Science.gov

Sample records for fh-cn fh-nc h2o-cn

  1. A high level Ab initio study of the anionic hydrogen-bonded complexes FH-CN-, FH-NC-, H2O-CN- and H2O-NC-

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1989-01-01

    HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.

  2. A high-level ab initio study of the anionic hydrogen-bonded complexes FH-CN(-), FH-NC(-), H2O-CN(-), and H2O-NC(-)

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1989-01-01

    HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.

  3. Dinuclear iron(II)-cyanocarbonyl complexes linked by two/three bridging ethylthiolates: relevance to the active site of [Fe] hydrogenases.

    PubMed

    Liaw, Wen-Feng; Tsai, Wen-Ting; Gau, Hung-Bin; Lee, Chien-Ming; Chou, Shin-Yuan; Chen, Wen-Yuan; Lee, Gene-Hsiang

    2003-04-21

    Dinuclear iron(II)-cyanocarbonyl complex [PPN](2)[Fe(CN)(2)(CO)(2)(mu-SEt)](2) (1) was prepared by the reaction of [PPN][FeBr(CN)(2)(CO)(3)] and [Na][SEt] in THF at ambient temperature. Reaction of complex 1 with [PPN][SEt] produced the triply thiolate-bridged dinuclear Fe(II) complex [PPN][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)] (2) with the torsion angle of two CN(-) groups (C(5)N(2) and C(3)N(1)) being 126.9 degrees. The extrusion of two sigma-donor CN(-) ligands from Fe(II)Fe(II) centers of complex 1 as a result of the reaction of complex 1 and [PPN][SEt] reflects the electron-rich character of the dinuclear iron(II) when ligated by the third bridging ethylthiolate. The Fe-S distances (2.338(2) and 2.320(3) A for complexes 1 and 2, respectively) do not change significantly, but the Fe(II)-Fe(II) distance contracts from 3.505 A in complex 1 to 3.073 A in complex 2. The considerably longer Fe(II)-Fe(II) distance of 3.073 A in complex 2, compared to the reported Fe-Fe distances of 2.6/2.62 A in DdHase and CpHase, was attributed to the presence of the third bridging ethylthiolate, instead of pi-accepting CO-bridged ligand as observed in [Fe] hydrogenases. Additionally, in a compound of unusual composition ([Na.(5)/(2)H(2)O][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)])(n)((1)/(2)O(Et)(2))(n) (3), the Na(+) cations and H(2)O molecules combining with dinuclear [(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)](-) anions create a polymeric framework wherein two CN(-) ligands are coordinated via CN(-)-Na(+)/CN(-)-(Na(+))(2) linkages, respectively.