE) fate that occurs in the mammalian preimplantation embryo. Using an embryonic stem cell (ESC) model, we discover two successive functions of FGF/MAPK signaling in this decision. First, the pathway needs to be inhibited to make the PrE-like gene expression program accessible for activation by GATA transcription factors in ESCs. In a second step, MAPK signaling levels determine the threshold concentration of GATA factors required for PrE-like differentiation, and thereby control the proportion of cells differentiating along this lineage. Our findings can be explained by a simple mutual repression circuit modulated by FGF/MAPK signaling. This might be a general network architecture to integrate the activity of signal transduction pathways and transcriptional regulators, and serve to balance proportions of cell fates in several contexts. PMID:26511924

  20. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP.

    PubMed

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-07-05

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type-dependent manner, with 4E-BP1 being a key player.

  1. Dysregulated FGF signalling in neoplastic disorders.

    PubMed

    Tanner, Yasmine; Grose, Richard P

    2016-05-01

    The fibroblast growth factor (FGF) signalling pathway contributes to the regulation of a multitude of cellular functions, impacting on proliferation, survival, differentiation and migration. This biological importance is reflected by its prominent role in carcinogenesis; often being hijacked by cancer cells to offer growth or survival advantage. FGF signalling can contribute a driving force in the malignancy of different cancer types; through alterations in ligands, receptors or regulatory molecules. The dramatic advances in genomics technologies have highlighted how mutation, amplification, translocation or loss of elements in the FGF signalling network can contribute to cancer. Added to this are the stromal influences of FGF signalling. Dissection of the mechanisms that underlie the pro-tumourigenic effects resulting from perturbations to the FGF signalling network will be of utmost importance to the development of therapeutic approaches to treat FGF receptor (FGFR)-driven cancers. In this review, we will focus on the mechanisms of FGF deregulation, the prevalence of aberrations in different cancer types, and how we are progressing in the development of targeted therapies.

  2. Roles of FGF Signals in Heart Development, Health, and Disease

    PubMed Central

    Itoh, Nobuyuki; Ohta, Hiroya; Nakayama, Yoshiaki; Konishi, Morichika

    2016-01-01

    The heart provides the body with oxygen and nutrients and assists in the removal of metabolic waste through the blood vessels of the circulatory system. It is the first organ to form during embryonic morphogenesis. FGFs with diverse functions in development, health, and disease are signaling proteins, mostly as paracrine growth factors or endocrine hormones. The human/mouse FGF family comprises 22 members. Findings obtained from mouse models and human diseases with FGF signaling disorders have indicated that several FGFs are involved in heart development, health, and disease. Paracrine FGFs including FGF8, FGF9, FGF10, and FGF16 act as paracrine signals in embryonic heart development. In addition, paracrine FGFs including FGF2, FGF9, FGF10, and FGF16 play roles as paracrine signals in postnatal heart pathophysiology. Although FGF15/19, FGF21, and FGF23 are typical endocrine FGFs, they mainly function as paracrine signals in heart development or pathophysiology. In heart diseases, serum FGF15/19 levels or FGF21 and FGF23 levels decrease or increase, respectively, indicating their possible roles in heart pathophysiology. FGF2 and FGF10 also stimulate the cardiac differentiation of cultured stem cells and cardiac reprogramming of cultured fibroblasts. These findings provide new insights into the roles of FGF signaling in the heart and potential therapeutic strategies for cardiac disorders. PMID:27803896

  3. Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate.

    PubMed

    Tereshina, Maria B; Ermakova, Galina V; Ivanova, Anastasiya S; Zaraisky, Andrey G

    2014-03-15

    We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer. We show that this feedback signal is transmitted by secreted Agr proteins, the expression of which is activated in the outer layer by mediation of Ras-dva1 and the homeodomain transcription factor Otx2. In turn, Agrs are essential for maintaining Fgf8 and FoxG1 expression in cells at the anterior neural plate border. Our finding reveals a novel feedback loop mechanism based on the exchange of Fgf8 and Agr signaling between neural and non-neural compartments at the anterior margin of the neural plate and demonstrates a key role of Ras-dva1 in this mechanism.

  4. Pea3 expression is regulated by FGF signaling in developing retina

    PubMed Central

    McCabe, Kathryn Leigh; McGuire, Chris; Reh, Thomas A.

    2008-01-01

    FGF signaling has been implicated as an important regulator of retinal development. As a first step in characterizing potential downstream targets of FGF signaling in the retina, we have analyzed expression of Pea3, a member of the Pea3 class of Ets-domain transcription factors, in the developing eye. We find that Pea3 is expressed in the developing retina, and its transcription is regulated by FGF receptor activation. In addition, FGF signaling activates Cath5, a gene necessary for retinal ganglion cell differentiation. These results suggest that FGF signaling via MAPK up-regulates transcription factors that in turn control retinal ganglion cell differentiation. PMID:16273524

  5. Cell type-specific control of protein synthesis and proliferation by FGF-dependent signaling to the translation repressor 4E-BP

    PubMed Central

    Ruoff, Rachel; Katsara, Olga; Kolupaeva, Victoria

    2016-01-01

    Regulation of protein synthesis plays a vital role in posttranscriptional modulation of gene expression. Translational control most commonly targets the initiation of protein synthesis: loading 40S ribosome complexes onto mRNA and AUG start codon recognition. This step is initiated by eukaryotic initiation factor 4E (eIF4E) (the m7GTP cap-binding protein), whose binding to eIF4G (a scaffolding subunit) and eIF4A (an ATP-dependent RNA helicase) leads to assembly of active eIF4F complex. The ability of eIF4E to recognize the cap is prevented by its binding to eIF4E binding protein (4E-BP), which thereby inhibits cap-dependent translation by sequestering eIF4E. The 4E-BP activity is, in turn, inhibited by mTORC1 [mTOR (the mechanistic target of rapamycin) complex 1] mediated phosphorylation. Here, we define a previously unidentified mechanism of mTOR-independent 4E-BP1 regulation that is used by chondrocytes upon FGF signaling. Chondrocytes are responsible for the formation of the skeleton long bones. Unlike the majority of cell types where FGF signaling triggers proliferation, chondrocytes respond to FGF with inhibition. We establish that FGF specifically suppresses protein synthesis in chondrocytes, but not in any other cells of mesenchymal origin. Furthermore, 4E-BP1 repressor activity is necessary not only for suppression of protein synthesis, but also for FGF-induced cell-cycle arrest. Importantly, FGF-induced changes in the 4E-BP1 activity observed in cell culture are likewise detected in vivo and reflect the action of FGF signaling on downstream targets during bone development. Thus, our findings demonstrate that FGF signaling differentially impacts protein synthesis through either stimulation or repression, in a cell-type–dependent manner, with 4E-BP1 being a key player. PMID:27313212

  6. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  7. Up-regulation of fibroblast growth factor (FGF) 9 expression and FGF-WNT/β-catenin signaling in laser-induced wound healing.

    PubMed

    Zheng, Zhenlong; Kang, Hye-Young; Lee, Sunha; Kang, Shin-Wook; Goo, Boncheol; Cho, Sung Bin

    2014-01-01

    Fibroblast growth factor (FGF) 9 is secreted by both mesothelial and epithelial cells, and plays important roles in organ development and wound healing via WNT/β-catenin signaling. The aim of this study was to evaluate FGF9 expression and FGF-WNT/β-catenin signaling during wound healing of the skin. We investigated FGF9 expression and FGF-WNT/β-catenin signaling after laser ablation of mouse skin and adult human skin, as well as in cultured normal human epidermal keratinocytes (NHEKs) upon stimulation with recombinant human (rh) FGF9 and rh-transforming growth factor (TGF)-β1. Our results showed that laser ablation of both mouse skin and human skin leads to marked overexpression of FGF9 and FGF9 mRNA. Control NHEKs constitutively expressed FGF9, WNT7b, WNT2, and β-catenin, but did not show Snail or FGF receptor (FGFR) 2 expression. We also found that FGFR2 was significantly induced in NHEKs by rhFGF9 stimulation, and observed that FGFR2 expression was slightly up-regulated on particular days during the wound healing process after ablative laser therapy. Both WNT7b and WNT2 showed up-regulated protein expression during the laser-induced wound healing process in mouse skin; moreover, we discerned that the stimulatory effect of rhFGF9 and rhTGF-β1 activates WNT/β-catenin signaling via WNT7b in cultured NHEKs. Our data indicated that rhFGF9 and/or rhTGF-β1 up-regulate FGFR2, WNT7b, and β-catenin, but not FGF9 and Snail; pretreatment with rh dickkopf-1 significantly inhibited the up-regulation of FGFR2, WNT7b, and β-catenin. Our results suggested that FGF9 and FGF-WNT/β-catenin signaling may play important roles in ablative laser-induced wound healing processes.

  8. Genetic insights into the mechanisms of Fgf signaling

    PubMed Central

    Brewer, J. Richard; Mazot, Pierre; Soriano, Philippe

    2016-01-01

    The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo. PMID:27036966

  9. Genetic insights into the mechanisms of Fgf signaling.

    PubMed

    Brewer, J Richard; Mazot, Pierre; Soriano, Philippe

    2016-04-01

    The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.

  10. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  11. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii.

    PubMed

    Green, Stephen A; Norris, Rachael P; Terasaki, Mark; Lowe, Christopher J

    2013-03-01

    FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.

  12. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    PubMed

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  13. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits

    PubMed Central

    Bertrand, Stephanie; Camasses, Alain; Somorjai, Ildiko; Belgacem, Mohamed R.; Chabrol, Olivier; Escande, Marie-Line; Pontarotti, Pierre; Escriva, Hector

    2011-01-01

    FGF signaling is one of the few cell–cell signaling pathways conserved among all metazoans. The diversity of FGF gene content among different phyla suggests that evolution of FGF signaling may have participated in generating the current variety of animal forms. Vertebrates possess the greatest number of FGF genes, the functional evolution of which may have been implicated in the acquisition of vertebrate-specific morphological traits. In this study, we have investigated the roles of the FGF signal during embryogenesis of the cephalochordate amphioxus, the best proxy for the chordate ancestor. We first isolate the full FGF gene complement and determine the evolutionary relationships between amphioxus and vertebrate FGFs via phylogenetic and synteny conservation analysis. Using pharmacological treatments, we inhibit the FGF signaling pathway in amphioxus embryos in different time windows. Our results show that the requirement for FGF signaling during gastrulation is a conserved character among chordates, whereas this signal is not necessary for neural induction in amphioxus, in contrast to what is known in vertebrates. We also show that FGF signal, acting through the MAPK pathway, is necessary for the formation of the most anterior somites in amphioxus, whereas more posterior somite formation is not FGF-dependent. This result leads us to propose that modification of the FGF signal function in the anterior paraxial mesoderm in an amphioxus-like vertebrate ancestor might have contributed to the loss of segmentation in the preotic paraxial mesoderm of the vertebrate head. PMID:21571634

  14. FGF signals from the nasal pit are necessary for normal facial morphogenesis.

    PubMed

    Szabo-Rogers, Heather L; Geetha-Loganathan, Poongodi; Nimmagadda, Suresh; Fu, Kathy K; Richman, Joy M

    2008-06-15

    Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these

  15. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava.

    PubMed

    Fan, Tzu-Pei; Su, Yi-Hsien

    2015-12-01

    Fibroblast growth factors (FGFs) are a group of ligands that play multiple roles during development by transducing signals through FGF receptors (FGFRs) to downstream factors. At least 22 FGF ligands and 4 receptors have been identified in vertebrates, while six to eight FGF ligands and a single FGFR are present in invertebrate chordates, such as tunicates and amphioxus. The chordate FGFs can be categorized into at least seven subfamilies, and the members of which expanded during the evolution of early vertebrates. In contrast, only one FGF and two FGFRs have been found in sea urchins. Thus, it is unclear whether the FGF subfamilies duplicated in the lineage leading to the chordates, or sea urchins lost several fgf genes. Analyses of the FGF signaling repertoire in hemichordates, which together with echinoderms form the closest group to the chordates, may provide insights into the evolution of FGF signaling in deuterostomes. In this study, we identified five FGFs and three FGFRs from Ptychodera flava, an indirect-developing hemichordate acorn worm. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Analyses of sequence similarity and protein domain organizations suggested that the sea urchin and hemichordate FGFRs arose from independent lineage-specific duplications. Furthermore, the acorn worm fgf and fgfr genes were demonstrated to be expressed during P. flava embryogenesis. These results set the foundations for further functional studies of FGF signaling in hemichordates and provided insights into the evolutionary history of the FGF repertoire.

  16. Therapeutics Targeting FGF Signaling Network in Human Diseases.

    PubMed

    Katoh, Masaru

    2016-12-01

    Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence.

  17. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    PubMed

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure.

  18. Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma.

    PubMed

    Cai, Zhigang; Tao, Chenqi; Li, Hongge; Ladher, Raj; Gotoh, Noriko; Feng, Gen-Sheng; Wang, Fen; Zhang, Xin

    2013-07-01

    FGF signaling plays a pivotal role in eye development. Previous studies using in vitro chick models and systemic zebrafish mutants have suggested that FGF signaling is required for the patterning and specification of the optic vesicle, but due to a lack of genetic models, its role in mammalian retinal development remains elusive. In this study, we show that specific deletion of Fgfr1 and Fgfr2 in the optic vesicle disrupts ERK signaling, which results in optic disc and nerve dysgenesis and, ultimately, ocular coloboma. Defective FGF signaling does not abrogate Shh or BMP signaling, nor does it affect axial patterning of the optic vesicle. Instead, FGF signaling regulates Mitf and Pax2 in coordinating the closure of the optic fissure and optic disc specification, which is necessary for the outgrowth of the optic nerve. Genetic evidence further supports that the formation of an Frs2α-Shp2 complex and its recruitment to FGF receptors are crucial for downstream ERK signaling in this process, whereas constitutively active Ras signaling can rescue ocular coloboma in the FGF signaling mutants. Our results thus reveal a previously unappreciated role of FGF-Frs2α-Shp2-Ras-ERK signaling axis in preventing ocular coloboma. These findings suggest that components of FGF signaling pathway may be novel targets in the diagnosis of and the therapeutic interventions for congenital ocular anomalies.

  19. FGF19-FGFR4 signaling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo.

    PubMed

    Kurose, Hitomi; Okamoto, Mayumi; Shimizu, Miyuki; Bito, Takaaki; Marcelle, Cristophe; Noji, Sumihare; Ohuchi, Hideyo

    2005-05-01

    The fibroblast growth factor (FGF) family is known to be involved in vertebrate eye development. However, distinct roles of individual FGF members during eye development remain largely elusive. Here, we show a detailed expression pattern of Fgf19 in chick lens development. Fgf19 expression initiated in the forebrain, and then became restricted to the distal portion of the optic vesicle abutting the future lens placode, where FGF receptor 4 (Fgfr4), a receptor for FGF19, was expressed. Fgf8, a positive regulator for L-Maf, was expressed in a portion of the optic vesicle. To examine the role of FGF19 signaling during early eye development, Fgf19 was misexpressed near the presumptive lens ectoderm; however, no alteration in the expression of lens marker genes was observed. Conversely, a secreted form of FGFR4 was misexpressed to inhibit an FGF19 signal, resulting in the induction of L-Maf expression. To further define the relationship between L-Maf and Fgf19, L-Maf misexpression was performed, resulting in ectopic induction of Fgf19 expression by Hamburger and Hamilton's stage 12/13. Furthermore, misexpression of Fgf8 induced Fgf19 expression in addition to L-Maf. These results suggest that FGF19-FGFR4 signaling plays a role in early lens development in collaboration with FGF8 signaling and L-Maf transcriptional system.

  20. FGF signalling: diverse roles during early vertebrate embryogenesis.

    PubMed

    Dorey, Karel; Amaya, Enrique

    2010-11-01

    Fibroblast growth factor (FGF) signalling has been implicated during several phases of early embryogenesis, including the patterning of the embryonic axes, the induction and/or maintenance of several cell lineages and the coordination of morphogenetic movements. Here, we summarise our current understanding of the regulation and roles of FGF signalling during early vertebrate development.

  1. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish.

    PubMed

    Tsai, Su-Mei; Liu, Da-Wei; Wang, Wen-Pin

    2013-04-01

    In mammals, fibroblast growth factor (FGF) signaling controls liver specification and regulates the metabolism of lipids, cholesterol, and bile acids. FGF signaling also promotes hepatocyte proliferation, and helps detoxify hepatotoxin during liver regeneration after partial hepatectomy. However, the function of Fgf in zebrafish liver is not yet well understood, specifically for postnatal homeostasis. The current study analyzed the expression of fgf receptors (fgfrs) in the liver of zebrafish. We then investigated the function of Fgf signaling in the zebrafish liver by expressing a dominant-negative Fgf receptor in hepatocytes (lfabp:dnfgfr1-egfp, lf:dnfr). Histological analysis showed that our genetic intervention resulted in a small liver size with defected medial expansion of developing livers in transgenic (Tg) larvae. Morphologically, the liver lobe of lf:dnfr adult fish was shorter than that of control. Ballooning degeneration of hepatocytes was observed in fish as young as 3 months. Further examination revealed the development of hepatic steatosis and cholestasis. In adult Tg fish, we unexpectedly observed increased liver-to-body-weight ratios, with higher percentages of proliferating hepatocytes. Considering all these findings, we concluded that as in mammals, in adult zebrafish the metabolism of lipid and bile acids in the liver are regulated by Fgf signaling. Disruption of the Fgf signal-mediated metabolism might indirectly affect hepatocyte proliferation.

  2. Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells.

    PubMed

    Jaroonwitchawan, Thiranut; Muangchan, Pattamon; Noisa, Parinya

    2016-12-02

    Neural crest (NC) is a transient population, arising during embryonic development and capable of differentiating into various somatic cells. The defects of neural crest development leads to neurocristopathy. Several signaling pathways were revealed their significance in NC cell specification. Fibroblast growth factor (FGF) is recognized as an important signaling during NC development, for instance Xenopus and avian; however, its contributions in human species are remained elusive. Here we used human pluripotent stem cells (hPSCs) to investigate the consequences of FGF inhibition during NC cell differentiation. The specific-FGF receptor inhibitor, SU5402, was used in this investigation. The inhibition of FGF did not found to affect the proliferation or death of hPSC-derived NC cells, but promoted hPSCs to commit NC cell fate. NC-specific genes, including PAX3, SLUG, and TWIST1, were highly upregulated, while hPSC genes, such as OCT4, and E-CAD, rapidly reduced upon FGF signaling blockage. Noteworthy, TFAP-2α, a marker of migratory NC cells, abundantly presented in SU5402-induced cells. This accelerated NC cell differentiation could be due to the activation of Notch signaling upon the blockage of ERK1/2 phosphorylation, since NICD was increased by SU5402. Altogether, this study proposed the contributions of FGF signaling in controlling human NC cell differentiation from hPSCs, the crosstalk between FGF and Notch, and might imply to the influences of FGF signaling in neurocristophatic diseases.

  3. Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system.

    PubMed

    Krejci, E; Pesevski, Z; Nanka, O; Sedmera, D

    2016-07-18

    Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretch-induced signaling to myocyte growth in vivo. Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart.

  4. FGF signaling supports Drosophila fertility by regulating development of ovarian muscle tissues.

    PubMed

    Irizarry, Jihyun; Stathopoulos, Angelike

    2015-08-01

    The thisbe (ths) gene encodes a Drosophila fibroblast growth factor (FGF), and mutant females are viable but sterile suggesting a link between FGF signaling and fertility. Ovaries exhibit abnormal morphology including lack of epithelial sheaths and muscle tissues that surround ovarioles. Here we investigated how FGF influences Drosophila ovary morphogenesis and identified several roles. Heartless (Htl) FGF receptor was found to be expressed within somatic cells at the larval and pupal stages, and phenotypes were uncovered using RNAi. Differentiation of terminal filament cells was affected, but this effect did not alter the ovariole number. In addition, proliferation of epithelial sheath progenitors, the apical cells, was decreased in both htl and ths mutants, while ectopic expression of the Ths ligand led to these cells' over-proliferation suggesting that FGF signaling supports ovarian muscle sheath formation by controlling apical cell number in the developing gonad. Additionally, live imaging of adult ovaries was used to show that htl RNAi mutants, hypomorphic mutants in which epithelial sheaths are present, exhibit abnormal muscle contractions. Collectively, our results demonstrate that proper formation of ovarian muscle tissues is regulated by FGF signaling in the larval and pupal stages through control of apical cell proliferation and is required to support fertility.

  5. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling.

    PubMed

    Poole, Ashleigh; Kacer, Doreen; Cooper, Emily; Tarantini, Francesca; Prudovsky, Igor

    2016-03-01

    Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.

  6. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development.

    PubMed

    Miyake, Ayumi; Nakayama, Yoshiaki; Konishi, Morichika; Itoh, Nobuyuki

    2005-12-01

    Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.

  7. The single fgf receptor gene in the beetle Tribolium castaneum codes for two isoforms that integrate FGF8- and Branchless-dependent signals.

    PubMed

    Sharma, Rahul; Beer, Katharina; Iwanov, Katharina; Schmöhl, Felix; Beckmann, Paula Indigo; Schröder, Reinhard

    2015-06-15

    The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.

  8. FGF and Notch signaling in sensory neuron formation: a multifactorial approach to understanding signaling pathway hierarchy.

    PubMed

    Voelkel, Jacob E; Harvey, Jamison A; Adams, Jason S; Lassiter, Rhonda N; Stark, Michael R

    2014-11-01

    The ophthalmic trigeminal (opV) placode exclusively gives rise to sensory neurons, making it a good model to study the molecular regulation of sensory neurogenesis. A number of signaling pathways including Wnt, PDGF, FGF, and Notch have been shown to be involved in the process of opV placode cell development. However, the regulatory relationships between these signaling pathways in placode cells are still unknown and have been difficult to study experimentally. Using a novel multifactorial approach in chick embryos that allows for inhibition of FGF throughout the tissue or in individual cells, with simultaneous inactivation of Notch signaling, we investigated the potential interaction between the FGF and Notch signaling pathways in trigeminal sensory neurogenesis. This study builds on prior research describing the individual role of FGF signaling or Notch signaling in opV placode development, where blocking FGF signaling resulted in neurogenesis failure, while blocking Notch signaling resulted in enhanced neurogenesis. Reported here, blocking both pathways simultaneously resulted in a reduction in the number of cells delaminating from the opV placode and undergoing sensory neuron differentiation. Further, Notch inhibition alone did not lead to an increase in the number of cells expressing FGFR4 or in the FGFR4 expression domain, but did result in a highly fragmented basal lamina, which was reversed when blocking FGF signaling. Cumulatively, the results presented here do not support a model of Notch/FGF interdependence, rather that FGF and Notch act in parallel to promote sensory neurogenesis.

  9. TGF-β mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue-tissue interactions during tongue morphogenesis

    PubMed Central

    Hosokawa, Ryoichi; Oka, Kyoko; Yamaza, Takayoshi; Iwata, Junichi; Urata, Mark; Xu, Xun; Bringas, Pablo; Nonaka, Kazuaki; Chai, Yang

    2012-01-01

    Skeletal muscles are formed from two cell lineages, myogenic and fibroblastic. Mesoderm-derived myogenic progenitors form muscle cells whereas fibroblastic cells give rise to the supportive connective tissue of skeletal muscles, such as the tendons and perimysium. It remains unknown how myogenic and fibroblastic cell-cell interactions affect cell fate determination and the organization of skeletal muscle. In the present study, we investigated the functional significance of cell-cell interactions in regulating skeletal muscle development. Our study shows that cranial neural crest (CNC) cells give rise to the fibroblastic cells of the tongue skeletal muscle in mice. Loss of Tgfbr2 in CNC cells (Wnt1-Cre;Tgfbr2flox/flox) results in microglossia with reduced Scleraxis and Fgf10 expression as well as decreased myogenic cell proliferation, reduced cell number and disorganized tongue muscles. Furthermore, TGF-β2 beads induced the expression of Scleraxis in tongue explant cultures. The addition of FGF10 rescued the muscle cell number in Wnt1-Cre;Tgfbr2flox/flox mice. Thus, TGF-β induced FGF10 signaling has a critical function in regulating tissue-tissue interaction during tongue skeletal muscle development. PMID:20193675

  10. FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian.

    PubMed

    Matus, David Q; Thomsen, Gerald H; Martindale, Mark Q

    2007-02-01

    The fibroblast growth factor (FGF) signal transduction pathway serves as one of the key regulators of early metazoan development, displaying conserved roles in the specification of endodermal, mesodermal, and neural fates during vertebrate development. FGF signals also regulate gastrulation, in part, by triggering epithelial to mesenchymal transitions in embryos of both vertebrates and invertebrates. Thus, FGF signals coordinate gastrulation movements across many different phyla. To help understand the breadth of FGF signaling deployment across the animal kingdom, we have examined the presence and expression of genes encoding FGF pathway components in the anthozoan cnidarian Nematostella vectensis. We isolated three FGF ligands (NvFGF8A, NvFGF8B, and NvFGF1A), two FGF receptors (NvFGFRa and NvFGFRb), and two orthologs of vertebrate FGF responsive genes, Sprouty (NvSprouty), an inhibitor of FGF signaling, and Churchill (NvChurchill), a Zn finger transcription factor. We found these FGF ligands, receptors, and response gene expressed asymmetrically along the oral/aboral axis during gastrulation and in a developing chemosensory structure of planula stages known as the apical tuft. These results suggest a conserved role for FGF signaling molecules in coordinating both gastrulation and neural induction that predates the Cambrian explosion and the origins of the Bilateria.

  11. Signaling pathways of immobilized FGF-2 on silicon-substituted hydroxyapatite.

    PubMed

    de la Concepción Matesanz, María; Feito, María José; Ramírez-Santillán, Cecilia; Lozano, Rosa María; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María-Teresa

    2012-04-01

    Therapeutic strategies for bone regeneration involve the selection of suitable biomaterials, growth factors, and cell types to mimic the cellular microenvironment where molecular and mechanical signals control the reconstruction of bone tissue. The immobilization of basic fibroblast growth factor (FGF-2) on powdered silicon-substituted hydroxyapatite (Si-HA) allows to prepare a biofunctional biomaterial able to interact with bone cells in a very specific way. The biological activity of FGF-2/Si-HA, evaluated in Saos-2 osteoblasts and MC3T3-E1 preosteoblasts through the PLCγ and MAPK/ERK signal transduction pathways, shows that FGF-2 immobilized on Si-HA provides the right signals to cells stimulating crucial intracellular mechanisms of osteoblast proliferation and differentiation.

  12. [FGF/FGFR signalling: Implication in oncogenesis and perspectives].

    PubMed

    Flippot, Ronan; Kone, Moumini; Magné, Nicolas; Vignot, Stéphane

    2015-06-01

    Deregulation of FGF (fibroblast growth factor)/FGFR (fibroblast growth factor receptor) signalling leads to the promotion of several oncogenic mechanisms: proliferation, epithelial-mesenchymal transition, cytoskeleton modifications, migration and angiogenesis. Deregulation of this pathway is reported in various cancers at early stages, and can therefore be responsible for the emergence of the hallmarks of cancer. It is necessary to precise downstream pathways of FGFR signalling to understand its oncogenic potential. We will then describe its implications in different cancer types. Oncogenic mechanisms will be studied through the example of melanoma, in which deregulation of FGF/FGFR pathway is considered as a driver event and occurs in nearly 90% of cases. The FGF/FGFR signalling pathway is a putative therapeutic target. Numerous agents are in active development, operating through a selective or multi-targeted approach. Recent studies have shown rather disappointing results in non-selected patients, but promising results in patients with FGF/FGFR pathway alterations. A careful screening of patients is the key to a valuable evaluation of these new targeted molecular therapies.

  13. Relevant use of Klotho in FGF19 subfamily signaling system in vivo.

    PubMed

    Tomiyama, Ken-ichi; Maeda, Ryota; Urakawa, Itaru; Yamazaki, Yuji; Tanaka, Tomohiro; Ito, Shinji; Nabeshima, Yoko; Tomita, Tsutomu; Odori, Shinji; Hosoda, Kiminori; Nakao, Kazuwa; Imura, Akihiro; Nabeshima, Yo-ichi

    2010-01-26

    Alpha-Klotho (alpha-Kl) and its homolog, beta-Klotho (beta-Kl) are key regulators of mineral homeostasis and bile acid/cholesterol metabolism, respectively. FGF15/ humanFGF19, FGF21, and FGF23, members of the FGF19 subfamily, are believed to act as circulating metabolic regulators. Analyses of functional interactions between alpha- and beta-Kl and FGF19 factors in wild-type, alpha-kl(-/-), and beta-kl(-/-) mice revealed a comprehensive regulatory scheme of mineral homeostasis involving the mutually regulated positive/negative feedback actions of alpha-Kl, FGF23, and 1,25(OH)(2)D and an analogous regulatory network composed of beta-Kl, FGF15/humanFGF19, and bile acids that regulate bile acid/cholesterol metabolism. Contrary to in vitro data, beta-Kl is not essential for FGF21 signaling in adipose tissues in vivo, because (i) FGF21 signals are transduced in the absence of beta-Kl, (ii) FGF21 could not be precipitated by beta-Kl, and (iii) essential phenotypes in Fgf21(-/-) mice (decreased expressions of Hsl and Atgl in WAT) were not replicated in beta-kl(-/-) mice. These findings suggest the existence of Klotho-independent FGF21 signaling pathway(s) where undefined cofactors are involved. One-to-one functional interactions such as alpha-Klotho/FGF23, beta-Klotho/FGF15 (humanFGF19), and undefined cofactor/FGF21 would result in tissue-specific signal transduction of the FGF19 subfamily.

  14. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    PubMed

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  15. FGF signalling in prostate development, tissue homoeostasis and tumorigenesis.

    PubMed

    Lin, Yongshun; Wang, Fen

    2010-04-09

    The FGFs (fibroblast growth factors) regulate a broad spectrum of biological activities by activating transmembrane FGFR (FGF receptor) tyrosine kinases and their coupled intracellular signalling pathways. In the prostate, the mesenchymal-epithelial interactions mediated by androgen signalling and paracrine factors are essential for gland organogenesis, homoeostasis and tumorigenesis. FGFs mediate these mesenchymal-epithelial interactions in the prostate by paracrinal crosstalk through a diverse set of ligands and receptors. Gain- and loss-of-function studies in mouse models have demonstrated the requirement for the FGF signalling axis in prostate development and homoeostasis. The aberrant induction of this axis in either compartment of the prostate results in developmental disorders, disrupts the homoeostatic balance and leads to prostate carcinogenesis. FGFs are also implicated in mediating androgen signalling in the prostate between mesenchymal and epithelial compartments. Therefore studying FGF signalling in the prostate will help us to better understand the underlying molecular mechanisms by which the gland develops, maintains homoeostasis and undergoes carcinogenesis; as well as yield clues on how androgens mediate these processes and how advanced-tumour prostate cells escape strict androgen regulations.

  16. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex.

    PubMed

    Saxena, Krishna; Schieborr, Ulrich; Anderka, Oliver; Duchardt-Ferner, Elke; Elshorst, Bettina; Gande, Santosh Lakshmi; Janzon, Julia; Kudlinzki, Denis; Sreeramulu, Sridhar; Dreyer, Matthias K; Wendt, K Ulrich; Herbert, Corentin; Duchaussoy, Philippe; Bianciotto, Marc; Driguez, Pierre-Alexandre; Lassalle, Gilbert; Savi, Pierre; Mohammadi, Moosa; Bono, Françoise; Schwalbe, Harald

    2010-08-20

    Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF.FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM(6)), octasaccharide (HM(8)), and decasaccharide (HM(10)), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM(8) and HM(10) are significantly more potent than HM(6) in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1.FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2.FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1.FGFR4 interaction site and a direct FGFR4.FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF.FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM(8) relative to HM(6) in stimulating FGF2.FGFR4 signaling correlates with the higher affinity of HM(8) to bind and dimerize FGF2. Notably FGF2.HM(8) exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF.FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.

  17. FGF signaling specifies hematopoietic stem cells through its regulation of somitic Notch signaling

    PubMed Central

    Lee, Yoonsung; Manegold, Jennifer E; Kim, Albert D; Pouget, Claire; Stachura, David L; Clements, Wilson K; Traver, David

    2014-01-01

    Hematopoietic stem cells (HSCs) derive from hemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to hematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signaling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signaling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signaling, via FGF receptor 4 (Fgfr4), mediates a signal transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signaling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate. PMID:25428693

  18. Mechanisms of FGF gradient formation during embryogenesis.

    PubMed

    Balasubramanian, Revathi; Zhang, Xin

    2016-05-01

    Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.

  19. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis.

    PubMed

    Zhou, Jing; Gao, Yang; Lan, Yu; Jia, Shihai; Jiang, Rulang

    2013-12-01

    Cleft palate is one of the most common birth defects in humans. Whereas gene knockout studies in mice have shown that both the Osr2 and Pax9 transcription factors are essential regulators of palatogenesis, little is known about the molecular mechanisms involving these transcription factors in palate development. We report here that Pax9 plays a crucial role in patterning the anterior-posterior axis and outgrowth of the developing palatal shelves. We found that tissue-specific deletion of Pax9 in the palatal mesenchyme affected Shh expression in palatal epithelial cells, indicating that Pax9 plays a crucial role in the mesenchyme-epithelium interactions during palate development. We found that expression of the Bmp4, Fgf10, Msx1 and Osr2 genes is significantly downregulated in the developing palatal mesenchyme in Pax9 mutant embryos. Remarkably, restoration of Osr2 expression in the early palatal mesenchyme through a Pax9(Osr2KI) allele rescued posterior palate morphogenesis in the absence of Pax9 protein function. Our data indicate that Pax9 regulates a molecular network involving the Bmp4, Fgf10, Shh and Osr2 pathways to control palatal shelf patterning and morphogenesis.

  20. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition.

    PubMed

    Huang, Feng; Hu, Xiaoxiao; Fang, Chunni; Liu, Hong; Lin, Chensheng; Zhang, Yanding; Hu, Xuefeng

    2015-11-01

    Mammalian tooth development is regulated by paracrine signal molecules of several conserved family interactions between epithelium and mesenchyme. The expression patterns and regulative roles of FGF signaling have been extensively studied in the mouse odontogenesis; however, that is not well known in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the critical molecules involved in FGF signaling pathway in the developing human tooth germ by in situ hybridization, immunohistochemistry, and real-time RT-PCR, including FGF ligands, receptors, and intracellular transducer. We found overlapping but distinct expression pattern of FGF ligands and receptors in the different stages and components. Expression of FGF4, FGF7, FGF8, and FGF9 persists widespread in human tooth mesenchyme, which is quite different to that of in mouse. FGFR1 may be the major receptor in regulate mechanisms of FGF signals in human tooth development. Real-time RT-PCR indeed confirmed the results of in situ hybridization. Results of K-Ras, p-ERK1/2, p-p38, p-JNK, and p-PDK1 expression reveal spatial and temporal patterns of FGF signaling during morphogenesis and organogenesis of human tooth germ. Activity of the FGF signaling transducer protein in human tooth germ was much higher than that of in mouse. Our results provided important FGF singling information in the developing process, pinpoint to the domains where the downstream target genes of FGF signaling can be sought, and enlightened our knowledge about the nature of FGF signaling in human tooth germ.

  1. FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction of β-Klotho

    PubMed Central

    Fu, Ting; Kim, Young-Chae; Byun, Sangwon; Kim, Dong-Hyun; Seok, Sunmi; Suino-Powell, Kelly; Xu, H. Eric; Kemper, Byron

    2016-01-01

    The bile acid (BA)-sensing nuclear receptor, farnesoid X receptor (FXR), regulates postprandial metabolic responses, including inhibition of BA synthesis, by inducing the intestinal hormone, fibroblast growth factor (FGF)15 (FGF19 in human). In this study, we tested a novel hypothesis that FXR not only induces intestinal FGF15 but also primes the liver for effectively responding to the signal by transcriptional induction of the obligate coreceptor for FGF15, β-Klotho (βKL). Activation of FXR by a synthetic agonist, GW4064, in mice increased occupancy of FXR and its DNA-binding partner, retinoid X receptor-α, at FGF15-signaling component genes, particularly βKL, and induced expression of these genes. Interestingly, mRNA levels of Fgfr4, the FGF15 receptor, were not increased by GW4064, but protein levels increased as a result of βKL-dependent increased protein stability. Both FGF receptor 4 and βKL protein levels were substantially decreased in FXR-knockout (KO) mice, and FGF19 signaling, monitored by phosphorylated ERK, was blunted in FXR-KO mice, FXR-KO mouse hepatocytes, and FXR-down-regulated human hepatocytes. Overexpression of βKL in FXR-lacking hepatocytes partially restored FGF19 signaling and inhibition by FGF19 of Cyp7a1, which encodes the rate-limiting BA biosynthetic enzyme. In mice, transient inductions of intestinal Fgf15 and hepatic βKL were temporally correlated after GW4064 treatment, and pretreatment of hepatocytes with GW4064 before FGF19 treatment enhanced FGF19 signaling, which was abolished by transcriptional inhibition or βKL down-regulation. This study identifies FXR as a gut-liver metabolic coordinator for FGF15/19 action that orchestrates transient induction of hepatic βKL and intestinal Fgf15/19 in a temporally correlated manner. PMID:26505219

  2. FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction of β-Klotho.

    PubMed

    Fu, Ting; Kim, Young-Chae; Byun, Sangwon; Kim, Dong-Hyun; Seok, Sunmi; Suino-Powell, Kelly; Xu, H Eric; Kemper, Byron; Kemper, Jongsook Kim

    2016-01-01

    The bile acid (BA)-sensing nuclear receptor, farnesoid X receptor (FXR), regulates postprandial metabolic responses, including inhibition of BA synthesis, by inducing the intestinal hormone, fibroblast growth factor (FGF)15 (FGF19 in human). In this study, we tested a novel hypothesis that FXR not only induces intestinal FGF15 but also primes the liver for effectively responding to the signal by transcriptional induction of the obligate coreceptor for FGF15, β-Klotho (βKL). Activation of FXR by a synthetic agonist, GW4064, in mice increased occupancy of FXR and its DNA-binding partner, retinoid X receptor-α, at FGF15-signaling component genes, particularly βKL, and induced expression of these genes. Interestingly, mRNA levels of Fgfr4, the FGF15 receptor, were not increased by GW4064, but protein levels increased as a result of βKL-dependent increased protein stability. Both FGF receptor 4 and βKL protein levels were substantially decreased in FXR-knockout (KO) mice, and FGF19 signaling, monitored by phosphorylated ERK, was blunted in FXR-KO mice, FXR-KO mouse hepatocytes, and FXR-down-regulated human hepatocytes. Overexpression of βKL in FXR-lacking hepatocytes partially restored FGF19 signaling and inhibition by FGF19 of Cyp7a1, which encodes the rate-limiting BA biosynthetic enzyme. In mice, transient inductions of intestinal Fgf15 and hepatic βKL were temporally correlated after GW4064 treatment, and pretreatment of hepatocytes with GW4064 before FGF19 treatment enhanced FGF19 signaling, which was abolished by transcriptional inhibition or βKL down-regulation. This study identifies FXR as a gut-liver metabolic coordinator for FGF15/19 action that orchestrates transient induction of hepatic βKL and intestinal Fgf15/19 in a temporally correlated manner.

  3. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes.

    PubMed

    Zhao, Yueshui; Meng, Chenling; Wang, Yang; Huang, Huihui; Liu, Wenjing; Zhang, Jin-Fang; Zhao, Hui; Feng, Bo; Leung, Po Sing; Xia, Yin

    2016-02-15

    Fibroblast growth factor (FGF) 19 is a member of the FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21, and FGF23. FGF19 has been shown to have profound effects on liver metabolism and regeneration. FGF19 binds to FGFR4 and its coreceptor β-Klotho to activate intracellular kinases, including Erk1/2. Studies have shown that proinflammatory cytokines such as TNFα impair FGF21 signaling in adipose cells by repressing β-Klotho expression. However, little is known about the effects of inflammation on the FGF19 pathway in the liver. In the present study, we found that lipopolysaccharide (LPS) inhibited β-Klotho and Fgfr4 expression in livers in mice, whereas LPS had no effects on the two FGF19 receptors in Huh-7 and HepG2 cells. Of the three inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β drastically inhibited β-Klotho expression, whereas TNFα and IL-6 had no or minor effects. None of the three cytokines had any effects on FGFR4 expression. IL-1β directly inhibited β-Klotho transcription, and this inhibition required both the JNK and NF-κB pathways. In addition, IL-1β inhibited FGF19-induced Erk1/2 activation and cell proliferation. These results suggest that inflammation and IL-1β play an important role in regulating FGF19 signaling and function in the liver.

  4. FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities

    PubMed Central

    Delmas, E; Jah, N; Pirou, C; Bouleau, S; Le Floch, N; Vayssière, J-L; Mignotte, B; Renaud, F

    2016-01-01

    Fibroblast growth factor 1 (FGF1) is a prototypic member of the FGFs family overexpressed in various tumors. Contrarily to most FGFs, FGF1 lacks a secretion peptide signal and acts mainly in an intracellular and nuclear manner. Intracellular FGF1 induces cell proliferation, differentiation and survival. We previously showed that intracellular FGF1 induces neuronal differentiation and inhibits both p53- and serum-free-medium-induced apoptosis in PC12 cells. FGF1 nuclear localization is required for these intracellular activities, suggesting that FGF1 regulates p53-dependent apoptosis and neuronal differentiation by new nuclear pathways. To better characterize intracellular FGF1 pathways, we studied the effect of three mutations localized in the C-terminal domain of FGF1 (i.e., FGF1K132E, FGF1S130A and FGF1S130D) on FGF1 neurotrophic and anti-apoptotic activities in PC12 cells. The change of the serine 130 to alanine precludes FGF1 phosphorylation, while its mutation to aspartic acid mimics phosphorylation. These FGF1 mutants kept both a nuclear and cytosolic localization in PC12 cells. Our study highlights for the first time the role of FGF1 phosphorylation and the implication of FGF1 C-terminal domain on its intracellular activities. Indeed, we show that the K132E mutation inhibits both the neurotrophic and anti-apoptotic activities of FGF1, suggesting a regulatory activity for FGF1 C terminus. Furthermore, we observed that both FGF1S130A and FGF1S130D mutant forms induced PC12 cells neuronal differentiation. Therefore, FGF1 phosphorylation does not regulate FGF1-induced differentiation of PC12 cells. Then, we showed that only FGF1S130A protects PC12 cells against p53-dependent apoptosis, thus phosphorylation appears to inhibit FGF1 anti-apoptotic activity in PC12 cells. Altogether, our results show that phosphorylation does not regulate FGF1 neurotrophic activity but inhibits its anti-apoptotic activity after p53-dependent apoptosis induction, giving new insight

  5. Inhibition of FGF/FGFR autocrine signaling in mesothelioma with the FGF ligand trap, FP-1039/GSK3052230

    PubMed Central

    Ganji, Gopinath; Barnette, Mary; Hoang, Bao; Tunstead, James; Skedzielewski, Tina; Alsaid, Hasan; Jucker, Beat M.; Minthorn, Elisabeth; Kumar, Rakesh; DeYoung, M. Phillip

    2016-01-01

    Fibroblast growth factor (FGF) ligand-dependent signaling has a fundamental role in cancer development and tumor maintenance. GSK3052230 (also known as FP-1039) is a soluble decoy receptor that sequesters FGFs and inhibits FGFR signaling. Herein, the efficacy of this molecule was tested in models of mesothelioma, a tumor type shown to express high levels of FGF2 and FGFR1. GSK3052230 demonstrated antiproliferative activity across a panel of mesothelioma cell lines and inhibited growth of tumor xenografts in mice. High expression of FGF2 and FGFR1 correlated well with response to FGF pathway inhibition. GSK3052230 inhibited MAPK signaling as evidenced by decreased phospho-ERK and phospho-S6 levels in vitro and in vivo. Additionally, dose-dependent and statistically-significant reductions in tumor vessel density were observed in GSK3052230-treated tumors compared to vehicle-treated tumors. These data support the role of GSK3052230 in effectively targeting FGF-FGFR autocrine signaling in mesothelioma, demonstrate its impact on tumor growth and angiogenesis, and provide a rationale for the current clinical evaluation of this molecule in mesothelioma patients. PMID:27223434

  6. Reciprocal repression between Fgf8 and miR-133 regulates cardiac induction through Bmp2 signaling.

    PubMed

    Lopez-Sanchez, Carmen; Franco, Diego; Bonet, Fernando; Garcia-Lopez, Virginio; Aranega, Amelia; Garcia-Martinez, Virginio

    2015-12-01

    This data article contains complementary figures and results related to the research article entitled "Negative Fgf8-Bmp2 feed-back is controlled by miR-130 during early cardiac specification" [15], which reveals what specific role miR-130 plays during the cardiac induction process. This study evidenced miR-130 a putative microRNA that targets Erk1/2 (Mapk1) 3'UTR- as a necessary linkage in the control of Fgf8 signaling, mediated by Bmp2. Thus, miR-130 regulates a negative Fgf8-Bmp2 feed-back loop responsible to achieve early cardiac specification. A significant aspect supporting our conclusions is given by the expression pattern of miR-130 during early cardiac specification, as well as by those results obtained after the designed experimental procedures. The data presented here reveal that miR-133 is also expressed within the precardiac areas during early cardiogenesis, pattern which is comparable to that of FGFR1, receptor involved in the Fgf8/ERK signaling pathway. Interestingly, our miR-133 overexpression experiments resulted in a decrease of Fgf8 expression, whereas we observed an increase of Bmp2 and subsequently of cardiac specific markers Nkx-2.5 and Gata4. Additionally, our loss-of-function experiments -through Fgf8 siRNA electroporation- showed an increase of miR-133 expression. Finally, after our Bmp2 experiments, we observed that miR-133 is upstream-regulated by Bmp2. All those results suggest that miR-133 also constitutes a crucial linkage in the crosstalk between Fgf8 and Bmp2 signaling by regulating the Fgf8/ERK pathway during cardiac induction.

  7. ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation.

    PubMed

    Kwon, Hyuck Joon

    2013-01-01

    Skeletal patterns are prefigured by prechondrogenic condensation. Morphogens such as fibroblast growth factor (FGF) and sonic hedgehog (Shh) specify the skeletal patterns in limb development. However, how morphogens regulate prechondrogenic condensation has remained unclear. Recently, it was demonstrated that synchronized Adenosine triphosphate (ATP) oscillations play a critical role in prechondrogenic condensation. Thus, the present study has focused on whether ATP oscillations mediate the actions of major developmental morphogens such as FGF and Shh on prechondrogenic condensation. It has been shown that both FGF and Shh signalling promoted cellular condensation but not chondrogenic differentiation and also induced ATP oscillations. In addition, blockage of FGF and Shh signalling prevented both ATP oscillations and prechondrogenic condensation. Furthermore, it was found that inhibition of ATP oscillations suppressed FGF/Shh-induced prechondrogenic condensation. These results indicate that ATP oscillations mediate the actions of FGF and Shh signalling on prechondrogenic condensation. This study proposes that morphogens organize skeletal patterns via ATP oscillations.

  8. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling

    PubMed Central

    Martin, Aline; Liu, Shiguang; David, Valentin; Li, Hua; Karydis, Anastasios; Feng, Jian Q.; Quarles, L. Darryl

    2011-01-01

    Fibroblastic growth factor 23 (FGF23) is a circulating phosphaturic hormone. Inactivating mutations of the endopeptidase PHEX or the SIBLING protein DMP1 result in equivalent intrinsic bone mineralization defects and increased Fgf23 expression in osteocytes. The mechanisms whereby PHEX and DMP1 regulate Fgf23 expression are unknown. We examined the possibility that PHEX and DMP1 regulate Fgf23 through a common pathway by analyzing the phenotype of compound Phex and Dmp1 mutant mice (Hyp/Dmp1−/−). Compared to single-mutant littermates, compound-mutant Hyp/Dmp1−/− mice displayed nonadditive elevations of serum FGF23 (1912 ± 183, 1715 ± 178, and 1799 ± 181 pg/ml), hypophosphatemia (Pi: 6.0 ± 0.3, 5.8 ± 0.2, and 5.4 ± 0.1 mg/dl), and severity of rickets/osteomalacia (bone mineral density: −36, −36, and −30%). Microarray analysis of long bones identified gene expression profiles implicating common activation of the FGFR pathway in all the mutant groups. Furthermore, inhibiting FGFR signaling using SU5402 in Hyp- and Dmp1−/−-derived bone marrow stromal cells prevented the increase in Fgf23 mRNA expression (129- and 124-fold increase in Hyp and Dmp1−/− vs. 1.3-fold in Hyp+SU5402 and 2.5-fold in Dmp1−/−+SU5402, P<0.05). For all analyses, samples collected from nonmutant wild-type littermates served as controls. These findings indicate that PHEX and DMP1 control a common pathway regulating bone mineralization and FGF23 production, the latter involving activation of the FGFR signaling in osteocytes.—Martin, A., Liu, S., David, V., Li, H., Karydis, A., Feng, J. Q., Quarles, L. D. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway. PMID:21507898

  9. Cardiomyocyte FGF signaling is required for Cx43 phosphorylation and cardiac gap junction maintenance.

    PubMed

    Sakurai, Takashi; Tsuchida, Mariko; Lampe, Paul D; Murakami, Masahiro

    2013-08-15

    Cardiac remodeling resulting from impairment of myocardial integrity leads to heart failure, through still incompletely understood mechanisms. The fibroblast growth factor (FGF) system has been implicated in tissue maintenance, but its role in the adult heart is not well defined. We hypothesized that the FGF system plays a role in the maintenance of cardiac homeostasis, and the impairment of cardiomyocyte FGF signaling leads to pathological cardiac remodeling. We showed that FGF signaling is required for connexin 43 (Cx43) localization at cell-cell contacts in isolated cardiomyocytes and COS7 cells. Lack of FGF signaling led to decreased Cx43 phosphorylation at serines 325/328/330 (S325/328/330), sites known to be important for assembly of gap junctions. Cx43 instability induced by FGF inhibition was restored by the Cx43 S325/328/330 phospho-mimetic mutant, suggesting FGF-dependent phosphorylation of these sites. Consistent with these in vitro findings, cardiomyocyte-specific inhibition of FGF signaling in adult mice demonstrated mislocalization of Cx43 at intercalated discs, whereas localization of N-cadherin and desmoplakin was not affected. This led to premature death resulting from impaired cardiac remodeling. We conclude that cardiomyocyte FGF signaling is essential for cardiomyocyte homeostasis through phosphorylation of Cx43 at S325/328/330 residues which are important for the maintenance of gap junction.

  10. MicroRNA-34a and Impaired FGF19/21 Signaling in Obesity.

    PubMed

    Fu, T; Kemper, J K

    2016-01-01

    The obesity epidemic and the urgent need for effective and safe drugs to treat obesity-related diseases have greatly increased research interest in the metabolic hormones, fibroblast growth factor-19 (FGF19, FGF15 in mice), and FGF21. FGF19 and FGF21 function as endocrine hormones that play key roles in energy metabolism and counteract obesity. Importantly, in obese humans and lab animals, circulating FGF19 and FGF21 levels are elevated, and metabolic actions of these hormones are impaired but the underlying mechanisms remained unknown. Recent microRNA (miR) studies have revealed that aberrantly elevated miR-34a in obesity directly targets β-Klotho, the obligate coreceptor for both FGF19 and FGF21, and attenuates metabolic signaling of these hormones. In this review, we will discuss recent findings in the miR and FGF19/21 fields, emphasizing the novel function of obesity-associated miR-34a in attenuation of FGF19/21 metabolic actions, and further discuss miRs, including miR-34a, as potential drug targets for obesity-related diseases.

  11. Roles of FGF19 in liver metabolism.

    PubMed

    Kir, S; Kliewer, S A; Mangelsdorf, D J

    2011-01-01

    Fibroblast growth factor 19 (FGF19) is an ileum-derived postprandial enterokine that governs bile acid and nutrient metabolism. Synthesis of FGF19 is up-regulated by bile acids and, conversely, bile acid synthesis is down-regulated by FGF19. FGF19 also controls gallbladder volume. FGF19 has been shown to have profound effects on glucose and lipid metabolism. Recent studies have described FGF19 as a postprandial regulator of hepatic glucose and protein metabolism. Like insulin, FGF19 induces protein and glycogen synthesis and suppresses gluconeogenesis in liver. However, unlike insulin, FGF19 does not stimulate lipogenesis. A key difference between FGF19 and insulin lies in their use of different cellular signaling pathways. The beneficial effects of FGF19 on liver metabolism raise the question of whether FGF19 and its variants can be used as therapeutic agents in the treatment of diabetes.

  12. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling.

    PubMed

    Liu, Chao; Gu, Shuping; Sun, Cheng; Ye, Wenduo; Song, Zhongchen; Zhang, Yanding; Chen, YiPing

    2013-11-01

    Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.

  13. Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development.

    PubMed

    Pan, Yi; Woodbury, Andrea; Esko, Jeffrey D; Grobe, Kay; Zhang, Xin

    2006-12-01

    Multiple signaling molecules, including bone morphogenic proteins (BMP) and fibroblast growth factors (FGF), play important roles in early lens development. However, how these morphogens are regulated is still largely unknown. Heparan sulfate participates in both morphogen transport and morphogen-receptor interaction. In this study, we demonstrate that inactivation of the heparan sulfate biosynthetic gene Ndst1 resulted in invagination defects of the early lens and in the disruption of lens-determination gene expression, leading to severe lens hypoplasia or anophthalmia. Ndst1 mutants exhibited reduced sulfation of heparan sulfate, but both BMP- and Wnt-signaling remained unchanged. Instead, these embryos showed diminished binding of a subset of FGF proteins to FGF receptors. Consistent with disruption of FGF signaling, expression of phospho-Erk and ERM were also downregulated in Ndst1-mutant lenses. Taken together, these results establish an important role of Ndst1 function in FGF signaling during lens development.

  14. Circadian control of bile acid synthesis by a KLF15-Fgf15 axis

    PubMed Central

    Han, Sean (Shuxin); Zhang, Rongli; Jain, Rajan; Shi, Hong; Zhang, Lilei; Zhou, Guangjin; Sangwung, Panjamaporn; Tugal, Derin; Atkins, G. Brandon; Prosdocimo, Domenick A.; Lu, Yuan; Han, Xiaonan; Tso, Patrick; Liao, Xudong; Epstein, Jonathan A.; Jain, Mukesh K.

    2015-01-01

    Circadian control of nutrient availability is critical to efficiently meet the energetic demands of an organism. Production of bile acids (BAs), which facilitate digestion and absorption of nutrients, is a major regulator of this process. Here we identify a KLF15-Fgf15 signalling axis that regulates circadian BA production. Systemic Klf15 deficiency disrupted circadian expression of key BA synthetic enzymes, tissue BA levels and triglyceride/cholesterol absorption. Studies in liver-specific Klf15-knockout mice suggested a non-hepatic basis for regulation of BA production. Ileal Fgf15 is a potent inhibitor of BA synthesis. Using a combination of biochemical, molecular and functional assays (including ileectomy and bile duct catheterization), we identify KLF15 as the first endogenous negative regulator of circadian Fgf15 expression. Elucidation of this novel pathway controlling circadian BA production has important implications for physiologic control of nutrient availability and metabolic homeostasis. PMID:26040986

  15. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway.

    PubMed

    Cho, Gun-Sik; Park, Dong-Seok; Choi, Sun-Cheol; Han, Jin-Kwan

    2017-01-15

    During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.

  16. Astrocyte morphology is controlled by neuron-derived FGF

    PubMed Central

    Agarwal, Amit; Bergles, Dwight E.

    2014-01-01

    The highly ramified processes of astrocytes enable cellular interactions and extracellular homeostasis. In this issue of Neuron, Stork et al. (2014) report that extension and elaboration of astrocyte processes in Drosophila is controlled by the release of FGF by neurons. PMID:25033173

  17. Tfap2a promotes specification and maturation of neurons in the inner ear through modulation of Bmp, Fgf and notch signaling.

    PubMed

    Kantarci, Husniye; Edlund, Renee K; Groves, Andrew K; Riley, Bruce B

    2015-03-01

    support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling to control the duration, amount and speed of SAG neural development.

  18. BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin.

    PubMed

    Zhu, Xiao-Jing; Liu, YuDong; Dai, Zhong-Min; Zhang, Xiaoyun; Yang, XueQin; Li, Yan; Qiu, Mengsheng; Fu, Jiang; Hsu, Wei; Chen, YiPing; Zhang, Zunyi

    2014-10-01

    Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification.

  19. A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development.

    PubMed

    Hung, Irene H; Schoenwolf, Gary C; Lewandoski, Mark; Ornitz, David M

    2016-03-01

    Fibroblast growth factor (FGF) signaling is a critical regulator of skeletal development. Fgf9 and Fgf18 are the only FGF ligands with identified functions in embryonic bone growth. Mice lacking Fgf9 or Fgf18 have distinct skeletal phenotypes; however, the extent of overlapping or redundant functions for these ligands and the stage-specific contributions of FGF signaling to chondrogenesis and osteogenesis are not known. To identify separate versus shared roles for FGF9 and FGF18, we generated a combined series of Fgf9 and Fgf18 null alleles. Analysis of embryos lacking alleles of Fgf9 and Fgf18 shows that both encoded ligands function redundantly to control all stages of skeletogenesis; however, they have variable potencies along the proximodistal limb axis, suggesting gradients of activity during formation of the appendicular skeleton. Congenital absence of both Fgf9 and Fgf18 results in a striking osteochondrodysplasia and revealed functions for FGF signaling in early proximal limb chondrogenesis. Additional defects were also noted in craniofacial bones, vertebrae, and ribs. Loss of alleles of Fgf9 and Fgf18 also affect the expression of genes encoding other key intrinsic skeletal regulators, including IHH, PTHLH (PTHrP), and RUNX2, revealing potential direct, indirect, and compensatory mechanisms to coordinate chondrogenesis and osteogenesis.

  20. FGF23 signaling impairs neutrophil recruitment and host defense during CKD

    PubMed Central

    Rossaint, Jan; Oehmichen, Jessica; Van Aken, Hugo; Reuter, Stefan; Pavenstädt, Hermann J.; Meersch, Melanie; Unruh, Mark

    2016-01-01

    Chronic kidney disease (CKD) has been associated with impaired host response and increased susceptibility to infections. Leukocyte recruitment during inflammation must be tightly regulated to protect the host against pathogens. FGF23 levels are increased in blood during CKD, and levels of this hormone have been associated with a variety of adverse effects in CKD patients. Here, we have shown that CKD impairs leukocyte recruitment into inflamed tissue and host defense in mice and humans. FGF23 neutralization during CKD in murine models restored leukocyte recruitment and host defense. Intravital microscopy of animals with chronic kidney failure showed that FGF23 inhibits chemokine-activated leukocyte arrest on the endothelium, and downregulation of FGF receptor 2 (FGFR2) on PMNs rescued host defense in these mice. In vitro, FGF23 inhibited PMN adhesion, arrest under flow, and transendothelial migration. Mechanistically, FGF23 binding to FGFR2 counteracted selectin- and chemokine-triggered β2 integrin activation on PMNs by activating protein kinase A (PKA) and inhibiting activation of the small GTPase Rap1. Moreover, knockdown of PKA abolished the inhibitory effect of FGF23 on integrin activation. Together, our data reveal that FGF23 acts directly on PMNs and dampens host defense by direct interference with chemokine signaling and integrin activation. PMID:26878171

  1. FGF Signaling Regulates Rod Photoreceptor Cell Maintenance and Regeneration in Zebrafish

    PubMed Central

    Qin, Zhao; Kidd, Ambrose R.; Thomas, Jennifer L.; Poss, Kenneth D.; Hyde, David R.; Raymond, Pamela A.; Thummel, Ryan

    2011-01-01

    Fgf signaling is required for many biological processes involving the regulation of cell proliferation and maintenance, including embryonic patterning, tissue homeostasis, wound healing, and cancer progression. Although the function of Fgf signaling is suggested in several different regeneration models, including appendage regeneration in amphibians and fin and heart regeneration in zebrafish, it has not yet been studied during zebrafish photoreceptor cell regeneration. Here we demonstrate that intravitreal injections of FGF-2 induced rod precursor cell proliferation and photoreceptor cell neuroprotection during intense light damage. Using the dominant-negative Tg(hsp70:dn-fgfr1) transgenic line, we found that Fgf signaling was required for homeostasis of rod, but not cone, photoreceptors. Even though fgfr1 is expressed in both rod and cone photoreceptors, we found that Fgf signaling differentially affected the regeneration of cone and rod photoreceptors in the light-damaged retina, with the dominant-negative hsp70:dn-fgfr1 transgene significantly repressing rod photoreceptor regeneration without affecting cone photoreceptors. These data suggest that rod photoreceptor homeostasis and regeneration is Fgf-dependent and that rod and cone photoreceptors in adult zebrafish are regulated by different signaling pathways. PMID:21945172

  2. FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action.

    PubMed

    Shin, Dong-Ju; Osborne, Timothy F

    2009-04-24

    The current studies show FGF15 signaling decreases hepatic forkhead transcription factor 1 (FoxO1) activity through phosphatidylinositol (PI) 3-kinase-dependent phosphorylation. The bile acid receptor FXR (farnesoid X receptor) activates expression of fibroblast growth factor (FGF) 15 in the intestine, which acts through hepatic FGFR4 to suppress cholesterol-7alpha hydroxylase (CYP7A1) and limit bile acid production. Because FoxO1 activity and CYP7A1 gene expression are both increased by fasting, we hypothesized CYP7A1 might be a FoxO1 target gene. Consistent with recently reported results, we show CYP7A1 is a direct target of FoxO1. Additionally, we show that the PI 3-kinase pathway is key for both the induction of CYP7A1 by fasting and the suppression by FGF15. FGFR4 is the major hepatic FGF receptor isoform and is responsible for the hepatic effects of FGF15. We also show that expression of FGFR4 in liver was decreased by fasting, increased by insulin, and reduced by streptozotocin-induced diabetes, implicating FGFR4 as a primary target of insulin regulation. Because insulin and FGF both target the PI 3-kinase pathway, these observations suggest FoxO1 is a key node in the convergence of FGF and insulin signaling pathways and functions as a key integrator for the regulation of glucose and bile acid metabolism.

  3. FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies

    PubMed Central

    Moura, Rute S.; Coutinho-Borges, José P.; Pacheco, Ana P.; daMota, Paulo O.; Correia-Pinto, Jorge

    2011-01-01

    Background Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth and validate the avian embryo as a good model for pulmonary studies, namely to explore the FGF pathway as a therapeutic target. PMID:21412430

  4. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  5. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  6. Buttressing a balanced brain: Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network.

    PubMed

    Dabrowski, Ania; Umemori, Hisashi

    2016-01-01

    Brain development involves multiple levels of molecular coordination in forming a functional nervous system. The hippocampus is a brain area that is important for memory formation and spatial reasoning. During early postnatal development of the hippocampal circuit, Fibroblast growth factor 22 (FGF22) and FGF7 act to establish a balance of excitatory and inhibitory tone. Both FGFs are secreted from CA3 dendrites, acting on excitatory or inhibitory axon terminals formed onto CA3 dendrites, respectively. Mechanistically, FGF22 utilizes FGFR2b and FGFR1b to induce synaptic vesicle recruitment within axons of dentate granule cells (DGCs), and FGF7 utilizes FGFR2b to induce synaptic vesicle recruitment within interneuron axons. FGF signaling eventually induces gene expression in the presynaptic neurons; however, the effects of FGF22-induced gene expression within DGCs and FGF7-induced gene expression within interneurons in the context of a developing hippocampal circuit have yet to be explored. Here, we propose one hypothetical mechanism of FGF22-induced gene expression in controlling adult neurogenesis.

  7. Aberrant FGF signaling, independent of ectopic hedgehog signaling, initiates preaxial polydactyly in Dorking chickens.

    PubMed

    Bouldin, Cortney M; Harfe, Brian D

    2009-10-01

    The formation of supernumerary digits, or polydactyly, is a common congenital malformation. Although mutations in a number of genes have been linked to polydactyly, the molecular etiology for a third of human disorders with polydactyly remains unknown. To increase our understanding of the potential causes for polydactyly, we characterized a spontaneous chicken mutant, known as Dorking. The hindlimbs of Dorkings form a preaxial supernumerary digit. During the early stages of limb development, ectopic expression of several genes, including Sonic Hedgehog (Shh) and Fibroblast Growth Factor 4 (Fgf4), was found in Dorking hindlimbs. In addition to ectopic gene expression, a decrease in cell death in the anterior of the developing Dorking hindlimb was observed. Further molecular investigation revealed that ectopic Fgf4 expression was initiated and maintained independent of ectopic Shh. Additionally, inhibition of Fgf signaling but not hedgehog signaling was capable of restoring the normal anterior domain of cell death in Dorking hindlimbs. Our data indicates that in Dorking chickens, preaxial polydactyly is initiated independent of Shh.

  8. Control of HIF-1{alpha} and vascular signaling in fetal lung involves cross talk between mTORC1 and the FGF-10/FGFR2b/Spry2 airway branching periodicity clock.

    PubMed

    Scott, C L; Walker, D J; Cwiklinski, E; Tait, C; Tee, A R; Land, S C

    2010-10-01

    Lung development requires coordinated signaling between airway and vascular growth, but the link between these processes remains unclear. Mammalian target of rapamycin complex-1 (mTORC1) can amplify hypoxia-inducible factor-1α (HIF-1α) vasculogenic activity through an NH(2)-terminal mTOR binding (TOS) motif. We hypothesized that this mechanism coordinates vasculogenesis with the fibroblast growth factor (FGF)-10/FGF-receptor2b/Spry2 regulator of airway branching. First, we tested if the HIF-1α TOS motif participated in epithelial-mesenchymal vascular signaling. mTORC1 activation by insulin significantly amplified HIF-1α activity at fetal Po(2) (23 mmHg) in human bronchial epithelium (16HBE14o-) and induced vascular traits (Flk1, sprouting) in cocultured human embryonic lung mesenchyme (HEL-12469). This enhanced activation of HIF-1α by mTORC1 was abolished on expression of a HIF-1α (F99A) TOS-mutant and also suppressed vascular differentiation of HEL-12469 cocultures. Next, we determined if vasculogenesis in fetal lung involved regulation of mTORC1 by the FGF-10/FGFR2b/Spry2 pathway. Fetal airway epithelium displayed distinct mTORC1 activity in situ, and its hyperactivation by TSC1(-/-) knockout induced widespread VEGF expression and disaggregation of Tie2-positive vascular bundles. FGF-10-coated beads grafted into fetal lung explants from Tie2-LacZ transgenic mice induced localized vascular differentiation in the peripheral mesenchyme. In rat fetal distal lung epithelial (FDLE) cells cultured at fetal Po(2), FGF-10 induced mTORC1 and amplified HIF-1α activity and VEGF secretion without induction of ERK1/2. This was accompanied by the formation of a complex between Spry2, the cCBL ubiquitin ligase, and the mTOR repressor, TSC2, which abolished GTPase activity directed against Rheb, the G protein inducer of mTORC1. Thus, mTORC1 links HIF-1α-driven vasculogenesis with the FGF-10/FGFR2b/Spry2 airway branching periodicity regulator.

  9. FGFRL1 is a neglected putative actor of the FGF signalling pathway present in all major metazoan phyla

    PubMed Central

    Bertrand, Stephanie; Somorjai, Ildiko; Garcia-Fernandez, Jordi; Lamonerie, Thomas; Escriva, Hector

    2009-01-01

    Background Fibroblast Growth Factors (FGF) and their receptors are well known for having major implications in cell signalling controlling embryonic development. Recently, a gene coding for a protein closely related to FGFRs (Fibroblast Growth Factor Receptors) called FGFR5 or FGFR-like 1 (FGFRL1), has been described in vertebrates. An orthologous gene was also found in the cephalochordate amphioxus, but no orthologous genes were found by the authors in other non-vertebrate species, even if a FGFRL1 gene was identified in the sea urchin genome, as well as a closely related gene, named nou-darake, in the planarian Dugesia japonica. These intriguing data of a deuterostome-specific gene that might be implicated in FGF signalling prompted us to search for putative FGFRL1 orthologues in the completely sequenced genomes of metazoans. Results We found FGFRL1 genes in the cnidarian Nematostella vectensis as well as in many bilaterian species. Our analysis also shows that FGFRL1 orthologous genes are linked in the genome with other members of the FGF signalling pathway from cnidarians to bilaterians (distance < 10 Mb). To better understand the implication of FGFRL1 genes in chordate embryonic development, we have analyzed expression patterns of the amphioxus and the mouse genes by whole mount in situ hybridization. We show that some homologous expression territories can be defined, and we propose that FGFRL1 and FGF8/17/18 were already co-expressed in the pharyngeal endoderm in the ancestor of chordates. Conclusion Our work sheds light on the existence of a putative FGF signalling pathway actor present in the ancestor of probably all metazoans, the function of which has received little attention until now. PMID:19740411

  10. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    PubMed

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  11. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  12. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  13. Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis.

    PubMed

    Gardiner, Jennifer R; Jackson, Abigail L; Gordon, Julie; Lickert, Heiko; Manley, Nancy R; Basson, M Albert

    2012-09-01

    The thymus and parathyroid glands are derived from the third pharyngeal pouch endoderm. The mechanisms that establish distinct molecular domains in the third pouch and control the subsequent separation of these organ primordia from the pharynx are poorly understood. Here, we report that mouse embryos that lack two FGF feedback antagonists, Spry1 and Spry2, display parathyroid and thymus hypoplasia and a failure of these organ primordia to completely separate from the pharynx. We show that FGF ligands and downstream reporter genes are expressed in highly regionalised patterns in the third pouch and that sprouty gene deletion results in upregulated FGF signalling throughout the pouch endoderm. As a consequence, the initiation of markers of parathyroid and thymus fate is altered. In addition, a normal apoptotic programme that is associated with the separation of the primordia from the pharynx is disrupted, resulting in the maintenance of a thymus-pharynx attachment and a subsequent inability of the thymus to migrate to its appropriate position above the heart. We demonstrate that the sprouty genes function in the pharyngeal endoderm itself to control these processes and that the defects in sprouty-deficient mutants are, at least in part, due to hyper-responsiveness to Fgf8. Finally, we provide evidence to suggest that parathyroid hypoplasia in these mutants is due to early gene expression defects in the third pouch, whereas thymus hypoplasia is caused by reduced proliferation of thymic epithelial cells in the thymus primordium.

  14. Stage-specific roles of FGF2 signaling in human neural development.

    PubMed

    Grabiec, Marta; Hříbková, Hana; Vařecha, Miroslav; Střítecká, Dana; Hampl, Aleš; Dvořák, Petr; Sun, Yuh-Man

    2016-09-01

    This study elucidated the stage-specific roles of FGF2 signaling during neural development using in-vitro human embryonic stem cell-based developmental modeling. We found that the dysregulation of FGF2 signaling prior to the onset of neural induction resulted in the malformation of neural rosettes (a neural tube-like structure), despite cells having undergone neural induction. The aberrant neural rosette formation may be attributed to the misplacement of ZO-1, which is a polarized tight junction protein and shown co-localized with FGF2/FGFR1 in the apical region of neural rosettes, subsequently led to abnormal neurogenesis. Moreover, the FGF2 signaling inhibition at the stage of neural rosettes caused a reduction in cell proliferation, an increase in numbers of cells with cell-cycle exit, and premature neurogenesis. These effects may be mediated by NUMB, to which expression was observed enriched in the apical region of neural rosettes after FGF2 signaling inhibition coinciding with the disappearance of PAX6(+)/Ki67(+) neural stem cells and the emergence of MAP2(+) neurons. Moreover, our results suggested that the hESC-based developmental system reserved a similar neural stem cell niche in vivo.

  15. Fibroblast growth factor (FGF) gene expression in the developing cerebellum suggests multiple roles for FGF signaling during cerebellar morphogenesis and development.

    PubMed

    Yaguchi, Yuichiro; Yu, Tian; Ahmed, Mohi U; Berry, Mary; Mason, Ivor; Basson, M Albert

    2009-08-01

    The cerebellum is derived from the anterior-most segment of the embryonic hindbrain, rhombomere 1 (r1). Previous studies have shown that the early development and patterning of r1 requires fibroblast growth factor (FGF) signaling. However, many of the developmental processes that shape cerebellar morphogenesis take place later in embryonic development and during the first 2 weeks of postnatal life in the mouse. Here, we present a more comprehensive analysis of the expression patterns of genes encoding FGF receptors and secreted FGF ligands during these later stages of cerebellar development. We show that these genes are expressed in multiple cell types in the developing cerebellum, in an astonishing array of distinct patterns. These data suggest that FGF signaling functions throughout cerebellar development to regulate many processes that shape the formation of a functional cerebellum.

  16. FGF Signalling Regulates Chromatin Organisation during Neural Differentiation via Mechanisms that Can Be Uncoupled from Transcription

    PubMed Central

    Patel, Nishal S.; Rhinn, Muriel; Semprich, Claudia I.; Halley, Pamela A.; Dollé, Pascal; Bickmore, Wendy A.; Storey, Kate G.

    2013-01-01

    Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF) signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR) signalling in Raldh2−/− embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that can direct

  17. FGF SIGNALING EXPANDS EMBRYONIC CORTICAL SURFACE AREA BY REGULATING NOTCH-DEPENDENT NEUROGENESIS

    PubMed Central

    Rash, Brian G.; Lim, H. David; Breunig, Joshua J.; Vaccarino, Flora M.

    2011-01-01

    The processes regulating cortical surface area expansion during development and evolution are unknown. We show that loss of function of all Fibroblast Growth Factor Receptors (FgfR) expressed at the earliest stages of cortical development causes severe deficits in surface area growth by embryonic day (E) 12.5 in the mouse. In FgfR mutants, accelerated production of neurons led to severe loss of radial progenitors and premature termination of neurogenesis. Nevertheless, these mutants showed remarkably little change in cortical layer structure. Birthdating experiments indicated that a greater proportion of layer fates was generated during early neurogenic stages, revealing that FgfR activity normally slows the temporal progression of cortical layer fates. Electroporation of a dominant negative FgfR at E11.5 increased cortical neurogenesis in normal mice—an effect that was blocked by simultaneous activation of the Notch pathway. Together with changes in the expression of Notch pathway genes in FgfR mutant embryos, these findings indicate that Notch lies downstream of FgfR signaling in the same pathway regulating cortical neurogenesis and begin to establish a mechanism for regulating cortical surface expansion. PMID:22031906

  18. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism.

  19. Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis.

    PubMed

    Pasini, Andrea; Manenti, Raoul; Rothbächer, Ute; Lemaire, Patrick

    2012-01-01

    Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.

  20. Antagonizing Retinoic Acid and FGF/MAPK Pathways Control Posterior Body Patterning in the Invertebrate Chordate Ciona intestinalis

    PubMed Central

    Pasini, Andrea; Manenti, Raoul; Rothbächer, Ute; Lemaire, Patrick

    2012-01-01

    Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region. PMID:23049976

  1. BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian Skin

    PubMed Central

    Zhu, Xiao-Jing; Liu, YuDong; Dai, Zhong-Min; Zhang, Xiaoyun; Yang, XueQin; Li, Yan; Qiu, Mengsheng; Fu, Jiang; Hsu, Wei; Chen, YiPing; Zhang, Zunyi

    2014-01-01

    Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification. PMID:25329657

  2. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain.

    PubMed

    Dyer, Carlene; Blanc, Eric; Hanisch, Anja; Roehl, Henry; Otto, Georg W; Yu, Tian; Basson, M A; Knight, Robert

    2014-01-01

    FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.

  3. The nucleotide analog cidofovir suppresses basic fibroblast growth factor (FGF2) expression and signaling and induces apoptosis in FGF2-overexpressing endothelial cells.

    PubMed

    Liekens, Sandra; Gijsbers, Sofie; Vanstreels, Els; Daelemans, Dirk; De Clercq, Erik; Hatse, Sigrid

    2007-03-01

    Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine; (S)-HPMPC] is an antiviral drug that has been approved for the treatment of cytomegalovirus retinitis in patients with AIDS. Cidofovir also possesses potent activity against human papillomavirus-induced tumors in animal models and patients. We have recently shown that cidofovir inhibits the development of vascular tumors induced by basic fibroblast growth factor (FGF2)-overexpressing endothelial cells (FGF2-T-MAE) in mice. Here, we demonstrate that the inhibitory activity of cidofovir in FGF2-T-MAE cells may result from the specific induction of apoptosis. Cell cycle analysis revealed that cidofovir induces accumulation of cells in the S phase and, upon prolonged treatment, a significant increase in sub-G1 cells, exhibiting a subdiploid DNA content. Moreover, annexin V binding, an early event in apoptosis induction, was increased in cidofovir-treated FGF2-T-MAE cells. Cidofovir also caused nuclear fragmentation and the activation of caspase-3-like proteases, as evidenced by the cleavage of poly(ADP-ribose)polymerase. In addition, cidofovir treatment of FGF2-T-MAE cells resulted in a pronounced up-regulation of the tumor suppressor protein p53. However, the expression of Bax and Bcl-2 remained unchanged, and cidofovir did not induce the release of cytochrome c from the mitochondria. In addition, cidofovir did not suppress the phosphorylation of protein kinase B/Akt, a transmitter of antiapoptotic survival signals, or its downstream regulator Bad, indicating that the Akt pathway is not affected by cidofovir in FGF2-T-MAE cells. However, the compound inhibited the expression of FGF2 and FGF2 signaling through Erk42/44, as shown by Western blot analysis. Our results indicate that cidofovir inhibits the growth of FGF2-T-MAE cells via inhibition of FGF2 expression and signaling and via the induction of apoptosis. These findings suggest that the clinical use of cidofovir might be expanded to tumors that are

  4. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia

    SciTech Connect

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A.; Chin, Ai L.; Yates, Charles R.; Carrick, Jesse D.; Smith, Jeremy C.; Baudry, Jerome; Quarles, L. Darryl

    2016-11-22

    Fibroblast growth factor–23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. In this paper, using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23–induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL–dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. Finally, these chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.

  5. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia

    DOE PAGES

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A.; ...

    2016-11-22

    Fibroblast growth factor–23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. In this paper, using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23–induced activation of the FGFR/α-KL complex. Additional modeling andmore » functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL–dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. Finally, these chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.« less

  6. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia.

    PubMed

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A; Chin, Ai L; Yates, Charles R; Carrick, Jesse D; Smith, Jeremy C; Baudry, Jerome; Quarles, L Darryl

    2016-11-22

    Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.

  7. Frs2α-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis

    PubMed Central

    Zhang, Jue; Lin, Yongshun; Zhang, Yongyou; Lan, Yongsheng; Lin, Chunhong; Moon, Anne M.; Schwartz, Robert J.; Martin, James F.; Wang, Fen

    2009-01-01

    Summary The cardiac outflow tract (OFT) is a developmentally complex structure derived from multiple lineages and is often defective in human congenital anomalies. While emerging evidence shows that the fibroblast growth factor (FGF) is essential for OFT development, the downstream pathways mediating FGF-signaling in cardiac progenitors remain poorly understood. Here, we report that FRS2α, an adaptor protein that links FGF receptor kinases to multiple signaling pathways, mediates critical aspects of FGF-dependent OFT development. Ablation of Frs2α in mesodermal OFT progenitor cells that originate in the second heart field (SHF) affects their expansion into the OFT myocardium, resulting in OFT misalignment and hypoplasia. Moreover, Frs2α mutants had defective endothelial-mesenchymal-transition and neural crest cell recruitment into the OFT cushions, resulting in OFT septation defects. The results provide new insight into the signaling molecules downstream of FGF receptor tyrosine kinases in cardiac progenitors. PMID:18832393

  8. Proliferation-independent regulation of organ size by Fgf/Notch signaling

    PubMed Central

    Kozlovskaja-Gumbrienė, Agnė; Yi, Ren; Alexander, Richard; Aman, Andy; Jiskra, Ryan; Nagelberg, Danielle; Knaut, Holger; McClain, Melainia; Piotrowski, Tatjana

    2017-01-01

    Organ morphogenesis depends on the precise orchestration of cell migration, cell shape changes and cell adhesion. We demonstrate that Notch signaling is an integral part of the Wnt and Fgf signaling feedback loop coordinating cell migration and the self-organization of rosette-shaped sensory organs in the zebrafish lateral line system. We show that Notch signaling acts downstream of Fgf signaling to not only inhibit hair cell differentiation but also to induce and maintain stable epithelial rosettes. Ectopic Notch expression causes a significant increase in organ size independently of proliferation and the Hippo pathway. Transplantation and RNASeq analyses revealed that Notch signaling induces apical junctional complex genes that regulate cell adhesion and apical constriction. Our analysis also demonstrates that in the absence of patterning cues normally provided by a Wnt/Fgf signaling system, rosettes still self-organize in the presence of Notch signaling. DOI: http://dx.doi.org/10.7554/eLife.21049.001 PMID:28085667

  9. Modulation of FGF receptor signaling as an intervention and potential therapy for myelin breakdown in Alzheimer's disease.

    PubMed

    Li, Jia-Su; Yao, Zhong-Xiang

    2013-04-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease and oligodendrocyte degeneration and white matter damage play a critical role in the pathogenesis of AD. FGF/FGF receptor signaling have been implicated in diverse cellular processes including cell apoptosis, survival, adhesion, migration, differentiation, and proliferation, as well as key regulators of the development of the central nervous system (including in axon guidance and synaptogenesis) via multiple signal pathways. It has been demonstrated that FGF infusion or gene transfer restores neurogenesis in subventricular zone and hippocampal functions in aged mice and mouse models of AD and has therapeutic implications for neurocognitive disorders. Besides, FGF receptor signaling in oligodendrocytes regulates myelin sheath thickness via Erk1/2 MAPK and PI3K/Akt/mTOR signaling, which sequentially regulates progression through distinct stages of oligodendrocyte differentiation. The effect could be effectively antagonized by the potent, selective tyrosine kinase inhibitor of FGF receptor activity. We therefore propose that modulation of FGF receptor signaling will suppress the development of oligodendrocyte degeneration and myelin breakdown or white matter damage in mouse models or patients of AD and improve or restore the pathological and clinical symptoms of cognitive decline, and FGF receptor signaling with its inhibitors and/or gene transfer would serve as an intervention and potential therapy for myelin breakdown and cognitive decline in AD.

  10. Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal.

    PubMed

    Wang, Cong; Dai, Jihuan; Yang, Mengliu; Deng, Guangjiang; Xu, Shengnan; Jia, Yanjun; Boden, Guenther; Ma, Zhongmin A; Yang, Gangyi; Li, Ling

    2014-05-01

    Insulin resistance is a metabolic disorder associated with type 2 diabetes. Recent reports have shown that fibroblast growth factor-21 (FGF-21) plays an important role in the progression of insulin resistance. However, the biochemical and molecular mechanisms by which changes in FGF-21 activation result in changes in the rates of hepatic gluconeogenesis and glycogenolysis remain to be elucidated. In this study, we developed adenovirus-mediated shRNA against FGF-21 to inhibit FGF-21 expression in ApoE knockout mice. Using this mouse model, we determined the effects of FGF-21 knockdown in vivo on hepatic glucose production, gluconeogenesis and glycogenolysis, and their relationship with the signal transducer and activator of transcription 3 (STAT3)/suppressor of cytokine signaling 3 (SOCS3) signal pathways. We show that liver-specific knockdown of FGF-21 in high-fat diet-fed ApoE knockout mice resulted in a 39% increase in glycogenolysis and a 75% increase in gluconeogenesis, accompanied by increased hepatic expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Furthermore, FGF-21 knockdown decreased phosphorylation of STAT3 and SOCS3 expression in high-fat diet-fed mice. Our data suggest that hepatic FGF-21 knockdown increases gluconeogenesis and glycogenolysis by activation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase via the STAT3/SOCS3 pathway, ultimately leading to exacerbation of hepatic insulin resistance.

  11. Interactions between NF-κB and SP3 connect inflammatory signaling with reduced FGF-10 expression.

    PubMed

    Carver, Billy J; Plosa, Erin J; Stinnett, Amanda M; Blackwell, Timothy S; Prince, Lawrence S

    2013-05-24

    Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase β mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.

  12. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  13. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo

    PubMed Central

    Bénazéraf, Bertrand; Francois, Paul; Baker, Ruth E.; Denans, Nicolas; Little, Charles D.; Pourquie, Olivier

    2011-01-01

    Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) plays a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient 1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (Blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data suggest that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements. PMID:20613841

  14. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation.

    PubMed

    Felber, Katharina; Elks, Philip M; Lecca, Maria; Roehl, Henry H

    2015-01-01

    Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx). We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation.

  15. Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor.

    PubMed

    Mathew, Grinu; Hannan, Abdul; Hertzler-Schaefer, Kristina; Wang, Fen; Feng, Gen-Sheng; Zhong, Jian; Zhao, Jean J; Downward, Julian; Zhang, Xin

    2016-11-15

    Deficiency in PTEN (phosphatase and tensin homolog deleted on chromosome 10) is the underlying cause of PTEN hamartoma tumor syndrome and a wide variety of human cancers. In skin epidermis, we have previously identified an autocrine FGF signaling induced by loss of Pten in keratinocytes. In this study, we demonstrate that skin hyperplasia requires FGF receptor adaptor protein Frs2α and tyrosine phosphatase Shp2, two upstream regulators of Ras signaling. Although the PI3-kinase regulatory subunits p85α and p85β are dispensable, the PI3-kinase catalytic subunit p110α requires interaction with Ras to promote hyperplasia in Pten-deficient skin, thus demonstrating an important cross-talk between Ras and PI3K pathways. Furthermore, genetic and pharmacological inhibition of Ras-MAPK pathway impeded epidermal hyperplasia in Pten animals. These results reveal a positive feedback loop connecting Pten and Ras pathways and suggest that FGF-activated Ras-MAPK pathway is an effective therapeutic target for preventing skin tumor induced by aberrant Pten signaling.

  16. Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway.

    PubMed

    Yang, Yisheng; Wilson, Megan J

    2015-01-01

    Lhx9 is a member of the LIM-homeodomain gene family necessary for the correct development of many organs including gonads, limbs, heart and the nervous system. In the context of limb development, Lhx9 has been implicated as an integrator for Fibroblast growth factor (FGF) and Sonic hedgehog (Shh) signalling required for proximal-distal (PD) and anterior-posterior (AP) development of the limb. Three splice variants of the Lhx9 transcript are expressed during development, two of which are predicted to act in a dominant negative fashion, competing with the DNA binding version of Lhx9 for binding to cofactors via the LIM-domain. We examined the expression pattern for the three alternative splice forms of Lhx9; Lhx9α, Lhx9β and Lhx9c during early limb development. We have found that of the three Lhx9 isoforms, only Lhx9α and Lhx9c (intact homeodomain) are expressed during early limb development, each with their own distinct expression pattern. Additionally we determined that Lhx9 expression overlaps with FGF10 expression in the developing limb bud mesenchyme. Limb bud explant cultures, in the presence of signalling pathway inhibitors, also indicated that Lhx9 mRNA expression in the limb bud was dependent on FGF signalling.

  17. Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina.

    PubMed

    Hernández-Bejarano, María; Gestri, Gaia; Spawls, Lana; Nieto-López, Francisco; Picker, Alexander; Tada, Masazumi; Brand, Michael; Bovolenta, Paola; Wilson, Stephen W; Cavodeassi, Florencia

    2015-11-15

    The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1.

  18. Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina

    PubMed Central

    Hernández-Bejarano, María; Gestri, Gaia; Spawls, Lana; Nieto-López, Francisco; Picker, Alexander; Tada, Masazumi; Brand, Michael; Bovolenta, Paola; Wilson, Stephen W.; Cavodeassi, Florencia

    2015-01-01

    The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1. PMID:26428010

  19. FGF Signaling and Dietary Factors in the Prostate

    DTIC Science & Technology

    2005-03-01

    Signaling 3. Mohammadi, M., Dionne, C. A., Li, W., Li, N., Spivak , T., Honegger, A. M., 25. Spruck, C. H., de Miguel, M. P., Smith, A. P., Ryan, A., Stein...Hadari, Y. R., Spivak -Kroizman, T., Schilling, J., Bar-Sagi, D., 27. Sgambato, A., Cittadini, A., Faraglia, B., and Weinstein, I. B. (2000) J. Cell

  20. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro.

    PubMed

    Joannes, Audrey; Brayer, Stéphanie; Besnard, Valérie; Marchal-Sommé, Joëlle; Jaillet, Madeleine; Mordant, Pierre; Mal, Hervé; Borie, Raphael; Crestani, Bruno; Mailleux, Arnaud A

    2016-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor β1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo.

  1. Diverse ETS transcription factors mediate FGF signaling in the Ciona anterior neural plate.

    PubMed

    Gainous, T Blair; Wagner, Eileen; Levine, Michael

    2015-03-15

    The ascidian Ciona intestinalis is a marine invertebrate belonging to the sister group of the vertebrates, the tunicates. Its compact genome and simple, experimentally tractable embryos make Ciona well-suited for the study of cell-fate specification in chordates. Tunicate larvae possess a characteristic chordate body plan, and many developmental pathways are conserved between tunicates and vertebrates. Previous studies have shown that FGF signals are essential for neural induction and patterning at sequential steps of Ciona embryogenesis. Here we show that two different ETS family transcription factors, Ets1/2 and Elk1/3/4, have partially redundant activities in the anterior neural plate of gastrulating embryos. Whereas Ets1/2 promotes pigment cell formation in lateral lineages, both Ets1/2 and Elk1/3/4 are involved in the activation of Myt1L in medial lineages and the restriction of Six3/6 expression to the anterior-most regions of the neural tube. We also provide evidence that photoreceptor cells arise from posterior regions of the presumptive sensory vesicle, and do not depend on FGF signaling. Cells previously identified as photoreceptor progenitors instead form ependymal cells and neurons of the larval brain. Our results extend recent findings on FGF-dependent patterning of anterior-posterior compartments in the Ciona central nervous system.

  2. Astrocyte activation is suppressed in both normal and injured brain by FGF signaling

    PubMed Central

    Kang, Wenfei; Balordi, Francesca; Su, Nan; Chen, Lin; Fishell, Gordon; Hébert, Jean M.

    2014-01-01

    In the brain, astrocytes are multifunctional cells that react to insults and contain damage. However, excessive or sustained reactive astrocytes can be deleterious to functional recovery or contribute to chronic inflammation and neuronal dysfunction. Therefore, astrocyte activation in response to damage is likely to be tightly regulated. Although factors that activate astrocytes have been identified, whether factors also exist that maintain astrocytes as nonreactive or reestablish their nonreactive state after containing damage remains unclear. By using loss- and gain-of-function genetic approaches, we show that, in the unperturbed adult neocortex, FGF signaling is required in astrocytes to maintain their nonreactive state. Similarly, after injury, FGF signaling delays the response of astrocytes and accelerates their deactivation. In addition, disrupting astrocytic FGF receptors results in reduced scar size without affecting neuronal survival. Overall, this study reveals that the activation of astrocytes in the normal and injured neocortex is not only regulated by proinflammatory factors, but also by factors such as FGFs that suppress activation, providing alternative therapeutic targets. PMID:25002516

  3. The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation.

    PubMed

    Acosta, Helena; Iliev, Dobromir; Grahn, Tan Hooi Min; Gouignard, Nadège; Maccarana, Marco; Griesbach, Julia; Herzmann, Svende; Sagha, Mohsen; Climent, Maria; Pera, Edgar M

    2015-03-15

    Germ layer formation and primary axis development rely on Fibroblast growth factors (FGFs). In Xenopus, the secreted serine protease HtrA1 induces mesoderm and posterior trunk/tail structures by facilitating the spread of FGF signals. Here, we show that the serpin Protease nexin-1 (PN1) is transcriptionally activated by FGF signals, suppresses mesoderm and promotes head development in mRNA-injected embryos. An antisense morpholino oligonucleotide against PN1 has the opposite effect and inhibits ectodermal fate. However, ectoderm and anterior head structures can be restored in PN1-depleted embryos when HtrA1 and FGF receptor activities are diminished, indicating that FGF signals negatively regulate their formation. We show that PN1 binds to and inhibits HtrA1, prevents degradation of the proteoglycan Syndecan 4 and restricts paracrine FGF/Erk signaling. Our data suggest that PN1 is a negative-feedback regulator of FGF signaling and has important roles in ectoderm and head development.

  4. SOCS-1/3 participation in FGF-2 signaling to modulate RANK ligand expression in paget's disease of bone.

    PubMed

    Sundaram, Kumaran; Senn, Joseph; Reddy, Sakamuri V

    2013-09-01

    Paget's disease of bone (PDB) is a chronic focal skeletal disorder characterized by excessive bone resorption followed by disorganized new bone formation. Measles virus nucleocapsid (MVNP) is implicated in pathogenesis of PDB. RANK ligand (RANKL), a critical osteoclastogenic factor expressed on bone marrow stromal/preosteoblast cells is upregulated in PDB. We recently demonstrated that fibroblast growth factor-2 (FGF-2) which induces RANKL expression is elevated in PDB. In this study, we hypothesized that FGF-2 modulates suppressors of cytokine signaling (SOCS) to induce RANKL expression in PDB. We identified increased levels of SOCS-1/3 mRNA expression in bone marrow mononuclear cells derived from patients with PDB compared to normal subjects. Interestingly, conditioned media obtained from MVNP transduced osteoclast progenitor cells significantly increased SOCS-1/3 mRNA expression in stromal/preosteoblast cells. We next examined if SOCS participates in FGF-2 signaling to modulate RANKL gene expression. We showed that FGF-2 stimulation significantly increased SOCS-1/3 expression in human bone marrow stromal/preosteoblast cells. In addition, co-expression of SOCS-1/3 with hRANKL gene promoter-luciferase reporter plasmid in marrow stromal cells demonstrated a significant increase in promoter activity without FGF-2 stimulation. Furthermore, siRNA inhibition of STAT-1 suppresses FGF-2 increased SOCS-1/3 expression in these cells. Thus, our results suggest that SOCS participates in FGF-2 modulation of RANKL expression in PDB.

  5. FGF signaling targets the pRb-related p107 and p130 proteins to induce chondrocyte growth arrest

    PubMed Central

    Laplantine, Emmanuel; Rossi, Ferdinand; Sahni, Malika; Basilico, Claudio; Cobrinik, David

    2002-01-01

    Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb−/− chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107−/−;p130−/− embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes. PMID:12177046

  6. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    SciTech Connect

    Chen, Xiang-Qi; Chen, Liang-Long Fan, Lin; Fang, Jun; Chen, Zhao-Yang; Li, Wei-Wei

    2014-04-25

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase the efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the expression of

  7. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.

    PubMed

    Brown, Aaron C; Adams, Derek; de Caestecker, Mark; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif

    2011-12-01

    Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.

  8. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7

    PubMed Central

    Terauchi, Akiko; Timmons, Kendall M.; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-01

    ABSTRACT Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations – FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. PMID:25431136

  9. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling

    PubMed Central

    Handschuh, Karen; Feenstra, Jennifer; Koss, Matthew; Ferretti, Elisabetta; Risolino, Maurizio; Zewdu, Rediet; Sahai, Michelle A.; Bénazet, Jean-Denis; Peng, Xiao P.; Depew, Michael J.; Quintana, Laura; Sharpe, James; Wang, Baolin; Alcorn, Heather; Rivi, Roberta; Butcher, Stephen; Manak, J Robert; Vaccari, Thomas; Weinstein, Harel; Anderson, Kathryn V.; Lacy, Elizabeth; Selleri, Licia

    2014-01-01

    Summary Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25ENU). Unlike Vps25-null embryos we generated, Vps25ENU/ENU mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyper-activation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25ENU/ENU Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning. PMID:25373905

  10. MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling

    PubMed Central

    Dong, Nana; Wang, Wei; Tian, Jinwei; Xie, Zulong; Lv, Bo; Dai, Jiannan; Jiang, Rui; Huang, Dan; Fang, Shaohong; Tian, Jiangtian; Li, Hulun; Yu, Bo

    2017-01-01

    The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR-182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate the role of miR-182 in the vascular SMC phenotypic switch and to determine the potential molecular mechanisms involved. The expression of miR-182 gene was significantly downregulated in cultured SMCs during dedifferentiation from a contractile to a synthetic phenotype. Conversely, the upregulation of miR-182 increased the expression of SMC-specific contractile genes, such as α-smooth muscle actin, smooth muscle 22α and calponin. Additionally, miR-182 overexpression potently inhibited SMC proliferation and migration under both basal conditions and under platelet-derived growth factor-BB stimulation. Furthermore, we identified fibroblast growth factor 9 (FGF9) as the target gene of miR-182 for the phenotypic modulation of SMCs mediated through platelet-derived growth factor receptor β (PDGFRβ) signaling. These data suggest that miR-182 may be a novel SMC phenotypic marker and a modulator that may be used to prevent SMC dedifferentiation via FGF9/PDGFRβ signaling. PMID:28259995

  11. Chemokine and Fgf signalling act as opposing guidance cues in formation of the lateral line primordium.

    PubMed

    Breau, Marie A; Wilson, Duncan; Wilkinson, David G; Xu, Qiling

    2012-06-01

    The directional migration of many cell populations occurs as a coherent group. An amenable model is provided by the posterior lateral line in zebrafish, which is formed by a cohesive primordium that migrates from head to tail and deposits future neuromasts at intervals. We found that prior to the onset of migration, the compact state of the primordium is not fully established, as isolated cells with lateral line identity are present caudal to the main primordium. These isolated cells are retained in position such that they fuse with the migrating primordium as it advances, and later contribute to the leading zone and terminal neuromasts. We found that the isolated lateral line cells are positioned by two antagonistic cues: Fgf signalling attracts them towards the primordium, which counteracts Sdf1α/Cxcr4b-mediated caudal attraction. These findings reveal a novel chemotactic role for Fgf signalling in which it enables the coalescence of the lateral line primordium from an initial fuzzy pattern into a compact group of migrating cells.

  12. FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver.

    PubMed

    von Holstein-Rathlou, Stephanie; BonDurant, Lucas D; Peltekian, Lila; Naber, Meghan C; Yin, Terry C; Claflin, Kristin E; Urizar, Adriana Ibarra; Madsen, Andreas N; Ratner, Cecilia; Holst, Birgitte; Karstoft, Kristian; Vandenbeuch, Aurelie; Anderson, Catherine B; Cassell, Martin D; Thompson, Anthony P; Solomon, Thomas P; Rahmouni, Kamal; Kinnamon, Sue C; Pieper, Andrew A; Gillum, Matthew P; Potthoff, Matthew J

    2016-02-09

    The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal that acts centrally to suppress the intake of "sweets."

  13. Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish.

    PubMed

    Song, Jianbo; Kim, Hyon J; Gong, Zhiyuan; Liu, Ning-Ai; Lin, Shuo

    2007-03-15

    Bmp, Fgf, and retinoic acid (RA) signals have been implicated as regulators of pancreas development. However, the integration of these signaling pathways in vivo is not fully understood. Variant hnf1 (Vhnf1) is a transcription factor involved in pancreas, liver, and kidney development and its mutation in zebrafish causes underdeveloped pancreas and liver. We investigated the signaling pathways that regulate vhnf1 expression during pancreas development. First, we showed that Bmp activity is required for vhnf1 expression in the endoderm. In chordin (a Bmp antagonist) morpholino (MO)-injected embryos, vhnf1 expression in endoderm and in endocrine beta cells is expanded. On the other hand, in alk8 (a type I TGFbeta receptor) MO-injected embryos, vhnf1 expression in the endoderm is significantly reduced. Second, we showed that Fgf signaling participates in regulation of pancreas development through the vhnf1 pathway. Third, we demonstrated that RA fails to rescue reduction of insulin expression in vhnf1 mutants, whereas overexpression of vhnf1 restores insulin expression that is repressed by treatment with a RA receptor inhibitor. And finally, we revealed that both Bmp and Fgf signals act genetically upstream of RA in directing pancreas development. Taken together, our data establish that vhnf1 acts downstream of the signaling pathways of RA, Bmp, and Fgf to regulate pancreas development in zebrafish.

  14. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation

    PubMed Central

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins (“contractile phenotype”). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins (“proliferative phenotype”). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  15. FGF receptors 1 and 2 control chemically-induced injury and compound detoxification in regenerating livers of mice

    PubMed Central

    Böhm, Friederike; Speicher, Tobias; Hellerbrand, Claus; Dickson, Clive; Partanen, Juha M.; Ornitz, David M.; Werner, Sabine

    2010-01-01

    Background & Aims Fibroblast growth factor receptor (FGFR) 4 controls bile acid metabolism and protects the liver from fibrosis, but the roles of FGFR1 and FGFR2 in the adult liver are largely unknown. We investigated the functions and mechanisms of action of these receptors in liver homeostasis, regeneration, and fibrosis. Methods We generated mice with hepatocytes that lack FGFR1 and FGFR2 and subjected them to acute and chronic carbon tetrachloride-induced liver injury and partial hepatectomy; mice were also injected with FGF7. We performed histology, histomorphometry, real-time reverse transcription PCR, and immunoblot analyses. Results In hepatocytes, loss of FGFR1 and FGFR2 eliminated responsiveness to FGF7 and related FGF family members, but did not affect toxin-induced liver injury and fibrosis. However, mortality after partial hepatectomy increased because of severe hepatocyte necrosis. These effects appeared to be mediated by a failure of hepatocyes to induce the expression of the transcriptional regulators Dbp and Tef upon liver surgery; this affected expression of their target genes, which encode detoxifying cytochrome P450 enzymes. We found that Dbp and Tef expression was directly controlled by FGFR signalling in hepatocytes. As a consequence of the reduced expression of genes that control detoxification, the liver tissue that remained after partial hepatectomy failed to efficiently metabolize endogenous compounds and the drugs applied for anaesthesia/analgesia. Conclusions We identified a new, cytoprotective effect of FGFR1 and FGFR2 in the regenerating liver and suggest the use of recombinant FGF7 to increase survival of patients after surgical resection of large amounts of liver tissue. PMID:20603121

  16. Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling.

    PubMed

    Pui, Han Pin; Saga, Yumiko

    2017-03-21

    Spermatogenesis is a continuous and highly coordinated process of spermatozoa production. In mice, this process is believed to initiate shortly after birth with the emergence of nascent spermatogonia in the testes. However, because the nascent spermatogonia originated from the gonocytes are morphologically indistinguishable from their predecessors and there is no clear definition for the gonocytes-to-spermatogonia transition (GST), it remains unclear when and how spermatogenesis is initiated in the mouse testes. To address these questions, we characterized the emergence of nascent spermatogonia in ICR mice. We found that GST is initiated in a subset of gonocytes as early as E18.5. These nascent spermatogonia express markers typical of undifferentiated spermatogonia residing in testes of adult mice. In addition to markers expression, we identified FOXO1 nuclear-to-cytoplasmic translocation as a novel feature of GST distinguishing nascent spermatogonia from the gonocytes. Using those criteria, we demonstrated that GST requires FGF signaling. When FGF signaling was inhibited pharmacologically, gonocytes retained nuclear FOXO1 expression, did not express spermatogonial markers and failed to proliferate. We found that FGF signaling acts upstream of GDNF and RA signalings for the activation of the MEK/ERK and PI3K/Akt pathways in germ cells during GST. Taken together, we defined the precise timing of GST and revealed FGF signaling as a master regulator of GST in the perinatal mouse testes.

  17. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  18. Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo.

    PubMed

    Dogan, Alper K; Gümüşderelioglu, Menemşe; Aksöz, Erol

    2005-07-01

    In the present study, dextran-epichlorohydrin hydrogels were employed as carriers for the controlled release of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). The hydrogels were synthesized from 50% (by weight) monomeric cross-linker, epichlorohydrin, containing dextran mixtures by intermolecular side-chain reaction of dextran-hydroxyl groups with epichlorohydrin-epoxy groups. The hydrogel disks of 3-mm diameter and 1.5-mm thickness have a high swelling capacity (EWC = 650%) and enough mechanical stability for the studies in vivo. Impregnation of EGF and bFGF into the dried hydrogels was carried out by use of phosphate buffered saline solution (PBS, pH = 7.4) containing 0.5 microg mL(-1) EGF and 0.1 microg mL(-1) bFGF, respectively. The in vitro release of growth factors was detected by fluorescence spectroscopy. The prolonged release of EGF is continued up to the 14th day, in comparison with a 26-day release of bFGF. The in vivo studies were realized with subcutaneously implanted hydrogels in Wistar albino rats. The rate of neovascularization was analyzed statistically using one-way analysis of significance with EGF and bFGF incorporated hydrogels. In conclusion, dextran-epichlorohydrin hydrogels were shown to be an alternative delivery system for the release of growth factors.

  19. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  20. Control of retinoic acid synthesis and FGF expression in the nasal pit is required to pattern the craniofacial skeleton.

    PubMed

    Song, Y; Hui, J N; Fu, K K; Richman, J M

    2004-12-15

    Endogenous retinoids are important for patterning many aspects of the embryo including the branchial arches and frontonasal region of the embryonic face. The nasal placodes express retinaldehyde dehydrogenase-3 (RALDH3) and thus retinoids from the placode are a potential patterning influence on the developing face. We have carried out experiments that have used Citral, a RALDH antagonist, to address the function of retinoid signaling from the nasal pit in a whole embryo model. When Citral-soaked beads were implanted into the nasal pit of stage 20 chicken embryos, the result was a specific loss of derivatives from the lateral nasal prominences. Providing exogenous retinoic acid residue development of the beak demonstrating that most Citral-induced defects were produced by the specific blocking of RA synthesis. The mechanism of Citral effects was a specific increase in programmed cell death on the lateral (lateral nasal prominence) but not the medial side (frontonasal mass) of the nasal pit. Gene expression studies were focused on the Bone Morphogenetic Protein (BMP) pathway, which has a well-established role in programmed cell death. Unexpectedly, blocking RA synthesis decreased rather than increased Msx1, Msx2, and Bmp4 expression. We also examined cell survival genes, the most relevant of which was Fgf8, which is expressed around the nasal pit and in the frontonasal mass. We found that Fgf8 was not initially expressed along the lateral side of the nasal pit at the start of our experiments, whereas it was expressed on the medial side. Citral prevented upregulation of Fgf8 along the lateral edge and this may have contributed to the specific increase in programmed cell death in the lateral nasal prominence. Consistent with this idea, exogenous FGF8 was able to prevent cell death, rescue most of the morphological defects and was able to prevent a decrease in retinoic acid receptorbeta (Rarbeta) expression caused by Citral. Together, our results demonstrate that

  1. Role of FGF19 induced FGFR4 activation in the regulation of glucose homeostasis.

    PubMed

    Wu, Xinle; Li, Yang

    2009-12-09

    FGF19, FGF21, and FGF23 form a unique subfamily of fibroblast growth factors. Because they contain intra-molecular disulfide bonds and show reduced affinity toward heparan sulfate located in the extracellular space, it is thought that, in contrast to other FGFs, they function as endocrine hormones. FGF23 and its co-receptor alphaKlotho are involved in the control of aging, but it is not known if the same holds true for FGF19, which can also signal through alphaKlotho. However, considerable evidence supports a role for FGF19 in controlling various aspects of metabolism. We have recently fully characterized FGF19/FGFR/co-factor interactions and signaling, and in the current manuscript discuss the contribution of the FGF19/FGFR4 axis to bile acid and glucose regulation.

  2. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  3. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation

    PubMed Central

    Zhao, Huakan; Lv, Fenglin; Liang, Guizhao; Huang, Xiaobin; Wu, Gang; Zhang, Wenfa; Yu, Le; Shi, Lei; Teng, Yong

    2016-01-01

    Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC. PMID:26498355

  4. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation.

    PubMed

    Zhao, Huakan; Lv, Fenglin; Liang, Guizhao; Huang, Xiaobin; Wu, Gang; Zhang, Wenfa; Yu, Le; Shi, Lei; Teng, Yong

    2016-03-22

    Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC.

  5. Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain.

    PubMed

    Lahti, Laura; Peltopuro, Paula; Piepponen, T Petteri; Partanen, Juha

    2012-03-01

    The structure and projection patterns of adult mesodiencephalic dopaminergic (DA) neurons are one of the best characterized systems in the vertebrate brain. However, the early organization and development of these nuclei remain poorly understood. The induction of midbrain DA neurons requires sonic hedgehog (Shh) from the floor plate and fibroblast growth factor 8 (FGF8) from the isthmic organizer, but the way in which FGF8 regulates DA neuron development is unclear. We show that, during early embryogenesis, mesodiencephalic neurons consist of two distinct populations: a diencephalic domain, which is probably independent of isthmic FGFs; and a midbrain domain, which is dependent on FGFs. Within these domains, DA progenitors and precursors use partly different genetic programs. Furthermore, the diencephalic DA domain forms a distinct cell population, which also contains non-DA Pou4f1(+) cells. FGF signaling operates in proliferative midbrain DA progenitors, but is absent in postmitotic DA precursors. The loss of FGFR1/2-mediated signaling results in a maturation failure of the midbrain DA neurons and altered patterning of the midbrain floor. In FGFR mutants, the DA domain adopts characteristics that are typical for embryonic diencephalon, including the presence of Pou4f1(+) cells among TH(+) cells, and downregulation of genes typical of midbrain DA precursors. Finally, analyses of chimeric embryos indicate that FGF signaling regulates the development of the ventral midbrain cell autonomously.

  6. The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos.

    PubMed

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E; Mullis, Primus E; Brändli, André W; Trueb, Beat

    2010-01-15

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.

  7. Efficient cultivation of neural stem cells with controlled delivery of FGF-2.

    PubMed

    Galderisi, U; Peluso, G; Di Bernardo, G; Calarco, A; D'Apolito, M; Petillo, O; Cipollaro, M; Fusco, F R; Melone, M A B

    2013-01-01

    Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise. Exhaustion of growth factors and/or their uncontrolled release with burst and fall in their concentration may greatly affect the in vitro behavior of NSCs. In this context, we investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus improve in vitro NSC cultivation. We demonstrated that NSCs cultivated in media with a controlled release of FGF-2 from a polyelectrolyte polymer showed a higher proliferation rate, and reduced apoptosis and senescence. In these experimental conditions NSCs preserve their stemness properties for a longer period of time compared with controls. Also of interest is that cell fate properties are conserved as well. The controlled release of FGF-2 reduced the level of oxidative stress and this is associated with a lower level of damaged DNA. This result may explain the reduced level of senescence and apoptosis in NSCs cultivated in the presence of hydrogel-releasing FGF-2.

  8. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis

    PubMed Central

    Dabrowski, Ania; Terauchi, Akiko; Strong, Cameron; Umemori, Hisashi

    2015-01-01

    Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain. PMID:25926357

  9. Attractive action of FGF-signaling contributes to the postnatal developing hippocampus.

    PubMed

    Cuccioli, V; Bueno, C; Belvindrah, R; Lledo, P-M; Martinez, S

    2015-04-01

    During brain development neural cell migration is a crucial, well-orchestrated, process, which leads to the proper whole brain structural organization. As development proceeds, new neurons are continuously produced, and this protracted neurogenesis is maintained throughout life in specialized germinative areas inside the telencephalon: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. In the anterior SVZ, newly generated neurons migrate through long distances, along the rostral migratory stream (RMS), before reaching their final destinations in the olfactory bulb (OB). Intriguingly, recent observations pointed out the existence of other postnatal tangential routes of migration alternative to the RMS but still starting from the SVZ. The presence of such dynamic and heterogeneous cell movements contributes to important features in the postnatal brain such as neural cell replacement and plasticity in cortical regions. In this work, we asked whether a caudal migratory pathway starting from the caudal SVZ continues through life. Strikingly, in vivo analysis of this caudal migration revealed the presence of a postnatal contribution of SVZ to the hippocampus. In vitro studies of the caudal migratory stream revealed the role of FGF signaling in attracting caudally the migrating neuroblasts during postnatal stages. Our findings demonstrate a postnatal neuronal contribution from the caudal ganglionic eminence (CGE) CGE-SVZ to the hippocampus through an FGF-dependent migrating mechanism. All together our data emphasizes the emerging idea that a developmental program is still operating in discrete domains of the postnatal brain and may contribute to the regulation of neural cell replacement processes in physiological plasticity and/or pathological circumstances.

  10. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration.

    PubMed

    Butí, Elisenda; Mesquita, Duarte; Araújo, Sofia J

    2014-01-01

    Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.

  11. Ampelopsin Improves Insulin Resistance by Activating PPARγ and Subsequently Up-Regulating FGF21-AMPK Signaling Pathway

    PubMed Central

    Qin, Yu; Liu, Lei; Wan, Jing; Zou, Lingyun; Zhang, Qianyong; Zhu, Jundong; Mi, Mantian

    2016-01-01

    Ampelopsin (APL), a major bioactive constituent of Ampelopsis grossedentata, exerts a number of biological effects. Here, we explored the anti-diabetic activity of APL and elucidate the underlying mechanism of this action. In palmitate-induced insulin resistance of L6 myotubes, APL treatment markedly up- regulated phosphorylated insulin receptor substrate-1 and protein kinase B, along with a corresponding increase of glucose uptake capacity. APL treatment also increased expressions of fibroblast growth factor (FGF21) and phosphorylated adenosine 5’-monophosphate -activated protein kinase (p-AMPK), however inhibiting AMPK by Compound C or AMPK siRNA, or blockage of FGF21 by FGF21 siRNA, obviously weakened APL -induced increases of FGF21 and p-AMPK as well as glucose uptake capacity in palmitate -pretreated L6 myotubes. Furthermore, APL could activate PPAR γ resulting in increases of glucose uptake capacity and expressions of FGF21 and p-AMPK in palmitate -pretreated L6 myotubes, whereas all those effects were obviously abolished by addition of GW9662, a specific inhibitor of peroxisome proliferator- activated receptor –γ (PPARγ), and PPARγsiRNA. Using molecular modeling and the luciferase reporter assays, we observed that APL could dock with the catalytic domain of PPARγ and dose-dependently up-regulate PPARγ activity. In summary, APL maybe a potential agonist of PPARγ and promotes insulin sensitization by activating PPARγ and subsequently regulating FGF21- AMPK signaling pathway. These results provide new insights into the protective health effects of APL, especially for the treatment of Type 2 diabetes mellitus. PMID:27391974

  12. FGF19 and cancer.

    PubMed

    Lin, Benjamin C; Desnoyers, Luc R

    2012-01-01

    Fibroblast growth factors (FGFs) and their cognate receptors, FGF receptors (FGFRs), play critical roles in a variety of normal developmental and physiological processes. Numerous reports support a role for deregulation of FGF-FGFR signaling, whether it is at the ligand and/or receptor level, in tumor development and progression. The FGF19-FGFR4 signaling axis has been implicated in the pathogenesis of several cancers, including hepatocellular carcinomas in mice and potentially in humans. This chapter focuses on recent progress in the understanding of the molecular mechanisms of FGF19 action and its potential involvement in cancer.

  13. FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7.

    PubMed

    Bai, Yu-Pan; Shang, Kun; Chen, Huan; Ding, Fei; Wang, Zhen; Liang, Chen; Xu, Ye; Sun, Meng-Hong; Li, Ying-Yi

    2015-10-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in the tumor stroma, are important modifiers of tumour progression. In the present study, we observed that azoxymethane and dextran sodium sulfate treatments induced increasingly severe colorectal mucosal inflammation and the intratumoural accumulation of CAFs. Fibroblast growth factor (FGF)-1 and FGF-3 were detected in infiltrating cells, and FGFR4, the specific receptor for FGF-1 and FGF-3, was detected in colon cancer tissues. The phosphorylation of FGFR4 enhanced the production of metalloproteinase (MMP)-7 and mitogen-activated protein kinase kinase (Mek)/extracellular signal-regulated kinase (Erk), which was accompanied by excessive vessel generation and cell proliferation. Moreover, we separated CAFs, pericarcinoma fibroblasts (PFs), and normal fibroblasts (NFs) from human colon tissue specimens to characterize the function of CAFs. We observed that CAFs secrete more FGF-1/-3 than NFs and PFs and promote cancer cell growth and angiogenesis through the activation of FGFR4, which is followed by the activation of Mek/Erk and the modulation of MMP-7 expression. The administration of FGF-1/-3-neutralizing antibodies or the treatment of cells with FGFR4 siRNA or the FGFR4 inhibitor PD173074 markedly suppressed colon cancer cell proliferation and neovascularization. These observations suggest a crucial role for CAFs and FGF signaling in the initiation and progression of colorectal cancer. The inhibition of the FGF signaling pathway may be a useful strategy for the treatment of colon cancer.

  14. PKCε ACTIVATION PROMOTES FGF-2 EXOCYTOSIS AND INDUCES ENDOTHELIAL CELL PROLIFERATION AND SPROUTING

    PubMed Central

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-01-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2−/− endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling. PMID:23880610

  15. PKCε activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting.

    PubMed

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-10-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2(-/-) endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling.

  16. The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGF alpha and FGF7 in morphogenesis of mouse mammary epithelium

    SciTech Connect

    Fata, Jimmie E; Mori, Hidetoshi; Ewald, Andrew J; Zhang, Hui; Yao, Evelyn; Werb, Zena; Bissell, Mina J

    2006-10-03

    Transforming growth factor-{alpha} (TGF{alpha}) and fibroblast growth factor-7 (FGF7) exhibit distinct expression patterns in the mammary gland. Both factors signal through mitogen-activated kinase/extracellular regulated kinase-1,2 (MAPK{sup ERK1,2}); however, their unique and/or combined contributions to mammary morphogenesis have not been examined. In ex vivo mammary explants, we show that a sustained activation of MAPK{sup ERK1,2} for 1 h, induced by TGF{alpha}, was necessary and sufficient to initiate branching morphogenesis, whereas a transient activation (15 min) of MAPK{sup ERK1,2}, induced by FGF7, led to growth without branching. Unlike TGF{alpha}, FGF7 promoted sustained proliferation as well as ectopic localization of, and increase in, keratin-6 expressing cells. The response of the explants to FGF10 was similar to that to FGF7. Simultaneous stimulation by FGF7 and TGF{alpha} indicated that the FGF7-induced MAPK{sup ERK1,2} signaling and associated phenotypes were dominant: FGF7 may prevent branching by suppression of two necessary TGF{alpha}-induced morphogenetic effectors, matrix metalloproteinase-3 (MMP-3/stromelysin-1), and fibronectin. Our findings indicate that expression of morphogenetic effectors, proliferation, and cell-type decisions during mammary organoid morphogenesis are intimately dependent on the duration of activation of MAPK{sup ERK1,2} activation.

  17. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish.

    PubMed

    Tanaka, Shingo; Hosokawa, Hiroshi; Weinberg, Eric S; Maegawa, Shingo

    2017-04-15

    The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels.

  18. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    PubMed

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.

  19. Mutational Spectrum in Holoprosencephaly Shows That FGF is a New Major Signaling Pathway.

    PubMed

    Dubourg, Christèle; Carré, Wilfrid; Hamdi-Rozé, Houda; Mouden, Charlotte; Roume, Joëlle; Abdelmajid, Benmansour; Amram, Daniel; Baumann, Clarisse; Chassaing, Nicolas; Coubes, Christine; Faivre-Olivier, Laurence; Ginglinger, Emmanuelle; Gonzales, Marie; Levy-Mozziconacci, Annie; Lynch, Sally-Ann; Naudion, Sophie; Pasquier, Laurent; Poidvin, Amélie; Prieur, Fabienne; Sarda, Pierre; Toutain, Annick; Dupé, Valérie; Akloul, Linda; Odent, Sylvie; de Tayrac, Marie; David, Véronique

    2016-12-01

    Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.

  20. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation

    PubMed Central

    Hu, Hsiao-Tang; Umemori, Hisashi; Hsueh, Yi-Ping

    2016-01-01

    Functional synapse formation requires tight coordination between pre- and post-synaptic termini. Previous studies have shown that postsynaptic expression of heparan sulfate proteoglycan syndecan-2 (SDC2) induces dendritic spinogenesis. Those SDC2-induced dendritic spines are frequently associated with presynaptic termini. However, how postsynaptic SDC2 accelerates maturation of corresponding presynaptic termini is unknown. Because fibroblast growth factor 22 (FGF22), a heparan sulfate binding growth factor, has been shown to act as a presynaptic organizer released from the postsynaptic site, it seems possible that postsynaptic SDC2 presents FGF22 to the presynaptic FGF receptor to promote presynaptic differentiation. Here, we show that postsynaptic SDC2 uses its ectodomain to interact with and facilitate dendritic filopodial targeting of FGF22, triggering presynaptic maturation. Since SDC2 also enhances filopodial targeting of NMDAR via interaction with the CASK-mLIN7-MINT1 adaptor complex, presynaptic maturation promoted by FGF22 further feeds back to activate NMDAR at corresponding postsynaptic sites through increased neurotransmitter release and, consequently, promotes the dendritic filopodia-spines (F-S) transition. Meanwhile, via regulation of the KIF17 motor, CaMKII (activated by the NMDAR pathway) may further facilitate FGF22 targeting to dendritic filopodia that receive presynaptic stimulation. Our study suggests a positive feedback that promotes the coordination of postsynaptic and presynaptic differentiation. PMID:27627962

  1. Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth

    PubMed Central

    Jackman, William R; Davies, Shelby H; Lyons, David B; Stauder, Caitlin K; Denton-Schneider, Benjamin R; Jowdry, Andrea; Aigler, Sharon R; Vogel, Scott A; Stock, David W

    2014-01-01

    Teeth with two or more cusps have arisen independently from an ancestral unicuspid condition in a variety of vertebrate lineages, including sharks, teleost fishes, amphibians, lizards, and mammals. One potential explanation for the repeated origins of multicuspid teeth is the existence of multiple adaptive pathways leading to them, as suggested by their different uses in these lineages. Another is that the addition of cusps required only minor changes in genetic pathways regulating tooth development. Here we provide support for the latter hypothesis by demonstrating that manipulation of the levels of Fibroblast growth factor (Fgf) or Bone morphogenetic protein (Bmp) signaling produces bicuspid teeth in the zebrafish (Danio rerio), a species lacking multicuspid teeth in its ancestry. The generality of these results for teleosts is suggested by the conversion of unicuspid pharyngeal teeth into bicuspid teeth by similar manipulations of the Mexican Tetra (Astyanax mexicanus). That these manipulations also produced supernumerary teeth in both species supports previous suggestions of similarities in the molecular control of tooth and cusp number. We conclude that despite their apparent complexity, the evolutionary origin of multicuspid teeth is positively constrained, likely requiring only slight modifications of a pre-existing mechanism for patterning the number and spacing of individual teeth. PMID:25098636

  2. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    SciTech Connect

    Sui, Lina; Mfopou, Josue K.; Geens, Mieke; Sermon, Karen; Bouwens, Luc

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  3. FGF control of E-cadherin targeting in the Drosophila midgut impacts on primordial germ cell motility.

    PubMed

    Parés, Guillem; Ricardo, Sara

    2016-01-15

    Embryo formation requires tight regulation and coordination of adhesion in multiple cell types. By undertaking imaging, three-dimensional (3D) reconstructions and genetic analysis during posterior midgut morphogenesis in Drosophila, we find a new requirement for the conserved fibroblast growth factor (FGF) signaling pathway in the maintenance of epithelial cell adhesion through FGF modulation of zygotic E-cadherin. During Drosophila gastrulation, primordial germ cells (PGCs) are transported with the posterior midgut while it undergoes dynamic cell shape changes. In embryos mutant for the FGF signaling pathway components Branchless and Breathless, zygotic E-cadherin is not targeted to adherens junctions, causing midgut pocket collapse, which impacts on PGC movement. We find that the ventral midline also requires FGF signaling to maintain cell-cell adhesion. We show that FGF signaling regulates the distribution of zygotic E-cadherin during early embryonic development to maintain cell-cell adhesion in the posterior midgut and the ventral midline, a role that is likely crucial in other tissues undergoing active cell shape changes with higher adhesive needs.

  4. Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-γ.

    PubMed

    Kleiderman, Susanne; Gutbier, Simon; Ugur Tufekci, Kemal; Ortega, Felipe; Sá, João V; Teixeira, Ana P; Brito, Catarina; Glaab, Enrico; Berninger, Benedikt; Alves, Paula M; Leist, Marcel

    2016-12-01

    Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous "astrocytes generated from murine embryonic stem cells (ESC)." These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted GFAP-positive mAGES to nestin-positive NSC. ERK phosphorylation was necessary, but not sufficient, for cell cycle re-entry, as EGF triggered no de-differentiation. The NSC obtained by de-differentiation of mAGES were similar to those obtained directly by differentiation of ESC, as evidenced by standard phenotyping, and also by transcriptome mapping, metabolic profiling, and by differentiation to neurons or astrocytes. The de-differentiation was negatively affected by inflammatory mediators, and in particular, interferon-γ strongly impaired the formation of NSC from mAGES by a pathway involving phosphorylation of STAT1, but not the generation of nitric oxide. Thus, two antagonistic signaling pathways were identified here that affect fate conversion of astrocytes independent of genetic manipulation. The complex interplay of the respective signaling molecules that promote/inhibit astrocyte de-differentiation may explain why astrocytes do not readily form neural stem cells in most diseases. Increased knowledge of such factors may provide therapeutic opportunities to favor such conversions. Stem Cells 2016;34:2861-2874.

  5. Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm.

    PubMed

    Sudheer, Smita; Liu, Jinhua; Marks, Matthias; Koch, Frederic; Anurin, Anna; Scholze, Manuela; Senft, Anna Dorothea; Wittler, Lars; Macura, Karol; Grote, Phillip; Herrmann, Bernhard G

    2016-07-01

    Presomitic mesoderm (PSM) cells are the precursors of the somites, which flank both sides of the neural tube and give rise to the musculo-skeletal system shaping the vertebrate body. WNT and FGF signaling control the formation of both the PSM and the somites and show a graded distribution with highest levels in the posterior PSM. We have used reporters for the mesoderm/PSM control genes T, Tbx6, and Msgn1 to investigate the differentiation of mouse ESCs from the naïve state via EpiSCs to PSM cells. Here we show that the activation of WNT signaling by CHIR99021 (CH) in combination with FGF ligand induces embryo-like PSM at high efficiency. By varying the FGF ligand concentration, the state of PSM cells formed can be altered. High FGF concentration supports posterior PSM formation, whereas low FGF generates anterior/differentiating PSM, in line with in vivo data. Furthermore, the level of Msgn1 expression depends on the FGF ligand concentration. We also show that Activin/Nodal signaling inhibits CH-mediated PSM induction in EpiSCs, without affecting T-expression. Inversely, Activin/Nodal inhibition enhances PSM induction by WNT/high FGF signaling. The ability to generate PSM cells of either posterior or anterior PSM identity with high efficiency in vitro will promote the investigation of the gene regulatory networks controlling the formation of nascent PSM cells and their switch to differentiating/somitic paraxial mesoderm. Stem Cells 2016;34:1790-1800.

  6. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    PubMed

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  7. Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain.

    PubMed

    Sugahara, Fumiaki; Aota, Shin-ichi; Kuraku, Shigehiro; Murakami, Yasunori; Takio-Ogawa, Yoko; Hirano, Shigeki; Kuratani, Shigeru

    2011-03-01

    Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.

  8. FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum.

    PubMed

    Meier, Florian; Giesert, Florian; Delic, Sabit; Faus-Kessler, Theresa; Matheus, Friederike; Simeone, Antonio; Hölter, Sabine M; Kühn, Ralf; Weisenhorn, Daniela M Vogt; Wurst, Wolfgang; Prakash, Nilima

    2014-01-01

    The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.

  9. The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling

    PubMed Central

    Iwasaki, Yasuno; Thomsen, Gerald H.

    2014-01-01

    Alternative splicing of pre-mRNAs is an important means of regulating developmental processes, yet the molecular mechanisms governing alternative splicing in embryonic contexts are just beginning to emerge. Polyglutamine-binding protein 1 (PQBP1) is an RNA-splicing factor that, when mutated, in humans causes Renpenning syndrome, an X-linked intellectual disability disease characterized by severe cognitive impairment, but also by physical defects that suggest PQBP1 has broader functions in embryonic development. Here, we reveal essential roles for PQBP1 and a binding partner, WBP11, in early development of Xenopus embryos. Both genes are expressed in the nascent mesoderm and neurectoderm, and morpholino knockdown of either causes defects in differentiation and morphogenesis of the mesoderm and neural plate. At the molecular level, knockdown of PQBP1 in Xenopus animal cap explants inhibits target gene induction by FGF but not by BMP, Nodal or Wnt ligands, and knockdown of either PQBP1 or WBP11 in embryos inhibits expression of fgf4 and FGF4-responsive cdx4 genes. Furthermore, PQBP1 knockdown changes the alternative splicing of FGF receptor-2 (FGFR2) transcripts, altering the incorporation of cassette exons that generate receptor variants (FGFR2 IIIb or IIIc) with different ligand specificities. Our findings may inform studies into the mechanisms underlying Renpenning syndrome. PMID:25209246

  10. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step EMT.

    PubMed

    Goto, Hana; Kimmey, Samuel C; Row, Richard H; Matus, David Q; Martin, Benjamin L

    2017-02-27

    Mesoderm induction begins during gastrulation. Recent evidence from several vertebrate species indicates mesoderm induction continues after gastrulation in neuromesodermal progenitor cells (NMPs) within the posterior-most embryonic structure called the tailbud. It is unclear to what extent the molecular mechanisms of mesoderm induction are conserved between gastrula and post-gastrula stages of development. Fibroblast growth factor (FGF) signaling is required for mesoderm induction during gastrulation through positive transcriptional regulation of the t-box transcription factor brachyury (ntla in zebrafish). We find that FGF is continuously required for paraxial mesoderm (PM) induction in post-gastrula NMPs, but has the opposite effect on brachyury expression. FGF signaling represses brachyury and the NMP marker sox2 through regulation of tbx16 and msgn1, thereby committing cells to a PM fate. FGF mediated PM induction in NMPs functions in tight coordination with canonical Wnt signaling during the epithelial to mesenchymal transition from NMP to mesodermal progenitor. Wnt signaling initiates the EMT, while FGF signaling terminates this event. Our results indicate that germ layer induction in the tailbud is not a simple continuation of gastrulation events.

  11. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome

    PubMed Central

    2012-01-01

    Specific peptide ligand recognition by modular interaction domains is essential for the fidelity of information flow through the signal transduction networks that control cell behavior in response to extrinsic and intrinsic stimuli. Src homology 2 (SH2) domains recognize distinct phosphotyrosine peptide motifs, but the specific sites that are phosphorylated and the complement of available SH2 domains varies considerably in individual cell types. Such differences are the basis for a wide range of available protein interaction microstates from which signaling can evolve in highly divergent ways. This underlying complexity suggests the need to broadly map the signaling potential of systems as a prerequisite for understanding signaling in specific cell types as well as various pathologies that involve signal transduction such as cancer, developmental defects and metabolic disorders. This report describes interactions between SH2 domains and potential binding partners that comprise initial signaling downstream of activated fibroblast growth factor (FGF), insulin (Ins), and insulin-like growth factor-1 (IGF-1) receptors. A panel of 50 SH2 domains screened against a set of 192 phosphotyrosine peptides defines an extensive potential interactome while demonstrating the selectivity of individual SH2 domains. The interactions described confirm virtually all previously reported associations while describing a large set of potential novel interactions that imply additional complexity in the signaling networks initiated from activated receptors. This study of pTyr ligand binding by SH2 domains provides valuable insight into the selectivity that underpins complex signaling networks that are assembled using modular protein interaction domains. PMID:22974441

  12. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.

    PubMed

    Martínez-Abadías, Neus; Heuzé, Yann; Wang, Yingli; Jabs, Ethylin Wang; Aldridge, Kristina; Richtsmeier, Joan T

    2011-01-01

    The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W) and Fgfr2(+/P253R) and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W) mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

  13. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis

    PubMed Central

    Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.

    2011-01-01

    Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610

  14. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development.

    PubMed

    Larbuisson, Arnaud; Dalcq, Julia; Martial, Joseph A; Muller, Marc

    2013-01-01

    Cranial cartilage derives mainly from cranial neural crest cells and its formation requires fibroblast growth factor (Fgf) signaling for early differentiation and survival of developing chondrocytes as well as patterning of the endodermal pouches. Here, we investigate the role of Fgf receptors in chondrocyte maturation at later stages, beyond 24 hpf. Using inducible expression of a dominant-negative Fgf receptor, we show that Fgf signaling is required around 30 hpf for correct cartilage formation. The receptor genes fgfr1a and fgr2 are expressed in pharyngeal endodermal pouches after 24 hpf or 26 hpf, respectively. Depletion of any of these two receptors by microinjection of antisense morpholinos results in severe defects in cartilage formation at 4 dpf and a decrease in expression of the late chondrocyte markers barx1 and runx2b. Although endodermal pouches are correctly formed and patterned, receptor knock down leads to decreased expression of runx3, egr1 and sox9b in this tissue, while expression of fsta, coding for a secreted BMP/Tgfß inhibitor, is clearly increased. Rescue experiments revealed that each Fgfr1a or Fgfr2 receptor is able to compensate for the loss of the other. Thus, we show that minimal amounts of Fgfr1a or Fgfr2 are required to initiate a regulatory cascade in pharyngeal endoderm reducing expression of fsta, thereby allowing correct BMP signaling to the maturing chondrocytes of the head cartilage.

  15. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21.

    PubMed

    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S; Goetz, Regina; Eliseenkova, Anna V; Mohammadi, Moosa; Rosenblatt, Kevin P; Kliewer, Steven A; Kuro-o, Makoto

    2007-09-14

    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1-4). We demonstrated that Klotho and betaKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires betaKlotho. Both FGF19 and FGF21 can signal through FGFR1-3 bound by betaKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the betaKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of betaKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.

  16. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice

    PubMed Central

    Shin, Hyejin; Bang, Soyoung; Kim, Jiyeon; Jun, Jin Hyun; Song, Haengseok; Lim, Hyunjung Jade

    2017-01-01

    Dormant blastocysts during delayed implantation undergo autophagic activation, which is an adaptive response to prolonged survival in utero during less favorable environment. We observed that multivesicular bodies (MVBs) accumulate in the trophectoderm of dormant blastocysts upon activation for implantation. Since autophagosomes are shown to fuse with MVBs and efficient autophagic degradation requires functional MVBs, we examined if MVB formation in activated blastocysts are associated with protracted autophagic state during dormancy. We show here that autophagic activation during dormancy is one precondition for MVB formation in activated blastocysts. Furthermore, the blockade of FGF signaling with PD173074 partially interferes with MVB formation in these blastocysts, suggesting the involvement of FGFR signaling in this process. We believe that MVB formation in activated blastocysts after dormancy is a potential mechanism of clearing subcellular debris accumulated during prolonged autophagy. PMID:28155881

  17. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    SciTech Connect

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  18. RSPO3-LGR4 Regulates Osteogenic Differentiation Of Human Adipose-Derived Stem Cells Via ERK/FGF Signalling

    PubMed Central

    Zhang, Min; Zhang, Ping; Liu, Yunsong; Lv, Longwei; Zhang, Xiao; Liu, Hao; Zhou, Yongsheng

    2017-01-01

    The four R-spondins (RSPOs) and their three related receptors, LGR4, 5 and 6, have emerged as a major ligand-receptor system with critical roles in development and stem cell survival. However, the exact roles of the RSPO-LGR system in osteogenesis remain largely unknown. In the present study, we showed that RSPO3-shRNA increased the osteogenic potential of human adipose-derived stem cells (hASCs) significantly. Mechanistically, we demonstrated that RSPO3 is a negative regulator of ERK/FGF signalling. We confirmed that inhibition of the ERK1/2 signalling pathway blocked osteogenic differentiation in hASCs, and the increased osteogenic capacity observed after RSPO3 knockdown in hASCs was reversed by inhibition of ERK signalling. Further, silencing of LGR4 inhibited the activity of ERK signalling and osteogenic differentiation of hASCs. Most importantly, we found that loss of LGR4 abrogated RSPO3-regulated osteogenesis and RSPO3-induced ERK1/2 signalling inhibition. Collectively, our data show that ERK signalling works downstream of LGR4 and RSPO3 regulates osteoblastic differentiation of hASCs possibly via the LGR4-ERK signalling. PMID:28220828

  19. Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling.

    PubMed

    Kigel, Boaz; Rabinowicz, Noa; Varshavsky, Asya; Kessler, Ofra; Neufeld, Gera

    2011-10-13

    Plexin-A4 is a receptor for sema6A and sema6B and associates with neuropilins to transduce signals of class-3 semaphorins. We observed that plexin-A1 and plexin-A4 are required simultaneously for transduction of inhibitory sema3A signals and that they form complexes. Unexpectedly, inhibition of plexin-A1 or plexin-A4 expression in endothelial cells using specific shRNAs resulted in prominent plexin type specific rearrangements of the actin cytoskeleton that were accompanied by inhibition of bFGF and VEGF-induced cell proliferation. The two responses were not interdependent since silencing plexin-A4 in U87MG glioblastoma cells inhibited cell proliferation and strongly inhibited the formation of tumors from these cells without affecting cytoskeletal organization. Plexin-A4 formed stable complexes with the FGFR1 and VEGFR-2 tyrosine-kinase receptors and enhanced VEGF-induced VEGFR-2 phosphorylation in endothelial cells as well as bFGF-induced cell proliferation. We also obtained evidence suggesting that some of the pro-proliferative effects of plexin-A4 are due to transduction of autocrine sema6B-induced pro-proliferative signals, since silencing sema6B expression in endothelial cells and in U87MG cells mimicked the effects of plexin-A4 silencing and also inhibited tumor formation from the U87MG cells. Our results suggest that plexin-A4 may represent a target for the development of novel anti-angiogenic and anti-tumorigenic drugs.

  20. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system.

    PubMed

    Latasa, Maria U; Salis, Fabiana; Urtasun, Raquel; Garcia-Irigoyen, Oihane; Elizalde, Maria; Uriarte, Iker; Santamaria, Monica; Feo, Francesco; Pascale, Rosa M; Prieto, Jesús; Berasain, Carmen; Avila, Matías A

    2012-01-01

    Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of

  1. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats

    PubMed Central

    He, Jian-Li; Zhao, Miao; Xia, Jing-Jun; Guan, Jian; Liu, Yang; Wang, Lu-Qi; Song, Dong-Xue; Qu, Mei-Yu; Zuo, Meng; Wen, Xin; Yu, Xue; Huo, Rong; Pan, Zhen-Wei; Ban, Tao; Zhang, Yan; Zhu, Jiu-Xin; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2016-01-01

    Fibroblast growth factor-21 (FGF21) is closely related to various metabolic and cardiovascular disorders. However, the direct targets and mechanisms linking FGF21 to blood pressure control and hypertension are still elusive. Here we demonstrated a novel regulatory function of FGF21 in the baroreflex afferent pathway (the nucleus tractus solitarii, NTS; nodose ganglion, NG). As the critical co-receptor of FGF21, β-klotho (klb) significantly expressed on the NTS and NG. Furthermore, we evaluated the beneficial effects of chronic intraperitoneal infusion of recombinant human FGF21 (rhFGF21) on the dysregulated systolic blood pressure, cardiac parameters, baroreflex sensitivity (BRS) and hyperinsulinemia in the high fructose-drinking (HFD) rats. The BRS up-regulation is associated with Akt-eNOS-NO signaling activation in the NTS and NG induced by acute intravenous rhFGF21 administration in HFD and control rats. Moreover, the expressions of FGF21 receptors were aberrantly down-regulated in HFD rats. In addition, the up-regulated peroxisome proliferator-activated receptor-γ and -α (PPAR-γ/-α) in the NTS and NG in HFD rats were markedly reversed by chronic rhFGF21 infusion. Our study extends the work of the FGF21 actions on the neurocontrol of blood pressure regulations through baroreflex afferent pathway in HFD rats. PMID:27387420

  2. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung.

    PubMed

    del Moral, Pierre-Marie; De Langhe, Stijn P; Sala, Frédéric G; Veltmaat, Jacqueline M; Tefft, Denise; Wang, Kasper; Warburton, David; Bellusci, Savério

    2006-05-01

    Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.

  3. Expression of chick Fgf19 and mouse Fgf15 orthologs is regulated in the developing brain by Fgf8 and Shh.

    PubMed

    Gimeno, L; Martinez, S

    2007-08-01

    Fibroblast growth factors (Fgfs) constitute a family of signaling molecules that play essential roles in development. We have studied the expression pattern of mouse Fgf15 in the developing brain. Fgf19 is another member of the FGF family that has been suggested as the chick and human ortholog of mouse and rat Fgf15. Here, we compare the expression pattern during neural development of chick Fgf19 with mouse Fgf15. Unlike Fgf15, Fgf19 presents an expression in the isthmic alar plate, diencephalic and mesencephalic parabasal plates, hindbrain basal plate, as well as in the zona limitans intrathalamica (zli). Moreover, we explored the regulation between Fgf19 and the signaling molecules of the isthmic and zli organizers: Fgf8 and Shh, respectively. Considering the possibility that Fgf19 plays a similar role in humans and chicks, this finding could explain the significant diencephalic phenotypic differences between humans and mice in models and diseases where the Shh pathway is affected.

  4. Fgf and Sdf-1 pathways interact during zebrafish fin regeneration.

    PubMed

    Bouzaffour, Mohamed; Dufourcq, Pascale; Lecaudey, Virginie; Haas, Petra; Vriz, Sophie

    2009-06-08

    The chemokine stromal cell-derived factor-1 (SDF1) was originally identified as a pre-B cell stimulatory factor but has been recently implicated in several other key steps in differentiation and morphogenesis. In addition, SDF1 as well as FGF signalling pathways have recently been shown to be involved in the control of epimorphic regeneration. In this report, we address the question of a possible interaction between the two signalling pathways during adult fin regeneration in zebrafish. Using a combination of pharmaceutical and genetic tools, we show that during epimorphic regeneration, expression of sdf1, as well as of its cognate receptors, cxcr4a, cxcr4b and cxcr7 are controlled by FGF signalling. We further show that, Sdf1a negatively regulates the expression of fgf20a. Together, these results lead us to propose that: 1) the function of Fgf in blastema formation is, at least in part, relayed by the chemokine Sdf1a, and that 2) Sdf1 exerts negative feedback on the Fgf pathway, which contributes to a transient expression of Fgf20a downstream genes at the beginning of regeneration. However this feedback control can be bypassed since the Sdf1 null mutants regenerate their fin, though slower. Very few mutants for the regeneration process were isolated so far, illustrating the difficulty in identifying genes that are indispensable for regeneration. This observation supports the idea that the regeneration process involves a delicate balance between multiple pathways.

  5. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae.

    PubMed

    Yue, Zhicao; Jiang, Ting Xin; Wu, Ping; Widelitz, Randall B; Chuong, Cheng Ming

    2012-12-01

    In a feather, there are distinct morphologies along the proximal-distal axis. The proximal part is a cylindrical stalk (calamus), whereas the distal part has barb and barbule branches. Here we focus on what molecular signaling activity can modulate feather stem cells to generate these distinct morphologies. We demonstrate the drastic tissue remodeling during feather cycling which includes initiation, growth and resting phases. In the growth phase, epithelial components undergo progressive changes from the collar growth zone to the ramogenic zone, to maturing barb branches along the proximal-distal axis. Mesenchymal components also undergo progressive changes from the dermal papilla, to the collar mesenchyme, to the pulp along the proximal-distal axis. Over-expression of Spry4, a negative regulator of receptor tyrosine kinases, promotes barb branch formation at the expense of the epidermal collar. It even induces barb branches from the follicle sheath (equivalent to the outer root sheath in hair follicles). The results are feathers with expanded feather vane regions and small or missing proximal feather shafts (the calamus). Spry4 also expands the pulp region while reducing the size of dermal papillae, leading to a failure to regenerate. In contrast, over-expressing Fgf10 increases the size of the dermal papillae, expands collar epithelia and mesenchyme, but also prevents feather branch formation and feather keratin differentiation. These results suggest that coordinated Sprouty/FGF pathway activity at different stages is important to modulate feather epidermal stem cells to form distinct feather morphologies along the proximal-distal feather axis.

  6. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease.

    PubMed

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-06-17

    Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  7. Fgf-signaling-dependent Sox9a and Atoh1a regulate otic neural development in zebrafish.

    PubMed

    Wang, Jialiang; Wu, Ying; Zhao, Feng; Wu, Yuting; Dong, Wei; Zhao, Jue; Zhu, Zuoyan; Liu, Dong

    2015-01-07

    Fibroblast growth factors (Fgfs) play important roles in developmental processes of the inner ear, including the ontogeny of the statoacoustic ganglia (SAG) and hair cells. However, the detailed genetic mechanism(s) underlying Fgf/Fgfr-dependent otic neural development remains elusive. Using conditional genetic approaches and inhibitory small molecules, we have revealed that Fgfr-PI3K/Akt signaling is mainly responsible for zebrafish SAG development and have determined that Sox9a and Atoh1a act downstream of Fgfr-Akt signaling to specify and/or maintain the otic neuron fate during the early segmentation stage. Sox9a and Atoh1a coregulate numerous downstream factors identified through our ChIP-seq analyses, including Tlx2 and Eya2. Fgfr-Erk1/2 signaling contributes to ultricular hair cell development during a critical period between 9 and 15 hours postfertilization. Our work reveals that a genetic network of the previously known sensory determinant Atoh1 and the neural crest determinant Sox9 plays critical roles in SAG development. These newly uncovered roles for Atoh1and Sox9 in zebrafish otic development may be relevant to study in other species.

  8. PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells.

    PubMed

    Liu, Mi-Hua; Li, Guo-Hua; Peng, Li-Jun; Qu, Shun-Lin; Zhang, Yuan; Peng, Juan; Luo, Xin-Yuan; Hu, Heng-Jing; Ren, Zhong; Liu, Yao; Tang, Hui; Liu, Lu-Shan; Tang, Zhi-Han; Jiang, Zhi-Sheng

    2016-03-01

    Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.

  9. BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border.

    PubMed

    Garnett, Aaron T; Square, Tyler A; Medeiros, Daniel M

    2012-11-01

    Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB.

  10. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    PubMed Central

    Ost, Mario; Coleman, Verena; Voigt, Anja; van Schothorst, Evert M.; Keipert, Susanne; van der Stelt, Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, Anna P.; Jastroch, Martin; Schulz, Tim J.; Keijer, Jaap; Klaus, Susanne

    2015-01-01

    Objective Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21−/−) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPRmt) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key

  11. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Eda, Homare; Aoki, Katsuhiko; Marumo, Keishi; Fujii, Katsuyuki; Ohkawa, Kiyoshi

    2008-02-08

    Transcriptional coactivator with PDZ-binding motif (TAZ) protein is a coactivator of Runx2 and corepressor of PPAR{gamma}. It also induces differentiation of mesenchymal cells into osteoblasts. In this study, we found that FGF-2, which inhibits bone mineralization and stimulates cell proliferation, reduced the TAZ protein expression level in osteoblast-like cells, MC3T3-E1. This reduction was recovered by removing FGF-2 from the culture medium, which also restored the osteoblastic features of MC3T3-E1 cells. Furthermore, FGF-2-induced reduction of TAZ is blocked by a SAPK/JNK-specific inhibitor. These findings suggest that the expression of TAZ protein is involved in osteoblast proliferation and differentiation. This may help elucidate the discrepancies in the effect of FGF-2 and contribute to the understanding of FGF/FGFR-associated craniosynostosis syndrome etiology and treatment.

  12. FGF plays a subtle role in oligodendrocyte maintenance in vivo.

    PubMed

    Harari, D; Finkelstein, D; Bernard, O

    1997-08-15

    Numerous in vitro studies indicate that fibroblast growth factors (FGFs) play a role in both the development and maintenance of oligodendrocytes. Addition of FGF to mature oligodendrocytes in culture was reported to downregulate the expression of genes encoding proteins of the myelin sheath and to induce a loss of myelin compaction. In this study, a model was developed to functionally block FGF signaling in oligodendrocytes in vivo, by generating transgenic mice expressing a dominant-negative FGF receptor (FGFR1), under the control of the myelin basic protein (MBP) promoter. To demonstrate the effectiveness of this model, truncated FGFR1 was first overexpressed in an FGF-responsive cell line in vitro. It was confirmed that FGF-signalling was blocked in these cells. Subsequently, five independent transgenic lines ("MBP-FRD") were generated. Three lines expressing the highest level of the transgene were further studied. Initial investigation by Western blot and light microscopic analyses revealed no apparent alterations in myelination of the MBP-FRD mouse brains. However, ultrastructural analysis of myelinated optic nerve fibres from two independent MBP-FRD lines revealed a significant increase in myelin thickness as a function of fibre diameter for both transgenic lines (13% and 16% increase). This increase in myelin thickness was not accompanied by alterations in myelin compaction. These results support the idea that FGF signaling in oligodendrocytes plays a role in the modulation of axon myelination in vivo.

  13. Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction.

    PubMed

    Wright, Tracy J; Ladher, Raj; McWhirter, John; Murre, Cornelis; Schoenwolf, Gary C; Mansour, Suzanne L

    2004-05-01

    The inner ear develops from an ectodermal placode that is specified by inductive signals from the adjacent neurectoderm and underlying mesoderm. In chick, fibroblast growth factor (Fgf)-19 is expressed in mesoderm underlying the presumptive otic placode, and human FGF19 induces expression of otic markers in a tissue explant containing neural plate and surface ectoderm. We show here that mouse Fgf15 is the sequence homolog of chick and human Fgf19/FGF19. In addition, we show that FGF15, like FGF19, is sufficient to induce expression of otic markers in a chick explant assay, suggesting that these FGFs are orthologs. Mouse embryos lacking Fgf15, however, do not have otic abnormalities at E9.5-E10.5, suggesting that Fgf15 is not uniquely required for otic induction or early patterning of the otocyst. To compare FGF15 and FGF19 signaling components and assess where signals potentially redundant with FGF15 might function, we determined the expression patterns of Fgf15 and Fgf19. Unlike Fgf19, Fgf15 is not expressed in mesoderm underlying the presumptive otic placode, but is expressed in the adjacent neurectoderm. Fgfr4, which encodes the likely receptor for both FGF19 and FGF15, is expressed in the neurectoderm of both species, and is also expressed in the mesoderm only in chick. These results suggest the hypotheses that during otic induction, FGF19 signals in either an autocrine fashion to the mesoderm or a paracrine fashion to the neurectoderm, whereas FGF15 signals in an autocrine fashion to the neurectoderm. Thus, the FGFs that signal to the neurectoderm are the best potential candidates for redundancy with FGF15 during mouse otic development.

  14. Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors.

    PubMed

    Maric, Dragan; Fiorio Pla, Alessandra; Chang, Yoong Hee; Barker, Jeffery L

    2007-02-21

    Developmental processes mediating the initiation of lineage commitment from self-renewing neural stem cells (NSCs) remain mostly unclear because of the persisting ambiguity in identifying true NSCs from proliferative lineage-restricted progenitors (LRPs), which are directly or indirectly derived from NSCs. Our multilineage immunohistochemical analyses of early embryonic rat telencephalon at the onset of neurogenesis revealed clear dorsoventral gradients in the emergence of two types of neuronal progenitors (NPs) from multilineage-negative NSCs. Enumeration of NSCs using comprehensive flow cytometric analysis demonstrated that their precipitous decline in vivo involved both active differentiation into NPs and an increased propensity toward apoptosis. Both processes paralleled the dorsoventral changes in fibroblast growth factor receptor (FGFR) expressions. NSCs residing in the dorsal telencephalon coexpressed FGFR1 and FGFR3, whereas those residing in the ventral telencephalon also expressed FGFR2. NSCs exposed to basic fibroblast growth factor (bFGF) in vitro generated four stereotypical clonal expansion states: efficiently self-renewing, inefficiently self-renewing limited by apoptosis, exclusively neurogenic, and multipotential, generating up to five types of LRPs. The plasticity among these expansion states depended on ambient [bFGF], telencephalic developmental stage, and differential activation/inactivation of specific FGFRs. Coactivation of FGFR1 and FGFR3 promoted symmetrical divisions of NSCs (self-renewal), whereas inactivation of either triggered asymmetrical divisions and neurogenesis from these cells. Developmental upregulation of FGFR2 expression correlated with a shift of NSCs into a multipotential state or apoptosis. These results provide new insights regarding the roles of FGFRs in diversification of NSC properties and initiation of neural lineage-restricted differentiation.

  15. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

    PubMed Central

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. DOI: http://dx.doi.org/10.7554/eLife.12151.001 PMID:27083047

  16. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand.

    PubMed

    Tassinari, V; Campolo, F; Cesarini, V; Todaro, F; Dolci, S; Rossi, P

    2015-03-12

    Both fibroblast growth factor 9 (Fgf9) and Kit Ligand (Kl) signal through tyrosine kinase receptors, yet they exert opposite effects on meiotic differentiation in postnatal spermatogonia, Fgf9 acting as a meiosis-inhibiting substance and Kl acting as a promoter of the differentiation process. To understand the molecular mechanisms that might underlie this difference, we tried to dissect the intracellular signaling elicited by these two growth factors. We found that both Fgf9 and Kl stimulate Erk1/2 activation in Kit+ (differentiating) spermatogonia, even though with different time courses, whereas Kl, but not Fgf9, elicits activation of the Pi3k-Akt pathway. Sustained Erk1/2 activity promoted by Fgf9 is required for induction of the autocrine Cripto-Nodal-Smad2/3 signaling loop in these cells. Nodal signaling, in turn, is essential to mediate Fgf9 suppression of the meiotic program, including inhibition of Stra8 and Scp3 expression and induction of the meiotic gatekeeper Nanos2. On the contrary, sustained activation of the Pi3k-Akt pathway is required for the induction of Stra8 expression elicited by Kl and retinoic acid. Moreover, we found that Kl treatment impairs Nodal mRNA expression and Fgf9-mediated Nanos2 induction, reinforcing the antagonistic effect of these two growth factors on the meiotic fate of male germ cells.

  17. The development of the thalamic motor learning area is regulated by Fgf8 expression.

    PubMed

    Martinez-Ferre, Almudena; Martinez, Salvador

    2009-10-21

    Habenular nuclei play a key role in the control of motor and cognitive behavior, processing emotion, motivation, and reward values in the brain. Thus, analysis of the molecular and cellular mechanisms underlying the development and evolution of this region will contribute to a better understanding of brain function. The Fgf8 gene is expressed in the dorsal midline of the diencephalon, close to the area in which the habenular region will develop. Given that Fgf8 is an important morphogenetic signal, we decided to investigate the role of Fgf8 signaling in diencephalic development. To this end, we analyzed the effects of altered Fgf8 expression in the mouse embryo, using molecular and cellular markers. Decreasing Fgf8 activity in the diencephalon was found to be associated with dosage-dependent alterations in the epithalamus: the habenular region and pineal gland are reduced or lacking in Fgf8 hypomorphic mice. Actually, our findings indicate that Fgf8 may be the master gene for these diencephalic domains, acting as an inductive and morphogenetic regulator. Therefore, the emergence of the habenular region in vertebrates could be understood in terms of a phylogenetic territorial addition caused by de novo expression of Fgf8 in the diencephalic alar plate. This region specializes to permit the development of adaptive control of the motor function in the vertebrate brain.

  18. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→miRNA-541→androgen receptor (AR)→MMP9 signaling

    PubMed Central

    Hu, Shuai; Li, Lei; Yeh, Shuyuan; Cui, Yun; Li, Xin; Chang, Hong-Chiang; Jin, Jie; Chang, Chawnshang

    2014-01-01

    Early clinical studies suggested infiltrating T cells might be associated with poor outcomes in prostate cancer (PCa) patients. The detailed mechanisms how T cells contribute to PCa progression, however, remained unclear. Here, we found PCa cells have a better capacity to recruit more CD4(+) T cells than the surrounding normal prostate cells via secreting more chemokines-CXCL9. The consequences of more recruited CD4(+) T cells to PCa might then lead to enhance PCa cell invasion. Mechanism dissection revealed that infiltrating CD4(+) T cells might function through the modulation of FGF11→miRNA-541 signals to suppress PCa androgen receptor (AR) signals. The suppressed AR signals might then alter the MMP9 signals to promote the PCa cell invasion. Importantly, suppressed AR signals via AR-siRNA or anti-androgen Enzalutamidein PCa cells also enhanced the recruitment of T cells and the consequences of this positive feed back regulation could then enhance the PCa cell invasion. Targeting these newly identified signals viaFGF11-siRNA, miRNA-541 inhibitor or MMP9 inhibitor all led to partially reverse the enhanced PCa cell invasion. Results from in vivo mouse models also confirmed the in vitro cell lines in co-culture studies. Together, these results concluded that infiltrating CD4(+) T cells could promote PCa metastasis via modulation of FGF11→miRNA-541→AR→MMP9 signaling. Targeting these newly identified signals may provide us a new potential therapeutic approach to better battle PCa metastasis. PMID:25135278

  19. A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear.

    PubMed

    Vemaraju, Shruti; Kantarci, Husniye; Padanad, Mahesh S; Riley, Bruce B

    2012-01-01

    Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.

  20. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling

    SciTech Connect

    Matsumura, Kaori; Taketomi, Takaharu; Yoshizaki, Keigo; Arai, Shinsaku; Sanui, Terukazu; Yoshiga, Daigo; Yoshimura, Akihiko; Nakamura, Seiji

    2011-01-28

    Research highlights: {yields} Sprouty2-deficient mice exhibit cleft palate as a result of failure of palatal shelf elevation. {yields} We examined palate cell proliferation in Sprouty2-deficient mice. {yields} Palate mesenchymal cell proliferation was increased in Sprouty2 KO mice. {yields} Sprouty2 plays roles in murine palatogenesis by regulating cell proliferation. -- Abstract: Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.

  1. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation.

    PubMed

    Dailey, Lisa; Laplantine, Emmanuel; Priore, Riccardo; Basilico, Claudio

    2003-06-23

    Activating mutations in FGF receptor 3 (FGFR3) cause several human dwarfism syndromes by affecting both chondrocyte proliferation and differentiation. Using microarray and biochemical analyses of FGF-treated rat chondrosarcoma chondrocytes, we show that FGF inhibits chondrocyte proliferation by initiating multiple pathways that result in the induction of antiproliferative functions and the down-regulation of growth-promoting molecules. The initiation of growth arrest is characterized by the rapid dephosphorylation of the retinoblastoma protein (pRb) p107 and repression of a subset of E2F target genes by a mechanism that is independent of cyclin E-Cdk inhibition. In contrast, hypophosphorylation of pRb and p130 occur after growth arrest is first detected, and may contribute to its maintenance. Importantly, we also find a number of gene expression changes indicating that FGF promotes many aspects of hypertrophic differentiation, a notion supported by in situ analysis of developing growth plates from mice expressing an activated form of FGFR3. Thus, FGF may coordinate the onset of differentiation with chondrocyte growth arrest in the developing growth plate.

  2. FGF2, FGF3 and FGF4 expression pattern during molars odontogenesis in Didelphis albiventris.

    PubMed

    Dos Santos, Íria Gabriela Dias; Jorge, Erika Cristina; Copola, Aline Gonçalves Lio; Bertassoli, Bruno Machado; Goes, Alfredo Miranda de; Silva, Gerluza Aparecida Borges

    2017-03-01

    Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.

  3. FGF15/19 protein levels in the portal blood do not reflect changes in the ileal FGF15/19 or hepatic CYP7A1 mRNA levels.

    PubMed

    Shang, Quan; Guo, Grace L; Honda, Akira; Saumoy, Monica; Salen, Gerald; Xu, Guorong

    2013-10-01

    It has been proposed that bile acid suppression of CYP7A1 gene expression is mediated through a gut-liver signaling pathway fibroblast growth factor (FGF)15/19-fibroblast growth factor receptor 4 which is initiated by activation of farnesoid X receptor in the ileum but not in the liver. This study evaluated whether FGF15/19 protein levels in the portal blood reflected changes in FGF15/19 mRNA in the ileum. Studies were conducted in Sprague Dawley rats and New Zealand white rabbits fed regular chow (controls), supplemented with cholesterol (Ch) or cholic acid (CA). After feeding CA, ileal FGF15 mRNA increased 8.5-fold in rats and FGF19 rose 16-fold in rabbits associated with 62 and 75% reduction of CYP7A1 mRNA, respectively. Neither FGF15 nor FGF19 protein levels changed in the portal blood to correspond with the marked increase of FGF15/19 mRNA levels in the ileum or inhibited CYP7A1 expression in the liver. Further, in Ch-fed rats, CYP7A1 mRNA increased 1.9-fold (P < 0.001) although FGF15 mRNA levels in the ileum and portal blood FGF15 protein levels were not decreased. In Ch-fed rabbits, although FGF19 mRNA levels in the ileum and liver did not increase significantly, CYP7A1 mRNA declined 49% (P < 0.05). We were unable to find corresponding changes of FGF15/19 protein levels in the portal blood in rats and rabbits where the mRNA levels of FGF15/19 in the ileum and CYP7A1 in the liver change significantly.

  4. The structural biology of the FGF19 subfamily.

    PubMed

    Beenken, Andrew; Mohammadi, Moosa

    2012-01-01

    The ability of the Fibroblast Growth Factor (FGF) 19 subfamily to signal in an endocrine fashion sets this subfamily apart from the remaining five FGF subfamilies known for their paracrine functions during embryonic development. Compared to the members of paracrine FGF subfamiles, the three members of the FGF19 subfamily, namely FGF19, FGF21 and FGF23, have poor affinity for heparan sulfate (HS) and therefore can diffuse freely in the HS-rich extracellular matrix to enter into the bloodstream. In further contrast to paracrine FGFs, FGF19 subfamily members have unusually poor affinity for their cognate FGF receptors (FGFRs) and therefore cannot bind and activate them in a solely HS-dependent fashion. As a result, the FGF19 subfamily requires α/βklotho coreceptor proteins in order to bind, dimerize and activate their cognate FGFRs. This klotho-dependency also determines the tissue specificity of endocrine FGFs. Recent structural and biochemical studies have begun to shed light onto the molecular basis for the klotho-dependent endocrine mode of action of the FGF19 subfamily. Crystal structures of FGF19 and FGF23 show that the topology of the HS binding site (HBS) of FGF19 subfamily members deviates drastically from the common topology adopted by the paracrine FGFs. The distinct topologies of the HBS of FGF19 and FGF23 prevent HS from direct hydrogen bonding with the backbone atoms of the HBS of these ligands and accordingly decrease the HS binding affinity of this subfamily. Recent biochemical data reveal that the ?klotho ectodomain binds avidly to the ectodomain of FGFR1c, the main cognate FGFR of FGF23, creating a de novo high affinity binding site for the C-terminal tail of FGF23. The isolated FGF23 C-terminus can be used to effectively inhibit the formation of the FGF23-FGFR1c-αklotho complex and alleviate hypophosphatemia in renal phosphate disorders due to elevated levels of FGF23.

  5. Fundamentals of FGF19 & FGF21 action in vitro and in vivo.

    PubMed

    Adams, Andrew C; Coskun, Tamer; Rovira, Armando R Irizarry; Schneider, Michael A; Raches, David W; Micanovic, Radmila; Bina, Holly A; Dunbar, James D; Kharitonenkov, Alexei

    2012-01-01

    Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of βKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the

  6. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    PubMed

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.

  7. Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male Sprague Dawley rats undergoing catch-up growth.

    PubMed

    Gu, Chengying; Zeng, Yipeng; Tang, Zhaosheng; Wang, Chaoxun; He, Yanju; Feng, Xinge; Zhou, Ligang

    2015-11-01

    The present study investigated the effects of Astragalus polysaccharides (APS) on insulin resistance by modulation of hepatic sirtuin 1 (SIRT1)‑peroxisome proliferator‑activated receptor (PPAR)‑γ coactivator (PGC)‑1α/PPARα‑fibroblast growth factor (FGF)21, and glucose and lipid metabolism. Thirty male Sprague Dawley rats were divided into three groups: A normal control group, a catch‑up growth group and an APS‑treated (APS-G) group. The latter two groups underwent food restriction for 4 weeks, prior to being provided with a high fat diet, which was available ad libitum. The APS‑G group was orally treated with APS for 8 weeks, whereas the other groups were administered saline. Body weight was measured and an oral glucose tolerance test (OGTT) was conducted after 8 weeks. The plasma glucose and insulin levels obtained from the OGTT were assayed, and hepatic morphology was observed by light and transmission electron microscopy. In addition, the mRNA expression levels of PGC‑1α/PPARα, and the protein expression levels of SIRT1, FGF21 and nuclear factor‑κB were quantified in the liver and serum. APS treatment suppressed abnormal glycolipid metabolism and insulin resistance following 8 weeks of catch‑up growth by improving hepatic SIRT1‑PPARα‑FGF21 intracellular signaling and reducing chronic inflammation, and by partially attenuating hepatic steatosis. The suppressive effects of APS on liver acetylation and glycolipid metabolism‑associated molecules contributed to the observed suppression of insulin resistance. However, the mechanism underlying the effects of APS on insulin resistance requires further research in order to be elucidated. Rapid and long‑term treatment with APS may provide a novel, safe and effective therapeutic strategy for type 2 diabetes.

  8. Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male Sprague Dawley rats undergoing catch-up growth

    PubMed Central

    GU, CHENGYING; ZENG, YIPENG; TANG, ZHAOSHENG; WANG, CHAOXUN; HE, YANJU; FENG, XINGE; ZHOU, LIGANG

    2015-01-01

    The present study investigated the effects of Astragalus polysaccharides (APS) on insulin resistance by modulation of hepatic sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α/PPARα-fibroblast growth factor (FGF)21, and glucose and lipid metabolism. Thirty male Sprague Dawley rats were divided into three groups: A normal control group, a catch-up growth group and an APS-treated (APS-G) group. The latter two groups underwent food restriction for 4 weeks, prior to being provided with a high fat diet, which was available ad libitum. The APS-G group was orally treated with APS for 8 weeks, whereas the other groups were administered saline. Body weight was measured and an oral glucose tolerance test (OGTT) was conducted after 8 weeks. The plasma glucose and insulin levels obtained from the OGTT were assayed, and hepatic morphology was observed by light and transmission electron microscopy. In addition, the mRNA expression levels of PGC-1α/PPARα, and the protein expression levels of SIRT1, FGF21 and nuclear factor-κB were quantified in the liver and serum. APS treatment suppressed abnormal glycolipid metabolism and insulin resistance following 8 weeks of catch-up growth by improving hepatic SIRT1-PPARα-FGF21 intracellular signaling and reducing chronic inflammation, and by partially attenuating hepatic steatosis. The suppressive effects of APS on liver acetylation and glycolipid metabolism-associated molecules contributed to the observed suppression of insulin resistance. However, the mechanism underlying the effects of APS on insulin resistance requires further research in order to be elucidated. Rapid and long-term treatment with APS may provide a novel, safe and effective therapeutic strategy for type 2 diabetes. PMID:26323321

  9. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development

    PubMed Central

    High, Frances A.; Jain, Rajan; Stoller, Jason Z.; Antonucci, Nicole B.; Lu, Min Min; Loomes, Kathleen M.; Kaestner, Klaus H.; Pear, Warren S.; Epstein, Jonathan A.

    2009-01-01

    Notch signaling is vital for proper cardiovascular development and function in both humans and animal models. Indeed, mutations in either JAGGED or NOTCH cause congenital heart disease in humans and NOTCH mutations are associated with adult valvular disease. Notch typically functions to mediate developmental interactions between adjacent tissues. Here we show that either absence of the Notch ligand Jagged1 or inhibition of Notch signaling in second heart field tissues results in murine aortic arch artery and cardiac anomalies. In mid-gestation, these mutants displayed decreased Fgf8 and Bmp4 expression. Notch inhibition within the second heart field affected the development of neighboring tissues. For example, faulty migration of cardiac neural crest cells and defective endothelial-mesenchymal transition within the outflow tract endocardial cushions were observed. Furthermore, exogenous Fgf8 was sufficient to rescue the defect in endothelial-mesenchymal transition in explant assays of endocardial cushions following Notch inhibition within second heart field derivatives. These data support a model that relates second heart field, neural crest, and endocardial cushion development and suggests that perturbed Notch-Jagged signaling within second heart field progenitors accounts for some forms of congenital and adult cardiac disease. PMID:19509466

  10. Transitory FGF treatment results in the long-lasting suppression of the proliferative response to repeated FGF stimulation.

    PubMed

    Poole, Ashleigh; Knowland, Nicholas; Cooper, Emily; Cole, Rebecca; Wang, Hongchuan; Booth, Lucas; Kacer, Doreen; Tarantini, Francesca; Friesel, Robert; Prudovsky, Igor

    2014-05-01

    FGF applied as a single growth factor to quiescent mouse fibroblasts induces a round of DNA replication, however continuous stimulation results in arrest in the G1 phase of the next cell cycle. We hypothesized that FGF stimulation induces the establishment of cell memory, which prevents the proliferative response to repeated or continuous FGF application. When a 2-5 days quiescence period was introduced between primary and repeated FGF treatments, fibroblasts failed to efficiently replicate in response to secondary FGF application. The establishment of "FGF memory" during the first FGF stimulation did not require DNA synthesis, but was dependent on the activity of FGF receptors, MEK, p38 MAPK and NFκB signaling, and protein synthesis. While secondary stimulation resulted in strongly decreased replication rate, we did not observe any attenuation of morphological changes, Erk1/2 phosphorylation and cyclin D1 induction. However, secondary FGF stimulation failed to induce the expression of cyclin A, which is critical for the progression from G1 to S phase. Treatment of cells with a broad range histone deacetylase inhibitor during the primary FGF stimulation rescued the proliferative response to the secondary FGF treatment suggesting that the establishment of "FGF memory" may be based on epigenetic changes. We suggest that "FGF memory" can prevent the hyperplastic response to cell damage and inflammation, which are associated with an enhanced FGF production and secretion. "FGF memory" may present a natural obstacle to the efficient application of recombinant FGFs for the treatment of ulcers, ischemias, and wounds.

  11. Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling.

    PubMed

    Blaess, Sandra; Stephen, Daniel; Joyner, Alexandra L

    2008-06-01

    The coordination of anterior-posterior (AP) and dorsal-ventral (DV) patterning of the mesencephalon (mes) and rhombomere 1 (r1) is instrumental for the development of three distinct brain structures: the tectum and cerebellum dorsally and the tegmentum ventrally. Patterning of the mes/r1 is primarily mediated by signaling molecules secreted from two organizers: sonic hedgehog (Shh) from the floor plate (DV) and Fgf8 from the isthmus (AP). Gli3, a zinc-finger transcription factor in the Shh signaling pathway, has been implicated in regulating Fgf8 expression and is therefore a potential candidate for coordinating the action of the two organizers. By inactivating mouse Gli3 at successive embryonic time points in vivo, we uncovered the extent and the underlying mechanism of Gli3 function in the mes/r1. We demonstrate that before E9.0, Gli3 is required for establishing a distinct posterior tectum, isthmus and cerebellum, but does not play a role in the development of the tegmentum. Between E9.0 and E11.0, Gli3 continues to be required for isthmus and cerebellum development, but primarily for defining the cerebellar foliation pattern. We show that Gli3 regulates patterning of the isthmus and cerebellar anlage by confining Fgf8 expression to the isthmus, and attenuates growth of dorsal r1 (before E11.0) and the dorsal mes and isthmus (beyond E11.0) through regulation of cell proliferation and viability. In conclusion, our results show that Gli3 is essential for the coordinated three-dimensional patterning and growth of the dorsal mes/r1.

  12. FGF23 induces left ventricular hypertrophy

    PubMed Central

    Faul, Christian; Amaral, Ansel P.; Oskouei, Behzad; Hu, Ming-Chang; Sloan, Alexis; Isakova, Tamara; Gutiérrez, Orlando M.; Aguillon-Prada, Robier; Lincoln, Joy; Hare, Joshua M.; Mundel, Peter; Morales, Azorides; Scialla, Julia; Fischer, Michael; Soliman, Elsayed Z.; Chen, Jing; Go, Alan S.; Rosas, Sylvia E.; Nessel, Lisa; Townsend, Raymond R.; Feldman, Harold I.; St. John Sutton, Martin; Ojo, Akinlolu; Gadegbeku, Crystal; Di Marco, Giovana Seno; Reuter, Stefan; Kentrup, Dominik; Tiemann, Klaus; Brand, Marcus; Hill, Joseph A.; Moe, Orson W.; Kuro-o, Makoto; Kusek, John W.; Keane, Martin G.; Wolf, Myles

    2011-01-01

    Chronic kidney disease (CKD) is a public health epidemic that increases risk of death due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiovascular disease in individuals with CKD. Elevated levels of FGF23 have been linked to greater risks of LVH and mortality in patients with CKD, but whether these risks represent causal effects of FGF23 is unknown. Here, we report that elevated FGF23 levels are independently associated with LVH in a large, racially diverse CKD cohort. FGF23 caused pathological hypertrophy of isolated rat cardiomyocytes via FGF receptor–dependent activation of the calcineurin-NFAT signaling pathway, but this effect was independent of klotho, the coreceptor for FGF23 in the kidney and parathyroid glands. Intramyocardial or intravenous injection of FGF23 in wild-type mice resulted in LVH, and klotho-deficient mice demonstrated elevated FGF23 levels and LVH. In an established animal model of CKD, treatment with an FGF–receptor blocker attenuated LVH, although no change in blood pressure was observed. These results unveil a klotho-independent, causal role for FGF23 in the pathogenesis of LVH and suggest that chronically elevated FGF23 levels contribute directly to high rates of LVH and mortality in individuals with CKD. PMID:21985788

  13. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  14. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion.

    PubMed

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-06-10

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

  15. FGF23 fails to inhibit uremic parathyroid glands.

    PubMed

    Canalejo, Rocío; Canalejo, Antonio; Martinez-Moreno, Julio Manuel; Rodriguez-Ortiz, M Encarnacion; Estepa, Jose C; Mendoza, Francisco Javier; Munoz-Castaneda, Juan Rafael; Shalhoub, Victoria; Almaden, Yolanda; Rodriguez, Mariano

    2010-07-01

    Fibroblast growth factor 23 (FGF23) modulates mineral metabolism by promoting phosphaturia and decreasing the production of 1,25-dihydroxyvitamin D(3). FGF23 decreases parathyroid hormone (PTH) mRNA and secretion, but despite a marked elevation in FGF23 in uremia, PTH production increases. Here, we investigated the effect of FGF23 on parathyroid function in normal and uremic hyperplastic parathyroid glands in rats. In normal parathyroid glands, FGF23 decreased PTH production, increased expression of both the parathyroid calcium-sensing receptor and the vitamin D receptor, and reduced cell proliferation. Furthermore, FGF23 induced phosphorylation of extracellular signal-regulated kinase 1/2, which mediates the action of FGF23. In contrast, in hyperplastic parathyroid glands, FGF23 did not reduce PTH production, did not affect expression of the calcium-sensing receptor or vitamin D receptor, and did not affect cell proliferation. In addition, FGF23 failed to activate the extracellular signal-regulated kinase 1/2-mitogen-activated protein kinase pathway in hyperplastic parathyroid glands. We observed very low expression of the FGF23 receptor 1 and the co-receptor Klotho in uremic hyperplastic parathyroid glands, which may explain the lack of response to FGF23 in this tissue. In conclusion, in hyperparathyroidism secondary to renal failure, the parathyroid cells resist the inhibitory effects of FGF23, perhaps as a result of the low expression of FGF23 receptor 1 and Klotho in this condition.

  16. Characterization of FGF family growth factors concerning branching morphogenesis of mouse lung epithelium.

    PubMed

    Goto, Asami; Yamazaki, Naohiro; Nogawa, Hiroyuki

    2014-05-01

    Mouse lung rudiments express eight members of fibroblast growth factor (FGF) family genes from embryonic day 10 (E10) to E13. Some of these are expressed in either the epithelium or mesenchyme, while others are expressed in both. Incorporating the results of our previous study, we characterized the branch-inducing activities of all of FGFs expressed in the early lung rudiment. Of these, FGF1, FGF2, FGF7, FGF9 and FGF10 induced branching morphogenesis in Matrigel-embedded E11 epithelium, and their effective concentrations varied (10 nM, 10 nM, 3 nM, 1 nM, and 100 nM, respectively). Whereas shaking culture dishes containing medium supplemented with FGF7 or FGF10 showed reduced branching morphogenesis, those supplemented with FGF1, FGF2, or FGF9 did not, suggesting the involvement of autocrine growth factor(s) in branching morphogenesis induced by FGF7 or FGF10. In the presence of heparin, a well-known activator of FGF signaling, cystic morphology with lumen expansion was observed in cultures containing FGF1, FGF7, or FGF10, but growth arrest was observed in cultures containing FGF2 or FGF9. These results indicate that several paracrine and autocrine FGFs function during branching morphogenesis of lung epithelium.

  17. A controllable water signal transistor.

    PubMed

    Wu, Lili; Zhou, Xiaoyan; Lu, Hangjun; Liang, Qing; Kou, Jianlong; Wu, Fengmin; Fan, Jintu

    2017-03-27

    We performed molecular dynamics simulations to study the regulating ability of water chains confined in a Y-shaped nanochannel. It was shown that a signal at the molecular level could be controlled by two other charge-induced signals when the water chains were confined in a Y-shaped nanochannel, demonstrating promising applications as water signal transistors in nanosignal systems. The mechanism of a water signal transistor is similar to a signal logic device. This remarkable ability to control the water signal is attributed to the strong dipole-ordering of the water chains in the nanochannel. The controllable water signal process of the Y-shaped nanochannel provides opportunities for future application in the design of molecular-scale signal devices.

  18. FGF23-S129F mutant bypasses ER/Golgi to the circulation of hyperphosphatemic familial tumoral calcinosis patients.

    PubMed

    Shawar, Said M; Ramadan, Ahmad R; Ali, Bassam R; Alghamdi, Manal A; John, Anne; Hudaib, Ferial M

    2016-12-01

    FGF23 is essential for the homeostasis of phosphate, and vitamin D. Loss-of-function mutations in this hormone cause hyperphosphatemic familial tumoral calcinosis (HFTC). Earlier reports suggested that intact FGF23 from loss of function mutants such as FGF23/S129F (iFGF23/S129F) is retained intracellularly while the carboxy-terminal fragment is secreted. We sought to investigate the fate of iFGF23/S129F mutant hormone in vivo and in vitro. Five patients clinically diagnosed with HFTC and confirmed by DNA sequencing to carry the c.386 C>T; p.S129F mutation in the homozygous state were studied. Healthy and heterozygous individuals were used as controls in the study. Using ELISA assays, we showed that iFGF23/S129F was 2-5 folds higher in patients' plasma, compared to heterozygous or healthy controls. Importantly, the mutant hormone could not be detected in the patients' sera. However, using proteinase inhibition profiling, we found that a serum metalloproteinase degraded the iFGF23/S129F explaining our failure to detect it in sera. The serum metalloproteinase degrades the WT and the mutant at different rates. Also, confocal microscopy imaging using wild-type (WT) FGF23 or FGF23/S129F mutant in transiently transfected HEK293 and HeLa cells showed weak staining of the Golgi complex with some vesicular staining resembling the ER. Additionally, FGF23 variants (FGF23/WT, FGF23/S129F, FGF23/S71G, and FGF23/R176Q) from stably transfected HEK293 cells secreted high levels into a serum-free medium that can be detected by ELISA and Western blot. Our results suggest that iFGF23/S129F mutant bypasses the ER/Golgi quality control system to the circulation of HFTC patients by an unknown pathway. Finally, we hypothesize that either the mutant hormone is unable to bind α-Klotho-FGFR1c, or it binds the dyad receptor with low affinity and, therefore, incapable of initiating maximal intracellular signaling. Our findings raise the potential use of the WT hormone in therapies of some

  19. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians.

    PubMed

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2014-12-01

    Urodele amphibians have remarkable organ regeneration capability, and their limb regeneration capability has been investigated as a representative phenomenon. In the early 19th century, nerves were reported to be an essential tissue for the successful induction of limb regeneration. Nerve substances that function in the induction of limb regeneration responses have long been sought. A new experimental system called the accessory limb model (ALM) has been established to identify the nerve factors. Skin wounding in urodele amphibians results in skin wound healing but never in limb induction. However, nerve deviation to the wounded skin induces limb formation in ALM. Thus, nerves can be considered to have the ability to transform skin wound healing to limb formation. In the present study, co-operative Bmp and Fgf application, instead of nerve deviation, to wounded skin transformed skin wound healing to limb formation in two urodele amphibians, axolotl (Ambystoma mexicanum) and newt (Pleurodeles waltl). Our findings demonstrate that defined factors can induce homeotic transformation in postembryonic bodies of urodele amphibians. The combination of Bmp and Fgf(s) may contribute to the development of novel treatments for organ regeneration.

  20. Anticoagulant and FGF/FGFR signal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides.

    PubMed

    Wu, Jian; Zhang, Meng; Zhang, Yiran; Zeng, Yangyang; Zhang, Lijuan; Zhao, Xia

    2016-01-20

    Propylene glycol alginate sodium sulfate (PSS), prepared by chemical sulfation of alginate, has been used for treating cardiovascular diseases in China for nearly 30 years. In the current study, the PSS was hydrolyzed partially by an environment-friendly solid phase acid degradation method, and then separated by using a Bio-Gel P6 chromatographic column. Thirteen PSS oligosaccharide fractions were obtained and characterized by ESI-MS. The results of different coagulation assays showed that a high molecular weight and a higher degree of sulfation were essential for the anticoagulant activity of the PSS because the PSS oligosaccharides exhibited no detectable anticoagulant activity. In contrast, not only PSS but also certain oligosaccharides showed significant activities in stimulation of FGF1, 2, 7, 8, 9 or 10 induced cell proliferation in FGFR1c-expressing BaF3 cells. Such properties made the PSS and its oligosaccharides promising compounds in the regulation of FGF-dependent development, treatment of cancer, and wound healing processes.

  1. Irx1 and Irx2 Are Coordinately Expressed and Regulated by Retinoic Acid, TGFβ and FGF Signaling during Chick Hindlimb Development

    PubMed Central

    Díaz-Hernández, Martha Elena; Bustamante, Marcia; Galván-Hernández, Claudio Iván; Chimal-Monroy, Jesús

    2013-01-01

    The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates. PMID:23505533

  2. Irx1 and Irx2 are coordinately expressed and regulated by retinoic acid, TGFβ and FGF signaling during chick hindlimb development.

    PubMed

    Díaz-Hernández, Martha Elena; Bustamante, Marcia; Galván-Hernández, Claudio Iván; Chimal-Monroy, Jesús

    2013-01-01

    The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates.

  3. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways

    PubMed Central

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention. PMID:25374926

  4. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.

    PubMed

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.

  5. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages.

    PubMed

    Ng, Felicia; Boucher, Shayne; Koh, Susie; Sastry, Konduru S R; Chase, Lucas; Lakshmipathy, Uma; Choong, Cleo; Yang, Zheng; Vemuri, Mohan C; Rao, Mahendra S; Tanavde, Vivek

    2008-07-15

    We compared the transcriptomes of marrow-derived mesenchymal stem cells (MSCs) with differentiated adipocytes, osteocytes, and chondrocytes derived from these MSCs. Using global gene-expression profiling arrays to detect RNA transcripts, we have identified markers that are specific for MSCs and their differentiated progeny. Further, we have also identified pathways that MSCs use to differentiate into adipogenic, chondrogenic, and osteogenic lineages. We identified activin-mediated transforming growth factor (TGF)-beta signaling, platelet-derived growth factor (PDGF) signaling and fibroblast growth factor (FGF) signaling as the key pathways involved in MSC differentiation. The differentiation of MSCs into these lineages is affected when these pathways are perturbed by inhibitors of cell surface receptor function. Since growth and differentiation are tightly linked processes, we also examined the importance of these 3 pathways in MSC growth. These 3 pathways were necessary and sufficient for MSC growth. Inhibiting any of these pathways slowed MSC growth, whereas a combination of TGF-beta, PDGF, and beta-FGF was sufficient to grow MSCs in a serum-free medium up to 5 passages. Thus, this study illustrates it is possible to predict signaling pathways active in cellular differentiation and growth using microarray data and experimentally verify these predictions.

  6. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression.

    PubMed

    Feng, Shu; Dakhova, Olga; Creighton, Chad J; Ittmann, Michael

    2013-04-15

    Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. There is broad evidence that fibroblast growth factor (FGF) receptors are important in prostate cancer initiation and progression, but the contribution of particular FGFs in this disease is not fully understood. The FGF family members FGF19, FGF21, and FGF23 comprise a distinct subfamily that circulate in serum and act in an endocrine manner. These endocrine FGFs require α-Klotho (KL) and/or β-Klotho (KLB), two related single-pass transmembrane proteins restricted in their tissue distribution, to act as coreceptors along with classic FGF receptors (FGFR) to mediate potent biologic activity. Here we show that FGF19 is expressed in primary and metastatic prostate cancer tissues, where it functions as an autocrine growth factor. Exogenous FGF19 promoted the growth, invasion, adhesion, and colony formation of prostate cancer cells at low ligand concentrations. FGF19 silencing in prostate cancer cells expressing autocrine FGF19 decreased invasion and proliferation in vitro and tumor growth in vivo. Consistent with these observations, KL and/or KLB were expressed in prostate cancer cells in vitro and in vivo, raising the possibility that additional endocrine FGFs may also exert biologic effects in prostate cancer. Our findings support the concept that therapies targeting FGFR signaling may have efficacy in prostate cancer and highlight FGF19 as a relevant endocrine FGF in this setting.

  7. Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23*

    PubMed Central

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L. Darryl

    2015-01-01

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions. PMID:25752607

  8. Membrane and integrative nuclear fibroblastic growth factor receptor (FGFR) regulation of FGF-23.

    PubMed

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L Darryl

    2015-04-17

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions.

  9. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism.

    PubMed

    Marcelin, Geneviève; Jo, Young-Hwan; Li, Xiaosong; Schwartz, Gary J; Zhang, Ying; Dun, Nae J; Lyu, Rong-Ming; Blouet, Clémence; Chang, Jaw K; Chua, Streamson

    2014-02-01

    Tight control of glucose excursions has been a long-standing goal of treatment for patients with type 2 diabetes mellitus in order to ameliorate the morbidity and mortality associated with hyperglycemia. Fibroblast growth factor (FGF) 19 is a hormone-like enterokine released postprandially that emerged as a potential therapeutic agent for metabolic disorders, including diabetes and obesity. Remarkably, FGF19 treatment has hypoglycemic actions that remain potent in models of genetic and acquired insulin resistance. Here, we provided evidence that the central nervous system responds to FGF19 administered in the periphery. Then, in two mouse models of insulin resistance, leptin-deficiency and high-fat diet feeding, third intra-cerebro-ventricular infusions of FGF19 improved glycemic status, reduced insulin resistance and potentiated insulin signaling in the periphery. In addition, our study highlights a new mechanism of central FGF19 action, involving the suppression of AGRP/NPY neuronal activity. Overall, our work unveils novel regulatory pathways induced by FGF19 that will be useful in the design of novel strategies to control diabetes in obesity.

  10. The transcription activity of heat shock factor 4b is regulated by FGF2.

    PubMed

    Hu, Yan-Zhong; Zhang, Jun; Li, Shulian; Wang, Chuan; Chu, Liujie; Zhang, Zhi; Ma, Zengyi; Wang, Mingli; Jiang, Qiying; Liu, Guangchao; Qi, Yijun; Ma, Yuanfang

    2013-02-01

    Heat shock factor 4b has been found to be closely associated with postnatal lens development. It expresses in postnatal lens epithelial and secondary fiber cells and controls the expression of small heat shock proteins which are important for lens homeostasis. However, the signal pathways underlying Hsf4b are still not completely understood. Here we present that Hsf4b transcription activity is regulated by FGF2 a key growth factor that is involved in regulating lens development at multiple stages. FGF2 can promote Hsf4b nuclear-translocation and the expression of Hsp25 and αB-crystallin, the key downstream targets of Hsf4b in the Hsf4b-reconstituted mouse hsf4-/- lens epithelial cells. Further study indicates that FGF2 can induce Hsf4b protein stabilization through ERK1/2-mediated posttranslational phosphorylation or sumoylation. Hsf4b can promote FGF2-induced morphology transition from lens epithelial cell to the fiber cell, and this morphology transition can be inhibited by ERK1/2 inhibitor U0126. Taken together, our data demonstrate that Hsf4b is a novel downstream transcription factor of FGF2, and its transcription activity is associated with FGF2-modulated lens epithelial cell-fiber cell transition.

  11. Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: this mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs.

    PubMed

    Fons, Pierre; Gueguen-Dorbes, Geneviève; Herault, Jean-Pascal; Geronimi, Fabien; Tuyaret, Joël; Frédérique, Dol; Schaeffer, Paul; Volle-Challier, Cécile; Herbert, Jean-Marc; Bono, Françoise

    2015-01-01

    Tumor angiogenesis is accompanied by vasculogenesis, which is involved in the differentiation and mobilization of human bone marrow cells. In order to further characterize the role of vasculogenesis in the tumor growth process, the effects of FGF2 on the differentiation of human bone marrow AC133(+) cells (BM-AC133(+)) into vascular precursors were studied in vitro. FGF2, like VEGFA, induced progenitor cell differentiation into cell types with endothelial cell characteristics. SSR128129E, a newly discovered specific FGFR antagonist acting by allosteric interaction with FGFR, abrogated FGF2-induced endothelial cell differentiation, showing that FGFR signaling is essential during this process. To assess the involvement of the FGF/FRGR signaling in vivo, the pre-clinical model of Lewis lung carcinoma (LL2) in mice was used. Subcutaneous injection of LL2 cells into mice induced an increase of circulating EPCs from peripheral blood associated with tumor growth and an increase of intra-tumoral vascular index. Treatment with the FGFR antagonist SSR128129E strongly decreased LL2 tumor growth as well as the intra-tumoral vascular index (41% and 50% decrease vs. vehicle-treated mice respectively, P < 0.01). Interestingly, SSR128129E treatment significantly decreased the number of circulating EPCs from the peripheral blood (53% inhibition vs. vehicle-treated mice, P < 0.01). These results demonstrate for the first time that the blockade of the FGF/FGFR pathway by SSR128129E reduces EPC recruitment during angiogenesis-dependent tumor growth. In this context, circulating EPCs could be a reliable surrogate marker for tumor growth and angiogenic activity.

  12. Diabetes: Models, Signals and control

    NASA Astrophysics Data System (ADS)

    Cobelli, C.

    2010-07-01

    Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.

  13. Fgf19 is required for zebrafish lens and retina development.

    PubMed

    Nakayama, Yoshiaki; Miyake, Ayumi; Nakagawa, Yu; Mido, Tomotaka; Yoshikawa, Maya; Konishi, Morichika; Itoh, Nobuyuki

    2008-01-15

    Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.

  14. Endoderm-specific deletion of Tbx1 reveals an FGF-independent role for Tbx1 in pharyngeal apparatus morphogenesis

    PubMed Central

    Jackson, Abigail; Kasah, Sahrunizam; Mansour, Suzanne L.; Morrow, Bernice; Basson, M. Albert

    2015-01-01

    Background The T-box transcription factor Tbx1, is essential for the normal development of multiple organ systems in the embryo. One of the most striking phenotypes in Tbx1−/− embryos is the failure of the caudal pharyngeal pouches to evaginate from the foregut endoderm. Despite considerable interest in the role of Tbx1 in development, the mechanisms whereby Tbx1 controls caudal pouch formation have remained elusive. In particular, the question as to how Tbx1 expression in the pharyngeal endoderm regulates pharyngeal pouch morphogenesis in the mouse embryo is not known. Results To address this question, we produced mouse embryos in which Tbx1 was specifically deleted from the pharyngeal endoderm and as expected, embryos failed to form caudal pharyngeal pouches. To determine the molecular mechanism, we examined expression of Fgf3 and Fgf8 ligands and downstream effectors. Although Fgf8 expression is greatly reduced in Tbx1-deficient endoderm, FGF signaling levels are unaffected. Furthermore, pouch morphogenesis is only partially perturbed by the loss of both Fgf3 and Fgf8 from the endoderm, indicating that neither are required for pouch formation. Conclusions Tbx1 deletion from the pharyngeal endoderm is sufficient to cause caudal pharyngeal arch segmentation defects by FGF-independent effectors that remain to be identified. PMID:24812002

  15. Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli.

    PubMed

    Kong, Bo; Guo, Grace L

    2014-01-01

    Fibroblast growth factor 19 (FGF19) is the human ortholog of mouse FGF15, and both proteins function as an endocrine signal to regulate various liver functions. FGF15/FGF19 protein contains two disulfide bonds. It is unfavorable to form disulfide bonds in Escherichia coli (E. coli) cytoplasm because of the bacterial cytoplasmic reducing environment. Modification of the cytoplasmic reducing environment and/or co-expression of protein chaperones are common strategies to express disulfide bond containing proteins in E. coli. In the current study, we report a method to produce soluble FGF15/FGF19 protein in cytoplasm of E. coli. Several commercial available strains with the disruption of thiol-redox pathways, and/or co-expression of redoxase or refolding chaperones were used to develop this novel method for expression of FGF15/FGF19 in E. coli. Mutation of the thiol-disulfide bond reducing pathway in E. coli or N-terminal fusion of thioredox (TRX) alone is not enough to support disulfide bond formation in FGF15/19 proteins. However, TRX fusion protein improved FGF19 solubility in strains of thiol-redox system mutants. In addition, DsbC co-expressed in thiol-redox system mutants alone improved and further enhanced FGF19 solubility with combination of TRX fusion tag. The soluble FGF19 proteins were easily purified through Ni-NTA affinity chromatography and anion exchange chromatography, and the purified protein maintained its biological activities, confirmed by suppressing hepatic Cyp7a1 gene transcription in mice and by activating ERK1/2 signaling pathway in HepG2 cells. In contrast, soluble FGF15 protein in cytoplasm remained very low using these strategies. In summary, we have successfully developed a method to express functional FGF19 protein in prokaryotic cells, and this strategy may be adapted for the expression of other disulfide-containing proteins.

  16. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis

    PubMed Central

    Fan, Yi; Bi, Ruiye; Densmore, Michael J.; Sato, Tadatoshi; Kobayashi, Tatsuya; Yuan, Quan; Zhou, Xuedong; Erben, Reinhold G.; Lanske, Beate

    2016-01-01

    Parathyroid-hormone–type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone-specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones. Circulating calcium and PTH levels were unchanged, but inorganic phosphate and 1,25(OH)2D3 levels were significantly decreased and accompanied by elevated urinary calcium and phosphate wasting. Key renal genes for balancing mineral ion homeostasis, calbindinD28k, Klotho, and Napi2a were suppressed by 30–40%. Intermittent hPTH(1–34) injections increased Fgf23 mRNA (7.3-fold), Nurr1 mRNA (3.1-fold), and serum intact-FGF23 (1.6-fold) in controls, but failed to induce Fgf23, Nurr1 mRNA, or intact FGF23 production in mutants. Moreover, a significant elevation in serum C-terminal-FGF23 levels (4-fold) was detected in both genotypes. PTH markedly downregulated Galnt3 expression (2.7-fold) in controls but not in mutants. These results demonstrate the pivotal role of PTH1R in long bones to regulate systemic mineral ion homeostasis and the direct induction of FGF23 by PTH1R signaling.—Fan, Y., Bi, R., Densmore, M. J., Sato, T., Kobayashi, T., Yuan, Q., Zhou, X., Erben, R. G., Lanske, B. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. PMID:26428657

  17. FGF23 regulates renal sodium handling and blood pressure

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Smorodchenko, Alina; Zeitz, Ute; Shalhoub, Victoria; Lanske, Beate; Pohl, Elena E; Erben, Reinhold G

    2014-01-01

    Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating renal phosphate reabsorption and vitamin D synthesis in renal proximal tubules. Here, we show that FGF23 directly regulates the membrane abundance of the Na+:Cl− co-transporter NCC in distal renal tubules by a signaling mechanism involving the FGF receptor/αKlotho complex, extracellular signal-regulated kinase 1/2 (ERK1/2), serum/glucocorticoid-regulated kinase 1 (SGK1), and with-no lysine kinase-4 (WNK4). Renal sodium (Na+) reabsorption and distal tubular membrane expression of NCC are reduced in mouse models of Fgf23 and αKlotho deficiency. Conversely, gain of FGF23 function by injection of wild-type mice with recombinant FGF23 or by elevated circulating levels of endogenous Fgf23 in Hyp mice increases distal tubular Na+ uptake and membrane abundance of NCC, leading to volume expansion, hypertension, and heart hypertrophy in a αKlotho and dietary Na+-dependent fashion. The NCC inhibitor chlorothiazide abrogates FGF23-induced volume expansion and heart hypertrophy. Our findings suggest that FGF23 is a key regulator of renal Na+ reabsorption and plasma volume, and may explain the association of FGF23 with cardiovascular risk in chronic kidney disease patients. PMID:24797667

  18. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  19. FGF19 functions as autocrine growth factor for hepatoblastoma.

    PubMed

    Elzi, David J; Song, Meihua; Blackman, Barron; Weintraub, Susan T; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E; Shiio, Yuzuru

    2016-03-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma.

  20. FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues.

    PubMed

    Chanakul, Ankanee; Zhang, Martin Y H; Louw, Andrew; Armbrecht, Harvey J; Miller, Walter L; Portale, Anthony A; Perwad, Farzana

    2013-01-01

    The mitochondrial enzyme 25-hydroxyvitamin D 1α-hydroxylase, which is encoded by the CYP27B1 gene, converts 25OHD to the biological active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). Renal 1α-hydroxylase activity is the principal determinant of the circulating 1,25(OH)2D concentration and enzyme activity is tightly regulated by several factors. Fibroblast growth factor-23 (FGF-23) decreases serum 1,25(OH)2D concentrations by suppressing CYP27B1 mRNA abundance in mice. In extra-renal tissues, 1α-hydroxylase is responsible for local 1,25(OH)2D synthesis, which has important paracrine actions, but whether FGF-23 regulates CYP27B1 gene expression in extra-renal tissues is unknown. We sought to determine whether FGF-23 regulates CYP27B1 transcription in the kidney and whether extra-renal tissues are target sites for FGF-23-induced suppression of CYP27B1. In HEK293 cells transfected with the human CYP27B1 promoter, FGF-23 suppressed promoter activity by 70%, and the suppressive effect was blocked by CI-1040, a specific inhibitor of extracellular signal regulated kinase 1/2. To examine CYP27B1 transcriptional activity in vivo, we crossed fgf-23 null mice with mice bearing the CYP27B1 promoter-driven luciferase transgene (1α-Luc). In the kidney of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity was increased by 3-fold compared to that in wild-type/1α-Luc mice. Intraperitoneal injection of FGF-23 suppressed renal CYP27B1 promoter activity and protein expression by 26% and 60% respectively, and the suppressive effect was blocked by PD0325901, an ERK1/2 inhibitor. These findings provide evidence that FGF-23 suppresses CYP27B1 transcription in the kidney. Furthermore, we demonstrate that in FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA abundance are increased in several extra-renal sites. In the heart of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA were 2- and 5-fold higher, respectively, than in control mice. We also

  1. Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression.

    PubMed

    Wu, Bo-Tsung; Wen, Shih-Hsien; Hwang, Sheng-Ping L; Huang, Chang-Jen; Kuan, Yung-Shu

    2015-06-15

    Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.

  2. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors.

    PubMed

    Wu, Xinle; Lemon, Bryan; Li, XiaoFan; Gupte, Jamila; Weiszmann, Jennifer; Stevens, Jennitte; Hawkins, Nessa; Shen, Wenyan; Lindberg, Richard; Chen, Jin-Long; Tian, Hui; Li, Yang

    2008-11-28

    FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors.

  3. Metabolic Effects of FGF-21: Thermoregulation and Beyond.

    PubMed

    Ni, Bin; Farrar, Jared S; Vaitkus, Janina A; Celi, Francesco S

    2015-01-01

    Fibroblast growth factor (FGF)-21, a member of the FGF family, is a novel hormone involved in the control of metabolism by modulating glucose homeostasis, insulin sensitivity, ketogenesis, and promoting adipose tissue "browning." Recent studies demonstrated that brown adipose tissue is not only a target for FGF-21, but is also a potentially important source of systemic FGF-21. These findings support the hypothesis that FGF-21 plays a physiologic role in thermogenesis and thermogenic recruitment of white adipose tissue by an autocrine-paracrine axis. This review examines the role of FGF-21 in thermogenesis from the perspective of cell-based, animal model, and human studies. We also present recent advances in the characterization of FGF-21's regulation of metabolism.

  4. Red light, green light: Signals that control endothelial cell proliferation during embryonic vascular development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proper regulation of endothelial cell proliferation is critical for vascular development in the embryo. VEGF-A and bFGF, which are important in the induction of mesodermal progenitors to form a capillary plexus, are also key mitogenic signals. Disruption in VEGF-A or bFGF decreases endothelial c...

  5. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity

    PubMed Central

    Seymour, Philip A.; Shih, Hung Ping; Patel, Nisha A.; Freude, Kristine K.; Xie, Ruiyu; Lim, Christopher J.; Sander, Maike

    2012-01-01

    All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts. PMID:22874919

  6. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies

    PubMed Central

    Akl, Mohamed R.; Nagpal, Poonam; Ayoub, Nehad M.; Tai, Betty; Prabhu, Sathyen A.; Capac, Catherine M.; Gliksman, Matthew; Goy, Andre; Suh, K. Stephen

    2016-01-01

    Fibroblast growth factor (FGF) signaling is essential for normal and cancer biology. Mammalian FGF family members participate in multiple signaling pathways by binding to heparan sulfate and FGF receptors (FGFR) with varying affinities. FGF2 is the prototype member of the FGF family and interacts with its receptor to mediate receptor dimerization, phosphorylation, and activation of signaling pathways, such as Ras-MAPK and PI3K pathways. Excessive mitogenic signaling through the FGF/FGFR axis may induce carcinogenic effects by promoting cancer progression and increasing the angiogenic potential, which can lead to metastatic tumor phenotypes. Dysregulated FGF/FGFR signaling is associated with aggressive cancer phenotypes, enhanced chemotherapy resistance and poor clinical outcomes. In vitro experimental settings have indicated that extracellular FGF2 affects proliferation, drug sensitivity, and apoptosis of cancer cells. Therapeutically targeting FGF2 and FGFR has been extensively assessed in multiple preclinical studies and numerous drugs and treatment options have been tested in clinical trials. Diagnostic assays are used to quantify FGF2, FGFRs, and downstream signaling molecules to better select a target patient population for higher efficacy of cancer therapies. This review focuses on the prognostic significance of FGF2 in cancer with emphasis on therapeutic intervention strategies for solid and hematological malignancies. PMID:27007053

  7. FGF23 and inflammation

    PubMed Central

    Sharaf El Din, Usama A A; Salem, Mona M; Abdulazim, Dina O

    2017-01-01

    Systemic inflammation is a recognized feature in chronic kidney disease (CKD). The role of systemic inflammation in the pathogenesis of vascular calcification was recently settled. FGF23 was recently accused as a direct stimulus of systemic inflammation. This finding explains the strong association of FGF23 to vascular calcification and increased mortality among CKD. PMID:28101453

  8. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis.

    PubMed

    Perry, Rachel J; Lee, Sangwon; Ma, Lie; Zhang, Dongyan; Schlessinger, Joseph; Shulman, Gerald I

    2015-04-28

    Fibroblast growth factor-1 (FGF1) and FGF19 have been shown to improve glucose metabolism in diabetic rodents, but how this occurs is unknown. Here to investigate the mechanism of action of these growth factors, we perform intracerebroventricular (i.c.v.) injections of recombinant FGF1 or FGF19 in an awake rat model of type 1 diabetes (T1D) and measure rates of whole-body lipolysis, hepatic acetyl CoA content, pyruvate carboxylase activity and hepatic glucose production. We show that i.c.v. injection of FGF19 or FGF1 leads to a ∼60% reduction in hepatic glucose production, hepatic acetyl CoA content and whole-body lipolysis, which results from decreases in plasma ACTH and corticosterone concentrations. These effects are abrogated by an intra-arterial infusion of corticosterone. Taken together these studies identify suppression of the HPA axis and ensuing reductions in hepatic acetyl CoA content as a common mechanism responsible for mediating the acute, insulin-independent, glucose-lowering effects of FGF1 and FGF19 in rodents with poorly controlled T1D.

  9. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis

    PubMed Central

    Jen, Yi-Huei Linda; Musacchio, Michele; Lander, Arthur D

    2009-01-01

    Background Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple families of growth factors that regulate animal cell proliferation, differentiation and patterning. Elimination of heparan sulfate during brain development is known to produce severe structural abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-1 (Gpc1), which is especially abundant on neuronal cell membranes, and is the major HSPG of the adult rodent brain. Results Mice with a null mutation in Gpc1 were generated and found to be viable and fertile. The major phenotype associated with Gpc1 loss is a highly significant reduction in brain size, with only subtle effects on brain patterning (confined to the anterior cerebellum). The brain size difference emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains roughly constant throughout development and adulthood. By examining markers of different signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer that Gpc1-/- phenotypes most likely result from a transient reduction in fibroblast growth factor (FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17 is the FGF family member through which Gpc1 controls brain size. Conclusion These data add to a growing literature that implicates the glypican family of HSPGs in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules, FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc1 mutant mice were found to have brain sizes half-way between homozygous and wild type, the data imply that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both novel and relevant to the general question of how the activities of co-receptors are exploited during development. PMID:19732411

  10. FGF1 Mediates Overnutrition-Induced Compensatory β-Cell Differentiation

    PubMed Central

    Page-McCaw, Patrick

    2016-01-01

    Increased insulin demand resulting from insulin resistance and/or overnutrition induces a compensatory increase in β-cell mass. The physiological factors responsible for the compensation have not been fully characterized. In zebrafish, overnutrition rapidly induces compensatory β-cell differentiation through triggering the release of a paracrine signal from persistently activated β-cells. We identified Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal in a small molecule screen. Fgf1 was confirmed as the overnutrition-induced β-cell differentiation signal, as inactivation of fgf1 abolished the compensatory β-cell differentiation. Furthermore, expression of human FGF1 solely in β-cells in fgf1−/− animals rescued the compensatory response, indicating that β-cells can be the source of FGF1. Additionally, constitutive secretion of FGF1 with an exogenous signal peptide increased β-cell number in the absence of overnutrition. These results demonstrate that fgf1 is necessary and FGF1 expression in β-cells is sufficient for the compensatory β-cell differentiation. We further show that FGF1 is secreted during prolonged activation of cultured mammalian β-cells and that endoplasmic reticulum stress acts upstream of FGF1 release. Thus, the recently discovered antidiabetes function of FGF1 may act partially through increasing β-cell differentiation. PMID:26420862

  11. A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis.

    PubMed

    Guo, Chaoshe; Sun, Ye; Zhou, Bin; Adam, Rosalyn M; Li, XiaoKun; Pu, William T; Morrow, Bernice E; Moon, Anne; Li, Xue

    2011-04-01

    Shared molecular programs govern the formation of heart and head during mammalian embryogenesis. Development of both structures is disrupted in human chromosomal microdeletion of 22q11.2 (del22q11), which causes DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS). Here, we have identified a genetic pathway involving the Six1/Eya1 transcription complex that regulates cardiovascular and craniofacial development. We demonstrate that murine mutation of both Six1 and Eya1 recapitulated most features of human del22q11 syndromes, including craniofacial, cardiac outflow tract, and aortic arch malformations. The mutant phenotypes were attributable in part to a reduction of fibroblast growth factor 8 (Fgf8), which was shown to be a direct downstream effector of Six1 and Eya1. Furthermore, we showed that Six1 and Eya1 genetically interacted with Fgf8 and the critical del22q11 gene T-box transcription factor 1 (Tbx1) in mice. Together, these findings reveal a Tbx1-Six1/Eya1-Fgf8 genetic pathway that is crucial for mammalian cardiocraniofacial morphogenesis and provide insights into the pathogenesis of human del22q11 syndromes.

  12. Diabetes: Models, Signals, and Control.

    PubMed

    Cobelli, Claudio; Man, Chiara Dalla; Sparacino, Giovanni; Magni, Lalo; De Nicolao, Giuseppe; Kovatchev, Boris P

    2009-01-01

    The control of diabetes is an interdisciplinary endeavor, which includes a significant biomedical engineering component, with traditions of success beginning in the early 1960s. It began with modeling of the insulin-glucose system, and progressed to large-scale in silico experiments, and automated closed-loop control (artificial pancreas). Here, we follow these engineering efforts through the last, almost 50 years. We begin with the now classic minimal modeling approach and discuss a number of subsequent models, which have recently resulted in the first in silico simulation model accepted as substitute to animal trials in the quest for optimal diabetes control. We then review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the analyses of their time-series signals, and on the opportunities that they present for automation of diabetes control. Finally, we review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers. We conclude with a brief discussion of the unique interactions between human physiology, behavioral events, engineering modeling and control relevant to diabetes.

  13. Diabetes: Models, Signals, and Control

    PubMed Central

    Cobelli, Claudio; Man, Chiara Dalla; Sparacino, Giovanni; Magni, Lalo; De Nicolao, Giuseppe; Kovatchev, Boris P.

    2010-01-01

    The control of diabetes is an interdisciplinary endeavor, which includes a significant biomedical engineering component, with traditions of success beginning in the early 1960s. It began with modeling of the insulin-glucose system, and progressed to large-scale in silico experiments, and automated closed-loop control (artificial pancreas). Here, we follow these engineering efforts through the last, almost 50 years. We begin with the now classic minimal modeling approach and discuss a number of subsequent models, which have recently resulted in the first in silico simulation model accepted as substitute to animal trials in the quest for optimal diabetes control. We then review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the analyses of their time-series signals, and on the opportunities that they present for automation of diabetes control. Finally, we review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers. We conclude with a brief discussion of the unique interactions between human physiology, behavioral events, engineering modeling and control relevant to diabetes. PMID:20936056

  14. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application.

    PubMed

    Imamura, Toru

    2014-01-01

    Despite their name, fibroblast growth factors (FGFs) are multifunctional regulators affecting a wide variety of physiological events. This review summarizes our recent studies on FGFs from mechanistic, physiological and application-oriented viewpoints. These include studies on the importance of βKlotho and glycosaminoglycans for the signaling of hormonal FGFs (FGF21 and FGF19); the physiological role of a paracrine FGF (FGF18) in hair cycle regulation; and the development of a stable, chimeric FGF protein composed of FGF1 and FGF2 domains suitable for radioprotection.

  15. Expression of Fibroblast growth factor 19 (Fgf19) during chicken embryogenesis and eye development, compared with Fgf15 expression in the mouse.

    PubMed

    Kurose, Hitomi; Bito, Takaaki; Adachi, Taro; Shimizu, Miyuki; Noji, Sumihare; Ohuchi, Hideyo

    2004-10-01

    The normal development of eyes relies on proper signaling through Fibroblast growth factor (FGF) receptors, but the source and identity of cognate ligands have remained largely unknown. We have found that Fgf19 is expressed in the developing chicken retina. In situ hybridization discloses dynamic expression patterns for Fgf19 in the optic vesicle, lens primordia and retinal horizontal cells. Overall expression pattern of Fgf19 during chicken embryogenesis was also examined: Fgf19 is expressed in the regions associated with cranial placodes induction, boundary regions of rhombomeres, somites, specific groups of neural cells in midbrain, hindbrain, and those derived from epibranchial placodes, and the apical ectodermal ridge of limb buds. Expression pattern of the Fgf19-orthologous gene Fgf15 was further examined in the mouse developing eye. Fgf15 is expressed in the optic vesicle, a subset of progenitor cells of neural retina, and emerging ganglion and amacrine cells during retinogenesis.

  16. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  17. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies.

    PubMed

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm(2). The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm(2)) than on surfaces with a higher concentration of FGF-2 (120 ng/cm(2)).

  18. FGF23 associated bone diseases.

    PubMed

    Liao, Eryuan

    2013-03-01

    Recently, fibroblast growth factor 23 (FGF23) has sparked widespread interest because of its potential role in regulating phosphate and vitamin D metabolism. In this review, we summarized the FGF superfamily, the mechanism of FGF23 on phosphate and vitamin D metabolism, and the FGF23 related bone disease.

  19. Integration of signals along orthogonal axes of the vertebrate neural tube controls progenitor competence and increases cell diversity.

    PubMed

    Sasai, Noriaki; Kutejova, Eva; Briscoe, James

    2014-07-01

    A relatively small number of signals are responsible for the variety and pattern of cell types generated in developing embryos. In part this is achieved by exploiting differences in the concentration or duration of signaling to increase cellular diversity. In addition, however, changes in cellular competence-temporal shifts in the response of cells to a signal-contribute to the array of cell types generated. Here we investigate how these two mechanisms are combined in the vertebrate neural tube to increase the range of cell types and deliver spatial control over their location. We provide evidence that FGF signaling emanating from the posterior of the embryo controls a change in competence of neural progenitors to Shh and BMP, the two morphogens that are responsible for patterning the ventral and dorsal regions of the neural tube, respectively. Newly generated neural progenitors are exposed to FGF signaling, and this maintains the expression of the Nk1-class transcription factor Nkx1.2. Ventrally, this acts in combination with the Shh-induced transcription factor FoxA2 to specify floor plate cells and dorsally in combination with BMP signaling to induce neural crest cells. As development progresses, the intersection of FGF with BMP and Shh signals is interrupted by axis elongation, resulting in the loss of Nkx1.2 expression and allowing the induction of ventral and dorsal interneuron progenitors by Shh and BMP signaling to supervene. Hence a similar mechanism increases cell type diversity at both dorsal and ventral poles of the neural tube. Together these data reveal that tissue morphogenesis produces changes in the coincidence of signals acting along orthogonal axes of the neural tube and this is used to define spatial and temporal transitions in the competence of cells to interpret morphogen signaling.

  20. Liver-specific activities of FGF19 require Klotho beta.

    PubMed

    Lin, Benjamin C; Wang, Manping; Blackmore, Craig; Desnoyers, Luc R

    2007-09-14

    Hepatocyte function is regulated by members of the fibroblast growth factor (FGF) family of proteins, but little is known about the specific molecular mechanisms of this endocrine pathway. FGF19 regulates bile acid homeostasis and gall bladder filling; FGF19 binds only to FGF receptor 4 (FGFR4), but its liver-specific activity cannot be explained solely by the distribution of this receptor. Although it has been suggested that Klotho beta (KLB) may have a role in mediating FGF19 activity, we have provided for the first time definitive evidence that KLB is required for FGF19 binding to FGFR4, intracellular signaling, and downstream modulation of gene expression. We have shown that FGFR4 is widely distributed in mouse, whereas KLB distribution is more restricted. Liver was the only organ in which both genes were abundantly expressed. We show that in mice, FGF19 injection triggers liver-specific induction of c-Fos and repression of CYP7A1. The tissue-specific activity of FGF19 supports the unique intersection of KLB and FGFR4 distribution in liver. These studies define KLB as a novel FGFR4 coreceptor required for FGF19 liver specific functions.

  1. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    PubMed

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-06-08

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.

  2. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14.

    PubMed

    Novoyatleva, Tatyana; Sajjad, Amna; Pogoryelov, Denys; Patra, Chinmoy; Schermuly, Ralph T; Engel, Felix B

    2014-06-01

    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.

  3. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling.

  4. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells.

    PubMed

    Hori, Michiko; Kinoshita, Yuka; Taguchi, Manabu; Fukumoto, Seiji

    2016-03-01

    Fibroblast growth factor 23 (FGF23) has been shown to work as a phosphotropic hormone. Although FGF23 reduces the serum phosphate level, it has not been established that phosphate directly regulates FGF23 production. In this study, we investigated whether phosphate can enhance Fgf23 expression using the rat osteoblastic cell line UMR-106, which has been shown to express Fgf23 in response to 1,25-dihydroxyvitamin D [1,25(OH)2D]. Phosphate increased Fgf23 expression in a dose- and time-dependent manner in the presence of 1,25(OH)2D. Phosphate also increased Fgf23 promoter activity, but showed no effect on the half-life of Fgf23 messenger RNA. Phosphonoformic acid and PD98059, an inhibitor of MEK, inhibited the effects of phosphate on Fgf23 expression and promoter activity. In addition, phosphate enhanced production of reactive oxygen species (ROS) in UMR-106 cells, and hydrogen peroxide enhanced FGF23 production in a dose- and time-dependent manner. Hydrogen peroxide also enhanced Elk1 reporter activity, a target of the MEK-extracellular-signal-regulated kinase (ERK) pathway. Furthermore, the effect of phosphate on ROS production and Fgf23 expression was inhibited by apocynin, an inhibitor of NADPH oxidase. These results indicate that phosphate directly enhances Fgf23 transcription without affecting the stability of Fgf23 messenger RNA by stimulating NADPH-induced ROS production and the MEK-ERK pathway in UMR-106 cells.

  5. FGF23 Deficiency Leads to Mixed Hearing Loss and Middle Ear Malformation in Mice

    PubMed Central

    Lysaght, Andrew C.; Yuan, Quan; Fan, Yi; Kalwani, Neil; Caruso, Paul; Cunnane, MaryBeth; Lanske, Beate; Stanković, Konstantina M.

    2014-01-01

    Fibroblast growth factor 23 (FGF23) is a circulating hormone important in phosphate homeostasis. Abnormal serum levels of FGF23 result in systemic pathologies in humans and mice, including renal phosphate wasting diseases and hyperphosphatemia. We sought to uncover the role FGF23 plays in the auditory system due to shared molecular mechanisms and genetic pathways between ear and kidney development, the critical roles multiple FGFs play in auditory development and the known hearing phenotype in mice deficient in klotho (KL), a critical co-factor for FGF23 signaling. Using functional assessments of hearing, we demonstrate that Fgf mice are profoundly deaf. Fgf mice have moderate hearing loss above 20 kHz, consistent with mixed conductive and sensorineural pathology of both middle and inner ear origin. Histology and high-voltage X-ray computed tomography of Fgf mice demonstrate dysplastic bulla and ossicles; Fgf mice have near-normal morphology. The cochleae of mutant mice appear nearly normal on gross and microscopic inspection. In wild type mice, FGF23 is ubiquitously expressed throughout the cochlea. Measurements from Fgf mice do not match the auditory phenotype of Kl−/− mice, suggesting that loss of FGF23 activity impacts the auditory system via mechanisms at least partially independent of KL. Given the extensive middle ear malformations and the overlap of initiation of FGF23 activity and Eustachian tube development, this work suggests a possible role for FGF23 in otitis media. PMID:25243481

  6. Remote Control of Neuronal Signaling

    PubMed Central

    Rogan, Sarah C.

    2011-01-01

    A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools. PMID:21415127

  7. Understanding the structure-function relationship between FGF19 and its mitogenic and metabolic activities.

    PubMed

    Wu, Xinle; Li, Yang

    2012-01-01

    FGF19 differs from the classical FGFs in that it has a much-reduced heparan sulfate proteoglycan binding affinity that allows it to act as endocrine hormone. Although FGF19 regulates several different metabolic activities, it still activates downstream signaling pathways through FGF receptors, in a similar manner to that seen in classical FGFs. Aberrant FGF signaling has been implicated in tumor development, and mouse models have confirmed that FGF19 has the potential to induce hepatocellular carcinoma. Treatment with anti-FGF19 antibody suppressed tumor progression in both FGF19 transgenic mice and colon cancer cell xenograft models. FGFR4, the predominant FGF receptor expressed in the liver, may play an important role in FGF19-mediated tumorigenesis. This review reports the current advances in understanding the structure-function relationship between FGF19 and its interactions with FGFRs, its physiological activities, and its differences from FGF21. The review also discusses strategies to separate the mitogenic and metabolic activities for the development of potential therapeutic molecules based on FGF19.

  8. FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons.

    PubMed

    Shakkottai, Vikram G; Xiao, Maolei; Xu, Lin; Wong, Michael; Nerbonne, Jeanne M; Ornitz, David M; Yamada, Kelvin A

    2009-01-01

    A missense mutation in the fibroblast growth factor 14 (FGF14) gene underlies SCA27, an autosomal dominant spinocerebellar ataxia in humans. Mice with a targeted disruption of the Fgf14 locus (Fgf14(-/-)) develop ataxia resembling human SCA27. We tested the hypothesis that loss of FGF14 affects the firing properties of Purkinje neurons, which play an important role in motor control and coordination. Current clamp recordings from Purkinje neurons in cerebellar slices revealed attenuated spontaneous firing in Fgf14(-/-) neurons. Unlike in the wild type animals, more than 80% of Fgf14(-/-) Purkinje neurons were quiescent and failed to fire repetitively in response to depolarizing current injections. Immunohistochemical examination revealed reduced expression of Nav1.6 protein in Fgf14(-/-) Purkinje neurons. Together, these observations suggest that FGF14 is required for normal Nav1.6 expression in Purkinje neurons, and that the loss of FGF14 impairs spontaneous and repetitive firing in Purkinje neurons by altering the expression of Nav1.6 channels.

  9. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release

    PubMed Central

    Liu, Yanfei; Zhang, Ling; Wei, Wei

    2017-01-01

    Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898

  10. FGF Suppresses Poldip2 Expression in Osteoblasts.

    PubMed

    Katsumura, Sakie; Izu, Yayoi; Yamada, Takayuki; Griendling, Kathy; Harada, Kiyoshi; Noda, Masaki; Ezura, Yoichi

    2016-12-05

    Osteoporosis is one of the most prevalent ageing-associated diseases that are soaring in the modern world. Although various aspects of the disease have been investigated to understand the bases of osteoporosis, the pathophysiological mechanisms underlying bone loss is still incompletely understood. Poldip2 is a molecule that has been shown to be involved in cell migration of vascular cells and angiogenesis. However, expression of Poldip2 and its regulation in bone cells were not known. Therefore, we examined the Poldip2 mRNA expression and the effects of bone regulators on the Poldip2 expression in osteoblasts. We found that Poldip2 mRNA is expressed in osteoblastic MC3T3-E1 cells. As FGF controls osteoblasts and angiogenesis, FGF regulation was investigated in these cells. FGF suppressed the expression of Poldip2 in MC3T3-E1 cells in a time dependent manner. Protein synthesis inhibitor but not transcription inhibitor reduced the FGF effects on Poldip2 gene expression in MC3T3-E1 cells. As for bone-related hormones, dexamethasone was found to enhance the expression of Poldip2 in osteoblastic MC3T3-E1 cells whereas FGF still suppressed such dexamethasone effects. With respect to function, knockdown of Poldip2 by siRNA suppressed the migration of MC3T3-E1 cells. Poldip2 was also expressed in the primary cultures of osteoblast-enriched cells and FGF also suppressed its expression. Finally, Poldip2 was expressed in femoral bone in vivo and its levels were increased in aged mice compared to young adult mice. These data indicate that Poldip2 is expressed in osteoblastic cells and is one of the targets of FGF. J. Cell. Biochem. 9999: 1-8, 2017. © 2016 Wiley Periodicals, Inc.

  11. Fgf8 Dosage Determines Midfacial Integration and Polarity within the Nasal and Optic Capsules

    PubMed Central

    Griffin, John N.; Compagnucci, Claudia; Hu, Diane; Fish, Jennifer; Klein, Ophir; Marcucio, Ralph; Depew, Michael J.

    2014-01-01

    Craniofacial development requires an exquisitely timed and positioned cross-talk between the embryonic cephalic epithelia and mesenchyme. This cross-talk underlies the precise translation of patterning processes and information into distinct, appropriate skeletal morphologies. The molecular and cellular dialogue includes communication via secreted signaling molecules, including Fgf8, and effectors of their interpretation. Herein, we use genetic attenuation of Fgf8 in mice and perform gain-of-function mouse-chick chimeric experiments to demonstrate that significant character states of the frontonasal and optic skeletons are dependent on Fgf8. Notably, we show that the normal orientation and polarity of the nasal capsules and their developing primordia are dependent on Fgf8. We further demonstrate that Fgf8 is required for midfacial integration, and provide evidence for a role for Fgf8 in optic capsular development. Taken together, our data highlight Fgf8 signaling in craniofacial development as a plausible target for evolutionary selective pressures. PMID:23201021

  12. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-07-01

    The conversion of vascular smooth muscle cells (SMCs) from contractile to proliferative phenotype is thought to play an important role in atherosclerosis. However, the contribution of this process to plaque growth has never been fully defined. In this study, we show that activation of SMC TGFβ signaling, achieved by suppression of SMC fibroblast growth factor (FGF) signaling input, induces their conversion to a contractile phenotype and dramatically reduces atherosclerotic plaque size. The FGF/TGFβ signaling cross talk was observed in vitro and in vivo In vitro, inhibition of FGF signaling increased TGFβ activity, thereby promoting smooth muscle differentiation and decreasing proliferation. In vivo, smooth muscle-specific knockout of an FGF receptor adaptor Frs2α led to a profound inhibition of atherosclerotic plaque growth when these animals were crossed on Apoe(-/-) background and subjected to a high-fat diet. In particular, there was a significant reduction in plaque cellularity, increase in fibrous cap area, and decrease in necrotic core size. In agreement with these findings, examination of human coronary arteries with various degrees of atherosclerosis revealed a strong correlation between the activation of FGF signaling, loss of TGFβ activity, and increased disease severity. These results identify SMC FGF/TGFβ signaling cross talk as an important regulator of SMC phenotype switch and document a major contribution of medial SMC proliferation to atherosclerotic plaque growth.

  13. Reciprocal interactions of Fgf10/Fgfr2b modulate the mouse tongue epithelial differentiation.

    PubMed

    Sohn, Wern-Joo; Jung, Hye-In; Choi, Min-A; Han, Jin-Hyun; Gwon, Gi-Jeong; Yamamoto, Hitoshi; Lee, Sanggyu; Ryoo, Zae Young; Park, Eui-Kyun; Shin, Hong-In; Jung, Han-Sung; Kim, Jae-Young

    2011-08-01

    The molecular mechanisms for epithelial differentiation have been studied by observing skin development in embryogenesis, but the early signaling modulations involved in tongue epithelial differentiation are not completely understood. Based on the gene expression patterns of the Fgf signaling molecules and previous results from Fgf10 and Fgfr2b knockout mice, it was hypothesized that there would be fundamental signaling interactions through the epithelial Fgfr2b and its mesenchymal ligand Fgf10 to regulate tongue epithelium differentiation. To elucidate these reciprocal interactions in tongue epithelial differentiation, this study employed an in vitro tongue organ culture system with antisense-oligodeoxynucleotides (AS-ODNs) and recombinant protein-soaked bead implantation for the loss-of-function and gain-of-function studies. Functional analysis of Fgf signaling revealed precise reciprocal interactions, which showed that mesenchymal Fgf10 rather than Fgf7 modulates tongue epithelial differentiation via Fgfr2b in a temporal- and spatial-specific manner.

  14. Fibroblast growth factor signaling during early vertebrate development.

    PubMed

    Böttcher, Ralph T; Niehrs, Christof

    2005-02-01

    Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.

  15. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations

    PubMed Central

    Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa

    2014-01-01

    Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. PMID:24569166

  16. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18

    PubMed Central

    Leishman, Erin; Howard, Jeffrey M.; Garcia, Gloria E.; Miao, Qi; Ku, Amy T.; Dekker, Joseph D.; Tucker, Haley; Nguyen, Hoang

    2013-01-01

    Hair follicles cyclically degenerate and regenerate throughout adult life and require regular stem cell activation to drive the cycle. In the resting phase of the hair cycle, hair follicle stem cells are maintained in a quiescent state until they receive signals to proliferate. We found that the forkhead transcription factor Foxp1 is crucial for maintaining the quiescence of hair follicle stem cells. Loss of Foxp1 in skin epithelial cells leads to precocious stem cell activation, resulting in drastic shortening of the quiescent phase of the hair cycle. Conversely, overexpression of Foxp1 in keratinocytes prevents cell proliferation by promoting cell cycle arrest. Finally, through both gain- and loss-of-function studies, we identify fibroblast growth factor 18 (Fgf18) as the key downstream target of Foxp1. We show that exogenously supplied FGF18 can prevent the hair follicle stem cells of Foxp1 null mice from being prematurely activated. As Fgf18 controls the length of the quiescent phase and is a key downstream target of Foxp1, our data strongly suggest that Foxp1 regulates the quiescent stem cell state in the hair follicle stem cell niche by controlling Fgf18 expression. PMID:23946441

  17. Fasting-induced FGF21 is repressed by LXR activation via recruitment of an HDAC3 corepressor complex in mice.

    PubMed

    Archer, Amena; Venteclef, Nicolas; Mode, Agneta; Pedrelli, Matteo; Gabbi, Chiara; Clément, Karine; Parini, Paolo; Gustafsson, Jan-Åke; Korach-André, Marion

    2012-12-01

    The liver plays a pivotal role in the physiological adaptation to fasting and a better understanding of the metabolic adaptive responses may give hints on new therapeutic strategies to control the metabolic diseases. The liver X receptors (LXRs) are well-established regulators of lipid and glucose metabolism. More recently fibroblast growth factor 21 (FGF21) has emerged as an important regulator of energy homeostasis. We hypothesized that the LXR transcription factors could influence Fgf21 expression, which is induced in response to fasting. Wild-type, LXRα(-/-), and LXRβ(-/-) mice were treated for 3 d with vehicle or the LXR agonist GW3965 and fasted for 12 h prior to the killing of the animals. Interestingly, serum FGF21 levels were induced after fasting, but this increase was blunted when the mice were treated with GW3965 independently of genotypes. Compared with wild-type mice, GW3965-treated LXRα(-/-) and LXRβ(-/-) mice showed improved insulin sensitivity and enhanced ketogenic response at fasting. Of note is that during fasting, GW3965 treatment tended to reduce liver triglycerides as opposed to the effect of the agonist in the fed state. The LXR-dependent repression of Fgf21 seems to be mainly mediated by the recruitment of LXRβ onto the Fgf21 promoter upon GW3965 treatment. This repression by LXRβ occurs through the recruitment and stabilization of the repressor complex composed of retinoid-related orphan receptor-α/Rev-Erbα/histone deacetylase 3 onto the Fgf21 promoter. Our data clearly demonstrate that there is a cross talk between the LXR and FGF21 signaling pathways in the adaptive response to fasting.

  18. Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B-GFP transgenic mice.

    PubMed

    Chen, Mei-Shu; Lin, Hua-Kuo; Chiu, Hsun; Lee, Don-Ching; Chung, Yu-Fen; Chiu, Ing-Ming

    2015-03-01

    FGF1 is involved in multiple biological functions and exhibits the importance in neuroprotective effects. Our previous studies indicated that, in human brain and retina, the FGF1B promoter controlled the expression of FGF1. However, the exact function and regulation of FGF1 in brain is still unclear. Here, we generated F1B-GFP transgenic mice that expressed the GFP reporter gene under the control of human FGF1B promoter (-540 to +31). Using the fresh brain sections of F1B-GFP transgenic mice, we found that the F1B-GFP cells expressed strong fluorescent signals in the ventricular system throughout the brain. The results of immunohistochemistry further showed that two distinct populations of F1B-GFP(+) cells existed in the brains of F1B-GFP transgenic mice. We demonstrated that one population of F1B-GFP(+) cells was ependymal cells, which distributed along the entire ventricles, and the second population of F1B-GFP(+) cells was neuronal cells that projected their long processes into multiple directions in specific areas of the brain. The double labeling of F1B-GFP(+) cells and tyrosine hydroxylase indicated that a subpopulation of F1B-GFP(+) -neuronal cells was dopaminergic neurons. Importantly, these F1B-GFP(+) /TH(+) cells were distributed in the main dopaminergic neuronal groups including hypothalamus, ventral tegmental area, and raphe nuclei. These results suggested that human FGF1B promoter was active in ependymal cells, neurons, and a portion of dopaminergic neurons. Thus, the F1B-GFP transgenic mice provide an animal model not only for studying FGF1 gene expression in vivo but also for understanding the role of FGF1 contribution in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease.

  19. Controlling of explicit internal signal stochastic resonance by external signal

    NASA Astrophysics Data System (ADS)

    Li, Ya Ping; Wang, Pin; Li, Qian Shu

    2004-09-01

    Explicit internal signal stochastic resonance (EISSR) is investigated in a model of energy transduction of molecular machinery when noise is added to the region of oscillation in the presence of external signal (ES). It is found that EISSR could be controlled, i.e., enhanced or suppressed by adjusting frequency (ωe) and amplitude (A) of ES, and that there exits an optimal frequency for ES, which makes EISSR strength reach the maximum. Meanwhile, a critical amplitude (Ac) is found, which is a threshold of occurrence of EISSR. Finally, the difference and similarity between EISSR and IISSR (implicit internal signal stochastic resonance) are discussed.

  20. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

    PubMed

    Kir, Serkan; Beddow, Sara A; Samuel, Varman T; Miller, Paul; Previs, Stephen F; Suino-Powell, Kelly; Xu, H Eric; Shulman, Gerald I; Kliewer, Steven A; Mangelsdorf, David J

    2011-03-25

    Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.

  1. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2016-01-01

    The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.

  2. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    PubMed

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.

  3. Lineage-specific loss of FGF17 within the avian orders Galliformes and Passeriformes

    PubMed Central

    Abramyan, John

    2015-01-01

    The genomic and developmental complexity of vertebrates is commonly attributed to two rounds of whole genome duplications which occurred at the base of the vertebrate radiation. These duplications led to the rise of several, multi-gene families of developmental proteins like the Fibroblast growth factors (FGFs); a signaling protein family which functions at various stages of embryonic development. One of the major FGF assemblages arising from these duplications is the FGF8 subfamily, which includes FGF8, FGF17, and FGF18 in tetrapods. While FGF8 and FGF18 are found in all tetrapods and are critical for embryonic survival, genomic analyses suggest putative loss of FGF17 in various lineages ranging from frogs and fish, to the chicken. This study utilizes 27 avian genomes in conjunction with molecular analyses of chicken embryos to confirm the loss of FGF17 in chicken as a true, biological occurrence. FGF17 is also missing in the turkey, black grouse, Japanese quail and the northern bobwhite genomes. These species, along with chicken, form a monophyletic clade in the order Galliformes. Four additional species, members of the clade Passeroidea, within the order Passeriformes, are also missing FGF17. Additionally, analysis of intact FGF17 in other avian lineages reveals that it is still under strong purifying selection, despite being seemingly dispensable. Thus, FGF17 likely represents a molecular spandrel arising from a genome duplication event and due to its high connectivity with FGF8/FGF18, and potential for interference with their function, is retained under strong purifying selection, despite itself not having a strong selective advantage. PMID:25791492

  4. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration.

    PubMed

    Blum, Nicola; Begemann, Gerrit

    2012-01-01

    Adult teleosts rebuild amputated fins through a proliferation-dependent process called epimorphic regeneration, in which a blastema of cycling progenitor cells replaces the lost fin tissue. The genetic networks that control formation of blastema cells from formerly quiescent stump tissue and subsequent blastema function are still poorly understood. Here, we investigated the cellular and molecular consequences of genetically interfering with retinoic acid (RA) signaling for the formation of the zebrafish blastema. We show that RA signaling is upregulated within the first few hours after fin amputation in the stump mesenchyme, where it controls Fgf, Wnt/β-catenin and Igf signaling. Genetic inhibition of the RA pathway at this stage blocks blastema formation by inhibiting cell cycle entry of stump cells and impairs the formation of the basal epidermal layer, a signaling center in the wound epidermis. In the established blastema, RA signaling remains active to ensure the survival of the highly proliferative blastemal population by controlling expression of the anti-apoptotic factor bcl2. In addition, RA signaling maintains blastema proliferation through the activation of growth-stimulatory signals mediated by Fgf and Wnt/β-catenin signaling, as well as by reducing signaling through the growth-inhibitory non-canonical Wnt pathway. The endogenous roles of RA in adult vertebrate appendage regeneration are uncovered here for the first time. They provide a mechanistic framework to understand previous observations in salamanders that link endogenous sources of RA to the regeneration process itself and support the hypothesis that the RA signaling pathway is an essential component of vertebrate tissue regeneration.

  5. Crouzon's syndrome: differential in vitro secretion of bFGF, TGFbeta I isoforms and extracellular matrix macromolecules in patients with FGFR2 gene mutation.

    PubMed

    Baroni, Tiziano; Lilli, Cinzia; Marinucci, Lorella; Bellocchio, Silvia; Pezzetti, Furio; Carinci, Francesco; Stabellini, Giordano; Balducci, Chiara; Locci, Paola

    2002-07-21

    In the Crouzon's syndrome the cranial morphogenic processes are altered due to the early fusion of cranial sutures. We analysed the phenotype of cultured fibroblasts from normal subjects and from Crouzon patients with a specific fibroblast growth factor receptor 2 mutation resulting in a Cys 342 Tyr substitution within the third immunoglobulin domain. Crouzon fibroblasts differed from normal fibroblasts in their extracellular matrix macromolecule accumulation. In Crouzon fibroblasts glycosaminoglycans and fibronectin were decreased and type I collagen increased. As transforming growth factors beta (TGF beta) and basic fibroblasts growth factor (bFGF) together regulate extracellular matrix deposition, we evaluated TGF beta(1), TGF beta(3) and bFGF production by Crouzon and normal fibroblasts. TGF beta(1), TGFb(3) and bFGF levels were lower while TGF beta(1) mRNA transcripts were higher in Crouzon cells. As the increased TGF beta(1) gene expression did not translate into a parallel increase of secreted TGF beta(1), control of TGF beta(1) secretion may be mainly post-transcriptional. Furthermore, adding bFGF increased TGF beta(1) and TGF beta(3) secretion, suggesting the drop may be due to the altered signal transduction of bFGF. These innovative data suggest the in vitro differences between normal and Crouzon fibroblasts may be due to an imbalance in TGF beta and bFGF levels which alters the microenvironment where morphogenesis takes place.

  6. Loss of FGF21 in diabetic mouse during hepatocellular carcinogenetic transformation

    PubMed Central

    Zhang, Quan; Li, Yan; Liang, Tingting; Lu, Xuemian; Liu, Xingkai; Zhang, Chi; Jiang, Xin; Martin, Robert C; Cheng, Mingliang; Cai, Lu

    2015-01-01

    Diabetes associated metabolic syndrome has been shown to be an independent risk factor for the development of hepatocellular carcinoma (HCC). Cirrhosis, in fact, was not always a prerequisite of HCC development and this might particularly apply to the metabolic abnormality associated HCC. This study was to investigate diabetes associated HCC and the potential role of FGF21 during carcinogenetic transformation of HCC. Dimethylnitrosamine (DEN) was used to induce HCC in the diabetic OVE26 mice. Pronounced damage characterized by steatohepatitis was found in the liver of diabetic mice. Steatohepatitis accompanied by constant cell proliferation and tumor cell growth were also found in the hepatic tissues of diabetic OVE26 mice when DEN being administrated. FGF21 protein level increased in liver tissues at an early stage along with steatohepatitis in diabetic OVE26 mice, but decreased in liver tissues later when HCC was developed. In addition, decreased FGF21 protein level was associated with cancerous hyper-proliferation and aberrant p53 and TGF-β/Smad signaling during HCC development. Loss of FGF21 may play an important role in HCC carcinogenetic transformation during metabolic liver injury in diabetic animals. The present finding calls attention to the need to control metabolic disorders associated with diabetes and may further develop a protective strategy against HCC. PMID:26175944

  7. Signaling Pathways Controlling Microglia Chemotaxis

    PubMed Central

    Fan, Yang; Xie, Lirui; Chung, Chang Y.

    2017-01-01

    Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain’s innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis. PMID:28301917

  8. Fibroblast growth factor 21 in breast milk controls neonatal intestine function

    PubMed Central

    Gavaldà-Navarro, Aleix; Hondares, Elayne; Giralt, Marta; Mampel, Teresa; Iglesias, Roser; Villarroya, Francesc

    2015-01-01

    FGF21 is a hormonal factor with important functions in the control of metabolism. FGF21 is found in rodent and human milk. Radiolabeled FGF21 administered to lactating dams accumulates in milk and is transferred to neonatal gut. The small intestine of neonatal (but not adult) mice highly expresses β-Klotho in the luminal area. FGF21-KO pups fed by FGF21-KO dams showed decreased expression and circulating levels of incretins (GIP and GLP-1), reduced gene expression of intestinal lactase and maltase-glucoamylase, and low levels of galactose in plasma, all associated with a mild decrease in body weight. When FGF21-KO pups were nursed by wild-type dams (expressing FGF21 in milk), intestinal peptides and digestive enzymes were up-regulated, lactase enzymatic activity was induced, and galactose levels and body weight were normalized. Neonatal intestine explants were sensitive to FGF21, as evidenced by enhanced ERK1/2 phosphorylation. Oral infusion of FGF21 into neonatal pups induced expression of intestinal hormone factors and digestive enzymes, lactase activity and lactose absorption. These findings reveal a novel role of FGF21 as a hormonal factor contributing to neonatal intestinal function via its presence in maternal milk. Appropriate signaling of FGF21 to neonate is necessary to ensure optimal digestive and endocrine function in developing intestine. PMID:26329882

  9. FGF receptors: cancer biology and therapeutics.

    PubMed

    Katoh, Masaru; Nakagama, Hitoshi

    2014-03-01

    Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.

  10. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10.

    PubMed

    Wells, Kirsty L; Gaete, Marcia; Matalova, Eva; Deutsch, Danny; Rice, David; Tucker, Abigail S

    2013-01-01

    Salivary glands provide an excellent model for the study of epithelial-mesenchymal interactions. We have looked at the interactions involved in the early initiation and development of murine salivary glands using classic recombination experiments and knockout mice. We show that salivary gland epithelium, at thickening and initial bud stages, is able to direct salivary gland development in non-gland pharyngeal arch mesenchyme at early stages. The early salivary gland epithelium is therefore able to induce gland development in non-gland tissue. This ability later shifts to the mesenchyme, with non-gland epithelium, such as from the limb bud, able to form a branching gland when combined with pseudoglandular stage gland mesenchyme. This shift appears to involve Fgf signalling, with signals from the epithelium inducing Fgf10 in the mesenchyme. Fgf10 then signals back to the epithelium to direct gland down-growth and bud development. These experiments highlight the importance of epithelial-mesenchymal signalling in gland initiation, controlling where, when and how many salivary glands form.

  11. A mutation in cnot8, component of the Ccr4-not complex regulating transcript stability, affects expression levels of developmental regulators and reveals a role of Fgf3 in development of caudal hypothalamic dopaminergic neurons.

    PubMed

    Koch, Peter; Löhr, Heiko B; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  12. A Mutation in cnot8, Component of the Ccr4-Not Complex Regulating Transcript Stability, Affects Expression Levels of Developmental Regulators and Reveals a Role of Fgf3 in Development of Caudal Hypothalamic Dopaminergic Neurons

    PubMed Central

    Koch, Peter; Löhr, Heiko B.; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  13. Retinoid signaling in control of progenitor cell differentiation during mouse development

    PubMed Central

    Duester, Gregg

    2013-01-01

    The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes. PMID:23973941

  14. Retinoid signaling in control of progenitor cell differentiation during mouse development.

    PubMed

    Duester, Gregg

    2013-12-01

    The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes.

  15. Increased FGF21 plasma levels in humans with sepsis and SIRS.

    PubMed

    Gariani, Karim; Drifte, Geneviève; Dunn-Siegrist, Irène; Pugin, Jérôme; Jornayvaz, François R

    2013-01-01

    Fibroblast growth factor 21 (FGF21) is a key regulator in glucose and lipid metabolism and its plasma levels have been shown to be increased not only in humans in different situations such as type 2 diabetes, obesity, and nonalcoholic fatty liver disease but also in animal models of sepsis and pancreatitis. FGF21 is considered as a pharmacological candidate in conditions associated with insulin resistance. The aim of this study was to compare FGF21 plasma levels in patients with sepsis, in patients with systemic inflammatory response syndrome (SIRS), and in healthy controls. We measured FGF21 plasma concentrations in 22 patients with established sepsis, in 11 with SIRS, and in 12 healthy volunteers. Here, we show that FGF21 levels were significantly higher in plasma obtained from patients with sepsis and SIRS in comparison with healthy controls. Also, FGF21 levels were significantly higher in patients with sepsis than in those with noninfectious SIRS. FGF21 plasma levels measured at study entry correlated positively with the APACHE II score, but not with procalcitonin levels, nor with C-reactive protein, classical markers of sepsis. Plasma concentrations of FGF21 peaked near the onset of shock and rapidly decreased with clinical improvement. Taken together, these results indicate that circulating levels of FGF21 are increased in patients presenting with sepsis and SIRS, and suggest a role for FGF21 in inflammation. Further studies are needed to explore the potential role of FGF21 in sepsis as a potential therapeutic target.

  16. Effect of FGF-binding Protein 3 on Vascular Permeability*

    PubMed Central

    Zhang, Wentao; Chen, Yifan; Swift, Matthew R.; Tassi, Elena; Stylianou, Dora C.; Gibby, Krissa A.; Riegel, Anna T.; Wellstein, Anton

    2008-01-01

    Fibroblast growth factor-binding protein 1 (FGF-BP1 is BP1) is involved in the regulation of embryonic development, tumor growth, and angiogenesis by mobilizing endogenous FGFs from their extracellular matrix storage. Here we describe a new member of the FGF-BP family, human BP3. We show that the hBP3 protein is secreted from cells, binds to FGF2 in vitro and in intact cells, and inhibits FGF2 binding to heparin. To determine the function of hBP3 in vivo, hBP3 was transiently expressed in chicken embryos and resulted in >50% lethality within 24 h because of vascular leakage. The onset of vascular permeability was monitored by recording the extravasation kinetics of FITC-labeled 40-kDa dextran microperfused into the vitelline vein of 3-day-old embryos. Vascular permeability increased as early as 8 h after expression of hBP3. The increased vascular permeability caused by hBP3 was prevented by treatment of embryos with PD173074, a selective FGFR kinase inhibitor. Interestingly, a C-terminal 66-amino acid fragment (C66) of hBP3, which contains the predicted FGF binding domain, still inhibited binding of FGF2 to heparin similar to full-length hBP3. However, expression of the C66 fragment did not increase vascular permeability on its own, but required the administration of exogenous FGF2 protein. We conclude that the FGF binding domain and the heparin binding domain are necessary for the hBP3 interaction with endogenous FGF and the activation of FGFR signaling in vivo. PMID:18669637

  17. FGF10 inhibits dominant follicle growth and estradiol secretion in vivo in cattle.

    PubMed

    Gasperin, Bernardo G; Ferreira, Rogério; Rovani, Monique T; Santos, Joabel T; Buratini, José; Price, Christopher A; Gonçalves, Paulo Bayard D

    2012-06-01

    Fibroblast growth factors (FGFs) are involved in paracrine control of follicle development. It was previously demonstrated that FGF10 decreases estradiol (E(2)) secretion in granulosa cell culture and that theca cell FGF10 mRNA expression is decreased in healthy follicles from abattoir ovaries. The main objectives of this study were to evaluate FGF10 and FGFR2b mRNA expression during follicular development in vivo, to evaluate the effect of FGF10 on follicle growth using Bos taurus taurus cows as a model, and to gain more insight into the mechanisms through which FGF10 inhibits steroidogenesis. Messenger RNA encoding both FGF10 and FGFR2b (main FGF10 receptor) was significantly more expressed in subordinate follicles (SFs) than in dominant follicles (DFs). The intrafollicular injection of FGF10 into the largest growing follicle at 7-8 mm in diameter interrupted the DF growth in a dose-dependent manner (11±0.4, 8.3±1 and 5.9±0.3 mm for 0, 0.1, and 1 μg/ml FGF10, respectively, at 72 h after treatment; P<0.05). In a third experiment, follicles were obtained 24 h after FGF10 (1 μg/ml) or PBS treatment through ovariectomy. In theca cells, FGF10 treatment did not affect mRNA encoding steroidogenic enzymes, LHCGR and IGFBPs, but significantly upregulated FGF10 mRNA expression. The expression of CYP19A1 mRNA in granulosa cells was downregulated by FGF10 treatment, which was accompanied by a 50-fold decrease in E(2) production, and decreased cyclin D2 mRNA. These results have shown that FGF10 and its receptor FGFR2b are more expressed in SFs and provide solid in vivo evidence that FGF10 acts as an important regulator of follicular growth in cattle.

  18. Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration.

    PubMed

    Chung, Ji Hyung; Im, Eun Kyoung; Jin, Tae Won; Lee, Seung-Min; Kim, Soo Hyuk; Choi, Eun Young; Shin, Min-Jeong; Lee, Kyung Hye; Jang, Yangsoo

    2011-04-30

    Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively. Cell migration significantly increased in HUVECs incubated with bFGF-CM compared to cells incubated with LacZ-CM. Interestingly, HUVEC migration in response to bFGF-CM was only partially blocked by the addition of bFGF-neutralizing antibody, suggesting that bFGF-CM contains other factors that stimulate endothelial cell migration. Several proteins, matrix metalloproteinase-1 (MMP-1), plasminogen activator inhibitor-1 (PAI-1), and cathepsin L, increased in bFGF-CM compared to LacZ-CM; based on 1-dimensional gel electrophoresis and mass spectrometry. Their increased mRNA and protein levels were confirmed by RT-PCR and immunoblot analysis. The recombinant human bFGF protein induced MMP-1, PAI-1, and cathepsin L expression in SkMCs. Endothelial cell migration was reduced in groups treated with bFGF-CM containing neutralizing antibodies against MMP-1 or PAI-1. In particular, HUVECs treated with bFGF-CM containing cell-impermeable cathepsin L inhibitor showed the most significant decrease in cell migration. Cathepsin L protein directly promotes endothelial cell migration through the JNK pathway. These results indicate that cathepsin L released from SkMCs transfected with the bFGF gene can promote endothelial cell migration.

  19. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice.

    PubMed

    Wu, Xinle; Ge, Hongfei; Lemon, Bryan; Weiszmann, Jennifer; Gupte, Jamila; Hawkins, Nessa; Li, Xiaofan; Tang, Jie; Lindberg, Richard; Li, Yang

    2009-08-25

    FGF19 is a hormone that regulates bile acid and glucose homeostasis. Progress has been made in identifying cofactors for receptor activation. However, several functions of FGF19 have not yet been fully defined, including the actions of FGF19 on target tissues, its FGF receptor specificity, and the contributions of other cofactors, such as heparin. Here, we explore the requirements for FGF19-FGFR/co-receptor interactions and signaling in detail. We show that betaKlotho was essential for FGF19 interaction with FGFRs 1c, 2c, and 3c, but FGF19 was able to interact directly with FGFR4 in the absence of betaKlotho in a heparin-dependent manner. Further, FGF19 activated FGFR4 signaling in the presence or absence of betaKlotho, but activation of FGFRs 1c, 2c, or 3c was completely betaKlotho dependent. We then generated an FGF19 molecule, FGF19dCTD, which has a deletion of the C-terminal region responsible for betaKlotho interaction. We determined that betaKlotho-dependent FGFR1c, 2c, and 3c interactions and activation were abolished, and betaKlotho-independent FGFR4 activation was preserved; therefore, FGF19dCTD is an FGFR4-specific activator. This unique FGF19 molecule specifically activated FGFR4-dependent signaling in liver and suppressed CYP7A1 expression in vivo, but was unable to activate signaling in adipose where FGFR4 expression is very low. Interestingly, unlike FGF19, treatment of ob/ob mice with FGF19dCTD failed to improve glucose levels and insulin sensitivity. These results suggest that FGF19-regulated liver bile acid metabolism could be independent of its glucose-lowering effect, and direct FGFR activation in adipose tissue may play an important role in the regulation of glucose homeostasis.

  20. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  1. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be...

  2. 49 CFR 236.403 - Signals at controlled point.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.403 Signals at controlled point. Signals at controlled point shall be...

  3. Negative Fgf8-Bmp2 feed-back is regulated by miR-130 during early cardiac specification.

    PubMed

    Lopez-Sanchez, Carmen; Franco, Diego; Bonet, Fernando; Garcia-Lopez, Virginio; Aranega, Amelia; Garcia-Martinez, Virginio

    2015-10-01

    It is known that secreted proteins from the anterior lateral endoderm, FGF8 and BMP2, are involved in mesodermal cardiac differentiation, which determines the first cardiac field, defined by the expression of the earliest specific cardiac markers Nkx-2.5 and Gata4. However, the molecular mechanisms responsible for early cardiac development still remain unclear. At present, microRNAs represent a novel layer of complexity in the regulatory networks controlling gene expression during cardiovascular development. This paper aims to study the role of miR130 during early cardiac specification. Our model is focused on developing chick at gastrula stages. In order to identify those regulatory factors which are involved in cardiac specification, we conducted gain- and loss-of-function experiments in precardiac cells by administration of Fgf8, Bmp2 and miR130, through in vitro electroporation technique and soaked beads application. Embryos were subjected to in situ hybridization, immunohistochemistry and qPCR procedures. Our results reveal that Fgf8 suppresses, while Bmp2 induces, the expression of Nkx-2.5 and Gata4. They also show that Fgf8 suppresses Bmp2, and vice versa. Additionally, we observed that Bmp2 regulates miR-130 -a putative microRNA that targets Erk1/2 (Mapk1) 3'UTR, recognizing its expression in precardiac cells which overlap with Erk1/2 pattern. Finally, we evidence that miR-130 is capable to inhibit Erk1/2 and Fgf8, resulting in an increase of Bmp2, Nkx-2.5 and Gata4. Our data present miR-130 as a necessary linkage in the control of Fgf8 signaling, mediated by Bmp2, establishing a negative feed-back loop responsible to achieve early cardiac specification.

  4. fgf20 is essential for initiating zebrafish fin regeneration.

    PubMed

    Whitehead, Geoffrey G; Makino, Shinji; Lien, Ching-Ling; Keating, Mark T

    2005-12-23

    Epimorphic regeneration requires the presence or creation of pluripotent cells capable of reproducing lost organs. Zebrafish fin regeneration is mediated by the creation of blastema cells. Here, we characterize the devoid of blastema (dob) mutant that fails fin regeneration during initial steps, forms abnormal regeneration epithelium, and does not form blastema. This mutation has no impact on embryonic survival. Dob results from an fgf20a null mutation, Y148S. Fgf20a is expressed during initiation of fin regeneration at the epithelial-mesenchymal boundary and later overlaps with the blastema marker msxb. Thus, fgf20a has a regeneration-specific requirement, initiating fin regeneration, and controlling blastema formation.

  5. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function.

    PubMed

    Mikolajczak, Marta; Goodman, Timothy; Hajihosseini, Mohammad K

    2016-12-15

    Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.

  6. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma

    PubMed Central

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S. P.

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP. PMID:26465941

  7. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma.

    PubMed

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S P

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.

  8. Evolutionary conservation of CCND1-ORAOV1-FGF19-FGF4 locus from zebrafish to human.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2003-07-01

    The CCND1-ORAOV1-FGF19-FGF4-FGF3-FLJ10261-FADD-PPFIA1-EMS1 locus on human chromosome 11q13 is frequently amplified in esophageal cancer, breast cancer, and bladder tumors. FGF19, FGF4 and FGF3 genes are implicated in embryogenesis and carcinogenesis. We proposed in 2002 the hypothesis that mouse Fgf15 might be the ortholog of human FGF19 based on comparative genomics. Here, we identified zebrafish fgf19 and oraov1 genes by using bioinformatics to demonstrate the hypothesis. Zebrafish fgf19 gene, consisting of three exons, was located around nucleotide position 121802-124963 of zebrafish genome draft sequence AL929586.12 in the reverse orientation. Zebrafish fgf19 (209 aa) was more homologous to chicken fgf19 and human FGF19 than to rodent Fgf15. Zebrafish oraov1 gene, consisting of five exons, was located around nucleotide position 112172-115838 of AL929586.12 in the reverse orientation. Zebrafish oraov1 protein (141 aa) was more homologous to human ORAOV1 than to rodent Oraov1. The CCND1-ORAOV1-FGF19-FGF4 locus was well conserved between human and zebrafish genomes in the order of genes, in the direction of genes, and in the exon-intron structure. Rat Ccnd1-Oraov1-Fgf15-Fgf4 locus was synthenic to mouse Ccnd1-Oraov1 (also known as 2210010N10Rik)-Fgf15-Fgf4 locus. Fgf15, homologous to human FGF19 and zebrafish fgf19, was located on the synthenic locus of human FGF19 and zebrafish fgf19 within rodent genomes. Based on the evolutionary conservation of the CCND1-ORAOV1-FGF19-FGF4 locus from zebrafish to human, it was concluded that Fgf15 gene is the rodent ortholog of human FGF19 gene.

  9. FGF21 Is Associated with Acanthosis Nigricans in Obese Patients

    PubMed Central

    Huang, Yueye; Yang, Jie; Li, Yan; Chen, Jiaqi; Song, Kexiu; Wang, Xingchun; Bu, Le; Cheng, Xiaoyun; Wang, Jiying; Qu, Shen

    2016-01-01

    Objective. We aimed to investigate the relationship between FGF21 and obesity-related acanthosis nigricans (AN). Methods. 40 obese patients without AN (OB group), 40 obese patients with AN (AN group), and 40 healthy volunteers (control group, CON) were included in this study. Weight, BMI, lipid profile, FFA, UA, and CRP were measured in all participants. Oral glucose tolerance tests (OGTT) were performed and serum glucose and plasma insulin were measured. Serum FGF21 was measured by ELISA. Results. Compared with OB group, AN group had higher levels of fasting insulin and homeostasis model of assessment for insulin resistance (HOMA-IR) (P < 0.05), but lower serum levels of blood glucose. The difference of FGF21 among three groups was significant and AN group showed the highest serum level of FGF21 (P < 0.05). Serum FGF21 was most positively correlated with fasting insulin and HOMA-IR. Multiple logistic analysis showed that FGF21 was the independent risk factor for AN (OR 4.550; 95% CI 1.054–19.635; P = 0.042). Conclusion. AN patients had more serious hyperinsulinemia but better serum levels of blood glucose than OB. Increased FGF21 is associated with AN in obese patients and may be considered as compensatory response to the decreased insulin sensitivity. PMID:27190511

  10. FGF-21: promising biomarker for detecting ketosis in dairy cows.

    PubMed

    Xu, Chuang; Xu, Qiushi; Chen, Yuanyuan; Yang, Wei; Xia, Cheng; Yu, Hongjiang; Zhu, Kuilin; Shen, Taiyu; Zhang, Ziyang

    2016-03-01

    The objective of this study was to investigate the measurement of serum fibroblast growth factor-21 (FGF-21), a protein mainly synthesized by the liver, as a sensitive biomarker for diagnosis of ketosis in dairy cows. Ninety Holstein-Friesian dairy cows (60 healthy and 30 ketosis cases) were selected and divided into a Ketosis group (K), and a Control group (C). We measured serum FGF-21 and other biochemical parameters by commercial ELISA kits. In a combined population of all 90 cows, we found that serum FGF-21 level was lower (P < 0.001) in cows suffering from ketosis. When the β-hydroxybutyric acid (BHBA) level increased over 1.2 mmol/L, the FGF-21 level tended to decline below 300.85 pg/ml. The area under the receiver operating characteristic curve (AUC-ROC) for serum FGF-21 for diagnosis of fatty liver was 0.952-0.025 [95% confidence interval (CI) 0.904, 1.000] which was higher than the AUC-ROC for glucose (Glc) and other tested parameters. We concluded that FGF-21 could be a diagnostic parameter in the evaluation and auxiliary diagnosis of changes in the energy metabolism state, and serum FGF-21 measurement would have a considerable clinical impact and lead to greater profitability in the dairy industry.

  11. Estrogen mediated epithelial proliferation in the uterus is directed by stromal Fgf10 and Bmp8a.

    PubMed

    Chung, Daesuk; Gao, Fei; Jegga, Anil G; Das, Sanjoy K

    2015-01-15

    To define endometrial stromal-derived paracrine mediators that participate in estradiol-17β (E2)-induced epithelial proliferation, microarray analysis of gene expression was carried out in mouse uterine epithelial-stromal co-culture systems under the condition of E2 or vehicle (control). Our results demonstrated gene alteration by E2: in epithelial cells, we found up-regulation of 119 genes and down-regulation of 28 genes, while in stroma cells we found up-regulation of 144 genes and down-regulation of 184 genes. A functional enrichment analysis of the upregulated epithelial genes implicated them for proliferation, while upregulated stromal genes were associated with extracellular functions. Quantitative RT-PCR and in situ hybridization results confirmed differential gene expression in both cell cultures and ovariectomized uteri after the above treatments. Based on our identification of stromal secretory factors, we found evidence that suppression by siRNA specifically for Bmp8a and/or Fgf10 in the stromal layer caused significant inhibition of proliferation by E2 in the co-culture system, suggesting Bmp8a and Fgf10 act as paracrine mediators during E2-dependent control of uterine proliferation. The localization of receptors and receptor activation signaling in epithelial cells in both the co-culture system and uteri was consistent with their involvement in ligand-receptor signaling. Interestingly, loss of Bmp8a or Fgf10 also caused abrogation of E2-regulated epithelial receptor signaling in co-culture systems, suggesting that stroma-derived Fgf10 and Bmp8a are responsible for epithelial communication. Overall, stromal Fgf10 and Bmp8a serve as potential paracrine factors for E2-dependent regulation of epithelial proliferation in the uterus.

  12. FGF21 Promotes Endothelial Cell Angiogenesis through a Dynamin-2 and Rab5 Dependent Pathway

    PubMed Central

    Yaqoob, Usman; Jagavelu, Kumaravelu; Shergill, Uday; de Assuncao, Thiago; Cao, Sheng; Shah, Vijay H.

    2014-01-01

    Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling. PMID:24848261

  13. FGF21, energy expenditure and weight loss – How much brown fat do you need?

    PubMed Central

    Straub, Leon; Wolfrum, Christian

    2015-01-01

    Background Fibroblast growth factor 21 (FGF21) belongs to the large family of fibroblast growth factors (FGFs). Even though FGF signaling has been mainly implicated in developmental processes, recent studies have demonstrated that FGF21 is an important regulator of whole body energy expenditure and metabolism, in obesity. Scope of review Given the fact that obesity has developed epidemic proportions, not just in industrialized countries, FGF21 has emerged as a novel therapeutic avenue to treat obesity as well as associated metabolic disorders. While the metabolic effects of FGF21 are undisputed, the mechanisms by which FGF21 regulate weight loss have not yet been fully resolved. Until recently it was believed that FGF21 induces brown fat activity, thereby enhancing energy expenditure, which concomitantly leads to weight loss. Novel studies have challenged this concept as they could demonstrate that a part of the FGF21 mediated effects are retained in a mouse model of impaired brown adipose tissue function. Major conclusions The review illustrates the recent advances in FGF21 research and discusses the role of FGF21 in the regulation of energy expenditure linked to brown fat activity. PMID:26413466

  14. Hoxc8 initiates an ectopic mammary program by regulating Fgf10 and Tbx3 expression and Wnt/β-catenin signaling

    PubMed Central

    Carroll, Lara S.; Capecchi, Mario R.

    2015-01-01

    The role of Hox genes in the formation of cutaneous accessory organs such as hair follicles and mammary glands has proved elusive, a likely consequence of overlapping function and expression among various homeobox factors. Lineage and immunohistochemical analysis of Hoxc8 in mice revealed that this midthoracic Hox gene has transient but strong regional expression in ventrolateral surface ectoderm at E10.5, much earlier than previously reported. Targeted mice were generated to conditionally misexpress Hoxc8 from the Rosa locus using select Cre drivers, which significantly expanded the domain of thoracic identity in mutant embryos. Accompanying this expansion was the induction of paired zones of ectopic mammary development in the cervical region, which generated between three and five pairs of mammary placodes anterior to the first wild-type mammary rudiment. These rudiments expressed the mammary placode markers Wnt10b and Tbx3 and were labeled by antibodies to the mammary mesenchyme markers ERα and androgen receptor. Somitic Fgf10 expression, which is required for normal mammary line formation, was upregulated in mutant cervical somites, and conditional ablation of ectodermal Tbx3 expression eliminated all normally positioned and ectopic mammary placodes. We present evidence that Hoxc8 participates in regulating the initiation stages of mammary placode morphogenesis, and suggest that this and other Hox genes are likely to have important roles during regional specification and initiation of these and other cutaneous accessory organs. PMID:26459221

  15. FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection.

    PubMed

    Rodriguez-Enfedaque, Aida; Bouleau, Sylvina; Laurent, Maryvonne; Courtois, Yves; Mignotte, Bernard; Vayssière, Jean-Luc; Renaud, Flore

    2009-11-01

    Fibroblast growth factor 1 (FGF1) is a differentiation and survival factor for neuronal cells both in vitro and in vivo. FGF1 activities can be mediated not only by paracrine and autocrine pathways involving FGF receptors but also by an intracrine pathway, which is an underestimated mode of action. Indeed, FGF1 lacks a secretion signal peptide and contains a nuclear localization sequence (NLS), which is consistent with its usual intracellular and nuclear localization. To progress in the comprehension of the FGF1 intracrine pathway in neuronal cells, we examined the role of the nuclear translocation of FGF1 for its neurotrophic activity as well as for its protective activity against p53-dependent apoptosis. Thus, we have transfected PC12 cells with different FGF1 expression vectors encoding wild type or mutant (Delta NLS) FGF1. This deletion inhibited both FGF1 nuclear translocation and FGF1 neurotrophic activity (including differentiation and serum-free cell survival). We also show that endogenous FGF1 protection of PC12 cells against p53-dependent cell death requires FGF1 nuclear translocation. Strikingly, wild type FGF1 is found interacting with p53, in contrast to the mutant FGF1 deleted of its NLS, suggesting the presence of direct and/or indirect interactions between FGF1 and p53 pathways. Thus, we present evidences that FGF1 may act by a nuclear pathway to induce neuronal differentiation and to protect the cells from apoptosis whether cell death is induced by serum depletion or p53 activation.

  16. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation.

    PubMed

    Massafra, Vittoria; Milona, Alexandra; Vos, Harmjan R; Burgering, Boudewijn M T; van Mil, Saskia W C

    2017-01-01

    Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing "light" lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing "heavy" lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.

  17. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation

    PubMed Central

    Vos, Harmjan R.; Burgering, Boudewijn M. T.; van Mil, Saskia W. C.

    2017-01-01

    Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential. PMID:28178326

  18. Neuromodulation: purinergic signaling in respiratory control.

    PubMed

    Funk, Gregory D

    2013-01-01

    The main functions of the respiratory neural network are to produce a coordinated, efficient, rhythmic motor behavior and maintain homeostatic control over blood oxygen and CO2/pH levels. Purinergic (ATP) signaling features prominently in these homeostatic reflexes. The signaling actions of ATP are produced through its binding to a diversity of ionotropic P2X and metabotropic P2Y receptors. However, its net effect on neuronal and network excitability is determined by the interaction between the three limbs of a complex system comprising the signaling actions of ATP at P2Rs, the distribution of multiple ectonucleotidases that differentially metabolize ATP into ADP, AMP, and adenosine (ADO), and the signaling actions of ATP metabolites, especially ADP at P2YRs and ADO at P1Rs. Understanding the significance of purinergic signaling is further complicated by the fact that neurons, glia, and the vasculature differentially express P2 and P1Rs, and that both neurons and glia release ATP. This article reviews at cellular, synaptic, and network levels, current understanding and emerging concepts about the diverse roles played by this three-part signaling system in: mediating the chemosensitivity of respiratory networks to hypoxia and CO2/pH; modulating the activity of rhythm generating networks and inspiratory motoneurons, and; controlling blood flow through the cerebral vasculature.

  19. Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum.

    PubMed

    Lin, Yongshun; Chen, Lijie; Lin, Chunhong; Luo, Yongde; Tsai, Robert Y L; Wang, Fen

    2009-05-01

    Although fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation. Ex vivo cultured wildtype or Fgf9-null glia displayed a stellate morphology. Coculture with wildtype neurons, but not Fgf9-deficient neurons, or treating with FGF1 or FGF9 induced the cells to adopt a radial glial morphology. In situ hybridization showed that Fgf9 was expressed in neurons and immunostaining revealed that FGF9 was broadly distributed in both neurons and Bergmann glial radial fibers. Genetic analyses revealed that the FGF9 activities in cerebellar development are primarily transduced by FGF receptors 1 and 2. Furthermore, inhibition of the MAP kinase pathway, but not the PI3K/AKT pathway, abrogated the FGF activity to induce glial morphological changes, suggesting that the activity is mediated by the MAP kinase pathway. This work demonstrates that granule neurons secrete FGF9 to control formation of the Bergmann fiber scaffold, which in turn, guides their own inward migration and maturation of Purkinje cells.

  20. Alterations in Hepatic FGF21, Co-Regulated Genes, and Upstream Metabolic Genes in Response to Nutrition, Ketosis and Inflammation in Peripartal Holstein Cows

    PubMed Central

    Akbar, Haji; Batistel, Fernanda; Drackley, James K.; Loor, Juan J.

    2015-01-01

    In rodents, fibroblast growth factor 21 (FGF21) has emerged as a key metabolic regulator produced by liver. To gather preliminary data on the potential importance of FGF1, co-regulated genes, and upstream metabolic genes, we examined the hepatic mRNA expression in response to nutrition and inflammation in dairy cows. In experiment 1, induction of ketosis through feed restriction on d 5 postpartum upregulated FGF21, its co-receptor KLB, and PPARA but only elicited a numerical increase in serum FGF21 concentration. In experiment 2, cows in control (CON) or receiving 50 g/d of L-carnitine (C50) from -14 through 21 d had increased FGF21, PPARA, and NFIL3 on d 10 compared with d 2 postpartum. In contrast, compared with CON and C50, 100 g/d L-carnitine (C100) resulted in lower FGF21, KLB, ANGPTL4, and ARNTL expression on d 10. In experiment 3, cows were fed during the dry period either a higher-energy (OVE; 1.62 Mcal/kg DM) or lower-energy (CON; 1.34 Mcal/kg DM) diet and received 0 (OVE:N, CON:N) or 200 μg of LPS (OVE:Y, CON:Y) into the mammary gland at d 7 postpartum. For FGF21 mRNA expression in CON, the LPS challenge (CON:Y) prevented a decrease in expression between d 7 and 14 postpartum such that cows in CON:N had a 4-fold lower expression on d 14 compared with d 7. The inflammatory stimulus induced by LPS in CON:Y resulted in upregulation of PPARA on d 14 to a similar level as cows in OVE:N. In OVE:Y, expression of PPARA was lower than CON:N on d 7 and remained unchanged on d 14. On d 7, LPS led to a 4-fold greater serum FGF21 only in OVE but not in CON cows. In fact, OVE:Y reached the same serum FGF21 concentration as CON:N, suggesting a carryover effect of dietary energy level on signaling mechanisms within liver. Overall, results indicate that nutrition, ketosis, and inflammation during the peripartal period can alter hepatic FGF21, co-regulated genes, and upstream metabolic genes to various extents. The functional outcome of these changes merits further study

  1. 49 CFR 236.404 - Signals at adjacent control points.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.404 Signals at adjacent control points. Signals at adjacent controlled... 49 Transportation 4 2011-10-01 2011-10-01 false Signals at adjacent control points....

  2. 49 CFR 236.404 - Signals at adjacent control points.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.404 Signals at adjacent control points. Signals at adjacent controlled... 49 Transportation 4 2010-10-01 2010-10-01 false Signals at adjacent control points....

  3. [bFGF-stimulated MEF-conditioned medium is capable of maintaining human embryonic stem cells].

    PubMed

    Zhou, Yi Ping; Rochat, Anne; Hatzfeld, Antoinette; Peiffer, Isabelle; Barbet, Romain; Hatzfeld, Jacques; Li, Ma Lin

    2009-06-01

    4 ng/ml bFGF is indispensable for hESC cultured on mouse embryonic fibroblasts (MEF), withdrawal of bFGF drives the hESC to differentiate. In order to exploit effect of bFGF on MEF, we collected a series of MEF conditioned medium (bFGF-MCM) by co-culturing MEF with increasing bFGF concentrations: 0.03, 0.1, 0.3, 1 and 4 ng/ml. The primitivity of hESC cultured in bFGF-MCM was estimated by morphology and alkaline phosphatase staining. Compared with the control medium (medium conditioned without bFGF: MCM), percentage of undifferentiated colony was increased from 23% to 29%, 44%, 74%, 77% and 78%, respectively. However, percentage of undifferentiated colony in the blank medium (medium conditioned with bFGF but without MEF: bFGF-SR) was from 13% to 31%. This indicated that low concentration of bFGF acted on MEF and stimulated MEF producing effective conditioned medium for maintaining hESC. To identify active elements in the effective conditioned medium can help to understand mechanisms of hESC self-renewal.

  4. TGF-{beta}2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    SciTech Connect

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-11-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.

  5. Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle.

    PubMed

    Vandanmagsar, Bolormaa; Warfel, Jaycob D; Wicks, Shawna E; Ghosh, Sujoy; Salbaum, J Michael; Burk, David; Dubuisson, Olga S; Mendoza, Tamra M; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2016-05-24

    Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1b(m-/-)). Cpt1b(m-/-) mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity.

  6. Impaired mitochondrial fat oxidation induces FGF21 in muscle

    PubMed Central

    Vandanmagsar, Bolormaa; Warfel, Jaycob D.; Wicks, Shawna E.; Ghosh, Sujoy; Salbaum, J. Michael; Burk, David; Dubuisson, Olga S.; Mendoza, Tamra M.; Zhang, Jingying; Noland, Robert C.; Mynatt, Randall L.

    2016-01-01

    SUMMARY Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1bm−/−). Cpt1bm−/− mice have increased glucose utilization and are resistant to diet induced obesity. Here we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent on the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but does not contribute to the resistance to diet induced obesity. PMID:27184848

  7. Disruption of the Fgf2 Gene Activates the Adipogenic and Suppresses the Osteogenic Program in Mesenchymal Marrow Stromal Stem Cells

    PubMed Central

    Xiao, Liping; Sobue, Takanori; Eisliger, Alycia; Kronenberg, Mark. S; Coffin, J. Douglas; Doetschman, Thomas; Hurley, Marja M.

    2010-01-01

    Here we determine the Fibroblast Growth Factor-2 (FGF2) dependency of the time course of changes in bone mass in female mice. This study extends our earlier reports that knockout of the FGF2 gene (Fgf2) caused low turnover bone loss in Fgf2−/− male mice by examining bone loss with age in Fgf2−/− female mice, and by assessing whether reduced bone formation is associated with differentiation of bone marrow stromal cells (BMSCs) towards the adipocyte lineage. Bone mineral density (BMD) was similar in 3 month old female Fgf2+/+ and Fgf2−/− mice but was significantly reduced as early as 5 months of age in Fgf2−/− mice. In vivo studies showed that there was a greater accumulation of marrow fat in long bones of 14 and 20 month old Fgf2−/− mice compared with Fgf2+/+ littermates. To study the effect of disruption of FGF2 on osteoblastogenesis and adipogenesis, BMSCs from both genotypes were cultured in osteogenic or adipogenic media. Reduced alkaline phosphatase positive (ALP), mineralized colonies and a marked increase in adipocytes were observed in Fgf2−/− BMSC cultures. These cultures also showed an increase in the mRNA of the adipogenic transcription factor PPARγ2 as well as the downstream target genes aP2 and adiponectin. Treatment with exogenous FGF2 blocked adipocyte formation and increased ALP colony formation and ALP activity in BMSC cultures of both genotypes. These results support an important role for endogenous FGF2 in osteoblast (OB) lineage determination. Alteration in FGF2 signaling may contribute to impaired OB bone formation capacity and to increased bone marrow fat accumulation both of which are characteristics of aged bone. PMID:20510392

  8. Radiolabeled (111)In-FGF-2 Is Suitable for In Vitro/Ex Vivo Evaluations and In Vivo Imaging.

    PubMed

    Moscaroli, Alessandra; Jones, Gabriel; Lühmann, Tessa; Meinel, Lorenz; Wälti, Stephanie; Blanc, Alain; Fischer, Eliane; Hilbert, Manuel; Schibli, Roger; Béhé, Martin

    2017-03-06

    Fibroblast growth factor-2 (FGF-2) is a potent modulator of cell growth and regulation, with improper FGF-2 signaling being involved in impaired responses to injury or even cancer. Therefore, the exploitation of FGF-2 as a therapeutic drives the prerequisite for effective insight into drug disposition kinetics. In this article, we present an (111)In-radiolabeled FGF-2 derivative for noninvasive imaging in small animals deploying single photon emission tomography (SPECT). (111)In-FGF-2 is equally well suitable for in vitro and ex vivo investigations as (125)I-FGF-2. Furthermore, (111)In-FGF-2 permits the performance of in vivo imaging, for example for the analysis of FGF-2 containing pharmaceutical formulations in developmental or preclinical stages. (111)In-FGF-2 had affinity for the low-molecular-weight heparin enoxaparin identical to that of unlabeled FGF-2 (Kd: 0.6 ± 0.07 μM and 0.33 ± 0.03 μM, respectively) as assessed by isothermal titration calorimetry. The binding of (111)In-FGF-2 to heparan sulfate proteoglycans (HPSGs) and the biological activity were comparable to those of unlabeled FGF-2, with EC50 values of 12 ± 2 pM and 25 ± 6 pM, respectively. In vivo biodistribution in healthy nude mice indicated a predominant accumulation of (111)In-FGF-2 in filtering organs and minor uptake in the retina and the salivary and pituitary glands, which was confirmed by SPECT imaging. Therefore, (111)In-FGF-2 is a valid tracer for future noninvasive animal imaging of FGF-2 in pharmaceutical development.

  9. Signaling pathways controlling skeletal muscle mass.

    PubMed

    Egerman, Marc A; Glass, David J

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed "atrophy", is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.

  10. Signalling Pathways Controlling Cellular Actin Organization.

    PubMed

    Steffen, Anika; Stradal, Theresia E B; Rottner, Klemens

    2017-01-01

    The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.

  11. Signaling pathways controlling skeletal muscle mass

    PubMed Central

    Egerman, Marc A.

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. PMID:24237131

  12. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer

    PubMed Central

    Suh, Jae Myoung; Jonker, Johan W.; Ahmadian, Maryam; Goetz, Regina; Lackey, Denise; Osborn, Olivia; Huang, Zifeng; Liu, Weilin; Yoshihara, Eiji; van Dijk, Theo; Havinga, Rick; Fan, Weiwei; Yin, Yun-Qiang; Yu, Ruth T.; Liddle, Christopher; Atkins, Annette R.; Olefsky, Jerrold M.; Mohammadi, Moosa; Downes, Michael; Evans, Ronald M.

    2014-01-01

    FGF1 is an autocrine/paracrine regulator whose binding to heparan sulfate proteoglycans effectively precludes its circulation 1,2. Though known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high fat diet, suggesting a potential role in nutrient homeostasis 3,4. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent glucose lowering in diabetic mice that is dose-dependent, but does not lead to hypoglycemia. Chronic pharmacological rFGF1 treatment increases insulin-dependent glucose uptake in skeletal muscle and suppresses hepatic glucose production to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin sensitizing therapies. Furthermore, we demonstrate that the glucose lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 (FGFR1) signaling. In summary, we have uncovered an unexpected, neomorphic insulin sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for treatment of insulin resistance and type 2 diabetes. PMID:25043058

  13. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart

    PubMed Central

    Park, Eon Joo; Watanabe, Yusuke; Smyth, Graham; Miyagawa-Tomita, Sachiko; Meyers, Erik; Klingensmith, John; Camenisch, Todd; Buckingham, Margaret; Moon, Anne M.

    2009-01-01

    In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFβ and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development. PMID:18832392

  14. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development.

    PubMed

    Pearson, Caroline Alayne; Ohyama, Kyoji; Manning, Liz; Aghamohammadzadeh, Soheil; Sang, Helen; Placzek, Marysia

    2011-06-01

    The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3(+) SOX3(+) proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10(+) anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3(+) SOX3(+) progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth.

  15. FGF4 induces epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma

    PubMed Central

    Qi, Lisha; Song, Wangzhao; Li, Lingmei; Cao, Lu; Yu, Yue; Song, Chunmin; Wang, Yalei; Zhang, Fei; Li, Yang; Zhang, Bin; Cao, Wenfeng

    2016-01-01

    Several fibroblast growth factor (FGF) isoforms act to stimulate epithelial-mesenchymal transition (EMT) during cancer progression. FGF4 and FGF7 are two ligands of FGF receptor 2 (FGFR2). Using two lung adenocarcinoma (ADC) cell lines, A549 and H1299, we showed that FGF4, but not FGF7, altered cell morphology, promoted EMT-associated protein expression, and enhanced cell proliferation, migration/invasion and colony initiation. In addition, FGF4 increased store-operated calcium entry (SOCE) and expression of the calcium signal-associated protein Orai1. The SOCE inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or Orai1 knockdown reversed all of the EMT-promoting effects of FGF4. BHQ also inhibited FGF4-induced EMT in a mouse xenograft model. Finally, 60 human lung ADC samples and 21 sets of matched specimens (primary and metastatic foci in lymph nodes from one patient) were used to confirm the clinicopathologic significance of FGF4 and its correlation with E-cadherin, Vimentin and Orai1 expression. Our study thus shows that FGF4 induces EMT by elevating SOCE in lung ADC. PMID:27677589

  16. Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells.

    PubMed

    Cattaruzza, Sabrina; Ozerdem, Ugur; Denzel, Martin; Ranscht, Barbara; Bulian, Pietro; Cavallaro, Ugo; Zanocco, Daniela; Colombatti, Alfonso; Stallcup, William B; Perris, Roberto

    2013-04-01

    Sprouting of angiogenic perivascular cells is thought to be highly dependent upon autocrine and paracrine growth factor stimulation. Accordingly, we report that corneal angiogenesis induced by ectopic FGF implantation is strongly impaired in NG2/CSPG4 proteoglycan (PG) null mice known to harbour a putative deficit in pericyte proliferation/mobilization. Conversely, no significant differences were seen between wild type and knockout corneas when VEGF was used as an angiocrine factor. Perturbed responsiveness of NG2-deficient pericytes to paracrine and autocrine stimulation by several FGFs could be confirmed in cells isolated from NG2 null mice, while proliferation induced by other growth factors was equivalent in wild type and knockout cells. Identical results were obtained after siRNA-mediated knock-down of NG2 in human smooth muscle-like cell lines, as also demonstrated by the decreased levels of FGF receptor phosphorylation detected in these NG2 deprived cells. Binding assays with recombinant proteins and molecular interactions examined on live cells asserted that FGF-2 bound to NG2 in a glycosaminoglycan-independent, core protein-mediated manner and that the PG was alone capable of retaining FGF-2 on the cell membrane for subsequent receptor presentation. The use of dominant-negative mutant cells, engineered by combined transduction of NG2 deletion constructs and siRNA knock-down of the endogenous PG, allowed us to establish that the FGF co-receptor activity of NG2 is entirely mediated by its extracellular portion. In fact, forced overexpression of the NG2 ectodomain in human smooth muscle-like cells increased their FGF-2-induced mitosis and compensated for low levels of FGF receptor surface expression, in a manner equivalent to that produced by overexpression of the full-length NG2. Upon FGF binding, the cytoplasmic domain of NG2 is phosphorylated, but there is no evidence that this event elicits signal transductions that could bypass the FGFR-mediated ones

  17. Activation of GR but not PXR by dexamethasone attenuated acetaminophen hepatotoxicities via Fgf21 induction.

    PubMed

    Vispute, Saurabh G; Bu, Pengli; Le, Yuan; Cheng, Xingguo

    2017-03-01

    Glucocorticoid receptor (GR) signaling is indispensable for cell growth and development, and plays important roles in drug metabolism. Fibroblast growth factor (Fgf) 21, an important regulator of glucose, lipid, and energy metabolism, plays a cytoprotective role by attenuating toxicities induced by chemicals such as dioxins, acetaminophen (APAP), and alcohols. The present study investigates the impact of dexamethasone (DEX)-activated GR on Fgf21 expression and how it affects the progression of APAP-induced hepatotoxicity. Our results showed that DEX dose/concentration- and time-dependently increased Fgf21 mRNA and protein expression in mouse liver as well as cultured mouse and human hepatoma cells. By using PXR-null mouse model, we demonstrated that DEX induced Fgf21 expression by a PXR-independent mechanism. In cultured mouse and human hepatoma cells, inhibition of GR signaling, by RU486 (Mifepristone) or GR silencing using GR-specific siRNA, attenuated DEX-induced Fgf21 expression. In addition, DEX increased luciferase reporter activity driven by the 3.0-kb mouse and human Fgf21/FGF21 gene promoter. Further, ChIP-qPCR assays demonstrated that DEX increased the binding of GR to the specific cis-regulatory elements located in the 3.0-kb mouse and human Fgf21/FGF21 gene promoter. Pretreatment of 2mg/kg DEX ameliorated APAP-induced liver injury in wild-type but not Fgf21-null mice. In conclusion, via GR activation, DEX induced Fgf21 expression in mouse liver and human hepatoma cells.

  18. 49 CFR 212.207 - Signal and train control inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal and train control inspector. 212.207... § 212.207 Signal and train control inspector. (a) The signal and train control inspector is required, at a minimum, to be able to conduct independent inspections of all types of signal and train...

  19. Interplay between FGF21 and insulin action in the liver regulates metabolism.

    PubMed

    Emanuelli, Brice; Vienberg, Sara G; Smyth, Graham; Cheng, Christine; Stanford, Kristin I; Arumugam, Manimozhiyan; Michael, Mervyn D; Adams, Andrew C; Kharitonenkov, Alexei; Kahn, C Ronald

    2014-02-01

    The hormone FGF21 regulates carbohydrate and lipid homeostasis as well as body weight, and increasing FGF21 improves metabolic abnormalities associated with obesity and diabetes. FGF21 is thought to act on its target tissues, including liver and adipose tissue, to improve insulin sensitivity and reduce adiposity. Here, we used mice with selective hepatic inactivation of the IR (LIRKO) to determine whether insulin sensitization in liver mediates FGF21 metabolic actions. Remarkably, hyperglycemia was completely normalized following FGF21 treatment in LIRKO mice, even though FGF21 did not reduce gluconeogenesis in these animals. Improvements in blood sugar were due in part to increased glucose uptake in brown fat, browning of white fat, and overall increased energy expenditure. These effects were preserved even after removal of the main interscapular brown fat pad. In contrast to its retained effects on reducing glucose levels, the effects of FGF21 on reducing circulating cholesterol and hepatic triglycerides and regulating the expression of key genes involved in cholesterol and lipid metabolism in liver were disrupted in LIRKO mice. Thus, FGF21 corrects hyperglycemia in diabetic mice independently of insulin action in the liver by increasing energy metabolism via activation of brown fat and browning of white fat, but intact liver insulin action is required for FGF21 to control hepatic lipid metabolism.

  20. Investigating the mechanism of the assembly of FGF1-binding heparan sulfate motifs

    PubMed Central

    Nguyen, Thao Kim Nu; Raman, Karthik; Trana, Vy My; Kuberan, Balagurunathan

    2011-01-01

    Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner. PMID:21803043

  1. API5 confers cancer stem cell-like properties through the FGF2-NANOG axis

    PubMed Central

    Song, K-H; Cho, H; Kim, S; Lee, H-J; Oh, S J; Woo, S R; Hong, S-O; Jang, H S; Noh, K H; Choi, C H; Chung, J-Y; Hewitt, S M; Kim, J-H; Son, M; Kim, S-H; Lee, B I; Park, H-C; Bae, Y-K; Kim, T W

    2017-01-01

    Immune selection drives the evolution of tumor cells toward an immune-resistant and cancer stem cell (CSC)-like phenotype. We reported that apoptosis inhibitor-5 (API5) acts as an immune escape factor, which has a significant role in controlling immune resistance to antigen-specific T cells, but its functional association with CSC-like properties remains largely unknown. In this study, we demonstrated for the first time that API5 confers CSC-like properties, including NANOG expression, the frequency of CD44-positive cells and sphere-forming capacity. Critically, these CSC-like properties mediated by API5 are dependent on FGFR1 signaling, which is triggered by E2F1-dependent FGF2 expression. Furthermore, we uncovered the FGF2-NANOG molecular axis as a downstream component of API5 signaling that is conserved in cervical cancer patients. Finally, we found that the blockade of FGFR signaling is an effective strategy to control API5high human cancer. Thus, our findings reveal a crucial role of API5 in linking immune resistance and CSC-like properties, and provide the rationale for its therapeutic application for the treatment of API5+ refractory tumors. PMID:28092370

  2. 125I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma

    PubMed Central

    Hu, Peng-Hui; Pan, Lan-Hong; Wong, Patrick Ting-Yat; Chen, Wen-Hui; Yang, Yan-Qing; Wang, Hong; Xiang, Jun-Jian; Xu, Meng

    2016-01-01

    AIM: To investigate the inhibitory efficacy of 125I-labeled anti-basic fibroblast growth factor (bFGF) monoclonal antibody (mAb) in hepatocellular carcinoma (HCC). METHODS: bFGF mAb was prepared by using the 1G9B9 hybridoma cell line with hybridization technology and extracted from ascites fluid through a Protein G Sepharose affinity column. After labeling with 125I through the chloramine-T method, bFGF mAb was further purified by a Sephadex G-25 column. Gamma radiation counter GC-1200 detected radioactivity of 125I-bFGF mAb. The murine H22 HCC xenograft model was established and randomized to interventions with control (phosphate-buffered saline), 125I-bFGF mAb, 125I plus bFGF mAb, bFGF mAb, or 125I. The ratios of tumor inhibition were then calculated. Expression of bFGF, fibroblast growth factor receptor (FGFR), platelet-derived growth factor, and vascular endothelial growth factor (VEGF) mRNA was determined by quantitative reverse transcriptase real-time polymerase chain reaction. RESULTS: The purified bFGF mAb solution was 8.145 mg/mL with a titer of 1:2560000 and was stored at -20 °C. After coupling, 125I-bFGF mAb was used at a 1: 1280000 dilution, stored at 4 °C, and its specific radioactivity was 37 MBq/mg. The corresponding tumor weight in the control, 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 1.88 ± 0.25, 1.625 ± 0.21, 1.5 ± 0.18, 1.41 ± 0.16, and 0.98 ± 0.11 g, respectively. The tumor inhibition ratio in the 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 13.6%, 20.2%, 25.1%, and 47.9%, respectively. Growth of HCC xenografts was inhibited significantly more in the 125I-bFGF mAb group than in the other groups (P < 0.05). Expression of bFGF and FGFR mRNA in the 125I-bFGF mAb group was significantly decreased in comparison with other groups (P < 0.05). Groups under interventions revealed increased expression of VEGF mRNA (except for 125I group) compared with the control group. CONCLUSION: 125I-bFGF m

  3. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development

    PubMed Central

    Xu, Jingyue; Liu, Han; Lan, Yu; Aronow, Bruce J.; Kalinichenko, Vladimir V.; Jiang, Rulang

    2016-01-01

    Cleft palate is among the most common birth defects in humans. Previous studies have shown that Shh signaling plays critical roles in palate development and regulates expression of several members of the forkhead-box (Fox) family transcription factors, including Foxf1 and Foxf2, in the facial primordia. Although cleft palate has been reported in mice deficient in Foxf2, whether Foxf2 plays an intrinsic role in and how Foxf2 regulates palate development remain to be elucidated. Using Cre/loxP-mediated tissue-specific gene inactivation in mice, we show that Foxf2 is required in the neural crest-derived palatal mesenchyme for normal palatogenesis. We found that Foxf2 mutant embryos exhibit altered patterns of expression of Shh, Ptch1, and Shox2 in the developing palatal shelves. Through RNA-seq analysis, we identified over 150 genes whose expression was significantly up- or down-regulated in the palatal mesenchyme in Foxf2-/- mutant embryos in comparison with control littermates. Whole mount in situ hybridization analysis revealed that the Foxf2 mutant embryos exhibit strikingly corresponding patterns of ectopic Fgf18 expression in the palatal mesenchyme and concomitant loss of Shh expression in the palatal epithelium in specific subdomains of the palatal shelves that correlate with where Foxf2, but not Foxf1, is expressed during normal palatogenesis. Furthermore, tissue specific inactivation of both Foxf1 and Foxf2 in the early neural crest cells resulted in ectopic activation of Fgf18 expression throughout the palatal mesenchyme and dramatic loss of Shh expression throughout the palatal epithelium. Addition of exogenous Fgf18 protein to cultured palatal explants inhibited Shh expression in the palatal epithelium. Together, these data reveal a novel Shh-Foxf-Fgf18-Shh circuit in the palate development molecular network, in which Foxf1 and Foxf2 regulate palatal shelf growth downstream of Shh signaling, at least in part, by repressing Fgf18 expression in the palatal

  4. Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo

    PubMed Central

    Lu, Jiaxiong; Pan, Jessie; Yu, Yang; Zhao, Yanling; Zhang, Huiyuan; Hu, Ting; Liu, Qing; Yang, Jianhua

    2017-01-01

    Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy. Here, we report that a multi-targeted tyrosine kinase inhibitor ponatinib inhibited NB cell proliferation and induced NB cell apoptosis in a dose-dependent manner. In addition, ponatinib suppressed the colony formation ability of NB cells. Mechanistically, ponatinib effectively inhibited the FGFR1-activated signaling pathway. Ponatinib also enhanced the cytotoxic effects of doxorubicin on NB cells. Furthermore, ponatinib demonstrated anti-tumor efficacy in vivo by inhibiting tumor growth in an orthotopic xenograft NB mouse model. In summary, our results showed that ponatinib inhibited NB growth both in vitro and in vivo. PMID:27564113

  5. Bile acid flux through portal but not peripheral veins inhibits CYP7A1 expression without involvement of ileal FGF19 in rabbits.

    PubMed

    Shang, Quan; Guo, Grace L; Honda, Akira; Shi, Daniel; Saumoy, Monica; Salen, Gerald; Xu, Guorong

    2014-08-15

    It was proposed that CYP7A1 expression is suppressed through the gut-hepatic signaling pathway fibroblast growth factor (FGF) 15/19-fibroblast growth factor receptor 4, which is initiated by activation of farnesoid X receptor in the intestine rather than in the liver. The present study tested whether portal bile acid flux alone without ileal FGF19 could downregulate CYP7A1 expression in rabbits. A rabbit model was developed by infusing glycodeoxycholic acid (GDCA) through the splenic vein to bypass ileal FGF19. Study was conducted in four groups of rabbits: control; bile fistula + bovine serum albumin solution perfusion (BF); BF + GDCA (by portal perfusion); and BF + GDCA-f (by femoral perfusion). Compared with only BF, BF + GDCA (6 h portal perfusion) suppressed CYP7A1 mRNA, whereas BF + GDCA-f (via femoral vein) with the same perfusion rate of GDCA did not show inhibitory effects. Meanwhile, there was a decrease in ileal FGF19 expression and portal FGF19 protein levels, but an equivalent increase in biliary bile acid outputs in both GDCA perfusion groups. This study demonstrated that portal bile acid flux alone downregulated CYP7A1 expression with diminished FGF19 expression and protein levels, whereas the same bile acid flux reaching the liver through the hepatic artery via femoral vein had no inhibitory effect on CYP7A1. We propose that bile acid flux through the portal venous system may be a kind of "intestinal factor" that suppresses CYP7A1 expression.

  6. Disruption of the Suprachiasmatic Nucleus in Fibroblast Growth Factor Signaling-Deficient Mice

    PubMed Central

    Miller, Ann V.; Kavanaugh, Scott I.; Tsai, Pei-San

    2016-01-01

    Fibroblast growth factor (Fgf) 8 is essential for the development of multiple brain regions. Previous studies from our laboratory showed that reduced Fgf8 signaling led to the developmental alterations of neuroendocrine nuclei that originated within the diencephalon, including the paraventricular (PVN) and supraoptic (SON) nuclei. To further understand the role of Fgf8 in the development of other hypothalamic nuclei, we examined if Fgf8 and its cognate receptor, Fgfr1, also impact the integrity of the suprachiasmatic nuclei (SCN). The SCN control an organism’s circadian rhythm and contain vasoactive intestinal peptide (VIP)-producing neurons as the main input neurons. Mice hypomorphic for Fgf8, Fgfr1, or both were examined for their SCN volume and the number of VIP neurons on postnatal day (PN) 0; adult hypomorphic mice were further examined for SCN function by quantifying SCN neuronal activation using cFos as a marker. On PN0, mice homozygous for Fgf8 hypomorphy displayed the most severe reduction of the SCN volume and VIP neurons. Those heterozygous for Fgf8 hypomorphy alone or Fgf8 combined with Fgfr1 hypomorphy, called double heterozygotes (DH), showed normal SCN volume but significantly reduced VIP neurons, albeit less severely than the homozygotes. Adult wild type, heterozygous Fgf8 hypomorphs (F8 Het), and DH mice were also examined for SCN cFos activation at three time points: 1 h (morning), 6 h (afternoon), and 11 h (evening) after light onset. In F8 Het mice, a significant change in the pattern of cFos immunostaining that may reflect delayed morning SCN activation was observed. Overall, our studies provide evidence supporting that deficiencies in Fgf8 not only impact the structural integrity of the SCN but also the pattern of SCN activation in response to light. PMID:26903947

  7. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling

    PubMed Central

    Shimizu, Noriaki; Maruyama, Takako; Yoshikawa, Noritada; Matsumiya, Ryo; Ma, Yanxia; Ito, Naoki; Tasaka, Yuki; Kuribara-Souta, Akiko; Miyata, Keishi; Oike, Yuichi; Berger, Stefan; Schütz, Günther; Takeda, Shin’ichi; Tanaka, Hirotoshi

    2015-01-01

    Skeletal muscle has a pleiotropic role in organismal energy metabolism, for example, by storing protein as an energy source, or by excreting endocrine hormones. Muscle proteolysis is tightly controlled by the hypothalamus-pituitary-adrenal signalling axis via a glucocorticoid-driven transcriptional programme. Here we unravel the physiological significance of this catabolic process using skeletal muscle-specific glucocorticoid receptor (GR) knockout (GRmKO) mice. These mice have increased muscle mass but smaller adipose tissues. Metabolically, GRmKO mice show a drastic shift of energy utilization and storage in muscle, liver and adipose tissues. We demonstrate that the resulting depletion of plasma alanine serves as a cue to increase plasma levels of fibroblast growth factor 21 (FGF21) and activates liver-fat communication, leading to the activation of lipolytic genes in adipose tissues. We propose that this skeletal muscle-liver-fat signalling axis may serve as a target for the development of therapies against various metabolic diseases, including obesity. PMID:25827749

  8. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  9. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  10. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When...

  11. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex.

    PubMed

    Foltz, Ian N; Hu, Sylvia; King, Chadwick; Wu, Xinle; Yang, Chaofeng; Wang, Wei; Weiszmann, Jennifer; Stevens, Jennitte; Chen, Jiyun Sunny; Nuanmanee, Noi; Gupte, Jamila; Komorowski, Renee; Sekirov, Laura; Hager, Todd; Arora, Taruna; Ge, Hongfei; Baribault, Helene; Wang, Fen; Sheng, Jackie; Karow, Margaret; Wang, Minghan; Luo, Yongde; McKeehan, Wallace; Wang, Zhulun; Véniant, Murielle M; Li, Yang

    2012-11-28

    Fibroblast growth factor 21 (FGF21) is a distinctive member of the FGF family with potent beneficial effects on lipid, body weight, and glucose metabolism and has attracted considerable interest as a potential therapeutic for treating diabetes and obesity. As an alternative to native FGF21, we have developed a monoclonal antibody, mimAb1, that binds to βKlotho with high affinity and specifically activates signaling from the βKlotho/FGFR1c (FGF receptor 1c) receptor complex. In obese cynomolgus monkeys, injection of mimAb1 led to FGF21-like metabolic effects, including decreases in body weight, plasma insulin, triglycerides, and glucose during tolerance testing. Mice with adipose-selective FGFR1 knockout were refractory to FGF21-induced improvements in glucose metabolism and body weight. These results in obese monkeys (with mimAb1) and in FGFR1 knockout mice (with FGF21) demonstrated the essential role of FGFR1c in FGF21 function and suggest fat as a critical target tissue for the cytokine and antibody. Because mimAb1 depends on βKlotho to activate FGFR1c, it is not expected to induce side effects caused by activating FGFR1c alone. The unexpected finding of an antibody that can activate FGF21-like signaling through cell surface receptors provided preclinical validation for an innovative therapeutic approach to diabetes and obesity.

  12. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders

    PubMed Central

    Lehtonen, Jenni M.; Forsström, Saara; Bottani, Emanuela; Viscomi, Carlo; Baris, Olivier R.; Isoniemi, Helena; Höckerstedt, Krister; Österlund, Pia; Hurme, Mikko; Jylhävä, Juulia; Leppä, Sirpa; Markkula, Ritva; Heliö, Tiina; Mombelli, Giuliana; Uusimaa, Johanna; Laaksonen, Reijo; Laaksovirta, Hannu; Auranen, Mari; Zeviani, Massimo; Smeitink, Jan; Wiesner, Rudolf J.; Nakada, Kazuto; Isohanni, Pirjo

    2016-01-01

    Objective: To validate new mitochondrial myopathy serum biomarkers for diagnostic use. Methods: We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different muscle-manifesting mitochondrial dysfunctions. Results: We report that S-FGF21 consistently increases in primary mitochondrial myopathy, especially in patients with mitochondrial translation defects or mitochondrial DNA (mtDNA) deletions (675 and 347 pg/mL, respectively; controls: 66 pg/mL, p < 0.0001 for both). This is corroborated in mice (mtDNA deletions 1,163 vs 379 pg/mL, p < 0.0001). However, patients and mice with structural respiratory chain subunit or assembly factor defects showed low induction (human 335 pg/mL, p < 0.05; mice 335 pg/mL, not significant). Overall specificities of FGF21 and GDF15 to find patients with mitochondrial myopathy were 89.3% vs 86.4%, and sensitivities 67.3% and 76.0%, respectively. However, GDF15 was increased also in a wide range of nonmitochondrial conditions. Conclusions: S-FGF21 is a specific biomarker for muscle-manifesting defects of mitochondrial translation, including mitochondrial transfer-RNA mutations and primary and secondary mtDNA deletions, the most common causes of mitochondrial disease. However, normal S-FGF21 does not exclude structural respiratory chain complex or assembly factor defects, important to acknowledge in diagnostics. Classification of evidence: This study provides Class III evidence that elevated S-FGF21 accurately distinguishes patients with mitochondrial myopathies from patients with other conditions, and FGF21 and GDF15 mitochondrial myopathy from other myopathies. PMID:27794108

  13. Effects of bFGF incorporated into a gelatin sheet on wound healing.

    PubMed

    Miyoshi, Michiyo; Kawazoe, Takeshi; Igawa, Hiroharu H; Tabata, Yasuhiko; Ikada, Yoshito; Suzuki, Shigehiko

    2005-01-01

    Basic fibroblast growth factor (bFGF) is well known to promote the proliferation of almost all cells associated with wound healing. However, as the activation duration of bFGF is very short in vivo, we incorporated bFGF into an acidic gelatin hydrogel and studied the sustained release of bFGF in vivo. In addition, we investigated the effects of the acidic gelatin sheet containing bFGF on wound healing. To distinguish wound contraction from neoepithelialization, we measured both the wound area and neoepithelium length. Other histological parameters such as thickness of granulation tissue and number of capillaries were also determined as indices of wound healing. Fibrous tissue was assessed using an Elastica van Gieson and Azan stain. A skin defect (1.5 x 1.5 cm) of full thickness was created on the back of each test mouse and the wound was covered with an acidic gelatin hydrogel, referred to as a gelatin sheet in this study (2 x 2 cm), with bFGF (100 microg/site) (A) or without bFGF (B). 1, 2, 3, 5, 7 and 14 days after covering, mice were killed and an enzyme-linked immunosorbent assay (ELISA) was performed to estimate the concentration of bFGF in the plasma. In another experiment, each wound was covered with (A), (B) or a hydrogel dressing (control group, C) and the wound area was measured 1 or 2 weeks postoperatively with a computer planimeter. The histological parameters, as mentioned above, were assessed using a light microscope. Sustained release of bFGF from the gelatin sheet was observed and the gelatin sheet containing bFGF promoted neoepithelialization, granulation, neovascularization and wound closure. This gelatin sheet containing bFGF was concluded to be effective for wound healing and promising for clinical use.

  14. Identification of novel Fgf enhancers and their role in dental evolution.

    PubMed

    Tapaltsyan, Vagan; Charles, Cyril; Hu, Jianxin; Mindell, David; Ahituv, Nadav; Wilson, Gregory M; Black, Brian L; Viriot, Laurent; Klein, Ophir D

    2016-01-01

    Mammalian dental morphology is under strong evolutionary pressure because of its importance for mastication and diet. While the mechanisms underlying tooth development have been widely studied in model organisms, the role of genetic regulatory elements in patterning the different elements of the occlusal surface and crown height across species is not well understood. Previous studies showed that Fibroblast Growth Factor (FGF) genes are important regulators of tooth development that influence morphological variation. We hypothesized that inter-specific variation in rodent dental morphology could be governed by nucleotide variation in genetic regulatory elements that modulate the spatial and temporal expression of the genes encoding FGF signaling molecules. In this study, we compared the variation in dental morphology across nine taxa of rodents to the variation in sequences of non-coding evolutionary conserved regions (ECRs) of Fgf3, 4, 8, 9, and 10. We correlated the variation in molar tooth cusp shape and the evolution of high molar crowns (hypsodonty) to the patterns of sequence variation in two ECRs, Fgf10ECR3, and Fgf9ECR1, respectively. By conducting luciferase and electrophoretic mobility shift assays, we determined that these ECRs could function as enhancers. These data suggest that emergence of hypsodonty and occlusal cusp patterning may have happened through the evolutionary changes in enhancers, such as Fgf9ECR1 and Fgf10ECR3, which affected the expression of major signaling molecules involved in tooth development.

  15. An ES-Like Pluripotent State in FGF-Dependent Murine iPS cells

    PubMed Central

    Ungaro, Federica; Prigione, Alessandro; Chen, Hsu-Hsin; Welling, Maaike; Eijpe, Maureen; Mostoslavsky, Gustavo; Tesar, Paul; Adjaye, James; Geijsen, Niels; Broccoli, Vania

    2010-01-01

    Recent data demonstrates that stem cells can exist in two morphologically, molecularly and functionally distinct pluripotent states; a naïve LIF-dependent pluripotent state which is represented by murine embryonic stem cells (mESCs) and an FGF-dependent primed pluripotent state represented by murine and rat epiblast stem cells (EpiSCs). We find that derivation of induced pluripotent stem cells (iPSCs) under EpiSC culture conditions yields FGF-dependent iPSCs from hereon called FGF-iPSCs) which, unexpectedly, display naïve ES-like/ICM properties. FGF-iPSCs display X-chromosome activation, multi-lineage differentiation, teratoma competence and chimera contribution in vivo. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions. Characterization of the key molecular signalling pathways revealed FGF-iPSCs to depend on the Activin/Nodal and FGF pathways, while signalling through the JAK-STAT pathway is not required for FGF-iPS cell maintenance. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions. PMID:21209851

  16. Identification of novel Fgf enhancers and their role in dental evolution

    PubMed Central

    Tapaltsyan, Vagan; Charles, Cyril; Hu, Jianxin; Mindell, David; Ahituv, Nadav; Wilson, Gregory M.; Black, Brian L.; Viriot, Laurent; Klein, Ophir D.

    2016-01-01

    Mammalian dental morphology is under strong evolutionary pressure because of its importance for mastication and diet. While the mechanisms underlying tooth development have been widely studied in model organisms, the role of genetic regulatory elements in patterning the different elements of the occlusal surface and crown height across species is not well understood. Previous studies showed that Fibroblast Growth Factor (FGF) genes are important regulators of tooth development that influence morphological variation. We hypothesized that interspecific variation in rodent dental morphology could be governed by nucleotide variation in genetic regulatory elements that modulate the spatial and temporal expression of the genes encoding FGF signalling molecules. In this study, we compared the variation in dental morphology across nine taxa of rodents to the variation in sequences of non-coding evolutionary conserved regions (ECRs) of Fgf3, 4, 8, 9, and 10. We correlated the variation in molar tooth cusp shape and the evolution of high molar crowns (hypsodonty) to the patterns of sequence variation in two ECRs, Fgf10ECR3 and Fgf9ECR1, respectively. By conducting luciferase and electrophoretic mobility shift assays, we determined that these ECRs could function as enhancers. These data suggest that emergence of hypsodonty and occlusal cusp patterning may have happened through the evolutionary changes in enhancers, such as Fgf9ECR1 and Fgf10ECR3, which affected the expression of major signaling molecules involved in tooth development. PMID:26086993

  17. Identification of new FGF1 binding partners—Implications for its intracellular function

    PubMed Central

    Bober, Joanna; Olsnes, Sjur; Kostas, Michal; Bogacz, Marek

    2016-01-01

    Abstract Besides its classical mode of action through activation of specific receptors at the cell surface, fibroblast growth factor 1 (FGF1) can also cross the cellular membrane and translocate into the cytosol and further to the nucleus. The mechanism of this translocation is described partially, but the role of FGF1 inside the cell remains unknown. The aim of our work was to identify novel binding partners of FGF1 to predict its intracellular functions. We combined three methods of identification of such partners based on different principles: yeast two‐hybrid screen and mass spectrometry (MS) analysis of complexes obtained by Tandem Affinity Purification (TAP) or by co‐precipitation from cell lysate using recombinant FGF1. Altogether, we identified twenty novel intracellular proteins interacting with FGF1. For selected proteins, their direct interaction with FGF1 was confirmed by pull‐down assays and SPR measurements. Interestingly, half of the proteins found are involved in processes related to cell viability, such as apoptosis, cell proliferation, and cell cycle regulation. Thus, our study indicates that the role of intracellular FGF1 is to protect the cell against stress conditions by providing an additional signal for cell survival, independently of receptor‐activated signaling cascades. © 2016 IUBMB Life, 68(3):242–251, 2016 PMID:26840910

  18. Roles of FGFs As Paracrine or Endocrine Signals in Liver Development, Health, and Disease

    PubMed Central

    Itoh, Nobuyuki; Nakayama, Yoshiaki; Konishi, Morichika

    2016-01-01

    The liver plays important roles in multiple processes including metabolism, the immune system, and detoxification and also has a unique capacity for regeneration. FGFs are growth factors that have diverse functions in development, health, and disease. The FGF family now comprises 22 members. Several FGFs have been shown to play roles as paracrine signals in liver development, health, and disease. FGF8 and FGF10 are involved in embryonic liver development, FGF7 and FGF9 in repair in response to liver injury, and FGF5, FGF8, FGF9, FGF17, and FGF18 in the development and progression of hepatocellular carcinoma. In contrast, FGF15/19 and FGF21 are endocrine signals. FGF15/19, which is produced in the ileum, is a negative regulator of bile acid metabolism and a stimulator of gallbladder filling. FGF15/19 is a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. It is also required for hepatocellular carcinoma and liver regeneration. FGF21 is a hepatokine produced in the liver. FGF21 regulates glucose and lipid metabolism in white adipose tissue. Serum FGF21 levels are elevated in non-alcoholic fatty liver. FGF21 also protects against non-alcoholic fatty liver. These findings provide new insights into the roles of FGFs in the liver and potential therapeutic strategies for hepatic disorders. PMID:27148532

  19. Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development.

    PubMed

    Macatee, Timothy L; Hammond, Benjamin P; Arenkiel, Benjamin R; Francis, Lily; Frank, Deborah U; Moon, Anne M

    2003-12-01

    Fibroblast growth factor 8 (Fgf8) is expressed in many domains of the developing embryo. Globally decreased FGF8 signaling during murine embryogenesis results in a hypomorphic phenotype with a constellation of heart, outflow tract, great vessel and pharyngeal gland defects that phenocopies human deletion 22q11 syndromes, such as DiGeorge. We postulate that these Fgf8 hypomorphic phenotypes result from disruption of local FGF8 signaling from pharyngeal arch epithelia to mesenchymal cells populating and migrating through the third and fourth pharyngeal arches. To test our hypothesis, and to determine whether the pharyngeal ectoderm and endoderm Fgf8 expression domains have discrete functional roles, we performed conditional mutagenesis of Fgf8 using novel Crerecombinase drivers to achieve domain-specific ablation of Fgf8 gene function in the pharyngeal arch ectoderm and endoderm. Remarkably, ablating FGF8 protein in the pharyngeal arch ectoderm causes failure of formation of the fourth pharyngeal arch artery that results in aortic arch and subclavian artery anomalies in 95% of mutants; these defects recapitulate the spectrum and frequency of vascular defects reported in Fgf8 hypomorphs. Surprisingly, no cardiac, outflow tract or glandular defects were found in ectodermal-domain mutants, indicating that ectodermally derived FGF8 has essential roles during pharyngeal arch vascular development distinct from those in cardiac, outflow tract and pharyngeal gland morphogenesis. By contrast, ablation of FGF8 in the third and fourth pharyngeal endoderm and ectoderm caused glandular defects and bicuspid aortic valve, which indicates that the FGF8 endodermal domain has discrete roles in pharyngeal and valvar development. These results support our hypotheses that local FGF8 signaling from the pharyngeal epithelia is required for pharyngeal vascular and glandular development, and that the pharyngeal ectodermal and endodermal domains of FGF8 have separate functions.

  20. Piwi-like 2 mediates fibroblast growth factor signaling during gastrulation of zebrafish embryo.

    PubMed

    Zhao, Jun; Sun, Huaqin; Deng, Wenqian; Li, Dan; Liu, Yanyan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2010-09-01

    Piwi (P-element-induced wimpy testis) proteins have been shown to play important roles in maintenance of germ line stem cells, germ cell proliferation and differentiation, and control of Piwi-interacting RNAs (PiRNAs). PiRNAs comprise a broad class of small noncoding RNAs that function as an endogenous defense system against transposable elements. Fibroblast growth factor (Fgf) signals, mediated partly by no tail gene (ntl), are responsible for patterning embryo and mesoderm formation. To understand the function of Piwi proteins, we used zebrafish as a model system. In zebrafish, piwi-like 2 gene (piwil2) is also required for germ cell differentiation and meiosis. Here we report that piwil2 knockdown is able to inhibit the expression of fibroblast growth factor 8a (fgf8a). In contrast, injection with piwil2 mRNA enhances fgf8a expression. Knockdown of piwil2 reduces the inductive effect of fgf8a on dorsalized phenotype, in which embryos extend to an oval shape at the end of epiboly stage. Coinjection with fgf8a and piwil2 mRNAs led to more seriously dorsalized phenotype than coinjection with fgf8a mRNA and piwil2-cMO. In addition, knockdown of piwil2 inhibits the inductive effect of fgf8a on ntl, whereas overexpression of piwil2 enhances the inductive effect of fgf8a on ntl. We also demonstrate that piwil2 positively regulates ntl expression at bud stage, while piwil2 negatively regulates ntl expression at 24 hours post-fertilization. Thus, the functional consequences of piwil2 expression vary during early development of zebrafish embryo. Taken together, we suggest that zebrafish piwil2 is a mediator of Fgf signals in gastrula period.

  1. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs.

    PubMed

    Nagayasu-Tanaka, Toshie; Anzai, Jun; Takaki, Shu; Shiraishi, Noriko; Terashima, Akio; Asano, Taiji; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL.

  2. FGF-1 affixation stimulates ePTFE endothelialization without intimal hyperplasia.

    PubMed

    Gray, J L; Kang, S S; Zenni, G C; Kim, D U; Kim, P I; Burgess, W H; Drohan, W; Winkles, J A; Haudenschild, C C; Greisler, H P

    1994-11-01

    The affixation of FGF-1 to porous vascular grafts has been reported to stimulate capillary ingrowth and surface endothelialization. The current study further characterizes responses to fibroblast growth factor (FGF)-1 affixation to 30-cm-long grafts followed 140 days. ePTFE grafts (30 cm x 8 mm i.d.), 60 microns internodal distance, were impregnated with fibrin glue (FG) suspensions containing FGF-1 and heparin. Two negative control groups were treated either with FG with heparin alone or left untreated. Grafts were explanted from the canine thoracoabdominal aortic position after 10, 30, or 140 days (n = 3/time/group) 10 hr after im injection of tritiated thymidine (0.5 muCi/kg). Specimens were studied by light and electron microscopy, immunohistochemistry, morphometric analyses, and cross-sectional autoradiography. RNA preparations from inner capsule tissues were used for reverse transcription-polymerase chain reaction (RT-PCR) analyses of FGF-1, FGF-2, transforming growth factor-beta 1, (TGF-beta 1) and FGF receptor mRNA species. Inner capsule collagen was quantitated by hydroxyproline colorimetry. Histologic analyses of perianastomotic regions were performed for comparison purposes. All explants were patent and without intimal hyperplasia. Progressive capillarization of the internodal spaces occurred over time and was significantly more extensive in the FGF-1-treated group. Endothelialization of the luminal surface increased with time, at 140 days covering 86.7 +/- 11.6% of the FGF-1 explants vs 46.1 +/- 7.5% and 48.1 +/- 13.3% in the other groups, P < 0.007 and P < 0.04, respectively. Inner capsule thickness at 140 days differed significantly (P < 0.05) between the FGF-1 group (138.8 microns) vs either control group (93 and 67 microns, respectively), which did not significantly differ from each other. Cross-sectional autoradiography demonstrated an FGF-1-induced mitotic index increase at 30 days, 9.6 +/- 4.4% compared to 2.5 +/- 1.0 and 0 +/- 0%, respectively

  3. A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning

    NASA Astrophysics Data System (ADS)

    Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

    Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from

  4. Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.

    PubMed

    Nowak, Matthias; Machate, Anja; Yu, Shuizi Rachel; Gupta, Mansi; Brand, Michael

    2011-02-01

    Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.

  5. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    NASA Astrophysics Data System (ADS)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  6. Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1*

    PubMed Central

    Beenken, Andrew; Eliseenkova, Anna V.; Ibrahimi, Omar A.; Olsen, Shaun K.; Mohammadi, Moosa

    2012-01-01

    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs. PMID:22057274

  7. Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia.

    PubMed

    Tekin, M; Oztürkmen Akay, H; Fitoz, S; Birnbaum, S; Cengiz, F B; Sennaroğlu, L; Incesulu, A; Yüksel Konuk, E B; Hasanefendioğlu Bayrak, A; Sentürk, S; Cebeci, I; Utine, G E; Tunçbilek, E; Nance, W E; Duman, D

    2008-06-01

    Homozygous mutations in the fibroblast growth factor 3 (FGF3) gene have recently been discovered in an autosomal recessive form of syndromic deafness characterized by complete labyrinthine aplasia (Michel aplasia), microtia, and microdontia (OMIM 610706 - LAMM). In order to better characterize the phenotypic spectrum associated with FGF3 mutations, we sequenced the FGF3 gene in 10 unrelated families in which probands had congenital deafness associated with various inner ear anomalies, including Michel aplasia, with or without tooth or external ear anomalies. FGF3 sequence changes were not found in eight unrelated probands with isolated inner ear anomalies or with a cochlear malformation along with auricle and tooth anomalies. We identified two new homozygous FGF3 mutations, p.Leu6Pro (c.17T>C) and p. Ile85MetfsX15 (c.254delT), in four subjects from two unrelated families with LAMM. The p.Leu6Pro mutation occurred within the signal site of FGF3 and is predicted to impair its secretion. The c.254delT mutation results in truncation of FGF3. Both mutations completely co-segregated with the phenotype, and heterozygotes did not have any of the phenotypic findings of LAMM. Some affected children had large skin tags on the upper side of the auricles, which is a distinctive clinical component of the syndrome. Enlarged collateral emissary veins associated with stenosis of the jugular foramen were noted on computerized tomographies of most affected subjects with FGF3 mutations. However, similar venous anomalies were also detected in persons with non-syndromic Michel aplasia, suggesting that a direct causative role of impaired FGF3 signaling is unlikely.

  8. Haplotypes in BMP4 and FGF Genes Increase the Risk of Peri-Implantitis.

    PubMed

    Coelho, Renata Barboza; Gonçalves, Roberto; Villas-Boas, Ricardo de Mello; Bonato, Leticia Ladeira; Quinelato, Valquiria; Pinheiro, Aristides da Rosa; Machado, Aldir; Nunes, Carlos Henrique Ramirez; Gonçalves, Rackel; Vieira, Alexandre Resende; Granjeiro, José Mauro; Casado, Priscila Ladeira

    2016-01-01

    Despite the success of osseointegrated implants, failures have increased significantly, associated with development of peri-implantitis. Multiple factors influence the peri-implant bone loss, including environmental and genetic causes. BMPs (Bone morphogenetic proteins) are growth factors that induce bone formation. FGF (fibroblast growth factors) and their receptors (FGFRs) play important roles by controlling the levels of cell proliferation, differentiation and migration. BMP/FGF relationship is responsible for promoting bone regeneration and bone loss. The aim of this study was to analyze the correlation between BMP4, FGF3, FGF10 and FGFR1 genes and peri-implant bone loss. Two hundred and fifteen volunteers, with 754 dental implants, were submitted to oral examination and divided in healthy group (n=129) and peri-implantitis group (n=86). Thirteen polymorphisms in BMP4, FGF3, FGF10 and FGFR1 genes were analyzed individually and in haplotype. The chi-square test correlated genotypes, allelic and haplotype frequencies. Values of p<0.05 were considered significant. Volunteers with peri-implantitis demonstrated high incidence of total edentulism (p<0.0001) and thin peri-implant phenotype (p<0.04). Higher incidence of spontaneous bleeding, plaque and implant mobility was observed in peri-implantitis group (p<0.0001 for all). The TT polymorphic genotype for BMP4 rs2761884 was associated with healthy peri-implant (p=0.01). FGF3 rs4631909 (TT+CT genotype) also showed association with the control group (p=0.04). The frequency of C allele for FGF3 rs4631909 showed a tendency for association with peri-implantitis (p=0.08). FGF10 CCTG (p=0.03), BMP4 GAAA (p=0.05) and GGGA (p=0.02) haplotypes were associated with peri-implantitis (p=0.03). Therefore, it may be concluded that BMP4 and FGF10 haplotypes are associated with peri-implantitis.

  9. Signalling and obfuscation for congestion control

    NASA Astrophysics Data System (ADS)

    Mareček, Jakub; Shorten, Robert; Yu, Jia Yuan

    2015-10-01

    We aim to reduce the social cost of congestion in many smart city applications. In our model of congestion, agents interact over limited resources after receiving signals from a central agent that observes the state of congestion in real time. Under natural models of agent populations, we develop new signalling schemes and show that by introducing a non-trivial amount of uncertainty in the signals, we reduce the social cost of congestion, i.e., improve social welfare. The signalling schemes are efficient in terms of both communication and computation, and are consistent with past observations of the congestion. Moreover, the resulting population dynamics converge under reasonable assumptions.

  10. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance.

    PubMed

    Schreuder, Tim C M A; Marsman, Hendrik A; Lenicek, Martin; van Werven, Jochem R; Nederveen, Aart J; Jansen, Peter L M; Schaap, Frank G

    2010-03-01

    Intestinal FGF19 has emerged as a novel endocrine regulator of hepatic bile salt and lipid metabolism. In patients with nonalcoholic fatty liver disease (NAFLD) hepatic lipid metabolism is deranged. A possible role of FGF19 in NAFLD has not been reported yet. In this study, we assessed intestinal FGF19 production and the hepatic response to FGF19 in NAFLD patients with and without insulin resistance [homeostasis model of assessment (HOMA) score > or =2.5 (n = 12) and HOMA score <2.5 (n = 8), respectively]. To this end, NAFLD patients received a standardized oral fat challenge. Postprandial excursions of triglycerides, bile salts, and FGF19 were monitored, and plasma levels of a marker for bile salt synthesis (7alpha-hydroxy-4-cholesten-3-one) were determined. Fasted FGF19 levels were comparable in a control group of healthy volunteers (n = 15) and in NAFLD patients (0.26 +/- 0.28 vs. 0.18 +/- 0.09 ng/ml, respectively, P = 0.94). Postprandial FGF19 levels in both controls and NAFLD patients peaked between 3-4 h and were three times higher than baseline levels. The areas under the postprandial FGF19 curve were similar in controls and in the HOMA score-based NAFLD subgroups. In NAFLD patients with HOMA score <2.5, the postprandial increase in plasma FGF19 was accompanied by a lowering of plasma levels of 7alpha-hydroxy-4-cholesten-3-one (-30%, P = 0.015). This anticipated decline was not observed in insulin-resistant NAFLD patients (+10%, P = 0.22). In conclusion, patients with NAFLD show an unimpaired intestinal FGF19 production. However, the hepatic response to FGF19 is impaired in NAFLD patients with insulin resistance (HOMA score > or =2.5). This impaired hepatic response to FGF19 may contribute to the dysregulation of lipid homeostasis in NAFLD.

  11. Disruption of Fgf13 causes synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus.

    PubMed

    Puranam, Ram S; He, Xiao Ping; Yao, Lijun; Le, Tri; Jang, Wonjo; Rehder, Catherine W; Lewis, Darrell V; McNamara, James O

    2015-06-10

    We identified a family in which a translocation between chromosomes X and 14 was associated with cognitive impairment and a complex genetic disorder termed "Genetic Epilepsy and Febrile Seizures Plus" (GEFS(+)). We demonstrate that the breakpoint on the X chromosome disrupted a gene that encodes an auxiliary protein of voltage-gated Na(+) channels, fibroblast growth factor 13 (Fgf13). Female mice in which one Fgf13 allele was deleted exhibited hyperthermia-induced seizures and epilepsy. Anatomic studies revealed expression of Fgf13 mRNA in both excitatory and inhibitory neurons of hippocampus. Electrophysiological recordings revealed decreased inhibitory and increased excitatory synaptic inputs in hippocampal neurons of Fgf13 mutants. We speculate that reduced expression of Fgf13 impairs excitability of inhibitory interneurons, resulting in enhanced excitability within local circuits of hippocampus and the clinical phenotype of epilepsy. These findings reveal a novel cause of this syndrome and underscore the powerful role of FGF13 in control of neuronal excitability.

  12. Selective Regulation of FGF19 and FGF21 Expression by Cellular and Nutritional Stress.

    PubMed

    Shimizu, Makoto; Morimoto, Hitomi; Maruyama, Ryuto; Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Fibroblast growth factor 19 (FGF19) and FGF21 are members of a subfamily of the FGFs called endocrine FGFs. FGF19 regulates the bile acid synthetic pathway. FGF19 expression is induced by farnesoid X receptor (FXR), a nuclear hormone receptor activated by bile acids in the small intestine. FGF21 plays an important role in lipolysis that occurs in white adipose tissue. FGF21 expression is stimulated by the nuclear fatty acid receptor peroxisome proliferator-activated receptor α (PPARα) in the liver. FGF19 and FGF21 were recently identified as targets of activating transcription factor 4 (ATF4), which is activated in response to endoplasmic reticulum (ER) stress. ATF4 is also activated by oxidative stress and amino acid deprivation. In this study, we investigated FGF19 and FGF21 expression in response to oxidative stress and amino acid deprivation. We found that FGF19 mRNA is induced by oxidative stress inducers in Caco-2 cells, which are derived from the human intestinal epithelium, and rat intestinal epithelial IEC6 cells. In contrast, ileal FGF15 expression, the rodent ortholog of human FGF19, is not increased by oxidative stress. No notable changes in expression of FGF15/19 took place under amino acid deprivation either in vitro or in vivo. In contrast, FGF21 expression is induced by oxidative stress and amino acid deprivation both in vitro and in vivo. These results indicate distinctive patterns of regulation of FGF19 expression by ER stress, and FGF21 expression by ER stress, oxidative stress, and amino acid deprivation through ATF4 activation.

  13. FGF13 Selectively Regulates Heat Nociception by Interacting with Nav1.7.

    PubMed

    Yang, Liu; Dong, Fei; Yang, Qing; Yang, Pai-Feng; Wu, Ruiqi; Wu, Qing-Feng; Wu, Dan; Li, Chang-Lin; Zhong, Yan-Qing; Lu, Ying-Jin; Cheng, Xiaoyang; Xu, Fu-Qiang; Chen, Limin; Bao, Lan; Zhang, Xu

    2017-02-22

    The current knowledge about heat nociception is mainly confined to the thermosensors, including the transient receptor potential cation channel V1 expressed in the nociceptive neurons of dorsal root ganglion (DRG). However, the loss of thermosensors only partially impairs heat nociception, suggesting the existence of undiscovered mechanisms. We found that the loss of an intracellular fibroblast growth factor (FGF), FGF13, in the mouse DRG neurons selectively abolished heat nociception. The noxious heat stimuli could not evoke the sustained action potential firing in FGF13-deficient DRG neurons. Furthermore, FGF13 interacted with the sodium channel Nav1.7 in a heat-facilitated manner. FGF13 increased Nav1.7 sodium currents and maintained the membrane localization of Nav1.7 during noxious heat stimulation, enabling the sustained firing of action potentials. Disrupting the FGF13/Nav1.7 interaction reduced the heat-evoked action potential firing and nociceptive behavior. Thus, beyond the thermosensors, the FGF13/Nav1.7 complex is essential for sustaining the transmission of noxious heat signals.

  14. Endostar attenuates melanoma tumor growth via its interruption of b-FGF mediated angiogenesis.

    PubMed

    Xiao, Lijia; Yang, ShuCai; Hao, Jianhua; Yuan, Xue; Luo, Wei; Jiang, Liping; Hu, Yang; Fu, Zhongping; Zhang, Yun; Zou, Chang

    2015-04-01

    To develop optimal therapeutics is one of the hotspots in both clinical and basic melanoma studies. Previous studies indicate that fibroblast growth factors (b-FGF/FGF-2), an angiogenesis inducer beyond VEGF, might be a potential drug target in melanoma. As a novel anti-angiogenesis peptide drug, Endostar has shown promising therapeutic efficacy in non-small cell lung cancer. However, the effect of Endostar on b-FGF-induced angiogenesis in melanoma is unraveled. To this end, both in vivo and in vitro experiments were conducted and it was found that treatment of Endostar could inhibit tumor growth, which was accompanied by decreased micro-vessel density and serum b-FGF levels in a mouse melanoma model. In addition, treatment with Endostar in blood vessel endothelial cells could reduce their proliferation, cell migration and tube formation capacity in a dosage-dependent manner. Moreover, treatment of Endostar could also attenuate b-FGF-activated phosphorylation of p38 and ERK1/2 in HUVECs. These findings indicate that Endostar might exert its anti-tumor effect via suppressing b-FGF-induced angiogenesis and b-FGF-activated MAPK signaling pathway, suggesting that Endostar might be a potential choice for clinical melanoma treatment.

  15. Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2.

    PubMed

    Rumpel, R; Baron, O; Ratzka, A; Schröder, M-L; Hohmann, M; Effenberg, A; Claus, P; Grothe, C

    2016-02-09

    Fibroblast growth factors (FGFs) regulate development and maintenance, and reduce vulnerability of neurons. FGF-2 is essential for survival of midbrain dopaminergic (DA) neurons and is responsible for their dysplasia and disease-related degeneration. We previously reported that FGF-2 is involved in adequate forebrain (FB) target innervation by these neurons in an organotypic co-culture model. It remains unclear, how this ex-vivo phenotype relates to the in vivo situation, and which FGF-related signaling pathway is involved in this process. Here, we demonstrate that lack of FGF-2 results in an increased volume of the striatal target area in mice. We further add evidence that the low molecular weight (LMW) FGF-2 isoform is responsible for this phenotype, as this isoform is predominantly expressed in the embryonic ventral midbrain (VM) as well as in postnatal striatum (STR) and known to act via canonical transmembrane FGF receptor (FGFR) activation. Additionally, we confirm that the phenotype with an enlarged FB-target area by DA neurons can be mimicked in an ex-vivo explant model by inhibiting the canonical FGFR signaling, which resulted in decreased extracellular signal-regulated kinase (ERK) activation, while AKT activation remained unchanged.

  16. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual

  17. Subcellular optogenetics – controlling signaling and single-cell behavior

    PubMed Central

    Karunarathne, W. K. Ajith; O'Neill, Patrick R.; Gautam, Narasimhan

    2015-01-01

    ABSTRACT Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide. PMID:25433038

  18. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho.

    PubMed

    Fu, Ting; Choi, Sung-E; Kim, Dong-Hyun; Seok, Sunmi; Suino-Powell, Kelly M; Xu, H Eric; Kemper, Jongsook Kim

    2012-10-02

    MicroRNA-34a (miR-34a) is the most highly elevated hepatic miR in obese mice and is also substantially elevated in patients who have steatosis, but its role in obesity and metabolic dysfunction remains unclear. After a meal, FGF19 is secreted from the ileum; binds to a hepatic membrane receptor complex, FGF19 receptor 4 and coreceptor β-Klotho (βKL); and mediates postprandial responses under physiological conditions, but hepatic responses to FGF19 signaling were shown to be impaired in patients with steatosis. Here, we show an unexpected functional link between aberrantly elevated miR-34a and impaired βKL/FGF19 signaling in obesity. In vitro studies show that miR-34a down-regulates βKL by binding to the 3' UTR of βKL mRNA. Adenoviral-mediated overexpression of miR-34a in mice decreased hepatic βKL levels, impaired FGF19-activated ERK and glycogen synthase kinase signaling, and altered expression of FGF19 metabolic target genes. Consistent with these results, βKL levels were decreased and hepatic responses to FGF19 were severely impaired in dietary obese mice that have elevated miR-34a. Remarkably, in vivo antisense inhibition of miR-34a in obese mice partially restored βKL levels and improved FGF19 target gene expression and metabolic outcomes, including decreased liver fat. Further, anti-miR-34a treatment in primary hepatocytes of obese mice restored FGF19-activated ERK and glycogen synthase kinase signaling in a βKL-dependent manner. These results indicate that aberrantly elevated miR-34a in obesity attenuates hepatic FGF19 signaling by directly targeting βKL. The miR-34a/βKL/FGF19 axis may present unique therapeutic targets for FGF19-related human diseases, including metabolic disorders and cancer.

  19. [FGF23 and the heart].

    PubMed

    Ezumba, I; Quarles, L D; Kovesdy, C P

    2014-01-01

    The prevalence of chronic kidney disease (CKD) has now reached epidemic proportions and it is very likely that it will continue to rise with the increasing prevalence of juvenile diabetes mellitus, hypertension and aging population. CKD is a risk factor for cardiovascular disease (CVD) and cardiovascular disease can lead to CKD. It is also well known that patients with CKD have a higher risk of death from CVD than of progressing to end-stage renal disease that requires renal replacement therapy. In patients with CKD, there is a higher mortality from sudden cardiac death and congestive heart failure than coronary artery disease, which is not the case in the general population. The high prevalence of congestive heart failure in CKD is due to cardiac remodeling which progresses from concentric remodeling to concentric and eccentric hypertrophy, leading to left ventricular hypertrophy with both systolic and diastolic dysfunction. Recent studies have suggested that, in patients with chronic kidney disease, common traditional risk factors for cardiovascular disease such as hypertension, hyperlipidemia and obesity may not be the main determinants of cardiovascular disease. Among the various non-traditional cardiovascular risk factors present in patients with chronic kidney disease, abnormalities of CKD related mineral and bone disorder, which includes elevated fibroblast growth factor 23 (FGF23) have been one of the most extensively studied. However, after many years of research, the debate over the exact pathways by which FGF23 may lead to increased CVD still continues. FGF23 may have both direct and indirect effects on the cardiovascular system. Better understanding of the most relevant pathophysiologic pathways for FGF23 may lead to therapeutic interventions against cardiovascular disease in patients with CKD.

  20. Calcium regulates FGF-23 expression in bone.

    PubMed

    David, Valentin; Dai, Bing; Martin, Aline; Huang, Jinsong; Han, Xiaobin; Quarles, L Darryl

    2013-12-01

    Calcium has recently been shown to regulate fibroblast growth factor 23 (FGF-23), a bone-derived phosphate and vitamin D-regulating hormone. To better understand the regulation of FGF-23 by calcium, phosphorus, 1,25 dihydroxyvitamin D3 [1,25(OH)2D], and PTH, we examined FGF-23 expression under basal conditions and in response to PTH, doxercalciferol, or high-calcium diet treatment in Gcm2(-/-) and Cyp27b1(-/-) mutant mice. Gcm2(-/-) mice exhibited low serum PTH and 1,25(OH)2D concentrations, hypocalcemia, and hyperphosphatemia, whereas Cyp27b1(-/-) mice had high PTH, undetectable 1,25(OH)2D, hypocalcemia, and hypophosphatemia. Serum FGF-23 levels were decreased in both mutant models. Doxercalciferol administration increased serum FGF-23 levels in both mutant models. PTH administration to Gcm2(-/-) mice also increased serum FGF-23 levels, in association with an increase in both 1,25(OH)2D and calcium concentrations. Multiple regression analysis of pooled data indicated that changes in FGF-23 were positively correlated with serum calcium and 1,25(OH)2D but not related to changes in serum phosphate concentrations. A high-calcium diet also increased serum FGF-23 concentrations in Cyp27b1(-/-) mice in the absence of 1,25(OH)2D and in Gcm2(-/-) mice with low PTH. The addition of calcium to the culture media also stimulated FGF-23 message expression in MC3T3-E1 osteoblasts. In addition, FGF-23 promoter activity in cultured osteoblasts was inhibited by the L-calcium-channel inhibitor nifedipine and stimulated by calcium ionophores. The effects of chronic low calcium to prevent 1,25(OH)2D and PTH stimulation of FGF-23 in these mutant mouse models suggest that suppression of FGF-23 plays an important physiological adaptive response to hypocalcemia.

  1. Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule

    PubMed Central

    Portale, Anthony A.; Zhang, Martin Y. H.; David, Valentin; Martin, Aline; Jiao, Yan; Gu, Weikuan; Perwad, Farzana

    2015-01-01

    Fibroblast growth factor 23 (FGF23) is a potent regulator of phosphate (Pi) and vitamin D homeostasis. The transcription factor, early growth response 1 (egr-1), is a biomarker for FGF23-induced activation of the ERK1/2 signaling pathway. We have shown that ERK1/2 signaling blockade suppresses renal egr-1 gene expression and prevents FGF23-induced hypophosphatemia and 1,25-dihydroxyvitamin D (1,25(OH)2D) suppression in mice. To test whether egr-1 itself mediates these renal actions of FGF23, we administered FGF23 to egr-1-/- and wild-type (WT) mice. In WT mice, FGF23 induced hypophosphatemia and suppressed expression of the renal Na/Pi cotransporters, Npt2a and Npt2c. In FGF23-treated egr-1-/- mice, hypophosphatemic response was greatly blunted and Na/Pi cotransporter expression was not suppressed. In contrast, FGF23 induced equivalent suppression of serum 1,25(OH)2D concentrations by suppressing renal cyp27b1 and stimulating cyp24a1 mRNA expression in both groups of mice. Thus, downstream of receptor binding and ERK1/2 signaling, we can distinguish the effector pathway that mediates FGF23-dependent inhibition of Pi transport from the pathway that mediates inhibition of 1,25(OH)2D synthesis in the kidney. Furthermore, we demonstrate that the hypophosphatemic effect of FGF23 is significantly blunted in Hyp/egr-1-/- mice; specifically, serum Pi concentrations and renal Npt2a and Npt2c mRNA expression are significantly higher in Hyp/egr-1-/- mice than in Hyp mice. We then characterized the egr-1 cistrome in the kidney using ChIP-sequencing and demonstrate recruitment of egr-1 to regulatory DNA elements in proximity to several genes involved in Pi transport. Thus, our data demonstrate that the effect of FGF23 on Pi homeostasis is mediated, at least in part, by activation of egr-1. PMID:26588476

  2. Fibroblast Growth Factor Signaling in the Developing Neuroendocrine Hypothalamus

    PubMed Central

    Tsai, Pei-San; Brooks, Leah R.; Rochester, Johanna R.; Kavanaugh, Scott I.; Chung, Wilson C. J.

    2011-01-01

    Fibroblast growth factor (FGF) signaling is pivotal to the formation of numerous central regions. Increasing evidence suggests FGF signaling also directs the development of the neuroendocrine hypothalamus, a collection of neuroendocrine neurons originating primarily within the nose and the ventricular zone of the diencephalon. This review outlines evidence for a role of FGF signaling in the prenatal and postnatal development of several hypothalamic neuroendocrine systems. The emphasis is placed on the nasally derived gonadotropin- releasing hormone neurons, which depend on neurotrophic cues from FGF signaling throughout the neurons' lifetime. Although less is known about neuroendocrine neurons derived from the diencephalon, recent studies suggest they also exhibit variable levels of dependence on FGF signaling. Overall, FGF signaling provides a broad spectrum of cues that ranges from genesis, cell survival/death, migration, morphological changes, to hormone synthesis in the neuroendocrine hypothalamus. Abnormal FGF signaling will deleteriously impact multiple hypothalamic neuroendocrine systems, resulting in the disruption of diverse physiological functions. PMID:21129392

  3. Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm.

    PubMed Central

    Christian, J L; Olson, D J; Moon, R T

    1992-01-01

    In Xenopus, growth factors of the TGF-beta, FGF and Wnt oncogene families have been proposed to play a role in generating embryonic pattern. In this paper we examine potential interactions between the bFGF and Xwnt-8 signaling pathways in the induction and dorsal-ventral patterning of mesoderm. Injection of Xwnt-8 mRNA into 2-cell Xenopus embryos does not induce mesoderm formation in animal cap ectoderm isolated from these embryos at the blastula stage, but alters the response of this tissue to mesoderm induction by bFGF. While animal cap explants isolated from non-injected embryos differentiate to form ventral types of mesoderm and muscle in response to bFGF, explants from Xwnt-8 injected embryos form dorsal mesodermal and neural tissues in response to the same concentration of bFGF, even if the ectoderm is isolated from the prospective ventral sides of embryos or from UV-ventralized animals. Our results support a model whereby dorso-ventral mesodermal patterning can be attained by a single mesoderm inducing agent, possibly bFGF, which is uniformly distributed across the prospective dorsal-ventral axis, and which acts in concert with a dorsally localized signal, possibly a Wnt protein, which either alters the response of ectoderm to induction or modifies the character of mesoderm after its induction. Images PMID:1740111

  4. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and... 49 Transportation 4 2011-10-01 2011-10-01 false Signals controlled by track circuits and...

  5. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and... 49 Transportation 4 2010-10-01 2010-10-01 false Signals controlled by track circuits and...

  6. Long-lasting anti-diabetic efficacy of PEGylated FGF-21 and liraglutide in treatment of type 2 diabetic mice.

    PubMed

    Ye, Xianlong; Qi, Jianying; Ren, Guiping; Xu, Pengfei; Wu, Yunzhou; Zhu, Shenglong; Yu, Dan; Li, Shujie; Wu, Qiang; Muhi, Rasool Lubna; Li, Deshan

    2015-08-01

    Fibroblast growth factor-21 (FGF-21) is a new member of the FGF family and potential drug candidate for the treatment of type 2 diabetes mellitus. However, FGF-21 protein has short half-life in vivo, which severely affects its clinical application. In the present study, PEGylated FGF-21 was prepared by modifying the N-terminus of hFGF-21 with 20 kDa mPEG-ALD. The long-acting hypoglycemic effect of PEGylated FGF-21 and liraglutide was compared on type 2 diabetic db/db mice. The pharmacological efficacy of the compounds was evaluated by blood glucose levels, body weight, glycosylated hemoglobin levels, insulin levels, oral glucose tolerance test, lipid levels, and liver function parameters. We noticed that both PEGylated FGF-21 and liraglutide could significantly decrease plasma glucose in db/db mice. However, comparing to liraglutide treatments, PEGylated FGF-21 therapy resulted in more significant effect in lowering blood glucose levels and glycosylated hemoglobin levels, alleviating insulin resistance, improving lipid profile, liver function, and glucose control of the experimental mice. Our results suggest that PEGylated FGF-21 appears more beneficial anti-diabetic effect in type 2 diabetic mice than liraglutide, which holds significant promise as an ideal candidate for the treatment of type 2 diabetic patients.

  7. The Effect of Covalently Immobilized FGF-2 on Biphasic Calcium Phosphate Bone Substitute on Enhanced Biological Compatibility and Activity.

    PubMed

    Moon, Kyung-Suk; Choi, Eun-Joo; Oh, Seunghan; Kim, Sungtae

    2015-01-01

    The purpose of this research was to covalently graft fibroblast growth factor 2 (FGF-2) onto biphasic calcium phosphate (BCP) via a bifunctional cross-linker technique and to estimate the optimal dose of FGF-2 resulting in the best osteogenic differentiation of human mesenchymal stem cells (hMSCs). SEM observation revealed that the surface of the 100 ng FGF-2 coated BCP was completely covered with the nanoparticles expected to be from the silane coupling agent. XRD, FT-IR, and XPS analysis showed that silane treatment, bifunctional cross-linker coating, and FGF-2 covalent grafts were conducted successfully without deforming the crystalline structure of BCP. An MTT assay demonstrated that FGF-2 coated BCP had good biocompatibility, regardless of the concentration of FGF-2, after 24 or 48 h of incubation. An alkaline phosphatase (ALP) activity assay (14 days of incubation) and the ALP gene expression level of real-time PCR analysis (7 days of incubation) revealed that 50, 100, and 200 ng FGF-2 coated BCP induced the highest activities among all experimental groups and control group (P < 0.05). Thus, low concentrations of FGF-2 facilitated excellent osteogenesis and were effective at enhancing osteogenic potential. Also, the bifunctional cross-linker technique is expected to be a more feasible way to induce osteogenic differentiation while minimizing the risk of FGF-2 overdose.

  8. Modulation of the FGF14:FGF14 homodimer interaction through short peptide fragments

    PubMed Central

    Ali, Syed; Shavkunov, Alexander; Panova, Neli; Stoilova-McPhie, Svetla; Laezza, Fernanda

    2016-01-01

    Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGF (iFGFs) family and a functionally relevant component of the neuronal voltage-gated Na+ (Nav) channel complex. Through a monomeric interaction with the intracellular C-terminus of neuronal Nav channels, FGF14 modulates Na+ currents in an Nav isoform-specific manner serving as a fine-tuning regulator of excitability. Previous studies based on the highly homologous FGF13 homodimer crystal structure have proposed a conserved protein:protein interaction (PPI) interface common to both Nav channel binding and iFGF homodimer formation. This interface could provide a novel target for drug design against neuronal Nav channels. Here, we provide the first in-cell reconstitution of the FGF14:FGF14 protein complex and measure the dimer interaction using the split-luciferase complementation assay (LCA). Based on the FGF14 dimer structure generated in silico, we designed short peptide fragments against the FGF14 dimer interface. One of these fragments, FLPK aligns with the pocket defined by the β12-strand and β8-β9 loop, reducing the FGF14:FGF14 dimer interaction by 25% as measured by LCA. We further compared the relative interaction strength of FGF14 wild type homodimers with FGF14 hetero- and homodimers carrying double N mutations at the Y153 and V155 residues, located at the β8-β9 loop. The Y153N/V155N double mutation counteracts the FLPK effect by increasing the strength of the dimer interaction. These data suggest that the β12 strand of FGF14 might serve as scaffold for drug design against neuronal FGF14 dimers and Nav channels. PMID:25426956

  9. Signaling-mediated control of ubiquitin ligases in endocytosis.

    PubMed

    Polo, Simona

    2012-03-15

    Ubiquitin-dependent regulation of endocytosis plays an important part in the control of signal transduction, and a critical issue in the understanding of signal transduction therefore relates to regulation of ubiquitination in the endocytic pathway. We discuss here what is known of the mechanisms by which signaling controls the activity of the ubiquitin ligases that specifically recognize the targets of ubiquitination on the endocytic pathway, and suggest alternative mechanisms that deserve experimental investigation.

  10. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    SciTech Connect

    Lemiere, Sylvie; Azar, Rania; Belloc, Francis; Guersel, Demir; Pyronnet, Stephane; Bikfalvi, Andreas Auguste, Patrick

    2008-12-10

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation.

  11. Estrogen Signaling in Hypothalamic Circuits Controling Reproduction

    PubMed Central

    Kelly, Martin J.; Qiu, Jian

    2010-01-01

    It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. Yet, it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons that modulate GnRH neuronal excitability. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in hypothalamic neurons critical for reproductive function. PMID:20807512

  12. Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans

    PubMed Central

    Nam, Kiwoong; Lee, Kyeong Won; Chung, Oksung; Yim, Hyung-Soon; Cha, Sun-Shin; Lee, Sae-Won; Jun, JeHoon; Cho, Yun Sung; Bhak, Jong; Magalhães, João Pedro de; Lee, Jung-Hyun; Jeong, Jae-Yeon

    2017-01-01

    Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment. PMID:28074842

  13. Switched linear model predictive controllers for periodic exogenous signals

    NASA Astrophysics Data System (ADS)

    Wang, Liuping; Gawthrop, Peter; Owens, David. H.; Rogers, Eric

    2010-04-01

    This article develops switched linear controllers for periodic exogenous signals using the framework of a continuous-time model predictive control. In this framework, the control signal is generated by an algorithm that uses receding horizon control principle with an on-line optimisation scheme that permits inclusion of operational constraints. Unlike traditional repetitive controllers, applying this method in the form of switched linear controllers ensures bumpless transfer from one controller to another. Simulation studies are included to demonstrate the efficacy of the design with or without hard constraints.

  14. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts.

    PubMed

    Mok, Gi Fay; Cardenas, Ryan; Anderton, Helen; Campbell, Keith H S; Sweetman, Dylan

    2014-12-15

    During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.

  15. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    PubMed

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test.

  16. VEGF and FGF2 Improve Revascularization, Survival, and Oocyte Quality of Cryopreserved, Subcutaneously-Transplanted Mouse Ovarian Tissues

    PubMed Central

    Li, Sheng-Hsiang; Hwu, Yuh-Ming; Lu, Chung-Hao; Chang, Hsiao-Ho; Hsieh, Cheng-En; Lee, Robert Kuo-Kuang

    2016-01-01

    This study was conducted to investigate the effect of the vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) on revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissue. Autologous subcutaneous transplantation of vitrified-thawed mouse ovarian tissues treated with (experimental group) or without (control group) VEGF and FGF2 was performed. After transplantation to the inguinal region for two or three weeks, graft survival, angiogenesis, follicle development, and oocyte quality were examined after gonadotropin administration. VEGF coupled with FGF2 (VEGF/FGF2) promoted revascularization and significantly increased the survival rate of subcutaneously-transplanted cryopreserved ovarian tissues compared with untreated controls. The two growth factors did not show long-term effects on the ovarian grafts. In contrast to the untreated ovarian grafts, active folliculogenesis was revealed as the number of follicles at various stages and of mature oocytes in antral follicles after gonadotropin administration were remarkably higher in the VEGF/FGF2-treated groups. Although the fertilization rate was similar between the VEGF/FGF2 and control groups, the oocyte quality was much better in the VEGF/FGF2-treated grafts as demonstrated by the higher ratio of blastocyst development. Introducing angiogenic factors, such as VEGF and FGF2, may be a promising strategy to improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissue. PMID:27483256

  17. Discrete model reference adaptive control with an augmented error signal

    NASA Technical Reports Server (NTRS)

    Ionescu, T.; Monopoli, R.

    1975-01-01

    A method for designing discrete model reference adaptive control systems when one has access to only the plant's input and output signals is given. Controllers for single-input, single-output, nonlinear, nonautonomous plants are developed via Liapunov's second method. Anticipative values of the plant output are not required, but are replaced by signals easily obtained from a low-pass filter operating on the plant's output. The augmented error signal method is employed, ensuring finally that the normally used error signal also approaches zero asymptotically.

  18. Model reference adaptive control with an augmented error signal

    NASA Technical Reports Server (NTRS)

    Monopoli, R. V.

    1974-01-01

    It is shown how globally stable model reference adaptive control systems may be designed when one has access to only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Lyapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Derivatives of the plant output are not required, but are replaced by filtered derivative signals. An augmented error signal replaces the error normally used, which is defined as the difference between the model and plant outputs. However, global stability is assured in the sense that the normally used error signal approaches zero asymptotically.

  19. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.

    PubMed

    Buono, Mario; Visigalli, Ilaria; Bergamasco, Roberta; Biffi, Alessandra; Cosma, Maria Pia

    2010-08-02

    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.

  20. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC.

  1. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  2. bFGF Protects Pre-oligodendrocytes from Oxygen/Glucose Deprivation Injury to Ameliorate Demyelination.

    PubMed

    Qu, Xuebin; Guo, Rui; Zhang, Zhenzhong; Ma, Li; Wu, Xiuxiang; Luo, Mengjiao; Dong, Fuxing; Yao, Ruiqin

    2015-10-01

    One of the pathological hallmarks of periventricular white matter injury is the vulnerability of pre-oligodendrocytes (preOLs) to hypoxia-ischemia (HI). There is increasing evidence that basic fibroblast growth factor (bFGF) is an important signaling molecule for neurogenesis and neuroprotection in the central nervous system. However, it is unknown whether bFGF protects preOLs from oxygen/glucose deprivation (OGD) damage in vitro and promotes remyelination in HI-induced rats. In this present study, bFGF exerted a protective effect on myelin by increasing the myelin thickness, the number of myelinated axons, and myelin basic protein expression in the HI-induced demyelinated neonatal rat corpus callosum. In vitro, bFGF ameliorated the impaired mitochondria and cell processes induced by OGD to promote the survival of isolated O4-positive preOLs. Additionally, the expression of fibroblast growth factor receptor 3 (FGFR3) was dramatically up-regulated in the preOLs after bFGF administration in vivo and in vitro. Thus, bFGF-stimulated remyelination in HI-induced rats by protecting the preOLs from hypoxic injury, and the mechanism involved may be mediated by FGFR3.

  3. Switchable electrode interfaces controlled by physical, chemical and biological signals.

    PubMed

    Bocharova, Vera; Katz, Evgeny

    2012-02-01

    Electrode interfaces functionalized with various signal-responsive materials have been designed to allow switchable properties of the modified electrodes. External signals of different nature (electrical potential, magnetic field, light, chemical/biochemical inputs) were applied to reversibly activate-deactivate the electrode interfaces upon demand. Multifunctional properties of the modified interfaces have allowed their responses to complex combinations of external signals. Further increase of their complexity has been achieved by integrating the signal-responsive interfaces with unconventional biomolecular computing systems logically processing multiple biochemical signals. This approach has resulted in electrochemical systems controlled by complex variations of biomarkers corresponding to different physiological conditions, thus allowing biological control over electronic systems. The switchable electrodes have been integrated with various "smart" biosensing and signal-processing systems and have been used to assemble biofuel cells producing power on demand.

  4. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling

    PubMed Central

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F.; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E.; Huang, Cher X.; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D.; Stokes, Matthew P.; Silva, Jeffrey C.; Bell, George W.; MacArthur, Daniel G.; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F.

    2015-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells. PMID:26438848

  5. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling.

    PubMed

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E; Huang, Cher X; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D; Stokes, Matthew P; Silva, Jeffrey C; Bell, George W; MacArthur, Daniel G; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F

    2015-10-20

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.

  6. Method for making a micromachined microwave signal control device

    DOEpatents

    Forman, Michael A [Mountain House, CA

    2011-02-15

    A method for fabricating a signal controller, e.g., a filter or a switch, for a coplanar waveguide during the LIGA fabrication process of the waveguide. Both patterns for the waveguide and patterns for the signal controllers are created on a mask. Radiation travels through the mask and reaches a photoresist layer on a substrate. The irradiated portions are removed and channels are formed on the substrate. A metal is filled into the channels to form the conductors of the waveguide and the signal controllers. Micromachined quasi-lumped elements are used alone or together as filters. The switch includes a comb drive, a spring, a metal plunger, and anchors.

  7. Evaluation of bone formation guided by DNA/protamine complex with FGF-2 in an adult rat calvarial defect model.

    PubMed

    Shinozaki, Yosuke; Toda, Masako; Ohno, Jun; Kawaguchi, Minoru; Kido, Hirofumi; Fukushima, Tadao

    2014-11-01

    DNA/protamine complex paste (D/P) and D/P complex paste with Fibroblast Growth Factor-2 (FGF-2) (D/P-FGF) were prepared to investigate their new bone formation abilities using an ∼40-week-old rat calvarial defect model. It was found that D/P could release FGF-2 proportionally in an in vitro experiment with an enzyme-linked immunosorbent assay. It was also found that aging adversely affected self-bone healing of rats by comparison with the results in a previous study using 10-week-old rats. Microcomputed tomography and histopathological examinations showed that new bone formation abilities of D/P and D/P-FGF were superior to that of the control (sham operation). Control, D/P and D/P-FGF showed newly formed bone areas of 6.7, 58.3, and 67.0%, respectively, 3 months after the operation. Moreover, it was found that FGF-2 could support the osteoanagenesis ability of D/P. It was considered that FGF-2 could play an important role in new bone formation at early stages because it induced the genes such as collagen I, CBFA, OSX, and OPN, which are initiated first in the process of osteogenesis. Therefore, D/P-FGF will be a useful injectable biomaterial with biodegradable properties for the repair of bone defects in the elderly.

  8. Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease.

    PubMed

    Zhang, Shiqin; Gillihan, Ryan; He, Nan; Fields, Timothy; Liu, Shiguang; Green, Troy; Stubbs, Jason R

    2013-10-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone that in end-stage renal disease is markedly increased in serum; however, the mechanisms responsible for this increase are unclear. Here, we tested whether phosphate retention in chronic kidney disease (CKD) is responsible for the elevation of FGF23 in serum using Col4α3 knockout mice, a murine model of Alport disease exhibiting CKD. We found a significant elevation in serum FGF23 in progressively azotemic 8- and 12-week-old CKD mice along with an increased fractional excretion of phosphorus. Both moderate and severe phosphate restriction reduced fractional excretion of phosphorus by 8 weeks, yet serum FGF23 levels remained strikingly elevated. By 12 weeks, FGF23 levels were further increased with moderate phosphate restriction, while severe phosphate restriction led to severe bone mineralization defects and decreased FGF23 production in bone. CKD mice on a control diet had low serum 1,25-dihydroxyvitamin D (1,25(OH)(2)D) levels and 3-fold higher renal Cyp24α1 gene expression compared to wild-type mice. Severe phosphate restriction increased 1,25(OH)(2)D levels in CKD mice by 8 weeks and lowered renal Cyp24α1 gene expression despite persistently elevated serum FGF23. Renal klotho gene expression declined in CKD mice on a control diet, but improved with severe phosphate restriction. Thus, dietary phosphate restriction reduces the fractional excretion of phosphorus independent of serum FGF23 levels in mice with CKD.

  9. Circulating Thrombospondin-2 and FGF-2 in Patients with Advanced Non-small Cell Lung Cancer: Correlation with Survival.

    PubMed

    Naumnik, W; Ossolińska, M; Płońska, I; Chyczewska, E; Nikliński, J

    2015-01-01

    Thrombospondin-2 (TSP-2) is an endogenous negative regulator of vascularization in human cancer. TSP-2 regulates angiogenesis through binding and sequestration of the proangiogenic fibroblast growth factor-2 (FGF-2). However, it is unclear whether TSP-2 and FGF-2 are related to prognosis in non-small cell lung cancer (NSCLC). To study this issue, we measured serum (Elisa) levels of TSP-2 and FGF-2 in 40 NSCLC patients (before chemotherapy) and 22 healthy subjects. Both TSP-2 and FGF-2 concentrations were elevated in the NSCLC group compared with control (TSP-2: 26.72±8.00 vs. 18.64±5.50 ng/ml, p=0.002; FGF-2: 11.90±5.80 vs. 7.26±3.90 pg/ml, p=0.01). Receiver-operating characteristic (ROC) curves were applied to find the cut-off serum levels of TSP-2 and FGF-2 (NSCLC vs. healthy: TSP-2=15.09 ng/ml, FGF-2=2.23 pg/ml). Patients before treatment with the TSP-2 level<24.15 ng/ml had a median survival of 23.7 months, but those with TSP-2>24.15 ng/ml had only 9 months' median survival (p=0.007). Patients with FGF-2 level>11.21 pg/ml had significantly shorter survival than patients with FGF-2<11.21 pg/ml (7.5 months vs. 16 months, p=0.034). We conclude that NSCLC patients have higher serum concentrations of TSP-2 and FGF-2 than healthy people. High levels of TSP-2 and FGF-2 may predict worse survival.

  10. Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor

    PubMed Central

    Benigni, Ariela; Corna, Daniela; Tomasoni, Susanna; Rottoli, Daniela; Gaspari, Flavio; Remuzzi, Giuseppe; Zoja, Carlamaria

    2013-01-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF) and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE) inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics. PMID:23967103

  11. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  12. A computer controlled signal preprocessor for laser fringe anemometer applications

    NASA Technical Reports Server (NTRS)

    Oberle, Lawrence G.

    1987-01-01

    The operation of most commercially available laser fringe anemometer (LFA) counter-processors assumes that adjustments are made to the signal processing independent of the computer used for reducing the data acquired. Not only does the researcher desire a record of these parameters attached to the data acquired, but changes in flow conditions generally require that these settings be changed to improve data quality. Because of this limitation, on-line modification of the data acquisition parameters can be difficult and time consuming. A computer-controlled signal preprocessor has been developed which makes possible this optimization of the photomultiplier signal as a normal part of the data acquisition process. It allows computer control of the filter selection, signal gain, and photo-multiplier voltage. The raw signal from the photomultiplier tube is input to the preprocessor which, under the control of a digital computer, filters the signal and amplifies it to an acceptable level. The counter-processor used at Lewis Research Center generates the particle interarrival times, as well as the time-of-flight of the particle through the probe volume. The signal preprocessor allows computer control of the acquisition of these data.Through the preprocessor, the computer also can control the hand shaking signals for the interface between itself and the counter-processor. Finally, the signal preprocessor splits the pedestal from the signal before filtering, and monitors the photo-multiplier dc current, sends a signal proportional to this current to the computer through an analog to digital converter, and provides an alarm if the current exceeds a predefined maximum. Complete drawings and explanations are provided in the text as well as a sample interface program for use with the data acquisition software.

  13. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head.

    PubMed

    Jandzik, David; Hawkins, M Brent; Cattell, Maria V; Cerny, Robert; Square, Tyler A; Medeiros, Daniel M

    2014-02-01

    A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.

  14. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23.

    PubMed

    Sapir-Koren, Rony; Livshits, Gregory

    2014-01-01

    Body phosphate homeostasis is regulated by a hormonal counter-balanced intestine-bone-kidney axis. The major systemic hormones involved in this axis are parathyroid hormone (PTH), 1,25-dihydroxyvitamin-D, and fibroblast growth factor-23 (FGF23). FGF23, produced almost exclusively by the osteocytes, is a phosphaturic hormone that plays a major role in regulation of the bone remodeling process. Remodeling composite components, bone mineralization and resorption cycles create a continuous influx-efflux loop of the inorganic phosphate (Pi) through the skeleton. This "bone Pi loop," which is formed, is controlled by local and systemic factors according to phosphate homeostasis demands. Although FGF23 systemic actions in the kidney, and for the production of PTH and 1,25-dihydroxyvitamin-D are well established, its direct involvement in bone metabolism is currently poorly understood. This review presents the latest available evidence suggesting two aspects of FGF23 bone local activity: (a) Regulation of FGF23 production by both local and systemic factors. The suggested local factors include extracellular levels of Pi and pyrophosphate (PPi), (the Pi/PPi ratio), and another osteocyte-derived protein, sclerostin. In addition, 1,25-dihydroxyvitamin-D, synthesized locally by bone cells, may contribute to regulation of FGF23 production. The systemic control is achieved via PTH and 1,25-dihydroxyvitamin-D endocrine functions. (b) FGF23 acts as a local agent, directly affecting bone mineralization. We support the assumption that under balanced physiological conditions, sclerostin, by para- autocrine signaling, upregulates FGF23 production by the osteocyte. FGF23, in turn, acts as a mineralization inhibitor, by stimulating the generation of the major mineralization antagonist-PPi.

  15. Finite Energy and Bounded Attacks on Control System Sensor Signals

    SciTech Connect

    Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M; Laska, Jason A

    2014-01-01

    Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) has been in securing the networks using information security techniques and protection and reliability concerns at the control system level against random hardware and software failures. However, besides these failures the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis and detection methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop system under optimal signal attacks are provided. Illustrative numerical examples are provided together with an application to a power network with distributed LQ controllers.

  16. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Astrophysics Data System (ADS)

    Packard, D. T.

    1985-04-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  17. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation