Sample records for fhit gene enhances

  1. Activation of Gαq subunits up-regulates the expression of the tumor suppressor Fhit.

    PubMed

    Zuo, Hao; Chan, Anthony S L; Ammer, Hermann; Wong, Yung H

    2013-12-01

    The tumor suppressor Fhit protein is defective or absent in many tumor cells due to methylation, mutation or deletion of the FHIT gene. Despite numerous attempts to unravel the functions of Fhit, the mechanisms by which the function and expression of Fhit are regulated remain poorly understood. We have recently shown that activated Gαq subunits interact directly with Fhit and enhance its inhibitory effect on cell growth. Here we investigated the regulation of Fhit expression by Gq. Our results showed that Fhit was up-regulated specifically by activating Gα subunits of the Gq subfamily but not by those of the other G protein subfamilies. This up-regulation effect was mediated by a PKC/MEK pathway independent of Src-mediated Fhit Tyr(114) phosphorylation. We further demonstrated that elevated Fhit expression was due to the specific regulation of Fhit protein synthesis in the ribosome by activated Gαq, where the regulations of cap-dependent protein synthesis were apparently not required. Moreover, we showed that activated Gαq could increase cell-cell adhesion through Fhit. These findings provide a possible handle to modulate the level of the Fhit tumor suppressor by manipulating the activity of Gq-coupled receptors. © 2013. Published by Elsevier Inc. All rights reserved.

  2. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repairmore » genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.« less

  3. Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant

    PubMed Central

    Ottey, M; Han, S-Y; Druck, T; Barnoski, B L; McCorkell, K A; Croce, C M; Raventos-Suarez, C; Fairchild, C R; Wang, Y; Huebner, K

    2004-01-01

    To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation. PMID:15494723

  4. Evaluation of influence of Ap4A analogues on Fhit-positive HEK293T cells; cytotoxicity and ability to induce apoptosis.

    PubMed

    Krakowiak, Agnieszka; Pęcherzewska, Róża; Kaczmarek, Renata; Tomaszewska, Agnieszka; Nawrot, Barbara; Stec, Wojciech J

    2011-08-15

    Fragile histidine triad (Fhit) protein encoded by tumour suppressor FHIT gene is a proapoptotic protein with diadenosine polyphosphate (Ap(n)A, n=2-6) hydrolase activity. It has been hypothesised that formation of Fhit-substrate complex results in an apoptosis initiation signal while subsequent hydrolysis of Ap(n)A terminates this action. A series of Ap(n)A analogues have been identified in vitro as strong Fhit ligands [Varnum, J. M.; Baraniak, J.; Kaczmarek, R.; Stec, W. J.; Brenner, C. BMC Chem. Biol.2001, 1, 3]. We assumed that in Fhit-positive cells these compounds might preferentially bind to Fhit and inhibit its hydrolytic activity what would prolong the lifetime of apoptosis initiation signalling complex. Therefore, several Fhit inhibitors were tested for their cytotoxicity and ability to induce apoptosis in Fhit-positive HEK293T cells. These experiments have shown that Ap(4)A analogue, containing a glycerol residue instead of the central pyrophosphate and two terminal phosphorothioates [A(PS)-CH(2)CH(OH)CH(2)-(PS)A (1)], is the most cytotoxic among test compounds (IC(50)=17.5±4.2 μM) and triggers caspase-dependent cell apoptosis. The Fhit-negative HEK293T cells (in which Fhit was silenced by RNAi) were not sensitive to compound 1. These results indicate that the Ap(4)A analogue 1 induces Fhit-dependent apoptosis and therefore, it can be considered as a drug candidate for anticancer therapy in Fhit-positive cancer cells and in Fhit-negative cancer cells, in which re-expression of Fhit was accomplished by gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Immunohistochemical assessment of Fhit protein expression in advanced gastric carcinomas in correlation with Helicobacter pylori infection and survival time.

    PubMed

    Czyzewska, Jolanta; Guzińska-Ustymowicz, Katarzyna; Pryczynicz, Anna; Kemona, Andrzej; Bandurski, Roman

    2009-01-01

    Fhit protein is known to play a role in the process of neoplastic transformation. It has been demonstrated that FHIT gene inactivation is manifested by a lack or very low concentration of Fhit protein in tissues collected from tumours in many organs, including head, neck, breast, lungs, stomach or large intestine. The study included a group of 80 patients with advanced gastric carcinomas. The expression of Fhit protein was assessed by means of the immunohistochemical method (avidin-biotin-streptavidin) in the sections fixed in formalin and embedded in paraffin, using rabbit polyclonal antiFhit antibody (Abcam, UK) at 1: 200. Statistical analysis did not show any correlation of the expression of Fhit protein in the main mass of tumour and in the metastasis to lymph node with gender, depth of wall invasion, histological differentiation, Lauren's classification, Bormann's classification, metastases to local lymph nodes or Helicobacter pylori infection. However, a strong statistical correlation was revealed of Fhit protein expression in the main mass of tumour with patients' age (p=0.04) and tumour location in the stomach (p=0.02). No relationship was found between Fhit expression in the main mass of tumour and survival time (p=0.26).

  6. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    PubMed Central

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  7. High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis.

    PubMed

    Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T

    2012-09-01

    Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  8. Are Diadenosine Polyphosphates and/or FHIT Involved in Anoikis?

    DTIC Science & Technology

    2002-06-01

    Ap4A ) in anoikis. These molecules occur in all organisms, accumulate in response to cellular stress, and have quite recently been implicated in...and Ap4A hydrolase, connecting these dinucleotides with cancer. ApnAs probably act as cofactors for Fhit’s effector function (analogous to the function...breast cancer, the purpose of this IDEA project is to determine whether Ap3A/ Ap4A and/or FHIT can regulate anoikis in normal and transformed mammary

  9. Loss of heterozygosity and methylation of multiple tumor suppressor genes on chromosome 3 in hepatocellular carcinoma.

    PubMed

    Zhang, Xiaoying; Li, Hiu Ming; Liu, Zhiyan; Zhou, Gengyin; Zhang, Qinghui; Zhang, Tingguo; Zhang, Jianping; Zhang, Cuijuan

    2013-01-01

    Genetic and epigenetic alterations are the two key mechanisms in the development of hepatocellular carcinoma (HCC). However, how they contribute to hepatocarcinogenesis and the correlation between them has not been fully elucidated. A total of 48 paired HCCs and noncancerous tissues were used to detect loss of heterozygosity (LOH) and the methylation profiles of five tumor suppressor genes (RASSF1A, BLU, FHIT, CRBP1, and HLTF) on chromosome 3 by using polymerase chain reaction (PCR) and methylation-specific PCR. Gene expression was analyzed by immunohistochemistry and reverse transcription (RT)-PCR. Sixteen of 48 (33.3 %) HCCs had LOH on at least one locus on chromosome 3, and two smallest common deleted regions (3p22.3-24.3 and 3p12.3-14.2) were identified. RASSF1A, BLU, and FHIT showed very high frequencies of methylation in HCCs (100, 81.3, and 64.6 %, respectively) and noncancerous tissues, but not in liver tissues from control patients. Well-differentiated HCCs showed high methylation frequencies of these genes but very low frequencies of LOH. Furthermore, BLU methylation was associated with an increased level of alpha-fetoprotein, and FHIT methylation was inversely correlated with HCC recurrence. In comparison, CRBP1 showed moderate frequencies of methylation, while HLTF showed low frequencies of methylation, and CRBP1 methylation occurred mainly in elderly patients. Treatment with 5-aza-2'-deoxycytidine demethylated at least one of these genes and restored their expression in a DNA methylation-dependent or -independent manner. Hypermethylation of RASSF1A, BLU, and FHIT is a common and very early event in hepatocarcinogenesis; CRBP1 methylation may also be involved in the later stage. Although LOH was not too frequent on chromosome 3, it may play a role as another mechanism in hepatocarcinogenesis.

  10. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma.

    PubMed

    Riquelme, Erick; Tang, Moying; Baez, Sergio; Diaz, Alfonso; Pruyas, Martha; Wistuba, Ignacio I; Corvalan, Alejandro

    2007-05-18

    Gallbladder carcinoma (GBC) is a highly malignant neoplasm that represents the leading cause of death for cancer in Chilean females. There is limited information about the molecular abnormalities involved in its pathogenesis. We have identified a number of molecular changes in GBC, including frequent allelic losses at chromosome 3p regions. Four distinct 3p sites (3p12, 3p14.2, 3p21.3 and 3p22-24) with frequent and early allelic losses in the sequential pathogenesis of this neoplasm have been detected. We investigated epigenetic and genetic abnormalities in GBC affecting 6 candidate tumor suppressor genes (TSG) located in chromosome 3p, including DUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3). DNA extracted from frozen tissue obtained from 50 surgical resected GBCs was examined for gene promoter methylation using MSP (methylation-specific PCR) technique after bisulfite treatment in all 6 genes. In addition, we performed PCR-based mutation examination using SSCP in FHIT and RASSF1A genes and loss of heterozygosity (LOH) analysis using microdissected tissue in a subset of tumors for the 3p21.3 region with 8 microsatellite markers. A very high frequency of GBC methylation was detected in SEMA3B (46/50, 92%) and FHIT (33/50, 66%), intermediate incidences in BLU (13/50, 26%) and DUTT1 (11/50, 22%) and very low frequencies in RASSF1A (4/50, 8%) and hMLH1 (2/50, 4%). Allelic loss at 3p21.3 was found in nearly half of the GBCs examined. We conclude that epigenetic inactivation by abnormal promoter methylation is a frequent event in chromosome 3p candidate TSGs in GBC pathogenesis, especially affecting genes SEMA3B (3p21.3) and FHIT (3p14.2).

  11. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    PubMed Central

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  12. Investigation of recurrent deletion loci specific to conventional renal cell carcinoma by comparative allelotyping in major epithelial carcinomas

    PubMed Central

    Bhat (Singh), Rashmi R.; Amare (Kadam), Pratibha S.

    2012-01-01

    Objective: Loss of heterozygosity (LOH) studies were undertaken to investigate the consistently deleted loci/? tumor suppressor gene loci (TSG) on 3p in conventional renal cell carcinoma (cRCC). Materials and Methods: LOH studies were performed by polymerase chain reaction (PCR) using 15 micro satellite markers mapped in region 3p12-p26 on 40 paired cRCC tumors and normal kidney at Stages I-IV. Simultaneously, fluorescent in-situ hybridization (FISH) studies were performed to investigate the allelic deletion of fragile histidine triad (FHIT). Results: Our studies revealed three affected regions; 3p12.2-p14.1, 3p14.2-p21.1, and 3p24.2-p26.1 with differential frequencies in Group I (Stage I and II) and Group II (Stage III and IV). Incidence for D3S1234 (FHIT locus) and D3S2454 (3p13) was 75% and 83% in Group I and II, respectively. Comparative allelotyping in epithelial malignancies like lung, bladder, and breast tumors revealed LOH (frequency 14–20%) only in breast tumors for D3S2406, D3S1766 (distal to FHIT), and D3S1560 (distal to VHL, Von-Hippal Lindau). FISH using FHIT gene probe revealed deletions in cRCC (88%), breast (30%), and lung tumors (10%) with no deletions in bladder tumors and leukemias, signifying the importance of FHIT in the pathogenesis of tumors of epithelial origin. Conclusion: Our findings suggested FHIT deletion as an early and VHL deletion as an early and/or late event in cRCC. Additionally, studies also disclosed the recurrent deletions of flanking loci to FHIT and VHL in cRCC. The dilemma of interstitial or continuous deletion on 3p needs to be resolved by implementation of latest sensitive molecular techniques that would further help to narrow down search for TSG loci specific to cRCC, other than VHL and FHIT. PMID:22557717

  13. Investigation of recurrent deletion loci specific to conventional renal cell carcinoma by comparative allelotyping in major epithelial carcinomas.

    PubMed

    Bhat Singh, Rashmi R; Amare Kadam, Pratibha S

    2012-01-01

    Loss of heterozygosity (LOH) studies were undertaken to investigate the consistently deleted loci/? tumor suppressor gene loci (TSG) on 3p in conventional renal cell carcinoma (cRCC). LOH studies were performed by polymerase chain reaction (PCR) using 15 micro satellite markers mapped in region 3p12-p26 on 40 paired cRCC tumors and normal kidney at Stages I-IV. Simultaneously, fluorescent in-situ hybridization (FISH) studies were performed to investigate the allelic deletion of fragile histidine triad (FHIT). Our studies revealed three affected regions; 3p12.2-p14.1, 3p14.2-p21.1, and 3p24.2-p26.1 with differential frequencies in Group I (Stage I and II) and Group II (Stage III and IV). Incidence for D3S1234 (FHIT locus) and D3S2454 (3p13) was 75% and 83% in Group I and II, respectively. Comparative allelotyping in epithelial malignancies like lung, bladder, and breast tumors revealed LOH (frequency 14-20%) only in breast tumors for D3S2406, D3S1766 (distal to FHIT), and D3S1560 (distal to VHL, Von-Hippal Lindau). FISH using FHIT gene probe revealed deletions in cRCC (88%), breast (30%), and lung tumors (10%) with no deletions in bladder tumors and leukemias, signifying the importance of FHIT in the pathogenesis of tumors of epithelial origin. Our findings suggested FHIT deletion as an early and VHL deletion as an early and/or late event in cRCC. Additionally, studies also disclosed the recurrent deletions of flanking loci to FHIT and VHL in cRCC. The dilemma of interstitial or continuous deletion on 3p needs to be resolved by implementation of latest sensitive molecular techniques that would further help to narrow down search for TSG loci specific to cRCC, other than VHL and FHIT.

  14. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin

    PubMed Central

    Ing-Simmons, Elizabeth; Seitan, Vlad C.; Faure, Andre J.; Flicek, Paul; Carroll, Thomas; Dekker, Job; Fisher, Amanda G.; Lenhard, Boris

    2015-01-01

    In addition to mediating sister chromatid cohesion during the cell cycle, the cohesin complex associates with CTCF and with active gene regulatory elements to form long-range interactions between its binding sites. Genome-wide chromosome conformation capture had shown that cohesin's main role in interphase genome organization is in mediating interactions within architectural chromosome compartments, rather than specifying compartments per se. However, it remains unclear how cohesin-mediated interactions contribute to the regulation of gene expression. We have found that the binding of CTCF and cohesin is highly enriched at enhancers and in particular at enhancer arrays or “super-enhancers” in mouse thymocytes. Using local and global chromosome conformation capture, we demonstrate that enhancer elements associate not just in linear sequence, but also in 3D, and that spatial enhancer clustering is facilitated by cohesin. The conditional deletion of cohesin from noncycling thymocytes preserved enhancer position, H3K27ac, H4K4me1, and enhancer transcription, but weakened interactions between enhancers. Interestingly, ∼50% of deregulated genes reside in the vicinity of enhancer elements, suggesting that cohesin regulates gene expression through spatial clustering of enhancer elements. We propose a model for cohesin-dependent gene regulation in which spatial clustering of enhancer elements acts as a unified mechanism for both enhancer-promoter “connections” and “insulation.” PMID:25677180

  15. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Treesearch

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  16. Transcriptional enhancer from milk protein genes

    DOEpatents

    Casperson, Gerald F.; Schmidhauser, Christian T.; Bissell, Mina J.

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  17. Gene doping: a review of performance-enhancing genetics.

    PubMed

    Gaffney, Gary R; Parisotto, Robin

    2007-08-01

    Unethical athletes and their mentors have long arrogated scientific and medical advances to enhance athletic performance, thus gaining a dishonest competitive advantage. Building on advances in genetics, a new threat arises from athletes using gene therapy techniques in the same manner that some abused performance-enhancing drugs were used. Gene doping, as this is known, may produce spectacular physiologic alterations to dramatically enhance athletic abilities or physical appearance. Furthermore, gene doping may present pernicious problems for the regulatory agencies and investigatory laboratories that are entrusted to keep sporting events fair and ethical. Performance-enhanced genetics will likewise present unique challenges to physicians in many spheres of their practice.

  18. Transposon integration enhances expression of stress response genes.

    PubMed

    Feng, Gang; Leem, Young-Eun; Levin, Henry L

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.

  19. Transposon integration enhances expression of stress response genes

    PubMed Central

    Feng, Gang; Leem, Young-Eun; Levin, Henry L.

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295

  20. P53 nuclear stabilization is associated with FHIT loss and younger age of onset in squamous cell carcinoma of oral tongue

    PubMed Central

    2014-01-01

    Background Squamous cell carcinoma of tongue (SCCT) is expected to harbor unique clinico-pathological and molecular genetic features since a significant proportion of patients are young and exhibit no association with tobacco or alcohol. Methods We determined P53, epidermal growth factor receptor, microsatellite instability, human papilloma virus infection and loss of heterozygosity status at several tumor suppressor loci in one hundred and twenty one oral SCCT (SSCOT) samples and analyzed their association with clinico-pathological features and patient survival. Results Our results revealed a significantly higher incidence of p53 nuclear stabilization in early (as against late) onset SCCOT. FHIT loss was significantly associated with p53 nuclear stabilization and the association was stronger in patients with no history of tobacco use. Samples harboring mutation in p53 DNA binding domain or exhibiting p53 nuclear stabilization, were significantly associated with poor survival. Conclusion Our study has therefore identified distinct features in SCCOT tumorigenesis with respect to age and tobacco exposure and revealed possible prognostic utility of p53. PMID:25152695

  1. Expressions of miR-30c and let-7a are inversely correlated with HMGA2 expression in squamous cell carcinoma of the vulva.

    PubMed

    Agostini, Antonio; Brunetti, Marta; Davidson, Ben; Trope, Claes G; Heim, Sverre; Panagopoulos, Ioannis; Micci, Francesca

    2016-12-20

    Malignant tumors of the vulva, most of them squamous cell carcinomas, account for only 5% of cancers of the female genital tract. Though little is known about the genetic features of these tumors, the Fragile Histidine Triad (FHIT) and High Mobility Group AT-hook 2 (HMGA2) genes were found deregulated. We wanted to gain more knowledge about the expression of HMGA2-related miRNAs such as miR-30c and let-7a, and whether a correlation exists between the expression of FHIT and HMGA2, in this tumor type. An inverse correlation was found in-as-much as HMGA2 was highly expressed (mean fold change 8.8) whereas miR30c and let-7a were both downregulated (mean fold change -3.9 and -2.3, respectively). The consistent overexpression of HMGA2 found in all tumors adds to the likelihood that this gene is of importance in SCC pathogenesis. Moreover, we came to the conclusion that miRNAs may be the cause of the deregulation of HMGA2. Our results also show that SCC of the vulva presents a characteristic molecular pattern with FHIT being downregulated whereas HMGA2 is upregulated.

  2. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes

    PubMed Central

    Moorthy, Sakthi D.; Davidson, Scott; Shchuka, Virlana M.; Singh, Gurdeep; Malek-Gilani, Nakisa; Langroudi, Lida; Martchenko, Alexandre; So, Vincent; Macpherson, Neil N.; Mitchell, Jennifer A.

    2017-01-01

    Transcriptional enhancers are critical for maintaining cell-type–specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes. PMID:27895109

  3. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    PubMed Central

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  4. DNA hypermethylation profiles in squamous cell carcinoma of the vulva.

    PubMed

    Stephen, Josena K; Chen, Kang Mei; Raitanen, Misa; Grénman, Seija; Worsham, Maria J

    2009-01-01

    Gene silencing through promoter hypermethylation is a growing concept in the development of human cancers. In this study, we examined the contribution of aberrant methylation of promoter regions in methylation-prone tumor suppressors to the pathogenesis of vulvar cancer. Thirteen cell lines from 12 patients with squamous cell carcinoma of the vulva were evaluated for aberrant methylation status and gene copy number alterations, concomitantly, using the methylation-specific multiplex ligation-dependent probe amplification assay. Of the 22 tumor suppressor genes examined, aberrant methylation was observed for 9 genes: tumor protein p73 (TP73), fragile histidine triad (FHIT), von Hippel-Lindau (VHL), adenomatosis polyposis coli (APC), estrogen receptor 1 (ESR1), cyclin-dependent kinase inhibitor 2B (CDKN2B), death-associated protein kinase 1 (DAPK1), glutathione S-transferase pi (GSTP1), and immunoglobin superfamily, member 4 (IGSF4). The most frequently methylated genes included TP73 in 9 of 13 cell lines, and IGSF4, DAPK1, and FHIT in 3 of 13 cell lines. Methylation-specific polymerase chain reaction was performed for TP73 and FHIT to confirm aberrant methylation by methylation-specific multiplex ligation-dependent probe amplification. In the context of gene copy number and methylation status, both copies of the TP73 gene were hypermethylated. Loss or decreased mRNA expression of TP73 and IGSF4 by reverse transcription polymerase chain reaction confirmed aberrant methylation. Frequent genetic alterations of loss and gain of gene copy number included gain of GSTP1 and multiple endocrine neoplasia type 1 (MEN1), and loss of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) and IGSF4 in over 50% of the squamous cell carcinoma of the vulva cell lines. These findings underscore the contribution of both genetic and epigenetic events to the underlying pathogenesis of squamous cell carcinoma of the vulva.

  5. Expressions of miR-30c and let-7a are inversely correlated with HMGA2 expression in squamous cell carcinoma of the vulva

    PubMed Central

    Agostini, Antonio; Brunetti, Marta; Davidson, Ben; Trope, Claes G.; Heim, Sverre; Panagopoulos, Ioannis; Micci, Francesca

    2016-01-01

    Malignant tumors of the vulva, most of them squamous cell carcinomas, account for only 5% of cancers of the female genital tract. Though little is known about the genetic features of these tumors, the Fragile Histidine Triad (FHIT) and High Mobility Group AT-hook 2 (HMGA2) genes were found deregulated. We wanted to gain more knowledge about the expression of HMGA2-related miRNAs such as miR-30c and let-7a, and whether a correlation exists between the expression of FHIT and HMGA2, in this tumor type. An inverse correlation was found in-as-much as HMGA2 was highly expressed (mean fold change 8.8) whereas miR30c and let-7a were both downregulated (mean fold change -3.9 and -2.3, respectively). The consistent overexpression of HMGA2 found in all tumors adds to the likelihood that this gene is of importance in SCC pathogenesis. Moreover, we came to the conclusion that miRNAs may be the cause of the deregulation of HMGA2. Our results also show that SCC of the vulva presents a characteristic molecular pattern with FHIT being downregulated whereas HMGA2 is upregulated. PMID:27835588

  6. Recent advances in gene-enhanced bone tissue engineering.

    PubMed

    Betz, Volker M; Kochanek, Stefan; Rammelt, Stefan; Müller, Peter E; Betz, Oliver B; Messmer, Carolin

    2018-03-30

    The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Progress and prospects: gene therapy for performance and appearance enhancement.

    PubMed

    Kiuru, M; Crystal, R G

    2008-03-01

    While medical therapies aim at reversing, reducing or eliminating diseases, the goal of enhancements is to improve performance or appearance beyond normal levels. Distinction between the two interventions is not always clear as they often present as a continuum. Gene therapy typically aims at treating or preventing disease, but the technology can theoretically be employed for enhancement. Some of the gene therapy enhancement strategies include improving performance by increasing muscle mass, endurance, memory, and cognition and bettering appearance by controlling weight, height and hair growth. In addition to the technical challenges of making enhancement strategies safe and effective, genetic enhancement presents significant ethical/societal questions that must be addressed.

  8. Novel genes associated with enhanced motility of Escherichia coli ST131

    PubMed Central

    Kakkanat, Asha; Phan, Minh-Duy; Lo, Alvin W.; Beatson, Scott A.

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced

  9. Ultrasound enhances retrovirus-mediated gene transfer.

    PubMed

    Naka, Toshio; Sakoda, Tsuyoshi; Doi, Takashi; Tsujino, Takeshi; Masuyama, Tohru; Kawashima, Seinosuke; Iwasaki, Tadaaki; Ohyanagi, Mitsumasa

    2007-01-01

    Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased

  10. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish

    PubMed Central

    Wang, Xiaodan; Kültz, Dietmar

    2017-01-01

    Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of O. mossambicus. Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named “OSRE1.” Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1. Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation). PMID:28289196

  11. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-09-29

    The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  12. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    1998-01-01

    The subject invention disclosed herein is a new gene probe biosensor and methods thereof based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays.

  13. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-02-24

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  14. Surface enhanced Raman gene probe and methods thereof

    DOEpatents

    Vo-Dinh, T.

    1998-07-21

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  15. Genome organization and long-range regulation of gene expression by enhancers

    PubMed Central

    Smallwood, Andrea; Ren, Bing

    2014-01-01

    It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. PMID:23465541

  16. Intragenic Locus in Human PIWIL2 Gene Shares Promoter and Enhancer Functions.

    PubMed

    Skvortsova, Yulia V; Kondratieva, Sofia A; Zinovyeva, Marina V; Nikolaev, Lev G; Azhikina, Tatyana L; Gainetdinov, Ildar V

    2016-01-01

    Recently, more evidence supporting common nature of promoters and enhancers has been accumulated. In this work, we present data on chromatin modifications and non-polyadenylated transcription characteristic for enhancers as well as results of in vitro luciferase reporter assays suggesting that PIWIL2 alternative promoter in exon 7 also functions as an enhancer for gene PHYHIP located 60Kb upstream. This finding of an intragenic enhancer serving as a promoter for a shorter protein isoform implies broader impact on understanding enhancer-promoter networks in regulation of gene expression.

  17. Genome organization and long-range regulation of gene expression by enhancers.

    PubMed

    Smallwood, Andrea; Ren, Bing

    2013-06-01

    It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. Copyright © 2013. Published by Elsevier Ltd.

  18. The insulation of genes from external enhancers and silencing chromatin

    PubMed Central

    Burgess-Beusse, Bonnie; Farrell, Catherine; Gaszner, Miklos; Litt, Michael; Mutskov, Vesco; Recillas-Targa, Felix; Simpson, Melanie; West, Adam; Felsenfeld, Gary

    2002-01-01

    Insulators are DNA sequence elements that can serve in some cases as barriers to protect a gene against the encroachment of adjacent inactive condensed chromatin. Some insulators also can act as blocking elements to protect against the activating influence of distal enhancers associated with other genes. Although most of the insulators identified so far derive from Drosophila, they also are found in vertebrates. An insulator at the 5′ end of the chicken β-globin locus marks a boundary between an open chromatin domain and a region of constitutively condensed chromatin. Detailed analysis of this element shows that it possesses both enhancer blocking activity and the ability to screen reporter genes against position effects. Enhancer blocking is associated with binding of the protein CTCF; sites that bind CTCF are found at other critical points in the genome. Protection against position effects involves other properties that appear to be associated with control of histone acetylation and methylation. Insulators thus are complex elements that can help to preserve the independent function of genes embedded in a genome in which they are surrounded by regulatory signals they must ignore. PMID:12154228

  19. Genes and signaling pathways involved in memory enhancement in mutant mice

    PubMed Central

    2014-01-01

    Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity. PMID:24894914

  20. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements

    PubMed Central

    Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y

    2018-01-01

    The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases. PMID:28945252

  1. DNA Hypomethylation in Intragenic and Intergenic Enhancer Chromatin of Muscle-Specific Genes Usually Correlates with their Expression

    PubMed Central

    Ehrlich, Kenneth C.; Paterson, Heather L.; Lacey, Michelle; Ehrlich, Melanie

    2016-01-01

    Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1’s super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation. PMID:28018137

  2. Immunoglobulin kappa light chain gene promoter and enhancer are not responsible for B-cell restricted gene rearrangement.

    PubMed Central

    Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F

    1989-01-01

    We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061

  3. Distinct epigenetic signatures elucidate enhancer-gene relationships that delineate CIMP and non-CIMP colorectal cancers.

    PubMed

    Chong, Allen; Teo, Jing Xian; Ban, Kenneth H K

    2016-05-10

    Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype ("CIMP") has significantly higher levels of DNA methylation at so-called "Type C loci" within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype.Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of <0.01) differentially methylated regions (DMRs) (1000bp) in a study of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets.We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.

  4. Investigation of tumor suppressor genes apart from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC).

    PubMed

    Singh, Rashmi Bhat; Amare Kadam, Pratibha S

    2013-10-01

    To investigate the most recurrent deletion loci on 3p12-p26 by deletion mapping studies by PCR-LOH and BAC array-FISH in sporadic conventional renal cell carcinoma (cRCC) and further, to evaluate the their clinicopathologic significance in cRCC. Comparative allelotyping studies in cRCC and major epithelial carcinomas (MEC) such as lung, breast, and bladder tumors were also carried out to investigate the specificity of the targeted loci in cRCC. A total of 40 c-RCC patients were enrolled in this study, categorized in to 2 groups: group I comprises of patients of stages I and II and group II includes patients at stages III and IV. Loss of heterozygosity (LOH) studies were performed by PCR using 15 microsatellite markers of region 3p12-p26 on paired normal-tumor tissues. The recurrent LOH loci found in 27 cRCC tumors were further validated by BAC array-FISH using 23 serially mapped BAC clones. Simultaneously, the allelic deletion status of fragile histidine triad (FHIT) gene was studied by FISH in cRCC and major epithelial carcinoma (MEC) tumors. The numerical aberrations of chromosome 3 were also studied using the centromere enumeration probe (CEP) probe for chromosome 3 to validate the observed allelic losses by BAC array-FISH in cRCC as well as MECs. Our study revealed 3 affected regions of LOH on 3p in cRCC: 3p12.2-p14.1, 3p14.2-p21.1, and 3p24.2-p26.1 in both group I (stages I and II) and group II (stage III and IV). Comparative allelotyping studies revealed that except for LOH loci D3S2406 (20%), D3S1766 (14%), and D3S1560 (20%), remaining affected loci revealed retention of heterozygosity (ROH) in breast carcinomas. Lung and bladder tumors revealed ROH at all affected LOH loci. FISH with FHIT gene probe revealed deletions in cRCC (88%), breast (30%), and lung tumors (10%). FHIT gene deletions frequency was almost equal in both groups I and II (>70%), whereas a locus 3p13 (D3S2454) revealed the highest LOH in group II (83%) patients in comparison to group I (16

  5. Purifying Selection on Exonic Splice Enhancers in Intronless Genes

    PubMed Central

    Savisaar, Rosina; Hurst, Laurence D.

    2016-01-01

    Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites. PMID:26802218

  6. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    PubMed

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P < 0.01), and ultrasonic destruction PESDA resulted in more significant gene expression than ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic

  7. In silico analysis of fragile histidine triad involved in regression of carcinoma.

    PubMed

    Rasheed, Muhammad Asif; Tariq, Fatima; Afzal, Sara; Mannanv, Shazia

    2017-04-01

    Hepatocellular carcinoma (HCCa) is a primary malignancy of the liver. Many different proteins are involved in HCCa including insulin growth factor (IGF) II , signal transducers and activators of transcription (STAT) 3, STAT4, mothers against decapentaplegic homolog 4 (SMAD 4), fragile histidine triad (FHIT) and selective internal radiation therapy (SIRT) etc. The present study is based on the bioinformatics analysis of FHIT protein in order to understand the proteomics aspect and improvement of the diagnosis of the disease based on the protein. Different information related to protein were gathered from different databases, including National Centre for Biotechnology Information (NCBI) Gene, Protein and Online Mendelian Inheritance in Man (OMIM) databases, Uniprot database, String database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Moreover, the structure of the protein and evaluation of the quality of the structure were included from Easy modeler programme. Hence, this analysis not only helped to gather information related to the protein at one place, but also analysed the structure and quality of the protein to conclude that the protein has a role in carcinoma.

  8. Long noncoding RNAs as enhancers of gene expression.

    PubMed

    Ørom, U A; Derrien, T; Guigo, R; Shiekhattar, R

    2010-01-01

    The human genome contains thousands of long noncoding RNAs (ncRNAs) transcribed from diverse genomic locations. A large set of long ncRNAs is transcribed independent of protein-coding genes. We have used the GENCODE annotation of the human genome to identify 3019 long ncRNAs expressed in various human cell lines and tissue. This set of long ncRNAs responds to differentiation signals in primary human keratinocytes and is coexpressed with important regulators of keratinocyte development. Depletion of a number of these long ncRNAs leads to the repression of specific genes in their surrounding locus, supportive of an activating function for ncRNAs. Using reporter assays, we confirmed such activating function and show that such transcriptional enhancement is mediated through the long ncRNA transcripts. Our studies show that long ncRNAs exhibit functions similar to classically defined enhancers, through an RNA-dependent mechanism.

  9. Enhanced artemisinin yield by expression of rol genes in Artemisia annua.

    PubMed

    Dilshad, Erum; Cusido, Rosa Maria; Palazon, Javier; Estrada, Karla Ramirez; Bonfill, Mercedes; Mirza, Bushra

    2015-10-29

    Despite of many advances in the treatment of malaria, it is still the fifth most prevalent disease worldwide and is one of the major causes of death in the developing countries which accounted for 584,000 deaths in 2013, as estimated by World Health Organization. Artemisinin from Artemisia annua is still one of the most effective treatments for malaria. Increasing the artemisinin content of A. annua plants by genetic engineering would improve the availability of this much-needed drug. In this regard, a high artemisinin-yielding hybrid of A. annua produced by the centre for novel agricultural products of the University of York, UK, was selected (artemisinin maximally 1.4 %). As rol genes are potential candidates of biochemical engineering, genetic transformation of A. annua with Agrobacterium tumefaciens GV3101 harbouring vectors with rol B and rol C genes was carried out with the objective of enhancement of artemisinin content. Transgenic lines produced were analysed by the LC-MS for quantitative analysis of artemisinin and analogues. These high artemisinin yielding transgenics were also analysed by real time quantitative PCR to find the molecular dynamics of artemisinin enhancement. Genes of artemisinin biosynthetic pathway were studied including amorphadiene synthase (ADS), cytochrome P450, (CYP71AV1) and aldehyde dehydrogenase 1 (ALDH1). Trichome-specific fatty acyl-CoA reductase 1(TAFR1) is an enzyme involved in both trichome development and sesquiterpenoid biosynthesis and both processes are important for artemisinin biosynthesis. Thus, real time qPCR analysis of the TAFR1 gene was carried out, and trichome density was determined. Transgenics of rol B gene showed two- to ninefold (the decimal adds nothing in the abstract, please simplify to two- to ninefold) increase in artemisinin, 4-12-fold increase in artesunate and 1.2-3-fold increase in dihydroartemisinin. Whereas in the case of rol C gene transformants, a fourfold increase in artemisinin, four to

  10. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.

    PubMed

    Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A

    2014-11-20

    Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.

  11. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    PubMed Central

    Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145

  12. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  13. Promoter methylation profile in gallbladder cancer.

    PubMed

    Roa, Juan Carlos; Anabalón, Leonardo; Roa, Iván; Melo, Angélica; Araya, Juan Carlos; Tapia, Oscar; de Aretxabala, Xavier; Muñoz, Sergio; Schneider, Barbara

    2006-03-01

    Methylation in the promoter region of genes is an important mechanism of inactivation of tumor suppressor genes. Our objective was to analyze the methylation pattern of some of the genes involved in carcinogenesis of the gallbladder, examining the immunohistochemical expression of proteins, clinical features, and patient survival time. Twenty cases of gallbladder cancer were selected from the frozen tumor bank. The DNA extracted was analyzed by means of a methylation-specific polymerase chain reaction test for the CDKN2A (p16), MLH1, APC, FHIT, and CDH1 (E-cadherin) genes. Morphological and clinical data and follow-up information were obtained. All cases were in an advanced stage: histologically moderate or poorly differentiated tumors (95%). Methylation of the promoter area of genes was observed in 5%, 20%, 30%, 40%, and 65% of cases, and an altered immunohistochemical pattern (AIP) in 5%, 35%, 21%, 25%, and 66% for the MLH1, CDKN2A, FHIT, APC, and CDH1 genes, respectively. The Kappa concordance index between methylation of the promoter area and AIP for the MLH1 and CDH1 genes was very high (K > 0.75) and substantial for APC (K > 0.45). No correlation was found between survival time and the methylation of the genes studied. The high frequency of gene methylation (with the exception of MLH1) and the high agreement between AIP and methylation of the gene promoter area for the MLH1, APC, and CDH1 genes suggest that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis.

  14. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.

    PubMed

    Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H

    2016-02-12

    Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.

  15. Enhanced Phosphorylation-Independent Arrestins and Gene Therapy

    PubMed Central

    Gurevich, Vsevolod V.; Song, Xiufeng; Vishnivetskiy, Sergey A.; Gurevich, Eugenia V.

    2015-01-01

    A variety of heritable and acquired disorders is associated with excessive signaling by mutant or overstimulated GPCRs. Since any conceivable treatment of diseases caused by gain-of-function mutations requires gene transfer, one possible approach is functional compensation. Several structurally distinct forms of enhanced arrestins that bind phosphorylated and even non-phosphorylated active GPCRs with much higher affinity than parental wild-type proteins have the ability to dampen the signaling by hyperactive GPCR, pushing the balance closer to normal. In vivo this approach was so far tested only in rod photoreceptors deficient in rhodopsin phosphorylation, where enhanced arrestin improved the morphology and light sensitivity of rods, prolonged their survival, and accelerated photoresponse recovery. Considering that rods harbor the fastest, as well as the most demanding and sensitive GPCR-driven signaling cascade, even partial success of functional compensation of defect in rhodopsin phosphorylation by enhanced arrestin demonstrates the feasibility of this strategy and its therapeutic potential. PMID:24292828

  16. A liver enhancer in the fibrinogen gene cluster.

    PubMed

    Fort, Alexandre; Fish, Richard J; Attanasio, Catia; Dosch, Roland; Visel, Axel; Neerman-Arbez, Marguerite

    2011-01-06

    The plasma concentration of fibrinogen varies in the healthy human population between 1.5 and 3.5 g/L. Understanding the basis of this variability has clinical importance because elevated fibrinogen levels are associated with increased cardiovascular disease risk. To identify novel regulatory elements involved in the control of fibrinogen expression, we used sequence conservation and in silico-predicted regulatory potential to select 14 conserved noncoding sequences (CNCs) within the conserved block of synteny containing the fibrinogen locus. The regulatory potential of each CNC was tested in vitro using a luciferase reporter gene assay in fibrinogen-expressing hepatoma cell lines (HuH7 and HepG2). 4 potential enhancers were tested for their ability to direct enhanced green fluorescent protein expression in zebrafish embryos. CNC12, a sequence equidistant from the human fibrinogen alpha and beta chain genes, activates strong liver enhanced green fluorescent protein expression in injected embryos and their transgenic progeny. A transgenic assay in embryonic day 14.5 mouse embryos confirmed the ability of CNC12 to activate transcription in the liver. While additional experiments are necessary to prove the role of CNC12 in the regulation of fibrinogen, our study reveals a novel regulatory element in the fibrinogen locus that is active in the liver and may contribute to variable fibrinogen expression in humans.

  17. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression

    PubMed Central

    Cao, Kaixiang; Collings, Clayton K.; Marshall, Stacy A.; Morgan, Marc A.; Rendleman, Emily J.; Wang, Lu; Sze, Christie C.; Sun, Tianjiao; Bartom, Elizabeth T.; Shilatifard, Ali

    2017-01-01

    The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development. PMID:28487406

  18. The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.

    PubMed

    Hernández-Vega, Amayra; Minguillón, Carolina

    2011-08-01

    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.

  19. The magnetofection method: using magnetic force to enhance gene delivery.

    PubMed

    Plank, Christian; Schillinger, Ulrike; Scherer, Franz; Bergemann, Christian; Rémy, Jean-Serge; Krötz, Florian; Anton, Martina; Lausier, Jim; Rosenecker, Joseph

    2003-05-01

    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.

  20. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers

    PubMed Central

    Field, Amanda; Xiang, Jie; Anderson, W. Ray; Graham, Patricia; Pick, Leslie

    2016-01-01

    The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern. PMID:27723822

  1. Mapping Interactive Cancer Susceptibility Genes in Prostate Cancer

    DTIC Science & Technology

    2007-04-01

    interval within intron 5 of FHIT. Since non- exonic causative mutations are difficult to identify, we employed an approach looking for signatures of...natural selection in this region within human populations to better understand the potential nature of any disease mutation(s). Since non- exonic ...0.523 0.126 CYP3A4 7 98.999-99.026 D7S647 199496 0.79 98.913 195 0.510 0.300 EZH2 7 147.961-147.982 D7S688 199984 0.84 147.981 49 0.478 0.687 PTEN 10

  2. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    PubMed Central

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  3. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    PubMed

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. The use of genes for performance enhancement: doping or therapy?

    PubMed

    Oliveira, R S; Collares, T F; Smith, K R; Collares, T V; Seixas, F K

    2011-12-01

    Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such 'gene doping', exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  5. Cis-regulation of the amphioxus engrailed gene: insights into evolution of a muscle-specific enhancer.

    PubMed

    Beaster-Jones, Laura; Schubert, Michael; Holland, Linda Z

    2007-08-01

    To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.

  6. Synergistically combined gene delivery for enhanced VEGF secretion and anti-apoptosis

    PubMed Central

    Won, Young-Wook; Lee, Minhyung; Kim, Hyun Ah; Nam, Kihoon; Bull, David A.; Kim, Sung Wan

    2013-01-01

    With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved a success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and prolong anti-apoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP 1) and a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF, and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and the prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia, and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases. PMID:24007285

  7. Three enhancer regions regulate gbx2 gene expression in the isthmic region during zebrafish development.

    PubMed

    Islam, Md Ekramul; Kikuta, Hiroshi; Inoue, Fumitaka; Kanai, Maiko; Kawakami, Atsushi; Parvin, Mst Shahnaj; Takeda, Hiroyuki; Yamasu, Kyo

    2006-12-01

    In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the

  8. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation

    PubMed Central

    Fan, Zenghua; Zhao, Meng; Joshi, Parth D.; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu

    2017-01-01

    Abstract Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. PMID:28335007

  9. Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery.

    PubMed

    Sun, Ryan R; Noble, Misty L; Sun, Samuel S; Song, Shuxian; Miao, Carol H

    2014-05-28

    Ultrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent. These modifications are 1) increased MB shell acyl chain length (RN18) for elevated stability and 2) addition of positive charge on MB (RC5K) for greater DNA associability. The MB types were compared in their ability to facilitate transfection of luciferase and GFP reporter plasmid DNA in vitro and in vivo under various conditions of US intensity, MB dosage, and pretreatment MB-DNA incubation. The results indicated that both RN18 and RC5K were more efficient than Definity®, and that the cationic RC5K can induce even greater transgene expression by increasing payload capacity with prior DNA incubation without compromising cell viability. These findings could be applied to enhance MB functions in a wide range of therapeutic US/MB gene and drug delivery approach. With further designs, MB customizations have the potential to advance this technology closer to clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    PubMed

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers

    PubMed Central

    Tsytsykova, Alla V.; Rajsbaum, Ricardo; Falvo, James V.; Ligeiro, Filipa; Neely, Simon R.; Goldfeld, Anne E.

    2007-01-01

    Here we provide a mechanism for specific, efficient transcription of the TNF gene and, potentially, other genes residing within multigene loci. We identify and characterize highly conserved noncoding elements flanking the TNF gene, which undergo activation-dependent intrachromosomal interactions. These elements, hypersensitive site (HSS)−9 and HSS+3 (9 kb upstream and 3 kb downstream of the TNF gene, respectively), contain DNase I hypersensitive sites in naive, T helper 1, and T helper 2 primary T cells. Both HSS-9 and HSS+3 inducibly associate with acetylated histones, indicative of chromatin remodeling, bind the transcription factor nuclear factor of activated T cells (NFAT)p in vitro and in vivo, and function as enhancers of NFAT-dependent transactivation mediated by the TNF promoter. Using the chromosome conformation capture assay, we demonstrate that upon T cell activation intrachromosomal looping occurs in the TNF locus. HSS-9 and HSS+3 each associate with the TNF promoter and with each other, circularizing the TNF gene and bringing NFAT-containing nucleoprotein complexes into close proximity. TNF gene regulation thus reveals a mode of intrachromosomal interaction that combines a looped gene topology with interactions between enhancers and a gene promoter. PMID:17940009

  12. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer

    PubMed Central

    Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.

    2013-01-01

    Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265

  13. The potential of clofarabine in MLL-rearranged infant acute lymphoblastic leukaemia.

    PubMed

    Stumpel, Dominique J P M; Schneider, Pauline; Pieters, Rob; Stam, Ronald W

    2015-09-01

    MLL-rearranged acute lymphoblastic leukaemia (ALL) in infants is the most difficult-to-treat type of childhood ALL, displaying a chemotherapy-resistant phenotype, and unique histone modifications, gene expression signatures and DNA methylation patterns. MLL-rearranged infant ALL responds remarkably well to nucleoside analogue drugs in vitro, such as cytarabine and cladribine, and to the demethylating agents decitabine and zebularine as measured by cytotoxicity assays. These observations led to the inclusion of cytarabine into the treatment regimens currently used for infants with ALL. However, survival chances for infants with MLL-rearranged ALL do still not exceed 30-40%. Here we explored the in vitro potential of the novel nucleoside analogue clofarabine for MLL-rearranged infant ALL. Therefore we used both cell line models as well as primary patient cells. Compared with other nucleoside analogues, clofarabine effectively targeted primary MLL-rearranged infant ALL cells at the lowest concentrations, with median LC50 values of ∼25 nM. Interestingly, clofarabine displayed synergistic cytotoxic effects in combination with cytarabine. Furthermore, at concentrations of 5-10nM clofarabine induced demethylation of the promoter region of the tumour suppressor gene FHIT (Fragile Histidine Triad), a gene typically hypermethylated in MLL-rearranged ALL. Demethylation of the FHIT promoter region was accompanied by subtle re-expression of this gene both at the mRNA and protein level. We conclude that clofarabine is an interesting candidate for further studies in MLL-rearranged ALL in infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of Transient Enhancers.

    PubMed

    Rhee, Ho Sung; Closser, Michael; Guo, Yuchun; Bashkirova, Elizaveta V; Tan, G Christopher; Gifford, David K; Wichterle, Hynek

    2016-12-21

    Generic spinal motor neuron identity is established by cooperative binding of programming transcription factors (TFs), Isl1 and Lhx3, to motor-neuron-specific enhancers. How expression of effector genes is maintained following downregulation of programming TFs in maturing neurons remains unknown. High-resolution exonuclease (ChIP-exo) mapping revealed that the majority of enhancers established by programming TFs are rapidly deactivated following Lhx3 downregulation in stem-cell-derived hypaxial motor neurons. Isl1 is released from nascent motor neuron enhancers and recruited to new enhancers bound by clusters of Onecut1 in maturing neurons. Synthetic enhancer reporter assays revealed that Isl1 operates as an integrator factor, translating the density of Lhx3 or Onecut1 binding sites into transient enhancer activity. Importantly, independent Isl1/Lhx3- and Isl1/Onecut1-bound enhancers contribute to sustained expression of motor neuron effector genes, demonstrating that outwardly stable expression of terminal effector genes in postmitotic neurons is controlled by a dynamic relay of stage-specific enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hyaluronic Acid Enhances Gene Delivery into the Cochlea

    PubMed Central

    Shibata, Seiji B.; Cortez, Sarah R.; Wiler, James A.; Swiderski, Donald L.

    2012-01-01

    Abstract Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application. PMID:22074321

  16. Hyaluronic acid enhances gene delivery into the cochlea.

    PubMed

    Shibata, Seiji B; Cortez, Sarah R; Wiler, James A; Swiderski, Donald L; Raphael, Yehoash

    2012-03-01

    Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application.

  17. Co-infection with human polyomavirus BK enhances gene expression and replication of human adenovirus.

    PubMed

    Bil-Lula, Iwona; Woźniak, Mieczysław

    2018-03-26

    Immunocompromised patients are susceptible to multiple viral infections. Relevant interactions between co-infecting viruses might result from viral regulatory genes which trans-activate or repress the expression of host cell genes as well as the genes of any co-infecting virus. The aim of the current study was to show that the replication of human adenovirus 5 is enhanced by co-infection with BK polyomavirus and is associated with increased expression of proteins including early region 4 open reading frame 1 and both the large tumor antigen and small tumor antigen. Clinical samples of whole blood and urine from 156 hematopoietic stem cell transplant recipients were tested. We also inoculated adenocarcinomic human alveolar basal epithelial cells with both human adenovirus 5 and BK polyomavirus to evaluate if co-infection of viruses affected their replication. Data showed that adenovirus load was significantly higher in the plasma (mean 7.5 x 10 3  ± 8.5 x 10 2 copies/ml) and urine (mean 1.9 x 10 3  ± 8.0 x 10 2 copies/ml) of samples from patients with co-infections, in comparison to samples from patients with isolated adenovirus infection. In vitro co-infection led to an increased (8.6 times) expression of the adenovirus early region 4 open reading frame gene 48 hours post-inoculation. The expression of the early region 4 open reading frame gene positively correlated with the expression of BK polyomavirus large tumor antigen (r = 0.90, p < 0.0001) and small tumor antigen (r = 0.83, p < 0.001) genes. The enhanced expression of the early region 4 open reading frame gene due to co-infection with BK polyomavirus was associated with enhanced adenovirus, but not BK polyomavirus, replication. The current study provides evidence that co-infection of adenovirus and BK polyomavirus contributes to enhanced adenovirus replication. Data obtained from this study may have significant importance in the clinical setting.

  18. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  19. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of

  20. An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves.

    PubMed

    Rosenthal, Sun Hee; Diamos, Andrew G; Mason, Hugh S

    2018-03-01

    We have found interesting features of a plant gene (extensin) 3' flanking region, including extremely efficient polyadenylation which greatly improves transient expression of transgenes when an intron is removed. Its use will greatly benefit studies of gene expression in plants, research in molecular biology, and applications for recombinant proteins. Plants are a promising platform for the production of recombinant proteins. To express high-value proteins in plants efficiently, the optimization of expression cassettes using appropriate regulatory sequences is critical. Here, we characterize the activity of the tobacco extensin (Ext) gene terminator by transient expression in Nicotiana benthamiana, tobacco, and lettuce. Ext is a member of the hydroxyproline-rich glycoprotein (HRGP) superfamily and constitutes the major protein component of cell walls. The present study demonstrates that the Ext terminator with its native intron removed increased transient gene expression up to 13.5-fold compared to previously established terminators. The enhanced transgene expression was correlated with increased mRNA accumulation and reduced levels of read-through transcripts, which could impair gene expression. Analysis of transcript 3'-ends found that the majority of polyadenylated transcripts were cleaved at a YA dinucleotide downstream from a canonical AAUAAA motif and a UG-rich region, both of which were found to be highly conserved among related extensin terminators. Deletion of either of these regions eliminated most of the activity of the terminator. Additionally, a 45 nt polypurine sequence ~ 175 nt upstream from the polyadenylation sites was found to also be necessary for the enhanced expression. We conclude that the use of Ext terminator has great potential to benefit the production of recombinant proteins in plants.

  1. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.

    PubMed

    Brown, Jacqueline; Bothma, Hannelie; Veale, Robin; Willem, Pascale

    2011-06-28

    To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

  2. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes

    PubMed Central

    Brown, Jacqueline; Bothma, Hannelie; Veale, Robin; Willem, Pascale

    2011-01-01

    AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. CONCLUSION: The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines. PMID:21734802

  3. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    PubMed Central

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  4. B29 Gene Silencing in Pituitary Cells is Regulated by Its 3′ Enhancer

    PubMed Central

    Malone, Cindy S.; Kuraishy, Ali I.; Fike, Francesca M.; Loya, Ruchika G.; Mikkili, Minil R.; Teitell, Michael A.; Wall, Randolph

    2007-01-01

    Summary B cell-specific B29 (Igβ, CD79b) genes in rat, mouse, and human are situated between the 5′ growth hormone (GH) locus control region (LCR) and the 3′ GH gene cluster. The entire GH genomic region is DNase1 hypersensitive in GH-expressing pituitary cells, which predicts an “open” chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3′ enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3′ enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3′ enhancer in in vitro EMSA and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3′ enhancer acting as a powerful silencer in a context and tissue-specific manner. PMID:16920149

  5. Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator.

    PubMed

    Beyene, Getu; Buenrostro-Nava, Marco T; Damaj, Mona B; Gao, San-Ji; Molina, Joe; Mirkov, T Erik

    2011-01-01

    The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.

  6. Regulation of a mammalian gene bearing a CpG island promoter and a distal enhancer.

    PubMed

    Berrozpe, Georgina; Bryant, Gene O; Warpinski, Katherine; Ptashne, Mark

    2013-08-15

    A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells) lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery.

    PubMed

    Cheng, Jianjun; Zeidan, Ryan; Mishra, Swaroop; Liu, Aijie; Pun, Suzie H; Kulkarni, Rajan P; Jensen, Gregory S; Bellocq, Nathalie C; Davis, Mark E

    2006-11-02

    To understand how chloroquine (CQ) enhances transgene expression in polycation-based, nonviral gene delivery systems, a number of CQ analogues with variations in the aliphatic amino side chain or in the aromatic ring are synthesized and investigated. Our studies indicate that the aliphatic amino moiety of CQ is essential to provide increased gene expression. Further, the enhancements are more dramatically affected by changes to the aromatic ring and are positively correlated to the strength of intercalation between DNA and the CQ analogues. Quinacrine (QC), a CQ analogue with a fused acridinyl structure that can strongly intercalate DNA, enhances transfection similarly to CQ at a concentration 10 times lower, while N(4)-(4-pyridinyl)-N(1),N(1)-diethyl-1,4-pentanediamine (CP), a CQ analogue that has a weakly intercalating pyridinyl ring, shows no effect on gene expression. Subtle change on the 7-substituent of the chloroquine aromatic structure can also greatly affect the ability of the CQ analogues to enhance transgene expression. Transfection in the presence of N(4)-(7-trifluoromethyl-4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamin e (CQ7a) shows expression efficiency 10 times higher than in the presence of CQ at same concentration, while transfection in the presence of N(4)-(4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamine (CQ7b) does not reveal any enhancing effects on expression. Through a number of comparative studies with CQ and its analogues, we conclude that there are at least three mechanistic features of CQ that lead to the enhancement in gene expression: (i) pH buffering in endocytic vesicles, (ii) displacement of polycations from the nucleic acids in polyplexes, and (iii) alteration of the biophysical properties of the released nucleic acid.

  8. Enhancing biological relevance of a weighted gene co-expression network for functional module identification.

    PubMed

    Prom-On, Santitham; Chanthaphan, Atthawut; Chan, Jonathan Hoyin; Meechai, Asawin

    2011-02-01

    Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.

  9. Physical and functional mapping of a tumor suppressor locus for renal cell carcinoma within chromosome 3p12.

    PubMed

    Lott, S T; Lovell, M; Naylor, S L; Killary, A M

    1998-08-15

    Using a functional genetic approach, we previously identified a novel genetic locus, NRC-1 (Nonpapillary Renal Cell Carcinoma 1), that mediated tumor suppression and rapid cell death of renal cell carcinoma (RCC) cells in vivo. For these experiments, a defined subchromosomal fragment of human chromosome 3p was transferred into a sporadic RCC cell line via microcell fusion, and microcell hybrid clones were tested for tumorigenicity in vivo. The results indicated functional evidence for a novel tumor suppressor locus within the 3p14-p12 interval known to contain the most common fragile site of the human genome (FRA3B), the FHIT gene, and the breakpoint region associated with the familial form of RCC. We now report the physical mapping of the NRC-1 critical region by detailed microsatellite analyses of novel microcell hybrid clones containing transferred fragments of chromosome 3p in the RCC cell background that were phenotypically suppressed or unsuppressed for tumorigenicity in vivo. The results limit the region containing the tumor suppressor locus within chromosome 3p12. The FHIT gene, FRA3B, and the familial RCC breakpoint region were excluded from the NRC-1 critical region. Furthermore, the NRC-1 locus falls within a well-characterized homozygous deletion region of 5-7 Mb associated with a small cell lung carcinoma cell line, U2020, suggesting that a more general tumor suppressor gene may reside in this region.

  10. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    NASA Astrophysics Data System (ADS)

    Kamau Chapman, Sarah W.; Hassa, Paul O.; Koch-Schneidemann, Sabine; von Rechenberg, Brigitte; Hofmann-Amtenbrink, Margarethe; Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich; Hottiger, Michael O.

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.

  11. Coordinated regulation of IFITM1, 2 and 3 genes by an IFN-responsive enhancer through long-range chromatin interactions.

    PubMed

    Li, Ping; Shi, Ming-Lei; Shen, Wen-Long; Zhang, Zhang; Xie, De-Jian; Zhang, Xiang-Yuan; He, Chao; Zhang, Yan; Zhao, Zhi-Hu

    2017-08-01

    Interferon-induced transmembrane protein (IFITM) 1, 2 and 3 genes encode a family of interferon (IFN)-induced transmembrane proteins that block entry of a broad spectrum of pathogens. However, the transcriptional regulation of these genes, especially whether there exist any enhancers and their roles during the IFN induction process remain elusive. Here, through public data mining, episomal luciferase reporter assay and in vivo CRISPR-Cas9 genome editing, we identified an IFN-responsive enhancer located 35kb upstream of IFITM3 gene promoter upregulating the IFN-induced expression of IFITM1, 2 and 3 genes. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and luciferase reporter assay demonstrated that signal transducers and activators of transcription (STAT) 1 bound to the enhancer with the treatment of IFN and was indispensable for the enhancer activity. Furthermore, using chromosome conformation capture technique, we revealed that the IFITM1, 2 and 3 genes physically clustered together and constitutively looped to the distal enhancer through long-range interactions in both HEK293 and A549 cells, providing structural basis for coordinated regulation of IFITM1, 2 and 3 by the enhancer. Finally, we showed that in vivo truncation of the enhancer impaired IFN-induced resistance to influenza A virus (IAV) infection. These findings expand our understanding of the mechanisms underlying the transcriptional regulation of IFITM1, 2 and 3 expression and its ability to mediate IFN signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hydroxyurea enhances SMN2 gene expression through nitric oxide release.

    PubMed

    Xu, Cheng; Chen, Xin; Grzeschik, Susanna M; Ganta, Madhuri; Wang, Ching H

    2011-02-01

    Small molecules that increase full-length survivor motor neuron (SMN) gene transcript are promising therapeutic candidates for spinal muscular atrophy (SMA). Hydroxyurea (HU) has recently been shown to increase full-length SMN transcript in cultured lymphocytes from patients with SMA. We investigate the mechanism by which HU enhances full-length SMN2 gene expression in SMA lymphocytes. Nitric oxide (NO) is a major intracellular metabolite of HU. We test whether NO donors can themselves enhance full-length SMN2 expression. Eighteen cell lines (five type I, five type II, six type III SMA, and two non-SMA controls) were treated with or without NO donors for 48 h. SMA cells treated with HU and three NO donors: two long-acting donors, Deta-NONOate and S-nitrosoglutathione, and one short-acting donor, 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene, resulted in significant increase in full-length SMN2 mRNA. These effects were abolished by co-treatment with an NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide. One short-acting NO donor, S-nitroso-N-acetyl-DL-penicillamine, failed to show significant effect on full-length SMN2 expression, possibly due to high degree of cytotoxicity. These results were observed using both densitometry and quantitative PCR methods. We conclude that HU enhances SMN2 expression through the release of NO. NO donors may themselves be considered as new therapeutic candidates for SMA.

  13. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis

    PubMed Central

    Dreijerink, Koen; Braga, Eleonora; Kuzmin, Igor; Geil, Laura; Duh, Fuh-Mei; Angeloni, Debora; Zbar, Berton; Lerman, Michael I.; Stanbridge, Eric J.; Minna, John D.; Protopopov, Alexei; Li, Jingfeng; Kashuba, Vladimir; Klein, George; Zabarovsky, Eugene R.

    2001-01-01

    Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1A's GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region. PMID:11390984

  14. Enhancer activity of Helitron in sericin-1 gene promoter from Bombyx mori.

    PubMed

    Huang, Ke; Li, Chun-Feng; Wu, Jie; Wei, Jun-Hong; Zou, Yong; Han, Min-Jin; Zhou, Ze-Yang

    2016-06-01

    Sericin is a kind of water-soluble protein expressed specifically in the middle silk gland of Bombyx mori. When the sericin-1 gene promoter was cloned and a transgenic vector was constructed to express a foreign protein, a specific Helitron, Bmhel-8, was identified in the sericin-1 gene promoter sequence in some genotypes of Bombyx mori and Bombyx mandarina. Given that the Bmhel-8 Helitron transposon was present only in some genotypes, it could be the source of allelic variation in the sericin-1 promoter. The length of the sericin-1 promoter sequence is approximately 1063 or 643 bp. The larger size of the sequence or allele is ascribed to the presence of Bmhel-8. Silkworm genotypes can be homozygous for either the shorter or larger promoter sequence or heterozygous, containing both alleles. Bmhel-8 in the sericin-1 promoter exhibits enhancer activity, as demonstrated by a dual-luciferase reporter system in BmE cell lines. Furthermore, Bmhel-8 displays enhancer activity in a sericin-1 promoter-driven gene expression system but does not regulate the tissue-specific expression of sericin-1. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    PubMed Central

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  16. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6

    PubMed Central

    Antosova, Barbora; Smolikova, Jana; Klimova, Lucie; Lachova, Jitka; Bendova, Michaela; Kozmikova, Iryna; Machon, Ondrej; Kozmik, Zbynek

    2016-01-01

    Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction. PMID:27918583

  17. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.

    PubMed

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-04-21

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes

    PubMed Central

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-01-01

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. PMID:28242760

  19. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer.

    PubMed Central

    Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H

    1988-01-01

    cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787

  20. NRIP enhances HPV gene expression via interaction with either GR or E2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Szu-Wei; Lu, Pei-Yu; Guo, Jih-Huong

    We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, inmore » a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.« less

  1. Regulation of the neuropathy-associated Pmp22 gene by a distal super-enhancer.

    PubMed

    Pantera, Harrison; Moran, John J; Hung, Holly A; Pak, Evgenia; Dutra, Amalia; Svaren, John

    2018-05-16

    Peripheral nerve myelination is adversely affected in the most common form of the hereditary peripheral neuropathy called Charcot-Marie-Tooth Disease. This form, classified as CMT1A, is caused by a 1.4 Mb duplication on chromosome 17, which includes the abundantly expressed Schwann cell myelin gene, Peripheral Myelin Protein 22 (PMP22). This is one of the most common copy number variants causing neurological disease. Overexpression of Pmp22 in rodent models recapitulates several aspects of neuropathy, and reduction of Pmp22 in such models results in amelioration of the neuropathy phenotype. Recently we identified a potential super-enhancer approximately 90-130 kb upstream of the Pmp22 transcription start sites. This super-enhancer encompasses a cluster of individual enhancers that have the acetylated histone H3K27 active enhancer mark, and coincides with smaller duplications identified in patients with milder CMT1A-like symptoms, where the PMP22 coding region itself was not part of the duplication. In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression.

  2. PCR-free Quantification of Multiple Splice Variants in Cancer Gene by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Sun, Lan; Irudayaraj, Joseph

    2009-01-01

    We demonstrate a surface enhanced Raman spectroscopy (SERS) based array platform to monitor gene expression in cancer cells in a multiplex and quantitative format without amplification steps. A strategy comprising of DNA/RNA hybridization, S1 nuclease digestion, and alkaline hydrolysis was adopted to obtain DNA targets specific to two splice junction variants Δ(9, 10) and Δ(5) of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 breast cancer cell lines. These two targets were identified simultaneously and their absolute quantities were estimated by a SERS strategy utilizing the inherent plasmon-phonon Raman mode of gold nanoparticle probes as a self-referencing standard to correct for variability in surface enhancement. Results were then validated by reverse transcription PCR (RT-PCR). Our proposed methodology could be expanded to a higher level of multiplexing for quantitative gene expression analysis of any gene without any amplification steps. PMID:19780515

  3. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ.

    PubMed

    Aida, Tomomi; Nakade, Shota; Sakuma, Tetsushi; Izu, Yayoi; Oishi, Ayu; Mochida, Keiji; Ishikubo, Harumi; Usami, Takako; Aizawa, Hidenori; Yamamoto, Takashi; Tanaka, Kohichi

    2016-11-28

    Although CRISPR/Cas enables one-step gene cassette knock-in, assembling targeting vectors containing long homology arms is a laborious process for high-throughput knock-in. We recently developed the CRISPR/Cas-based precise integration into the target chromosome (PITCh) system for a gene cassette knock-in without long homology arms mediated by microhomology-mediated end-joining. Here, we identified exonuclease 1 (Exo1) as an enhancer for PITCh in human cells. By combining the Exo1 and PITCh-directed donor vectors, we achieved convenient one-step knock-in of gene cassettes and floxed allele both in human cells and mouse zygotes. Our results provide a technical platform for high-throughput knock-in.

  4. The combination of dimethoxycurcumin with DNA methylation inhibitor enhances gene re-expression of promoter-methylated genes and antagonizes their cytotoxic effect

    PubMed Central

    Hassan, Hazem E.; Keita, Jean-Arnaud; Narayan, Lawrence; Brady, Sean M.; Frederick, Richard; Carlson, Samuel; C. Glass, Karen; Natesan, Senthil; Buttolph, Thomm; Fandy, Tamer E.

    2016-01-01

    ABSTRACT Curcumin and its analogs exhibited antileukemic activity either as single agent or in combination therapy. Dimethoxycurcumin (DMC) is a more metabolically stable curcumin analog that was shown to induce the expression of promoter-methylated genes without reversing DNA methylation. Accordingly, co-treatment with DMC and DNA methyltransferase (DNMT) inhibitors could hypothetically enhance the re-expression of promoter-methylated tumor suppressor genes. In this study, we investigated the cytotoxic effects and epigenetic changes associated with the combination of DMC and the DNMT inhibitor decitabine (DAC) in primary leukemia samples and cell lines. The combination demonstrated antagonistic cytotoxic effects and was minimally cytotoxic to primary leukemia cells. The combination did not affect the metabolic stability of DMC. Although the combination enhanced the downregulation of nuclear DNMT proteins, the hypomethylating activity of the combination was not increased significantly compared to DAC alone. On the other hand, the combination significantly increased H3K27 acetylation (H3K27Ac) compared to the single agents near the promoter region of promoter-methylated genes. Furthermore, sequential chromatin immunoprecipitation (ChIP) and DNA pyrosequencing of the chromatin-enriched H3K27Ac did not show any significant decrease in DNA methylation compared to other regions. Consequently, the enhanced induction of promoter-methylated genes by the combination compared to DAC alone is mediated by a mechanism that involves increased histone acetylation and not through potentiation of the DNA hypomethylating activity of DAC. Collectively, our results provide the mechanistic basis for further characterization of this combination in leukemia animal models and early phase clinical trials. PMID:27588609

  5. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE PAGES

    Banf, Michael; Rhee, Seung Y.

    2017-02-01

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  6. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banf, Michael; Rhee, Seung Y.

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  7. Identification of hypothalamic arcuate nucleus-specific enhancer region of Kiss1 gene in mice.

    PubMed

    Goto, Teppei; Tomikawa, Junko; Ikegami, Kana; Minabe, Shiori; Abe, Hitomi; Fukanuma, Tatsuya; Imamura, Takuya; Takase, Kenji; Sanbo, Makoto; Tomita, Koichi; Hirabayashi, Masumi; Maeda, Kei-ichiro; Tsukamura, Hiroko; Uenoyama, Yoshihisa

    2015-01-01

    Pulsatile secretion of GnRH plays a pivotal role in follicular development via stimulating tonic gonadotropin secretion in mammals. Kisspeptin neurons, located in the arcuate nucleus (ARC), are considered to be an intrinsic source of the GnRH pulse generator. The present study aimed to determine ARC-specific enhancer(s) of the Kiss1 gene by an in vivo reporter assay. Three green fluorescent protein (GFP) reporter constructs (long, medium length, and short) were generated by insertion of GFP cDNA at the Kiss1 locus. Transgenic female mice bearing the long and medium-length constructs showed apparent GFP signals in kisspeptin-immunoreactive cells in both the ARC and anteroventral periventricular nucleus, in which another population of kisspeptin neurons are located. On the other hand, transgenic mice bearing 5'-truncated short construct showed few GFP signals in the ARC kisspeptin-immunoreactive cells, whereas they showed colocalization of GFP- and kisspeptin-immunoreactivities in the anteroventral periventricular nucleus. In addition, chromatin immunoprecipitation and chromosome conformation capture assays revealed recruitment of unoccupied estrogen receptor-α in the 5'-upstream region and intricate chromatin loop formation between the 5'-upstream and promoter regions of Kiss1 locus in the ARC. Taken together, the present results indicate that 5'-upstream region of Kiss1 locus plays a critical role in Kiss1 gene expression in an ARC-specific manner and that the recruitment of estrogen receptor-α and formation of a chromatin loop between the Kiss1 promoter and the 5' enhancer region may be required for the induction of ARC-specific Kiss1 gene expression. These results suggest that the 5'-upstream region of Kiss1 locus functions as an enhancer for ARC Kiss1 gene expression in mice.

  8. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cellmore » cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered

  9. A gene-specific non-enhancer sequence is critical for expression from the promoter of the small heat shock protein gene αB-crystallin

    PubMed Central

    2014-01-01

    Background Deciphering of the information content of eukaryotic promoters has remained confined to universal landmarks and conserved sequence elements such as enhancers and transcription factor binding motifs, which are considered sufficient for gene activation and regulation. Gene-specific sequences, interspersed between the canonical transacting factor binding sites or adjoining them within a promoter, are generally taken to be devoid of any regulatory information and have therefore been largely ignored. An unanswered question therefore is, do gene-specific sequences within a eukaryotic promoter have a role in gene activation? Here, we present an exhaustive experimental analysis of a gene-specific sequence adjoining the heat shock element (HSE) in the proximal promoter of the small heat shock protein gene, αB-crystallin (cryab). These sequences are highly conserved between the rodents and the humans. Results Using human retinal pigment epithelial cells in culture as the host, we have identified a 10-bp gene-specific promoter sequence (GPS), which, unlike an enhancer, controls expression from the promoter of this gene, only when in appropriate position and orientation. Notably, the data suggests that GPS in comparison with the HSE works in a context-independent fashion. Additionally, when moved upstream, about a nucleosome length of DNA (−154 bp) from the transcription start site (TSS), the activity of the promoter is markedly inhibited, suggesting its involvement in local promoter access. Importantly, we demonstrate that deletion of the GPS results in complete loss of cryab promoter activity in transgenic mice. Conclusions These data suggest that gene-specific sequences such as the GPS, identified here, may have critical roles in regulating gene-specific activity from eukaryotic promoters. PMID:24589182

  10. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery.

    PubMed

    Lee, Dongwon; Zhang, Weidong; Shirley, Shawna A; Kong, Xiaoyuan; Hellermann, Gary R; Lockey, Richard F; Mohapatra, Shyam S

    2007-01-01

    Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative. Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo. Thiolated chitosan-DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio>or=2.5:1. CSH360/DNA nanocomplexes induced significantly (P<0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days. Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.

  11. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5’UTRs of Selected Tumor Suppressors

    PubMed Central

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja

    2016-01-01

    Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene

  12. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.

    PubMed

    Dhar, Shilpa S; Zhao, Dongyu; Lin, Tao; Gu, Bingnan; Pal, Khusboo; Wu, Sarah J; Alam, Hunain; Lv, Jie; Yun, Kyuson; Gopalakrishnan, Vidya; Flores, Elsa R; Northcott, Paul A; Rajaram, Veena; Li, Wei; Shilatifard, Ali; Sillitoe, Roy V; Chen, Kaifu; Lee, Min Gyu

    2018-06-07

    Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Addiction-Related Gene Regulation: Risks of Exposure to Cognitive Enhancers vs. Other Psychostimulants

    PubMed Central

    Steiner, Heinz; Van Waes, Vincent

    2012-01-01

    The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as “cognitive enhancers” by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past 2 decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers. PMID:23085425

  14. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, J.B.; Johnson, J.E.; Buskin, J.N.

    1988-01-01

    Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. The authors examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer.more » This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.« less

  15. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils.

    PubMed

    Ryan, P R; Tyerman, S D; Sasaki, T; Furuichi, T; Yamamoto, Y; Zhang, W H; Delhaize, E

    2011-01-01

    Acid soils restrict plant production around the world. One of the major limitations to plant growth on acid soils is the prevalence of soluble aluminium (Al(3+)) ions which can inhibit root growth at micromolar concentrations. Species that show a natural resistance to Al(3+) toxicity perform better on acid soils. Our understanding of the physiology of Al(3+) resistance in important crop plants has increased greatly over the past 20 years, largely due to the application of genetics and molecular biology. Fourteen genes from seven different species are known to contribute to Al(3+) tolerance and resistance and several additional candidates have been identified. Some of these genes account for genotypic variation within species and others do not. One mechanism of resistance which has now been identified in a range of species relies on the efflux of organic anions such as malate and citrate from roots. The genes controlling this trait are members of the ALMT and MATE families which encode membrane proteins that facilitate organic anion efflux across the plasma membrane. Identification of these and other resistance genes provides opportunities for enhancing the Al(3+) resistance of plants by marker-assisted breeding and through biotechnology. Most attempts to enhance Al(3+) resistance in plants with genetic engineering have targeted genes that are induced by Al(3+) stress or that are likely to increase organic anion efflux. In the latter case, studies have either enhanced organic anion synthesis or increased organic anion transport across the plasma membrane. Recent developments in this area are summarized and the structure-function of the TaALMT1 protein from wheat is discussed.

  16. Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.

    PubMed

    Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H

    2001-12-21

    We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.

  17. Enhancer elements upstream of the SHOX gene are active in the developing limb.

    PubMed

    Durand, Claudia; Bangs, Fiona; Signolet, Jason; Decker, Eva; Tickle, Cheryll; Rappold, Gudrun

    2010-05-01

    Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD.

  18. Enhancer elements upstream of the SHOX gene are active in the developing limb

    PubMed Central

    Durand, Claudia; Bangs, Fiona; Signolet, Jason; Decker, Eva; Tickle, Cheryll; Rappold, Gudrun

    2010-01-01

    Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD. PMID:19997128

  19. Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line.

    PubMed

    Bhattarai, Shanta Raj; Kim, Sun Young; Jang, Kyu Yun; Lee, Ki Chang; Yi, Ho Keun; Lee, Dae Yeol; Kim, Hak Yong; Hwang, Pyoung Han

    2008-02-01

    One factor critical to successful gene therapy is the development of efficient delivery systems. Although advances in gene transfer technology including viral and non-viral vectors have been made, an ideal vector system has not yet been constructed. Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via improve viral routes has become more desirable and advantageous. The ideal improve viral DNA delivery system should be a synthetic materials plus viral vectors. The materials should also be biocompatible, efficient, and modular so that it is tunable to various applications in both research and clinical settings. The successful steps towards this improve viral DNA delivery system is demonstrated: a magnetofection system mediated by modified cationic chitosan-coated iron oxide nanoparticles. Dense colloidal cationic iron oxide nanoparticles serve as an uptake-enhancing component by physical concentration at the cell surface in presence of external magnetic fields; enhanced viral gene expression (3-100-fold) due to the particles is seen as compared to virus vector alone with little virus dose.

  20. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes

    PubMed Central

    Sharma, Shivali; Upadhyaya, H. D.; Varshney, R. K.; Gowda, C. L. L.

    2013-01-01

    The narrow genetic base of cultivars coupled with low utilization of genetic resources are the major factors limiting grain legume production and productivity globally. Exploitation of new and diverse sources of variation is needed for the genetic enhancement of grain legumes. Wild relatives with enhanced levels of resistance/tolerance to multiple stresses provide important sources of genetic diversity for crop improvement. However, their exploitation for cultivar improvement is limited by cross-incompatibility barriers and linkage drags. Pre-breeding provides a unique opportunity, through the introgression of desirable genes from wild germplasm into genetic backgrounds readily used by the breeders with minimum linkage drag, to overcome this. Pre-breeding activities using promising landraces, wild relatives, and popular cultivars have been initiated at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to develop new gene pools in chickpea, pigeonpea, and groundnut with a high frequency of useful genes, wider adaptability, and a broad genetic base. The availability of molecular markers will greatly assist in reducing linkage drags and increasing the efficiency of introgression in pre-breeding programs. PMID:23970889

  1. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions

    PubMed Central

    El-Esawi, Mohamed A.; Elansary, Hosam O.; El-Shanhorey, Nader A.; Abdel-Hamid, Amal M. E.; Ali, Hayssam M.; Elshikh, Mohamed S.

    2017-01-01

    Salinity stress as a major agricultural limiting factor may influence the chemical composition and bioactivity of Rosmarinus officinallis L. essential oils and leaf extracts. The application of salicylic acid (SA) hormone may alleviate salinity stress by modifying the chemical composition, gene expression and bioactivity of plant secondary metabolites. In this study, SA was applied to enhance salinity tolerance in R. officinallis. R. officinallis plants were subjected to saline water every 2 days (640, 2,000, and 4,000 ppm NaCl) and 4 biweekly sprays of SA at 0, 100, 200, and 300 ppm for 8 weeks. Simulated salinity reduced all vegetative growth parameters such as plant height, plant branches and fresh and dry weights. However, SA treatments significantly enhanced these plant growth and morphological traits under salinity stress. Salinity affected specific major essential oils components causing reductions in α-pinene, β-pinene, and cineole along with sharp increases in linalool, camphor, borneol, and verbenone. SA applications at 100–300 ppm largely reversed the effects of salinity. Interestingly, SA treatments mitigated salinity stress effects by increasing the total phenolic, chlorophyll, carbohydrates, and proline contents of leaves along with decline in sodium and chloride. Importantly, this study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) as well as increasing the non-enzymatic antioxidants such as free and total ascorbate in plants subjected to salinity. Quantitative real-time PCR analysis revealed that APX and 3 SOD genes showed higher levels in SA-treated rosemary under salinity stress, when compared to non-sprayed plants. Moreover, the expression level of selected genes conferring tolerance to salinity (bZIP62, DREB2, ERF3, and OLPb) were enhanced in SA-treated rosemary under salt stress, indicating that SA treatment resulted in the

  2. Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions.

    PubMed

    Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J

    2017-05-19

    Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.

  3. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  4. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes

    PubMed Central

    Chandra, Sruti; Terragni, Jolyon; Zhang, Guoqiang; Pradhan, Sriharsa; Haushka, Stephen; Johnston, Douglas; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie

    2015-01-01

    Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes. PMID:26041816

  5. Poly(amidoamine) Dendrimers Modified with 1,2-Epoxyhexane or 1,2-Epoxydodecane for Enhanced Gene Delivery Applications.

    PubMed

    Xiao, Tongyu; Cao, Xueyan; Hou, Wenxiu; Peng, Chen; Qiu, Jieru; Shi, Xiangyang

    2015-12-01

    We report a new non-viral gene delivery system based on hydrophobically modified poly(amidoamine) (PAMAM) dendrimers. In this study, the periphery of amine-terminated generation 5 (G5) PAMAM dendrimers was partially reacted with 1,2-epoxyhexane and 1,2-epoxydodecane, respectively. The formed hydrophobically modified G5 dendrimers (denoted as G5.NH2-C6 or G5.NH2-C12) were used to complex two different plasmid DNAs (pDNAs) encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The polyplexes formed between vectors and pDNA were characterized by gel retardation assay, dynamic light scattering, and zeta potential measurements. We show that the G5.NH2-C6 and G5.NH2-C12 vectors are able to effectively compact the pDNA, allowing for highly efficient gene transfection into a model cell line (HeLa cells) as demonstrated by both Luc assay and confocal microscopic imaging of the EGFP expression. Under the studied N/P ratios (the molar ratio of primary amines of the dendrimers to phosphates in the pDNA backbone) at 2.5 or 5, the transfection efficiency of the dendrimer-based vectors followed the order of G5.NH2-C12 > G5.NH2-C6 > G5.NH2. This enhanced gene transfection capacity is believed to be associated with the enhanced hydrophobic interaction between the vector/pDNA complexes and the relatively hydrophobic cell membranes. The developed hydrophobically modified dendrimers may be used as a promising non-viral vector for enhanced gene delivery applications.

  6. Mass spectrometry for identification of proteins that specifically bind to a distal enhancer of the Oct4 gene

    NASA Astrophysics Data System (ADS)

    Bakhmet, E. I.; Nazarov, I. B.; Artamonova, T. O.; Khodorkovsky, M. A.; Tomilin, A. N.

    2017-11-01

    Transcription factor Oct4 is a marker of pluripotent stem cells and has a significant role in their self-renewal. Oct4 gene is controlled by three cis-regulatory elements - proximal promoter, proximal enhancer and distal enhancer. All of these elements are targets for binding of regulatory proteins. Distal enhancer is in our research focus because of its activity in early stages of embryonic development. There are two main sequences called site 2A and site 2B that are presented in distal enhancer. For this moment proteins which bind to a site 2A (CCCCTCCCCCC) remain unknown. Using combination of in vitro method electrophoretic mobility shift assay (EMSA) and mass spectromery we identified several candidates that can regulate Oct4 gene expression through site 2A.

  7. Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: Concerns for use of cognitive enhancers?

    PubMed Central

    Steiner, Heinz; Van Waes, Vincent; Marinelli, Michela

    2009-01-01

    Background There is growing use of psychostimulant cognitive enhancers such as methylphenidate (Ritalin). Methylphenidate differs from the psychostimulant cocaine because it does not enhance brain levels of serotonin. We investigated whether exposure to methylphenidate combined with a serotonin-enhancing medication, the prototypical selective serotonin reuptake inhibitor (SSRI) fluoxetine (Prozac), would produce more “cocaine-like” molecular and behavioral changes. Methods We measured the effects of fluoxetine on gene expression induced by the cognitive enhancer methylphenidate in the striatum and nucleus accumbens of rats, by in situ hybridization histochemistry. We also determined whether fluoxetine modified behavioral effects of methylphenidate. Results Fluoxetine robustly potentiated methylphenidate-induced expression of the transcription factors c-fos and zif 268 throughout the striatum and to some degree in the nucleus accumbens. Fluoxetine also enhanced methylphenidate-induced stereotypical behavior. Conclusions Both potentiated gene regulation in the striatum and the behavioral effects indicate that combining the SSRI fluoxetine with the cognitive enhancer methylphenidate mimics cocaine effects, consistent with an increased risk for substance use disorder. PMID:19931852

  8. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island

    PubMed Central

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao

    2016-01-01

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity. PMID:27849579

  9. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    PubMed

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  10. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum.

    PubMed

    van Eldik, G J; Ruiter, R K; Colla, P H; van Herpen, M M; Schrauwen, J A; Wullems, G J

    1997-03-01

    Successful sexual reproduction relies on gene products delivered by the pistil to create an environment suitable for pollen tube growth. These compounds are either produced before pollination or formed during the interactions between pistil and pollen tubes. Here we describe the pollination-enhanced expression of the cp100 gene in pistils of Solanum tuberosum. Temporal analysis of gene expression revealed an enhanced expression already one hour after pollination and lasts more than 72 h. Increase in expression also occurred after touching the stigma and was not restricted to the site of touch but spread into the style. The predicted CP100 protein shows similarity to leguminous isoflavone reductases (IFRs), but belongs to a family of IFR-like NAD(P)H-dependent oxidoreductases present in various plant species.

  11. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.

    PubMed

    Watson, Bridget N J; Staals, Raymond H J; Fineran, Peter C

    2018-02-13

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum , CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted. IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through

  12. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression

    PubMed Central

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra

    2013-01-01

    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms. PMID:23669573

  13. An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes

    PubMed Central

    2013-01-01

    Background Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes from the data for cancer classification. Many computational methods face difficulties in selecting small subsets due to the small number of samples compared to the huge number of genes (high-dimension), irrelevant genes, and noisy genes. Methods We propose an enhanced binary particle swarm optimization to perform the selection of small subsets of informative genes which is significant for cancer classification. Particle speed, rule, and modified sigmoid function are introduced in this proposed method to increase the probability of the bits in a particle’s position to be zero. The method was empirically applied to a suite of ten well-known benchmark gene expression data sets. Results The performance of the proposed method proved to be superior to other previous related works, including the conventional version of binary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also requires lower computational time compared to BPSO. PMID:23617960

  14. Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication.

    PubMed

    Courtney, David G; Kennedy, Edward M; Dumm, Rebekah E; Bogerd, Hal P; Tsai, Kevin; Heaton, Nicholas S; Cullen, Bryan R

    2017-09-13

    Many viral RNAs are modified by methylation of the N 6 position of adenosine (m 6 A). m 6 A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m 6 A-modified RNAs, but the effects of m 6 A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m 6 A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m 6 A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m 6 A residues modulate IAV RNA function in cis, we mapped m 6 A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m 6 A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m 6 A residues in IAV transcripts enhance viral gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening).

    PubMed

    Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude

    2015-01-01

    Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  16. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene.

    PubMed

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S

    2017-09-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis.

  17. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene

    PubMed Central

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S.

    2017-01-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis. PMID:28663161

  18. Testing an aflatoxin B1 gene signature in rat archival tissues.

    PubMed

    Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R

    2012-05-21

    Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced

  19. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  20. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2016-11-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  1. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  2. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    PubMed Central

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  3. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    PubMed

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  4. Transcriptional Enhancers Induce Insertional Gene Deregulation Independently From the Vector Type and Design

    PubMed Central

    Maruggi, Giulietta; Porcellini, Simona; Facchini, Giulia; Perna, Serena K; Cattoglio, Claudia; Sartori, Daniela; Ambrosi, Alessandro; Schambach, Axel; Baum, Christopher; Bonini, Chiara; Bovolenta, Chiara; Mavilio, Fulvio; Recchia, Alessandra

    2009-01-01

    The integration characteristics of retroviral (RV) vectors increase the probability of interfering with the regulation of cellular genes, and account for a tangible risk of insertional mutagenesis in treated patients. To assess the potential genotoxic risk of conventional or self-inactivating (SIN) γ-RV and lentiviral (LV) vectors independently from the biological consequences of the insertion event, we developed a quantitative assay based on real-time reverse transcriptase—PCR on low-density arrays to evaluate alterations of gene expression in individual primary T-cell clones. We show that the Moloney leukemia virus long terminal repeat (LTR) enhancer has the strongest activity in both a γ-RV and a LV vector context, while an internal cellular promoter induces deregulation of gene expression less frequently, at a shorter range and to a lower extent in both vector types. Downregulation of gene expression was observed only in the context of LV vectors. This study indicates that insertional gene activation is determined by the characteristics of the transcriptional regulatory elements carried by the vector, and is largely independent from the vector type or design. PMID:19293778

  5. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation

    PubMed Central

    Petell, Christopher J.; Alabdi, Lama; He, Ming; San Miguel, Phillip; Rose, Richard; Gowher, Humaira

    2016-01-01

    Coordinated regulation of gene expression that involves activation of lineage specific genes and repression of pluripotency genes drives differentiation of embryonic stem cells (ESC). For complete repression of pluripotency genes during ESC differentiation, chromatin at their enhancers is silenced by the activity of the Lsd1-Mi2/NuRD complex. The mechanism/s that regulate DNA methylation at these enhancers are largely unknown. Here, we investigated the affect of the Lsd1-Mi2/NuRD complex on the dynamic regulatory switch that induces the local interaction of histone tails with the Dnmt3 ATRX-DNMT3-DNMT3L (ADD) domain, thus promoting DNA methylation at the enhancers of a subset of pluripotency genes. This is supported by previous structural studies showing a specific interaction between Dnmt3-ADD domain with H3K4 unmethylated histone tails that is disrupted by histone H3K4 methylation and histone acetylation. Our data suggest that Dnmt3a activity is triggered by Lsd1-Mi2/NuRD-mediated histone deacetylation and demethylation at these pluripotency gene enhancers when they are inactivated during mouse ESC differentiation. Using Dnmt3 knockout ESCs and the inhibitors of Lsd1 and p300 histone modifying enzymes during differentiation of E14Tg2A and ZHBTc4 ESCs, our study systematically reveals this mechanism and establishes that Dnmt3a is both reader and effector of the epigenetic state at these target sites. PMID:27179026

  6. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    PubMed Central

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny

    2012-01-01

    Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624

  7. Radiofrequency-enhanced vascular gene transduction and expression for intravascular MR imaging-guided therapy: feasibility study in pigs.

    PubMed

    Du, Xiangying; Qiu, Bensheng; Zhan, Xiangcan; Kolmakova, Antonina; Gao, Fabao; Hofmann, Lawrence V; Cheng, Linzhao; Chatterjee, Subroto; Yang, Xiaoming

    2005-09-01

    To evaluate the feasibility of radiofrequency (RF)-enhanced vascular gene transduction and expression by using a magnetic resonance (MR) imaging-heating guidewire as an intravascular heating vehicle during MR imaging-guided therapy. The institutional committee for animal care and use approved the experimental protocol. The study included in vitro evaluation of the use of RF energy to enhance gene transduction and expression in vascular cells, as well as in vivo validation of the feasibility of intravascular MR imaging-guided RF-enhanced vascular gene transduction and expression in pig arteries. For in vitro experiments, approximately 10(4) vascular smooth muscle cells were seeded in each of four chambers of a cell culture plate. Next, 1 mL of a green fluorescent protein gene (gfp)-bearing lentivirus was added to each chamber. Chamber 4 was heated at approximately 41 degrees C for 15 minutes by using an MR imaging-heating guidewire connected to a custom RF generator. At day 6 after transduction, the four chambers were examined and compared at confocal microscopy to determine the efficiency of gfp transduction and expression. For the in vivo experiments, a lentivirus vector bearing a therapeutic gene, vascular endothelial growth factor 165 (VEGF-165), was transferred by using a gene delivery balloon catheter in 18 femoral-iliac arteries (nine artery pairs) in domestic pigs and Yucatan pigs with atherosclerosis. During gene infusion, one femoral-iliac artery in each pig was heated to approximately 41 degrees C with RF energy transferred via the intravascular MR imaging-heating guidewire, while the contralateral artery was not heated (control condition). At day 6, the 18 arteries were harvested for quantitative Western blot analysis to compare VEGF-165 transduction and expression efficiency between RF-heated and nonheated arterial groups. Confocal microscopy showed gfp expression in chamber 4 that was 293% the level of expression in chamber 1 (49.6% +/- 25.8 vs 16

  8. Non-viral FoxM1 gene delivery to hepatocytes enhances liver repopulation

    PubMed Central

    Xiang, D; Liu, C-C; Wang, M-J; Li, J-X; Chen, F; Yao, H; Yu, B; Lu, L; Borjigin, U; Chen, Y-X; Zhong, L; Wangensteen, K J; He, Z-Y; Wang, X; Hu, Y-P

    2014-01-01

    Hepatocyte transplantation as a substitute strategy of orthotopic liver transplantation is being studied for treating end-stage liver diseases. Several technical hurdles must be overcome in order to achieve the therapeutic liver repopulation, such as the problem of insufficient expansion of the transplanted hepatocytes in recipient livers. In this study, we analyzed the application of FoxM1, a cell-cycle regulator, to enhance the proliferation capacity of hepatocytes. The non-viral sleeping beauty (SB) transposon vector carrying FoxM1 gene was constructed for delivering FoxM1 into the hepatocytes. The proliferation capacities of hepatocytes with FoxM1 expression were examined both in vivo and in vitro. Results indicated that the hepatocytes with FoxM1 expression had a higher proliferation rate than wild-type (WT) hepatocytes in vitro. In comparison with WT hepatocytes, the hepatocytes with FoxM1 expression had an enhanced level of liver repopulation in the recipient livers at both sub-acute injury (fumaryl acetoacetate hydrolase (Fah)–/– mice model) and acute injury (2/3 partial hepatectomy mice model). Importantly, there was no increased risk of tumorigenicity with FoxM1 expression in recipients even after serial transplantation. In conclusion, expression of FoxM1 in hepatocytes enhanced the capacity of liver repopulation without inducing tumorigenesis. FoxM1 gene delivered by non-viral SB vector into hepatocytes may be a viable approach to promote therapeutic repopulation after hepatocyte transplantation. PMID:24853430

  9. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin.

    PubMed

    Hu, Li-Zhong; Wan, Ning; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-03-24

    Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.

  10. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  11. Enhanced retroviral gene delivery in ultrasonic standing wave fields.

    PubMed

    Lee, Y-H; Peng, C-A

    2005-04-01

    Enhancement of retroviral transduction efficiency has been achieved by several physical and chemical approaches. However, the application of those methods is hampered by not easily scalable configurations. In this study, instead of looking into the effect of sonoporation, the potential of ultrasonic standing wave fields (USWF) to facilitate retroviral transduction rate was explored. We reasoned that, driven by the primary acoustic radiation force, suspended cells moved to the pressure nodal planes first and formed cell bands. Nanometer-sized retroviruses, circulated between nodal planes by acoustic microstreaming, then used the preformed cell bands as the nucleating sites to attach on. As a result, the encounter opportunity between retroviruses and cells was increased and further facilitated the gene delivery efficiency. Our results showed that mega-Hertz USWF brought K562 erythroleukemia cells (10(6) cells/ml) and vesicular stomatitis virus G-protein (VSV-G) pseudotyped retroviruses (titer of 5 x 10(6) CFU/ml) into close contact at the pressure nodal planes, yielding a four-fold increment of enhanced green fluorescent protein transgene expression after 5-min USWF exposure in the presence of Polybrene. Furthermore, with a fixed titer of retrovirus, the transduction rate was augmented with the increase of cell concentration. In summary, USWF offer a feasible means to enhance retroviral transduction efficiency in large-scale settings.

  12. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation.

    PubMed

    Petell, Christopher J; Alabdi, Lama; He, Ming; San Miguel, Phillip; Rose, Richard; Gowher, Humaira

    2016-09-19

    Coordinated regulation of gene expression that involves activation of lineage specific genes and repression of pluripotency genes drives differentiation of embryonic stem cells (ESC). For complete repression of pluripotency genes during ESC differentiation, chromatin at their enhancers is silenced by the activity of the Lsd1-Mi2/NuRD complex. The mechanism/s that regulate DNA methylation at these enhancers are largely unknown. Here, we investigated the affect of the Lsd1-Mi2/NuRD complex on the dynamic regulatory switch that induces the local interaction of histone tails with the Dnmt3 ATRX-DNMT3-DNMT3L (ADD) domain, thus promoting DNA methylation at the enhancers of a subset of pluripotency genes. This is supported by previous structural studies showing a specific interaction between Dnmt3-ADD domain with H3K4 unmethylated histone tails that is disrupted by histone H3K4 methylation and histone acetylation. Our data suggest that Dnmt3a activity is triggered by Lsd1-Mi2/NuRD-mediated histone deacetylation and demethylation at these pluripotency gene enhancers when they are inactivated during mouse ESC differentiation. Using Dnmt3 knockout ESCs and the inhibitors of Lsd1 and p300 histone modifying enzymes during differentiation of E14Tg2A and ZHBTc4 ESCs, our study systematically reveals this mechanism and establishes that Dnmt3a is both reader and effector of the epigenetic state at these target sites. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Transgenerational Radiation Epigenetics

    DTIC Science & Technology

    2014-11-01

    Cxcl12, Cyp1b1, Fhit, Mlh1 , Mthfr, Prdm2, Rarb, Rassf1, Rassf2, Sema3b, Slit2, Sfrp1, Tcf21; Genes with Metastatic Potential: Anxa5, Dlg2, Dusp6...Anxa5, Apc, Bcl2, Birc5, Braf, Cadm1, Cdh1, Cdh13, Cdkn2a, Dlc1, Egfr, Erbb2, Erbb3, Hgf, Hras1, Kras, Lck, Mlh1 , Mmp9, Nf1, Nfkb1, Ptgs2, Sema3b...Trp53; Immune response genes: Bcl2, Cadm1, Csf3, Cxcl12, Cxcl13, Irf4, Lck, Mlh1 , Nfkb1, Pax5, Stat1, Stat2, Tgfb1, Tnf, Trp53, Vegfa; and

  14. N-acetylcysteine augments adenovirus-mediated gene expression in human endothelial cells by enhancing transgene transcription and virus entry.

    PubMed

    Jornot, L; Morris, M A; Petersen, H; Moix, I; Rochat, T

    2002-01-01

    It has previously been shown that oxidants reduce the efficiency of adenoviral transduction in human umbilical vein endothelial cells (HUVECs). In this study, the effect of the antioxidant N-acetylcysteine (NAC) in adenovirus-mediated gene transfer has been investigated. HUVECs were pretreated or not with NAC, and infected with E1E3-deleted adenovirus (Ad) containing the LacZ gene expressed from the RSV-LTR promoter/enhancer in the presence and absence of NAC. Transgene expression was assessed at the protein level (histochemical staining, measurement of beta-Gal activity, and western blot), mRNA level (real-time RT-PCR) and gene level (nuclear run on) 24 h and 48 h after infection. Adenoviral DNA was quantitated by real-time PCR, and cell surface expression of Coxsackie/adenovirus receptors (CAR) was determined by FACS analysis. Pretreatment of cells with NAC prior to Ad infection enhanced beta-Gal activity by two-fold due to an increase in viral DNA, which was related to increased CAR expression. When NAC was present only during the post-infection period, a five-fold increase in beta-Gal activity and LacZ gene transcriptional activity was observed. When NAC was present during both the pretreatment and the post-infection period, beta-Gal activity was further enhanced, by 15-fold. Augmentation of beta-Gal activity was paralleled by an increase in beta-Gal protein and mRNA levels. NAC did not affect the half-life of LacZ mRNA. Pretreatment with NAC prior to Ad infection enhances virus entry, while treatment with NAC post-infection increases transgene transcription. This strategy permits the use of lower adenoviral loads and thus might be helpful for gene therapy of vascular diseases. Copyright 2001 John Wiley & Sons, Ltd.

  15. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    PubMed

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    PubMed

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  17. In ovo trace element supplementation enhances expression of growth genes in embryo and immune genes in post-hatch broiler chickens.

    PubMed

    Goel, Akshat; Bhanja, Subrat K; Mehra, Manish; Mandal, Asitbaran; Pande, Veena

    2016-06-01

    Differential expression of growth- and immunity-related genes and post-hatch performances were evaluated in in ovo zinc (Zn), iodine (I) or selenium (Se) supplemented chicken embryos. There was about 9-18% reduction in hatchability of Zn, I or Se supplemented eggs. In ovo trace element supplementation did not improve post-hatch growth. Two-way analysis of data revealed significant effect (P > 0.01) of period, trace elements and their interactions. Expression of hepatic somatotropin, insulin-like growth factor-II and mucin gene was highest at 20(th) embryonic day but decreased during post-hatch periods. In ovo Zn or I supplemented embryos had higher expression of growth-related genes compared to the Se or un-injected control group. Expression of interleukin-6 was higher (P < 0.01) in in ovo I supplemented chicks (2.5-fold) but lower in the Zn and Se groups than in the un-injected control group. However, Zn and Se supplemented chicks had higher cellular immune gene expression. In vivo response to mitogen phytohaemaglutinin was also higher (P < 0.01) in Zn or Se supplemented chicks In ovo supplementation of Zn, I and Se did not improve the post-hatch growth, but increased growth-related gene expression. Iodine improved humoral immune gene expression whereas Zn and Se enhanced cell-mediated immune gene expression in broiler chickens. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  19. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    PubMed

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  20. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling

    PubMed Central

    Partha, Raghavendran; Chauhan, Bharesh K; Ferreira, Zelia; Robinson, Joseph D; Lathrop, Kira; Nischal, Ken K

    2017-01-01

    The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. PMID:29035697

  1. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes.

    PubMed

    Yamamoto, Keisuke; Hara, Kiyotaka Y; Morita, Toshihiko; Nishimura, Akira; Sasaki, Daisuke; Ishii, Jun; Ogino, Chiaki; Kizaki, Noriyuki; Kondo, Akihiko

    2016-09-13

    Red yeast, Xanthophyllomyces dendrorhous is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) widely used in the aquaculture, food, pharmaceutical and cosmetic industries. The potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its native terpene pathway. Recently, we developed a multiple gene expression system in X. dendrorhous and enhanced the mevalonate synthetic pathway to increase astaxanthin production. In contrast, the mevalonate synthetic pathway is suppressed by ergosterol through feedback inhibition. Therefore, releasing the mevalonate synthetic pathway from this inhibition through the deletion of genes involved in ergosterol synthesis is a promising strategy to improve isoprenoid production. An efficient method for deleting diploid genes in X. dendrorhous, however, has not yet been developed. Xanthophyllomyces dendrorhous was cultivated under gradually increasing concentrations of antibiotics following the introduction of antibiotic resistant genes to be replaced with target genes. Using this method, double CYP61 genes encoding C-22 sterol desaturases relating to ergosterol biosynthesis were deleted sequentially. This double CYP61 deleted strain showed decreased ergosterol biosynthesis compared with the parental strain and single CYP61 disrupted strain. Additionally, this double deletion of CYP61 genes showed increased astaxanthin production compared with the parental strain and the single CYP61 knockout strain. Finally, astaxanthin production was enhanced by 1.4-fold compared with the parental strain, although astaxanthin production was not affected in the single CYP61 knockout strain. In this study, we developed a system to completely delete target diploid genes in X. dendrorhous. Using this method, we deleted diploid CYP61 genes involved in the synthesis of ergosterol that inhibits the pathway for mevalonate, which is a common

  2. SAFETY AND EFFICIENCY OF MODULATING PARACELLULAR PERMEABILITY TO ENHANCE AIRWAY EPITHELIAL GENE TRANSFER IN VIVO

    EPA Science Inventory


    ABSTRACT

    We evaluated the safety of agents that enhance gene transfer by modulating paracellular permeability. Lactate dehydrogenase (LDH) and cytokine release were measured in polarized primary human airway epithelial (HAE) cells after luminal application of vehicle, ...

  3. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene

    PubMed Central

    George, Marina A.; El-Shorbagy, Haidan M.; Bassiony, Heba; Farroh, Khaled Y.; Youssef, Tareq; Salaheldin, Taher A.

    2017-01-01

    Background Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. Aim of work The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Methods and results Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Conclusion Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV. PMID:28746382

  4. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    PubMed

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  5. [Enhanced nisin production by overexpression of nisin immunity gene nisI in the nisin-producing strain].

    PubMed

    Hu, Hongmei; Jiang, Like; Lin, Yuheng; Huan, Liandong; Zhong, Jin

    2010-10-01

    Our aim was to enhance nisin production by overexpression of nisin immunity gene nisI in nisin-producing strains. Nisin immunity gene nisI with a strong promoter P59 was cloned into vector pHJ201 and introduced into Lacotococcus lactis NZ9800, resulting in a recombinant strain L. lactis NZ9800/pHMI. Then the differences between the recombinant strain and the control strain L. lactis NZ9800/pHJ201 were analyzed in several aspects, including their growth curves, nisin resistance level and antibacterial activity against indicator strain Microccus flavus NCIB 8166. The overexpression of nisI had no significant difference in growth rate between recombinant strain and contrast strain. However, it promoted recombinant strain tolerance 25% higer nisin resistance level and stronger antibacterial activity against M. flavus NCIB 8166, which was increased by 32% and 25% when fermented for 6 and 8 hours, respectively. These results indicated that overexpression of nisI gene in the nisin producing strain can effectively enhance nisin resistence level and thus improve nisin production.

  6. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  7. Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate-early distal enhancer for viral gene expression and replication.

    PubMed

    Meier, Jeffery L; Keller, Michael J; McCoy, James J

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer's orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at -300 or -345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.

  8. Enhancement of HIV-1 VLP production using gene inhibition strategies.

    PubMed

    Fuenmayor, Javier; Cervera, Laura; Rigau, Cristina; Gòdia, Francesc

    2018-05-01

    Gag polyprotein from HIV-1 is able to generate virus-like particles (VLPs) when recombinantly expressed in animal cell platforms. HIV-1 VLP production in HEK293 cells can be improved by the use of different strategies for increasing product titers. One of them is the so-called extended gene expression (EGE), based on repeated medium exchanges and retransfections of the cell culture to prolong the production phase. Another approach is the media supplementation with gene expression enhancers such as valproic acid and caffeine, despite their detrimental effect on cell viability. Valproic acid is a histone deacetylase inhibitor while caffeine has a phosphodiesterase inhibition effect. Here, the combination of the EGE protocol with additive supplementation to maximize VLP production is first tested. As an alternative to the direct additive supplementation, the replacement of these chemical additives by iRNA for obtaining the same inhibition action is also tested. The combination of the EGE protocol with caffeine and valproic acid supplementation resulted in a 1.5-fold improvement in HIV-1 VLP production compared with the EGE protocol alone, representing an overall 18-fold improvement over conventional batch cultivation. shRNAs encoded in the expression vector were tested to substitute valproic acid and caffeine. This novel strategy enhanced VLP production by 2.3 fold without any detrimental effect on cell viability (91.7%) compared with the batch cultivation (92.0%). Finally, the combination of shRNA with EGE resulted in more than 15.6-fold improvement compared with the batch standard protocol traditionally used. The methodology developed enables the production of high titers of HIV-1 VLPs avoiding the toxic effects of additives.

  9. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    PubMed

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  10. Gene doping in sports.

    PubMed

    Unal, Mehmet; Ozer Unal, Durisehvar

    2004-01-01

    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement. Copyright 2004 Adis Data Information BV

  11. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease

    DOE PAGES

    Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.; ...

    2016-09-29

    Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less

  12. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.

    Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less

  13. Gene promoter methylation and DNA repair capacity in monozygotic twins with discordant smoking habits.

    PubMed

    Ottini, Laura; Rizzolo, Piera; Siniscalchi, Ester; Zijno, Andrea; Silvestri, Valentina; Crebelli, Riccardo; Marcon, Francesca

    2015-02-01

    The influence of DNA repair capacity, plasma nutrients and tobacco smoke exposure on DNA methylation was investigated in blood cells of twenty-one couples of monozygotic twins with discordant smoking habits. All study subjects had previously been characterized for mutagen sensitivity with challenge assays with ionizing radiation in peripheral blood lymphocytes. Plasma levels of folic acid, vitamin B12 and homocysteine were also available from a previous investigation. In this work DNA methylation in the promoter region of a panel of ten genes involved in cell cycle control, differentiation, apoptosis and DNA repair (p16, FHIT, RAR, CDH1, DAPK1, hTERT, RASSF1A, MGMT, BRCA1 and PALB2) was assessed in the same batches of cells isolated for previous studies, using the methylation-sensitive high-resolution melting technique. Fairly similar profiles of gene promoter methylation were observed within co-twins compared to unrelated subjects (p= 1.23 × 10(-7)), with no significant difference related to smoking habits (p = 0.23). In a regression analysis the methylation index of study subjects, used as synthetic descriptor of overall promoter methylation, displayed a significant inverse correlation with radiation-induced micronuclei (p = 0.021) and plasma folic acid level (p = 0.007) both in smokers and in non-smokers. The observed association between repair of radiation-induced DNA damage and promoter methylation suggests the involvement of the DNA repair machinery in DNA modification. Data also highlight the possible modulating effect of folate deficiency on DNA methylation and the strong influence of familiarity on the individual epigenetic profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Elastin-like polypeptide matrices for enhancing adeno-associated virus-mediated gene delivery to human neural stem cells.

    PubMed

    Kim, J-S; Chu, H S; Park, K I; Won, J-I; Jang, J-H

    2012-03-01

    The successful development of efficient and safe gene delivery vectors continues to be a major obstacle to gene delivery in stem cells. In this study, we have developed an elastin-like polypeptide (ELP)-mediated adeno-associated virus (AAV) delivery system for transducing fibroblasts and human neural stem cells (hNSCs). AAVs have significant promise as therapeutic vectors because of their safety and potential for use in gene targeting in stem cell research. ELP has been recently employed as a biologically inspired 'smart' biomaterial that exhibits an inverse temperature phase transition, thereby demonstrating promise as a novel drug carrier. The ELP that was investigated in this study was composed of a repetitive penta-peptide with [Val-Pro-Gly-Val-Gly]. A novel AAV variant, AAV r3.45, which was previously engineered by directed evolution to enhance transduction in rat NSCs, was nonspecifically immobilized onto ELPs that were adsorbed beforehand on a tissue culture polystyrene surface (TCPS). The presence of different ELP quantities on the TCPS led to variations in surface morphology, roughness and wettability, which were ultimately key factors in the modulation of cellular transduction. Importantly, with substantially reduced viral quantities compared with bolus delivery, ELP-mediated AAV delivery significantly enhanced delivery efficiency in fibroblasts and hNSCs, which have great potential for use in tissue engineering applications and neurodegenerative disorder treatments, respectively. The enhancement of cellular transduction in stem cells, as well as the feasibility of ELPs for utilization in three-dimensional scaffolds, will contribute to the advancement of gene therapy for stem cell research and tissue regenerative medicine.

  15. On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase

    PubMed Central

    Ienasescu, Hans; Li, Kang; Andersson, Robin; Vitezic, Morana; Rennie, Sarah; Chen, Yun; Vitting-Seerup, Kristoffer; Lagoni, Emil; Boyd, Mette; Bornholdt, Jette; de Hoon, Michiel J. L.; Kawaji, Hideya; Lassmann, Timo; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Carninci, Piero; Sandelin, Albin

    2016-01-01

    Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present SlideBase, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human Protein Atlas and BioGPS. Database URL: http://slidebase.binf.ku.dk PMID:28025337

  16. ThPP1 gene, encodes an inorganic pyrophosphatase in Thellungiella halophila, enhanced the tolerance of the transgenic rice to alkali stress.

    PubMed

    He, Rui; Yu, Guohong; Han, Xiaori; Han, Jiao; Li, Wei; Wang, Bing; Huang, Shengcai; Cheng, Xianguo

    2017-12-01

    An inorganic pyrophosphorylase gene, ThPP1 , modulated the accumulations of phosphate and osmolytes by up-regulating the differentially expression genes, thus enhancing the tolerance of the transgenic rice to alkali stress (AS). Inorganic pyrophosphorylase is essential in catalyzing the hydrolysis of pyrophosphate to inorganic phosphate during plant growth. Here, we report the changes of physiological osmolytes and differentially expression genes in the transgenic rice overexpressing a soluble inorganic pyrophosphatase gene ThPP1 of Thellungiella halophila in response to AS. Analyses showed that the ThPP1 gene was a PPase family I member which is located to the cytoplasm. Data showed that the transgenic lines revealed an enhanced tolerance to AS compared to the wild type, and effectively increased the accumulations of inorganic phosphate and organic small molecules starch, sucrose, proline and chlorophyll, and maintained the balance of osmotic potential by modulating the ratio of Na + /K + in plant cells. Under AS, total 379 of differentially expression genes were up-regulated in the leaves of the transgenic line compared with control, and the enhanced tolerance of the transgenic rice to the AS seemed to be associated with the up-regulations of the osmotic stress-related genes such as the L-type lectin-domain containing receptor kinase (L-type LecRK), the cation/H + antiporter gene and the vacuolar cation/proton exchanger 1 gene (CAX1), which conferred the involvements in the biosynthesis and metabolic pathways. Protein interaction showed that the ThPP1 protein specifically interacted with a 16# target partner of the photosystem II light-harvesting-Chl-binding protein. This study suggested that the ThPP1 gene plays an important regulatory role in conferring the tolerance of the transgenic rice to AS, and is an effective candidate in molecular breeding for crop cultivation of the alkali tolerance.

  17. [Effects of canine IL-2 and IL-7 genes on enhancing immunogenicity of canine parvovirus VP2 gene vaccine in mice].

    PubMed

    Chen, Huihui; Zhong, Fei; Li, Xiujin; Wang, Lu; Sun, Yan; Neng, Changai; Zhang, Kao; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To investigate the effects of canine interleukin-2 (cIL-2) and cIL-7 genes on enhancing the immunogenicity of canine parvovirus (CPV) VP2 DNA vaccine. The bicistronic vectors of cIL-2 and cIL-7 genes were constructed using the eukaryotic expression vector containing internal ribosome entry site (IRES). The cIL-2/ cIL-7 dicistronic vector plus previously constructed vectors, including CPV VP2 DNA vaccine vector, cIL-2 vector and cIL-7 vector, were used to co-immunize mice with different combinations, consisting of VP2 alone, VP2 + cIL-2, VP2 + cIL-7 and VP2 + cIL-2/cIL-7. The VP2-specific antibody levels in immunized mice were measured by ELISA at different time post-immunization. The proliferation indices and interferon-gamma expression were measured by lymphocyte proliferation assay and ELISA, respectively. The cIL-2/cIL-7 bicistronic vector was correct and could mediate cIL-2 and cIL-7 gene expression in eukaryotic cells. Immunization results revealed that the antibody titers and the neutralizing antibody levels of the mice co-immunized with VP2 + cIL-7/cIL-2 vectors were significantly higher than that with either VP2 + cIL-2 vectors or VP2 + cIL-7 vectors (P < 0.05). The lymphocyte proliferation indices of VP2 + cIL-7/cIL-2 vector-immunized mice were also higher than that of other two groups although not statistically significant. However, the IFN-gamma expression levels of VP2 + cIL-7/cIL-2 vector-immunized mice were significantly higher than other immunized mice (P < 0.05). The cIL-2 and cIL-7 genes showed the significant synergic effects on enhancing the immunogenecity of CPV VP2 DNA vaccine.

  18. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.

    PubMed

    Liu, X Z; Sang, M; Zhang, X A; Zhang, T K; Zhang, H Y; He, X; Li, S X; Sun, X D; Zhang, Z M

    2017-05-01

    Saccharomyces uvarum is a good wine yeast species that may have great potential for the future. However, sulfur tolerance of most S. uvarum strains is very poor. In addition there is still little information about the SSU1 gene of S. uvarum, which encodes a putative transporter conferring sulfite tolerance. In order to analyze the function of the SSU1 gene, two expression vectors that contained different SSU1 genes were constructed and transferred into a sulfite-tolerant S. uvarum strain, A9. Then sulfite tolerance, SO2 production, and PCR, sequencing, RT-qPCR and transcriptome analyses were used to access the function of the S. uvarum SSU1 gene. Our results illustrated that enhancing expression of the SSU1 gene can promote sulfite resistance in S. uvarum, and an insertion fragment ahead of the additional SSU1 gene, as seen in some alleles, could affect the expression of other genes and the sulfite tolerance level of S. uvarum. This is the first report on enhancing the expression of the SSU1 gene of S. uvarum. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Large-eddy simulations of a forced homogeneous isotropic turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Cai, Wei-Hua; Li, Feng-Chen

    2014-03-01

    Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.

  20. Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation.

    PubMed

    Dilshad, Erum; Cusido, Rosa Maria; Ramirez Estrada, Karla; Bonfill, Mercedes; Mirza, Bushra

    2015-01-01

    The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism.

  1. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report anmore » autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.« less

  2. Depletion of autophagy receptor p62/SQSTM1 enhances the efficiency of gene delivery in mammalian cells.

    PubMed

    Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Kobayashi, Shouhei; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-08-01

    Novel methods that increase the efficiency of gene delivery to cells will have many useful applications. Here, we report a simple approach involving depletion of p62/SQSTM1 to enhance the efficiency of gene delivery. The efficiency of reporter gene delivery was remarkably higher in p62-knockout murine embryonic fibroblast (MEF) cells compared with normal MEF cells. This higher efficiency was partially attenuated by ectopic expression of p62. Furthermore, siRNA-mediated knockdown of p62 clearly increased the efficiency of transfection of murine embryonic stem (mES) cells and human HeLa cells. These data indicate that p62 acts as a key regulator of gene delivery. © 2016 Federation of European Biochemical Societies.

  3. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    PubMed

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  5. A Novel Terminator Primer and Enhancer Reagents for Direct Expression of PCR-Amplified Genes in Mammalian Cells.

    PubMed

    Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Yarimizu, Tohru; Iwakiri, Ryo; Hoshida, Hisashi; Akada, Rinji

    2015-08-01

    Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.

  6. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    PubMed Central

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  7. Requirement of Multiple cis-Acting Elements in the Human Cytomegalovirus Major Immediate-Early Distal Enhancer for Viral Gene Expression and Replication

    PubMed Central

    Meier, Jeffery L.; Keller, Michael J.; McCoy, James J.

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication. PMID:11739696

  8. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  9. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    PubMed Central

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  10. Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes.

    PubMed

    Fealy, Ciarán E; Nieuwoudt, Stephan; Foucher, Julie A; Scelsi, Amanda R; Malin, Steve K; Pagadala, Mangesh; Cruz, Lauren A; Li, Miranda; Rocco, Michael; Burguera, Bartolome; Kirwan, John P

    2018-05-15

    Functional high intensity training (F-HIT) is a novel fitness paradigm that integrates simultaneous aerobic and resistance training in sets of constantly varied movements, based on real-world situational exercises, performed at high intensity in workouts that range from ∼8-20 min/session. We hypothesized that F-HIT would be an effective exercise mode for reducing insulin resistance in type 2 diabetes (T2D). We recruited 13 overweight/obese adults (5 males, 8 females; 53 ± 7 years; BMI 34.5 ± 3.6 kg•m -2 , Mean ± SD) with T2D to participate in a 6 week (3d/wk) supervised F-HIT program. An oral glucose tolerance test was used to derive measures of insulin sensitivity. F-HIT significantly reduced fat mass (43.8 ± 83.8 vs 41.6 ± 7.9 kg; P < 0.01), diastolic blood pressure (80.2 ± 7.1 vs 74.5 ± 5.8; P < 0.01), blood lipids (triglyceride and VLDL, both P < 0.05) and metabolic syndrome z-score (6.4 ± 4.5 vs -0.2 ± 5.2 AU; P < 0.001), and increased basal fat oxidation (FOX: 0.08 ± 0.03 vs 0.10 ± 0.04 g•min -1 ; P = 0.05), and HMW adiponectin (214.4 ± 88.9 vs 288.8 ± 127.4 ng•mL -1 ; P < 0.01). Importantly, F-HIT also increased insulin sensitivity (0.037 ± 0.010 vs 0.042 ± 0.010 AU; P < 0.05). Increases in HMW adiponectin and FOX correlated with the change in insulin sensitivity (rho: 0.75; P < 0.05, rho: 0.81; P < 0.01, respectively). Compliance with the training program was > 95% and no injuries or adverse events were reported. These data suggest that F-HIT may be an effective exercise mode for managing T2D. The increase in insulin sensitivity addresses a key defect in T2D and is consistent with improvements observed after more traditional aerobic exercise programs in overweight/obese adults with T2D. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease.

    PubMed

    2017-12-01

    Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

  12. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    PubMed

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy

    PubMed Central

    Elmer, Jacob J.; Christensen, Matthew D.; Rege, Kaushal

    2014-01-01

    Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases. PMID:23994344

  14. Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneoka, Hidenori; Miyake, Katsuhide, E-mail: miyake@nubio.nagoya-u.ac.jp; Iijima, Shinji

    2009-10-02

    The gene for tryptophan oxygenase (TO) is expressed in adult hepatocytes in a tissue- and differentiation-specific manner. The TO promoter has two glucocorticoid-responsive elements (GREs), and its expression is regulated by glucocorticoid hormone in the liver. We found a novel GRE in close proximity to a scaffold/matrix attachment region (S/MAR) that was located around -8.5 kb from the transcriptional start site of the TO gene by electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays. A combination of nuclear fractionation and quantitative PCR analysis showed that the S/MAR was tethered to the nuclear matrix in both fetal and adult hepatocytes. ChIPmore » assay showed that, in adult hepatocytes, the S/MAR-GRE and the promoter proximal regions interacted with lamin and heterogeneous nuclear ribonucleoprotein U in a dexamethasone dependent manner, but this was not the case in fetal cells, suggesting that developmental stage-specific expression of the TO gene might rely on the binding of the enhancer (the -8.5 kb S/MAR-GRE) and the promoter to the inner nuclear matrix.« less

  15. Remote Ischemic Preconditioning Enhances the Expression of Genes Encoding Antioxidant Enzymes and Endoplasmic Reticulum Stress-Related Proteins in Rat Skeletal Muscle.

    PubMed

    Park, Ui Jun; Kim, Hyoung Tae; Cho, Won Hyun; Park, Jae Hyoung; Jung, Hye Ra; Kim, Min Young

    2016-12-01

    Ischemic preconditioning (IPC), including remote IPC (rIPC) and direct IPC (dIPC), is a promising method to decrease ischemia-reperfusion (IR) injury. This study tested the effect of both rIPC and dIPC on the genes for antioxidant enzymes and endoplasmic reticulum (ER) stress-related proteins. Twenty rats were randomly divided into the control and study groups. In the control group (n=10), the right hind limb was sham-operated. The left hind limb (IscR) of the control group underwent IR injury without IPC. In the study group (n=10), the right hind limb received IR injury after 3 cycles of rIPC. The IscR received IR injury after 3 cycles of dIPC. Gene expression was analyzed by Quantitative real-time polymerase chain reaction from the anterior tibialis muscle. The expression of the antioxidant enzyme genes including glutathione peroxidase (GPx), superoxide dismutase (SOD) 1 and catalase (CAT) were significantly reduced in IscR compared with sham treatment. In comparison with IscR, rIPC enhanced the expression of GPx, SOD2, and CAT genes. dIPC enhanced the expression of SOD2 and CAT genes. The expression of SOD2 genes was consistently higher in rIPC than in dIPC, but the difference was only significant for SOD2. The expression of genes for ER stress-related proteins tended to be reduced in IscR in comparison with sham treatment. However, the difference was only significant for C/EBP homologous protein (CHOP). In comparison with IscR, rIPC significantly up-regulated activating transcription factor 4 and CHOP, whereas dIPC up-regulated CHOP. Both rIPC and dIPC enhanced expression of genes for antioxidant enzymes and ER stress-related proteins.

  16. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    PubMed

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  17. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis

    PubMed Central

    Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang

    2018-01-01

    Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H2O2. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars

  18. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis.

    PubMed

    Lu, Pu; Magwanga, Richard Odongo; Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang

    2018-04-12

    Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 ( TOM1 ), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum , 9 in Gossypium arboreum , and 11 in Gossypium raimondii . The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton

  19. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  20. Expression of Sucrose Synthase Genes Involved in Enhanced Elongation of Pondweed (Potamogeton distinctus) Turions under Anoxia

    PubMed Central

    HARADA, TARO; SATOH, SHIGERU; YOSHIOKA, TOSHIHITO; ISHIZAWA, KIMIHARU

    2005-01-01

    • Background and Aims Overwintering buds (turions) of the monocot aquatic pondweed species (Potamogeton distinctus) are highly tolerant to anoxic stress. Sucrose metabolism accompanied by enhanced activity of sucrose synthase (SuSy) operates actively during anaerobic elongation of pondweed turions. The aim of this study is to isolate SuSy genes from the turions and to investigate their transcriptional changes in response to anoxia and other stimuli. • Methods SuSy genes were isolated from pondweed turions by PCR methods and transcript levels of SuSy genes were examined in response to anoxia, sugars and plant hormones. In addition, the effects of anoxia on SuSy activity were examined both in the soluble fraction and in the microsomal fraction. • Key Results cDNAs of two SuSy genes (PdSUS1 and PdSUS2) were cloned from pondweed turions. The levels of PdSUS1 transcripts increased under anoxia but did not with sugar treatments. Anoxia-stimulated elongation of turions was further enhanced by 2,4-dichlorophenoxyacetic acid (2,4-D) and suppressed by treatments with sorbitol, 2-deoxyglucose (2-dGlc) and abscisic acid (ABA). The levels of PdSUS1 transcripts were increased by 2,4-D and decreased by sorbitol under anoxia. The levels of PdSUS2 transcripts were not significantly affected by anoxia and any other treatments. SuSy activity of turions under anoxia was enhanced in the soluble fraction, but not in the microsomal fraction. • Conclusions Up-regulation of PdSUS1 transcription under anoxia may not be attributed to sugar starvation under anoxia. A positive correlation between stem elongation and the level of PdSUS1 transcripts was observed in turions treated with anoxic conditions, 2,4-D and sorbitol. The increase in SuSy activity in the cytosol may contribute to sugar metabolism and sustain stem elongation under anoxia. PMID:16033779

  1. [Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes].

    PubMed

    Kovina, A P; Petrova, N V; Razin, S V; Yarovaia, O V

    2016-01-01

    In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio reriowas detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.

  2. [Gene doping: gene transfer and possible molecular detection].

    PubMed

    Argüelles, Carlos Francisco; Hernández-Zamora, Edgar

    2007-01-01

    The use of illegal substances in sports to enhance athletic performance during competition has caused international sports organizations such as the COI and WADA to take anti doping measures. A new doping method know as gene doping is defined as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". However, gene doping in sports is not easily identified and can cause serious consequences. Molecular biology techniques are needed in order to distinguish the difference between a "normal" and an "altered" genome. Further, we need to develop new analytic methods and biological molecular techniques in anti-doping laboratories, and design programs that avoid the non therapeutic use of genes.

  3. Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp.

    PubMed

    Song, Wenlu; Cheng, Jun; Zhao, Jinfang; Zhang, Chuanxi; Zhou, Junhu; Cen, Kefa

    2016-09-01

    The hydrogenase genes (hoxEFUYH) of Synechocystis sp. PCC 6803 were cloned and heterologously expressed in Enterobacter aerogenes ATCC13408 for the first time in this study, and the hydrogen yield was significantly enhanced using the recombinant strain. A recombinant plasmid containing the gene in-frame with Glutathione-S-Transferase (GST) gene was transformed into E. aerogenes ATCC13408 to produce a GST-fusion protein. SDS-PAGE and western blot analysis confirm the successful expression of the hox genes. The hydrogenase activity of the recombinant strain is 237.6±9.3ml/(g-DW·h), which is 152% higher than the wild strain. The hydrogen yield of the recombinant strain is 298.3ml/g-glucose, which is 88% higher than the wild strain. During hydrogen fermentation, the recombinant strain produces more acetate and butyrate, but less ethanol. This is corresponding to the NADH metabolism in the cell due to the higher hydrogenase activity with the heterologous expression of hox genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. SEA: a super-enhancer archive.

    PubMed

    Wei, Yanjun; Zhang, Shumei; Shang, Shipeng; Zhang, Bin; Li, Song; Wang, Xinyu; Wang, Fang; Su, Jianzhong; Wu, Qiong; Liu, Hongbo; Zhang, Yan

    2016-01-04

    Super-enhancers are large clusters of transcriptional enhancers regarded as having essential roles in driving the expression of genes that control cell identity during development and tumorigenesis. The construction of a genome-wide super-enhancer database is urgently needed to better understand super-enhancer-directed gene expression regulation for a given biology process. Here, we present a specifically designed web-accessible database, Super-Enhancer Archive (SEA, http://sea.edbc.org). SEA focuses on integrating super-enhancers in multiple species and annotating their potential roles in the regulation of cell identity gene expression. The current release of SEA incorporates 83 996 super-enhancers computationally or experimentally identified in 134 cell types/tissues/diseases, including human (75 439, three of which were experimentally identified), mouse (5879, five of which were experimentally identified), Drosophila melanogaster (1774) and Caenorhabditis elegans (904). To facilitate data extraction, SEA supports multiple search options, including species, genome location, gene name, cell type/tissue and super-enhancer name. The response provides detailed (epi)genetic information, incorporating cell type specificity, nearby genes, transcriptional factor binding sites, CRISPR/Cas9 target sites, evolutionary conservation, SNPs, H3K27ac, DNA methylation, gene expression and TF ChIP-seq data. Moreover, analytical tools and a genome browser were developed for users to explore super-enhancers and their roles in defining cell identity and disease processes in depth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Concomitant Intravenous Nitroglycerin With Intracoronary Delivery of AAV1.SERCA2a Enhances Gene Transfer in Porcine Hearts

    PubMed Central

    Karakikes, Ioannis; Hadri, Lahouaria; Rapti, Kleopatra; Ladage, Dennis; Ishikawa, Kiyotake; Tilemann, Lisa; Yi, Geng-Hua; Morel, Charlotte; Gwathmey, Judith K; Zsebo, Krisztina; Weber, Thomas; Kawase, Yoshiaki; Hajjar, Roger J

    2012-01-01

    SERCA2a gene therapy improves contractile and energetic function of failing hearts and has been shown to be associated with benefits in clinical outcomes, symptoms, functional status, biomarkers, and cardiac structure in a phase 2 clinical trial. In an effort to enhance the efficiency and homogeneity of gene uptake in cardiac tissue, we examined the effects of nitroglycerin (NTG) in a porcine model following AAV1.SERCA2a gene delivery. Three groups of Göttingen minipigs were assessed: (i) group A: control intracoronary (IC) AAV1.SERCA2a (n = 6); (ii) group B: a single bolus IC injection of NTG (50 µg) immediately before administration of intravenous (IV) AAV1.SERCA2a (n = 6); and (iii) group C: continuous IV NTG (1 µg/kg/minute) during the 10 minutes of AAV1.SERCA2a infusion (n = 6). We found that simultaneous IV infusion of NTG and AAV1.SERCA2a resulted in increased viral transduction efficiency, both in terms of messenger RNA (mRNA) as well as SERCA2a protein levels in the whole left ventricle (LV) compared to control animals. On the other hand, IC NTG pretreatment did not result in enhanced gene transfer efficiency, mRNA or protein levels when compared to control animals. Importantly, the transgene expression was restricted to the heart tissue. In conclusion, we have demonstrated that IV infusion of NTG significantly improves cardiac gene transfer efficiency in porcine hearts. PMID:22215018

  6. Interconnection of Key Microbial Functional Genes for Enhanced Benzo[a]pyrene Biodegradation in Sediments by Microbial Electrochemistry.

    PubMed

    Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long

    2017-08-01

    Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.

  7. Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.

    PubMed

    Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M

    2000-03-10

    The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.

  8. HEDD: Human Enhancer Disease Database

    PubMed Central

    Wang, Zhen; Zhang, Quanwei; Zhang, Wen; Lin, Jhih-Rong; Cai, Ying; Mitra, Joydeep

    2018-01-01

    Abstract Enhancers, as specialized genomic cis-regulatory elements, activate transcription of their target genes and play an important role in pathogenesis of many human complex diseases. Despite recent systematic identification of them in the human genome, currently there is an urgent need for comprehensive annotation databases of human enhancers with a focus on their disease connections. In response, we built the Human Enhancer Disease Database (HEDD) to facilitate studies of enhancers and their potential roles in human complex diseases. HEDD currently provides comprehensive genomic information for ∼2.8 million human enhancers identified by ENCODE, FANTOM5 and RoadMap with disease association scores based on enhancer–gene and gene–disease connections. It also provides Web-based analytical tools to visualize enhancer networks and score enhancers given a set of selected genes in a specific gene network. HEDD is freely accessible at http://zdzlab.einstein.yu.edu/1/hedd.php. PMID:29077884

  9. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  10. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    PubMed

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  11. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor-Associated Genes in PDLSCs.

    PubMed

    Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri

    2016-07-01

    This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

  12. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells.

    PubMed

    Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run

    2014-01-25

    This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.

    PubMed

    He, Lilong; Ma, Xiaoling; Li, Zhenzhen; Jiao, Zhengli; Li, Yongqing; Ow, David W

    2016-07-01

    Previously the Arabidopsis (Arabidopsis thaliana) zinc finger protein OXIDATIVE STRESS2 (AtOXS2) and four OXS2-like (AtO2L) family members were described to play a role in stress tolerance and stress escape. For stress escape, SOC1 was a target of AtOXS2. However, for stress tolerance, the downstream targets were not identified. We cloned two OXS2 homolog genes from sweet corn, ZmOXS2b and ZmO2L1 Both genes are transiently inducible by Cd treatment. When expressed in Arabidopsis, each enhances tolerance against cadmium. Further analysis showed that ZmOXS2b and ZmO2L1 proteins enhance Cd tolerance in Arabidopsis by activating at least one target gene, that encoding a putative S-adenosyl-l-Met-dependent methyltransferase superfamily protein (AT5G37990), which we named CIMT1 This activation involves the in vivo interaction with a segment of the CIMT1 promoter that contains a BOXS2 motif previously identified as the binding element for AtOXS2. More importantly, CIMT1 is induced by Cd treatment, and overexpression of this gene alone was sufficient to enhance Cd tolerance in Arabidopsis. The connection of ZmOXS2b and ZmO2L1 to Arabidopsis CIMT1 suggests a similar network may exist in maize (Zea mays) and may provide a clue to possibly using a CIMT1 maize homolog to engineer stress tolerance in a major crop. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.; Shanklin, J.; Burton, J. W.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoformmore » of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.« less

  15. Information Propagation in Developmental Enhancers

    NASA Astrophysics Data System (ADS)

    Jena, Siddhartha; Levine, Michael

    Rather than encoding information about protein sequence, certain lengths of noncoding DNA, called enhancers, interact with protein machinery such as transcription factors to precisely regulate gene expression. Enhancers have been studied extensively in the fruit fly Drosophila melanogaster, where they regulate the expression of developmental genes that establish the blueprint of the adult fly. It has been suggested that enhancer sequences possess a specific but unknown syntax with regards to the placement and strength of transcription factor binding sites. Moreover, studies in divergent fly species have shown that compensatory evolution allows for maintenance of enhancer functionality despite considerable variation in primary DNA sequence. Here, the possible role of enhancers as signal processing modules is studied as a way of explaining these two findings. We first demonstrate how this framework can be used to explain the fine-tuned spatiotemporal dynamics of gene expression. We then explore the evolutionary pressure on enhancer sequences and the resulting emergence of enhancers that are linked by compensatory mutations. This study provides a possible mechanism for the function of multiple enhancers linked to a single gene.

  16. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

    PubMed Central

    Renau-Morata, Begoña; Molina, Rosa V.; Carrillo, Laura; Cebolla-Cornejo, Jaime; Sánchez-Perales, Manuel; Pollmann, Stephan; Domínguez-Figueroa, José; Corrales, Alba R.; Flexas, Jaume; Vicente-Carbajosa, Jesús; Medina, Joaquín; Nebauer, Sergio G.

    2017-01-01

    Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. PMID:28515731

  17. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer

    PubMed Central

    Yin, Perry T.; Shah, Shreyas; Pasquale, Nicholas J.; Garbuzenko, Olga B.; Minko, Tamara; Lee, Ki-Bum

    2015-01-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. PMID:26720500

  18. Identification of an Enhancer That Increases miR-200b~200a~429 Gene Expression in Breast Cancer Cells

    PubMed Central

    Attema, Joanne L.; Bert, Andrew G.; Lim, Yat-Yuen; Kolesnikoff, Natasha; Lawrence, David M.; Pillman, Katherine A.; Smith, Eric; Drew, Paul A.; Khew-Goodall, Yeesim; Shannon, Frances; Goodall, Gregory J.

    2013-01-01

    The miR-200b~200a~429 gene cluster is a key regulator of EMT and cancer metastasis, however the transcription-based mechanisms controlling its expression during this process are not well understood. We have analyzed the miR-200b~200a~429 locus for epigenetic modifications in breast epithelial and mesenchymal cell lines using chromatin immunoprecipitation assays and DNA methylation analysis. We discovered a novel enhancer located approximately 5.1kb upstream of the miR-200b~200a~429 transcriptional start site. This region was associated with the active enhancer chromatin signature comprising H3K4me1, H3K27ac, RNA polymerase II and CpG dinucleotide hypomethylation. Luciferase reporter assays revealed the upstream enhancer stimulated the transcription of the miR-200b~200a~429 minimal promoter region approximately 27-fold in breast epithelial cells. Furthermore, we found that a region of the enhancer was transcribed, producing a short, GC-rich, mainly nuclear, non-polyadenylated RNA transcript designated miR-200b eRNA. Over-expression of miR-200b eRNA had little effect on miR-200b~200a~429 promoter activity and its production did not correlate with miR-200b~200a~429 gene expression. While additional investigations of miR-200b eRNA function will be necessary, it is possible that miR-200b eRNA may be involved in the regulation of miR-200b~200a~429 gene expression and silencing. Taken together, these findings reveal the presence of a novel enhancer, which contributes to miR-200b~200a~429 transcriptional regulation in epithelial cells. PMID:24086551

  19. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    PubMed

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  20. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean.

    PubMed

    Fan, Sujie; Dong, Lidong; Han, Dan; Zhang, Feng; Wu, Junjiang; Jiang, Liangyu; Cheng, Qun; Li, Rongpeng; Lu, Wencheng; Meng, Fanshan; Zhang, Shuzhen; Xu, Pengfei

    2017-01-01

    Phytophthora root and stem rot of soybean [ Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae , is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae . Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae . Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related ( PR ) genes were constitutively activated, including GmPR1a , GmPR2 , GmPR3 , GmPR4 , GmPR5a , and GmPR10 , in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1 -RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean.

  1. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

    PubMed Central

    Fan, Sujie; Dong, Lidong; Han, Dan; Zhang, Feng; Wu, Junjiang; Jiang, Liangyu; Cheng, Qun; Li, Rongpeng; Lu, Wencheng; Meng, Fanshan; Zhang, Shuzhen; Xu, Pengfei

    2017-01-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae. Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related (PR) genes were constitutively activated, including GmPR1a, GmPR2, GmPR3, GmPR4, GmPR5a, and GmPR10, in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1-RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean. PMID:28553307

  2. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Wu, Dandan; Sun, Yinghao; Wang, Hongfei; Shi, He; Su, Mingxing; Shan, Hongyan; Li, Tongtong; Li, Qiuli

    2018-07-01

    NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  4. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  5. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum.

    PubMed

    Tang, Yuanman; Liu, Qiuping; Liu, Ying; Zhang, Linli; Ding, Wei

    2017-01-01

    Various classes of plant pathogenesis-related proteins have been identified in the past several decades. PR-Q, a member of the PR3 family encoding chitinases, has played an important role in regulating plant resistance and preventing pathogen infection. In this paper, we functionally characterized NtPR-Q in tobacco plants and found that the overexpression of NtPR-Q in tobacco Yunyan87 resulted in higher resistance to Ralstonia solanacearum inoculation. Surprisingly, overexpression of NtPR-Q led to the activation of many defense-related genes, such as salicylic acid (SA)-responsive genes NtPR1a/c , NtPR2 and NtCHN50 , JA-responsive gene NtPR1b and ET production-associated genes NtACC Oxidase and NtEFE26 . Consistent with the role of NtPR-Q in multiple stress responses, NtPR-Q transcripts were induced by the exogenous hormones SA, ethylene and methyl jasmonate, which could enhance the resistance of tobacco to R. solanacearum . Collectively, our results suggested that NtPR-Q overexpression led to the up-regulation of defense-related genes and enhanced plant resistance to R. solanacearum infection.

  6. Widespread Enhancer Activity from Core Promoters.

    PubMed

    Medina-Rivera, Alejandra; Santiago-Algarra, David; Puthier, Denis; Spicuglia, Salvatore

    2018-06-01

    Gene expression in higher eukaryotes is precisely regulated in time and space through the interplay between promoters and gene-distal regulatory regions, known as enhancers. The original definition of enhancers implies the ability to activate gene expression remotely, while promoters entail the capability to locally induce gene expression. Despite the conventional distinction between them, promoters and enhancers share many genomic and epigenomic features. One intriguing finding in the gene regulation field comes from the observation that many core promoter regions display enhancer activity. Recent high-throughput reporter assays along with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-related approaches have indicated that this phenomenon is common and might have a strong impact on our global understanding of genome organisation and gene expression regulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    PubMed

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  8. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis.

    PubMed

    Guo, Chuan-yu; Wu, Guang-heng; Xing, Jin; Li, Wen-qi; Tang, Ding-zhong; Cui, Bai-ming

    2013-05-01

    A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.

  9. Enhancement of welan gum production in Sphingomonas sp. HT-1 via heterologous expression of Vitreoscilla hemoglobin gene.

    PubMed

    Liu, Xiaoliu; Zhu, Ping; Jiang, Ruifan; Wu, Lingtian; Feng, Xiaohai; Li, Sha; Xu, Hong

    2017-01-20

    Welan gum is a microbial polysaccharide produced by Sphingomonas sp. Its production is limited by the dissolved oxygen levels in the highly viscous fermentation. A strategy of heterologous expression of the Vitreoscilla hemoglobin gene in Sphingomonas sp. HT-1 was investigated to alleviate oxygen limitation and improve the yield of welan gum. Ultimately, the welan gum production increased from 25.3g/L to 34.6g/L, whereas the rheological behavior of welan gum solutions remained virtually unchanged. The transcriptional levels of the key genes in the electron transfer chain, TCA cycle and welan gum synthesis pathway, as well as ATP level revealed that the VHb expression in Sphingomonas sp. HT-1 enhanced welan gum biosynthesis by improving respiration and ATP supply. This study would pave the genetic manipulation way for enhancing welan gum yield, and it's also of great importance for the industrial applications of welan gum under harsh conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    PubMed

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  12. Enhancing the Stress Tolerance and Virulence of an Entomopathogen by Metabolic Engineering of Dihydroxynaphthalene Melanin Biosynthesis Genes ▿ †

    PubMed Central

    Tseng, Min N.; Chung, Pei C.; Tzean, Shean S.

    2011-01-01

    Entomopathogenic fungi have been used for biocontrol of insect pests for many decades. However, the efficacy of such fungi in field trials is often inconsistent, mainly due to environmental stresses, such as UV radiation, temperature extremes, and desiccation. To circumvent these hurdles, metabolic engineering of dihydroxynaphthalene (DHN) melanin biosynthetic genes (polyketide synthase, scytalone dehydratase, and 1,3,8-trihydroxynaphthalene reductase genes) cloned from Alternaria alternata were transformed into the amelanotic entomopathogenic fungus Metarhizium anisopliae via Agrobacterium-mediated transformation. Melanin expression in the transformant of M. anisopliae was verified by spectrophotometric methods, liquid chromatography/mass spectrometry (LC/MS), and confocal microscopy. The transformant, especially under stresses, showed notably enhanced antistress capacity and virulence, in terms of germination and survival rate, infectivity, and reduced median time to death (LT50) in killing diamondback moth (Plutella xylostella) larvae compared with the wild type. The possible mechanisms in enhancing the stress tolerance and virulence, and the significance and potential for engineering melanin biosynthesis genes in other biocontrol agents and crops to improve antistress fitness are discussed. PMID:21571888

  13. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum.

    PubMed

    Singh, R; Upadhyay, G; Kumar, S; Kapoor, A; Kumar, A; Tiwari, M; Godbole, M M

    2003-01-01

    Thyroid hormone (TH) deficiency results in delayed proliferation and migration of cerebellar granule cells. Although extensive cell loss during the development of the cerebellum under hypothyroid conditions is known, its nature and its mechanism are poorly understood. Bcl-2 family gene expression is known to determine the fate of cells to undergo apoptosis. We evaluated the effect of hypothyroidism on Bcl-2 family gene expression in the developing rat cerebellum. Electrophoresis and Western blotting were used to analyze DNA fragmentation and expression of DNA fragmentation factor (DFF-45), Bcl-2, Bcl-xL and Bax genes respectively. In the hypothyroid condition, extensive DNA fragmentation and enhanced cleavage of DFF-45 were seen throughout development (postnatal day 0 to day 24) and adulthood whereas they were absent in the euthyroid state. The anti-apoptotic genes Bcl-2 and Bcl-xL were down-regulated and the pro-apoptotic gene Bax was expressed at higher levels compared with the euthyroid state. These results suggest that normal levels of TH prevent cerebellar apoptosis to a large extent, whereas hypothyroidism not only increases the extent but also the duration of apoptosis by down-regulating the anti-apoptotic genes and maintaining a high level of the pro-apoptotic gene Bax.

  14. Expression of the human UDP-galactose transporter gene hUGT1 in tobacco plants' enhanced plant hardness.

    PubMed

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Koike, Kanae; Hagura, Yoshio; Tazoe, Yuma; Ishida, Nobuhiro; Kitamura, Kenji; Tanaka, Nobukazu

    2018-04-09

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava.

    PubMed

    Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya

    2018-01-01

    Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or Me

  16. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression.

    PubMed

    Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg

    2015-09-29

    The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. LBH Gene Transcription Regulation by the Interplay of an Enhancer Risk Allele and DNA Methylation in Rheumatoid Arthritis.

    PubMed

    Hammaker, Deepa; Whitaker, John W; Maeshima, Keisuke; Boyle, David L; Ekwall, Anna-Karin H; Wang, Wei; Firestein, Gary S

    2016-11-01

    To identify nonobvious therapeutic targets for rheumatoid arthritis (RA), we performed an integrative analysis incorporating multiple "omics" data and the Encyclopedia of DNA Elements (ENCODE) database for potential regulatory regions. This analysis identified the limb bud and heart development (LBH) gene, which has risk alleles associated with RA/celiac disease and lupus, and can regulate cell proliferation in RA. We identified a novel LBH transcription enhancer with an RA risk allele (rs906868 G [Ref]/T) 6 kb upstream of the LBH gene with a differentially methylated locus. The confluence of 3 regulatory elements, rs906868, an RA differentially methylated locus, and a putative enhancer, led us to investigate their effects on LBH regulation in fibroblast-like synoviocytes (FLS). We cloned the 1.4-kb putative enhancer with either the rs906868 Ref allele or single-nucleotide polymorphism (SNP) variant into reporter constructs. The constructs were methylated in vitro and transfected into cultured FLS by nucleofection. We found that both variants increased transcription, thereby confirming the region's enhancer function. Unexpectedly, the transcriptional activity of the Ref risk allele was significantly lower than that of the SNP variant and is consistent with low LBH levels as a risk factor for aggressive FLS behavior. Using RA FLS lines with a homozygous Ref or SNP allele, we confirmed that homozygous Ref lines expressed lower LBH messenger RNA levels than did the SNP lines. Methylation significantly reduced enhancer activity for both alleles, indicating that enhancer function is dependent on its methylation status. This study shows how the interplay between genetics and epigenetics can affect expression of LBH in RA. © 2016, American College of Rheumatology.

  18. Enhanced EJ Cell Killing of (125)I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter.

    PubMed

    Li, Ling; Zhang, Chun-li; Kang, Lei; Wang, Rong-Fu; Yan, Ping; Zhao, Qian; Yin, Lei; Guo, Feng-qin

    2015-10-01

    To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by (125)I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to (125)I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to (125)I alone served as negative control and 5-FU as positive control. The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to (125)I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with (125)I was lower compared with the (125)I control group, but higher than the positive control group. The synthetic promoter E8 can induce the expression of downstream CD gene under (125)I radiation, and the tumor killing effect of (125)I can be enhanced by combining CD gene therapy with radiosensitive promoter.

  19. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein.

    PubMed

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-11-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

  20. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein

    PubMed Central

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-01-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5′ arm and 3′ arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands. PMID:25358326

  1. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    PubMed

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    PubMed

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  3. Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots.

    PubMed

    Park, Nam Il; Park, Jee Hee; Park, Sang Un

    2012-02-01

    Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.

  4. Constitutive Expression of a miR319 Gene Alters Plant Development and Enhances Salt and Drought Tolerance in Transgenic Creeping Bentgrass1[W][OA

    PubMed Central

    Zhou, Man; Li, Dayong; Li, Zhigang; Hu, Qian; Yang, Chunhua; Zhu, Lihuang; Luo, Hong

    2013-01-01

    MicroRNA319 (miR319) is one of the first characterized and conserved microRNA families in plants and has been demonstrated to target TCP (for TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTORS [PCF]) genes encoding plant-specific transcription factors. MiR319 expression is regulated by environmental stimuli, suggesting its involvement in plant stress response, although experimental evidence is lacking and the underlying mechanism remains elusive. This study investigates the role that miR319 plays in the plant response to abiotic stress using transgenic creeping bentgrass (Agrostis stolonifera) overexpressing a rice (Oryza sativa) miR319 gene, Osa-miR319a. We found that transgenic plants overexpressing Osa-miR319a displayed morphological changes and exhibited enhanced drought and salt tolerance associated with increased leaf wax content and water retention but reduced sodium uptake. Gene expression analysis indicated that at least four putative miR319 target genes, AsPCF5, AsPCF6, AsPCF8, and AsTCP14, and a homolog of the rice NAC domain gene AsNAC60 were down-regulated in transgenic plants. Our results demonstrate that miR319 controls plant responses to drought and salinity stress. The enhanced abiotic stress tolerance in transgenic plants is related to significant down-regulation of miR319 target genes, implying their potential for use in the development of novel molecular strategies to genetically engineer crop species for enhanced resistance to environmental stress. PMID:23292790

  5. Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hake, Sarah; Chuck, George

    2015-10-29

    The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1more » and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.« less

  6. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes.

    PubMed

    Arangoa, M A; Düzgüneş, N; Tros de Ilarduya, C

    2003-01-01

    A novel lipidic vector composed of DOTAP/Chol liposomes, asialofetuin (AF), protamine sulfate and DNA has been developed. The resulting protamine-AF-lipoplexes improved significantly the levels of gene expression in cultured cells and in the liver upon i.v. administration. Lipoplexes containing the optimal amount of AF (1 microg/microg DNA) showed a 16-fold higher transfection activity in HepG2 cells than non-targeted (plain) complexes. The uptake by cells having asialoglycoprotein receptors (ASGPr) on their plasma membrane was decreased by the addition of free AF, indicating that AF-lipoplexes were taken up specifically by cells via ASGPr-mediated endocytosis. Results from transfections performed in cells defective in ASGPr, ie HeLa cells, confirmed this mechanism. By addition of the condensing peptide, protamine sulfate, smaller complexes were obtained, which enhanced even more the uptake of AF-complexes in HepG2 cells and in the liver. The optimal amount of protamine was 0.4 microg/mcirog DNA, and gene expression was about 5-fold over that obtained with AF-lipoplexes in the absence of the peptide, and 75-fold higher than that with plain conventional lipoplexes. Protamine-AF-lipoplexes increased by a factor of 12 luciferase gene expression in the liver of mice administered systemically via the tail vein, compared to plain complexes. In summary, our findings extend the scope of previous studies where AF-lipoplexes were used to introduce DNA into hepatocytes. The combination of targeting and protamine condensation obviated the need for partial hepatectomy, commonly required to obtain efficient gene delivery in this organ. Since protamine sulfate has been proven to be non-toxic in humans, the novel liver-specific vector described here may be useful for the delivery of clinically important genes to this organ.

  7. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES

    PubMed Central

    2012-01-01

    Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can effectively enhance anti

  8. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    PubMed

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast.

  9. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining.

    PubMed

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-04

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters.

    PubMed

    Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter

    2016-11-17

    Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes.

    PubMed

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2015-10-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.

  12. Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests.

    PubMed

    Bharathi, Y; Vijaya Kumar, S; Pasalu, I C; Balachandran, S M; Reddy, V D; Rao, K V

    2011-03-20

    We have developed transgene pyramided rice lines, endowed with enhanced resistance to major sap-sucking insects, through sexual crosses made between two stable transgenic rice lines containing Allium sativum (asal) and Galanthus nivalis (gna) lectin genes. Presence and expression of asal and gna genes in pyramided lines were confirmed by PCR and western blot analyses. Segregation analysis of F₂ progenies disclosed digenic (9:3:3:1) inheritance of the transgenes. Homozygous F₃ plants carrying asal and gna genes were identified employing genetic and molecular methods besides insect bioassays. Pyramided lines, infested with brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH), proved more effective in reducing insect survival, fecundity, feeding ability besides delayed development of insects as compared to the parental transgenics. Under infested conditions, pyramided lines were found superior to the parental transgenics in their seed yield potential. This study represents first report on pyramiding of two lectin genes into rice exhibiting enhanced resistance against major sucking pests. The pyramided lines appear promising and might serve as a novel genetic resource in rice breeding aimed at durable and broad based resistance against hoppers. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A distal modular enhancer complex acts to control pituitary- and nervous system-specific expression of the LHX3 regulatory gene.

    PubMed

    Mullen, Rachel D; Park, Soyoung; Rhodes, Simon J

    2012-02-01

    Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.

  14. A Distal Modular Enhancer Complex Acts to Control Pituitary- and Nervous System-Specific Expression of the LHX3 Regulatory Gene

    PubMed Central

    Mullen, Rachel D.; Park, Soyoung

    2012-01-01

    Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency. PMID:22194342

  15. ACTIVATION OF MU OPIOID RECEPTORS IN THE STRIATUM DIFFERENTIALLY AUGMENTS METHAMPHETAMINE-INDUCED GENE EXPRESSION AND ENHANCES STEREOTYPIC BEHAVIOR

    PubMed Central

    Horner, Kristen A.; Hebbard, John C.; Logan, Anna S.; Vanchipurakel, Golda A.; Gilbert, Yamiece E.

    2013-01-01

    Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. In order to further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with D-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1 μg/μl), treated with methamphetamine (0.5 mg/kg) and sacrificed at 45 minutes or 2 hours later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pretreatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine. PMID:22150526

  16. Genetic manipulation of murine embryonic stem cells with enhanced green fluorescence protein and sulfatase-modifying factor I genes.

    PubMed

    Zhao, Guoying; Karageorgos, Litsa; Hutchinson, Rhonda G; Hopwood, John J; Hemsley, Kim

    2010-05-01

    Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) in which an absence of sulfamidase results in incomplete degradation and subsequent accumulation of its substrate, heparan sulfate. Most neurodegenerative LSD remain untreatable. However, therapy options, such as gene, enzyme end cell therapy, are under investigation. Previously, we have constructed an embryonic stem (ES) cell line (NS21) that over-expresses human sulphamidase as a potential treatment for murine MPS IIIA. In the present study the sulfatase-modifying factor I (SUMF1) and enhanced green fluorescence protein (eGFP) genes were co-introduced under a cytomegalovirus (CMV) promoter into NS21 cells, to enhance further sulfamidase activity and provide a marker for in vivo cell tracking, respectively. eGFP was also introduced under the control of the human elongation factor-1alpha (hEF-1alpha) promoter to compare the stability of transgene expression. During differentiation of ES cells into glial precursors, SUMF1 was down-regulated and was hardly detectable by day 18 of differentiation. Likewise, eGFP expression was heterogeneous and highly unstable. Use of a human EF-1alpha promoter resulted in more homogeneous eGFP expression, with approximately 50% of cells eGFP positive following differentiation into glial precursors. Compared with NS21 cells, the outgrowth of eGFP-expressing cells was not as confluent when differentiated into glial precursors. Our data suggest that SUMF1 enhances sulfamidase activity in ES cells, hEF-1alpha is a stronger promoter than CMV for ES cells and over-expression of eGFP may affect cell growth and contribute to unstable gene expression.

  17. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice.

    PubMed

    Jiang, Chang-Jie; Shimono, Masaki; Maeda, Satoru; Inoue, Haruhiko; Mori, Masaki; Hasegawa, Morifumi; Sugano, Shoji; Takatsuji, Hiroshi

    2009-07-01

    Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.

  18. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa).

    PubMed

    Ziska, Lewis H; Gealy, David R; Tomecek, Martha B; Jackson, Aaron K; Black, Howard L

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2) between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2) from an early 20(th) century concentration (300 µmol mol(-1)) to current (400 µmol mol(-1)) and projected, mid-21(st) century (600 µmol mol(-1)) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1). The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2) also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2) could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  19. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae.

    PubMed

    Zhu, Lin; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-07-01

    The filamentous fungus Aspergillus oryzae is used as one of the most favored hosts for heterologous protein production due to its ability to secrete large amounts of proteins into the culture medium. We previously generated a hyper-producing mutant strain of A. oryzae, AUT1, which produced 3.2- and 2.6-fold higher levels of bovine chymosin (CHY) and human lysozyme (HLY), respectively, compared with the wild-type strain. However, further enhancement of heterologous protein production by multiple gene disruption is difficult because of the low gene-targeting efficiency in strain AUT1. Here, we disrupted the ligD gene, which is involved in nonhomologous recombination, and the pyrG gene to create uridine/uracil auxotrophy in strain AUT1, to generate a hyper-producing mutant applicable to pyrG marker recycling with highly efficient gene targeting. We generated single and double disruptants of the tripeptidyl peptidase gene AosedD and vacuolar sorting receptor gene Aovps10 in the hyper-producing mutant background, and found that all disruptants showed significant increases in heterologous protein production. Particularly, double disruption of the Aovps10 and AosedD genes increased the production levels of CHY and HLY by 1.6- and 2.1-fold, respectively, compared with the parental strain. Thus, we successfully generated a fungal host for further enhancing the heterologous protein production ability by combining mutational and molecular breeding techniques.

  20. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    PubMed

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  1. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean.

    PubMed

    Du, Qian; Yang, Xiangdong; Zhang, Jinhua; Zhong, Xiaofang; Kim, Kyung Seok; Yang, Jing; Xing, Guojie; Li, Xiaoyu; Jiang, Zhaoyuan; Li, Qiyun; Dong, Yingshan; Pan, Hongyu

    2018-06-01

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T 2 -T 4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.

  2. Direct interactions of OCA-B and TFII-I regulate immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter communication.

    PubMed

    Ren, Xiaodi; Siegel, Rachael; Kim, Unkyu; Roeder, Robert G

    2011-05-06

    B cell-specific coactivator OCA-B, together with Oct-1/2, binds to octamer sites in promoters and enhancers to activate transcription of immunoglobulin (Ig) genes, although the mechanisms underlying their roles in enhancer-promoter communication are unknown. Here, we demonstrate a direct interaction of OCA-B with transcription factor TFII-I, which binds to DICE elements in Igh promoters, that affects transcription at two levels. First, OCA-B relieves HDAC3-mediated Igh promoter repression by competing with HDAC3 for binding to promoter-bound TFII-I. Second, and most importantly, Igh 3' enhancer-bound OCA-B and promoter-bound TFII-I mediate promoter-enhancer interactions, in both cis and trans, that are important for Igh transcription. These and other results reveal an important function for OCA-B in Igh 3' enhancer function in vivo and strongly favor an enhancer mechanism involving looping and facilitated factor recruitment rather than a tracking mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Direct interactions of OCA-B and TFII-I regulate immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter communication

    PubMed Central

    Ren, Xiaodi; Siegel, Rachael; Kim, Unkyu; Roeder, Robert G.

    2011-01-01

    Summary B cell-specific coactivator OCA-B, together with Oct-1/2, binds to octamer sites in promoters and enhancers to activate transcription of immunoglobulin (Ig) genes, although the mechanisms underlying their roles in enhancer-promoter communication are unknown. Here, we demonstrate a direct interaction of OCA-B with transcription factor TFII-I, which binds to DICE elements in IgH promoters, that affects transcription at two levels. First, OCA-B relieves HDAC3-mediated IgH promoter repression by competing with HDAC3 for binding to promoter-bound TFII-I. Second, and most importantly, Igh 3′enhancer-bound OCA-B and promoter-bound TFII-I mediate promoter-enhancer interactions, in both cis and trans, that are important for Igh transcription. These and other results reveal an important function for OCA-B in Igh 3′enhancer function in vivo and strongly favor an enhancer mechanism involving looping and facilitated factor recruitment rather than a tracking mechanism. PMID:21549311

  4. Network analysis of genes involved in the enhancement of hyperthermia sensitivity by the knockdown of BAG3 in human oral squamous cell carcinoma cells.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi

    2016-07-01

    BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.

  5. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea

    PubMed Central

    2013-01-01

    Background The freshwater planarian Schmidtea mediterranea has emerged as a powerful model for studies of regenerative, stem cell, and germ cell biology. Whole-mount in situ hybridization (WISH) and whole-mount fluorescent in situ hybridization (FISH) are critical methods for determining gene expression patterns in planarians. While expression patterns for a number of genes have been elucidated using established protocols, determining the expression patterns for particularly low-abundance transcripts remains a challenge. Results We show here that a short bleaching step in formamide dramatically enhances signal intensity of WISH and FISH. To further improve signal sensitivity we optimized blocking conditions for multiple anti-hapten antibodies, developed a copper sulfate quenching step that virtually eliminates autofluorescence, and enhanced signal intensity through iterative rounds of tyramide signal amplification. For FISH on regenerating planarians, we employed a heat-induced antigen retrieval step that provides a better balance between permeabilization of mature tissues and preservation of regenerating tissues. We also show that azide most effectively quenches peroxidase activity between rounds of development for multicolor FISH experiments. Finally, we apply these modifications to elucidate the expression patterns of a few low-abundance transcripts. Conclusion The modifications we present here provide significant improvements in signal intensity and signal sensitivity for WISH and FISH in planarians. Additionally, these modifications might be of widespread utility for whole-mount FISH in other model organisms. PMID:23497040

  6. Identification of Smoking-Associated Differentially Methylated Regions Using Reduced Representation Bisulfite Sequencing and Cell type-Specific Enhancer Activation and Gene Expression.

    PubMed

    Wan, Ma; Bennett, Brian D; Pittman, Gary S; Campbell, Michelle R; Reynolds, Lindsay M; Porter, Devin K; Crowl, Christopher L; Wang, Xuting; Su, Dan; Englert, Neal A; Thompson, Isabel J; Liu, Yongmei; Bell, Douglas A

    2018-04-27

    Cigarette smoke is a causal factor in cancers and cardiovascular disease. Smoking-associated differentially methylated regions (SM-DMRs) have been observed in disease studies, but the causal link between altered DNA methylation and transcriptional change is obscure. Our objectives were to finely resolve SM-DMRs and to interrogate the mechanistic link between SM-DMRs and altered transcription of enhancer noncoding RNA (eRNA) and mRNA in human circulating monocytes. We integrated SM-DMRs identified by reduced representation bisulfite sequencing (RRBS) of circulating CD14+ monocyte DNA collected from two independent human studies [ n =38 from Clinical Research Unit (CRU) and n =55 from the Multi-Ethnic Study of Atherosclerosis (MESA), about half of whom were active smokers] with gene expression for protein-coding genes and noncoding RNAs measured by RT-PCR or RNA sequencing. Candidate SM-DMRs were compared with RRBS of purified CD4+ T cells, CD8+ T cells, CD15+ granulocytes, CD19+ B cells, and CD56+ NK cells ( n =19 females, CRU). DMRs were validated using pyrosequencing or bisulfite amplicon sequencing in up to 85 CRU volunteers, who also provided saliva DNA. RRBS identified monocyte SM-DMRs frequently located in putative gene regulatory regions. The most significant monocyte DMR occurred at a poised enhancer in the aryl-hydrocarbon receptor repressor gene ( AHRR ) and it was also detected in both granulocytes and saliva DNA. To our knowledge, we identify for the first time that SM-DMRs in or near AHRR , C5orf55-EXOC-AS , and SASH1 were associated with increased noncoding eRNA as well as mRNA in monocytes. Functionally, the AHRR SM-DMR appeared to up-regulate AHRR mRNA through activating the AHRR enhancer, as suggested by increased eRNA in the monocytes, but not granulocytes, from smokers compared with nonsmokers. Our findings suggest that AHRR SM-DMR up-regulates AHRR mRNA in a monocyte-specific manner by activating the AHRR enhancer. Cell type-specific activation

  7. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.

    PubMed

    Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D

    2017-01-04

    The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    PubMed

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  9. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  10. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    PubMed

    Wang, Cheng; Yu, Jie; Kallen, Caleb B

    2008-01-01

    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  12. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.

    PubMed

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; Ribas de Pouplana, L; Esteller, M

    2016-08-18

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.

  13. Reduction of wobble-position GC bases in Corynebacteria genes and enhancement of PCR and heterologous expression.

    PubMed

    Sanli, G; Blaber, S I; Blaber, M

    2001-01-01

    Corynebacteria codon usage exhibits an overall GC content of 67%, and a wobble-position GC content of 88%. Escherichia coli, on the other hand has an overall GC content of 51%, and a wobble-position GC content of 55%. The high GC content of Corynebacteria genes results in an unfavorable codon preference for heterologous expression, and can present difficulties for polymerase-based manipulations due to secondary-structure effects. Since these characteristics are due primarily to base composition at the wobble-position, synthetic genes can, in principle, be designed to eliminate these problems and retain the wild-type amino acid sequence. Such genes would obviate the need for special additives or bases during in vitro polymerase-based manipulation and mutant host strains containing uncommon tRNA's for heterologous expression. We have evaluated synthetic genes with reduced wobble-position G/C content using two variants of the enzyme 2,5-diketo-D-gluconic acid reductase (2,5-DKGR A and B) from Corynebacterium. The wild-type genes are refractory to polymerase-based manipulations and exhibit poor heterologous expression in enteric bacteria. The results indicate that a subset of codons for five amino acids (alanine, arginine, glutamate, glycine and valine) contribute the greatest contribution to reduction in G/C content at the wobble-position. Furthermore, changes in codons for two amino acids (leucine and proline) enhance bias for expression in enteric bacteria without affecting the overall G/C content. The synthetic genes are readily amplified using polymerase-based methodologies, and exhibit high levels of heterologous expression in E. coli.

  14. Analysis of protocadherin alpha gene enhancer polymorphism in bipolar disorder and schizophrenia

    PubMed Central

    Pedrosa, Erika; Stefanescu, Radu; Margolis, Benjamin; Petruolo, Oriana; Lo, Yungtai; Nolan, Karen; Novak, Tomas; Stopkova, Pavla; Lachman, Herbert M.

    2008-01-01

    Cadherins and protocadherins are cell adhesion proteins that play an important role in neuronal migration, differentiation and synaptogenesis, properties that make them targets to consider in schizophrenia (SZ) and bipolar disorder (BD) pathogenesis. Consequently, allelic variation occurring in protocadherin and cadherin encoding genes that map to regions of the genome mapped in SZ and BD linkage studies are particularly strong candidates to consider. One such set of candidate genes is the 5q31-linked PCDH family, which consists of more than 50 exons encoding three related, though distinct family members – α, β, and γ – which can generate thousands of different protocadherin proteins through alternative promoter usage and cis-alternative splicing. In this study, we focused on a SNP, rs31745, which is located in a putative PCDHα enhancer mapped by ChIP-chip using antibodies to covalently modified histone H3. A striking increase in homozygotes for the minor allele at this locus was detected in patients with BD. Molecular analysis revealed that the SNP causes allele-specific changes in binding to a brain protein. The findings suggest that the 5q31-linked PCDH locus should be more thoroughly considered as a disease-susceptibility locus in psychiatric disorders. PMID:18508241

  15. Different effects of enhanced and reduced expression of pub gene on the formation of embryoid bodies by cultured embryonic mouse stem cell.

    PubMed

    Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A

    2005-07-01

    The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.

  16. Enhanced accumulation of atropine in Atropa belladonna transformed by Rac GTPase gene isolated from Scoparia dulcis.

    PubMed

    Asano, Kyouhei; Lee, Jung-Bum; Yamamura, Yoshimi; Kurosaki, Fumiya

    2013-12-01

    Leaf tissues of Atropa belladonna were transformed by Sdrac2, a Rac GTPase gene, that is isolated from Scoparia dulcis, and the change in atropine concentration of the transformants was examined. Re-differentiated A. belladonna overexpressing Sdrac2 accumulated considerable concentration of atropine in the leaf tissues, whereas the leaves of plants transformed by an empty vector accumulated only a very low concentration of the compound. A. belladonna transformed by CASdrac2, a modified Sdrac2 of which translate was expected to bind guanosine triphosphate (GTP) permanently, accumulated very high concentrations of atropine (approximately 2.4-fold excess to those found in the wild-type plant in its natural habitat). In sharp contrast, the atropine concentration in transformed A. belladonna prepared with negatively modified Sdrac2, DNSdrac2, expected to bind guanosine diphosphate instead of GTP, was very low. These results suggested that Rac GTPases play an important role in the regulation of secondary metabolism in plant cells and that overexpression of the gene(s) may be capable of enhancing the production of natural products accumulated in higher plant cells.

  17. Transcription through enhancers suppresses their activity in Drosophila

    PubMed Central

    2013-01-01

    Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291

  18. Predicting epidermal growth factor receptor gene amplification status in glioblastoma multiforme by quantitative enhancement and necrosis features deriving from conventional magnetic resonance imaging.

    PubMed

    Dong, Fei; Zeng, Qiang; Jiang, Biao; Yu, Xinfeng; Wang, Weiwei; Xu, Jingjing; Yu, Jinna; Li, Qian; Zhang, Minming

    2018-05-01

    To study whether some of the quantitative enhancement and necrosis features in preoperative conventional MRI (cMRI) had a predictive value for epidermal growth factor receptor (EGFR) gene amplification status in glioblastoma multiforme (GBM).Fifty-five patients with pathologically determined GBMs who underwent cMRI were retrospectively reviewed. The following cMRI features were quantitatively measured and recorded: long and short diameters of the enhanced portion (LDE and SDE), maximum and minimum thickness of the enhanced portion (MaxTE and MinTE), and long and short diameters of the necrotic portion (LDN and SDN). Univariate analysis of each feature and a decision tree model fed with all the features were performed. Area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of features, and predictive accuracy was used to assess the performance of the model.For single feature, MinTE showed the best performance in differentiating EGFR gene amplification negative (wild-type) (nEGFR) GBM from EGFR gene amplification positive (pEGFR) GBM, and it got an AUC of 0.68 with a cut-off value of 2.6 mm. The decision tree model included 2 features MinTE and SDN, and got an accuracy of 0.83 in validation dataset.Our results suggest that quantitative measurement of the features MinTE and SDN in preoperative cMRI had a high accuracy for predicting EGFR gene amplification status in GBM.

  19. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.

    PubMed

    Shima, Jun; Sakata-Tsuda, Yuko; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Kawamoto, Shinichi; Takano, Hiroyuki

    2003-01-01

    The effect of intracellular charged amino acids on freeze tolerance in dough was determined by constructing homozygous diploid arginase-deficient mutants of commercial baker's yeast. An arginase mutant accumulated higher levels of arginine and/or glutamate and showed increased leavening ability during the frozen-dough baking process, suggesting that disruption of the CAR1 gene enhances freeze tolerance.

  20. Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery

    USDA-ARS?s Scientific Manuscript database

    Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...

  1. Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content.

    PubMed

    Kyselková, Martina; Jirout, Jiří; Chroňáková, Alica; Vrchotová, Naděžda; Bradley, Robert; Schmitt, Heike; Elhottová, Dana

    2013-11-01

    Fertilizing soils with animal excrements from farms with common antibiotic use represents a risk of disseminating antibiotic resistance genes into the environment. In the case of tetracycline antibiotics, it is not clear, however, whether the presence of antibiotic residues further enhances the gene occurrence in manured soils. We established a microcosm experiment in which 3 farm soils that had no recent history of fertilization with animal excrements were amended on a weekly basis (9 times) with excrements from either an oxytetracycline-treated or an untreated cow. Throughout the study, the concentration of oxytetracycline in excrements from the treated cow was above 500 μg g(-1)dw, whereas no oxytetracycline was detected in excrements from the healthy cow. Both excrements contained tetracycline resistance (TC-r) genes tet(L), tet(M), tet(V), tet(Z), tet(Q) and tet(W). The excrements from the treated cow also contained the tet(B) gene, and a higher abundance of tet(Z), tet(Q) and tet(W). Three weeks after the last excrement addition, the individual TC-r genes differed in their persistence in soil: tet(Q) and tet(B) were not detectable while tet(L), tet(M), tet(Z) and tet(W) were found in all 3 soils. There were, however, no significant differences in the total number, nor in the abundance, of TC-r genes between soil samples amended with each excrement type. The oxytetracycline-rich and the oxytetracycline-free excrement therefore contributed equally to the increase of tetracycline resistome in soil. Our results indicate that other mechanisms than OTC-selection pressure may be involved in the maintenance of TC-r genes in manured soils. Copyright © 2013. Published by Elsevier Ltd.

  2. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone.

    PubMed

    Yang, Li; Yang, Jin Bo; Chen, Jia; Yu, Guang Yao; Zhou, Pei; Lei, Lei; Wang, Zhen Zhen; Cy Chang, Catherine; Yang, Xin Ying; Chang, Ta Yuan; Li, Bo Liang

    2004-08-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  3. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  4. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    PubMed

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  5. Markedly Enhanced Skeletal Muscle Transfection Achieved by the Ultrasound-Targeted Delivery of Non-Viral Gene Nanocarriers with Microbubbles

    PubMed Central

    Burke, Caitlin W.; Suk, Jung Soo; Kim, Anthony J.; Hsiang, Yu-Han J.; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.

    2012-01-01

    Our goal was to enhance ultrasound (US)-targeted skeletal muscle transfection through the use of poly(ethyleneglycol) (PEG)/polyethylenimine (PEI) nanocomplex gene carriers and adjustments to US and microbubble (MB) parameters. C57BL/6 mice received an intravenous infusion of MBs and either “naked” luciferase plasmid or luciferase plasmid condensed in PEG/PEI nanocomplexes. Pulsed ultrasound (1MHz; 0.6 MPa or 0.8 MPa) was applied to the right hindlimb for 12 mins. Luciferase activity in both hindlimbs was assessed at 3, 5, 7, and 10 days post-treatment by bioluminescent imaging. When targeted to hindlimb using unsorted MBs and 0.6 MPa US, 7 days after treatment, we observed a >60-fold increase in luciferase activity in PEG/PEI nanocomplex treated muscles over muscles treated with “naked” plasmid DNA. Luciferase activity was consistently greater after treatment with PEG/PEI nanocomplexes at 0.6 MPa as compared to 0.8 MPa. The combination of small diameter MBs and 0.6 MPa US also resulted in significantly greater gene expression when compared to concentration matched intramuscular injections, a control condition in which considerably more PEG/PEI nanocomplexes were present in tissue. This result suggests that, in addition to facilitating PEG/PEI nanocomplex delivery from the bloodstream to tissue, US enhances transfection via one or more secondary mechanisms, including increased cellular uptake and/or trafficking to the nucleus of PEG/PEI nanocomplexes. We conclude that PEG/PEI nanocomplexes may be used to markedly enhance the amplitude of US-MB-targeted skeletal muscle transfection and that activating “small” MBs with a moderate level (0.6 MPa) of acoustic pressure can further enhance these effects. PMID:22800583

  6. Effects of enhanced external counterpulsation on skeletal muscle gene expression in patients with severe heart failure.

    PubMed

    Melin, Michael; Montelius, Andreas; Rydén, Lars; Gonon, Adrian; Hagerman, Inger; Rullman, Eric

    2018-01-01

    Enhanced external counterpulsation (EECP) is a non-invasive treatment in which leg cuff compressions increase diastolic aortic pressure and coronary perfusion. EECP is offered to patients with refractory angina pectoris and increases physical capacity. Benefits in heart failure patients have been noted, but EECP is still considered to be experimental and its effects must be confirmed. The mechanism of action is still unclear. The aim of this study was to evaluate the effect of EECP on skeletal muscle gene expression and physical performance in patients with severe heart failure. Patients (n = 9) in NYHA III-IV despite pharmacological therapy were subjected to 35 h of EECP during 7 weeks. Before and after, lateral vastus muscle biopsies were obtained, and functional capacity was evaluated with a 6-min walk test. Skeletal muscle gene expression was evaluated using Affymetrix Hugene 1.0 arrays. Maximum walking distance increased by 15%, which is in parity to that achieved after aerobic exercise training in similar patients. Skeletal muscle gene expression analysis using Ingenuity Pathway Analysis showed an increased expression of two networks of genes with FGF-2 and IGF-1 as central regulators. The increase in gene expression was quantitatively small and no overlap with gene expression profiles after exercise training could be detected despite adequate statistical power. EECP treatment leads to a robust improvement in walking distance in patients with severe heart failure and does induce a skeletal muscle transcriptional response, but this response is small and with no significant overlap with the transcriptional signature seen after exercise training. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. RNAi revised--target mRNA-dependent enhancement of gene silencing.

    PubMed

    Dornseifer, Simon; Willkomm, Sarah; Far, Rosel Kretschmer-Kazemi; Liebschwager, Janine; Beltsiou, Foteini; Frank, Kirsten; Laufer, Sandra D; Martinetz, Thomas; Sczakiel, Georg; Claussen, Jens Christian; Restle, Tobias

    2015-12-15

    The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction.

    PubMed

    Zheng, He-Shan; Guo, Wan-Qian; Wu, Qu-Li; Ren, Nan-Qi; Chang, Jo-Shu

    2018-06-01

    Hospital wastewater is one of the possible sources responsible for antibiotic resistant bacteria spread into the environment. This study proposed a promising strategy, electro-peroxone (E-peroxone) pretreatment followed by a sequencing batch reactor (SBR) for simulated hospital wastewater treatment, aiming to enhance the wastewater treatment performance and to reduce antibiotic resistance genes production simultaneously. The highest chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiency of 94.3% and 92.8% were obtained using the E-peroxone-SBR process. The microbial community analysis through high-throughput sequencing showed that E-peroxone pretreatment could guarantee microbial richness and diversity in SBR, as well as reduce the microbial inhibitions caused by antibiotic and raise the amount of nitrification and denitrification genera. Specially, quantitative real-time PCRs revealed that E-peroxone pretreatment could largely reduce the numbers and contents of antibiotic resistance genes (ARGs) production in the following biological treatment unit. It was indicated that E-peroxone-SBR process may provide an effective way for hospital wastewater treatment and possible ARGs reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract.

    PubMed

    Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair

    2008-05-15

    Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.

  10. Gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2008-01-01

    Gene doping is the misuse of gene therapy to enhance athletic performance. It has recently been recognised as a potential threat and subsequently been prohibited by the World Anti-Doping Agency. Despite concerns with safety and efficacy of gene therapy, the technology is progressing steadily. Many of the genes/proteins which are involved in determining key components of athletic performance have been identified. Naturally occurring mutations in humans as well as gene-transfer experiments in adult animals have shown that altered expression of these genes does indeed affect physical performance. For athletes, however, the gains in performance must be weighed against the health risks associated with the gene-transfer process, whereas the detection of such practices will provide new challenges for the anti-doping authorities.

  11. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes

    PubMed Central

    Garcia-Alvarez, Gisela; Shetty, Mahesh S.; Lu, Bo; Yap, Kenrick An Fu; Oh-Hora, Masatsugu; Sajikumar, Sreedharan; Bichler, Zoë; Fivaz, Marc

    2015-01-01

    Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca2+ channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories. PMID:26236206

  12. Novel Partitivirus Enhances Virulence of and Causes Aberrant Gene Expression in Talaromyces marneffei.

    PubMed

    Lau, Susanna K P; Lo, George C S; Chow, Franklin W N; Fan, Rachel Y Y; Cai, James J; Yuen, Kwok-Yung; Woo, Patrick C Y

    2018-06-12

    Talaromyces marneffei is the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia. We report the discovery of a novel partitivirus, Talaromyces marneffei partitivirus -1 (TmPV1). TmPV1 was detected in 7 (12.7%) of 55 clinical T. marneffei isolates. Complete genome sequencing of the seven TmPV1 isolates revealed two double-stranded RNA (dsRNA) segments encoding RNA-dependent RNA polymerase (RdRp) and capsid protein, respectively. Phylogenetic analysis showed that TmPV1 occupied a distinct clade among the members of the genus Gammapartitivirus Transmission electron microscopy confirmed the presence of isometric, nonenveloped viral particles of 30 to 45 nm in diameter, compatible with partitiviruses, in TmPV1-infected T. marneffei Quantitative reverse transcription-PCR (qRT-PCR) demonstrated higher viral load of TmPV1 in the yeast phase than in the mycelial phase of T. marneffei Two virus-free isolates, PM1 and PM41, were successfully infected by purified TmPV1 using protoplast transfection. Mice challenged with TmPV1-infected T. marneffei isolates showed significantly shortened survival time ( P < 0.0001) and higher fungal burden in organs than mice challenged with isogenic TmPV1-free isolates. Transcriptomic analysis showed that TmPV1 causes aberrant expression of various genes in T. marneffei , with upregulation of potential virulence factors and suppression of RNA interference (RNAi)-related genes. This is the first report of a mycovirus in a thermally dimorphic fungus. Further studies are required to ascertain the mechanism whereby TmPV1 enhances the virulence of T. marneffei in mice and the potential role of RNAi-related genes in antiviral defense in T. marneffei IMPORTANCE Talaromyces marneffei (formerly Penicillium marneffei ) is the most important thermal dimorphic fungus in Southeast Asia, causing highly fatal systemic penicilliosis in HIV-infected and immunocompromised patients. We discovered a novel mycovirus, TmPV1

  13. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  14. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.

    PubMed

    Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen

    2018-04-10

    Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.

    PubMed

    Kamran, Neha; Kadiyala, Padma; Saxena, Meghna; Candolfi, Marianela; Li, Youping; Moreno-Ayala, Mariela A; Raja, Nicholas; Shah, Diana; Lowenstein, Pedro R; Castro, Maria G

    2017-01-04

    Survival of glioma (GBM) patients treated with the current standard of care remains dismal. Immunotherapeutic approaches that harness the cytotoxic and memory potential of the host immune system have shown great benefit in other cancers. GBMs have developed multiple strategies, including the accumulation of myeloid-derived suppressor cells (MDSCs) to induce immunosuppression. It is therefore imperative to develop multipronged approaches when aiming to generate a robust anti-tumor immune response. Herein, we tested whether combining MDSC depletion or checkpoint blockade would augment the efficacy of immune-stimulatory herpes simplex type-I thymidine kinase (TK) plus Fms-like tyrosine kinase ligand (Flt3L)-mediated immune stimulatory gene therapy. Our results show that MDSCs constitute >40% of the tumor-infiltrating immune cells. These cells express IL-4Rα, inducible nitric oxide synthase (iNOS), arginase, programmed death ligand 1 (PDL1), and CD80, molecules that are critically involved in antigen-specific T cell suppression. Depletion of MDSCs strongly enhanced the TK/Flt3L gene therapy-induced tumor-specific CD8 T cell response, which lead to increased median survival and percentage of long-term survivors. Also, combining PDL1 or CTLA-4 immune checkpoint blockade greatly improved the efficacy of TK/Flt3L gene therapy. Our results, therefore, indicate that blocking MDSC-mediated immunosuppression holds great promise for increasing the efficacy of gene therapy-mediated immunotherapies for GBM. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  16. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) enhances testicular gene expression of 3β-hydroxysteroid dehydrogenase in rats.

    PubMed

    Ohta, Y; Kawate, N; Inaba, T; Morii, H; Takahashi, K; Tamada, H

    2017-12-01

    Although feeding diets containing the extract powder of Lepidium meyenii (maca), a plant growing in Peru's Central Andes, increases serum testosterone concentration associated with enhanced ability of testosterone production by Leydig cells in male rats, changes in testicular steroidogenesis-related factors by the maca treatment are not known. This study examined the effects of maca on testicular gene expressions for luteinizing hormone receptor, steroidogenic acute regulatory protein and steroidogenic enzymes. Eight-week-old male rats were given the diets with or without (control) the maca extract powder (2%) for 6 weeks, and mRNA levels were determined by reverse transcription quantitative real-time PCR. The results showed that the testicular mRNA level of HSD3B1 (3β-hydroxysteroid dehydrogenase; 3β-HSD) increased by the treatment, whereas the levels of the other factors examined did not change. These results suggest that increased expression of 3β-HSD gene may be involved in the enhanced steroidogenic ability by the maca treatment in rat testes. © 2017 Blackwell Verlag GmbH.

  17. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  18. Regulation of tumour related genes by dynamic epigenetic alteration at enhancer regions in gastric epithelial cells infected by Epstein-Barr virus.

    PubMed

    Okabe, Atsushi; Funata, Sayaka; Matsusaka, Keisuke; Namba, Hiroe; Fukuyo, Masaki; Rahmutulla, Bahityar; Oshima, Motohiko; Iwama, Atsushi; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-11

    Epstein-Barr virus (EBV) infection is associated with tumours such as Burkitt lymphoma, nasopharyngeal carcinoma, and gastric cancer. We previously showed that EBV(+) gastric cancer presents an extremely high-methylation epigenotype and this aberrant DNA methylation causes silencing of multiple tumour suppressor genes. However, the mechanisms that drive EBV infection-mediated tumorigenesis, including other epigenomic alteration, remain unclear. We analysed epigenetic alterations induced by EBV infection especially at enhancer regions, to elucidate their contribution to tumorigenesis. We performed ChIP sequencing on H3K4me3, H3K4me1, H3K27ac, H3K27me3, and H3K9me3 in gastric epithelial cells infected or not with EBV. We showed that repressive marks were redistributed after EBV infection, resulting in aberrant enhancer activation and repression. Enhancer dysfunction led to the activation of pathways related to cancer hallmarks (e.g., resisting cell death, disrupting cellular energetics, inducing invasion, evading growth suppressors, sustaining proliferative signalling, angiogenesis, and tumour-promoting inflammation) and inactivation of tumour suppressive pathways. Deregulation of cancer-related genes in EBV-infected gastric epithelial cells was also observed in clinical EBV(+) gastric cancer specimens. Our analysis showed that epigenetic alteration associated with EBV-infection may contribute to tumorigenesis through enhancer activation and repression.

  19. Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    PubMed Central

    Zahuczky, Gábor; Kristóf, Endre; Majai, Gyöngyike; Fésüs, László

    2011-01-01

    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk. PMID:21731712

  20. Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    1999-01-01

    3,3',4,4',5-Pentachlorobiphenyl (PenCB), one of the most toxic co-planar polychlorinated biphenyl congeners, specifically induces class Pi glutathione S-transferase (GSTP1) as well as cytochrome P-450 1A1 in primary cultured rat liver parenchymal cells [Aoki, Matsumoto and Suzuki (1993) FEBS Lett. 333, 114-118]. However, the 5'-flanking sequence of the GSTP1 gene does not contain a xenobiotic responsive element, to which arylhydrocarbon receptor binds. Using a chloramphenicol acetyltransferase assay we demonstrate here that the enhancer termed GSTP1 enhancer I (GPEI) is necessary for the stimulation by PenCB of GSTP1 gene expression in primary cultured rat liver parenchymal cells. GPEI is already known to contain a dyad of PMA responsive element-like elements oriented palindromically. It is suggested that a novel signal transduction pathway activated by PenCB contributes to the stimulation of GSTP1 expression. PMID:10051428

  1. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we

  2. Customized biomaterials to augment chondrocyte gene therapy.

    PubMed

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-04-15

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins. The present manuscript focuses on the enhancement of chondrocyte gene therapy through the modification of scaffold materials to enhance the retention of targeted gene products. This study combined tissue engineering and gene therapy, where customized biomaterials augmented the action of IGF-I by enhancing the retention of protein produced by transfection of the IGF-I gene. This approach enabled tuning of binding of IGF-I to alginate, which increased GAG and HYPRO production by transfected chondrocytes. To our knowledge, peptide-based modification of materials to augment growth factor-targeted gene therapy has not been reported previously. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Ancient Exaptation of a CORE-SINE Retroposon into a Highly Conserved Mammalian Neuronal Enhancer of the Proopiomelanocortin Gene

    PubMed Central

    Bumaschny, Viviana F; Low, Malcolm J; Rubinstein, Marcelo

    2007-01-01

    The proopiomelanocortin gene (POMC) is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5′ distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE) retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution. PMID:17922573

  4. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  5. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery

    PubMed Central

    Bandeira, Elga; Lopes-Pacheco, Miquéias; Chiaramoni, Nadia; Ferreira, Débora; Fernandez-Ruocco, Maria J.; Prieto, Maria J.; Maron-Gutierrez, Tatiana; Perrotta, Ramiro M.; de Castro-Faria-Neto, Hugo C.; Rocco, Patricia R. M.; Alonso, Silvia del Valle; Morales, Marcelo M.

    2016-01-01

    Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases. PMID:27199766

  6. StPOTHR1, a NDR1/HIN1-like gene in Solanum tuberosum, enhances resistance against Phytophthora infestans.

    PubMed

    Chen, Qiansi; Tian, Zhendong; Jiang, Rui; Zheng, Xueao; Xie, Conghua; Liu, Jun

    2018-02-19

    A family of NDR1/HIN1-like (NHL) genes that shows homology to the nonrace-specific disease resistance (NDR1) and the tobacco (Nicotiana tabacum) harpin-induced (HIN1) genes is reported to be involved in defense. However, little information about NHL genes is available for the potato (Solanum tuberosum). Here, we report that the expression of StPOTHR1, a member of the NHL gene family, is associated with resistance in potato against Phytophthora infestans, and is specifically induced in inoculation sites. Overexpression of StPOTHR1 enhances resistance against P. infestans via restricting rapid pathogen proliferation. Further, suppression of StPOTHR1 does not compromise R-mediated cell death. Subcellular localization and posttranscription modifications (PTMs) analysis reveals that StPOTHR1 is localized in plasma membrane (PM) and undergoes multiple PTMs. Moreover, StPOTHR1 interacts with NbMKK5L, a component of the MAP kinase signaling cascade. Taken together, our results suggest that the PM-localized StPOTHR1 contributes to potato immunity against P. infestans and may be associated with the MAP kinase signaling cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  8. Enhancement of ginsenoside Rg(1) in Panax ginseng hairy root by overexpressing the α-L-rhamnosidase gene from Bifidobacterium breve.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; Li, Gu-Cai; Xie, Tao; Hu, Teng; Luo, Zhi-Yong

    2015-10-01

    To improve the production of ginsenoside Rg1 in Panax ginseng. The α-L-rhamnosidase gene from Bifidobacterium breve (BbRha) was overexpressed into hairy root culture system using Agrobacterium rhizogenes A4. Ginsenoside Rg1 in hairy roots was obtained following transformation via overexpressed gene representing 2.2-fold higher than those of control lines. Several overexpression transgenic hairy root lines were obtained exhibiting markedly increased levels of the corresponding α-L-rhamnosidase enzymatic activity relative to control. Ginsenoside Rg1 levels in the transgenic lines were higher (2.2-fold) than those of control after following 30 days culturing, while ginsenoside Re contents in tested transgenic lines were found to be lower. The transgenic hairy roots harboring α-L-rhamnosidase gene improved the accumulation of ginsenoside Rg1 up to 3.6 mg g(-1) dry weight. BbRha gene selectively enhances the production of ginsenoside Rg1 in P. ginseng hairy roots.

  9. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    PubMed

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Functional autonomy of distant-acting human enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak

    2009-02-19

    Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their expression in time and space. Studies in invertebrate model systems have suggested that these elements function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human developmental enhancers, we experimentally concatenated up to four enhancers from different genes and used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the single modules. In all of the six different combinations of elementsmore » tested, the reporter gene activity patterns were additive without signs of interference between the individual modules, indicating that regulatory specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases where two elements drove expression in close anatomical proximity, such as within neighboring subregions of the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual elements or novel expression sites. These data indicate that human developmental enhancers are highly modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to the evolution of complex gene expression patterns in vertebrates« less

  11. Genome-wide characterization of mammalian promoters with distal enhancer functions.

    PubMed

    Dao, Lan T M; Galindo-Albarrán, Ariel O; Castro-Mondragon, Jaime A; Andrieu-Soler, Charlotte; Medina-Rivera, Alejandra; Souaid, Charbel; Charbonnier, Guillaume; Griffon, Aurélien; Vanhille, Laurent; Stephen, Tharshana; Alomairi, Jaafar; Martin, David; Torres, Magali; Fernandez, Nicolas; Soler, Eric; van Helden, Jacques; Puthier, Denis; Spicuglia, Salvatore

    2017-07-01

    Gene expression in mammals is precisely regulated by the combination of promoters and gene-distal regulatory regions, known as enhancers. Several studies have suggested that some promoters might have enhancer functions. However, the extent of this type of promoters and whether they actually function to regulate the expression of distal genes have remained elusive. Here, by exploiting a high-throughput enhancer reporter assay, we unravel a set of mammalian promoters displaying enhancer activity. These promoters have distinct genomic and epigenomic features and frequently interact with other gene promoters. Extensive CRISPR-Cas9 genomic manipulation demonstrated the involvement of these promoters in the cis regulation of expression of distal genes in their natural loci. Our results have important implications for the understanding of complex gene regulation in normal development and disease.

  12. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    PubMed

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  13. Enhancer modularity and the evolution of new traits.

    PubMed

    Koshikawa, Shigeyuki

    2015-01-01

    Animals have modular cis-regulatory regions in their genomes, and expression of a single gene is often regulated by multiple enhancers residing in such a region. In the laboratory, and also in natural populations, loss of an enhancer can result in a loss of gene expression. Although only a few examples have been well characterized to date, some studies have suggested that an evolutionary gain of a new enhancer function can establish a new gene expression domain. Our recent study showed that Drosophila guttifera has more enhancers and additional expression domains of the wingless gene during the pupal stage, compared to D. melanogaster, and that these new features appear to have evolved in the ancestral lineage leading to D. guttifera. (1) Gain of a new expression domain of a developmental regulatory gene (toolkit gene), such as wingless, can cause co-option of the expression of its downstream genes to the new domain, resulting in duplication of a preexisting structure at this new body position. Recently, with the advancement of evo-devo studies, we have learned that the developmental regulatory systems are strikingly similar across various animal taxa, in spite of the great diversity of the animals' morphology. Even behind "new" traits, co-options of essential developmental genes from known systems are very common. We previously provided concrete evidence of gains of enhancer activities of a developmental regulatory gene underlying gains of new traits. (1) Broad occurrence of this scenario is testable and should be validated in the future.

  14. Disruption of the Abdominal-B Promoter Tethering Element Results in a Loss of Long-Range Enhancer-Directed Hox Gene Expression in Drosophila

    PubMed Central

    Ho, Margaret C. W.; Schiller, Benjamin J.; Akbari, Omar S.; Bae, Esther; Drewell, Robert A.

    2011-01-01

    There are many examples within gene complexes of transcriptional enhancers interacting with only a subset of target promoters. A number of molecular mechanisms including promoter competition, insulators and chromatin looping are thought to play a role in regulating these interactions. At the Drosophila bithorax complex (BX-C), the IAB5 enhancer specifically drives gene expression only from the Abdominal-B (Abd-B) promoter, even though the enhancer and promoter are 55 kb apart and are separated by at least three insulators. In previous studies, we discovered that a 255 bp cis-regulatory module, the promoter tethering element (PTE), located 5′ of the Abd-B transcriptional start site is able to tether IAB5 to the Abd-B promoter in transgenic embryo assays. In this study we examine the functional role of the PTE at the endogenous BX-C using transposon-mediated mutagenesis. Disruption of the PTE by P element insertion results in a loss of enhancer-directed Abd-B expression during embryonic development and a homeotic transformation of abdominal segments. A partial deletion of the PTE and neighboring upstream genomic sequences by imprecise excision of the P element also results in a similar loss of Abd-B expression in embryos. These results demonstrate that the PTE is an essential component of the regulatory network at the BX-C and is required in vivo to mediate specific long-range enhancer-promoter interactions. PMID:21283702

  15. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance.

    PubMed

    Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying

    2010-07-01

    Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.

  16. Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems

    PubMed Central

    von Netzer, Frederick; Pilloni, Giovanni; Kleindienst, Sara; Krüger, Martin; Knittel, Katrin; Gründger, Friederike

    2013-01-01

    The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems. PMID:23124238

  17. An enhancer-like region regulates hrp3 promoter stage-specific gene expression in the human malaria parasite Plasmodium falciparum

    PubMed Central

    López-Estraño, Carlos; Gopalakrishnan, Anusha M.; Semblat, Jean-Philippe; Fergus, M. Ross; Mazier, Dominique; Haldar, Kasturi

    2008-01-01

    The asexual blood stage of Plasmodium falciparum is comprised of morphologically distinct ring, trophozoite and schizont stages. Each of these developmental stages possesses a distinct pattern of gene expression. Regulation of P. falciparum gene expression is thought to occur, at least in part, at the promoter level. Previously, we have found that although the RNA of the P. falciparum hrp3 gene is only seen in ring-stage parasites, deletion of a specific sequensce in the 5’ end of the promoter region decreased ring-stage expression of hrp3 and enabled detection of its transcripts in trophozoite-stage parasites. In order to investigate this stage specific regulation of gene expression, we employed a series of nested deletions of the 1.7-kb hrp3 promoter. Firefly luciferase gene was used as a reporter to evaluate the role of promoter sequences in gene regulation. Using this approach, we identified a ring-stage specific regulatory region on the hrp3 promoter located between -1.7-kb and -1.1-kb from the ATG initiation codon. Small 100–150 bp truncations on this enhancer-like region failed to uncover discrete regulatory sequences, suggesting the multipartite nature of this element. The data presented in this study demonstrates that stage specific promoter activity of the hrp3 gene in P. falciparum blood stage parasites is supported, at least in-part, by a small promoter region that can function in the absence of a larger chromosomal context. PMID:17570541

  18. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    PubMed Central

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization. PMID:24371834

  19. Gene prioritization of resistant rice gene against Xanthomas oryzae pv. oryzae by using text mining technologies.

    PubMed

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  20. Hierarchy within the mammary STAT5-driven Wap super-enhancer

    PubMed Central

    Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar

    2016-01-01

    Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. PMID:27376239

  1. TLR9 agonists oppositely modulate DNA repair genes in tumor versus immune cells and enhance chemotherapy effects.

    PubMed

    Sommariva, Michele; De Cecco, Loris; De Cesare, Michelandrea; Sfondrini, Lucia; Ménard, Sylvie; Melani, Cecilia; Delia, Domenico; Zaffaroni, Nadia; Pratesi, Graziella; Uva, Valentina; Tagliabue, Elda; Balsari, Andrea

    2011-10-15

    Synthetic oligodeoxynucleotides expressing CpG motifs (CpG-ODN) are a Toll-like receptor 9 (TLR9) agonist that can enhance the antitumor activity of DNA-damaging chemotherapy and radiation therapy in preclinical mouse models. We hypothesized that the success of these combinations is related to the ability of CpG-ODN to modulate genes involved in DNA repair. We conducted an in silico analysis of genes implicated in DNA repair in data sets obtained from murine colon carcinoma cells in mice injected intratumorally with CpG-ODN and from splenocytes in mice treated intraperitoneally with CpG-ODN. CpG-ODN treatment caused downregulation of DNA repair genes in tumors. Microarray analyses of human IGROV-1 ovarian carcinoma xenografts in mice treated intraperitoneally with CpG-ODN confirmed in silico findings. When combined with the DNA-damaging drug cisplatin, CpG-ODN significantly increased the life span of mice compared with individual treatments. In contrast, CpG-ODN led to an upregulation of genes involved in DNA repair in immune cells. Cisplatin-treated patients with ovarian carcinoma as well as anthracycline-treated patients with breast cancer who are classified as "CpG-like" for the level of expression of CpG-ODN modulated DNA repair genes have a better outcome than patients classified as "CpG-untreated-like," indicating the relevance of these genes in the tumor cell response to DNA-damaging drugs. Taken together, the findings provide evidence that the tumor microenvironment can sensitize cancer cells to DNA-damaging chemotherapy, thereby expanding the benefits of CpG-ODN therapy beyond induction of a strong immune response.

  2. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.

    PubMed

    Fernandez-Valverde, Selene L; Calcino, Andrew D; Degnan, Bernard M

    2015-05-15

    The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.

  3. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    PubMed Central

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo. PMID:14681357

  4. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance

    PubMed Central

    Pandey, Sonika; Patel, Manish Kumar; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas. PMID:27411057

  5. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    PubMed

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.

  6. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco.

    PubMed

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.

  7. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice.

    PubMed

    Kiyota, T; Ingraham, K L; Swan, R J; Jacobsen, M T; Andrews, S J; Ikezu, T

    2012-07-01

    Brain inflammation is a double-edged sword. It is required for brain repair in acute damage, whereas chronic inflammation and autoimmune disorders are neuropathogenic. Certain proinflammatory cytokines and chemokines are closely related to cognitive dysfunction and neurodegeneration. Representative anti-inflammatory cytokines, such as interleukin (IL)-10, can suppress neuroinflammation and have significant therapeutic potentials in ameliorating neurodegenerative disorders such as Alzheimer's disease (AD). Here, we show that adeno-associated virus (AAV) serotype 2/1 hybrid-mediated neuronal expression of the mouse IL-10 gene ameliorates cognitive dysfunction in amyloid precursor protein+ presenilin-1 bigenic mice. AAV2/1 infection of hippocampal neurons resulted in sustained expression of IL-10 without its leakage into the blood, reduced astro/microgliosis, enhanced plasma amyloid-β peptide (Aβ) levels and enhanced neurogenesis. Moreover, increased levels of IL-10 improved spatial learning, as determined by the radial arm water maze. Finally, IL-10-stimulated microglia enhanced proliferation but not differentiation of primary neural stem cells in the co-culture system, whereas IL-10 itself had no effect. Our data suggest that IL-10 gene delivery has a therapeutic potential for a non-Aβ-targeted treatment of AD.

  8. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1.

    PubMed

    Iida, Satoshi; Chen, Wei; Nakadai, Tomoyoshi; Ohkuma, Yoshiaki; Roeder, Robert G

    2015-02-01

    PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex. © 2015 Iida et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Hierarchy within the mammary STAT5-driven Wap super-enhancer.

    PubMed

    Shin, Ha Youn; Willi, Michaela; HyunYoo, Kyung; Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar

    2016-08-01

    Super-enhancers comprise dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate the role of super-enhancers in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-seq analysis for the master regulator STAT5A, the glucocorticoid receptor, H3K27ac and MED1 identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5-binding sites within its constituent enhancers. Individually, the most distal site displayed the greatest enhancer activity. However, combinatorial mutation analysis showed that the 1,000-fold induction in gene expression during pregnancy relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer. Altogether, these data suggest a temporal and functional enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insights into the regulation of cell-type-specific expression of hormone-sensing genes.

  10. Cell type-selective disease-association of genes under high regulatory load.

    PubMed

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-10-15

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3' UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Cell type-selective disease-association of genes under high regulatory load

    PubMed Central

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-01-01

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3′ UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. PMID:26338775

  12. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication

    PubMed Central

    Courtney, David G.

    2018-01-01

    Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previously, the late transcripts expressed by the prototypic polyomavirus simian virus 40 (SV40) were reported to contain several adenosines bearing methyl groups at the N6 position (m6A), although the precise location of these m6A residues, and their phenotypic effects, have not been investigated. Here, we first demonstrate that overexpression of the key m6A reader protein YTHDF2 induces more rapid viral replication, and larger viral plaques, in SV40 infected BSC40 cells, while mutational inactivation of the endogenous YTHDF2 gene, or the m6A methyltransferase METTL3, has the opposite effect, thus suggesting a positive role for m6A in the regulation of SV40 gene expression. To directly test this hypothesis, we mapped sites of m6A addition on SV40 transcripts and identified two m6A sites on the viral early transcripts and eleven m6A sites on the late mRNAs. Using synonymous mutations, we inactivated the majority of the m6A sites on the SV40 late mRNAs and observed that the resultant viral mutant replicated more slowly than wild type SV40. Alternative splicing of SV40 late mRNAs was unaffected by the reduction in m6A residues and our data instead suggest that m6A enhances the translation of viral late transcripts. Together, these data argue that the addition of m6A residues to the late transcripts encoded by SV40 plays an important role in enhancing viral gene expression and, hence, replication. PMID:29447282

  13. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    PubMed Central

    Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  14. A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1

    PubMed Central

    Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael

    2015-01-01

    A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952

  15. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  16. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    PubMed

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    PubMed Central

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  18. Plant Enhancers: A Call for Discovery.

    PubMed

    Weber, Blaise; Zicola, Johan; Oka, Rurika; Stam, Maike

    2016-11-01

    Higher eukaryotes typically contain many different cell types, displaying different cellular functions that are influenced by biotic and abiotic cues. The different functions are characterized by specific gene expression patterns mediated by regulatory sequences such as transcriptional enhancers. Recent genome-wide approaches have identified thousands of enhancers in animals, reviving interest in enhancers in gene regulation. Although the regulatory roles of plant enhancers are as crucial as those in animals, genome-wide approaches have only very recently been applied to plants. Here we review characteristics of enhancers at the DNA and chromatin level in plants and other species, their similarities and differences, and techniques widely used for genome-wide discovery of enhancers in animal systems that can be implemented in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    PubMed

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.

  20. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  1. Transgenic Tobacco Plants Overexpressing a Grass PpEXP1 Gene Exhibit Enhanced Tolerance to Heat Stress

    PubMed Central

    Xu, Qian; Xu, Xiao; Shi, Yang; Xu, Jichen; Huang, Bingru

    2014-01-01

    Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well understood. The objectives of this study were to isolate and clone an expansin gene in a perennial grass species (Poa pratensis) and to determine whether over-expression of expansin may improve plant heat tolerance. Tobacco (Nicotiana tabacum) was used as the model plant for gene transformation and an expansin gene PpEXP1 from Poa pratensis was cloned. Sequence analysis showed PpEXP1 belonged to α-expansins and was closely related to two expansin genes in other perennial grass species (Festuca pratensis and Agrostis stolonifera) as well as Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Transgenic tobacco plants over-expressing PpEXP1 were generated through Agrobacterium-mediated transformation. Under heat stress (42°C) in growth chambers, transgenic tobacco plants over-expressing the PpEXP1 gene exhibited a less structural damage to cells, lower electrolyte leakage, lower levels of membrane lipid peroxidation, and lower content of hydrogen peroxide, as well as higher chlorophyll content, net photosynthetic rate, relative water content, activity of antioxidant enzyme, and seed germination rates, compared to the wild-type plants. These results demonstrated the positive roles of PpEXP1 in enhancing plant tolerance to heat stress and the possibility of using expansins for genetic modification of cool-season perennial grasses in the development of heat-tolerant germplasm and cultivars. PMID:25003197

  2. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy

    PubMed Central

    Hwang-Verslues, Wendy W.; Chang, Po-Hao; Jeng, Yung-Ming; Kuo, Wen-Hung; Chiang, Pei-Hsun; Chang, Yi-Cheng; Hsieh, Tsung-Han; Su, Fang-Yi; Lin, Liu-Chen; Abbondante, Serena; Yang, Cheng-Yuan; Hsu, Huan-Ming; Yu, Jyh-Cherng; Chang, King-Jen; Shew, Jin-Yuh; Lee, Eva Y.-H. P.; Lee, Wen-Hwa

    2013-01-01

    The circadian clock gene Period2 (PER2) has been suggested to be a tumor suppressor. However, detailed mechanistic evidence has not been provided to support this hypothesis. We found that loss of PER2 enhanced invasion and activated expression of epithelial-mesenchymal transition (EMT) genes including TWIST1, SLUG, and SNAIL. This finding was corroborated by clinical observation that PER2 down-regulation was associated with poor prognosis in breast cancer patients. We further demonstrated that PER2 served as a transcriptional corepressor, which recruited polycomb proteins EZH2 and SUZ12 as well as HDAC2 to octamer transcription factor 1 (OCT1) (POU2F1) binding sites of the TWIST1 and SLUG promoters to repress expression of these EMT genes. Hypoxia, a condition commonly observed in tumors, caused PER2 degradation and disrupted the PER2 repressor complex, leading to activation of EMT gene expression. This result was further supported by clinical data showing a significant negative correlation between hypoxia and PER2. Thus, our findings clearly demonstrate the tumor suppression function of PER2 and elucidate a pathway by which hypoxia promotes EMT via degradation of PER2. PMID:23836662

  3. Combining Selective Pressures to Enhance the Durability of Disease Resistance Genes.

    PubMed

    2016-01-01

    The efficacy of disease resistance genes in plants decreases over time because of the selection of virulent pathogen genotypes. A key goal of crop protection programs is to increase the durability of the resistance conferred by these genes. The spatial and temporal deployment of plant disease resistance genes is considered to be a major factor determining their durability. In the literature, four principal strategies combining resistance genes over time and space have been considered to delay the evolution of virulent pathogen genotypes. We reviewed this literature with the aim of determining which deployment strategy results in the greatest durability of resistance genes. Although theoretical and empirical studies comparing deployment strategies of more than one resistance gene are very scarce, they suggest that the overall durability of disease resistance genes can be increased by combining their presence in the same plant (pyramiding). Retrospective analyses of field monitoring data also suggest that the pyramiding of disease resistance genes within a plant is the most durable strategy. By extension, we suggest that the combination of disease resistance genes with other practices for pathogen control (pesticides, farming practices) may be a relevant management strategy to slow down the evolution of virulent pathogen genotypes.

  4. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  5. Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience.

    PubMed

    Choisy-Rossi, Caroline-Morgane; Holl, Thomas M; Pierce, Melissa A; Chapman, Harold D; Serreze, David V

    2004-09-15

    For unknown reasons, the common MHC class I variants encoded by the H2g7 haplotype (Kd, Db) aberrantly elicit autoreactive CD8 T cell responses essential to type 1 diabetes development when expressed in NOD mice, but not other strains. In this study, we show that interactive non-MHC genes allow a NOD-derived diabetogenic CD8 T cell clonotype (AI4) to be negatively selected at far greater efficiency in C57BL/6 mice congenically expressing H2g7 (B6.H2g7). However, the few AI4 T cells escaping negative selection in B6.H2g7 mice are exported from the thymus more efficiently, and are more functionally aggressive than those of NOD origin. This provides mechanistic insight to previous findings that resistant mouse strains carry some genes conferring greater diabetes susceptibility than the corresponding NOD allele. In the B6.H2g7 stock, non-MHC gene-controlled elevations in TCR expression are associated with both enhanced negative selection of diabetogenic CD8 T cells and increased aggressiveness of those escaping this process. An implication of this finding is that the same phenotype, in this case relatively high TCR expression levels, could have double-edged sword effects, contributing to type 1 diabetes resistance at one level of T cell development, but at another actually promoting pathogenesis. Copyright 2004 The American Association of Immunologists, Inc.

  6. Overexpression of a MADS-Box Gene from Birch (Betula platyphylla) Promotes Flowering and Enhances Chloroplast Development in Transgenic Tobacco

    PubMed Central

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco. PMID:23691043

  7. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugino, Noriko; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507; Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansionmore » of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive

  8. Resistance to BmNPV via Overexpression of an Exogenous Gene Controlled by an Inducible Promoter and Enhancer in Transgenic Silkworm, Bombyx mori

    PubMed Central

    Jiang, Liang; Cheng, Tingcai; Zhao, Ping; Yang, Qiong; Wang, Genhong; Jin, Shengkai; Lin, Ping; Xiao, Yang; Xia, Qingyou

    2012-01-01

    The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP), Bombyx mori A4 promoter (A4P), hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG). After oral inoculation of BmNPV with 3 × 105 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity. PMID:22870254

  9. Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier

    NASA Astrophysics Data System (ADS)

    Zamora, Genesis; Wang, Frederick; Sun, Chung-Ho; Trinidad, Anthony; Kwon, Young Jik; Cho, Soo Kyung; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-10-01

    The overall objective of the research was to investigate the utility of photochemical internalization (PCI) for the enhanced nonviral transfection of genes into glioma cells. The PCI-mediated introduction of the tumor suppressor gene phosphatase and tensin homolog (PTEN) or the cytosine deaminase (CD) pro-drug activating gene into U87 or U251 glioma cell monolayers and multicell tumor spheroids were evaluated. In the study reported here, polyamine-DNA gene polyplexes were encapsulated in a nanoparticle (NP) with an acid degradable polyketal outer shell. These NP synthetically mimic the roles of viral capsid and envelope, which transport and release the gene, respectively. The effects of PCI-mediated suppressor and suicide genes transfection efficiency employing either "naked" polyplex cores alone or as NP-shelled cores were compared. PCI was performed with the photosensitizer AlPcS2a and λ=670-nm laser irradiance. The results clearly demonstrated that the PCI can enhance the delivery of both the PTEN or CD genes in human glioma cell monolayers and multicell tumor spheroids. The transfection efficiency, as measured by cell survival and inhibition of spheroid growth, was found to be significantly greater at suboptimal light and DNA levels for shelled NPs compared with polyamine-DNA polyplexes alone.

  10. Properties of a U1 RNA enhancer-like sequence.

    PubMed Central

    Ciliberto, G; Palla, F; Tebb, G; Mattaj, I W; Philipson, L

    1987-01-01

    The properties of a X.laevis U1B snRNA gene enhancer have been studied by microinjection in Xenopus oocytes. The enhancer-like sequence, defined as a short DNA stretch that is able to activate transcription in an orientation independent manner, is interchangeable between different U snRNA genes. The enhancer sequence alone does not, however, efficiently activate transcription from an SV40 pol II promoter but regains its activity when combined with the U-gene specific proximal sequence element. DNase I protection experiments show that the X.laevis U1B enhancer can interact specifically with a nuclear factor present in mammalian cells. Images PMID:3031597

  11. Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers

    PubMed Central

    Lovén, Jakob; Hoke, Heather A.; Lin, Charles Y.; Lau, Ashley; Orlando, David A.; Vakoc, Christopher R.; Bradner, James E.; Lee, Tong Ihn; Young, Richard A.

    2013-01-01

    Summary Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types. PMID:23582323

  12. Enhancement of antiproliferative activity of interferons by RNA interference-mediated silencing of SOCS gene expression in tumor cells.

    PubMed

    Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2008-08-01

    The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.

  13. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.

    PubMed

    Casaretto, José A; El-Kereamy, Ashraf; Zeng, Bin; Stiegelmeyer, Suzy M; Chen, Xi; Bi, Yong-Mei; Rothstein, Steven J

    2016-04-29

    Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.

  14. Owning genetic information and gene enhancement techniques: why privacy and property rights may undermine social control of the human genome.

    PubMed

    Moore, A D

    2000-04-01

    In this article I argue that the proper subjects of intangible property claims include medical records, genetic profiles, and gene enhancement techniques. Coupled with a right to privacy these intangible property rights allow individuals a zone of control that will, in most cases, justifiably exclude governmental or societal invasions into private domains. I argue that the threshold for overriding privacy rights and intangible property rights is higher, in relation to genetic enhancement techniques and sensitive personal information, than is commonly suggested. Once the bar is raised, so-to-speak, the burden of overriding it is formidable. Thus many policy decisions that have been recently proposed or enacted--citywide audio and video surveillance, law enforcement DNA sweeps, genetic profiling, national bans on genetic testing and enhancement of humans, to name a few--will have to be backed by very strong arguments.

  15. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  16. Epstein-Barr Virus oncoprotein super-enhancers control B cell growth

    PubMed Central

    Zhou, Hufeng; Schmidt, Stefanie CS; Jiang, Sizun; Willox, Bradford; Bernhardt, Katharina; Liang, Jun; Johannsen, Eric C; Kharchenko, Peter; Gewurz, Benjamin E; Kieff, Elliott; Zhao, Bo

    2015-01-01

    Summary Super-enhancers are clusters of gene-regulatory sites bound by multiple transcription factors that govern cell transcription, development, phenotype, and oncogenesis. By examining Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs), we identified four EBV oncoproteins and five EBV-activated NF-κB subunits co-occupying ~1800 enhancer sites. Of these, 187 had markedly higher and broader histone H3K27ac signals characteristic of super-enhancers, and were designated “EBV super-enhancers”. EBV super-enhancer-associated genes included the MYC and BCL2 oncogenes, enabling LCL proliferation and survival. EBV super-enhancers were enriched for B cell transcription factor motifs and had a high co-occupancy of the transcription factors STAT5 and NFAT. EBV super-enhancer-associated genes were more highly expressed than other LCL genes. Disrupting EBV super-enhancers by the bromodomain inhibitor, JQ1 or conditionally inactivating an EBV oncoprotein or NF-κB decreased MYC or BCL2 expression and arrested LCL growth. These findings provide insight into mechanisms of EBV-induced lymphoproliferation and identify potential therapeutic interventions. PMID:25639793

  17. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    PubMed

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  18. Direct molecular regulation of the myogenic determination gene Myf5 by Pax3, with modulation by Six1/4 factors, is exemplified by the -111 kb-Myf5 enhancer.

    PubMed

    Daubas, Philippe; Buckingham, Margaret E

    2013-04-15

    The Myf5 gene plays an important role in myogenic determination during mouse embryo development. Multiple genomic regions of the Mrf4-Myf5 locus have been characterised as enhancer sequences responsible for the complex spatiotemporal expression of the Myf5 gene at the onset of myogenesis. These include an enhancer sequence, located at -111 kb upstream of the Myf5 transcription start site, which is responsible of Myf5 activation in ventral somitic domains (Ribas et al., 2011. Dev. Biol. 355, 372-380). We show that the -111 kb-Myf5 enhancer also directs transgene expression in some limb muscles, and is active at foetal as well as embryonic stages. We have carried out further characterisation of the regulation of this enhancer and show that the paired-box Pax3 transcription factor binds to it in vitro as in vivo, and that Pax binding sites are essential for its activity. This requirement is independent of the previously reported regulation by TEAD transcription factors. Six1/4 which, like Pax3, are important upstream regulators of myogenesis, also bind in vivo to sites in the -111 kb-Myf5 enhancer and modulate its activity. The -111 kb-Myf5 enhancer therefore shares common functional characteristics with another Myf5 regulatory sequence, the hypaxial and limb 145 bp-Myf5 enhancer, both being directly regulated in vivo by Pax3 and Six1/4 proteins. However, in the case of the -111 kb-Myf5 enhancer, Six has less effect and we conclude that Pax regulation plays a major role in controlling this aspect of the Myf5 gene expression at the onset of myogenesis in the embryo. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene

    PubMed Central

    Zamora, Genesis; Sun, Chung-Ho; Trinidad, Anthony; Chun, Changho; Kwon, Young Jik; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2014-01-01

    Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80 % of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments. PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect. PMID:24610460

  20. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes

    PubMed Central

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2016-01-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs, and our experimental data from clinical samples, we discovered broad H3K4me3 (wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity together leading to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Broad H3K4me3 conserved across normal cells may represent pan-cancer tumor suppressors, such as P53 and PTEN, whereas cell-type-specific broad H3K4me3 may indicate cell-identity genes and cell-type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 in cancers is associated with repression of tumor suppressors. Together, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of novel tumor suppressors. PMID:26301496

  1. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    PubMed Central

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  2. Angiotensinogen gene polymorphism predicts hypertension, and iridological constitutional classification enhances the risk for hypertension in Koreans.

    PubMed

    Cho, Joo-Jang; Hwang, Woo-Jun; Hong, Seung-Heon; Jeong, Hyun-Ja; Lee, Hye-Jung; Kim, Hyung-Min; Um, Jae-Young

    2008-05-01

    This study investigated the relationship between iridological constitution and angiotensinogen (AGN) gene polymorphism in hypertensives. In addition to angiotensin converting enzyme gene, AGN genotype is also one of the most well studied genetic markers of hypertension. Furthermore, iridology, one of complementary and alternative medicine, is the diagnosis of the medical conditions through noting irregularities of the pigmentation in the iris. Iridological constitution has a strong familial aggregation and is implicated in heredity. Therefore, the study classified 87 hypertensive patients with familial history of cerebral infarction and controls (n = 88) according to Iris constitution, and determined AGN genotype. As a result, the AGN/TT genotype was associated with hypertension (chi2 = 13.413, p < .05). The frequency of T allele was 0.92 in patients and 0.76 in controls (chi2 = 13.159, p < .05). In addition, iridological constitutional classification increased the relative risk for hypertension in the subjects with AGN/T allele. These results suggest that AGN polymorphism predicts hypertension, and iridological constitutional classification enhances the risk for hypertension associated with AGN/T in a Korean population.

  3. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells

    PubMed Central

    Malashchuk, Igor; Lajoie, Brian R.; Mardaryev, Andrei N.; Gdula, Michal R.; Sharov, Andrey A.; Kohwi-Shigematsu, Terumi; Fessing, Michael Y.

    2017-01-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  4. Insulation of Enhancer-Promoter Communication by a Gypsy Transposon Insert in the Drosophila cut Gene: Cooperation between Suppressor of Hairy-wing and Modifier of mdg4 Proteins

    PubMed Central

    Gause, Maria; Morcillo, Patrick; Dorsett, Dale

    2001-01-01

    The Drosophila mod(mdg4) gene products counteract heterochromatin-mediated silencing of the white gene and help activate genes of the bithorax complex. They also regulate the insulator activity of the gypsy transposon when gypsy inserts between an enhancer and promoter. The Su(Hw) protein is required for gypsy-mediated insulation, and the Mod(mdg4)-67.2 protein binds to Su(Hw). The aim of this study was to determine whether Mod(mdg4)-67.2 is a coinsulator that helps Su(Hw) block enhancers or a facilitator of activation that is inhibited by Su(Hw). Here we provide evidence that Mod(mdg4)-67.2 acts as a coinsulator by showing that some loss-of-function mod(mdg4) mutations decrease enhancer blocking by a gypsy insert in the cut gene. We find that the C terminus of Mod(mdg4)-67.2 binds in vitro to a region of Su(Hw) that is required for insulation, while the N terminus mediates self-association. The N terminus of Mod(mdg4)-67.2 also interacts with the Chip protein, which facilitates activation of cut. Mod(mdg4)-67.2 truncated in the C terminus interferes in a dominant-negative fashion with insulation in cut but does not significantly affect heterochromatin-mediated silencing of white. We infer that multiple contacts between Su(Hw) and a Mod(mdg4)-67.2 multimer are required for insulation. We theorize that Mod(mdg4)-67.2 usually aids gene activation but can also act as a coinsulator by helping Su(Hw) trap facilitators of activation, such as the Chip protein. PMID:11416154

  5. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  6. Roles of Plasmalemma Aquaporin Gene StPIP1 in Enhancing Drought Tolerance in Potato

    PubMed Central

    Wang, Li; Liu, Yuhui; Feng, Shoujiang; Yang, Jiangwei; Li, Dan; Zhang, Junlian

    2017-01-01

    Survival and mortality of plants in response to severe drought may be related to carbon starvation, but little is known about how plasma membrane intrinsic proteins may help alleviate the drought-induced damage. Here, we determined the roles of plasmalemma aquaporin gene in improving plant water status, maintaining carbon accumulation, and thereby enhancing drought tolerance. Seven StPIP1 transformed potato (Solanum tuberosum L.) lines (namely T1, T2…T7) were compared with non-transgenic control plant at molecule and whole-plant levels. The relative expression of StPIP1 gene was found in leaves, stems and roots, with the most abundant expression being in the roots. The transgenic lines T6 and T7 had the highest StPIP1 expression, averaging 7.2 times that of the control and the greatest differences occurred 48 h after mannitol osmotic stress treatment. Using an evaluation index to quantifying the degree of drought tolerance, we found that the StPIP1 transgenic lines T6 and T7 had the highest drought tolerance, averaging 8.5 times that of the control. Measured at 30 days in drought stress treatment, the control plant decreased net photosynthetic rate by 33 and 56%, respectively, under moderate and severe stresses; also decreased stomatal conductance by 39 and 65%; and lowered transpiration rate by 49 and 69%, compared to the no-stress treatment, whereas the transgenic lines T6 and T7 maintained a relatively stable level with slight decreases in these properties. The constitutive overexpression of StPIP1 in potato improved plant water use efficiency and increased nonstructural carbohydrate concentration, which helped alleviate carbon starvation and minimized the loss of biomass and tuber yield due to drought stress. We conclude that the expression of StPIPs improves overall water relations in the plant and helps maintain photosynthesis and stomatal conductance; these help minimize carbon starvation and enhance the whole plant tolerance to drought stress. PMID

  7. External beam radiation therapy enhances mesenchymal stem cell-mediated sodium iodide symporter gene delivery.

    PubMed

    Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine

    2018-05-04

    The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.

  8. New truncation mutation of the NR2E3 gene in a Japanese patient with enhanced S-cone syndrome.

    PubMed

    Kuniyoshi, Kazuki; Hayashi, Takaaki; Sakuramoto, Hiroyuki; Mishima, Hiroshi; Tsuneoka, Hiroshi; Tsunoda, Kazushige; Iwata, Takeshi; Shimomura, Yoshikazu

    2016-11-01

    The enhanced S-cone syndrome (ESCS) is a rare hereditary retinal degeneration that has enhanced short wavelength-sensitive cone (S-cone) functions. The longitudinal clinical course of this disease has been rarely reported, and the genetic aspects of ESCS have not been well investigated in the Japanese population. In this report, we present our clinical and genetic findings for 2 patients with ESCS. The patients were 2 unrelated Japanese men. Standard ophthalmic examinations and mutation screening for the NR2E3 gene were performed. Patient 1 was a 36-year-old man, and his clinical findings were typical of ESCS. His decimal best-corrected visual acuity (BCVA) was 1.0 OD and 0.5 OS after removal of cataracts. Genetic investigations revealed a homozygous truncation frameshift, the p.I307LfsX33 mutation. Patient 2 was an 11-year-old boy when he was first examined by us. His clinical findings were typical of ESCS except for uveitis in the left eye. His decimal BCVA at the age of 39 years was maintained at 1.5 in each eye, although the retinal degeneration and visual field impairments had progressed during the follow-up period. The genetic investigations revealed homozygous mutations of p.R104Q in the NR2E3 gene. The frameshift mutation, p.I307LfsX33, in the NR2E3 gene is a new causative mutation for ESCS. The clinical observations for patient 2 are the longest ever reported. The retinal degeneration caused by this mutation is slowly progressive, and these patients maintained good vision with maintenance of the foveal structure until their late thirties.

  9. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  10. Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies Black-footed cat cloned embryos

    USGS Publications Warehouse

    Gómez, M. C.; Biancardi, M.N.; Jenkins, J.A.; Dumas, C.; Galiguis, J.; Wang, G.; Earle Pope, C.

    2012-01-01

    Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.

  11. CCAAT/enhancer-binding protein delta is a critical regulator of insulin-like growth factor-I gene transcription in osteoblasts

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Billiard, J.; Ji, C.; Centrella, M.; McCarthy, T. L.; Rotwein, P.

    1999-01-01

    Insulin-like growth factor-I (IGF-I) plays a major role in promoting skeletal growth by stimulating bone cell replication and differentiation. Prostaglandin E2 and other agents that induce cAMP production enhance IGF-I gene transcription in cultured rat osteoblasts through a DNA element termed HS3D, located in the proximal part of the major rat IGF-I promoter. We previously determined that CCAAT/enhancer-binding protein delta (C/EBPdelta) is the key cAMP-stimulated regulator of IGF-I transcription in these cells and showed that it transactivates the rat IGF-I promoter through the HS3D site. We now have defined the physical-chemical properties and functional consequences of the interactions between C/EBPdelta and HS3D. C/EBPdelta, expressed in COS-7 cells or purified as a recombinant protein from Escherichia coli, bound to HS3D with an affinity at least equivalent to that of the albumin D-site, a known high affinity C/EBP binding sequence, and both DNA elements competed equally for C/EBPdelta. C/EBPdelta bound to HS3D as a dimer, with protein-DNA contact points located on guanine residues on both DNA strands within and just adjacent to the core C/EBP half-site, GCAAT, as determined by methylation interference footprinting. C/EBPdelta also formed protein-protein dimers in the absence of interactions with its DNA binding site, as indicated by results of glutaraldehyde cross-linking studies. As established by competition gel-mobility shift experiments, the conserved HS3D sequence from rat, human, and chicken also bound C/EBPdelta with similar affinity. We also found that prostaglandin E2-induced expression of reporter genes containing human IGF-I promoter 1 or four tandem copies of the human HS3D element fused to a minimal promoter and show that these effects were enhanced by a co-transfected C/EBPdelta expression plasmid. Taken together, our results provide evidence that C/EBPdelta is a critical activator of IGF-I gene transcription in osteoblasts and potentially in

  12. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  13. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    PubMed

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will

  14. A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri.

    PubMed Central

    Shi, Qingchun; Febres, Vicente J; Jones, Jeffrey B; Moore, Gloria A

    2016-01-01

    Pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) is an important component of plant innate immunity. In a previous study, we showed that the PAMP flg22 from Xanthomonas citri ssp. citri (Xflg22), the causal agent of citrus canker, induced PTI in citrus, which correlated with the observed levels of canker resistance. Here, we identified and sequenced two bacterial flagellin/flg22 receptors (FLS2-1 and FLS2-2) from ‘Duncan’ grapefruit (Citrus paradisi, CpFLS2-1 and CpFLS2-2) and ‘Sun Chu Sha’ mandarin (C. reticulata, CrFLS2-1 and CrFLS2-2). We were able to isolate only one FLS2 from ‘Nagami’ kumquat (Fortunella margarita, FmFLS2-1) and gene flanking sequences suggest a rearrangement event that resulted in the deletion of FLS2-2 from the genome. Phylogenetic analysis, gene structure and presence of critical amino acid domains all indicate we identified the true FLS2 genes in citrus. FLS2-2 was more transcriptionally responsive to Xflg22 than FLS2-1, with induced expression levels higher in canker-resistant citrus than in susceptible ones. Interestingly, ‘Nagami’ kumquat showed the highest FLS2-1 steady-state expression levels, although it was not induced by Xflg22. We selected FmFLS2-1, CrFLS2-2 and CpFLS2-2 to further evaluate their capacity to enhance bacterial resistance using Agrobacterium-mediated transient expression assays. Both FmFLS2-1 and CrFLS2-2, the two proteins from canker-resistant species, conferred stronger Xflg22 responses and reduced canker symptoms in leaves of the susceptible grapefruit genotype. These two citrus genes will be useful resources to enhance PTI and achieve resistance against canker and possibly other bacterial pathogens in susceptible citrus types. PMID:27222722

  15. A Host Susceptibility Gene, DR1, Facilitates Influenza A Virus Replication by Suppressing Host Innate Immunity and Enhancing Viral RNA Replication

    PubMed Central

    Hsu, Shih-Feng; Su, Wen-Chi; Jeng, King-Song

    2015-01-01

    ABSTRACT Influenza A virus (IAV) depends on cellular factors to complete its replication cycle; thus, investigation of the factors utilized by IAV may facilitate antiviral drug development. To this end, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNA interference (RNAi) screen. Knockdown (KD) of DR1 resulted in reductions of viral RNA and protein production, demonstrating that DR1 acts as a positive host factor in IAV replication. Genome-wide transcriptomic analysis showed that there was a strong induction of interferon-stimulated gene (ISG) expression after prolonged DR1 KD. We found that beta interferon (IFN-β) was induced by DR1 KD, thereby activating the JAK-STAT pathway to turn on ISG expression, which led to a strong inhibition of IAV replication. This result suggests that DR1 in normal cells suppresses IFN induction, probably to prevent undesired cytokine production, but that this suppression may create a milieu that favors IAV replication once cells are infected. Furthermore, biochemical assays of viral RNA replication showed that DR1 KD suppressed viral RNA replication. We also showed that DR1 associated with all three subunits of the viral RNA-dependent RNA polymerase (RdRp) complex, indicating that DR1 may interact with individual components of the viral RdRp complex to enhance viral RNA replication. Thus, DR1 may be considered a novel host susceptibility gene for IAV replication via a dual mechanism, not only suppressing the host defense to indirectly favor IAV replication but also directly facilitating viral RNA replication. IMPORTANCE Investigations of virus-host interactions involved in influenza A virus (IAV) replication are important for understanding viral pathogenesis and host defenses, which may manipulate influenza virus infection or prevent the emergence of drug resistance caused by a high error rate during viral RNA replication. For this purpose, a cellular transcriptional repressor, DR1, was identified from

  16. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding

    PubMed Central

    Maruyama, Atsushi; Mimura, Junsei; Itoh, Ken

    2014-01-01

    Recent studies have disclosed the function of enhancer RNAs (eRNAs), which are long non-coding RNAs transcribed from gene enhancer regions, in transcriptional regulation. However, it remains unclear whether eRNAs are involved in the regulation of human heme oxygenase-1 gene (HO-1) induction. Here, we report that multiple nuclear-enriched eRNAs are transcribed from the regions adjacent to two human HO-1 enhancers (i.e. the distal E2 and proximal E1 enhancers), and some of these eRNAs are induced by the oxidative stress-causing reagent diethyl maleate (DEM). We demonstrated that the expression of one forward direction (5′ to 3′) eRNA transcribed from the human HO-1 E2 enhancer region (named human HO-1enhancer RNA E2-3; hereafter called eRNA E2-3) was induced by DEM in an NRF2-dependent manner in HeLa cells. Conversely, knockdown of BACH1, a repressor of HO-1 transcription, further increased DEM-inducible eRNA E2-3 transcription as well as HO-1 expression. In addition, we showed that knockdown of eRNA E2-3 selectively down-regulated DEM-induced HO-1 expression. Furthermore, eRNA E2-3 knockdown attenuated DEM-induced Pol II binding to the promoter and E2 enhancer regions of HO-1 without affecting NRF2 recruitment to the E2 enhancer. These findings indicate that eRNAE2-3 is functional and is required for HO-1 induction. PMID:25404134

  17. Resveratrol strongly enhances the retinoic acid-induced superoxide generating activity via up-regulation of gp91-phox gene expression in U937 cells.

    PubMed

    Kikuchi, Hidehiko; Mimuro, Hitomi; Kuribayashi, Futoshi

    2018-01-01

    The membrane bound cytochrome b 558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O 2 - )-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O 2 - -generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O 2 - -generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O 2 - -generating activity via up-regulation of gp91-phox gene expression in U937 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface.

    PubMed

    Zhu, Pinkuan; Li, Qianwen; Azad, Sepideh M; Qi, Yu; Wang, Yiwen; Jiang, Yina; Xu, Ling

    2018-01-01

    Short-wave ultraviolet (UV-C) treatment represents a potent, clean and safe substitute to chemical sanitizers for fresh fruit preservation. However, the dosage requirement for microbial disinfection may have negative effects on fruit quality. In this study, UV-C was found to be more efficient in killing spores of Botrytis cinerea in dark and red light conditions when compared to white and blue light. Loss of the blue light receptor gene Bcwcl1 , a homolog of wc-1 in Neurospora crassa , led to hypersensitivity to UV-C in all light conditions tested. The expression of Bcuve1 and Bcphr1 , which encode UV-damage endonuclease and photolyase, respectively, were strongly induced by white and blue light in a Bcwcl1 -dependent manner. Gene mutation analyses of Bcuve1 and Bcphr1 indicated that they synergistically contribute to survival after UV-C treatment. In vivo assays showed that UV-C (1.0 kJ/m 2 ) abolished decay in drop-inoculated fruit only if the UV-C treatment was followed by a dark period or red light, while in contrast, typical decay appeared on UV-C irradiated fruits exposed to white or blue light. In summary, blue light enhances UV-C resistance in B. cinerea by inducing expression of the UV damage repair-related enzymes, while the efficiency of UV-C application for fruit surface disinfection can be enhanced in dark or red light conditions; these principles seem to be well conserved among postharvest fungal pathogens.

  19. Methyl-Cytosine-Driven Structural Changes Enhance Adduction Kinetics of an Exon 7 fragment of the p53 Gene

    NASA Astrophysics Data System (ADS)

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Schenkman, John B.; Rusling, James F.

    2017-01-01

    Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling.

  20. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants

    PubMed Central

    Yadav, Karuna; Patel, Prashanti; Srivastava, Ashish Kumar

    2017-01-01

    Iron is an indispensable element for plant growth and defense and hence it is essential to improve the plant’s ability to accumulate iron. Besides, it is also an important aspect for human health. In view of this, we attempted to increase the iron content in banana cultivar Rasthali using MusaFer1 as a candidate gene. Initially, the expression of all five genes of the MusaFer family (MusaFer1-5) was quantified under iron-excess and -deficient conditions. The supplementation of 250 and 350 μM iron enhanced expression of all MusaFer genes; however, MusaFer1 was increased maximally by 2- and 4- fold in leaves and roots respectively. Under iron deficient condition, all five MusaFer genes were downregulated, indicating their iron dependent regulation. In MusaFer1 overexpressing lines, iron content was increased by 2- and 3-fold in leaves and roots respectively, as compared with that of untransformed lines. The increased iron was mainly localized in the epidermal regions of petiole. The analysis of MusaFer1 promoter indicated that it might control the expression of iron metabolism related genes and also other genes of MusaFer family. MusaFer1 overexpression led to downregulated expression of MusaFer3, MusaFer4 and MusaFer5 in transgenic leaves which might be associated with the plant’s compensatory mechanism in response to iron flux. Other iron metabolism genes like Ferric reductase (FRO), transporters (IRT, VIT and YSL) and chelators (NAS, DMAS and NAAT) were also differentially expressed in transgenic leaf and root, suggesting the multifaceted impact of MusaFer1 towards iron uptake and organ distribution. Additionally, MusaFer1 overexpression increased plant tolerance against methyl viologen and excess iron which was quantified in terms of photosynthetic efficiency and malondialdehyde content. Thus, the study not only broadens our understanding about iron metabolism but also highlights MusaFer1 as a suitable candidate gene for iron fortification in banana. PMID

  1. Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Mirza, Bushra

    2017-03-01

    Lettuce is an edible crop that is well known for dietary and antioxidant benefits. The present study was conducted to investigate the effects of rol ABC genes on antioxidant and medicinal potential of lettuce by Agrobacterium-mediated transformation. Transgene integration and expression was confirmed through PCR and real-time RT-PCR, respectively. The transformed plants showed 91-102 % increase in total phenolic contents and 53-65 % increase in total flavonoid contents compared to untransformed plants. Total antioxidant capacity and total reducing power increased up to 112 and 133 % in transformed plants, respectively. Results of DPPH assay showed maximum 51 % increase, and lipid peroxidation assay exhibited 20 % increase in antioxidant activity of transformed plants compared to controls. Different in vivo assays were carried out in rats. The transgenic plants showed up to 80 % inhibition in both hot plate analgesic assay and carrageenan-induced hind paw edema test, while untransformed plants showed only 45 % inhibition. Antidepressant and anticoagulant potential of transformed plants was also significantly enhanced compared to untransformed plants. Taken together, the present work highlights the use of rol genes to enhance the secondary metabolite production in lettuce and improve its analgesic, anti-inflammatory, antidepressant, and anticoagulatory properties.

  2. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  3. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression. PMID:10861232

  4. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  5. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains

    PubMed Central

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-01-01

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (ɛ globin, p53 and γ interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to αλµοστ 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed. PMID:11842122

  6. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  7. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE PAGES

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...

    2014-08-19

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  8. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco.

    PubMed

    Deng, Long-Qun; Yu, Hao-Qiang; Liu, Yan-Ping; Jiao, Pei-Pei; Zhou, Shu-Feng; Zhang, Su-Zhi; Li, Wan-Chen; Fu, Feng-Ling

    2014-04-10

    Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from -30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of -3 °C cold stress and thawing for 1h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  10. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    PubMed Central

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  12. Discovery of stimulation-responsive immune enhancers with CRISPR activation.

    PubMed

    Simeonov, Dimitre R; Gowen, Benjamin G; Boontanrart, Mandy; Roth, Theodore L; Gagnon, John D; Mumbach, Maxwell R; Satpathy, Ansuman T; Lee, Youjin; Bray, Nicolas L; Chan, Alice Y; Lituiev, Dmytro S; Nguyen, Michelle L; Gate, Rachel E; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M; Mitros, Therese; Ray, Graham J; Curie, Gemma L; Naddaf, Nicki; Chu, Julia S; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R; Schumann, Kathrin; Daly, Mark J; Farh, Kyle K; Ansel, K Mark; Ye, Chun J; Greenleaf, William J; Anderson, Mark S; Bluestone, Jeffrey A; Chang, Howard Y; Corn, Jacob E; Marson, Alexander

    2017-09-07

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (T H 17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  13. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    NASA Astrophysics Data System (ADS)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  14. Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex

    PubMed Central

    Negre, Bárbara; Casillas, Sònia; Suzanne, Magali; Sánchez-Herrero, Ernesto; Akam, Michael; Nefedov, Michael; Barbadilla, Antonio; de Jong, Pieter; Ruiz, Alfredo

    2005-01-01

    Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations. We investigated the genomic and functional consequences of the two HOM-C splits present in Drosophila buzzatii. Firstly, we sequenced two regions of the D. buzzatii genome, one containing the genes labial and abdominal A, and another one including proboscipedia, and compared their organization with that of D. melanogaster and D. pseudoobscura in order to map precisely the two splits. Then, a plethora of conserved noncoding sequences, which are putative enhancers, were identified around the three Hox genes closer to the splits. The position and order of these enhancers are conserved, with minor exceptions, between the three Drosophila species. Finally, we analyzed the expression patterns of the same three genes in embryos and imaginal discs of four Drosophila species with different Hox-gene organizations. The results show that their expression patterns are conserved despite the HOM-C splits. We conclude that, in Drosophila, Hox-gene clustering is not an absolute requirement for proper function. Rather, the organization of Hox genes is modular, and their clustering seems the result of phylogenetic inertia more than functional necessity. PMID:15867430

  15. Enhancement of anticancer effect of interferon-γ gene transfer against interferon-γ-resistant tumor by depletion of tumor-associated macrophages.

    PubMed

    Kiyota, Tsuyoshi; Takahashi, Yuki; Watcharanurak, Kanitta; Nishikawa, Makiya; Ohara, Saori; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2014-05-05

    Tumor-associated macrophages (TAMs) negatively affect the therapeutic effects of anticancer agents. To examine the role of TAMs in interferon (IFN)-γ gene therapy, we selected two types of solid tumors, which varied in the number of TAMs, and investigated the effects of IFN-γ gene transfer on tumor growth. Many TAMs were detected in the solid tumors of murine adenocarcinoma colon-26 cells, whereas few TAMs were detected in murine melanoma B16-BL6 cells. IFN-γ gene transfer hardly suppressed the growth of colon-26 tumors, whereas it was effective in suppressing the growth of B16-BL6 tumors. The antiproliferative effects of IFN-γ on cultured colon-26 cells were similar to those on cultured B16-BL6 cells. To evaluate the role of TAMs, we injected clodronate liposomes (CLs) modified with poly(ethylene glycol) (PEG) to functionally deplete TAMs in tumor-bearing mice. Repeated injections of PEG-CLs significantly retarded the growth of colon-26 tumors and combination with IFN-γ gene transfer further inhibited the growth. In contrast, PEG-CLs hardly retarded the growth of B16-BL6 tumors. These results clearly indicate that TAM depletion is effective in enhancing the therapeutic effect of IFN-γ in TAM-repleted and IFN-γ-resistant tumors.

  16. Genetic enhancement in sport: just another form of doping?

    PubMed

    Mehlman, Maxwell J

    2012-12-01

    Patented genetic technologies such as the ACTN3 genetic test are adding a new dimension to the types of performance enhancement available to elite athletes. Organized sports organizations and governments are seeking to prevent athletes' use of biomedical enhancements. This paper discusses how these interdiction efforts will affect the use and availability of genetic technologies that can enhance athletic performance. The paper provides a working definition of enhancement, and in light of that definition and the concerns of the sports community, reviews genetic enhancement as a result of varied technologies, including, genetic testing to identify innate athletic ability, performance-enhancing drugs developed with genetic science and technology, pharmacogenetics, enhancement through reproductive technologies, somatic gene transfer, and germ line gene transfer.

  17. Detection of HPV-DNA, p53 alterations, and methylation in penile squamous cell carcinoma in Japanese men.

    PubMed

    Yanagawa, Naoki; Osakabe, Mitsumasa; Hayashi, Masahiro; Tamura, Gen; Motoyama, Teiichi

    2008-08-01

    Penile carcinoma is a rare disease, accordingly there are few studies on molecular changes, and these results also vary greatly. A total of 26 penile squamous cell carcinomas in Japanese men were studied with respect to HPV, p53 alterations, and methylation of gene promoter region. HPV-DNA was detected in three of 26 patients (11.5%). Overexpression of p53 was observed in 13 of 26 patients (50%), and p53 gene mutations were detected in four of 26 patients (15.4%). The frequency of methylation was as follows: DAPK, 26.9% (7/26); FHIT, 88.4% (23/26); MGMT, 19.2% (5/26); p14, 3.8% (1/26); p16, 23.1% (6/26); RAR-beta, 23.1% (6/26); RASSF1A, 11.5% (3/26); and RUNX3, 42.3% (11/26). As for correlation between HPV and p53 alterations, and methylation status, mutations of the p53 gene were detected only in HPV-negative patients, and methylation was more frequently found in HPV-negative than in HPV-positive patients. The present results suggest that the majority of penile squamous cell carcinomas in Japanese men are unrelated to HPV, and gene alterations accumulate more frequently in HPV-unrelated penile carcinomas.

  18. Mammalian transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes and are predicted to act as transcriptional activator hubs.

    PubMed

    Joshi, Anagha

    2014-12-30

    Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been identified recently as cell type specific enhancers regulating developmentally essential genes in many species such as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains to be explored and can bring new biological insights. We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy), combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type. We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function. Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under control of SetDB1 and not DNMT for silencing. Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under SetDB1 control for silencing.

  19. Maternal Betaine Supplementation during Gestation Enhances Expression of mtDNA-Encoded Genes through D-Loop DNA Hypomethylation in the Skeletal Muscle of Newborn Piglets.

    PubMed

    Jia, Yimin; Song, Haogang; Gao, Guichao; Cai, Demin; Yang, Xiaojing; Zhao, Ruqian

    2015-11-25

    Betaine has been widely used in animal and human nutrition to promote muscle growth and performance, yet it remains unknown whether maternal betaine supplementation during gestation affects the metabolic characteristics of neonatal skeletal muscles. In the present study, feeding sows with betaine-supplemented diets throughout gestation significantly upregulated the expression of mtDNA-encoded OXPHOS genes (p < 0.05), including COX1, COX2, and ND5, in the muscle of newborn piglets, which was associated with enhanced mitochondrial COX enzyme activity (p < 0.05). Concurrently, maternal betaine supplementation increased the plasma betaine concentration and muscle expression of methyl transfer enzymes (p < 0.05), BHMT and GNMT, in offspring piglets. Nevertheless, Dnmt3a was downregulated at the level of both mRNA and protein, which was associated with a hypomethylated mtDNA D-loop region (p < 0.05). These results suggest that maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets.

  20. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  1. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo

    2016-05-01

    Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transcription regulation by distal enhancers

    PubMed Central

    Stadhouders, Ralph; van den Heuvel, Anita; Kolovos, Petros; Jorna, Ruud; Leslie, Kris; Grosveld, Frank; Soler, Eric

    2012-01-01

    Genome-wide chromatin profiling efforts have shown that enhancers are often located at large distances from gene promoters within the noncoding genome. Whereas enhancers can stimulate transcription initiation by communicating with promoters via chromatin looping mechanisms, we propose that enhancers may also stimulate transcription elongation by physical interactions with intronic elements. We review here recent findings derived from the study of the hematopoietic system. PMID:22771987

  3. Partially Redundant Enhancers Cooperatively Maintain Mammalian Pomc Expression Above a Critical Functional Threshold

    PubMed Central

    Lam, Daniel D.; de Souza, Flavio S. J.; Nasif, Sofia; Yamashita, Miho; López-Leal, Rodrigo; Meece, Kana; Sampath, Harini; Mercer, Aaron J.; Wardlaw, Sharon L.

    2015-01-01

    Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in

  4. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid).

    PubMed

    Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N

    2015-02-01

    EaDREB2 overexpressed in sugarcane enhanced tolerance to drought and salinity. When co-transformed with plant DNA helicase gene, DREB2 showed greater level of salinity tolerance than in single-gene transgenics. Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and can potentially cause up to 50 % yield loss. DREB proteins play a vital regulatory role in abiotic stress tolerance in plants. We previously reported that expression of EaDREB2 is enhanced by drought stress in Erianthus arundinaceus. In this study, we have isolated the DREB2 gene from E. arundinaceus, transformed one of the most popular sugarcane variety Co 86032 in tropical India with EaDREB2 through Agrobacterium-mediated transformation, pyramided the EaDREB2 gene with the gene coding for PDH45 driven by Port Ubi 2.3 promoter through particle bombardment and evaluated the V1 transgenics for soil deficit moisture and salinity stresses. Soil moisture stress was imposed at the tillering phase by withholding irrigation. Physiological, molecular and morphological parameters were used to assess drought tolerance. Salinity tolerance was assessed through leaf disc senescence and bud sprout assays under salinity stress. Our results indicate that overexpression of EaDREB2 in sugarcane enhances drought and salinity tolerance to a greater extent than the untransformed control plants. This is the first report of the co-transformation of EaDREB2 and PDH45 which shows higher salinity tolerance but lower drought tolerance than EaDREB2 alone. The present study seems to suggest that, for combining drought and salinity tolerance together, co-transformation is a better approach.

  5. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yu, E-mail: xuyu1001@gmail.com; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071; Liu, Zhengchun, E-mail: l135027@126.com

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expressionmore » of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.« less

  6. NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis.

    PubMed

    Rodrigues, Paulo; Patel, Saroor A; Harewood, Louise; Olan, Ioana; Vojtasova, Erika; Syafruddin, Saiful E; Zaini, M Nazhif; Richardson, Emma K; Burge, Johanna; Warren, Anne Y; Stewart, Grant D; Saeb-Parsy, Kourosh; Samarajiwa, Shamith A; Vanharanta, Sakari

    2018-06-06

    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states. SIGNIFICANCE: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 1-16. ©2018 AACR. ©2018 American Association for Cancer Research.

  7. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  8. Differentiation and characteristics of the enhanced green fluorescent protein gene transgenic goat neural stem cells cultured in attached and non-attached plates.

    PubMed

    Zheng, Yue-Mao; Dang, Yong-Hui; Qiu, Shuang; Qi, Ying-Pei; Xu, Yong-Ping; Sai, Wu-Jia-Fu

    2011-08-01

    The aims of this study were (i) to determine whether NSCs (neural stem cells) could be isolated from the brain of embryonic day 98 fetal goat, (ii) to determine if these stem cells have the capability of multipotent differentiation following transfection with a reporter gene, EGFP (enhanced green fluorescent protein) and (iii) to study the characteristics of the stem cells cultured in attached and non-attached plates. NSCs were isolated from embryonic day 98 fetal goat brain, transfected with EGFP gene using lipofection, and subcultured in attached and non-attached plates respectively. The transgenic stem cells were induced to differentiate into osteogenic and endothelial cells in vitro respectively. Markers associated with undifferentiated NSCs and their differentiated cells were tested by RT-PCR (reverse transcription-PCR). The results demonstrated that stem cells could be isolated from embryonic day 98 fetal goat brain, and EGFP gene could be transfected into the cells. The transgenic NSCs were capable of self-renewal, a defining property of stem cells, and were grown as free-floating neurospheres in non-attached plates. When the neurospheres were transferred and cultured in attached plates, cells migrate from the neurospheres and are grown as spindle cells. The stem cells were grown as quasi-circular cells when the single stem cells were cultured in attached plates. Both the NSCs cultured in non-attached and attached plates could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4), Nanog, Sox2 [SRY (sex-determining region Y)-box 2] and Nestin, while following differentiation cells expressed markers for osteogenic cells (Osteocalcin+ and Osteonectin+) and endothelium (CD34+ and eNOS+). The results demonstrated that the goat EGFP gene transgenic NSCs have the capability of multipotent differentiation, which means that the transgenic NSCs may be useful in cell transplantation studies in future.

  9. [Current status and prospects of gene doping detection].

    PubMed

    Wang, Wenjun; Zhang, Sichun; Xu, Jingjuan; Xia, Xinghua; Tian, Yaping; Zhang, Xinrong; Chen, Hong-Yuan

    2008-07-01

    The fast development of biotechnology promotes the development of doping. From recombinant protein to gene doping, there is a great challenge to their detection. The improvement of gene therapy and potential to enhance athletic performance open the door for gene doping. After a brief introduction of the concept of gene doping, the current status and prospects of gene doping detection are reviewed.

  10. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    PubMed

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  11. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure

    PubMed Central

    Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David

    2016-01-01

    Background Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Results Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Conclusions Spinal epigenetic changes

  12. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure.

    PubMed

    Sahbaie, Peyman; Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David

    2016-01-01

    Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Spinal epigenetic changes involving Bdnf and Pdyn may

  13. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity.

    PubMed

    Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A

    2013-08-02

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.

  14. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang-Qi; Chen, Liang-Long, E-mail: xhzlyx@126.com; Fan, Lin

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase themore » efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the

  15. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles

    PubMed Central

    Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi

    2017-01-01

    Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB. PMID:29145481

  16. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

    PubMed

    Vanegas Sáenz, Juan Ramón; Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi

    2017-01-01

    Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.

  17. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.

    PubMed

    Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J

    2016-01-01

    Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms

  18. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation

    PubMed Central

    Engel, Krysta L.; Mackiewicz, Mark; Hardigan, Andrew A.; Myers, Richard M.; Savic, Daniel

    2016-01-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938

  19. Developing strategies for detection of gene doping.

    PubMed

    Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R

    2008-01-01

    It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology. (c) 2008 John Wiley & Sons, Ltd.

  20. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    PubMed

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  1. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus

    PubMed Central

    Cucchiarini, M.; McNulty, A.L.; Mauck, R.L.; Setton, L.A.; Guilak, F.; Madry, H.

    2017-01-01

    SUMMARY Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis. Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. PMID:27063441

  2. Therapeutic Efficacy of Adenoviral-Mediated p53 Gene Transfer Is Synergistically Enhanced by Combined Use of Antisense Oligodeoxynucleotide Targeting Clusterin Gene in a Human Bladder Cancer Model1

    PubMed Central

    Miyake, Hideaki; Yamanaka, Kazuki; Muramaki, Mototsugu; Hara, Isao; Gleave, Martin E

    2005-01-01

    Abstract To establish a more effective therapeutic strategy against advanced bladder cancer, we investigated the effects of combined treatment with antisense (AS) oligodeoxynucleotide (ODN) targeting the antiapoptotic gene clusterin and adenoviral-mediated p53 gene transfer (Ad5CMV-p53) using the human bladder cancer KoTCC-1 model. Clusterin expression in KoTCC-1 cells was highly upregulated by Ad5CMV-p53 treatment; however, AS clusterin ODN treatment further suppressed clusterin expression in KoTCC-1 cells after Ad5CMV-p53 treatment. AS clusterin ODN treatment synergistically enhanced the cytotoxic effect of Ad5CMV-p53, and DNA fragmentation characteristic of apoptosis was observed only after combined treatment with AS clusterin ODN and Ad5CMV-p53, but not after treatment with either agent alone. Administration of AS clusterin ODN and Ad5CMV-p53 into nude mice resulted in a significant inhibition of KoTCC-1 tumor growth as well as lymph node metastases compared to administration of either agent alone. Furthermore, combined treatment with AS clusterin ODN, Ad5CMV-p53, and cisplatin completely eradicated KoTCC-1 tumors and lymph node metastases in 60% and 100% of mice, respectively. These findings suggest that combined treatment with AS clusterin ODN and Ad5CMV-p53 could be a novel strategy to inhibit bladder cancer progression, and that further additional use of a chemotherapeutic agent may substantially enhance the efficacy of this combined regimen. PMID:15802022

  3. Gene doping: the hype and the harm.

    PubMed

    McKanna, Trudy A; Toriello, Helga V

    2010-06-01

    "Gene doping" is the term used to describe the potential abuse of gene therapy as a performance-enhancing agent. Gene doping would apply the techniques used in gene therapy to provide altered expression of genes that would promote physical superiority. For example, insulin-like growth factor 1 (IGF-1) is a primary target for growth hormone; overexpression of IGF-1 can lead to increased muscle mass and power. Although gene doping is still largely theoretical, its implications for sports, health, ethics, and medical genetics are significant.

  4. Mediator and Cohesin Connect Gene Expression and Chromatin Architecture

    PubMed Central

    Kagey, Michael H.; Newman, Jamie J.; Bilodeau, Steve; Zhan, Ye; Orlando, David A.; van Berkum, Nynke L.; Ebmeier, Christopher C.; Goossens, Jesse; Rahl, Peter B.; Levine, Stuart S.; Taatjes, Dylan J.; Dekker, Job; Young, Richard A.

    2010-01-01

    Summary Transcription factors control cell specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. We report here that Mediator and Cohesin physically and functionally connect the enhancers and core promoters of active genes in embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with Cohesin, which can form rings that connect two DNA segments. The Cohesin loading factor Nipbl is associated with Mediator/Cohesin complexes, providing a means to load Cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by Mediator and Cohesin. Mediator and Cohesin occupy different promoters in different cells, thus generating cell-type specific DNA loops linked to the gene expression program of each cell. PMID:20720539

  5. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription

    PubMed Central

    Stefanovsky, Victor Y.; Tremblay, Michel G.; Lindsay, Helen; Robinson, Mark D.

    2017-01-01

    Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin

  6. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.

    PubMed

    Herdman, Chelsea; Mars, Jean-Clement; Stefanovsky, Victor Y; Tremblay, Michel G; Sabourin-Felix, Marianne; Lindsay, Helen; Robinson, Mark D; Moss, Tom

    2017-07-01

    Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin

  7. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro

    PubMed Central

    Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  8. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

    PubMed

    Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  9. E2F mediates enhanced alternative polyadenylation in proliferation.

    PubMed

    Elkon, Ran; Drost, Jarno; van Haaften, Gijs; Jenal, Mathias; Schrier, Mariette; Oude Vrielink, Joachim A F; Agami, Reuven

    2012-07-02

    The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.

  10. E2F mediates enhanced alternative polyadenylation in proliferation

    PubMed Central

    2012-01-01

    Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. PMID:22747694

  11. In vivo gene delivery and expression by bacteriophage lambda vectors.

    PubMed

    Lankes, H A; Zanghi, C N; Santos, K; Capella, C; Duke, C M P; Dewhurst, S

    2007-05-01

    Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo luc expression was detected, which peaked within 24 h of delivery and declined to undetectable levels within a week. Display of an integrin-binding peptide increased cellular internalization of phage in vitro and enhanced phage-mediated gene transfer in vivo. Finally, in vivo depletion of phagocytic cells using clodronate liposomes had only a minor effect on the efficiency of phage-mediated gene transfer. Unmodified lambda phage particles are capable of transducing mammalian cells in vivo, and may be taken up -- at least in part -- by nonphagocytic mechanisms. Surface modifications that enhance phage uptake result in more efficient in vivo gene transfer. These experiments shed light on the mechanisms involved in phage-mediated gene transfer in vivo, and suggest new approaches that may enhance the efficiency of this process.

  12. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    PubMed

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.)

    PubMed Central

    Aleman, Lorenzo; Ortega, Jose Luis; Martinez-Grimes, Martha; Seger, Mark; Holguin, Francisco Omar; Uribe, Diana J.; Garcia-Ibilcieta, David

    2013-01-01

    Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in Vmax and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules. PMID:19898977

  14. A Reduction in Age-Enhanced Gluconeogenesis Extends Lifespan

    PubMed Central

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan. PMID:23342062

  15. A reduction in age-enhanced gluconeogenesis extends lifespan.

    PubMed

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  16. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    PubMed

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach.

    PubMed

    Bankiewicz, K S; Eberling, J L; Kohutnicka, M; Jagust, W; Pivirotto, P; Bringas, J; Cunningham, J; Budinger, T F; Harvey-White, J

    2000-07-01

    Using an approach that combines gene therapy with aromatic l-amino acid decarboxylase (AADC) gene and a pro-drug (l-dopa), dopamine, the neurotransmitter involved in Parkinson's disease, can be synthesized and regulated. Striatal neurons infected with the AADC gene by an adeno-associated viral vector can convert peripheral l-dopa to dopamine and may therefore provide a buffer for unmetabolized l-dopa. This approach to treating Parkinson's disease may reduce the need for l-dopa/carbidopa, thus providing a better clinical response with fewer side effects. In addition, the imbalance in dopamine production between the nigrostriatal and mesolimbic dopaminergic systems can be corrected by using AADC gene delivery to the striatum. We have also demonstrated that a fundamental obstacle in the gene therapy approach to the central nervous system, i.e., the ability to deliver viral vectors in sufficient quantities to the whole brain, can be overcome by using convection-enhanced delivery. Finally, this study demonstrates that positron emission tomography and the AADC tracer, 6-[(18)F]fluoro-l-m-tyrosine, can be used to monitor gene therapy in vivo. Our therapeutic approach has the potential to restore dopamine production, even late in the disease process, at levels that can be maintained during continued nigrostriatal degeneration. Copyright 2000 Academic Press.

  18. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  19. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  20. Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures[OPEN

    PubMed Central

    Zhu, Bo; Zhang, Wenli; Jiang, Jiming

    2015-01-01

    Enhancers are important regulators of gene expression in eukaryotes. Enhancers function independently of their distance and orientation to the promoters of target genes. Thus, enhancers have been difficult to identify. Only a few enhancers, especially distant intergenic enhancers, have been identified in plants. We developed an enhancer prediction system based exclusively on the DNase I hypersensitive sites (DHSs) in the Arabidopsis thaliana genome. A set of 10,044 DHSs located in intergenic regions, which are away from any gene promoters, were predicted to be putative enhancers. We examined the functions of 14 predicted enhancers using the β-glucuronidase gene reporter. Ten of the 14 (71%) candidates were validated by the reporter assay. We also designed 10 constructs using intergenic sequences that are not associated with DHSs, and none of these constructs showed enhancer activities in reporter assays. In addition, the tissue specificity of the putative enhancers can be precisely predicted based on DNase I hypersensitivity data sets developed from different plant tissues. These results suggest that the open chromatin signature-based enhancer prediction system developed in Arabidopsis may serve as a universal system for enhancer identification in plants. PMID:26373455

  1. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu).

    PubMed

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-06-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

  2. We Can Still Be Friends: IFN-γ Breaks Up Macrophage Enhancers.

    PubMed

    Novakovic, Boris; Wang, Cheng; Logie, Colin

    2017-08-15

    Interferon (IFN)-γ can prime macrophages for inflammatory responses by several mechanisms, including enhancer establishment and gene activation. In this issue of Immunity, Kang et al. (2017) provide insight into the mechanisms of IFN-γ-mediated gene repression as they show that IFN-γ promotes the disassembly of select active enhancers by interfering with enhancer-binding transcription factor MAF. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. IGF-I and GH: potential use in gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2009-08-01

    Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.

  4. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    PubMed

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network

    PubMed Central

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim

    2014-01-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300

  6. Functional and mechanistic diversity of distal transcription enhancers

    PubMed Central

    Bulger, Michael; Groudine, Mark

    2013-01-01

    Biological differences among metazoans, and between cell types in a given organism, arise in large part due to differences in gene expression patterns. The sequencing of multiple metazoan genomes, coupled with recent advances in genome-wide analysis of histone modifications and transcription factor binding, has revealed that among regulatory DNA sequences, gene-distal enhancers appear to exhibit the greatest diversity and cell-type specificity. Moreover, such elements are emerging as important targets for mutations that can give rise to disease and to genetic variability that underlies evolutionary change. Studies of long-range interactions between distal genomic sequences in the nucleus indicate that enhancers are often important determinants of nuclear organization, contributing to a general model for enhancer function that involves direct enhancer-promoter contact. In a number of systems, however, mechanisms for enhancer function are emerging that do not fit solely within such a model, suggesting that enhancers as a class of DNA regulatory element may be functionally and mechanistically diverse. PMID:21295696

  7. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    PubMed

    Yang, Yang; Wei, Fuxiang; Zhuo, Rui; Fan, Fangfang; Liu, Huahua; Zhang, Chen; Ma, Li; Jiang, Mulan; Zhang, Xiaoyu

    2013-01-01

    Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+) and Fe(2+) could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  8. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery.

    PubMed

    Zhang, Yi-Mei; Huang, Zheng; Zhang, Ji; Wu, Wan-Xia; Liu, Yan-Hong; Yu, Xiao-Qi

    2017-03-28

    Cationic liposomes and polymers are both important candidates for use as non-viral gene vectors. However, both of them have special shortcomings and application limits. This work is devoted to the combination of advantages of liposomes and polymers. The ring-opening polymerization strategy was used for the preparation of amphiphilic polymers from cyclen-based cationic small lipids. The non-hydrophobic polymer and the corresponding lipids were also prepared for performing structure-activity relationship studies. Gel electrophoresis results reveal that both the lipopolymers and liposomes could effectively condense DNA into nanoparticles and protect DNA from degradation. Compared to polymers, the DNA binding ability of liposomes is more affected by hydrophobic tails. Under the same dosage, the synthetic polymers have stronger DNA binding ability than the liposomes. In vitro transfection experiments show that the polymers could give better transfection efficiency, which was much higher than those of the corresponding liposomes and non-hydrophobic polymer. The oleyl moiety is suitable for lipidic vectors, but things were different for polymers. Under optimized conditions, up to 14.2 times higher transfection efficiency than that for 25 kDa bPEI could be obtained. More importantly, the lipopolymers showed much better serum tolerance, which was further confirmed by protein adsorption, gel electrophoresis, flow cytometry, and CLSM assays. The results indicate that ring-opening polymerization is a promising strategy for the enhancement of the gene delivery efficiency and biocompatibility of cationic lipids.

  9. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets.

    PubMed

    Najera, Julia A; Bustamante, Eduardo A; Bortell, Nikki; Morsey, Brenda; Fox, Howard S; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi

    2016-04-23

    Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  10. Sonoporation, drug delivery, and gene therapy.

    PubMed

    Liang, H-D; Tang, J; Halliwell, M

    2010-01-01

    Ultrasound is a very effective modality for drug delivery and gene therapy because energy that is non-invasively transmitted through the skin can be focused deeply into the human body in a specific location and employed to release drugs at that site. Ultrasound cavitation, enhanced by injected microbubbles, perturbs cell membrane structures to cause sonoporation and increases the permeability to bioactive materials. Cavitation events also increase the rate of drug transport in general by augmenting the slow diffusion process with convective transport processes. Drugs and genes can be incorporated into microbubbles, which in turn can target a specific disease site using ligands such as the antibody. Drugs can be released ultrasonically from microbubbles that are sufficiently robust to circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Local drug delivery ensures sufficient drug concentration at the diseased region while limiting toxicity for healthy tissues. Ultrasound-mediated gene delivery has been applied to heart, blood vessel, lung, kidney, muscle, brain, and tumour with enhanced gene transfection efficiency, which depends on the ultrasonic parameters such as acoustic pressure, pulse length, duty cycle, repetition rate, and exposure duration, as well as microbubble properties such as size, gas species, shell material, interfacial tension, and surface rigidity. Microbubble-augmented sonothrombolysis can be enhanced further by using targeting microbubbles.

  11. Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis

    PubMed Central

    Zhang, Hongying; Mao, Xinguo; Wang, Chengshe; Jing, Ruilian

    2010-01-01

    Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways. PMID:21209856

  12. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  13. Gene Trapping Using Gal4 in Zebrafish

    PubMed Central

    Balciuniene, Jorune; Balciunas, Darius

    2013-01-01

    Large clutch size and external development of optically transparent embryos make zebrafish an exceptional vertebrate model system for in vivo insertional mutagenesis using fluorescent reporters to tag expression of mutated genes. Several laboratories have constructed and tested enhancer- and gene-trap vectors in zebrafish, using fluorescent proteins, Gal4- and lexA- based transcriptional activators as reporters 1-7. These vectors had two potential drawbacks: suboptimal stringency (e.g. lack of ability to differentiate between enhancer- and gene-trap events) and low mutagenicity (e.g. integrations into genes rarely produced null alleles). Gene Breaking Transposon (GBTs) were developed to address these drawbacks 8-10. We have modified one of the first GBT vectors, GBT-R15, for use with Gal4-VP16 as the primary gene trap reporter and added UAS:eGFP as the secondary reporter for direct detection of gene trap events. Application of Gal4-VP16 as the primary gene trap reporter provides two main advantages. First, it increases sensitivity for genes expressed at low expression levels. Second, it enables researchers to use gene trap lines as Gal4 drivers to direct expression of other transgenes in very specific tissues. This is especially pertinent for genes with non-essential or redundant functions, where gene trap integration may not result in overt phenotypes. The disadvantage of using Gal4-VP16 as the primary gene trap reporter is that genes coding for proteins with N-terminal signal sequences are not amenable to trapping, as the resulting Gal4-VP16 fusion proteins are unlikely to be able to enter the nucleus and activate transcription. Importantly, the use of Gal4-VP16 does not pre-select for nuclear proteins: we recovered gene trap mutations in genes encoding proteins which function in the nucleus, the cytoplasm and the plasma membrane. PMID:24121167

  14. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    PubMed

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Enhancement of efficiency of chitosan-based complexes for gene transfection with poly(γ-glutamic acid) by augmenting their cellular uptake and intracellular unpackage.

    PubMed

    Liao, Zi-Xian; Peng, Shu-Fen; Chiu, Ya-Ling; Hsiao, Chun-Wen; Liu, Hung-Yi; Lim, Woon-Hui; Lu, Hsiang-Ming; Sung, Hsing-Wen

    2014-11-10

    As a cationic polysaccharide, chitosan (CS) has been identified for its potential use as a non-viral vector for exogenous gene transfection. However, owing to their electrostatic interactions, CS complexes may cause difficulties in gene release upon their arrival at the site of action, thus limiting their transfection efficiency. In this work, an attempt is made to facilitate the release of a gene by incorporating a negatively-charged poly(γ-glutamic acid) (γPGA) into CS complexes in order to diminish their attractive interactions. The mechanisms of exploiting γPGA to enhance the transfection efficiency of CS complexes are elucidated. The feasibility of using this CS/γPGA-based system for DNA or siRNA transfer is explored as well. Additionally, potential of the CS/γPGA formulation to deliver disulfide bond-conjugated dual PEGylated siRNAs for multiple gene silencing is also examined. Moreover, the genetic use of pKillerRed-mem, delivered using complexes of CS and γPGA, to express a membrane-targeted KillerRed as an intrinsically generated photosensitizer for photodynamic therapy is described. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced expression of EGFP gene in CHSE-214 cells by an ARS element from mud loach (Misgurnus mizolepis).

    PubMed

    Kim, Moo-Sang; Lim, Hak-Seob; Ahn, Sang Jung; Jeong, Yong-Kee; Kim, Chul Geun; Lee, Hyung Ho

    2007-11-01

    The origins of replication are associated with nuclear matrices or are found in close proximity to matrix attachment regions (MARs). In this report, fish MARs were cloned into an autonomously replicating sequence (ARS) cloning vector and were screened for ARS elements in Saccharomyces cerevisiae. Sixteen clones were isolated that were able to grow on the selective plates. In particular, an ARS905 that shows high efficiency among them was selected for this study. Southern hybridization indicated the autonomous replication of the transformation vector containing the ARS905 element. DNA sequences analysis showed that the ARS905 contained two ARS consensus sequences as well as MAR motifs, such as AT tracts, ORI patterns, and ATC tracts. In vitro matrix binding analysis, major matrix binding activity and ARS function coincided in a subfragment of the ARS905. To analyze the effects of ARS905 on expression of a reporter gene, an ARS905(E1158) with ARS activity was inserted into pBaEGFP(+) containing mud loach beta-actin promoter, EGFP as a reporter gene, and SV40 poly(A) signal. The pBaEGFP(+)-ARS905(E1158) was transfected into a fish cell line, CHSE-214. The intensity of EGFP transfected cells was a 7-fold of the control at 11days post-transfection. These results indicate that ARS905 enhances the expression of the EGFP gene and that it should be as a component of expression vectors in further fish biotechnological studies.

  17. JAK signaling globally counteracts heterochromatic gene silencing.

    PubMed

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2006-09-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.

  18. JAK signaling globally counteracts heterochromatic gene silencing

    PubMed Central

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2011-01-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1–3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation. PMID:16892059

  19. A PIT-1 Homeodomain Mutant Blocks the Intranuclear Recruitment Of the CCAAT/Enhancer Binding Protein α Required for Prolactin Gene Transcription

    PubMed Central

    ENWRIGHT, JOHN F.; KAWECKI-CROOK, MARGARET A.; VOSS, TY C.; SCHAUFELE, FRED; DAY, RICHARD N.

    2010-01-01

    The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, in cluding CCAAT/enhancer binding protein α (C/ EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPα with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPα induced PRL gene transcription in pituitary GHFT1–5 cells, whereas the coexpression of Pit-1 and C/EBPα in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPα, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPα from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPα. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPα. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPα, was itself recruited by C/EBPα to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity. PMID:12554749

  20. Stretch-Enhancers Delineate Disease-Associated Regulatory Nodes in T Cells

    PubMed Central

    Vahedi, Golnaz; Kanno, Yuka; Furumoto, Yasuko; Jiang, Kan; Parker, Stephen C.; Erdos, Michael; Davis, Sean R.; Roychoudhuri, Rahul; Restifo, Nicholas P.; Gadina, Massimo; Tang, Zhonghui; Ruan, Yijun; Collins, Francis S.; Sartorelli, Vittorio; O’Shea, John J.

    2014-01-01

    Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity1. Stretch- or super-enhancers (SEs) are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease2,3,4,5,6. CD4+ T cells are critical for host defense and autoimmunity. Herein, we analyzed maps of T cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. This notwithstanding, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T cell SE, revealing a network wherein SE-associated genes critical for T cell biology are repressed by BACH2. Disease-associated SNPs for immune-mediated disorders, including rheumatoid arthritis (RA), were highly enriched for T cell-SEs versus typical enhancers (TEs) or SEs in other cell lineages7. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor, tofacitinib, disproportionately altered the expression of RA risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a “guardian” transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention. PMID:25686607

  1. New Partners in Regulation of Gene Expression: The Enhancer of Trithorax and Polycomb Corto Interacts with Methylated Ribosomal Protein L12 Via Its Chromodomain

    PubMed Central

    Coléno-Costes, Anne; Jang, Suk Min; de Vanssay, Augustin; Rougeot, Julien; Bouceba, Tahar; Randsholt, Neel B.; Gibert, Jean-Michel; Le Crom, Stéphane; Mouchel-Vielh, Emmanuèle

    2012-01-01

    Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA–seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators. PMID:23071455

  2. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production.

    PubMed

    Yuan, Yongbo; Bi, Changhao; Nicolaou, Sergios A; Zingaro, Kyle A; Ralston, Matthew; Papoutsakis, Eleftherios T

    2014-10-01

    A major challenge in producing chemicals and biofuels is to increase the tolerance of the host organism to toxic products or byproducts. An Escherichia coli strain with superior ethanol and more generally alcohol tolerance was identified by screening a library constructed by randomly integrating Lactobacillus plantarum genomic DNA fragments into the E. coli chromosome via Cre-lox recombination. Sequencing identified the inserted DNA fragment as the murA2 gene and its upstream intergenic 973-bp sequence, both coded on the negative genomic DNA strand. Overexpression of this murA2 gene and its upstream 973-bp sequence significantly enhanced ethanol tolerance in both E. coli EC100 and wild type E. coli MG1655 strains by 4.1-fold and 2.0-fold compared to control strains, respectively. Tolerance to n-butanol and i-butanol in E. coli MG1655 was increased by 1.85-fold and 1.91-fold, respectively. We show that the intergenic 973-bp sequence contains a native promoter for the murA2 gene along with a long 5' UTR (286 nt) on the negative strand, while a noncoding, small RNA, named MurA2S, is expressed off the positive strand. MurA2S is expressed in E. coli and may interact with murA2, but it does not affect murA2's ability to enhance alcohol tolerance in E. coli. Overexpression of murA2 with its upstream region in the ethanologenic E. coli KO11 strain significantly improved ethanol production in cultures that simulate the industrial Melle-Boinot fermentation process.

  3. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    PubMed

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  4. Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages.

    PubMed

    Téllez, Jair; Romero, Ibeth; Soares, Maurilio José; Steindel, Mario; Romanha, Alvaro José

    2017-07-01

    Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmania -infected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (Sb V ), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S -transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of Sb V By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1 , GSS , and ABCB5 resulted in an increased leishmanicidal effect of Sb V exposure in vitro Our results suggest that human MDMs infected with L. braziliensis and treated with Sb V express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime. Copyright © 2017 American Society for

  5. Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages

    PubMed Central

    Romero, Ibeth; Soares, Maurilio José; Romanha, Alvaro José

    2017-01-01

    ABSTRACT Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmania-infected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (SbV), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S-transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of SbV. By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1, GSS, and ABCB5 resulted in an increased leishmanicidal effect of SbV exposure in vitro. Our results suggest that human MDMs infected with L. braziliensis and treated with SbV express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime. PMID:28461312

  6. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients.

    PubMed

    Adair, Jennifer E; Johnston, Sandra K; Mrugala, Maciej M; Beard, Brian C; Guyman, Laura A; Baldock, Anne L; Bridge, Carly A; Hawkins-Daarud, Andrea; Gori, Jennifer L; Born, Donald E; Gonzalez-Cuyar, Luis F; Silbergeld, Daniel L; Rockne, Russell C; Storer, Barry E; Rockhill, Jason K; Swanson, Kristin R; Kiem, Hans-Peter

    2014-09-01

    Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMT(hi)). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. We enrolled 7 newly diagnosed glioblastoma patients with MGMT(hi) tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5-57+) months and OS of 20 (range 13-57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. Clinicaltrials.gov NCT00669669. R01CA114218, R

  7. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  8. Plant transformation via pollen tube-mediated gene transfer

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  9. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  10. The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes.

    PubMed Central

    Robinett, C C; O'Connor, A; Dunaway, M

    1997-01-01

    We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359

  11. mTOR transcriptionally and post-transcriptionally regulates Npm1 gene expression to contribute to enhanced proliferation in cells with Pten inactivation

    PubMed Central

    Boudra, Rafik; Lagrafeuille, Rosyne; Lours-Calet, Corinne; de Joussineau, Cyrille; Loubeau-Legros, Gaëlle; Chaveroux, Cédric; Saru, Jean-Paul; Baron, Silvère; Morel, Laurent; Beaudoin, Claude

    2016-01-01

    ABSTRACT The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating data highlight supplementary role(s) for this serine/threonine kinase within the nucleus. Indeed, the nuclear activities of mTOR are currently associated with the control of protein biosynthetic capacity through its ability to regulate the expression of gene products involved in the control of ribosomal biogenesis and proliferation. Using primary murine embryo fibroblasts (MEFs), we observed that cells with overactive mTOR signaling displayed higher abundance for the growth-associated Npm1 protein, in what represents a novel mechanism of Npm1 gene regulation. We show that Npm1 gene expression is dependent on mTOR as demonstrated by treatment of wild-type and Pten inactivated MEFs cultured with rapamycin or by transient transfections of small interfering RNA directed against mTOR. In accordance, the mTOR kinase localizes to the Npm1 promoter gene in vivo and it enhances the activity of a human NPM1-luciferase reporter gene providing an opportunity for direct control. Interestingly, rapamycin did not dislodge mTOR from the Npm1 promoter but rather strongly destabilized the Npm1 transcript by increasing its turnover. Using a prostate-specific Pten-deleted mouse model of cancer, Npm1 mRNA levels were found up-regulated and sensitive to rapamycin. Finally, we also showed that Npm1 is required to promote mTOR-dependent cell proliferation. We therefore proposed a model whereby mTOR is closely involved in the transcriptional and posttranscriptional regulation of Npm1 gene expression with implications in development and diseases including cancer. PMID:27050906

  12. Biodegradable nanoparticles for gene therapy technology

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-07-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  13. Gene therapy and its implications in Periodontics

    PubMed Central

    Mahale, Swapna; Dani, Nitin; Ansari, Shumaila S.; Kale, Triveni

    2009-01-01

    Gene therapy is a field of Biomedicine. With the advent of gene therapy in dentistry, significant progress has been made in the control of periodontal diseases and reconstruction of dento-alveolar apparatus. Implementation in periodontics include: -As a mode of tissue engineering with three approaches: cell, protein-based and gene delivery approach. -Genetic approach to Biofilm Antibiotic Resistance. Future strategies of gene therapy in preventing periodontal diseases: -Enhances host defense mechanism against infection by transfecting host cells with an antimicrobial peptide protein-encoding gene. -Periodontal vaccination. Gene therapy is one of the recent entrants and its applications in the field of periodontics are reviewed in general here. PMID:20376232

  14. Gene therapy for prostate cancer: where are we now?

    PubMed

    Steiner, M S; Gingrich, J R

    2000-10-01

    The ability to recombine specifically and alter DNA sequences followed by techniques to transfer these sequences or even whole genes into normal and diseased cells has revolutionized medical research and ushered the clinicians of today into the age of gene therapy. We provide urologists a review of relevant background information, outline current treatment strategies and clinical trials, and delineate current challenges facing the field of gene therapy for advanced prostate cancer. We comprehensively reviewed the literature, including PubMed and recent abstract proceedings from national meetings, relevant to gene therapy and advanced prostate cancer. We selected for review literature representative of the principal scientific background for current gene therapy strategies and National Institutes of Health Recombinant DNA Advisory Committee approved clinical trials. Current prostate cancer gene therapy strategies include correcting aberrant gene expression, exploiting programmed cell death pathways, targeting critical cell biological functions, introducing toxic or cell lytic suicide genes, enhancing the immune system antitumor response and combining treatment with conventional cytotoxic chemotherapy or radiation therapy. Many challenges lie ahead for gene therapy, including improving DNA transfer efficiency to cells locally and at distant sites, enhancing levels of gene expression and overcoming immune responses that limit the time that genes are expressed. Nevertheless, despite these current challenges it is almost certain that gene therapy will be part of the urological armamentarium against prostate cancer in this century.

  15. Expression of the Laccase Gene from a White Rot Fungus in Pichia pastoris Can Enhance the Resistance of This Yeast to H2O2-Mediated Oxidative Stress by Stimulating the Glutathione-Based Antioxidative System

    PubMed Central

    Fan, Fangfang; Zhuo, Rui; Ma, Fuying; Gong, Yangmin; Wan, Xia; Jiang, Mulan

    2012-01-01

    Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus in Pichia pastoris can significantly enhance the resistance of yeast to H2O2-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H2O2 and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression in Pichia pastoris could increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene in Pichia pastoris was found to be enhanced by the oxidative stress caused by exogenous H2O2. The stimulation of laccase gene expression in response to exogenous H2O2 stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, including PpYAP1, PpGPX1, PpPMP20, PpGLR1, and PpGSH1. Taken together, these results suggest that the expression of the laccase gene in Pichia pastoris can enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage. PMID:22706050

  16. STATs shape the active enhancer landscape of T cell populations.

    PubMed

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-Wei; Sartorelli, Vittorio; Kanno, Yuka; O'Shea, John J

    2012-11-21

    Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. Although enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4(+) T cells as a model of differentiation, mapping the activity of cell-type-specific enhancer elements in T helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the activation of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  18. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    PubMed

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers.

    PubMed

    Nishimura, Naoko; Kamimura, Yoshifumi; Ishida, Yoshiko; Takemoto, Tatsuya; Kondoh, Hisato; Uchikawa, Masanori

    2012-11-22

    Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.

  20. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    PubMed Central

    2011-01-01

    Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA), the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR) was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model. PMID:21453523

  1. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    Phytoremediation--the use of plants to clean up polluted soil and water resources--has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives

  2. Genetic dissection of the α-globin super-enhancer in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Deborah; Hughes, Jim R.; Babbs, Christian

    Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less

  3. Genetic dissection of the α-globin super-enhancer in vivo

    DOE PAGES

    Hay, Deborah; Hughes, Jim R.; Babbs, Christian; ...

    2016-07-04

    Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less

  4. Enhancement of fear memory by retrieval through reconsolidation

    PubMed Central

    Fukushima, Hotaka; Zhang, Yue; Archbold, Georgia; Ishikawa, Rie; Nader, Karim; Kida, Satoshi

    2014-01-01

    Memory retrieval is considered to have roles in memory enhancement. Recently, memory reconsolidation was suggested to reinforce or integrate new information into reactivated memory. Here, we show that reactivated inhibitory avoidance (IA) memory is enhanced through reconsolidation under conditions in which memory extinction is not induced. This memory enhancement is mediated by neurons in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) through the simultaneous activation of calcineurin-induced proteasome-dependent protein degradation and cAMP responsive element binding protein-mediated gene expression. Interestingly, the amygdala is required for memory reconsolidation and enhancement, whereas the hippocampus and mPFC are required for only memory enhancement. Furthermore, memory enhancement triggered by retrieval utilizes distinct mechanisms to strengthen IA memory by additional learning that depends only on the amygdala. Our findings indicate that reconsolidation functions to strengthen the original memory and show the dynamic nature of reactivated memory through protein degradation and gene expression in multiple brain regions. DOI: http://dx.doi.org/10.7554/eLife.02736.001 PMID:24963141

  5. Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa L.).

    PubMed

    Bao, Yong-Mei; Sun, Shu-Jing; Li, Meng; Li, Li; Cao, Wen-Lei; Luo, Jia; Tang, Hai-Juan; Huang, Ji; Wang, Zhou-Fei; Wang, Jian-Fei; Zhang, Hong-Sheng

    2012-08-10

    OsSYP71 is an oxidative stress and rice blast response gene that encodes a Qc-SNARE protein in rice. Qc-SNARE proteins belong to the superfamily of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), which function as important components of the vesicle trafficking machinery in eukaryotic cells. In this paper, 12 Qc-SNARE genes were isolated from rice, and expression patterns of 9 genes were detected in various tissues and in seedlings challenged with oxidative stresses and inoculated with rice blast. The expression of OsSYP71 was clearly up-regulated under these stresses. Overexpression of OsSYP71 in rice showed more tolerance to oxidative stress and resistance to rice blast than wild-type plants. These results indicate that Qc-SNAREs play an important role in rice response to environmental stresses, and OsSYP71 is useful in engineering crop plants with enhanced tolerance to oxidative stress and resistance to rice blast. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Hericium caput-medusae (Bull.:Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella).

    PubMed

    Gou, Changlong; Wang, Jiazhen; Wang, Yuqiong; Dong, Wenlong; Shan, Xiaofeng; Lou, Yujie; Gao, Yunhang

    2018-01-01

    The objective was to add 0, 400, 800 or 1200 mg/kg of Hericium caput-medusae polysaccharide (HCMP) to the basal diet of grass carp (Ctenopharyngodon idella) and determine effects on humoral innate immunity, expression of immune-related genes and disease resistance. Adding HCMP enhanced (P < 0.05) bactericidal activity at 1, 2 and 3 weeks and also lysozyme activity, complement C3, and SOD activity at 2 and 3 weeks. Supplementing 800 or 1200 mg/kg of HCMP for 2 or 3 weeks increased (P < 0.05) serum concentrations of total protein, albumin and globulin. Two immune-related genes (IL-1β and TNF-α) were up-regulated (P < 0.05) in HCMP supplemented groups given 800 or 1200 mg/kg HCMP after 2 and 3 weeks of feeding. Expression of anti-inflammatory cytokine IL-10 was down-regulated (P < 0.05) after receiving 800 or 1200 mg/kg HCMP for 2 or 3 weeks. Fish fed 800 mg/kg HCMP had maximal disease resistance against Aeromonas hydrophila (65.4%). In conclusion, HCMP enhanced immune response and expression of immune-related genes and increased disease resistance against Aeromonas hydrophila in grass carp, with greatest effects in fish given 800 mg/kg HCMP for 3 weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mutagenesis of diploid mammalian genes by gene entrapment

    PubMed Central

    Lin, Qing; Donahue, Sarah L.; Moore-Jarrett, Tracy; Cao, Shang; Osipovich, Anna B.; Ruley, H. Earl

    2006-01-01

    The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector–cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 × 10−5 to 1.2 × 10−4 per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells. PMID:17062627

  8. What genes make a tree a tree?

    Treesearch

    Andrew T. Groover

    2005-01-01

    Woody growth is evolutionarily ancient, yet has been gained and lost multiple times in plant evolution and is readily enhanced or minimized in eudicot speciation. New molecular genetic and genomic studies in Populus and Arabidopsis that are defining the genes responsible for cambium function and woody growth suggest that the genes...

  9. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene

    PubMed Central

    Domínguez, Sara; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  10. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene.

    PubMed

    Domínguez, Sara; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  11. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    PubMed Central

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  12. Periodontal Biology: Stem Cells, Bmp2 Gene, Transcriptional Enhancers, and Use of Sclerostin Antibody and Pth for Treatment of Periodontal Disease and Bone Loss

    PubMed Central

    Harris, Stephen E; Rediske, Michael; Neitzke, Rebecca; Rakian, Audrey

    2017-01-01

    The periodontium is a complex tissue with epithelial components and a complex set of mesodermal derived alveolar bone, cellular and a cellular cementum, and tendon like ligaments (PDL). The current evidence demonstrates that the major pool of periodontal stem cells is derived from a population of micro vascular associated aSMA-positive stem/progenitor (PSC) cells that by lineage tracing form all three major mesodermal derived components of the periodontium. With in vitro aSMA+ stem cells, transcriptome and chip- seq experiments, the gene network and enhancer maps were determined at several differentiation states of the PSC. Current work on the role of the Bmp2 gene in the periodontal stem cell differentiation demonstrated that this Wnt regulated gene, Bmp2, is necessary for differentiation to all three major mesodermal derived component of the periodontium. The mechanism and use of Sclerostin antibody as an activator of Wnt signaling and Bmp2 gene as a potential route to treat craniofacial bone loss is discussed. As well, the mechanism and use of Pth in the treatment of periodontal bone loss or other craniofacial bone loss is presented in this review. PMID:29457146

  13. Augmenting Microarray Data with Literature-Based Knowledge to Enhance Gene Regulatory Network Inference

    PubMed Central

    Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C.

    2014-01-01

    Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to

  14. Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference.

    PubMed

    Chen, Guocai; Cairelli, Michael J; Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C

    2014-06-01

    Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to

  15. BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border

    PubMed Central

    Garnett, Aaron T.; Square, Tyler A.; Medeiros, Daniel M.

    2012-01-01

    Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB. PMID:23034628

  16. Standardized plant disease evaluations will enhance resistance gene discovery

    USDA-ARS?s Scientific Manuscript database

    Gene discovery and marker development using DNA-based tools require plant populations with well documented phenotypes. If dissimilar phenotype evaluation methods or data scoring techniques are employed with different crops, or at different labs for the same crops, then data mining for genetic marker...

  17. The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L.

    PubMed

    Silva, Katchen Julliany P; Brunings, Asha M; Pereira, Juliana A; Peres, Natalia A; Folta, Kevin M; Mou, Zhonglin

    2017-12-01

    Plant immune response is associated with a large-scale transcriptional reprogramming, which is regulated by numerous transcription regulators such as the Elongator complex. Elongator is a multitasking protein complex involved in diverse cellular processes, including histone modification, DNA methylation, and tRNA modification. In recent years, Elongator is emerging as a key regulator of plant immune responses. However, characterization of Elongator's function in plant immunity has been conducted only in the model plant Arabidopsis thaliana. It is thus unclear whether Elongator's role in plant immunity is conserved in higher plants. The objective of this study is to characterize transgenic woodland strawberry (Fragaria vesca L.) overexpressing the Arabidopsis Elongator (AtELP) genes, AtELP3 and AtELP4, and to determine whether F. vesca carries a functional Elongator complex. Transgenic F. vesca and Arabidopsis plants were produced via Agrobacterium-mediated genetic transformation and characterized by morphology, PCR, real-time quantitative PCR, and disease resistance test. The Student's t test was used to analyze the data. Overexpression of AtELP3 and AtELP4 in F. vesca impacts plant growth and development and confers enhanced resistance to anthracnose crown rot, powdery mildew, and angular leaf spot, which are caused by the hemibiotrophic fungal pathogen Colletotrichum gloeosporioides, the obligate biotrophic fungal pathogen Podosphaera aphanis, and the hemibiotrophic bacterial pathogen Xanthomonas fragariae, respectively. Moreover, the F. vesca genome encodes all six Elongator subunits by single-copy genes with the exception of FvELP4, which is encoded by two homologous genes, FvELP4-1 and FvELP4-2. We show that FvELP4-1 complemented the Arabidopsis Atelp4/elo1-1 mutant, indicating that FvELP4 is biologically functional. This is the first report on overexpression of Elongator genes in plants. Our results indicate that the function of Elongator in plant immunity is

  18. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean

    PubMed Central

    Wang, Youjing; Jiang, Lin; Chen, Jiaqi; Tao, Lei; An, Yimin; Cai, Hongsheng

    2018-01-01

    The WRKY transcription factors play an important role in the regulation of transcriptional reprogramming associated with plant abiotic stress responses. In this study, the WRKY transcription factor MsWRKY11, containing the plant-specific WRKY zinc finger DNA–binding motif, was isolated from alfalfa. The MsWRKY11 gene was detected in all plant tissues (root, stem, leaf, flower, and fruit), with high expression in root and leaf tissues. MsWRKY11 was upregulated in response to a variety of abiotic stresses, including salinity, alkalinity, cold, abscisic acid, and drought. Overexpression of MsWRKY11 in soybean enhanced the salt tolerance at the seedling stage. Transgenic soybean had a better salt-tolerant phenotype, and the hypocotyls were significantly longer than those of wild-type seeds after salt treatment. Furthermore, MsWRKY11 overexpression increased the contents of chlorophyll, proline, soluble sugar, superoxide dismutase, and catalase, but reduced the relative electrical conductivity and the contents of malonaldehyde, H2O2, and O2-. Plant height, pods per plant, seeds per plant, and 100-seed weight of transgenic MsWRKY11 soybean were higher than those of wild-type soybean, especially OX2. Results of the salt experiment showed that MsWRKY11 is involved in salt stress responses, and its overexpression improves salt tolerance in soybean. PMID:29466387

  19. Analysis of Ly49 gene transcripts in mature NK cells supports a role for the Pro1 element in gene activation, not gene expression.

    PubMed

    McCullen, M V; Li, H; Cam, M; Sen, S K; McVicar, D W; Anderson, S K

    2016-09-01

    The variegated expression of murine Ly49 loci has been associated with the probabilistic behavior of an upstream promoter active in immature cells, the Pro1 element. However, recent data suggest that Pro1 may be active in mature natural killer (NK) cells and function as an enhancer element. To assess directly if Pro1 transcripts are present in mature Ly49-expressing NK cells, RNA-sequencing of the total transcript pool was performed on freshly isolated splenic NK cells sorted for expression of either Ly49G or Ly49I. No Pro1 transcripts were detected from the Ly49a, Ly49c or Ly49i genes in mature Ly49(+) NK cells that contained high levels of Pro2 transcripts. Low levels of Ly49g Pro1 transcripts were found in both Ly49G(+) and Ly49G(-) populations, consistent with the presence of a small population of mature NK cells undergoing Ly49g gene activation, as previously demonstrated by culture of splenic NK cells in interleukin-2. Ly49 gene reporter constructs containing Pro1 failed to show any enhancer activity of Pro1 on Pro2 in a mature Ly49-expressing cell line. Taken together, the results are consistent with Pro1 transcription having a role in gene activation in developing NK, and argue against a role for Pro1 in Ly49 gene transcription by mature NK cells.

  20. Genetic dissection of the α-globin super-enhancer in vivo

    PubMed Central

    Hay, Deborah; Hughes, Jim R.; Rode, Christina; Li, Pik-Shan; Pennacchio, Len A.; Sloane-Stanley, Jacqueline A.; Ayyub, Helena; Butler, Sue; Sauka-Spengler, Tatjana; Gibbons, Richard J.; Smith, Andrew J.H.; Wood, William G.; Higgs, Douglas R.

    2016-01-01

    Many genes determining cell identity are regulated by clusters of mediator-bound enhancer elements collectively referred to as super-enhancers. These have been proposed to manifest higher-order properties important in development and disease. Here, we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer singly and in informative combinations, we demonstrate that each constituent enhancer appears to act independently and in an additive fashion with respect to hematologic phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. PMID:27376235