Bergmeister, Konstantin D; Gröger, Marion; Aman, Martin; Willensdorfer, Anna; Manzano-Szalai, Krisztina; Salminger, Stefan; Aszmann, Oskar C
2016-08-01
Skeletal muscle consists of different fiber types which adapt to exercise, aging, disease, or trauma. Here we present a protocol for fast staining, automatic acquisition, and quantification of fiber populations with ImageJ. Biceps and lumbrical muscles were harvested from Sprague-Dawley rats. Quadruple immunohistochemical staining was performed on single sections using antibodies against myosin heavy chains and secondary fluorescent antibodies. Slides were scanned automatically with a slide scanner. Manual and automatic analyses were performed and compared statistically. The protocol provided rapid and reliable staining for automated image acquisition. Analyses between manual and automatic data indicated Pearson correlation coefficients for biceps of 0.645-0.841 and 0.564-0.673 for lumbrical muscles. Relative fiber populations were accurate to a degree of ± 4%. This protocol provides a reliable tool for quantification of muscle fiber populations. Using freely available software, it decreases the required time to analyze whole muscle sections. Muscle Nerve 54: 292-299, 2016. © 2016 Wiley Periodicals, Inc.
Fiber optic crossbar switch for automatically patching optical signals
NASA Technical Reports Server (NTRS)
Bell, C. H. (Inventor)
1983-01-01
A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.
Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm
NASA Astrophysics Data System (ADS)
Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.
2015-03-01
High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
Optical fiber pressure and acceleration sensor fabricated on a fiber endface
Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo
2006-05-30
A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.
A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers
NASA Astrophysics Data System (ADS)
Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang
1990-02-01
In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.
Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, R.J.; /SLAC; Colby, E.R.
An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.
Path Planning Based on Ply Orientation Information for Automatic Fiber Placement on Mesh Surface
NASA Astrophysics Data System (ADS)
Pei, Jiazhi; Wang, Xiaoping; Pei, Jingyu; Yang, Yang
2018-03-01
This article introduces an investigation of path planning with ply orientation information for automatic fiber placement (AFP) on open-contoured mesh surface. The new method makes use of the ply orientation information generated by loading characteristics on surface, divides the surface into several zones according to the ply orientation information and then designs different fiber paths in different zones. This article also gives new idea of up-layer design in order to make up for defects between parts and improve product's strength.
Compact all-fiber interferometer system for shock acceleration measurement
NASA Astrophysics Data System (ADS)
Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo
2013-08-01
Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the interferometer system measured shock acceleration with peak accelerations of ~100,000 m/s2 and the durations of ~0.2 ms which are conformed to the results of the shock acceleration calibration system. The measured relative error of the acceleration is within 3%.
NASA Astrophysics Data System (ADS)
Mizukami, Masato; Makihara, Mitsuhiro
2013-07-01
Conventionally, in intelligent buildings in a metropolitan area network and in small-scale facilities in the optical access network, optical connectors are joined manually using an optical connection board and a patch panel. In this manual connection approach, mistakes occur due to discrepancies between the actual physical settings of the connections and their management because these processes are independent. Moreover, manual cross-connection is time-consuming and expensive because maintenance personnel must be dispatched to remote places to correct mistakes. We have developed a fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors, which are the key elements of automatic optical fiber cross-connect equipment. We evaluate the performance of the equipment, such as its optical characteristics and environmental specifications. We also devise new optical connection mechanisms that enable the automated optical fiber cross-connect module to handle and connect angled physical contact (APC) optical connector plugs. We evaluate the performance of the equipment, such as its optical characteristics. The evaluation results confirm that the automated optical fiber cross-connect equipment can connect APC connectors with low loss and high return loss, indicating that the automated optical fiber cross-connect equipment is suitable for practical use in intelligent buildings and optical access networks.
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Kequan; Kim, Insoo S.; Wang, Jianfeng; Feng, Haiqi; Guo, Ning; Yu, Xiangdong; Zhou, Bangquan; Wu, Xiaobiao; Kim, Yohee
2000-05-01
The DOFTS system that has applied to temperature automatically alarm system of coal mine and tunnel has been researched. It is a real-time, on line and multi-point measurement system. The wavelength of LD is 1550 nm, on the 6 km optical fiber, 3000 points temperature signal is sampled and the spatial position is certain. Temperature measured region: -50 degree(s)C--100 degree(s)C; measured uncertain value: +/- 3 degree(s)C; temperature resolution: 0.1 degree(s)C; spatial resolution: <5 cm (optical fiber sensor probe); <8 m (spread optical fiber); measured time: <70 s. In the paper, the operated principles, underground test, test content and practical test results have been discussed.
Automatic design of fiber-reinforced soft actuators for trajectory matching
NASA Astrophysics Data System (ADS)
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
Automatic design of fiber-reinforced soft actuators for trajectory matching
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb. PMID:27994133
Automatic design of fiber-reinforced soft actuators for trajectory matching.
Connolly, Fionnuala; Walsh, Conor J; Bertoldi, Katia
2017-01-03
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
NASA Astrophysics Data System (ADS)
Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji
2006-04-01
We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.
Optical Fiber On-Line Detection System for Non-Touch Monitoring Roller Shape
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, Y. T.
2006-10-01
Basing on the principle of reflective displacement fiber-optic sensor, a high accuracy non-touch on-line optical fiber measurement system for roller shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibers in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fiber lines are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roller bearing. So enhance the accuracy and resolution remarkably. Experiment proves that the accuracy of the system reach to the demand of practical production process, it provides a new method for the high speed, accurate and automatic on line detection of the mill roller shape.
Fiber alignment apparatus and method
Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole
1997-01-01
A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.
Fiber alignment apparatus and method
Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V
1997-08-19
A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.
Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS
NASA Astrophysics Data System (ADS)
Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.
2010-07-01
The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.
Automatic assembly of micro-optical components
NASA Astrophysics Data System (ADS)
Gengenbach, Ulrich K.
1996-12-01
Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.
NASA Astrophysics Data System (ADS)
Vieira, G.; Ferro, D. P.; Adam, R. L.; de Thomaz, A. A.; Cesar, C. L.; Metze, K.
2010-02-01
Elastic fibers are essential components of the human aorta, and there is an association between elastin fibers remodeling and several diseases. Hypertension is one such example of a disease leading to elastin fibers remodeling. These fibers can be easily seen in eosin-hematoxilin (HE) stained histologic sections when observed by UV-excited fluorescence microscopy or by a much more precise Laser Scanning Confocal Microscope (LSCM). In order to study the effect of the hypertension on the elastin fibers pattern we developed an automatic system (software and hardware) to count the number of elastin fibers and to measure the distance between them in a LSCM and used it compare the statistical distribution of the distance between these fibers in normotensive and hypertensive patients. The full image of the whole sample (2 or 3mm long) was composed by several 220×220μm frames with 512×512 pixels. The software counters fiber and distance between fibers. We compared the elastic fiber texture in routinely HE-stained histologic slides of the aorta ascendens in 24 normotensive and 30 hypertensive adult patients of both sexes and of similar age from our autopsy files. Our results show that the average number of fibers is the same for both cases but the distance between the fibers are larger for hypertensive patients than for normotensive ones.
Configuration management and automatic control of an augmentor wing aircraft with vectored thrust
NASA Technical Reports Server (NTRS)
Cicolani, L. S.; Sridhar, B.; Meyer, G.
1979-01-01
An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.
Hollow-Core Photonic Band Gap Fibers for Particle Acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert J.; Spencer, James E.; /SLAC
Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less
Automatic Fibrosis Quantification By Using a k-NN Classificator
2001-10-25
Fluthrope, “Stages in fiber breakdown in duchenne muscular dystrophy ,” J. Neurol. Sci., vol. 24, pp. 179– 186, 1975. [6] F. Cornelio and I. Dones, “ Muscle ...an automatic algorithm to measure fibrosis in muscle sections of mdx mice, a mutant species used as a model of the Duchenne dystrophy . The al- gorithm...fiber degeneration and necro- sis in muscular dystrophy and other muscle diseases: cytochem- ical and immunocytochemical data,” Ann. Neurol., vol. 16
DOT National Transportation Integrated Search
2014-03-01
This report describes a research project to investigate accelerated aging protocols for fiber-reinforced : polymer (FRP) reinforcement of concrete. This research was conducted in three stages. In the first : stage, various spectroscopic techniques we...
Fiber Longitudinal Measurements for Predicting White Speck Contents of Dyed Cotton Fabrics
USDA-ARS?s Scientific Manuscript database
Fiber Image Analysis System (FIAS) was developed to provide an automatic method for measuring cotton maturity from fiber snippets or cross-sections . An uncombed cotton bundle is chopped and sprayed on a microscopic slide. The snippets are imaged sequentially on an microscope and measured with custo...
Nier, A.O.C.
1959-08-25
A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.
The Nature of Accelerating Modes in PBG Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, TRobert J.; /SLAC
Transverse magnetic (TM) modes with phase velocities at or just below the speed of light, c, are intended to accelerate relativistic particles in hollow-core, photonic band gap (PBG) fibers. These are so-called 'surface defect modes', being lattice modes perturbed by the defect to have their frequencies shifted into the band gap, and they can have any phase velocity. PBG fibers also support so-called 'core defect modes' which are characterized as having phase velocities always greater than c and never cross the light line. In this paper we explore the nature of these two classes of accelerating modes and compare theirmore » properties.« less
An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g
NASA Astrophysics Data System (ADS)
Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang
2015-10-01
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
Electron Induced Scintillation Testing of Commercially Available Optical Fibers for Space Flight
NASA Technical Reports Server (NTRS)
Ott, Melanie N.
1999-01-01
A test to verify the performance of several commercial and military optical fibers available on the market today was conducted, via usage of an electron accelerator, to monitor radiation induced scintillation or luminescence. The test results showed that no significant effects could be detected with the PMT system used, above a noise floor of 50 photons/sec that were due to optical fiber scintillation. Although some data appeared to show events taking place, noise scan results have correlated these events to arcing inside the electron accelerator facility. This test was to simply characterize for space flight, which optical fiber candidates were the largest scintillators among the eighteen optical fiber candidates tested.
An automatic step adjustment method for average power analysis technique used in fiber amplifiers
NASA Astrophysics Data System (ADS)
Liu, Xue-Ming
2006-04-01
An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.
NASA Astrophysics Data System (ADS)
Driben, R.; Meier, T.
2014-04-01
Dispersion management of periodically alternating fiber sections with opposite signs of two leading dispersion terms is applied for the regeneration of self-accelerating truncated Airy pulses. It is demonstrated that for such a dispersion management scheme, the direction of the acceleration of the pulse is reversed twice within each period. In this scheme the system features light hot spots in the center of each fiber section, where the energy of the light pulse is tightly focused in a short temporal slot. Comprehensive numerical studies demonstrate a long-lasting propagation also under the influence of a strong fiber Kerr nonlinearity.
Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V.; Wagner, W. R.
2013-01-01
Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional groups for enzyme immobilization. XPS and a colorimetric amine assay confirmed higher amine densities on the chitosan coated fiber compared to control fiber. Chitosan/CA coated fibers exhibited accelerated CO2 removal in scaled-down gas exchange devices in buffer and blood (115 % enhancement vs. control, 37 % enhancement vs. control, respectively). Carbonic anhydrase immobilized directly on hollow fiber membranes without chitosan tethering resulted in no enhancement in CO2 removal. Additionally, fibers coated with chitosan/carbonic anhydrase demonstrated reduced platelet adhesion when exposed to blood compared to control and heparin coated fibers. PMID:23888352
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
Measurement of Thermal Dependencies of PBG Fiber Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouar, Rachik
Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so calledmore » photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.« less
Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations
Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W.
2016-01-01
Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures. PMID:26904094
Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations.
Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W
2016-01-01
Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures.
Acceleration Strain Transducer with Increased Sensitivity
2009-09-22
utilizing a fiber laser sensor. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity...fiber laser or a distributed feedback fiber laser. In a Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber...designs can produce the same type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting
Self-healing ring-based WDM-PON
NASA Astrophysics Data System (ADS)
Zhou, Yang; Gan, Chaoqin; Zhu, Long
2010-05-01
In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.
Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V
2013-01-01
We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstrationmore » of particle beam profile diagnostics using fiber optic laser pulse transmission line.« less
Response of Metal Core Piezoelectric Fibers to Unsteady Airflows
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Ji, H. L.; Zhu, K. J.; Park, M. J.
In the previous study, possible applications of metal core piezoelectric fibers with a diameter of 200 to 250 µm as bionic airflow sensors mimicking the flow sensitive receptor hairs of crickets have been proposed. This study aims to investigate the dynamic responses of the metal core piezoelectric fibers to unsteady airflow. The metal core piezoelectric fiber is half coated on the outer surface and is used in the bending mode. Wind tunnel tests were carried out and the output voltage of the fiber under the excitation of the unsteady aerodynamic force during flow acceleration and deceleration was measured when the wind tunnel was suddenly closed or opened by a shutter. The relationship between the maximum voltage and the steady-state velocity and that between the voltage and the acceleration of flow were also obtained.
Experiment K-308: Automatic analysis of muscle fibers from rats subjected to spaceflight
NASA Technical Reports Server (NTRS)
Castleman, K. R.; Chui, L. A.; Vandermeullen, J. P.
1981-01-01
The morphology of histochemically prepared muscle sections from the gastrocnemius and plantaris muscles of flight and vivarium control rats was studied quantitatively. Both fast-twitch and slow-twitch fibers were significantly smaller in flight groups than in control groups. Fibers in group 4F were somewhat larger than in 1F, presumably due to growth after recovery. Fibers in 4V were slightly larger than in 1V, presumably due to age. The slow fibers showed more spaceflight induced size loss than fast fibers, suggesting they suffered more from hypogravity. The proportion of slow fibers was also lower in the flight groups, suggesting spaceflight induced fiber type conversion from slow to fast.
Acceleration Strain Transducer
2007-11-05
accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity fiber laser or a distributed feedback fiber laser. In a... Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber with a Bragg grating written in the fiber core at either end of...the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by various methods well known in the
The Design and Testing of a Dual Fiber Textile Matrix for Accelerating Surface Hemostasis
Fischer, Thomas H.; Vournakis, John N.; Manning, James E.; McCurdy, Shane L.; Rich, Preston B.; Nichols, Timothy C.; Scull, Christopher M.; McCord, Marian G.; Decorta, Joseph A.; Johnson, Peter C.; Smith, Carr J.
2011-01-01
The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions. PMID:19489008
Hatamleh, Muhanad M; Watts, David C
2010-07-01
The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.
CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking
van Aart, Evert; Sepasian, Neda; Jalba, Andrei; Vilanova, Anna
2011-01-01
Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times. PMID:21941525
Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable.
1979-10-26
cores manufactured on this unit since the improvements were incorporated. An automatic diameter control unit with a laser micrometer sensor has been...fiber optic sensor systems for the TACA-MO aircraft and power encoding, an 18-port single fiber data bus for the Autonetics information transfer...echnica del Estado, Santiago, Chile in 1958. He received a degree in Industrial Chemical Engineering from Escuela de Ingenieros Industriales , Santiago
Automatic external filling for the ion source gas bottle of a Van de Graaff accelerator
NASA Astrophysics Data System (ADS)
Strivay, D.; Bastin, T.; Dehove, C.; Dumont, P. D.; Marchal, A.; Garnir, H.; Weber, G.
1997-09-01
We describe a fully automatic system we developed to fill, from an external gas bottle, the ion source terminal gas storage bottle of a 2 MV Van de Graaff accelerator without depressing the 25 bar insulating gas. The system is based on a programmable automate ordering electropneumatical valves. The only manual operation is the connection of the external gas cylinder. The time needed for a gas change is reduced to typically 15 min (depending on the residual pressure wished for the gas removed from the terminal bottle). To check this system we study the ionic composition of the ion beam delivered by our accelerator after different gas changes. The switching magnet of our accelerator was used to analyse the ionic composition of the accelerated beams in order to verify the degree of elimination of the previous gases in the system.
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)
NASA Astrophysics Data System (ADS)
Stempels, Eric; Telting, John
2017-08-01
FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.
Structure/function relations of hemostatic nonwoven dressings based on greige cotton
USDA-ARS?s Scientific Manuscript database
A variety of natural and synthetic fibers are employed in hemostatic dressings. Here we demonstrate the use of greige cotton as a functional fiber, which when combined with hydrophilic and hydrophobic fibers in hydroentangled nonwoven materials, promotes accelerated clotting. A biophysical approach...
Accelerated weathering of natural fiber-filled polyethylene composites
Thomas Lundin; Steven M. Cramer; Robert H. Falk; Colin Felton
2004-01-01
The resistance of natural fiber-filled high-density polyethylene composite specimens to ultraviolet- (UV) and moisture-induced degradation was evaluated by measuring changes to flexural properties. High-density polyethylene (HDPE) served as the polymer matrix for four formulations: two formulations without fiber filler and two formulations one containing wood flour and...
Fiber sensors for molecular detection
NASA Astrophysics Data System (ADS)
Gu, Claire; Yang, Xuan; Zhang, Jin; Newhouse, Rebecca; Cao, Liangcai
2010-11-01
The demand on sensors for detecting chemical and biological agents is greater than ever before, including medical, environmental, food safety, military, and security applications. At present, most detection or sensing techniques tend to be either non-molecular specific, bulky, expensive, relatively inaccurate, or unable to provide real time data. Clearly, alternative sensing technologies are urgently needed. Recently, we have been working to develop a compact fiber optic surface enhanced Raman scattering (SERS) sensor system that integrates various novel ideas to achieve compactness, high sensitivity and consistency, molecular specificity, and automatic preliminary identification capabilities. The unique sensor architecture is expected to bring SERS sensors to practical applications due to a combination of 1) novel SERS substrates that provide the high sensitivity and consistency, molecular specificity, and applicability to a wide range of compounds; 2) a unique hollow core optical fiber probe with double SERS substrate structure that provides the compactness, reliability, low cost, and ease of sampling; and 3) an innovative matched spectral filter set that provides automatic preliminary molecule identification. In this paper, we will review the principle of operation and some of the important milestones of fiber SERS sensor development with emphasis on our recent work to integrate photonic crystal fiber SERS probes with a portable Raman spectrometer and to demonstrate a matched spectral filter for molecule identification.
NASA Astrophysics Data System (ADS)
Ghafaryasl, Babak; Baart, Robert; de Boer, Johannes F.; Vermeer, Koenraad A.; van Vliet, Lucas J.
2017-02-01
Optical coherence tomography (OCT) yields high-resolution, three-dimensional images of the retina. A better understanding of retinal nerve fiber bundle (RNFB) trajectories in combination with visual field data may be used for future diagnosis and monitoring of glaucoma. However, manual tracing of these bundles is a tedious task. In this work, we present an automatic technique to estimate the orientation of RNFBs from volumetric OCT scans. Our method consists of several steps, starting from automatic segmentation of the RNFL. Then, a stack of en face images around the posterior nerve fiber layer interface was extracted. The image showing the best visibility of RNFB trajectories was selected for further processing. After denoising the selected en face image, a semblance structure-oriented filter was applied to probe the strength of local linear structure in a discrete set of orientations creating an orientation space. Gaussian filtering along the orientation axis in this space is used to find the dominant orientation. Next, a confidence map was created to supplement the estimated orientation. This confidence map was used as pixel weight in normalized convolution to regularize the semblance filter response after which a new orientation estimate can be obtained. Finally, after several iterations an orientation field corresponding to the strongest local orientation was obtained. The RNFB orientations of six macular scans from three subjects were estimated. For all scans, visual inspection shows a good agreement between the estimated orientation fields and the RNFB trajectories in the en face images. Additionally, a good correlation between the orientation fields of two scans of the same subject was observed. Our method was also applied to a larger field of view around the macula. Manual tracing of the RNFB trajectories shows a good agreement with the automatically obtained streamlines obtained by fiber tracking.
Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas
2015-07-01
The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P < 0.001; anatomical precision, P ≤ 0.005). Simultaneous multislice EPI with blipped controlled aliasing in parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.
An accelerated gamma irradiation test of low dose rate for a single mode fiber
NASA Astrophysics Data System (ADS)
Chiou, Chung-An; Peng, Tz-Shiuan; Liu, Ren-Young
2017-09-01
Conventional single mode fiber (SMF), due to its electromagnetic interference immunity, light weight, physical flexibility and broad bandwidth for data transmission, has been well employed in space, such as optical communication [1], structural health monitoring of spacecraft [2], and attitude determining applications, e.g. interferometric fiber optic gyroscope (IFOG).
USDA-ARS?s Scientific Manuscript database
The use of the natural fibers requires the development of cost-efficient processing of fibers with consistent, uniform properties. The microbial communities associated with kenaf (Hibiscus cannabinus) plant fibers during retting were determined in an effort to identify possible means of accelerating...
Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking
NASA Astrophysics Data System (ADS)
Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.
2016-02-01
High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.
Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V
2016-02-01
High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
Dispersion properties of plasma cladded annular optical fiber
NASA Astrophysics Data System (ADS)
KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.
2018-05-01
One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.
Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion
O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex
2017-01-01
Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness < 100 μm (<0.00394 in.) that can be utilized in a steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132
NASA Astrophysics Data System (ADS)
Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio
2015-06-01
We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.
Using Acceleration Data to Automatically Detect the Onset of Farrowing in Sows.
Traulsen, Imke; Scheel, Christoph; Auer, Wolfgang; Burfeind, Onno; Krieter, Joachim
2018-01-10
The aim of the present study was to automatically predict the onset of farrowing in crate-confined sows. (1) Background: Automatic tools are appropriate to support animal surveillance under practical farming conditions. (2) Methods: In three batches, sows in one farrowing compartment of the Futterkamp research farm were equipped with an ear sensor to sample acceleration. As a reference video, recordings of the sows were used. A classical CUSUM chart using different acceleration indices of various distribution characteristics with several scenarios were compared. (3) Results: The increase of activity mainly due to nest building behavior before the onset of farrowing could be detected with the sow individual CUSUM chart. The best performance required a statistical distribution characteristic that represented fluctuations in the signal (for example, 1st variation) combined with a transformation of this parameter by cumulating differences in the signal within certain time periods from one day to another. With this transformed signal, farrowing sows could reliably be detected. For 100% or 85% of the sows, an alarm was given within 48 or 12 h before the onset of farrowing. (4) Conclusions: Acceleration measurements in the ear of a sow are suitable for detecting the onset of farrowing in individually housed sows in commercial farrowing crates.
Thomas Lundin; Robert H. Falk; Colin Felton
2002-01-01
Mechanical properties of bending stiffness and yield stress were used to evaluate the effects of ultraviolet exposure on natural fiber-thermoplastic composites. Four different specimen formulations were evaluated. Injection molded high density polyethylene (HDPE) served as the polymer base for all formulations. Two lignocellulosic fillers, wood flour and kenaf fiber,...
Thermally Drawn Fibers as Nerve Guidance Scaffolds
Koppes, Ryan A.; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Poorheravi, Negin Abdolrahim; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina
2016-01-01
Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246
Coupler Studies for PBG Fiber Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, J.; Ng, C.; Noble, R.
Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to {lambda} = 1.5-2.0 {micro}m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles.more » We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 {micro}m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end-coupling scheme for this structure appears as shown in Fig. 2 with a six-fold array of laser spots focused inside the end of the fiber. While convenient for an on-axis particle beam, this is inconvenient for the laser drive field as well as the tolerances it places on the end cleave of the fiber. The importance of the crystal symmetry is clearly shown so that one might expect side coupling to reflect a similar pattern which we find that it does unless the hexagonal symmetry is perturbed sufficiently. This can be done in several ways and will be discussed further.« less
Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.
Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco
2007-08-01
Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.
Measuring the lesion load of multiple sclerosis patients within the corticospinal tract
NASA Astrophysics Data System (ADS)
Klein, Jan; Hanken, Katrin; Koceva, Jasna; Hildebrandt, Helmut; Hahn, Horst K.
2015-03-01
In this paper we present a framework for reliable determination of the lesion load within the corticospinal tract (CST) of multiple sclerosis patients. The basis constitutes a probabilistic fiber tracking approach which checks possible parameter intervals on the fly using an anatomical brain atlas. By exploiting the range of those intervals, the algorithm is able to resolve fiber crossings and to determine the CST in its full entity although it can use a simple diffusion tensor model. Another advantage is its short running time, tracking the CST takes less than a minute. For segmenting the lesions we developed a semi-automatic approach. First, a trained classifier is applied to multimodal MRI data (T1/FLAIR) where the spectrum of lesions has been determined in advance by a clustering algorithm. This leads to an automatic detection of the lesions which can be manually corrected afterwards using a threshold-based approach. For evaluation we scanned 46 MS patients and 16 healthy controls. Fiber tracking has been performed using our novel fiber tracking and a standard defection based algorithm. Regression analysis of the old and new version of the algorithm showed a highly significant superiority of the new algorithm for disease duration. Additionally, a low correlation between old and new approach supports the observation that standard DTI fiber tracking is not always able to track and quantify the CST reliably.
Hatamleh, Muhanad M; Watts, David C
2011-02-01
To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p < 0.05). Mean (SD) values of maximum pull-out forces (N) before aging for groups: no primer, G611, A-304, A-330-G were: 13.63 (7.45), 20.44 (2.99), 22.06 (6.69), and 57.91 (10.15), respectively. All primers increased bond strength in comparison to control specimens (p < 0.05). Primer A-330-G showed the greatest increase among all primers (p < 0.05); however, bonding degraded after aging (p < 0.05), and pull-out forces were 13.58 (2.61), 6.17 (2.89), 6.95 (2.61), and 11.72 (3.03). Maximum bending strengths of fiber bundles at baseline increased after treatment with primers and light aging in comparison with control specimens (p < 0.05), and were in the range of 917.72 to 1095.25 and 1124.06 to 1596.68 MPa at both baseline and after 360 hours aging (p < 0.05). The use of A-330-G primer in conjunction with silicone Cosmesil M511 produced the greatest bond strength for silicone-glass fiber surfaces at baseline; however, bond strength was significantly degraded after accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.
On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, K. S.; Radchenko, I. V.; Korol'kov, A. V.
2013-05-15
The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.
Some features of the fabrication of multilayer fiber composites by explosive welding
NASA Technical Reports Server (NTRS)
Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.
1985-01-01
The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.
Traulsen, I; Breitenberger, S; Auer, W; Stamer, E; Müller, K; Krieter, J
2016-06-01
Lameness is an important issue in group-housed sows. Automatic detection systems are a beneficial diagnostic tool to support management. The aim of the present study was to evaluate data of a positioning system including acceleration measurements to detect lameness in group-housed sows. Data were acquired at the Futterkamp research farm from May 2012 until April 2013. In the gestation unit, 212 group-housed sows were equipped with an ear sensor to sample position and acceleration per sow and second. Three activity indices were calculated per sow and day: path length walked by a sow during the day (Path), number of squares (25×25 cm) visited during the day (Square) and variance of the acceleration measurement during the day (Acc). In addition, data on lameness treatments of the sows and a weekly lameness score were used as reference systems. To determine the influence of a lameness event, all indices were analysed in a linear random regression model. Test day, parity class and day before treatment had a significant influence on all activity indices (P<0.05). In healthy sows, indices Path and Square increased with increasing parity, whereas variance slightly decreased. The indices Path and Square showed a decreasing trend in a 14-day period before a lameness treatment and to a smaller extent before a lameness score of 2 (severe lameness). For the index acceleration, there was no obvious difference between the lame and non-lame periods. In conclusion, positioning and acceleration measurements with ear sensors can be used to describe the activity pattern of sows. However, improvements in sampling rate and analysis techniques should be made for a practical application as an automatic lameness detection system.
Fiber in the Local Loop: The Role of Electric Utilities
NASA Astrophysics Data System (ADS)
Meehan, Charles M.
1990-01-01
Electric utilities are beginning to make heavy use of fiber for a number of applications beyond transmission of voice and data among operating centers and plant facilities which employed fiber on the electric transmission systems. These additional uses include load management and automatic meter reading. Thus, utilities are beginning to place fiber on the electric distribution systems which, in many cases covers the same customer base as the "local loop". This shift to fiber on the distribution system is due to the advantages offered by fiber and because of congestion in the radio bands used for load management. This shift to fiber has been facilitated by a regulatory policy permitting utilities to lease reserve capacity on their fiber systems on an unregulated basis. This, in turn, has interested electric utilities in building fiber to their residential and commercial customers for voice, data and video. This will also provide for sophisticated load management systems and, possibly, generation of revenue.
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-01-01
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-05-29
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
DOT National Transportation Integrated Search
2014-03-01
The Florida Department of Transportation (FDOT) uses fiber-reinforced polymer (FRP) composites to repair bridges and strengthen bridge decks. Proven mechanical characteristics make FRP composites cost-effective in extending the life span of bridges o...
A multicore compound glass optical fiber for neutron imaging
NASA Astrophysics Data System (ADS)
Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason
2017-04-01
Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.
Selected Economic Translations on Eastern Europe (164th in the Series)
1960-04-15
processing—namely, the study groups for polyacryl -nitril fibers and the study groups for polyester fibers, which in serious application of the principles of ...decomposition plants, electrolysis cells for chloride of potassium , dry rotor compressors, revolving calenders for viscose dryers, automatic thrust...ojg CD ^ tZ ft,? . . -; r;-; r »OOOOW U7 Photocopies of this report may be purchased from: PHOTOIXJPLiCATION SERVICE LIBRARY OF CONGRESS
Diffraction Pattern Analysis as an Optical Inspection Technique
1991-08-01
BACKGROUND Diameters of fiber samples have commonly been measured manually with an optical microscope. Marcuse and Presby developed an automatic...by analyzing the back-scattered light when a beam of laser light impinged upon the fiber [2]. Presby and Marcuse extended this back-scattering tech...be im- proved further in order to become a feasible method for detecting a small number of blocked openings in CRT screens. 20 REFERENCES 1. Marcuse
Special purpose modes in photonic band gap fibers
Spencer, James; Noble, Robert; Campbell, Sara
2013-04-02
Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
NASA Astrophysics Data System (ADS)
Fu, Jun; Liu, Zhihong; Liu, Jie
2018-01-01
Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.
Acousto-Optical Evaluation Of Fiber Size In Wood Pulp
NASA Astrophysics Data System (ADS)
Dion, J. L.; Garceau, J. J.; Morissette, J. C.
1986-10-01
In the pulp and paper industry, the problem of regular and fast evaluation of wood fiber characteristics such as length and specific area is an important one. With this in view, we have been studying an acousto-optical technique based on the acoustic agglomeration of fibers in a water suspension, where a stationary ultrasonic field is created at about 150 kHz. Under the influence of radiation forces, fibers re-orient themselves parallel to the nodal planes of acoustic pressure, and regroup or agglomerate in these planes in different characteristic times. These are mesured by means of the light scattered at small angles. We have found that these times depend on the size distribution of fibers, particularly length. We present results obtained with an assortment of fiber types, under various experimental conditions which indicate eventual applications in the automatic control of pulp production.
Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos
2009-01-01
In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.
Quantum optimal control with automatic differentiation using graphics processors
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David
We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.
Durability of Cement Composites Reinforced with Sisal Fiber
NASA Astrophysics Data System (ADS)
Wei, Jianqiang
This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.
Particle acceleration in a complex solar active region modelled by a Cellular automata model
NASA Astrophysics Data System (ADS)
Dauphin, C.; Vilmer, N.; Anastasiadis, A.
2004-12-01
The models of cellular automat allowed to reproduce successfully several statistical properties of the solar flares. We use a cellular automat model based on the concept of self-organised critical system to model the evolution of the magnetic energy released in an eruptive active area. Each burst of magnetic energy released is assimilated to a process of magnetic reconnection. We will thus generate several current layers (RCS) where the particles are accelerated by a direct electric field. We calculate the energy gain of the particles (ions and electrons) for various types of magnetic configuration. We calculate the distribution function of the kinetic energy of the particles after their interactions with a given number of RCS for each type of configurations. We show that the relative efficiency of the acceleration of the electrons and the ions depends on the selected configuration.
Brown, Jeremy D; O Brien, Conor E; Leung, Sarah C; Dumon, Kristoffel R; Lee, David I; Kuchenbecker, Katherine J
2017-09-01
Most trainees begin learning robotic minimally invasive surgery by performing inanimate practice tasks with clinical robots such as the Intuitive Surgical da Vinci. Expert surgeons are commonly asked to evaluate these performances using standardized five-point rating scales, but doing such ratings is time consuming, tedious, and somewhat subjective. This paper presents an automatic skill evaluation system that analyzes only the contact force with the task materials, the broad-bandwidth accelerations of the robotic instruments and camera, and the task completion time. We recruited N = 38 participants of varying skill in robotic surgery to perform three trials of peg transfer with a da Vinci Standard robot instrumented with our Smart Task Board. After calibration, three individuals rated these trials on five domains of the Global Evaluative Assessment of Robotic Skill (GEARS) structured assessment tool, providing ground-truth labels for regression and classification machine learning algorithms that predict GEARS scores based on the recorded force, acceleration, and time signals. Both machine learning approaches produced scores on the reserved testing sets that were in good to excellent agreement with the human raters, even when the force information was not considered. Furthermore, regression predicted GEARS scores more accurately and efficiently than classification. A surgeon's skill at robotic peg transfer can be reliably rated via regression using features gathered from force, acceleration, and time sensors external to the robot. We expect improved trainee learning as a result of providing these automatic skill ratings during inanimate task practice on a surgical robot.
NASA Astrophysics Data System (ADS)
Hanson, A. G.
1987-03-01
The learning experience of a group of Federal-agency planners who face upgrading or augmenting existing on-premises communication systems and building wiring is documented. In July 1984, an interagency Fiber Optics Task Group was formed under the aegis of the Federal Telecommunication Standards Committee to study on-premises distribution systems, with emphasis on optical fiber implementation, sharing mutual problems and potential solutions for them. Chronological summary records of technical content of 11 Task Group meetings through September 1986 are summarized. Also condensed are the engineering presentations to the Task Group by industry on applicable state-of-the-art technology, including local area networks, private automatic branch exchanges, building wiring architecture, and optic fiber systems and components.
Cost of nitrogen use in the US
Growing human demands for food, fuel and fiber have accelerated the human-driven fixation of reactive nitrogen (N) by at least 10-fold over the last century. This acceleration is one of the most dramatic changes to the sustainability of Earth’s systems. Approximately 65% ...
USDA-ARS?s Scientific Manuscript database
Mechanically purified raw cotton fiber finds a growing range of applications in support of environmental sustainability, but its unique thermal stability, which is important in processes and utilization, is little known. This study shows that at low temperatures (< 300 'C), the accelerated dehydrati...
NASA Astrophysics Data System (ADS)
Amiri, Ali
In recent years there has been a resurgence of interest in the usage of natural fiber reinforced composites in more advanced structural applications. Consequently, the need for improving their mechanical properties as well as service life and long-term behavior modeling and predictions has arisen. In a step towards further development of these materials, in this study, two newly developed biobased resins, derived from soybean oil, methacrylated epoxidized sucrose soyate and double methacrylated epoxidized sucrose soyate are combined with untreated and alkaline treated flax fiber to produce novel biocomposites. Vinyl ester reinforced with flax fiber is used as control in addition to comparing properties of biobased composites against commercial pultruded composites. Effects of alkaline treatment of flax fiber as well as addition of 1% acrylic resin to vinyl ester and the two mentioned biobased resins on mechanical properties are studied. Properties are evaluated in short-term and also, after being exposed to accelerated weathering (i.e. UV and moisture). Moreover, long-term creep of these novel biobased composites and effect of fiber and matrix treatment on viscoelastic behavior is investigated using Time-temperature superposition (TTS) principle. Based on the results of this study, the TTS provides an accelerated method for evaluation of mechanical properties of biobased composites, and satisfactory master curves are achieved by use of this principle. Also, fiber and matrix treatments were effective in increasing mechanical properties of biobased composites in short-term, and treatments delayed the creep response and slowed the process of creep in composites under study in the steady state region. Overall, results of this study reveal the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members while maintaining high biocontent. Composites using treated flax fiber and newly developed resins showed less degradation in properties after accelerated weather exposure. Procedures and methods developed throughout this study, as well as results presented are essential to further development of these novel materials and utilizing them in more advanced structural applications. Results presented in this dissertation have been published as 5 peer reviewed journal articles, 2 book chapters and have been presented in 6 national and international conferences.
Semi-automatic, octave-spanning optical frequency counter.
Liu, Tze-An; Shu, Ren-Huei; Peng, Jin-Long
2008-07-07
This work presents and demonstrates a semi-automatic optical frequency counter with octave-spanning counting capability using two fiber laser combs operated at different repetition rates. Monochromators are utilized to provide an approximate frequency of the laser under measurement to determine the mode number difference between the two laser combs. The exact mode number of the beating comb line is obtained from the mode number difference and the measured beat frequencies. The entire measurement process, except the frequency stabilization of the laser combs and the optimization of the beat signal-to-noise ratio, is controlled by a computer running a semi-automatic optical frequency counter.
Viscoelastic behavior and life-time predictions
NASA Technical Reports Server (NTRS)
Dillard, D. A.; Brinson, H. F.
1985-01-01
Fiber reinforced plastics were considered for many structural applications in automotive, aerospace and other industries. A major concern was and remains the failure modes associated with the polymer matrix which serves to bind the fibers together and transfer the load through connections, from fiber to fiber and ply to ply. An accelerated characterization procedure for prediction of delayed failures was developed. This method utilizes time-temperature-stress-moisture superposition principles in conjunction with laminated plate theory. Because failures are inherently nonlinear, the testing and analytic modeling for both moduli and strength is based upon nonlinear viscoelastic concepts.
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method
NASA Astrophysics Data System (ADS)
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Automated Fabrication Technologies for High Performance Polymer Composites
NASA Technical Reports Server (NTRS)
Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.
1998-01-01
New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.
Automatic deformable diffusion tensor registration for fiber population analysis.
Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V
2008-01-01
In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.
Assembly of optical fibers for the connection of polymer-based waveguide
NASA Astrophysics Data System (ADS)
Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix
2003-03-01
This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.
Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith
Milleron, Norman
1983-01-01
A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.
Poveda, Ferran; Gil, Debora; Martí, Enric; Andaluz, Albert; Ballester, Manel; Carreras, Francesc
2013-10-01
Deeper understanding of the myocardial structure linking the morphology and function of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Several conceptual models of myocardial fiber organization have been proposed but the lack of an automatic and objective methodology prevented an agreement. We sought to deepen this knowledge through advanced computer graphical representations of the myocardial fiber architecture by diffusion tensor magnetic resonance imaging. We performed automatic tractography reconstruction of unsegmented diffusion tensor magnetic resonance imaging datasets of canine heart from the public database of the Johns Hopkins University. Full-scale tractographies have been built with 200 seeds and are composed by streamlines computed on the vector field of primary eigenvectors at the diffusion tensor volumes. We also introduced a novel multiscale visualization technique in order to obtain a simplified tractography. This methodology retains the main geometric features of the fiber tracts, making it easier to decipher the main properties of the architectural organization of the heart. Output analysis of our tractographic representations showed exact correlation with low-level details of myocardial architecture, but also with the more abstract conceptualization of a continuous helical ventricular myocardial fiber array. Objective analysis of myocardial architecture by an automated method, including the entire myocardium and using several 3-dimensional levels of complexity, reveals a continuous helical myocardial fiber arrangement of both right and left ventricles, supporting the anatomical model of the helical ventricular myocardial band described by F. Torrent-Guasp. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Canuteson, E L; Zumberge, M
1996-07-01
In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.
Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays
Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.
2016-01-01
Objective Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks. PMID:27705958
Chronic in vivo stability assessment of carbon fiber microelectrode arrays
NASA Astrophysics Data System (ADS)
Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.
2016-12-01
Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.S.; Seong, P.H.
1995-08-01
In this paper, an improved algorithm for automatic test pattern generation (ATG) for nuclear power plant digital electronic circuits--the combinational type of logic circuits is presented. For accelerating and improving the ATG process for combinational circuits the presented ATG algorithm has the new concept--the degree of freedom (DF). The DF, directly computed from the system descriptions such as types of gates and their interconnections, is the criterion to decide which among several alternate lines` logic values required along each path promises to be the most effective in order to accelerate and improve the ATG process. Based on the DF themore » proposed ATG algorithm is implemented in the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, it is shown that the AFDS using the ATG algorithm makes Universal Card (UV Card) testing much faster than the present testing practice or by using exhaustive testing sets.« less
Microfiltration of enzyme treated egg whites for accelerated detection of viable Salmonella
USDA-ARS?s Scientific Manuscript database
We report detection of <13 CFU of Salmonella per 25 g egg white within 7 h by concentrating the bacteria using microfiltration through 0.2-lm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross-flow on both sides of the hollow fibers, and media selecti...
Settling dynamics of asymmetric rigid fibers
E.J. Tozzi; C Tim Scott; David Vahey; D.J. Klingenberg
2011-01-01
The three-dimensional motion of asymmetric rigid fibers settling under gravity in a quiescent fluid was experimentally measured using a pair of cameras located on a movable platform. The particle motion typically consisted of an initial transient after which the particle approached a steady rate of rotation about an axis parallel to the acceleration of gravity, with...
NASA Astrophysics Data System (ADS)
Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.
2017-12-01
The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.
Acceleration and Performance Modeling Workshop, Washington, DC, 14-17 May 79,
1979-12-01
disturbance of the muscular systems, perhaps changes in spindle fiber output, and changes in the perceived weight of the muscle because of the acceleration...at this point either. The output models which are determining performance are essentially tied to muscular systems, through manual control (hand and...feet), and through speech, another muscular output. In normal activities the pilot, who senses changes in the visual system, the acceleration vector
Zhang, Xiaoyu; Sun, Ling; Shen, Yang; Tian, Mi; Zhao, Jing; Zhao, Yu; Li, Meiyan; Zhou, Xingtao
2017-07-01
This study aimed to compare the biomechanical and histopathologic effects of transepithelial and accelerated epithelium-off pulsed-light accelerated corneal collagen cross-linking (CXL). A total of 24 New Zealand rabbits were analyzed after sham operation (control) or transepithelial or epithelium-off operation (45 mW/cm for both). The transepithelial group was treated with pulsed-light ultraviolet A for 5 minutes 20 seconds, and the epithelium-off group was treated for 90 seconds. Biomechanical testing, including ultimate stress, Young modulus, and the physiological modulus, was analyzed. Histological changes were evaluated by light microscopy and transmission electron microscopy. The stress-strain curve was nonlinear in both accelerated transepithelial and epithelium-off CXL groups. The stress and elastic moduli were all significantly higher in both experimental groups compared with the control group (P < 0.05), whereas there were no significant differences between the 2 treatment groups (P > 0.05). Six months after the operation, hematoxylin and eosin staining and transmission electron microscopy showed that the subcutaneous collagen fibers were arranged in a regular pattern, and the fiber density was higher in the experimental groups. Both transepithelial and accelerated epithelium-off CXL produced biomechanical and histopathologic improvements, which were not significantly different between the 2 pulsed-light accelerated CXL treatments.
Lightweight fiber optic microphones and accelerometers
NASA Astrophysics Data System (ADS)
Bucaro, J. A.; Lagakos, N.
2001-06-01
We have designed, fabricated, and tested two lightweight fiber optic sensors for the dynamic measurement of acoustic pressure and acceleration. These sensors, one a microphone and the other an accelerometer, are required for active blanket sound control technology under development in our laboratory. The sensors were designed to perform to certain specifications dictated by our active sound control application and to do so without exhibiting sensitivity to the high electrical voltages expected to be present. Furthermore, the devices had to be small (volumes less than 1.5 cm3) and light (less than 2 g). To achieve these design criteria, we modified and extended fiber optic reflection microphone and fiber microbend displacement device designs reported in the literature. After fabrication, the performances of each sensor type were determined from measurements made in a dynamic pressure calibrator and on a shaker table. The fiber optic microbend accelerometer, which weighs less than 1.8 g, was found to meet all performance goals including 1% linearity, 90 dB dynamic range, and a minimum detectable acceleration of 0.2 mg/√Hz . The fiber optic microphone, which weighs less than 1.3 g, also met all goals including 1% linearity, 85 dB dynamic range, and a minimum detectable acoustic pressure level of 0.016 Pa/√Hz . In addition to our specific use in active sound control, these sensors appear to have application in a variety of other areas.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
Experimental circular quantum secret sharing over telecom fiber network.
Wei, Ke-Jin; Ma, Hai-Qiang; Yang, Jian-Hui
2013-07-15
We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.
NASA Astrophysics Data System (ADS)
Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.
2014-01-01
Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.
A data reduction package for multiple object spectroscopy
NASA Technical Reports Server (NTRS)
Hill, J. M.; Eisenhamer, J. D.; Silva, D. R.
1986-01-01
Experience with fiber-optic spectrometers has demonstrated improvements in observing efficiency for clusters of 30 or more objects that must in turn be matched by data reduction capability increases. The Medusa Automatic Reduction System reduces data generated by multiobject spectrometers in the form of two-dimensional images containing 44 to 66 individual spectra, using both software and hardware improvements to efficiently extract the one-dimensional spectra. Attention is given to the ridge-finding algorithm for automatic location of the spectra in the CCD frame. A simultaneous extraction of calibration frames allows an automatic wavelength calibration routine to determine dispersion curves, and both line measurements and cross-correlation techniques are used to determine galaxy redshifts.
AFETR Instrumentation Handbook
1971-09-01
of time. From this, vehicle velocity and acceleration can be computed. LOCATION Three Askanias are mobile and may be located at selected universal...Being mobile , these cinetheodolites may be placed for optimum launch coverage. Preprogrammed focusing is provided for automatic focus from 2000 and 8000...console trailer. IR (lead sulfide sensor ) Automatic Tracking System with 1 to 20 miles range. Elevation range: -10 deg to +90 deg Azimuth range: 350
NASA Astrophysics Data System (ADS)
Asfarizal; Kasim, Anwar; Gunawarman; Santosa
2017-12-01
Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)
Rowan, Sharon L; Purves-Smith, Fennigje M; Solbak, Nathan M; Hepple, Russell T
2011-08-01
The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined. To this end, we examined the fiber size distribution in the slow twitch soleus (Sol) and fast twitch gastrocnemius (Gas) muscles between young adulthood (YA) and senescence (SEN). We also quantified the abundance of COX deficient myocytes and their size attributes to gain insight into the contribution of this phenotype to myofiber atrophy with aging. Our data showed that the progression of muscle atrophy, particularly its striking acceleration between late middle age and SEN, was paralleled by an accumulation of severely atrophic myofibers (≤ 1000 μm(2) in size) in both Sol and Gas. On the other hand, we observed no COX deficient myofibers in Sol, despite nearly 20% of the myofibers being severely atrophic. Similarly, only 0.17 ± 0.06% of all fibers in Gas were COX deficient, and their size was generally larger (2375 ± 319 μm(2)) than the severely atrophied myofibers noted above. Collectively, our results suggest that similar processes likely contribute to the acceleration of sarcopenia in both slow twitch and fast twitch muscles, and that COX deficiency is not a major contributor to this phenomenon. Copyright © 2011 Elsevier Inc. All rights reserved.
Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood
Samuel L. Zelinka; Douglas R. Rammer
2013-01-01
This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...
DOT National Transportation Integrated Search
2003-11-01
The objective of the research was to compare the performance of fiber reinforced and plain PCC concrete overlay when used as a thin non-dowelled overlay on top of a rubblized, distressed concrete pavement. The experiment was conducted at the Accelera...
Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly.
Schiele, Nathan R; Koppes, Ryan A; Chrisey, Douglas B; Corr, David T
2013-05-01
Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.
Rahn, D. D.; Acevedo, J. F.; Word, R. A.
2008-01-01
Matrix metalloprotease (MMP) activity is increased in the postpartum vagina of wild-type (WT) animals. This degradative activity is also accompanied by a burst in elastic fiber synthesis and assembly. The mechanisms that precipitate these changes are unclear. The goals of this study were to determine how vaginal distention (such as in parturition) affects elastic fiber homeostasis in the vaginal wall and the potential significance of these changes in the pathogenesis of pelvic organ prolapse. Vaginal distention with a balloon simulating parturition resulted in increased MMP-2 and MMP-9 activity in the vaginal wall of nonpregnant and pregnant animals. This was accompanied by visible fragmented and disrupted elastic fibers in the vaginal wall. In nonpregnant animals, the abundant amounts of tropoelastin and fibulin-5 in the vagina were not increased further by distention. In contrast, in pregnant animals, the suppressed levels of both proteins were increased 3-fold after vaginal distention. Distention performed in fibulin-5-deficient (Fbln5−/−) mice with defective elastic fiber synthesis and assembly induced accelerated pelvic organ prolapse, which never recovered. We conclude that, in pregnant mice, vaginal distention results in increased protease activity in the vaginal wall but also increased synthesis of proteins important for elastic fiber assembly. Distention may thereby contribute to the burst of elastic fiber synthesis in the postpartum vagina. The finding that distention results in accelerated pelvic organ prolapse in Fbln5−/− animals, but not in WT, indicates that elastic fiber synthesis is crucial for recovery of the vaginal wall from distention-induced increases in vaginal protease activity. PMID:18635445
NASA Technical Reports Server (NTRS)
Klein, M.; Reynolds, J.; Ricks, E.
1989-01-01
Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.
Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle
2009-10-19
Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less
Optical fiber voltage sensors for broad temperature ranges
NASA Technical Reports Server (NTRS)
Rose, A. H.; Day, G. W.
1992-01-01
We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.
Sakellariou, Giorgos K; Pye, Deborah; Vasilaki, Aphrodite; Zibrik, Lea; Palomero, Jesus; Kabayo, Tabitha; McArdle, Francis; Van Remmen, Holly; Richardson, Arlan; Tidball, James G; McArdle, Anne; Jackson, Malcolm J
2011-01-01
Summary Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1−/− mice were loaded with NO-sensitive (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1−/− mice compared with those from WT mice. Fibers from Sod1−/− mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1−/− mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1−/− mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1−/− mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle. PMID:21443684
Innovative Design for Composite Spacecraft Structure Thanks to Automatic Fiber Placement Technology
NASA Astrophysics Data System (ADS)
Brindeau, Aymeric; Khalfi, Thomas
2014-06-01
The innovative design for composite spacecraft structure thanks to automatic fiber placement technology takes place in the frame of the development of a new launcher. A heavy loaded spacecraft carrying structure is developed in order to allow performance and big payload volumes.This kind of structure already exists on a current launcher, but performances are not compatible with the new requirements. Indeed, in spite of a sandwich design made of carbon and aluminium honeycomb, mass and stiffness requirements are not fulfilled.Consequently, for the new structure, an innovative design has been set-up. The materials are still sandwich made of carbon and aluminium honeycomb in order to obtain the best ratio mass / stiffness, but major evolutions have been implemented of the geometry of the structure in order to increase the performance of the product. These evolutions are allowed thanks to the use of the fiber placement technology, which allows manufacturing geometries that are not reachable with standard lay-up by hands. The main progress deals with the manufacturing of revolution sub-structures, in one shot, with double curvature areas. Moreover, beyond the technical performance of the new product and the gains in terms of manufacturing time and quality, the integration of sub-structures is extremely simplified compared to the existing process. As a result, the technology of fiber placement is the opportunity to imagine new designs which allows increasing the performances, to reduce manufacturing cycles, and to simplify integration operations.
Comin, Cesar Henrique; Xu, Xiaoyin; Wang, Yaming; Costa, Luciano da Fontoura; Yang, Zhong
2014-12-01
We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.
Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng
2016-07-28
A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.
Accelerator Test of an Imaging Calorimeter
NASA Technical Reports Server (NTRS)
Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.;
2001-01-01
The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.
A 20fs synchronization system for lasers and cavities in accelerators and FELs
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.
2010-02-01
A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.
Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator
NASA Astrophysics Data System (ADS)
Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.
2018-03-01
At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.
Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen
2016-06-10
For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00 deg/h to 0.62 deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.
NASA Astrophysics Data System (ADS)
Zou, Chunrong; Li, Bin; Zhang, Changrui; Wang, Siqing; Xie, Zhengfang; Shao, Changwei
2016-02-01
The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.
PRISM software—Processing and review interface for strong-motion data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-11-28
Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.
Native Cellulose: Structure, Characterization and Thermal Properties
Poletto, Matheus; Ornaghi Júnior, Heitor L.; Zattera, Ademir J.
2014-01-01
In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations. PMID:28788179
Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde
2018-05-01
Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
NASA Astrophysics Data System (ADS)
Takemura, Yasuhiro; Sato, Jun-Ya; Nakajima, Masato
2005-01-01
A non-restrictive and non-contact respiratory movement monitoring system that finds the boundary between chest and abdomen automatically and detects the vertical movement of each part of the body separately is proposed. The system uses a fiber-grating vision sensor technique and the boundary position detection is carried out by calculating the centers of gravity of upward moving and downward moving sampling points, respectively. In the experiment to evaluate the ability to detect the respiratory movement signals of each part and to discriminate between obstructive and central apneas, detected signals of the two parts and their total clearly showed the peculiarities of obstructive and central apnea. The cross talk between the two categories classified automatically according to several rules that reflect the peculiarities was ≤ 15%. This result is sufficient for discriminating central sleep apnea syndrome from obstructive sleep apnea syndrome and indicates that the system is promising as screening equipment. Society of Japan
Acceleration of low order finite element computation with GPUs (Invited)
NASA Astrophysics Data System (ADS)
Knepley, M. G.
2010-12-01
Considerable effort has been focused on the acceleration using GPUs of high order spectral element methods and discontinuous Galerkin finite element methods. However, these methods are not universally applicable, and much of the existing FEM software base employs low order methods. In this talk, we present a formulation of FEM, using the PETSc framework from ANL, which is amenable to GPU acceleration even at very low order. In addition, using the FEniCS system for FEM, we show that the relevant kernels can be automatically generated and optimized using a symbolic manipulation system.
Güven, Mehmet Esad
2018-01-01
The aim of this study was to determine the effects of glass and polyethylene fibers on the color and translucency change of bulk-fill and anterior composites before and after artificial accelerated aging (AAA). Two types of teflon molds were used to fabricate samples which were 13 mm in diameter and, respectively, 2 mm and 4 mm in height. Polyethylene fiber (PF) and glass fiber (GF) were incorporated in the middle of the composite samples. Color and translucency changes of each composite were evaluated before and after AAA with spectrophotometer. ANOVA and Tukey's HSD post hoc statistical analysis were used at a significance level of 0.05. Before AAA (for anterior composites), there were no significant differences in L* and b* parameters among the three groups (p > 0.05); there were no significant differences in L* parameter between PF and GF groups or in TP between GF and control groups (p > 0.05) (for bulk-fill composites). After AAA, there were no significant differences in L* parameter between GF and control groups, in a* parameter between PF and control groups, in b* parameter among all groups, or in TP parameter between GF and control groups (p > 0.05). Fiber reinforcement led to color and TP change in both anterior and bulk-fill resin composites. PMID:29850499
Doppler Global Velocimetry at NASA Glenn Research Center: System Discussion and Results
NASA Technical Reports Server (NTRS)
Lant, Christian T.
2003-01-01
A ruggedized Doppler Global Velocimetry system has been built and tested at NASA Glenn Research Center. One component of planar velocity measurements of subsonic and supersonic flows from an under-expanded free jet are reported, which agree well with predicted values. An error analysis evaluates geometric and spectral error terms, and characterizes speckle noise in isotropic data. A multimode, fused fiber optic bundle is demonstrated to couple up to 650 mJ/pulse of laser light without burning or fiber ablation, and without evidence of Stimulated Brillouin Scattering or other spectral-broadening problems. Comparisons are made between spinning wheel data using illumination by freespace beam propagation and fiber optic beam delivery. The fiber bundle illumination is found to provide more spatially even and stable illumination than is typically available from pulsed Nd:YAG laser beams. The fiber bundle beam delivery is also a step toward making remote measurements and automatic real-time plume sectioning feasible in wind tunnel environments.
A novel optical fiber displacement sensor of wider measurement range based on neural network
NASA Astrophysics Data System (ADS)
Guo, Yuan; Dai, Xue Feng; Wang, Yu Tian
2006-02-01
By studying on the output characteristics of random type optical fiber sensor and semicircular type optical fiber sensor, the ratio of the two output signals was used as the output signal of the whole system. Then the measurement range was enlarged, the linearity was improved, and the errors of reflective and absorbent changing of target surface are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network(ANN) is set up. So the intrinsic errors such as effects of fluctuations in the light, circuit excursion, the intensity losses in the fiber lines and the additional losses in the receiving fiber caused by bends are eliminated. By discussing in theory and experiment, the error of nonlinear is 2.9%, the measuring range reaches to 5-6mm and the relative accuracy is 2%.And this sensor has such characteristics as no electromagnetic interference, simple construction, high sensitivity, good accuracy and stability. Also the multi-point sensor system can be used to on-line and non-touch monitor in working locales.
Repetition rate multiplication of frequency comb using all-pass fiber resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lijun; Yang, Honglei; Zhang, Hongyuan
2016-09-15
We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The inputmore » and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.« less
NASA Astrophysics Data System (ADS)
Goldberg, Niels; Ospald, Felix; Schneider, Matti
2017-10-01
In this article we introduce a fiber orientation-adapted integration scheme for Tucker's orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.
Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.
Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou
2014-12-01
An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.
Dillard Drive Middle & Elementary School, Raleigh, North Carolina.
ERIC Educational Resources Information Center
Design Cost Data, 2001
2001-01-01
Presents design features of the Dillard Drive Middle & Elementary School (North Carolina) that incorporates daylighting in the majority of the classrooms, the gymnasium, dining room, and media center. The design also uses advanced lighting controls, fiber optic networking, automatic environmental controls, and an energy management system that…
NASA Astrophysics Data System (ADS)
Baranov, G. D.; Koresheva, E. R.; Listratov, V. I.; Merkul'ev, Yu A.; Mineev, G. V.; Nikitenko, A. I.; Osipov, I. E.; Rogachev, A. V.; Tolokonnikov, S. M.; Chumanov, A. N.
1989-08-01
It is suggested that cryogenic targets be delivered to the focus of a laser fusion chamber by a "cryogenic gun" system based on the principle of electromagnetic acceleration of a special ferromagnetic plunger carrying a target. The performance of the acceleration unit of the cryogenic gun is considered. Experimental results are reported.
Coherent radiation of relativistic electrons in dielectric fibers in the millimeter wavelength range
NASA Astrophysics Data System (ADS)
Naumenko, G. A.; Potylitsyn, A. P.; Bleko, V. V.; Soboleva, V. V.
2015-02-01
The generation of visible light by a relativistic electron beam in dielectric fibers was considered in X. Artru and C. Ray, Nucl. Inst. Meth. B 309, 4 (2013), where the characteristics of radiation induced in a fiber by the electromagnetic field of a relativistic charged particle were studied and it was emphasized that they differ from those in the traditional mechanisms of radiation such as transition and diffraction. We have experimentally studied the characteristics of such a radiation in the millimeter wavelength range. It has been shown that radiation can be generated through different mechanisms depending on the geometry of the position of a fiber with respect to the trajectory of the charged particle. Fibers have been shown to be promising for nondestructive diagnostics of accelerator beams.
Effect of natural fibers and bio-resins on mechanical properties in hybrid and non-hybrid composites
NASA Astrophysics Data System (ADS)
Fragassa, Cristiano
2016-05-01
The aim of the present experimental investigation was to perform a comparative analysis concerning the influence on mechanical properties of natural fibers and/or bio-resins in reinforced thermoset composites. Flax and basalt fibers were selected as natural reinforcements, as single constituents or in hybrid combination. Glass synthetic fibers were used for comparison. Eco-friendly matrixes, both epoxy or vinylester, were considered and compared with composites based on traditional resins. Samples were fabricated by hand lay-up and resin infusion techniques. Cures were accelerated and controlled by applying heat and pressure in autoclave. Tensile, flexural and impact tests were carried out according to ASTM standards.
NASA Astrophysics Data System (ADS)
Parekh, Devang; Nguyen, Nguyen X.
2018-02-01
The recent advent of Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) has accelerated a demand for a Fiber-in-the-Premises video communication (VCOM) solution that converges toward 100Gbps and Beyond. Hybrid Active-Optical-Cables (AOC) is a holistic connectivity platform well suited for this "The Last Yard" connectivity; as it combines both copper and fiber optics to deliver a high data-rate and power transmission needed. While technically feasible yet challenging to manufacture, hybrid-AOC could be a holygrail fiber-optics solution that dwarfs the volume of both telecom and datacom connection in the foreseeable future.
Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap
2013-12-31
information to be automatically presented without comment. 2.2.2 NEW FEATURES AND CAPABILITIES A number of new multiplayer capabilities were...2.4.1 OVERVIEW The EA game engine has two components: the runtime engine and the tools suite. The tools suite includes the Experience Development...the Learner. Figure 6: Experience Accelerator Logical Block Diagram The EARTE is a multiuser architecture for internet gaming . It has light
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
NASA Astrophysics Data System (ADS)
Ammazzalorso, F.; Bednarz, T.; Jelen, U.
2014-03-01
We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Pinar, Ali; Tunc, Suleyman; Erdik, Mustafa
2014-05-01
The Istanbul EEW network consisting of 10 inland and 5 OBS strong motion stations located close to the Main Marmara Fault zone is operated by KOERI. Data transmission between the remote stations and the base station at KOERI is provided both with satellite and fiber optic cable systems. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. The data transmission time from the remote stations to the KOERI data center is a few milliseconds through fiber optic lines and less than a second via satellites. The early warning signal (consisting three alarm levels) is communicated to the appropriate servo shut-down systems of the receipent facilities, that automatically decide proper action based on the alarm level. Istanbul Gas Distribution Corporation (IGDAS) is one of the end users of the EEW signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867 km of gas lines with 550 district regulators and 474,000 service boxes. State of-the-art protection systems automatically cut natural gas flow when breaks in the pipelines are detected. Since 2005, buildings in Istanbul using natural gas are required to install seismometers that automatically cut natural gas flow when certain thresholds are exceeded. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 581 district regulator sites. The SCADA system of IGDAŞ receives the EEW signal from KOERI and decide the proper actions according to the previously specified ground acceleration levels. Presently, KOERI sends EEW signal to the SCADA system of IGDAS Natural Gas Network of Istanbul. The EEW signal of KOERI is also transmitted to the serve shut down system of the Marmaray Rail Tube Tunnel and Commuter Rail Mass Transit System in Istanbul. The Marmaray system includes an undersea railway tunnel under the Bosphorus Strait. Several strong motion instruments are installed within the tunnel for taking measurements against strong ground shaking and early warning purposes. This system is integrated with the KOERI EEW System. KOERI sends the EEW signal to the command center of Marmaray. Having received the signal, the command center put into action the previously defined measurements. For example, the trains within the tunnel will be stopped at the nearest station, no access to the tunnel will be allowed to the trains approaching the tunnel, water protective caps will be closed to protect flood closing the connection between the onshore and offshore tunnels.
ERIC Educational Resources Information Center
School Science Review, 1977
1977-01-01
Includes methods for demonstrating Schlieren effect, measuring refractive index, measuring acceleration, presenting concepts of optics, automatically recording weather, constructing apparaturs for sound experiments, using thermistor thermometers, using the 741 operational amplifier in analog computing, measuring inductance, electronically ringing…
Automated pedestrian counter : final report, February 2010.
DOT National Transportation Integrated Search
2010-02-01
Emerging sensor technologies accelerated the shift toward automatic pedestrian counting methods to : acquire reliable long-term data for transportation design, planning, and safety studies. Although a : number of commercial pedestrian sensors are ava...
Automatic choroid cells segmentation and counting in fluorescence microscopic image
NASA Astrophysics Data System (ADS)
Fei, Jianjun; Zhu, Weifang; Shi, Fei; Xiang, Dehui; Lin, Xiao; Yang, Lei; Chen, Xinjian
2016-03-01
In this paper, we proposed a method to automatically segment and count the rhesus choroid-retinal vascular endothelial cells (RF/6A) in fluorescence microscopic images which is based on shape classification, bottleneck detection and accelerated Dijkstra algorithm. The proposed method includes four main steps. First, a thresholding filter and morphological operations are applied to reduce the noise. Second, a shape classifier is used to decide whether a connected component is needed to be segmented. In this step, the AdaBoost classifier is applied with a set of shape features. Third, the bottleneck positions are found based on the contours of the connected components. Finally, the cells segmentation and counting are completed based on the accelerated Dijkstra algorithm with the gradient information between the bottleneck positions. The results show the feasibility and efficiency of the proposed method.
Wireless tracking of cotton modules Part II: automatic machine identification and system testing
USDA-ARS?s Scientific Manuscript database
Mapping the harvest location of cotton modules is essential to practical understanding and utilization of spatial-variability information in fiber quality. A wireless module-tracking system was recently developed, but automation of the system is required before it will find practical use on the far...
NASA Technical Reports Server (NTRS)
Nikitin, M. V.
1980-01-01
A series of experiments comparing single and combined effects of hypokinesia and gravitational acceleration on morphology of intestinal blood vessels are discussed. Results indicate that hypokinesia has a whole body nonspecific effect reflected even in an organ whose activity shows little or no change due to hypokinesia. In early hypokinetic stages blood redistribution caused anorexia, intestinal atonia, and secretory disruption. Destructive changes from further exposure include aneurisms, varicoses, extravascular movement of blood elements, and vascular wall muscle fiber degeneration. The effect of acceleration is greatest in the ventrodorsal direction. Changes due to acceleration then hypokinesia are like those due to hypokinesia alone; changes due to acceleration before and after hypokinesia are like those due to acceleration. Adaptation raises acceleration tolerance but the effects do not survive four-week hypokinesia.
Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorn, C.; Barbosa, F.J.; Freyberger, A.
2000-10-01
A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less
Detecting ionizing radiation with optical fibers down to biomedical doses
NASA Astrophysics Data System (ADS)
Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.
2013-10-01
We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.
A linear accelerator for simulated micrometeors.
NASA Technical Reports Server (NTRS)
Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.
1973-01-01
Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.
Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam
NASA Astrophysics Data System (ADS)
Mel'nikov, I. V.; Haus, J. W.; Kazansky, P. G.
2003-05-01
We use a Fokker-Planck equation to study the phenomenon of accelerating a neutral atom bunch by a chirped optical beam. This method enables us to obtain a semi-analytical solution to the problem in which a wide range of parameters can be studied. In addition it provides a simple physical interpretation where the problem is reduced to an analogous problem of charged particles accelerators, that is, the Vecksler-Macmillan principle of phase stability. A possible experimental scenario is suggested, which uses a photonic crystal fiber as the guiding medium.
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2016-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.
Semi-automatic characterization and simulation of VCSEL devices for high speed VSR communications
NASA Astrophysics Data System (ADS)
Pellevrault, S.; Toffano, Z.; Destrez, A.; Pez, M.; Quentel, F.
2006-04-01
Very short range (VSR) high bit rate optical fiber communications are an emerging market dedicated to local area networks, digital displays or board to board interconnects within real time calculators. In this technology, a very fast way to exchange data with high noise immunity and low-cost is needed. Optical multimode graded index fibers are used here because they have electrical noise immunity and are easier to handle than monomode fibers. 850 nm VCSEL are used in VSR communications because of their low cost, direct on-wafer tests, and the possibility of manufacturing VCSEL arrays very easily compared to classical optical transceivers using edge-emitting laser diodes. Although much research has been carried out in temperature modeling on VCSEL emitters, few studies have been devoted to characterizations over a very broad range of temperatures. Nowadays, VCSEL VSR communications tend to be used in severe environments such as space, avionics and military equipments. Therefore, a simple way to characterize VCSEL emitters over a broad range of temperature is required. In this paper, we propose a complete characterization of the emitter part of 2.5 Gb/s opto-electrical transceiver modules operating from -40°C to +120°C using 850 nm VCSELs. Our method uses simple and semi-automatic measurements of a given set of chosen device parameters in order to make fast and efficient simulations.
NASA Astrophysics Data System (ADS)
Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.
2016-07-01
It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, W.B.
1979-09-01
This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.
NASA Technical Reports Server (NTRS)
Tinling, B. E.
1977-01-01
Estimates of the effectiveness of a model following type control system in reducing the roll excursion due to a wake vortex encounter were obtained from single degree of freedom computations with inputs derived from the results of wind tunnel, flight, and simulation experiments. The analysis indicates that the control power commanded by the automatic system must be roughly equal to the vortex induced roll acceleration if effective limiting of the maximum bank angle is to be achieved.
NASA Technical Reports Server (NTRS)
Gates, Ordway B., Jr.; Woodling, C. H.
1959-01-01
Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.
Noninvasive blood pressure measurement scheme based on optical fiber sensor
NASA Astrophysics Data System (ADS)
Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan
2016-10-01
Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.
NASA Astrophysics Data System (ADS)
Wiemker, Rafael; Sevenster, Merlijn; MacMahon, Heber; Li, Feng; Dalal, Sandeep; Tahmasebi, Amir; Klinder, Tobias
2017-03-01
The imaging biomarkers EmphysemaPresence and NoduleSpiculation are crucial inputs for most models aiming to predict the risk of indeterminate pulmonary nodules detected at CT screening. To increase reproducibility and to accelerate screening workflow it is desirable to assess these biomarkers automatically. Validation on NLST images indicates that standard histogram measures are not sufficient to assess EmphysemaPresence in screenees. However, automatic scoring of bulla-resembling low attenuation areas can achieve agreement with experts with close to 80% sensitivity and specificity. NoduleSpiculation can be automatically assessed with similar accuracy. We find a dedicated spiculi tracing score to slightly outperform generic combinations of texture features with classifiers.
NASA Technical Reports Server (NTRS)
Halyo, N.
1979-01-01
The development of a digital automatic control law for a small jet transport to perform a steep final approach in automatic landings is reported along with the development of a steady-state Kalman filter used to provide smooth estimates to the control law. The control law performs the functions of localizer and glides capture, localizer and glideslope track, decrab, and place. The control law uses the microwave landing system position data, and aircraft body-mounted accelerators, attitude and attitude rate information. The results obtained from a digital simulation of the aircraft dynamics, wind conditions, and sensor noises using the control law and filter developed are described.
Oishi, Yasuharu; Roy, Roland R; Ogata, Tomonori; Ohira, Yoshinobu
2015-12-01
We investigated heat-stress effects on the adult myosin heavy chain (MyHC) profile of soleus muscle fibers at an early stage of regeneration. Regenerating fibers in adult rats were analyzed 2, 4, or 6 days after bupivacaine injection. Rats were heat stressed by immersion in water (42 ± 1°C) for 30 minutes 24 hours after bupivacaine injection and every other day thereafter. No adult MyHC isoforms were observed after 2 days, whereas some fibers expressed only fast MyHC after 4 days. Heat stress increased fast and slow MyHC in regenerating fibers after 6 days. Regenerating fibers expressing only slow MyHC were observed only in heat-stressed muscles. Bupivacaine injection increased the number of Pax7(+) and MyoD(+) satellite cells in regenerating fibers, more so in heat-stressed rats. The results indicate that heat stress accelerates fast-to-slow MyHC phenotype conversion in regenerating fibers via activation of satellite cells. © 2015 Wiley Periodicals, Inc.
Preparation of antimicrobial MnO4--doped nylon-66 fibers with excellent laundering durability
NASA Astrophysics Data System (ADS)
Zhang, Mingxing; Gao, Qianhong; Yang, Chenguang; Pang, Lijuan; Wang, Honglong; Li, Rong; Xing, Zhe; Hu, Jiangtao; Wu, Guozhong
2017-11-01
A highly effective antimicrobial nylon 66 fiber doped with permanganate ions was prepared via a simultaneous irradiation induced graft polymerization. The physicochemical properties of the fibers were carefully characterized by various techniques, including Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy, revealing that permanganate ions (about 1.48 mmol/g) have been successfully loaded onto the surface of the nylon 66 fibers. The antimicrobial activity of the modified nylon 66 fibers against Staphylococcus aureus and Candida albicans were investigated. Accelerated laundering tests and tensile tests were conducted to access the effect of laundering on the antimicrobial activity and the mechanical property of the modified nylon 66 fibers, respectively. All results indicate that we have prepared a new highly effective antimicrobial nylon 66 fiber (almost a 100% reduction in the number of S. aureus and C. albicans colonies). Furthermore, the modified nylon 66 fibers are durable, maintaining antimicrobial resistance after 100 commercial or domestic launderings and retaining its excellent mechanical property during preparation and laundering.
Evaluation of Automobile Drivetrain Components to Improve Fuel Economy
DOT National Transportation Integrated Search
1979-03-01
Wide ratio range automatic transmissions with lockup torque converters could be in production by the early 1980's. In order to evaluate their impact upon fuel economy, emissions, driveability, acceleration, and durability, four 1975 Chrysler automobi...
NASA Astrophysics Data System (ADS)
Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán
2018-03-01
This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.
NASA Astrophysics Data System (ADS)
Gabler, Markus; Tkachenko, Viktoriya; Küppers, Simon; Kuka, Georg G.; Habel, Wolfgang R.; Milwich, Markus; Knippers, Jan
2012-04-01
The main goal of the presented work was to evolve a multifunctional beam composed out of fiber reinforced plastics (FRP) and an embedded optical fiber with various fiber Bragg grating sensors (FBG). These beams are developed for the use as structural member for bridges or industrial applications. It is now possible to realize large scale cross sections, the embedding is part of a fully automated process and jumpers can be omitted in order to not negatively influence the laminate. The development includes the smart placement and layout of the optical fibers in the cross section, reliable strain transfer, and finally the coupling of the embedded fibers after production. Micromechanical tests and analysis were carried out to evaluate the performance of the sensor. The work was funded by the German ministry of economics and technology (funding scheme ZIM). Next to the authors of this contribution, Melanie Book with Röchling Engineering Plastics KG (Haren/Germany; Katharina Frey with SAERTEX GmbH & Co. KG (Saerbeck/Germany) were part of the research group.
Fiber optical sensors for aircraft applications
NASA Astrophysics Data System (ADS)
Pechstedt, Ralf D.
2014-09-01
In this paper selected fiber optical point sensors that are of potential interest for deployment in aircraft are discussed. The operating principles together with recent measurement results are described. Examples include a high-temperature combined pressure and temperature sensor for engine health, hydraulics and landing gear monitoring, an ultra-high sensitive pressure sensor for oil, pneumatic and fluid aero systems applications and a combined acceleration and temperature sensor for condition monitoring of rotating components.
Quantitative evaluation of skeletal muscle defects in second harmonic generation images.
Liu, Wenhua; Raben, Nina; Ralston, Evelyn
2013-02-01
Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.
Quantitative evaluation of skeletal muscle defects in second harmonic generation images
NASA Astrophysics Data System (ADS)
Liu, Wenhua; Raben, Nina; Ralston, Evelyn
2013-02-01
Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.
Accelerating semantic graph databases on commodity clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Castellana, Vito G.; Haglin, David J.
We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.
CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS
D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.
2010-01-01
Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930
Software Computes Tape-Casting Parameters
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2003-01-01
Tcast2 is a FORTRAN computer program that accelerates the setup of a process in which a slurry containing metal particles and a polymeric binder is cast, to a thickness regulated by a doctor blade, onto fibers wound on a rotating drum to make a green precursor of a metal-matrix/fiber composite tape. Before Tcast2, setup parameters were determined by trial and error in time-consuming multiple iterations of the process. In Tcast2, the fiber architecture in the final composite is expressed in terms of the lateral distance between fibers and the thickness-wise distance between fibers in adjacent plies. The lateral distance is controlled via the manner of winding. The interply spacing is controlled via the characteristics of the slurry and the doctor-blade height. When a new combination of fibers and slurry is first cast and dried to a green tape, the shrinkage from the wet to the green condition and a few other key parameters of the green tape are measured. These parameters are provided as input to Tcast2, which uses them to compute the doctor-blade height and fiber spacings needed to obtain the desired fiber architecture and fiber volume fraction in the final composite.
Real-time color image processing for forensic fiber investigations
NASA Astrophysics Data System (ADS)
Paulsson, Nils
1995-09-01
This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.
A Fiber-Optic Interferometric Tri-Component Geophone for Ocean Floor Seismic Monitoring
Chen, Jiandong; Chang, Tianying; Fu, Qunjian; Lang, Jinpeng; Gao, Wenzhi; Wang, Zhongmin; Yu, Miao; Zhang, Yanbo; Cui, Hong-Liang
2016-01-01
For the implementation of an all fiber observation network for submarine seismic monitoring, a tri-component geophone based on Michelson interferometry is proposed and tested. A compliant cylinder-based sensor head is analyzed with finite element method and tested. The operation frequency ranges from 2 Hz to 150 Hz for acceleration detection, employing a phase generated carrier demodulation scheme, with a responsivity above 50 dB re rad/g for the whole frequency range. The transverse suppression ratio is about 30 dB. The system noise at low frequency originated mainly from the 1/f fluctuation, with an average system noise level −123.55 dB re rad/Hz ranging from 0 Hz to 500 Hz. The minimum detectable acceleration is about 2 ng/Hz, and the dynamic range is above 116 dB. PMID:28036011
A fiber Bragg grating acceleration sensor for ground surveillance
NASA Astrophysics Data System (ADS)
Jiang, Shaodong; Zhang, Faxiang; Lv, Jingsheng; Ni, Jiasheng; Wang, Chang
2017-10-01
Ground surveillance system is a kind of intelligent monitoring equipment for detecting and tracking the ground target. This paper presents a fiber Bragg grating (FBG) acceleration sensor for ground surveillance, which has the characteristics of no power supply, anti-electromagnetic interference, easy large-scale networking, and small size. Which make it able to achieve the advantage of the ground surveillance system while avoiding the shortcoming of the electric sensing. The sensor has a double cantilever beam structure with a sensitivity of 1000 pm/g. Field experiment has been carried out on a flood beach to examine the sensor performance. The result shows that the detection distance on the walking of personnel reaches 70m, and the detection distance on the ordinary motor vehicle reaches 200m. The performance of the FBG sensor can satisfy the actual needs of the ground surveillance system.
Shock wave treatment improves nerve regeneration in the rat.
Mense, Siegfried; Hoheisel, Ulrich
2013-05-01
The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.
A Novel Fabry-Perot Cavity Fiber Sensor
NASA Astrophysics Data System (ADS)
Lin, Chun; Huang, Yuan Qing; Lei, Wang; Ye, Xiao Juan
Fabry-Perot (F-P) cavity fiber sensors are often used in acceleration, vibration and pressure measurement. When the structure of sensors are similar, there are the same disadvantages exist. A novel design of Fabry-Perot (F-P) cavity fiber sensor is described in this paper, which is composed by a non-coating end-face and a holophote. Triple beams interference is formed in the sensor and shows higher sensitivity. In order to demodulate interference signal in great background noise, two photodiodes are connected in series to form short circuit current which delimits the common mode signal. Experimental results are described for the sensor signal responding to the vibration excited by PZT.^p
NASA Technical Reports Server (NTRS)
1979-01-01
The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.
Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.
Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J
2017-09-01
A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
NASA Astrophysics Data System (ADS)
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Method for Predicting and Optimizing System Parameters for Electrospinning System
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor)
2011-01-01
An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.
Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration
NASA Astrophysics Data System (ADS)
Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.
2017-11-01
Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4
Plasma-enhanced synthesis of green flame retardant cellulosic materials
NASA Astrophysics Data System (ADS)
Totolin, Vladimir
The natural fiber-containing fabrics and composites are more environmentally friendly, and are used in transportation (automobiles, aerospace), military applications, construction industries (ceiling paneling, partition boards), consumer products, etc. Therefore, the flammability characteristics of the composites based on polymers and natural fibers play an important role. This dissertation presents the development of plasma assisted - green flame retardant coatings for cellulosic substrates. The overall objective of this work was to generate durable flame retardant treatment on cellulosic materials. In the first approach sodium silicate layers were pre-deposited onto clean cotton substrates and cross linked using low pressure, non-equilibrium oxygen plasma. A statistical design of experiments was used to optimize the plasma parameters. The modified cotton samples were tested for flammability using an automatic 45° angle flammability test chamber. Aging tests were conducted to evaluate the coating resistance during the accelerated laundry technique. The samples revealed a high flame retardant behavior and good thermal stability proved by thermo-gravimetric analysis. In the second approach flame retardant cellulosic materials have been produced using a silicon dioxide (SiO2) network coating. SiO 2 network armor was prepared through hydrolysis and condensation of the precursor tetraethyl orthosilicate (TEOS), prior coating the substrates, and was cross linked on the surface of the substrates using atmospheric pressure plasma (APP) technique. Due to protection effects of the SiO2 network armor, the cellulosic based fibers exhibit enhanced thermal properties and improved flame retardancy. In the third approach, the TEOS/APP treatments were extended to linen fabrics. The thermal analysis showed a higher char content and a strong endothermic process of the treated samples compared with control ones, indicating a good thermal stability. Also, the surface analysis proved the existence of the silica-based coatings on all treated cellulosic substrates after intense ultrasound washes. The results obtained in this work allow us to conclude that silica-based coatings used in conjunction with plasma processes have high potential to obtain green flame retardant cellulosic materials with potential applications in the development of upholstered furniture, clothing and military applications.
Analysis of the mechanics and deformation characteristics of optical fiber acceleration sensor
NASA Astrophysics Data System (ADS)
Liu, Zong-kai; Bo, Yu-ming; Zhou, Ben-mou; Wang, Jun; Huang, Ya-dong
2016-10-01
The optical fiber sensor holds many advantages such as smaller volume, lighter weight, higher sensitivity, and stronger anti-interference ability, etc. It can be applied to oil exploration to improve the exploration efficiency, since the underground petroleum distribution can be obtained by detecting and analyzing the echo signals. In this paper, the cantilever beam optical fiber sensor was mainly investigated. Specifically, the finite element analysis method is applied to the numerical analysis of the changes and relations of the optical fiber rail slot elongation on the surface of the PC material fiber winding plate along with the changes of time and power under the action of sine force. The analysis results show that, when the upper and lower quality blocks are under the action of sine force, the cantilever beam optical fiber sensor structure can basically produce synchronized deformation along with the force. And the optical fiber elongation length basically has a linear relationship with the sine force within the time ranges of 0.2 0.4 and 0.6 0.8, which would be beneficial for the subsequent signal acquisition and data processing.
Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm
NASA Astrophysics Data System (ADS)
Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu
2018-06-01
A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.
Precision CW laser automatic tracking system investigated
NASA Technical Reports Server (NTRS)
Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.
1966-01-01
Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.
An Automated Optical Fiber Puller for Use in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Smith, W. Scott (Technical Monitor)
2002-01-01
With the slowdown in space station construction, limiting astronaut time for scientific experiments, an effort is being made to automate certain experiments. One such experiment is production of heavy metal fluoride fibers in the microgravity environment. Previous work by this author and others have shown that microgravity inhibits crystallization of ZBLAN glass. Thus an automated experiment has been designed. This experiment will consist of several elements, one which includes the use of an autonomous robot to initiate fiber pulling. The first element will be to melt the preform to eliminate crystals. The preform tip will then be heated to the viscosity necessary for fiber drawing. The robot will initiate the draw and attach the fiber end to the take-up reel. Once fiber pulling has commenced, sensors will be used to detect a fiber break, whereupon the robot can re-initiate the pulling process. The fiber will be coated with a polymer and the polymer cured with ultraviolet light. A laser micrometer will be used to monitor fiber diameter. The experiment is designed so that up to 10 preforms can be pulled into fiber during one flight. The apparatus will be mounted on a free-flying carrier which will be placed into low-earth orbit from the cargo bay of the space shuttle by the shuttle robot arm. The experiment can be started by a signal from the shuttle or from the ground via telescience. The experiment will proceed automatically using specially designed algorithms and will be monitored from the ground. The carrier will be picked up by the shuttle before return to earth.
Ren, Xiaozhi; Han, Yiming; Wang, Jie; Jiang, Yuqi; Yi, Zhengfang; Xu, He; Ke, Qinfei
2018-04-01
A chronic wound in diabetic patients is usually characterized by poor angiogenesis and delayed wound closure. The exploration of efficient strategy to significantly improve angiogenesis in the diabetic wound bed and thereby accelerate wound healing is still a significant challenge. Herein, we reported a kind of aligned porous poly (l-lactic acid) (PlLA) electrospun fibrous membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS) for diabetic wound healing. The PlLA electrospun fibers aligned in a single direction and there were ellipse-shaped nano-pores in situ generated onto the surface of fibers, while the DS were well distributed in the fibers and the DMOG as well as Si ion could be controlled released from the nanopores on the fibers. The in vitro results revealed that the aligned porous composite membranes (DS-PL) could stimulate the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) compared with the pure PlLA membranes. The in vivo study further demonstrated that the prepared DS-PL membranes significantly improved neo-vascularization, re-epithelialization and collagen formation as well as inhibited inflammatory reaction in the diabetic wound bed, which eventually stimulated the healing of the diabetic wound. Collectively, these results suggest that the combination of hierarchical structures (nanopores on the aligned fibers) with the controllable released DMOG drugs as well as Si ions from the membranes, which could create a synergetic effect on the rapid stimulation of angiogenesis in the diabetic wound bed, is a potential novel therapeutic strategy for highly efficient diabetic wound healing. A chronic wound in diabetic patients is usually characterized by the poor angiogenesis and the delayed wound closure. The main innovation of this study is to design a new kind of skin tissue engineered scaffold, aligned porous poly (l-lactic acid) (PlLA) electrospun membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS), which could significantly improve angiogenesis in the diabetic wound bed and thereby accelerate diabetic wound healing. The results revealed that the electrospun fibers with ellipse-shaped nano-pores on the surface were aligned in a single direction, while there were DS particles distributed in the fibers and the DMOG as well as Si ions could be controllably released from the nanopores on the fibers. The in vitro studies demonstrated that the hierarchical nanostructures (nanopores on the aligned fibers) and the controllable released chemical active agents (DMOG drugs and Si ions) from the DS-PL membranes could exert a synergistic effect on inducing the endothelial cell proliferation, migration and differentiation. Above all, the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization as well as inhibited inflammation reaction in the wound sites, which eventually stimulated the healing of diabetic wounds in vivo. The significance of the current study is that the combination of the hierarchical aligned porous nanofibrous structure with DMOG-loaded MSNs incorporated in electrospun fibers may suggest a high-efficiency strategy for chronic wound healing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Automatic Classification of Tremor Severity in Parkinson's Disease Using a Wearable Device.
Jeon, Hyoseon; Lee, Woongwoo; Park, Hyeyoung; Lee, Hong Ji; Kim, Sang Kyong; Kim, Han Byul; Jeon, Beomseok; Park, Kwang Suk
2017-09-09
Although there is clinical demand for new technology that can accurately measure Parkinsonian tremors, automatic scoring of Parkinsonian tremors using machine-learning approaches has not yet been employed. This study aims to fill this gap by proposing machine-learning algorithms as a way to predict the Unified Parkinson's Disease Rating Scale (UPDRS), which are similar to how neurologists rate scores in actual clinical practice. In this study, the tremor signals of 85 patients with Parkinson's disease (PD) were measured using a wrist-watch-type wearable device consisting of an accelerometer and a gyroscope. The displacement and angle signals were calculated from the measured acceleration and angular velocity, and the acceleration, angular velocity, displacement, and angle signals were used for analysis. Nineteen features were extracted from each signal, and the pairwise correlation strategy was used to reduce the number of feature dimensions. With the selected features, a decision tree (DT), support vector machine (SVM), discriminant analysis (DA), random forest (RF), and k -nearest-neighbor ( k NN) algorithm were explored for automatic scoring of the Parkinsonian tremor severity. The performance of the employed classifiers was analyzed using accuracy, recall, and precision, and compared to other findings in similar studies. Finally, the limitations and plans for further study are discussed.
Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu
2014-01-01
Purpose To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). Materials and Methods The lower leg of five young and five senior subjects was scanned at 3T and DTI indices extracted using three methods: ROI, histogram and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. Results The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (p<0.05), while the small increase in fractional anisotropy (FA) with age was not significant (MG/LG: p=0.39/0.85; 95% CI:[ −0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (p<0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Conclusion Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. PMID:24771672
Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu
2015-04-01
To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). The lower leg of five young and five senior subjects was scanned at 3 Tesla and DTI indices extracted using three methods: region of interest, histogram, and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary, and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (P < 0.05), while the small increase in fractional anisotropy with age was not significant (MG/LG: P = 0.39/0.85; 95% confidence interval: [-0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (P < 0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. © 2014 Wiley Periodicals, Inc.
Contact dynamics recording and analysis system using an optical fiber sensor approach
NASA Astrophysics Data System (ADS)
Anghel, F.; Pavelescu, D.; Grattan, K. T. V.; Palmer, A. W.
1997-09-01
A contact dynamics recording and analysis system configured using an optical fiber sensor has been developed having been designed with a particular application to the accurate and time-varying description of moving contact operating during electrical arc breaking, in an experimental platform simulating the operation of a vacuum circuit breaker. The system utilizes dynamic displacement measurement and data recording and a post-process data analysis to reveal the dynamic speed and acceleration data of the equipment.
Seismic Behavior and Design of Segmental Precast Post-Tensioned Concrete Piers
DOT National Transportation Integrated Search
2011-06-01
Segmental precast column construction is an economic environmental friendly solution to accelerate bridge construction in the United : States. Also, concrete-filled fiber reinforced polymer tubes (CFFT) represents a potential economic solution for du...
NASA Astrophysics Data System (ADS)
Wang, Bing-Bing; Wang, Xiao-Dong; Wang, Tian-Hu
2014-09-01
Adding salts into polymer solution has been found to modulate the fiber structure and significantly improve the solution spinnability in electrospinning. However, the mechanisms have not been fully understood. This work adopted molecular dynamics method to investigate the dynamic behavior of poly(ethylene oxide) (PEO)/water droplet with or without dissolved NaCl salt under high-voltage electric field. Our simulation results agreed with the previous experimental reports well. We observed that some daughter droplets detach from the mother droplet due to the ions evaporation and hydration effect, which significantly accelerates the water evaporation and hence improves the solution spinnability. We also observed that some sodium ions are always coordinated with the ether oxygen group in the PEO chain. When these ions are accelerated by the electric field, the PEO chain segments follow the motion of the ions, inevitably stretching the chain and improving the fiber morphology.
Fiber optic temperature sensor gives rise to thermal analysis in complex product design
NASA Astrophysics Data System (ADS)
Cheng, Andrew Y. S.; Pau, Michael C. Y.
1996-09-01
A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.
A hybrid optic-fiber sensor network with the function of self-diagnosis and self-healing
NASA Astrophysics Data System (ADS)
Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Cheng; Zhang, Hongxia
2014-11-01
We develop a hybrid wavelength division multiplexing optical fiber network with distributed fiber-optic sensors and quasi-distributed FBG sensor arrays which detect vibrations, temperatures and strains at the same time. The network has the ability to locate the failure sites automatically designated as self-diagnosis and make protective switching to reestablish sensing service designated as self-healing by cooperative work of software and hardware. The processes above are accomplished by master-slave processors with the help of optical and wireless telemetry signals. All the sensing and optical telemetry signals transmit in the same fiber either working fiber or backup fiber. We take wavelength 1450nm as downstream signal and wavelength 1350nm as upstream signal to control the network in normal circumstances, both signals are sent by a light emitting node of the corresponding processor. There is also a continuous laser wavelength 1310nm sent by each node and received by next node on both working and backup fibers to monitor their healthy states, but it does not carry any message like telemetry signals do. When fibers of two sensor units are completely damaged, the master processor will lose the communication with the node between the damaged ones.However we install RF module in each node to solve the possible problem. Finally, the whole network state is transmitted to host computer by master processor. Operator could know and control the network by human-machine interface if needed.
Statistical physics approach to quantifying differences in myelinated nerve fibers
Comin, César H.; Santos, João R.; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L.; Gabrielli, Andrea; da F. Costa, Luciano; Stanley, H. Eugene
2014-01-01
We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross–sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum. PMID:24676146
Statistical physics approach to quantifying differences in myelinated nerve fibers
NASA Astrophysics Data System (ADS)
Comin, César H.; Santos, João R.; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L.; Gabrielli, Andrea; da F. Costa, Luciano; Stanley, H. Eugene
2014-03-01
We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.
Accelerated Creep Testing of High Strength Aramid Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar
2012-01-01
A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.
NASA Astrophysics Data System (ADS)
Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.
2015-12-01
Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.
Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging
Murari, Kartikeya; Mavadia, Jessica; Xi, Jiefeng; Li, Xingde
2011-01-01
We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy. We demonstrate a prototype self-starting, self-regulating FDML operating at 40 kHz with a full width tuning range of 140 nm around 1305 nm and a power output of ~40 mW. The laser starts up with no operator intervention in less than 5 seconds and exhibits improved spectral stability over a conventional FDML source. In OCT applications the source achieved over 120 dB detection sensitivity and an ~8.9-µm axial resolution. PMID:21750775
Method to improve the blade tip-timing accuracy of fiber bundle sensor under varying tip clearance
NASA Astrophysics Data System (ADS)
Duan, Fajie; Zhang, Jilong; Jiang, Jiajia; Guo, Haotian; Ye, Dechao
2016-01-01
Blade vibration measurement based on the blade tip-timing method has become an industry-standard procedure. Fiber bundle sensors are widely used for tip-timing measurement. However, the variation of clearance between the sensor and the blade will bring a tip-timing error to fiber bundle sensors due to the change in signal amplitude. This article presents methods based on software and hardware to reduce the error caused by the tip clearance change. The software method utilizes both the rising and falling edges of the tip-timing signal to determine the blade arrival time, and a calibration process suitable for asymmetric tip-timing signals is presented. The hardware method uses an automatic gain control circuit to stabilize the signal amplitude. Experiments are conducted and the results prove that both methods can effectively reduce the impact of tip clearance variation on the blade tip-timing and improve the accuracy of measurements.
Integrated polarizers based on tapered highly birefringent photonic crystal fibers.
Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S
2014-07-28
This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned.
If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells
Gao, Zhan; Chen, Biyi; Joiner, Mei-ling A.; Wu, Yuejin; Guan, Xiaoqun; Koval, Olha M.; Chaudhary, Ashok K.; Cunha, Shane R.; Mohler, Peter J.; Martins, James B.; Song, Long-Sheng; Anderson, Mark E.
2010-01-01
Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a ‘voltage clock’ and a Ca2+ dependent process, or ‘Ca2+ clock.’ The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (If) is thought to be particularly important. A Ca2+ dependent process triggers APs when sarcoplasmic reticulum (SR) Ca2+ release activates inward current carried by the forward mode of the electrogenic Na+/Ca2+ exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca2+ clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective If antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest (∼14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca2+ release, but did not affect basal or isoproterenol-enhanced If. Taken together, these results indicate that voltage and Ca2+ dependent automaticity mechanisms coexist in canine SAN cells, and suggest If and SR Ca2+ release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells. PMID:20380837
Graf, Patricia M.; Wilson, Rory P.; Qasem, Lama; Hackländer, Klaus; Rosell, Frank
2015-01-01
Recent technological innovations have led to the development of miniature, accelerometer-containing electronic loggers which can be attached to free-living animals. Accelerometers provide information on both body posture and dynamism which can be used as descriptors to define behaviour. We deployed tri-axial accelerometer loggers on 12 free-ranging Eurasian beavers Castor fiber in the county of Telemark, Norway, and on four captive beavers (two Eurasian beavers and two North American beavers C. canadensis) to corroborate acceleration signals with observed behaviours. By using random forests for classifying behavioural patterns of beavers from accelerometry data, we were able to distinguish seven behaviours; standing, walking, swimming, feeding, grooming, diving and sleeping. We show how to apply the use of acceleration to determine behaviour, and emphasise the ease with which this non-invasive method can be implemented. Furthermore, we discuss the strengths and weaknesses of this, and the implementation of accelerometry on animals, illustrating limitations, suggestions and solutions. Ultimately, this approach may also serve as a template facilitating studies on other animals with similar locomotor modes and deliver new insights into hitherto unknown aspects of behavioural ecology. PMID:26317623
Cotter, M; Phillips, P
1986-09-01
Limb immobilization causes muscle atrophy particularly of slow oxidative fibers which also suffer the greatest decrement in neural activation. In this study a fast muscle, tibialis anterior, was chronically stimulated using an activity pattern characteristic of nerve fibers to slow muscles to see whether or not this could prevent immobilization induced slow fiber atrophy. Four groups of rabbits were used: unoperated controls, stimulated (10 Hz, 8 h/day), immobilized (neutral position), and a stimulated plus immobilized group. The experimental period was 28 to 30 days or 44 to 50 days. Immobilization caused significant decrease in slow oxidative fiber area which was completely prevented by stimulation. In animals tested for the longer period there was 56% hypertrophy. In addition, the combination of stimulation and immobilization caused a two-fold increase in the number of slow oxidative fibers and greatly increased the proportion of intermediate fibers. Stimulation without immobilization had no effect. Slow fibers in stimulated immobilized muscles had a bimodal area distribution; the number of large fibers (mean area 7059 micron2) was the same as the number of slow oxidative fibers in contralateral muscles, suggesting that they were the preexisting slow fibers, and a small fiber population (mean area 3143 micron2) represented newly converted fast fibers. We conclude that slow muscle units benefit from restoration of activity by chronic stimulation. In addition, the combination of stimulation and immobilization accelerates fast to slow fiber conversion. We suggest that isometric conditions as well as enhanced glucocorticoid effects could account for these findings.
Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuchuan
A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate ion source for medical and other applications which could be significantly cheaper than that based on RF acceleration. We propose an output energy >1 μJ, one order of magnitude higher than the DOE original requirement. The performance of the prototype will be tested at UCLA by directly seeding the CO 2 laser system driving an accelerator.« less
Laxative effects of agarwood on low-fiber diet-induced constipation in rats.
Kakino, Mamoru; Tazawa, Shigemi; Maruyama, Hiroe; Tsuruma, Kazuhiro; Araki, Yoko; Shimazawa, Masamitsu; Hara, Hideaki
2010-11-15
Agarwood (Aquilaria sinensis), well known as incense in Southeast Asia, has been used as a digestive in traditional medicine. We investigated the laxative effects of an ethanol extract of agarwood leaves (EEA) in a rat model of low-fiber diet-induced constipation. A set of rats was bred on a normal diet while another set was placed on a low-fiber diet to induce constipation. The laxative effect of agarwood was then investigated on both sets of rats. Pretreatment of normal rats with single dose of EEA (600 mg/kg, p.o.) significantly increased frequency and weight of stools. Also, treatments with EEA (300 and 600 mg/kg, p.o.) for 14 days caused a significant increase in stool frequency and weight. Feeding of the animals with a low-fiber diet resulted in a decrease in stool weight, frequency, and water content and also delayed carmine egestion. A single treatment with EEA (600 mg/kg) or senna (150 and 300 mg/kg) significantly increased stool frequency, weight, and water content and also accelerated carmine egestion in the model rats. Once daily administrations of EEA (150 mg/kg), for 14 days, caused a significant increase in water content of stools. The higher doses of EEA (300 and 600 mg/kg) significantly increased frequency, weight, and water content of the stools while accelerating carmine egestion in the constipated rats. Senna (150 and 300 mg/kg) produced similar effect as the higher doses of EEA but, in addition, induced severe diarrhea. These findings indicate that EEA has a laxative effect, without causing diarrhea, in a rat model of low-fiber diet-induced constipation. These findings suggest that EEA may be highly effective on constipation as a complementary medicine in humans suffering from life style-induced constipation.
The procedure execution manager and its application to Advanced Photon Source operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.
1997-06-01
The Procedure Execution Manager (PEM) combines a complete scripting environment for coding accelerator operation procedures with a manager application for executing and monitoring the procedures. PEM is based on Tcl/Tk, a supporting widget library, and the dp-tcl extension for distributed processing. The scripting environment provides support for distributed, parallel execution of procedures along with join and abort operations. Nesting of procedures is supported, permitting the same code to run as a top-level procedure under operator control or as a subroutine under control of another procedure. The manager application allows an operator to execute one or more procedures in automatic, semi-automatic,more » or manual modes. It also provides a standard way for operators to interact with procedures. A number of successful applications of PEM to accelerator operations have been made to date. These include start-up, shutdown, and other control of the positron accumulator ring (PAR), low-energy transport (LET) lines, and the booster rf systems. The PAR/LET procedures make nested use of PEM`s ability to run parallel procedures. There are also a number of procedures to guide and assist tune-up operations, to make accelerator physics measurements, and to diagnose equipment. Because of the success of the existing procedures, expanded use of PEM is planned.« less
Fiber reinforced PMR polyimide composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1978-01-01
Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.
Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides
NASA Astrophysics Data System (ADS)
Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.
2018-01-01
Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.
Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers
NASA Astrophysics Data System (ADS)
Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno
2012-06-01
Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than 1050 hours of operation at 95°C.
Visual stimulus presentation using fiber optics in the MRI scanner.
Huang, Ruey-Song; Sereno, Martin I
2008-03-30
Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan
2018-01-01
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
Harmonizing Automatic Test System Assets, Drivers, and Control Methodologies
1999-07-18
ORGANIZATION PRINCIPAL AREAS OF INTEREST TO ATS NAME 1394 TA Firewire Trade Association Defining high speed bus protocol Active Group Accelerating ActiveX ...System Assets, Drivers, and Control Methodologies 17 JUL, 1999 component is a diagonal matrix containing scaling values such that when the three
Electrostatic accelerators with high energy resolution
NASA Astrophysics Data System (ADS)
Uchiyama, T.; Agawa, Y.; Nishihashi, T.; Takagi, K.; Yamakawa, H.; Isoya, A.; Takai, M.; Namba, S.
1991-05-01
Several models of electrostatic accelerators based on rotating disks (Disktron) have been manufactured for various ion beam applications like surface analyses and implantation. The high voltage terminal of the Disktron with a terminal voltage of up to 500 kV is open in air, while the generator part is enclosed in FRP (fiber reinforced plastics) or a ceramic vessel filled with sf 6 gas. The 1 MV model is completely enclosed in a steel vessel. A compact tandem accelerator of the pellet chain type with a terminal voltage of 1.5 MV has also been manufactured. The good energy stability of these accelerators, typically in the range of 10 -4, has proved to be quite favorable for applications in precise studies of material surfaces, including the use of microbeam techniques.
Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.
1998-01-01
Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.
SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.
Smith, Lucas R; Barton, Elisabeth R
2014-01-01
Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection along with user correction. The output of the code provides data in accordance with established standards of practice. The results of the program have been validated using a small set of wild-type and mdx muscle sections. This program is the first freely available and open source image processing program designed to automate analysis of skeletal muscle histological sections.
Optical fiber sensors: Accelerating applications in Navy ships
NASA Astrophysics Data System (ADS)
Day, G. W.; Lovely, P. S.; Whitesel, H. K.; Hickernell, R. K.
1994-05-01
The Navy needs new sensors for shipboard machinery monitoring and control, condition-based maintenance, and damage assessment. Optical fiber sensors are strongly preferred because of their immunity to electrical disturbances, as well as potential size, weight, and performance advantages. But despite well over a decade of development and promise, relatively few optical fiber sensors available today can meet the Navy's needs with acceptable performance and cost. This report examines the reasons and recommends strategies to help the Navy achieve its goals. Some of the recommendations confirm approaches that the Navy is already implementing. Optical fiber sensors have very valuable potential advantages, but those that the Navy can use may remain too expensive to be deployed if the Navy uses traditional methods of writing specifications and soliciting development and procurement bids. For this reason, the study focuses on cooperation with industry and promoting commercial off-the-shelf and dual-use technology.
NASA Astrophysics Data System (ADS)
Martinez Rivera, Francisco Javier
This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.
NASA Astrophysics Data System (ADS)
Xu, Fangbo; Xu, Zhiping; Yakobson, Boris I.
2014-08-01
We present a site-percolation model based on a modified FCC lattice, as well as an efficient algorithm of inspecting percolation which takes advantage of the Markov stochastic theory, in order to study the percolation threshold of carbon nanotube (CNT) fibers. Our Markov-chain based algorithm carries out the inspection of percolation by performing repeated sparse matrix-vector multiplications, which allows parallelized computation to accelerate the inspection for a given configuration. With this approach, we determine that the site-percolation transition of CNT fibers occurs at pc=0.1533±0.0013, and analyze the dependence of the effective percolation threshold (corresponding to 0.5 percolation probability) on the length and the aspect ratio of a CNT fiber on a finite-size-scaling basis. We also discuss the aspect ratio dependence of percolation probability with various values of p (not restricted to pc).
Confocal microscopy for automatic texture analysis of elastic fibers in histologic preparations
NASA Astrophysics Data System (ADS)
Adam, R. L.; Vieira, G.; Ferro, D. P.; de Thomaz, A. A.; Cesar, C., L.; Metze, K.
2009-07-01
Elastic fibers are an important component of many organs and tissues, such as skin, lungs, arteries, ligaments, intervertebral discs and cartilage Their function is to endow tissues with elastic recoil and resilience, to act as an important adhesion template for cells, and to regulate growth factor availability (1,2). Loss or remodeling of the elastic fiber texture occurs in many diseases. Degeneration and fragmentation of elastic fibers and aging are intimately related (3). Recently, the importance of elastin for the study of malignant tumor progression has been emphasized (4,5). Elastic tissue may be a significant reservoir of angiostatic molecules and soluble elastin as well as elastin peptides, that are inhibitors of the metastatic process in experimental tumor models (4). Elastic fibers are involved in the anatomic remodeling of chronic pulmonary diseases (6) and, especially, of diseases of the arterial wall (7, 8). The study of these phenomena is important for the understanding of the pathophysiologic basis of the diseases. Recently the role of elastic fibers in small diameter vascular graft design has been emphasized (2). The possibility to regenerate or engineer elastic fibres and tissues creates an important challenge, not only to understand the molecular basis of elastic-fibre biology (1,2), but also of its spatial arrangement and remodeling in the diseased tissues. Subtle changes of the complex elastic fiber network may be involved in the pathogenesis of diseases. Therefore a precise and objective histopathologic description is necessary.
NASA Astrophysics Data System (ADS)
Pandey, Pankaj
The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.
Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation
Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.
2014-01-01
Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494
Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.
Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M
2014-08-01
Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.
NASA Astrophysics Data System (ADS)
Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona
2016-10-01
The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.
NASA Astrophysics Data System (ADS)
Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.
2015-05-01
The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.
Scheinker, Alexander; Baily, Scott; Young, Daniel; ...
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less
Alternating-Current Motor Drive for Electric Vehicles
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Rippel, W. E.
1982-01-01
New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.
NASA Astrophysics Data System (ADS)
Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng
2010-07-01
4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.
NASA Astrophysics Data System (ADS)
Ma, Xuejiao; Gan, Chaoqin; Deng, Shiqi; Huang, Yan
2011-11-01
A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.
Geiger, A J; Ward, S H; Williams, C C; Rude, B J; Cabrera, C J; Kalestch, K N; Voelz, B E
2014-11-01
Forty-four Holstein calves were fed a direct-fed microbial (DFM) and 1 of 2 milk replacers to evaluate calf performance and growth. Treatments were (1) a control milk replacer [22:20; 22% crude protein (CP) and 20% fat], (2) an accelerated milk replacer (27:10; 27% CP and 10% fat), (3) the control milk replacer with added DFM (22:20+D), and (4) the accelerated milk replacer with added DFM (27:10+D). Dry matter intake, rectal temperatures, respiration scores and rates, and fecal scores were collected daily. Body weight, hip and withers height, heart girth, blood, and rumen fluid samples were collected weekly. Effects of treatment, sex, week, and their interactions were analyzed. Calves fed an accelerated milk replacer, regardless of DFM supplementation, consumed more CP and metabolizable energy in the milk replacer. No treatment differences were found for starter intake or intake of neutral detergent fiber or acid detergent fiber in the starter. Calves fed the accelerated milk replacer had greater preweaning and weaning body weight compared with calves fed the control milk replacer. Average daily gain was greater during the preweaning period for calves fed the accelerated milk replacer, but the same pattern did not hold true during the postweaning period. Feed efficiency did not differ among treatments. Hip height tended to be and withers height and heart girth were greater at weaning for calves fed the accelerated milk replacer compared with calves fed the control milk replacer. Fecal scores were greatest in calves fed DFM. Overall acetate, propionate, butyrate, and n-valerate concentrations were lower in calves fed the accelerated milk replacer, but DFM did not have an effect. Rumen pH was not different. Blood metabolites were unaffected by DFM supplementation, but calves fed the accelerated milk replacer had increased partial pressure of CO2, bicarbonate, and total bicarbonate in the blood. Direct-fed microbial supplementation did not appear to benefit the calf in this trial. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David
2017-04-01
We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.
NASA Astrophysics Data System (ADS)
Widyaningrum, E.; Gorte, B. G. H.
2017-05-01
LiDAR data acquisition is recognized as one of the fastest solutions to provide basis data for large-scale topographical base maps worldwide. Automatic LiDAR processing is believed one possible scheme to accelerate the large-scale topographic base map provision by the Geospatial Information Agency in Indonesia. As a progressive advanced technology, Geographic Information System (GIS) open possibilities to deal with geospatial data automatic processing and analyses. Considering further needs of spatial data sharing and integration, the one stop processing of LiDAR data in a GIS environment is considered a powerful and efficient approach for the base map provision. The quality of the automated topographic base map is assessed and analysed based on its completeness, correctness, quality, and the confusion matrix.
Acceleration effects observed in optical data taken in Spacelab 3 FES
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Ravindra; Ruff, Rudy
1990-01-01
Optical instrumentation in the Fluids Experiment System (FES) is briefly described. Samples of the data produced by the schlieren and holography systems during the Spacelab 3 flight are then presented with some of the holographic interferometry data being presented for the first time. Acceleration effects that can be observed in these data are discussed and the potential for using them as a basis for measurement is explored. This includes the tracking of deliberately introduced tracer particles and density gradients in the FES, the analysis of the existing concentration gradients, and a new fiber optic G-meter concept. Finally, some of the plans for acceleration measurement in the upcoming International Microgravity-1/FES are described.
NASA Astrophysics Data System (ADS)
Zhu, Bofan
Biocompatible scaffolds mimicking the locally aligned fibrous structure of native extracellular matrix (ECM) are in high demand in tissue engineering. In this thesis research, unidirectionally aligned fibers were generated via a home-built electrospinning system. Collagen type I, as a major ECM component, was chosen in this study due to its support of cell proliferation and promotion of neuroectodermal commitment in stem cell differentiation. Synthetic dragline silk proteins, as biopolymers with remarkable tensile strength and superior elasticity, were also used as a model material. Good alignment, controllable fiber size and morphology, as well as a desirable deposition density of fibers were achieved via the optimization of solution and electrospinning parameters. The incorporation of silk proteins into collagen was found to significantly enhance mechanical properties and stability of electrospun fibers. Glutaraldehyde (GA) vapor post-treatment was demonstrated as a simple and effective way to tune the properties of collagen/silk fibers without changing their chemical composition. With 6-12 hours GA treatment, electrospun collagen/silk fibers were not only biocompatible, but could also effectively induce the polarization and neural commitment of stem cells, which were optimized on collagen rich fibers due to the unique combination of biochemical and biophysical cues imposed to cells. Taken together, electrospun collagen rich composite fibers are mechanically strong, stable and provide excellent cell adhesion. The unidirectionally aligned fibers can accelerate neural differentiation of stem cells, representing a promising therapy for neural tissue degenerative diseases and nerve injuries.
NASA Astrophysics Data System (ADS)
Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping
2017-12-01
This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.
Use of fiber reinforced concrete for concrete pavement slab replacement : [summary].
DOT National Transportation Integrated Search
2014-03-01
Replacing cracked concrete in roadways requires : lanes to be closed and traff c disrupted. One way : to reduce road closure time is to reduce concrete : curing time. To accelerate curing time, pavement : engineers mix a very low water-cement ratio w...
Development of smart textiles with embedded fiber optic chemical sensors
NASA Astrophysics Data System (ADS)
Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.
2004-03-01
Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.
Long-term high-level exercise promotes muscle reinnervation with age.
Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Fruhmann, Hannah; Vogelauer, Michael; Burggraf, Samantha; Mayr, Winfried; Krenn, Matthias; Paternostro-Sluga, Tatjana; Hamar, Dusan; Cvecka, Jan; Sedliak, Milan; Tirpakova, Veronika; Sarabon, Nejc; Musarò, Antonio; Sandri, Marco; Protasi, Feliciano; Nori, Alessandra; Pond, Amber; Zampieri, Sandra
2014-04-01
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.
Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde
2017-01-01
Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles’ surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties. PMID:28772816
Monolithic integrated optic fiber Bragg grating sensor interrogator
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian
2010-04-01
Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.
NASA Technical Reports Server (NTRS)
Halyo, N.
1976-01-01
A digital automatic control law to capture a steep glideslope and track the glideslope to a specified altitude is developed for the longitudinal/vertical dynamics of a CTOL aircraft using modern estimation and control techniques. The control law uses a constant gain Kalman filter to process guidance information from the microwave landing system, and acceleration from body mounted accelerometer data. The filter outputs navigation data and wind velocity estimates which are used in controlling the aircraft. Results from a digital simulation of the aircraft dynamics and the control law are presented for various wind conditions.
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
Cerebral palsy characterization by estimating ocular motion
NASA Astrophysics Data System (ADS)
González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo
2017-11-01
Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.
AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS
Mirkovic, Dragan; Pettitt, B. Montgomery; Johnsson, S. Lennart
2009-01-01
The fast multipole method (FMM) is an efficient algorithm for calculating electrostatic interactions in molecular simulations and a promising alternative to Ewald summation methods. Translation of multipole expansion in spherical harmonics is the most important operation of the fast multipole method and the fast Fourier transform (FFT) acceleration of this operation is among the fastest methods of improving its performance. The technique relies on highly optimized implementation of fast Fourier transform routines for the desired expansion sizes, which need to incorporate the knowledge of symmetries and zero elements in the input arrays. Here a method is presented for automatic generation of such, highly optimized, routines. PMID:19763233
Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling.
Wang, Leshan; Luo, Lv; Zhao, Weijie; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan; Wang, Lina
2018-06-18
Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.
NASA Astrophysics Data System (ADS)
Tremoulet, P. C.
The author describes a number of maintenance improvements in the Fiber Optic Cable System (FOCS). They were achieved during a production phase pilot concurrent engineering program. Listed in order of importance (saved maintenance time and material) by maintenance level, they are: (1) organizational level: improved fiber optic converter (FOC) BITE; (2) Intermediate level: reduced FOC adjustments from 20 to 2; partitioned FOC into electrical and optical parts; developed cost-effective fault isolation test points and test using standard test equipment; improved FOC chassis to have lower mean time to repair; and (3) depot level: revised test requirements documents (TRDs) for common automatic test equipment and incorporated ATE testability into circuit and assemblies and application-specific integrated circuits. These improvements met this contract's tailored logistics MIL-STD 1388-1A requirements of monitoring the design for supportability and determining the most effective support equipment. Important logistics lessons learned while accomplishing these maintainability and supportability improvements on the pilot concurrent engineering program are also discussed.
High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang
2009-10-01
A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan
Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks andmore » fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.« less
Bergot, F
1981-01-01
A semi-purified diet containing 22 p. 100 of a wood cellulose extract without lignin but still containing 22 p. 100 of hemicelluloses was distributed for one month to rainbow trout and common carp reared at 17 and 20 degrees C, respectively. The digestibility of the main dietary constituents was determined by an indirect method using chrome oxide as an inert tracer. The feces were recovered by a continuous automatic collector which rapidly removed them from the water, minimizing alteration by leaching. The cellulose content was estimated by the Weende (crude fiber) and the Van Soest (neutral detergent fiber and acid detergent fiber) methods. The digestibility coefficients obtained for trout as well as for carp indicate that cellulose and hemicelluloses were not digested. In both species, volatile fatty acid concentration in the different segments of the digestive tract was low (less than 10 mM/l). These results lead us to suggest that trout and carp cannot degrade purified cellulose.
Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers
NASA Astrophysics Data System (ADS)
Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.
2017-10-01
Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.
NASA Astrophysics Data System (ADS)
Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.
2010-01-01
The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.
Traffic-Light-Preemption Vehicle-Transponder Software Module
NASA Technical Reports Server (NTRS)
Bachelder, Aaron; Foster, Conrad
2005-01-01
A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically
Hisagi, Miwako; Shafer, Valerie L; Miyagawa, Shigeru; Kotek, Hadas; Sugawara, Ayaka; Pantazis, Dimitrios
2016-12-01
We examined discrimination of a second-language (L2) vowel duration contrast in English learners of Japanese (JP) with different amounts of experience using the magnetoencephalography mismatch field (MMF) component. Twelve L2 learners were tested before and after a second semester of college-level JP; half attended a regular rate course and half an accelerated course with more hours per week. Results showed no significant change in MMF for either the regular or accelerated learning group from beginning to end of the course. We also compared these groups against nine L2 learners who had completed four semesters of college-level JP. These 4-semester learners did not significantly differ from 2-semester learners, in that only a difference in hemisphere activation (interacting with time) between the two groups approached significance. These findings suggest that targeted training of L2 phonology may be necessary to allow for changes in processing of L2 speech contrasts at an early, automatic level. Copyright © 2016 Elsevier B.V. All rights reserved.
In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation
Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.
2013-01-01
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947
Improving degradation resistance of sisal fiber in concrete through fiber surface treatment
NASA Astrophysics Data System (ADS)
Wei, Jianqiang; Meyer, Christian
2014-01-01
As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.
Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J
2010-05-01
Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product. Copyright 2010 Elsevier Ltd. All rights reserved.
Chen, Yinglong; Wang, Haimiao; Hu, Wei; Wang, Shanshan; Wang, Youhua; Snider, John L; Zhou, Zhiguo
2017-03-01
Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K + ), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length. Copyright © 2017 Elsevier B.V. All rights reserved.
78 FR 29387 - Government-Owned Inventions, Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... Trademark Office, and are available for licensing. DATES: May 20, 2013. FOR FURTHER INFORMATION CONTACT... Resonators for Suppression of Acceleration-Induced Frequency Fluctuations; NASA Case No.: DRC-012-011: System... Multiplexing and Acquiring Data from Multiple Optical Fibers using a Single Data Channel of an Optical...
New twist on artificial muscles.
Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H
2016-10-18
Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.
HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method
NASA Astrophysics Data System (ADS)
Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi; Song, Furong
2017-12-01
An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is -136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about -1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it's also convenient for automatic and fast signal processing in real-time monitoring of RI.
New twist on artificial muscles
Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.
2016-01-01
Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626
Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor
NASA Astrophysics Data System (ADS)
Pranger, Casper
2017-04-01
In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.
Automatic Train Operation Using Autonomic Prediction of Train Runs
NASA Astrophysics Data System (ADS)
Asuka, Masashi; Kataoka, Kenji; Komaya, Kiyotoshi; Nishida, Syogo
In this paper, we present an automatic train control method adaptable to disturbed train traffic conditions. The proposed method presumes transmission of detected time of a home track clearance to trains approaching to the station by employing equipment of Digital ATC (Automatic Train Control). Using the information, each train controls its acceleration by the method that consists of two approaches. First, by setting a designated restricted speed, the train controls its running time to arrive at the next station in accordance with predicted delay. Second, the train predicts the time at which it will reach the current braking pattern generated by Digital ATC, along with the time when the braking pattern transits ahead. By comparing them, the train correctly chooses the coasting drive mode in advance to avoid deceleration due to the current braking pattern. We evaluated the effectiveness of the proposed method regarding driving conditions, energy consumption and reduction of delays by simulation.
NASA Astrophysics Data System (ADS)
Stock, Karl; Hausladen, Florian; Stegmayer, Thomas; Wurm, Holger
2018-02-01
Er:YAG lasers (3μm) allow efficient bone ablation caused by the strong absorption in water. Unfortunately, there are only a few and comparable expensive fiber materials for this wavelength available which are suitable for high laser power. The bone ablation efficiency of the Tm:YAG laser is minor (2μm) but inexpensive silica fibers can be used. The aim of this study was to investigate the bone ablation, using novel diode pumped high power Er:YAG (laser power 40W) and Tm:YAG laser system (60W) and adaptive fiber delivery systems. Expected advantage of these lasers is the longer lifetime of the fibers because of the high repetition rate and low pulse energy compared to the flash lamp pumped laser systems. The bare fiber output ends of a sapphire fiber (Er:YAG laser) and of a silica fiber (Tm:YAG laser) were attached under water and a water filled container including the fixed sample (bovine bone slices) was moved by a computer controlled translation stage. In a second set-up we provided a focusing unit and appropriate water spray unit. The generated cut kerfs were analyzed by light microcopy and laser scanning microscopy. The results show that with the diode pumped Er:YAG laser and sapphire fiber a particular high efficient bone ablation (> 0.16mm2/J) is possible both with bare fiber under water and focusing unit with water spray. The higher power of the Tm:YAG laser also results in high ablation rates but causes enlarged thermal damages. In conclusion, this study demonstrates that efficient bone ablation is possible with both diode pumped laser systems. In terms of efficiency the Er:YAG laser is outstanding. The Tm:YAG laser also allows fast bone ablation, provided that the thermal impact is limited by effective cooling and high movement velocity of the laser spot, for example by using an automatic scanner.
Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging
NASA Astrophysics Data System (ADS)
Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir
2016-12-01
This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.
Using variable homography to measure emergent fibers on textile fabrics
NASA Astrophysics Data System (ADS)
Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise
2011-07-01
A fabric's smoothness is a key factor to determine the quality of textile finished products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. In this paper we propose a computer vision approach, based on variable homography, which can be used to measure the emergent fiber's length on textile fabrics. The main challenges addressed in this paper are the application of variable homography to textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure and then show how variable homography can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method to measure the emergent fiber's length. The true lengths of selected fibers are measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method for quality control of important industrially fabrics.
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2015-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J; Low, D; Mutic, S
Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogcarspel, S J; Kontaxis, C; Velden, J M van der
2014-06-01
Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developedmore » GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment process on an MR accelerator.« less
Mechanisms of Pelvic Floor Muscle Function and the Effect on the Urethra during a Cough
Lovegrove Jones, Ruth C.; Peng, Qiyu; Stokes, Maria; Humphrey, Victor F.; Payne, Christopher; Constantinou, Christos E.
2009-01-01
Background Current measurement tools have difficulty identifying the automatic physiologic processes maintaining continence, and many questions still remain about pelvic floor muscle (PFM) function during automatic events. Objective To perform a feasibility study to characterise the displacement, velocity, and acceleration of the PFM and the urethra during a cough. Design, setting, and participants A volunteer convenience sample of 23 continent women and 9 women with stress urinary incontinence (SUI) from the general community of San Francisco Bay Area was studied. Measurements Methods included perineal ultrasound imaging, motion tracking of the urogenital structures, and digital vaginal examination. Statistical analysis used one-tailedunpaired student t tests, and Welch’s correction was applied when variances were unequal. Results and limitations The cough reflex activated the PFM of continent women to compress the urogenital structures towards the pubic symphysis, which was absent in women with SUI. The maximum accelerations that acted on the PFM during a cough were generally more similar than the velocities and displacements. The urethras of women with SUI were exposed to uncontrolled transverse acceleration and were displaced more than twice as far (p = 0.0002), with almost twice the velocity (p = 0.0015) of the urethras of continent women. Caution regarding the generalisability of this study is warranted due to the small number of women in the SUI group and the significant difference in parity between groups. Conclusions During a cough, normal PFM function produces timely compression of the pelvic floor and additional external support to the urethra, reducing displacement, velocity, and acceleration. In women with SUI, who have weaker urethral attachments, this shortening contraction does not occur; consequently, the urethras of women with SUI move further and faster for a longer duration. PMID:19560261
Hydroxyapatite growth on cotton fibers modified chemically
NASA Astrophysics Data System (ADS)
Varela Caselis, J. L.; Reyes Cervantes, E.; Landeta Cortés, G.; Agustín Serrano, R.; Rubio Rosas, E.
2014-09-01
We have prepared carboxymethyl cellulose fibers (CMC) by chemically modifying cotton cellulose with monochloroacetic acid and calcium chloride solution. This modification favored the growth of hydroxyapatite (HAP) on the surface of the CMC fibers in contact with simulated body fluid solutions (SBF). After soaking in SBF for periods of 7, 14 and 21 days, formation of HAP was observed. Analysis by scanning electron microscopy and X-ray diffraction showed that crystallinity, crystallite size, and growth of HAP increased with the soaking time. The amount of HAP deposited on CMC fibers increased greatly after 21 days of immersion in the SBF, while the substrate surface was totally covered with hemispherical aggregates with the size of the order of 2 microns. Elemental analysis showed the presence of calcium and phosphate, with calcium/phosphate atomic ratio of 1.54. Fourier transform infrared spectroscopy bands confirmed the presence of HAP. The results suggest that cotton modified by calcium treatment has a nucleating ability and can accelerate the nucleation of HAP crystals.
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen
2013-06-01
In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.
A coal mine multi-point fiber ethylene gas concentration sensor
NASA Astrophysics Data System (ADS)
Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu
2015-03-01
Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.
Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen
2014-01-01
The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048
Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen
2013-12-27
The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.
Zhang, Xue-Ying; Lou, Mei-Fang; Shen, Wei; Fu, Rong-Shu; Wang, De-Hua
The maternal or paternal dietary composition can have important effects on various aspects of their offspring's physiology. Studies from animal models and humans showed that a maternal high-fiber diet protected offspring against fat accumulation. However, little is known about how a maternal low-fiber diet modifies the metabolism of offspring in herbivorous rodents. We hypothesized that a maternal low-fiber diet would confer long-lasting beneficial effects on offspring metabolic phenotypes in herbivorous Brandt's vole (Lasiopodomys brandtii). Female voles were fed either a control (12.4% fiber) or a low-fiber (3.5% fiber) diet throughout pregnancy and lactation, and all offspring were fed the control diet after weaning till 14 wk old. Offspring were sampled from each litter at 18 d and 14 wk of age. Another subset of adult offspring at 15 wk of age was fed a high-fat diet for 8 wk. We found that there was no difference in litter size, litter mass, or pup mass before weaning between the two maternal diet groups. Offspring from the maternal low-fiber diet increased energy intake, body mass, and lean mass; suppressed fat accumulation; and improved glucose tolerance compared with those from the control diet. Moreover, the maternal low-fiber diet alleviated high-fat diet-induced obesity in the adult offspring. Serum leptin concentration and uncoupling protein 1 content in brown adipose tissue of offspring were not affected by a maternal low-fiber diet. We demonstrate that herbivorous females fed a low-fiber diet during pregnancy and lactation may predispose their offspring to accelerated growth of lean tissue, which may increase the opportunity for survival and reproduction in offspring.
An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.
Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong
2014-08-01
Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.
Knowledge engineering for PACES, the particle accelerator control expert system
NASA Astrophysics Data System (ADS)
Lind, P. C.; Poehlman, W. F. S.; Stark, J. W.; Cousins, T.
1992-04-01
The KN-3000 used at Defense Research Establishment Ottawa is a Van de Graaff particle accelerator employed primarily to produce monoenergetic neutrons for calibrating radiation detectors. To provide training and assistance for new operators, it was decided to develop an expert system for accelerator operation. Knowledge engineering aspects of the expert system are reviewed. Two important issues are involved: the need to encapsulate expert knowledge into the system in a form that facilitates automatic accelerator operation and to partition the system so that time-consuming inferencing is minimized in favor of faster, more algorithmic control. It is seen that accelerator control will require fast, narrowminded decision making for rapid fine tuning, but slower and broader reasoning for machine startup, shutdown, fault diagnosis, and correction. It is also important to render the knowledge base in a form conducive to operator training. A promising form of the expert system involves a hybrid system in which high level reasoning is performed on the host machine that interacts with the user, while an embedded controller employs neural networks for fast but limited adjustment of accelerator performance. This partitioning of duty facilitates a hierarchical chain of command yielding an effective mixture of speed and reasoning ability.
17 CFR 200.30-1 - Delegation of authority to Director of Division of Corporation Finance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS... right to have such denial reviewed by the Commission. (4) To accelerate the use or publication of any...), of an objection to the use of an automatic shelf registration as defined in Rule 405 (§ 230.405 of...
Measurement of Gravitational Acceleration Using a Computer Microphone Port
ERIC Educational Resources Information Center
Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny
2012-01-01
A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…
ERIC Educational Resources Information Center
de Oliveira, Rita F.; Wann, John P.
2011-01-01
In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…
High-efficiency and high-reliability 9xx-nm bars and fiber-coupled devices at Coherent
NASA Astrophysics Data System (ADS)
Zhou, Hailong; Kennedy, Keith; Weiss, Eli; Li, Jun; Anikitchev, Serguei; Reichert, Patrick; Du, Jihua; Schleuning, David; Nabors, David; Reed, Murray; Toivonen, Mika; Lehkonen, Sami; Haapamaa, Jouko
2006-02-01
Ongoing optimization of epitaxial design within Coherent device engineering has led to a family of high power-conversion-efficiency (PCE) products on conductively cooled packages (CCP) and fiber array packages (FAP). At a 25°C heat sink temperature, the PCE was measured at 71.5% with 75W CW output power on 30% fill-factor (FF) bars with passive cooling. At heat sink temperatures as high as 60°C the PCE of these bars is still maintained above 60%. Powered by such high efficiency 9xx nm diodes, Coherent FAP products have consistently exceeded 55% PCE up to 50W power levels, with 62% PCE demonstrated out of the fiber. High linear-power-density (LPD) operation of 100μm x 7-emitter bars at LPD = 80 mW/μm was also demonstrated. Bars with 7-emitter were measured up to 140W QCW power before catastrophic optical mirror damage (COMD) occurred, which corresponds to a COMD value of 200mW/μm or 2D facet power density of 29.4 MW/cm2. Leveraging these improvements has enabled high power FAPs with >90W CW from an 800μm-diameter fiber bundle. Extensive reliability testing has already accumulated 400,000 total real-time device hours at a variety of accelerated and non-accelerated operating conditions. A random failure rate <0.5% per kilo-hours and gradual degradation rate <0.4% per kilo-hours have been observed. For a 30% FF 50W CW 9xx nm bar, this equates to >30,000 hours of median lifetime at a 90% confidence level. More optimized 30% FF 9xx nm bars are under development for power outputs up to 80W CW with extrapolated median lifetimes greater than 20,000 hours.
Xu, Pengbai; Dong, Yongkang; Zhou, Dengwang; Fu, Cheng; Zhang, Juwang; Zhang, Hongying; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi
2016-07-20
In this paper, up to 1100°C and 1200°C high-temperature distributed Brillouin sensing based on a GeO2-doped single-mode fiber (SMF) and a pure silica photonic crystal fiber (PCF) are demonstrated, respectively. The Brillouin frequency shift's (BFS) dependence on temperatures of the SMF and PCF agrees with a nonlinear function instead of a linear function, which is mainly due to the change of the acoustic velocity in a silica fiber. BFS hopping is observed in both kinds of fibers between 800°C-900°C in the first annealing process, and after that, the BFS exhibits stability and repeatability with a measurement accuracy as high as ±2.4°C for the SMF and ±3.6°C for the PCF. The BFS hopping is a highly temperature-dependent behavior, which means that a high temperature (>800°C) would accelerate this process to reach a stable state. After BFS hopping, both the SMF and PCF show good repeatability for temperatures higher than 1000°C without annealing. The process of coating burning of a silica fiber not only introduces a loss induced by micro-bending, but also imposes a compressive stress on the bare fiber, which contributes to an additional BFS variation at the temperature period of the coating burning (∼300°C-500°C).
Planning Multitechnology Access Networks with Performance Constraints
NASA Astrophysics Data System (ADS)
Chamberland, Steven
Considering the number of access network technologies and the investment needed for the “last mile” of a solution, in today’s highly competitive markets, planning tools are crucial for the service providers to optimize the network costs and accelerate the planning process. In this paper, we propose to tackle the problem of planning access networks composed of four technologies/architectures: the digital subscriber line (xDSL) technologies deployed directly from the central office (CO), the fiber-to-the-node (FTTN), the fiber-to-the-micro-node (FTTn) and the fiber-to-the-premises (FTTP). A mathematical programming model is proposed for this planning problem that is solved using a commercial implementation of the branch-and-bound algorithm. Next, a detailed access network planning example is presented followed by a systematic set of experiments designed to assess the performance of the proposed approach.
Anisotropic particles in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao
2017-11-01
In industry and nature, particle-laden turbulent flows consist mostly, if not always, of anisotropic particles. Examples of such flows are plankton distributions in the oceans, and pumping of concrete. In these flows, the suspended particles often distribute inhomogeneously, thereby affecting the drag and the flow properties significantly. Despite their widespread occurrence, a good understanding of how such particles affect the flow is still missing. Here we performed Particle Tracking Velocimetry and global torque measurements for a suspension of rigid fibers (or rods) in the Twente Turbulent Taylor-Couette facility. The fibers are density matched with the fluid, and we used particle volume fractions up to α = 2 % of fibers with aspect ratio λ = L / d = 5 , where L = 5 mm is the length and d = 1 mm the diameter. The global torque measurements were performed for Reynolds numbers up to 2.5 ×105 and showed similar values of drag reduction as was obtained for spherical particles (λ = 1). Using PTV we have extracted the orientation, the rotation rate, and the translation velocity and acceleration for the fibers. The fibers do not show a clear alignment with the main velocity gradient. We do, however, observe occasional large rotation rates for the fibers. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.
Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek
2018-03-27
All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.
Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium.
Ginsburg, Hagai
2009-01-01
The functional reconstruction of metabolic pathways from an annotated genome is a tedious and demanding enterprise. Automation of this endeavor using bioinformatics algorithms could cope with the ever-increasing number of sequenced genomes and accelerate the process. Here, the manual reconstruction of metabolic pathways in the functional genomic database of Plasmodium falciparum--Malaria Parasite Metabolic Pathways--is described and compared with pathways generated automatically as they appear in PlasmoCyc, metaSHARK and the Kyoto Encyclopedia for Genes and Genomes. A critical evaluation of this comparison discloses that the automatic reconstruction of pathways generates manifold paths that need an expert manual verification to accept some and reject most others based on manually curated gene annotation.
Selected Aspects of the eCall Emergency Notification System
NASA Astrophysics Data System (ADS)
Kaminski, Tomasz; Nowacki, Gabriel; Mitraszewska, Izabella; Niezgoda, Michał; Kruszewski, Mikołaj; Kaminska, Ewa; Filipek, Przemysław
2012-02-01
The article describes problems associated with the road collision detection for the purpose of the automatic emergency call. At the moment collision is detected, the eCall device installed in the vehicle will automatically make contact with Emergency Notification Centre and send the set of essential information on the vehicle and the place of the accident. To activate the alarm, the information about the deployment of the airbags will not be used, because connection of the eCall device might interfere with the vehicle’s safety systems. It is necessary to develop a method enabling detection of the road collision, similar to the one used in airbag systems, and based on the signals available from the acceleration sensors.
NASA Astrophysics Data System (ADS)
Bochenek, Wojciech; Passia, Henryk; Szade, Adam
2003-09-01
A measuring system composed of optoelectronic and electronic sensors was constructed. These are: laser tilt sensor (CMI- developed), acceleration sensor, and the one to measure the propagation fissures. They are characterized by high precision of measurement, combined with automatic, multichannel data acquisition. These assemblies of sensors are installed in the buildings and industrial structures such as: churches, hospitals, chimneys, bridges, towers, apartment buildings for which particular protection is needed because of adverse impacts of environmental agents such as mining, water and climatic conditions. The paper presents examples of application, illustrated by the most interesting results of measurements.
Designed tools for analysis of lithography patterns and nanostructures
NASA Astrophysics Data System (ADS)
Dervillé, Alexandre; Baderot, Julien; Bernard, Guilhem; Foucher, Johann; Grönqvist, Hanna; Labrosse, Aurélien; Martinez, Sergio; Zimmermann, Yann
2017-03-01
We introduce a set of designed tools for the analysis of lithography patterns and nano structures. The classical metrological analysis of these objects has the drawbacks of being time consuming, requiring manual tuning and lacking robustness and user friendliness. With the goal of improving the current situation, we propose new image processing tools at different levels: semi automatic, automatic and machine-learning enhanced tools. The complete set of tools has been integrated into a software platform designed to transform the lab into a virtual fab. The underlying idea is to master nano processes at the research and development level by accelerating the access to knowledge and hence speed up the implementation in product lines.
Polarized millijoule fiber laser system with high beam quality and pulse shaping ability
NASA Astrophysics Data System (ADS)
Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng
2017-05-01
The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.
Dynamic multistation photometer
Bauer, Martin L.; Johnson, Wayne F.; Lakomy, Dale G.
1977-01-01
A portable fast analyzer is provided that uses a magnetic clutch/brake to rapidly accelerate the analyzer rotor, and employs a microprocessor for automatic analyzer operation. The rotor is held stationary while the drive motor is run up to speed. When it is desired to mix the sample(s) and reagent(s), the brake is deenergized and the clutch is energized wherein the rotor is very rapidly accelerated to the running speed. The parallel path rotor that is used allows the samples and reagents to be mixed the moment they are spun out into the rotor cuvetes and data acquisition begins immediately. The analyzer will thus have special utility for fast reactions.
Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME
NASA Astrophysics Data System (ADS)
Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.
2011-10-01
The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.
Wolfenden, Richard
2014-01-01
Kelvin considered it unlikely that sufficient time had elapsed on the earth for life to have reached its present level of complexity. In the warm surroundings in which life first appeared, however, elevated temperatures would have reduced the kinetic barriers to reaction. Recent experiments disclose the profound extent to which very slow reactions are accelerated by elevated temperatures, collapsing the time that would have been required for early events in primordial chemistry before the advent of enzymes. If a primitive enzyme, like model catalysts and most modern enzymes, accelerated a reaction by lowering its enthalpy of activation, then the rate enhancement that it produced would have increased automatically as the environment cooled, quite apart from any improvements in catalytic activity that arose from mutation and natural selection. The chemical events responsible for spontaneous mutation are also highly sensitive to temperature, furnishing an independent mechanism for accelerating evolution. PMID:25210030
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
Wang, Xuhui; Wan, Liang; Li, Xinyuan; Meng, Youqiang; Zhu, Ningxi; Yang, Min; Feng, Baohui; Zhang, Wenchuan; Zhu, Shugan; Li, Shiting
2012-01-01
This study describes a method that not only generates an automatic and standardized crush injury in the skull base, but also provides investigators with the option to choose from a range of varying pressure levels. We designed an automatic, non-serrated forceps that exerts a varying force of 0 to 100 g and lasts for a defined period of 0 to 60 seconds. This device was then used to generate a crush injury to the right oculomotor nerve of dogs with a force of 10 g for 15 seconds, resulting in a deficit in the pupil-light reflex and ptosis. Further testing of our model with Toluidine-blue staining demonstrated that, at 2 weeks post-surgery disordered oculomotor nerve fibers, axonal loss, and a thinner than normal myelin sheath were visible. Electrophysiological examination showed occasional spontaneous potentials. Together, these data verified that the model for oculomotor nerve injury was successful, and that the forceps we designed can be used to establish standard mechanical injury models of peripheral nerves. PMID:25337103
Automatic location of disruption times in JET
NASA Astrophysics Data System (ADS)
Moreno, R.; Vega, J.; Murari, A.
2014-11-01
The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).
Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery
NASA Astrophysics Data System (ADS)
Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias
2016-03-01
The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.
Gel formation in protein amyloid aggregation: a physical mechanism for cytotoxicity.
Woodard, Daniel; Bell, Dylan; Tipton, David; Durrance, Samuel; Burnett, Lisa Cole; Cole, Lisa; Li, Bin; Xu, Shaohua
2014-01-01
Amyloid fibers are associated with disease but have little chemical reactivity. We investigated the formation and structure of amyloids to identify potential mechanisms for their pathogenic effects. We incubated lysozyme 20 mg/ml at 55C and pH 2.5 in a glycine-HCl buffer and prepared slides on mica substrates for examination by atomic force microscopy. Structures observed early in the aggregation process included monomers, small colloidal aggregates, and amyloid fibers. Amyloid fibers were observed to further self-assemble by two mechanisms. Two or more fibers may merge together laterally to form a single fiber bundle, usually in the form of a helix. Alternatively, fibers may become bound at points where they cross, ultimately forming an apparently irreversible macromolecular network. As the fibers assemble into a continuous network, the colloidal suspension undergoes a transition from a Newtonian fluid into a viscoelastic gel. Addition of salt did not affect fiber formation but inhibits transition of fibers from linear to helical conformation, and accelerates gel formation. Based on our observations, we considered the effects of gel formation on biological transport. Analysis of network geometry indicates that amyloid gels will have negligible effects on diffusion of small molecules, but they prevent movement of colloidal-sized structures. Consequently gel formation within neurons could completely block movement of transport vesicles in neuronal processes. Forced convection of extracellular fluid is essential for the transport of nutrients and metabolic wastes in the brain. Amyloid gel in the extracellular space can essentially halt this convection because of its low permeability. These effects may provide a physical mechanism for the cytotoxicity of chemically inactive amyloid fibers in neurodegenerative disease.
Surface characterization of weathered wood-plastic composites produced from modified wood flour
James S. Fabiyi; Armando G. McDonald; Nicole M. Stark
2007-01-01
The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...
2011-01-01
other mechanism ? What accelerates the solar wind? What are the near- Sun plasma properties (particle density, magnetic field)? Does the solar wind come...microstructure character iza tion, elec tronic ceramics, solid-state physics, fiber optics, electro-optics, microelectronics, fracture mechan ics...computational fluid mechanics , experi mental structural mechanics , solid me chan ics, elastic/plastic fracture mechanics , materials, finite-element
NASA Astrophysics Data System (ADS)
Verstrynge, E.; Wevers, M.; Ghiassi, B.; Lourenço, P. B.
2016-01-01
Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.
Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.
Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter
2005-07-01
Animal models are valuable research tools towards effective prevention of sarcopenia and towards a better understanding of the mechanisms underlying skeletal muscle aging. We investigated whether senescence-accelerated mouse (SAM) strains provide valid models for skeletal muscle aging studies. Male senescence-prone mice SAMP6 and SAMP8 were studied at age 10, 25 and 60 weeks and compared with senescence-resistant strain, SAMR1. Soleus and EDL muscles were tested for in vitro contractile properties, phosphocreatine content, muscle mass and fiber-type distribution. Declined muscle mass and contractility were observed at 60 weeks, the differences being more pronounced in SAMP8 than SAMP6 and more pronounced in soleus than EDL. Likewise, age-related decreases in muscle phosphocreatine content and type-II fiber size were most pronounced in SAMP8 soleus. In conclusion, typical features of muscular senescence occur at relatively young age in SAMP8 and nearly twice as fast as compared with other models. We suggest that soleus muscles of SAMP8 mice provide a cost-effective model for muscular aging studies.
Stahl, D.B.; Paisley, D.L.
1994-04-12
A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.
The influence of motion and stress on optical fibers
NASA Astrophysics Data System (ADS)
Murphy, Jeremy D.; Hill, Gary J.; MacQueen, Phillip J.; Taylor, Trey; Soukup, Ian; Moreira, Walter; Cornell, Mark E.; Good, John; Anderson, Seth; Fuller, Lindsay; Lee, Hanshin; Kelz, Andreas; Rafal, Marc; Rafferty, Tom; Tuttle, Sarah; Vattiat, Brian
2012-09-01
We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 μm VIRUS fibers to be immune to bending-induced FRD at bend radii of R 10 cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%. These results are important for the VIRUS instrument, and for both current and proposed instruments that make use of optical fibers, particularly when the fibers are in continual motion during an observation, or experience repeated mechanical stress during their deployment.
Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi
2017-09-01
We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.
Automatic identification of inertial sensor placement on human body segments during walking
2013-01-01
Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757
Automatic identification of inertial sensor placement on human body segments during walking.
Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H
2013-03-21
Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.
SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, J; University of Sydney, Sydney, NSW; Sykes, J
Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion.more » Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.« less
The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope
NASA Astrophysics Data System (ADS)
Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.
2014-01-01
Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.
Zhang, Ming; Schlickeiser, Reinhard
2012-08-22
Recently, it was demonstrated that stochastic acceleration of particles going through a series of compressive plasma waves can be efficient and fast. It could be too fast so that the pressure built up by the accelerated particles may in turn modify the amplitude of waves to prevent the particles from having an exploding pressure. We call this condition pressure balance. In this paper, we take into account the fact that active acceleration of particles only occupies a limited volume of space due to a possible intermittent nature of plasma waves or turbulence. We also develop a bimodal acceleration theory thatmore » treats the populations of particles in the active and inactive acceleration regions separately and allows the two populations to exchange particles efficiently. We show that the system automatically produces a solution of v -5 steady state distribution for the accelerated particles, under the requirement of the pressure balance condition. It is found that the v -5 distribution is more robust and easier to achieve with a small volume of intense particle acceleration. These properties explain why the v -5 distribution is commonly observed in space. We apply our model to pickup ion propagation and acceleration throughout the entire heliosphere. These results can reproduce various observations in some great detail. We also found that this mechanism could be responsible for producing anomalous cosmic rays deep in the heliosheath.« less
75 FR 7027 - Airworthiness Directives; Turbomeca Arriel 2S1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-16
... operating in manual control mode. The loss of full automatic control of engine 1 was caused by loss of steps... control of engine 1 was caused by loss of steps of the stepper motor controlling the fuel metering valve... engine induced by the loss of steps of the stepper motor during acceleration up to OEI 30-second rating...
38 CFR 36.4309 - Transfer of title by borrower or maturity by demand or acceleration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to the housing authority restrictions. A copy of the veteran's consent statement must be forwarded with the loan application or the report of a loan processed on the automatic basis. (Authority: 38 U.S.C. 3703(c)) (c) Any housing loan which is financed under 38 U.S.C. chapter 37, and to which section...
NASA Technical Reports Server (NTRS)
Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.
1994-01-01
Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.
Test equipment data package for the KC-135 fiber pulling apparatus
NASA Technical Reports Server (NTRS)
Kosten, Sue; Smith, Guy A.; Workman, Gary; Tucker, Dennis
1991-01-01
The Fiber Pulling Apparatus (FPA) is a device designed to produce continuous glass fibers from simulated lunar soil, and to determine the effects of reduced gravity, specifically 1/6 g on fiber formation and resultant properties. Briefly, pre-melt simulated lunar soil will be placed in a pint crucible and heated to 1200 C or higher, up to a maximum temperature of 1400 C. At a given temperature, a quartz fiber will be immersed into the melt and then pulled through a chill block and wound onto a cylindrical bobbin using a servo motor control. A high resolution video camera will record the fiber as it is being pulled. This assembly wil be enclosed in Plexiglas. Before fiber pulling commences, the apparatus will be backfilled with dry nitrogen. A separate data acquisition system will support this apparatus. This system will contain a personal computer, video recorder, and monitor. Temperature, acceleration, winding speed, and video images will be controlled and recorded using the data acquisition system. Thus, the FPA will consist of two hardware packages, the fiber production assembly and the data acquisition rack. The primary objective of this test is to determine the effects of 1/6 g on the formation of continuous glass fiber made from simulated lunar soil. Baseline studies using the FPA on the ground will provide a reference for the 1/6 g studies. Of particular interest will be the effect of 1/6 g on the free fluid zone where the fiber exits the crucible. In the fiber spinning parlance this zone is known as the upper jet region, where the boundary slope is greater than one tenth. The properties of the resulting glass fiber will depend on the jet shape as well as distributions of velocity, temperature and tension within the jet. It is unknown at this time how 1/6 g will effect these parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, N; Knutson, N; Schmidt, M
Purpose: To verify a method used to automatically acquire jaw, MLC, collimator and couch star shots for a Varian TrueBeam linear accelerator utilizing Developer Mode and an Electronic Portal Imaging Device (EPID). Methods: An XML script was written to automate motion of the jaws, MLC, collimator and couch in TrueBeam Developer Mode (TBDM) to acquire star shot measurements. The XML script also dictates MV imaging parameters to facilitate automatic acquisition and recording of integrated EPID images. Since couch star shot measurements cannot be acquired using a combination of EPID and jaw/MLC collimation alone due to a fixed imager geometry, amore » method utilizing a 5mm wide steel ruler placed on the table and centered within a 15×15cm2 open field to produce a surrogate of the narrow field aperture was investigated. Four individual star shot measurements (X jaw, Y jaw, MLC and couch) were obtained using our proposed as well as traditional film-based method. Integrated EPID images and scanned measurement films were analyzed and compared. Results: Star shot (X jaw, Y jaw, MLC and couch) measurements were obtained in a single 5 minute delivery using the TBDM XML script method compared to 60 minutes for equivalent traditional film measurements. Analysis of the images and films demonstrated comparable isocentricity results, agreeing within 0.3mm of each other. Conclusion: The presented automatic approach of acquiring star shot measurements using TBDM and EPID has proven to be more efficient than the traditional film approach with equivalent results.« less
Liu, Wenying; Yeh, Yi-Chun; Lipner, Justin; Xie, Jingwei; Sung, Hsing-Wen; Thomopoulos, Stavros; Xia, Younan
2011-01-01
A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified 10 times concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. Mechanical property assessment demonstrated higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bone-like mineral coating could mimic the structure, composition, and function of mineralized tissues. PMID:21710996
NASA Astrophysics Data System (ADS)
Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin
2015-08-01
Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.
Thermoluminescence response of flat optical fiber subjected to 9 MeV electron irradiations
NASA Astrophysics Data System (ADS)
Hashim, S.; Omar, S. S. Che; Ibrahim, S. A.; Hassan, W. M. S. Wan; Ung, N. M.; Mahdiraji, G. A.; Bradley, D. A.; Alzimami, K.
2015-01-01
We describe the efforts of finding a new thermoluminescent (TL) media using pure silica flat optical fiber (FF). The present study investigates the dose response, sensitivity, minimum detectable dose and glow curve of FF subjected to 9 MeV electron irradiations with various dose ranges from 0 Gy to 2.5 Gy. The above-mentioned TL properties of the FF are compared with commercially available TLD-100 rods. The TL measurements of the TL media exhibit a linear dose response over the delivered dose using a linear accelerator. We found that the sensitivity of TLD-100 is markedly 6 times greater than that of FF optical fiber. The minimum detectable dose was found to be 0.09 mGy for TLD-100 and 8.22 mGy for FF. Our work may contribute towards the development of a new dosimeter for personal monitoring purposes.
A novel fiber optic geophone with high sensitivity for geo-acoustic detection
NASA Astrophysics Data System (ADS)
Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing
2014-12-01
A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.
Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope
NASA Astrophysics Data System (ADS)
Moore, Anna M.; Davis, John
2000-07-01
The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.
Image analysis software for following progression of peripheral neuropathy
NASA Astrophysics Data System (ADS)
Epplin-Zapf, Thomas; Miller, Clayton; Larkin, Sean; Hermesmeyer, Eduardo; Macy, Jenny; Pellegrini, Marco; Luccarelli, Saverio; Staurenghi, Giovanni; Holmes, Timothy
2009-02-01
A relationship has been reported by several research groups [1 - 4] between the density and shapes of nerve fibers in the cornea and the existence and severity of peripheral neuropathy. Peripheral neuropathy is a complication of several prevalent diseases or conditions, which include diabetes, HIV, prolonged alcohol overconsumption and aging. A common clinical technique for confirming the condition is intramuscular electromyography (EMG), which is invasive, so a noninvasive technique like the one proposed here carries important potential advantages for the physician and patient. A software program that automatically detects the nerve fibers, counts them and measures their shapes is being developed and tested. Tests were carried out with a database of subjects with levels of severity of diabetic neuropathy as determined by EMG testing. Results from this testing, that include a linear regression analysis are shown.
Evaluation of Retinal Changes in Progressive Supranuclear Palsy and Parkinson Disease.
Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay; Mirza, Meral; Mirza, Galip Ertugrul
2018-06-01
Differentiating Parkinson disease (PD) from progressive supranuclear palsy (PSP) can be challenging early in the clinical course. The aim of our study was to see if specific retinal changes could serve as a distinguishing feature. We used spectral domain optical coherence tomography (SD-OCT) with automatic segmentation to measure peripapillary nerve fiber layer thickness and the thickness and volume of retinal layers at the macula. Thicknesses of superior peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer, inner plexiform layer, inner nuclear layer, and macular volume were more affected in PSP compared with PD (P < 0.05). Thicker inferotemporal pRNFL and lower macular volume were detected in levodopa users compared with nonusers in patients with PD. PD and PSP are associated with distinct changes in retinal morphology, which can be assessed with SD-OCT.
Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.
Kostrominova, Tatiana Y
2010-11-30
In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.
Fast and Exact Fiber Surfaces for Tetrahedral Meshes.
Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng
2017-07-01
Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.
Programmable controller system for wind tunnel diversion vanes
NASA Technical Reports Server (NTRS)
King, R. F.
1982-01-01
A programmable controller (PC) system automatic sequence control, which acts as a supervisory controller for the servos, selects the proper drives, and automatically sequences the vanes, was developed for use in a subsonic wind tunnel. Tunnel modifications include a new second test section (80 ft x 100 ft with a maximum air speed capability of 110 knots) and an increase in maximum velocity flow from 200 knots to 300 knots. A completely automatic sequence control is necessary in order to allow intricate motion of the 14 triangularly arranged vanes which can be as large as 70 ft high x 35 ft wide and which require precise acceleration and deceleration control. Rate servos on each drive aid in this control, and servo cost was minimized by using four silicon controlled rectifier controllers to control the 20 dc drives. The PC has a programming capacity which facilitated the implementation of extensive logic design. A series of diagrams sequencing the vanes and a block diagram of the system are included.
Automatic creation of three-dimensional avatars
NASA Astrophysics Data System (ADS)
Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader
2003-01-01
Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.
Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng
2016-03-01
Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.
Field test investigation of high sensitivity fiber optic seismic geophone
NASA Astrophysics Data System (ADS)
Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu
2017-10-01
Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.
Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.
2015-01-01
Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T; Chapman, C; Lawrence, T
2015-06-15
Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to themore » Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines after brain irradiation. NIH NS064973.« less
Stability of a pH-sensitive polymer matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northrup, M.A.; Langry, K.; Angel, S.M.
1990-03-01
A ratiometric pH-sensitive fluorescent dye (hydroxypyrenetrisulfonic acid) was covalently attached to an acrylamide polymer. These pH-sensitive copolymers were either covalently bonded to the end of an optical fiber or polymerized into separate gels. Long-term, accelerated aging studies were performed on the fibers and gels in 43{degree}C distilled H{sub 2}O. The fiber-immobilized optrodes gave good pH responses for up to 2 months. The pH-sensitive gels were physically attached to optical fibers and gave very good pH responses for over one year. These physically immobilized, one-year-old, pH-sensitive copolymers provided optrodes with linear pH responses between pH 6 and 8 and resolution greatermore » than 0.25 pH unit. A simple photostability experiment on these optrodes showed that they were very photostable. The results of this study indicate that pH-sensitive copolymers in a simple optrode design can be employed as pH sensors with useful lifetimes exceeding one year. 11 refs., 6 figs.« less
Durability tests of a fiber optic corrosion sensor.
Wan, Kai Tai; Leung, Christopher K Y
2012-01-01
Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.
Strong, Tough, and Pest Resistant MoSi2-Base Hybrid Composite for Structural Applications
NASA Technical Reports Server (NTRS)
Hebsur, M. G.; Nathal, M. V.
1997-01-01
Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.
MoSi2-Base Hybrid Composites from Aeroengine Applications
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.
2000-01-01
Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.
NASA Astrophysics Data System (ADS)
Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise
2012-04-01
Fabric's smoothness is a key factor in determining the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the zero defect industrial concept, identifying and measuring defective material in the early stage of production is of great interest to the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. We propose a computer vision approach to compute epipole by using variable homography, which can be used to measure emergent fiber length on textile fabrics. The main challenges addressed in this paper are the application of variable homography on textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure, and then we show how variable homography combined with epipolar geometry can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method. The true length of selected fibers is measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method of quality control for important industrial fabrics.
Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani
2004-01-01
The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.
Accelerated Gaussian mixture model and its application on image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Jianhui; Zhang, Yuanyuan; Ding, Yihua; Long, Chengjiang; Yuan, Zhiyong; Zhang, Dengyi
2013-03-01
Gaussian mixture model (GMM) has been widely used for image segmentation in recent years due to its superior adaptability and simplicity of implementation. However, traditional GMM has the disadvantage of high computational complexity. In this paper an accelerated GMM is designed, for which the following approaches are adopted: establish the lookup table for Gaussian probability matrix to avoid the repetitive probability calculations on all pixels, employ the blocking detection method on each block of pixels to further decrease the complexity, change the structure of lookup table from 3D to 1D with more simple data type to reduce the space requirement. The accelerated GMM is applied on image segmentation with the help of OTSU method to decide the threshold value automatically. Our algorithm has been tested through image segmenting of flames and faces from a set of real pictures, and the experimental results prove its efficiency in segmentation precision and computational cost.
NASA Astrophysics Data System (ADS)
Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.
2013-03-01
It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.
Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S
2014-03-11
Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.
A low-cost inertial smoothing system for landing approach guidance
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1973-01-01
Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.
Mu, Bingnan; Xu, Helan; Yang, Yiqi
2015-11-01
In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Touboul, David; Efron, Nathan; Smadja, David; Praud, Delphine; Malet, Florence; Colin, Joseph
2012-11-01
To compare early corneal healing following conventional, transepithelial, and accelerated corneal collagen cross-linking (CXL) protocols. Twenty-four patients with progressive keratoconus were divided into three groups to receive conventional, transepithelial, or accelerated CXL. In vivo corneal confocal microscopy was performed on each patient preoperatively and at 1, 3, and 6 months postoperatively. Closure of the epithelial wound was complete 3 days following conventional and accelerated CXL. The subbasal nerve plexus was essentially obliterated immediately following conventional and accelerated CXL, and virtually no nerve fibers had regenerated by 6 months. The anterior stroma showed significant changes 1 month following conventional CXL; these changes were similar but more pronounced following accelerated CXL. Observed stromal changes included complete obliteration of keratocytes, increased tissue reflectivity, a honeycomb-like appearance, and circular lacunae. Some recovery of keratocyte density was noted after 6 months. These changes were less pronounced in the mid-stroma, and there were no apparent changes to the posterior stroma or endothelium. The cornea appeared to be unaltered following transepithelial CXL. In vivo corneal confocal microscopy analysis of the postoperative impact of CXL on the cornea revealed clear differences among conventional, accelerated, and transepithelial CXL protocols. Accelerated CXL had a greater impact than conventional CXL on the anterior cornea, whereas transepithelial CXL did not appear to alter corneal morphology. Copyright 2012, SLACK Incorporated.
The long term agroecosystem research network - shared research strategy
Jean L. Steiner; Timothy Strickland; Peter J.A. Kleinman; Kris Havstad; Thomas B. Moorman; M.Susan Moran; Phil Hellman; Ray B. Bryant; David Huggins; Greg McCarty
2016-01-01
While current weather patterns and rapidly accelerated changes in technology often focus attention on short-term trends in agriculture, the fundamental demands on modern agriculture to meet society food, feed, fuel and fiber production while providing the foundation for a healthy environment requires long-term perspective. The Long- Term Agroecoystem Research Network...
Pete Wohlgemuth; Jan Beyers; Pete Robichaud
2011-01-01
High severity wildfire can make watersheds susceptible to accelerated erosion, which impedes resource recovery and threatens life, property, and infrastructure in downstream human communities. Land managers often use mitigation measures on the burned hillside slopes to reduce postfire sediment fluxes. Hydromulch, a slurry of paper or wood fiber that dries to a...
NASA Astrophysics Data System (ADS)
Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.
2013-11-01
We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.
Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less
Enhanced dielectric-wall linear accelerator
Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.
1998-09-22
A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.
Enhanced dielectric-wall linear accelerator
Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.
1998-01-01
A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
NASA Astrophysics Data System (ADS)
Derishev, E.; Aharonian, F.
We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.
Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu
2015-01-01
Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504
Accelerated testing of composites
NASA Technical Reports Server (NTRS)
Papazian, H. A.
1983-01-01
It is shown that the Zhurkov method for testing the strength of solids can be applied to dynamic tension and to cyclic loading and provides a viable approach to accelerated testing of composites. Data from the literature are used to demonstrate a straightforward application of the method to dynamic tension of glass fiber and cyclic loading for glass/polymer, metal matrix, and graphite/epoxy composites. Zhurkov's equation can be used at relatively high loads to obtain failure times at any temperature of interest. By taking a few data points at one or two other temperatures the spectrum of failure times can be expanded to temperatures not easily accessible.
The radiation crosslinking process and new products
NASA Astrophysics Data System (ADS)
Ueno, Keiji
In 1988 there were over 90 EB accelerators for industrial use in Japan. The number one industrial application was Wire and Cable, the 2nd was PE foam and Curing, and the 3rd was Precure of tyre. R & D has a very high ration of EB accelerator use. Low energy industrial applications were coated steel (white board), plaster slab, coated paper, magnetic tape and floppy disks. As a new application of the radiation crosslinking process, we have studied radiation crosslinking of engineering plastics and succeeded in improving the hea tresistivity without using glass fibers. Many kinds of polyfunctional monomers used as crosslinking reagents of irradiated Nylon and PBT were studied.
Intercommunications in Real Time, Redundant, Distributed Computer System
NASA Technical Reports Server (NTRS)
Zanger, H.
1980-01-01
An investigation into the applicability of fiber optic communication techniques to real time avionic control systems, in particular the total automatic flight control system used for the VSTOL aircraft is presented. The system consists of spatially distributed microprocessors. The overall control function is partitioned to yield a unidirectional data flow between the processing elements (PE). System reliability is enhanced by the use of triple redundancy. Some general overall system specifications are listed here to provide the necessary background for the requirements of the communications system.
Incorporation of composite defects from ultrasonic NDE into CAD and FE models
NASA Astrophysics Data System (ADS)
Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh
2017-02-01
Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.
2016-09-28
previous research and modeling results. The OMS and Perception Toolbox were used to perform a case study of an F18 mishap. Model results imply that...request documents from DTIC. Change of Address Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic...54 Coriolis head movement during a coordinated turn. .............................................55 Case Study
Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers
NASA Astrophysics Data System (ADS)
Cai, Wangyang; Wang, Lei; Wen, Shuangchun
2018-04-01
The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.
Automatic generation of user material subroutines for biomechanical growth analysis.
Young, Jonathan M; Yao, Jiang; Ramasubramanian, Ashok; Taber, Larry A; Perucchio, Renato
2010-10-01
The analysis of the biomechanics of growth and remodeling in soft tissues requires the formulation of specialized pseudoelastic constitutive relations. The nonlinear finite element analysis package ABAQUS allows the user to implement such specialized material responses through the coding of a user material subroutine called UMAT. However, hand coding UMAT subroutines is a challenge even for simple pseudoelastic materials and requires substantial time to debug and test the code. To resolve this issue, we develop an automatic UMAT code generation procedure for pseudoelastic materials using the symbolic mathematics package MATHEMATICA and extend the UMAT generator to include continuum growth. The performance of the automatically coded UMAT is tested by simulating the stress-stretch response of a material defined by a Fung-orthotropic strain energy function, subject to uniaxial stretching, equibiaxial stretching, and simple shear in ABAQUS. The MATHEMATICA UMAT generator is then extended to include continuum growth by adding a growth subroutine to the automatically generated UMAT. The MATHEMATICA UMAT generator correctly derives the variables required in the UMAT code, quickly providing a ready-to-use UMAT. In turn, the UMAT accurately simulates the pseudoelastic response. In order to test the growth UMAT, we simulate the growth-based bending of a bilayered bar with differing fiber directions in a nongrowing passive layer. The anisotropic passive layer, being topologically tied to the growing isotropic layer, causes the bending bar to twist laterally. The results of simulations demonstrate the validity of the automatically coded UMAT, used in both standardized tests of hyperelastic materials and for a biomechanical growth analysis.
Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations
NASA Astrophysics Data System (ADS)
Hirsch, Michael
During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and broadcast FM passive radar. The fusion of data from coherent radar backscatter and optical data at order 10 ms cadence confirms and further quantifies the relation of strong Langmuir turbulence and streaming plasma upflows in the ionosphere with the finest spatiotemporal auroral dynamics associated with IAW acceleration. The software programs developed in this dissertation solve the century-old problem of automatically discriminating finely structured aurora from other forms and pushes the observational wave-particle science frontiers forward.
Coppens, Milou J M; Roelofs, Jolanda M B; Donkers, Nicole A J; Nonnekes, Jorik; Geurts, Alexander C H; Weerdesteyn, Vivian
2018-05-14
A startling acoustic stimulus (SAS) involuntary releases prepared movements at accelerated latencies, known as the StartReact effect. Previous work has demonstrated intact StartReact in paretic upper extremity movements in people after stroke, suggesting preserved motor preparation. The question remains whether motor preparation of lower extremity movements is also unaffected after stroke. Here, we investigated StartReact effects on ballistic lower extremity movements and on automatic postural responses (APRs) following perturbations to standing balance. These APRs are particularly interesting as they are critical to prevent a fall following balance perturbations, but show substantial delays and poor muscle coordination after stroke. Twelve chronic stroke patients and 12 healthy controls performed voluntary ankle dorsiflexion movements in response to a visual stimulus, and responded to backward balance perturbations evoking APRs. Twenty-five percent of all trials contained a SAS (120 dB) simultaneously with the visual stimulus or balance perturbation. As expected, in the absence of a SAS muscle and movement onset latencies at the paretic side were delayed compared to the non-paretic leg and to controls. The SAS accelerated ankle dorsiflexion onsets in both the legs of the stroke subjects and in controls. Following perturbations, the SAS accelerated bilateral APR onsets not only in controls, but for the first time, we also demonstrated this effect in people after stroke. Moreover, APR inter- and intra-limb muscle coordination was rather weak in our stroke subjects, but substantially improved when the SAS was applied. These findings show preserved movement preparation, suggesting that there is residual (subcortical) capacity for motor recovery.
A fiber-coupled 9xx module with tap water cooling
NASA Astrophysics Data System (ADS)
Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.
2016-03-01
A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing
Lighting system combining daylight concentrators and an artificial source
Bornstein, Jonathan G.; Friedman, Peter S.
1985-01-01
A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.
NASA Technical Reports Server (NTRS)
Maklad, Adel; Fritzsch, Bernd
2002-01-01
The developmental segregation of gravistatic input mediated by saccular fibers and of angular acceleration input mediated by posterior crista (PC) fibers was analyzed for the first time in a developing mammal using carbocyanine dye tracing in fixed tissue. The data reveal a more extensive projection of either endorgan in 7-day-old mice (P7) than has previously been reported in adult mammals. While we confirm and extend many previous findings, we also describe a novel segregation of saccular and posterior crista fibers in the anterior half of the medial vestibular nucleus (Mv) not reported before. Our developmental analysis shows a progressive segregation of posterior crista and saccular fibers to their respective discrete projection areas between embryonic day 15 (E15) and birth (P0). Retention of overlap in young adult animals appears to reflect the early embryonic overlap found in most areas. The vestibular projection does not show a topological projection as has been described in many other sensory systems. We propose that the unique projection features of the vestibular endorgans may relate to the transformation of vestibular signals into a motor output in the three neuron reflex arc of the VOR, of which the primary vestibular projection constitutes the first leg.
MAPA: an interactive accelerator design code with GUI
NASA Astrophysics Data System (ADS)
Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.
1999-06-01
The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is "registered" with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data.
Panser, Karin; Tirian, Laszlo; Schulze, Florian; Villalba, Santiago; Jefferis, Gregory S X E; Bühler, Katja; Straw, Andrew D
2016-08-08
Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhiguo; Shen, Chunyan; Li, Luming
2018-03-01
Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.
Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2015-02-01
Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.
Predicting photoyellowing behaviour of mechanical pulp containing papers
Umesh P. Agarwal
2005-01-01
It is well known that paper produced from mechanical-pulp-containing fiber furnish yellows upon exposure to light. Although the accelerated light-aging test method has been used to compare papers and predict long term performance, the reliability of the light-aging method has been questioned. Therefore, a method that can correctly predict a paperâs light stability is...
Xu, Lin; Yu, Wenkui; Jiang, Jun; Li, Ning
2014-12-30
To explore the effect of pectin, a kind of soluble dietary fiber, on colonic transit time (CTT), clinical symptoms and gut microbiota in adults with slow-transit constipation. A total of 80 patients with slow-transit constipation were selected between June 2011 and December 2013. For this randomized controlled trial, we evaluated the efficacy of pectin on intestinal transit time and other indices of constipation in adults with slow-transit constipation. They were randomized to receive either pectin or placebo. Treatment consisted of 4-week supplementation with 24 g/d pectin (fiber group) or maltodextrin (placebo group). Before and after 4-week treatment, CTT, constipation symptoms and fecal bacterial population were compared between groups. CTT of the fiber group after treatment was lower than those of fiber group before treatment and those in the placebo group ((60.2 ± 11.2) h vs (80.3 ± 9.5), (79.4 ± 11.7) h, P < 0.01). Constipation score of the fiber group after treatment also decreased than those of fiber group before treatment and those in the placebo group (both P < 0.05). Bifidobacterium sp. and Lactobacillus sp. evidently increased (lg copies/g:8.26 ± 0.83 vs 6.42 ± 1.07 and 6.48 ± 0.82, 6.83 ± 0.77 vs 5.85 ± 0.64 and 5.91 ± 0.73; all P < 0.05) and total Clostridium sp. significantly decreased (9.07 ± 0.63 vs 9.74 ± 0.81 and 9.66 ± 0.43, P < 0.05) in the fiber group after treatment versus the placebo group. No significant adverse effects were reported. Four-week soluble dietary fiber use accelerates colon transit time and alleviates clinical symptoms in patients with slow-transit constipation. Additionally, supplementary fiber offers protective effects on gut microbiota by increasing the population of healthy microflora.
Hesterberg, T W; Axten, C; McConnell, E E; Hart, G A; Miiller, W; Chevalier, J; Everitt, J; Thevenaz, P; Oberdörster, G
1999-09-01
A multidose, subchronic inhalation study was used to estimate the maximum tolerated dose (MTD) of 901 fiberglass (MMVF10.1) for a chronic inhalation study using hamsters. Subchronic study results indicated that 30 mg/m(3) [250-300 WHO fibers (>5 microm long)/cm(3) and 100-130 fibers/cm(3) >20 microm long] meets or exceeds the estimated MTD, and chronic study results confirmed this. For the subchronic study, hamsters were exposed 6 h/day, 5 days/wk, for 13 wk to MMVF10.1 at 3, 16, 30, 45, and 60 mg/m(3) (36, 206, 316, 552, or 714 WHO fibers/cm(3)), then monitored for 10 wk. Results demonstrating MTD were: inflammatory response (all fiber exposures); elevated lung cell proliferation with @ges;16 mg/m(3); lung lavage neutrophil elevations with @ges;16 mg/m(3) and lactate dehydrogenase (LDH) and protein elevations with > or = 30 mg/m(3); and persistent abnormal macrophage/fiber clumps in lungs exposed to 45 and 60 mg/m(3), which suggest overloading of clearance mechanisms. For the chronic study, hamsters were exposed for 78 wk to MMVF10a (901 fiber glass) or MMVF33 (special-application 475 fiberglass) at approximately 300 WHO fibers/cm(3) ( approximately 100 fibers/cm(3) @gt;20 @mu;m long), or to amosite asbestos at an equivalent concentration and 2 lower concentrations. All fiber-exposed animals had pulmonary inflammation, elevated lung lavage cells, and increased lung cell proliferation. Between 52 and 78 wk of exposure, lung burdens of all fibers increased at an accelerated rate, suggesting impairment of clearance mechanisms. MMVF33 and amosite induced fibrosis and pleural mesothelioma. These findings substantiate that exposures in the chronic study adequately tested the toxic potential of fiberglass.
Climbing fibers predict movement kinematics and performance errors.
Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J
2017-09-01
Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control. Copyright © 2017 the American Physiological Society.
Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian
2014-11-01
Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.
Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin
2015-10-09
A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level. Copyright © 2015 Elsevier B.V. All rights reserved.
Automatic Mechetronic Wheel Light Device
Khan, Mohammed John Fitzgerald
2004-09-14
A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.
Nonlinear Krylov and moving nodes in the method of lines
NASA Astrophysics Data System (ADS)
Miller, Keith
2005-11-01
We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.
NASA Technical Reports Server (NTRS)
Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.
1976-01-01
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.
Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8)
Guo, An Yun; Leung, Kwok Sui; Siu, Parco Ming Fai; Qin, Jiang Hui; Chow, Simon Kwoon Ho; Qin, Ling; Li, Chi Yu; Cheung, Wing Hoi
2015-01-01
Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study. PMID:26193895
Miguel Giraldo, Carlos; Zúñiga Sagredo, Juan; Sánchez Gómez, José; Corredera, Pedro
2017-07-21
Embedding optical fibers sensors into composite structures for Structural Health Monitoring purposes is not just one of the most attractive solutions contributing to smart structures, but also the optimum integration approach that insures maximum protection and integrity of the fibers. Nevertheless this intended integration level still remains an industrial challenge since today there is no mature integration process in composite plants matching all necessary requirements. This article describes the process developed to integrate optical fiber sensors in the Production cycle of a test specimen. The sensors, Bragg gratings, were integrated into the laminate during automatic tape lay-up and also by a secondary bonding process, both in the Airbus Composite Plant. The test specimen, completely representative of the root joint of the lower wing cover of a real aircraft, is comprised of a structural skin panel with the associated stringer run out. The ingress-egress was achieved through the precise design and integration of miniaturized optical connectors compatible with the manufacturing conditions and operational test requirements. After production, the specimen was trimmed, assembled and bolted to metallic plates to represent the real triform and buttstrap, and eventually installed into the structural test rig. The interrogation of the sensors proves the effectiveness of the integration process; the analysis of the strain results demonstrate the good correlation between fiber sensors and electrical gauges in those locations where they are installed nearby, and the curvature and load transfer analysis in the bolted stringer run out area enable demonstration of the consistency of the fiber sensors measurements. In conclusion, this work presents strong evidence of the performance of embedded optical sensors for structural health monitoring purposes, where in addition and most importantly, the fibers were integrated in a real production environment and the ingress-egress issue was solved by the design and integration of miniaturized connectors compatible with the manufacturing and structural test phases.
Miguel Giraldo, Carlos; Zúñiga Sagredo, Juan; Sánchez Gómez, José; Corredera, Pedro
2017-01-01
Embedding optical fibers sensors into composite structures for Structural Health Monitoring purposes is not just one of the most attractive solutions contributing to smart structures, but also the optimum integration approach that insures maximum protection and integrity of the fibers. Nevertheless this intended integration level still remains an industrial challenge since today there is no mature integration process in composite plants matching all necessary requirements. This article describes the process developed to integrate optical fiber sensors in the Production cycle of a test specimen. The sensors, Bragg gratings, were integrated into the laminate during automatic tape lay-up and also by a secondary bonding process, both in the Airbus Composite Plant. The test specimen, completely representative of the root joint of the lower wing cover of a real aircraft, is comprised of a structural skin panel with the associated stringer run out. The ingress-egress was achieved through the precise design and integration of miniaturized optical connectors compatible with the manufacturing conditions and operational test requirements. After production, the specimen was trimmed, assembled and bolted to metallic plates to represent the real triform and buttstrap, and eventually installed into the structural test rig. The interrogation of the sensors proves the effectiveness of the integration process; the analysis of the strain results demonstrate the good correlation between fiber sensors and electrical gauges in those locations where they are installed nearby, and the curvature and load transfer analysis in the bolted stringer run out area enable demonstration of the consistency of the fiber sensors measurements. In conclusion, this work presents strong evidence of the performance of embedded optical sensors for structural health monitoring purposes, where in addition and most importantly, the fibers were integrated in a real production environment and the ingress-egress issue was solved by the design and integration of miniaturized connectors compatible with the manufacturing and structural test phases. PMID:28754009
Atlas-guided cluster analysis of large tractography datasets.
Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer
2013-01-01
Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment.
Mei, Shuang; Wang, Yudan; Wen, Guojun; Hu, Yang
2018-05-03
Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR), for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI), for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.
Micro particle launcher/cleaner based on optical trapping technology.
Liu, Zhihai; Liang, Peibo; Zhang, Yu; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo
2015-04-06
Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.
Qin, Hongde; Chen, Min; Yi, Xianda; Bie, Shu; Zhang, Cheng; Zhang, Youchang; Lan, Jiayang; Meng, Yanyan; Yuan, Youlu; Jiao, Chunhai
2015-01-01
Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.
NASA Astrophysics Data System (ADS)
Rivlin, Lev A.
1990-05-01
A method is suggested for the generation of atomic beams with a high degree of monokinetization from beams of negative ions accelerated in an electric field up to a threshold moment at which, subject to the Doppler effect, the longitudinal component of the ion velocity becomes sufficient for the photodetachment of an electron from an ion by photons in a laser beam collinear with the ion beam. The resultant neutral atoms continue to move without acceleration and at the same longitudinal velocities equal to the threshold value. An analysis of a number of factors limiting this effect is given below.
Effect of strain on actomyosin kinetics in isometric muscle fibers.
Siththanandan, V B; Donnelly, J L; Ferenczi, M A
2006-05-15
Investigations were conducted into the biochemical and mechanical states of cross-bridges during isometric muscle contraction. Rapid length steps (3 or 6 nm hs(-1)) were applied to rabbit psoas fibers, permeabilized and isometric, at either 12 degrees C or 20 degrees C. Fibers were activated by photolysis of P(3)-1-(2-nitrophenyl)-ethyl ester of ATP infused into rigor fibers at saturating Ca(2+). Sarcomere length, tension, and phosphate release were recorded-the latter using the MDCC-PBP fluorescent probe. A reduction in strain, induced by a rapid release step, produced a short-lived acceleration of phosphate release. Rates of the phosphate transient and that of phases 3 and 4 of tension recovery were unaffected by step size but were elevated at higher temperatures. In contrast the amplitude of the phosphate transient was smaller at 20 degrees C than 12 degrees C. The presence of 0.5 or 1.0 mM added ADP during a release step reduced both the rate of tension recovery and the poststep isometric tension. A kinetic scheme is presented to simulate the observed data and to precisely determine the rate constants for the elementary steps of the ATPase cycle.
100W high-brightness multi-emitter laser pump
NASA Astrophysics Data System (ADS)
Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.
2011-03-01
We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.
Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra
2016-01-01
Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. Trial Registration: ClinicalTrials.gov: NCT01679977 PMID:28078066
Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra
2016-09-15
Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. ClinicalTrials.gov: NCT01679977.
Framework for Development and Distribution of Hardware Acceleration
NASA Astrophysics Data System (ADS)
Thomas, David B.; Luk, Wayne W.
2002-07-01
This paper describes IGOL, a framework for developing reconfigurable data processing applications. While IGOL was originally designed to target imaging and graphics systems, its structure is sufficiently general to support a broad range of applications. IGOL adopts a four-layer architecture: application layer, operation layer, appliance layer and configuration layer. This architecture is intended to separate and co-ordinate both the development and execution of hardware and software components. Hardware developers can use IGOL as an instance testbed for verification and benchmarking, as well as for distribution. Software application developers can use IGOL to discover hardware accelerated data processors, and to access them in a transparent, non-hardware specific manner. IGOL provides extensive support for the RC1000-PP board via the Handel-C language, and a wide selection of image processing filters have been developed. IGOL also supplies plug-ins to enable such filters to be incorporated in popular applications such as Premiere, Winamp, VirtualDub and DirectShow. Moreover, IGOL allows the automatic use of multiple cards to accelerate an application, demonstrated using DirectShow. To enable transparent acceleration without sacrificing performance, a three-tiered COM (Component Object Model) API has been designed and implemented. This API provides a well-defined and extensible interface which facilitates the development of hardware data processors that can accelerate multiple applications.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.
1995-08-08
A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.
1995-01-01
A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.
Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong
2015-04-15
Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.
Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai
2010-12-06
The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.
A new composite electrode architecture for energy storage devices
NASA Technical Reports Server (NTRS)
Ferro, Richard E.; Swain, Greg M.; Tatarchuk, B. J.
1992-01-01
The research objective is to determine how the electrode microstructure (architecture) affect the performance of the nickel hydroxide electrochemical system. It was found that microstructure and additional surface area makes a difference. The best architectures are the FIBREX/nickel and nickel fiber composite electrodes. The conditioning time for full utilization was greatly reduced. The accelerated increase in capacity vs. cycling appears to be a good indicator of the condition of the electrode/active material microstructure and morphology. Conformal deposition of the active material may be indicated and important. Also higher utilizations were obtained; greater than 80 pct. after less than 5 cycles and greater than 300 pct. after more than 5 cycles using nickel fiber composite electrode assuming a 1 electron transfer per equivalent.
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Bryson, A. E., Jr.
1973-01-01
An autopilot logic is designed here for controlling a helicopter with a hanging load. A 16th order model for the system is decoupled into four subsystems: (1) a second order system for yawing motion, (2) a second order system for vertical motion, (3) a sixth order system for longitudinal motion, and (4) a sixth order system for lateral motion. A measuring scheme, which could be used in remote areas, is developed and filters are designed to estimate the state variables from these measurements. The autopilot can be used to move the load over short distances without retracting the cables. This is done by automatically shifting the autopilot modes from position-hold (hover) to acceleration-hold to velocity-hold (cruise) to deceleration-hold to velocity-hold (near hover) to position-hold (hover). Use of such an autopilot might save considerable turnaround time. The Sikorsky S-61 helicopter is chosen as an example vehicle. The performance of the controlled system is studied in the presence of longitudinal and lateral winds.
Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts.
Ng; Wong
1999-01-01
We are entering a new era of research where the latest scientific discoveries are often first reported online and are readily accessible by scientists worldwide. This rapid electronic dissemination of research breakthroughs has greatly accelerated the current pace in genomics and proteomics research. The race to the discovery of a gene or a drug has now become increasingly dependent on how quickly a scientist can scan through voluminous amount of information available online to construct the relevant picture (such as protein-protein interaction pathways) as it takes shape amongst the rapidly expanding pool of globally accessible biological data (e.g. GENBANK) and scientific literature (e.g. MEDLINE). We describe a prototype system for automatic pathway discovery from on-line text abstracts, combining technologies that (1) retrieve research abstracts from online sources, (2) extract relevant information from the free texts, and (3) present the extracted information graphically and intuitively. Our work demonstrates that this framework allows us to routinely scan online scientific literature for automatic discovery of knowledge, giving modern scientists the necessary competitive edge in managing the information explosion in this electronic age.
DOT National Transportation Integrated Search
2003-11-01
The objectives of this research are to determine the effect of unbound drainable base types on the performance of PCCP and the efficiency of fiber-reinforced polymer (FRP) dowels, compared to epoxy coated steel dowels, when retrofitted to re-establis...
Capacity, production, and manufacture of woodbased panels in the United States and Canada
Henry Spelter
1996-01-01
Structural and nonstructural panel products have constituted the fastest growing segment of the wood products industries over the past two decades. Based on announced plans, growth will accelerate in the next 2 years. The cost of wood fiber used in these processes has been rising. To keep wood costs as low as possible, a growing share of the new production is being...
World Key Information Service System Designed For EPCOT Center
NASA Astrophysics Data System (ADS)
Kelsey, J. A.
1984-03-01
An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.
Fiber reinforced hybrid phenolic foam
NASA Astrophysics Data System (ADS)
Desai, Amit
Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability of hybrid foams were evaluated and the results indicate that hybrid foam surpassed several commercial foams and thus could fulfill the current needs for an insulation material which is low cost, has excellent fire properties and retains compressive stiffness even after aging.
Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development
Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; ...
2014-11-04
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocitymore » were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.« less
Comparison of thermoluminescence response of different sized Ge-doped flat fibers as a dosimeter
NASA Astrophysics Data System (ADS)
Begum, Mahfuza; Mizanur Rahman, A. K. M.; Abdul-Rashid, H. A.; Yusoff, Z.; Mat-Sharif, K. A.; Zulkifli, M. I.; Muhamad-Yasin, S. Z.; Ung, N. M.; Kadir, A. B. A.; Amin, Y. M.; Bradley, D. A.
2015-11-01
Prime dosimetric properties, including dose-response, linearity with dose, energy response, fading and threshold doses were investigated for three different dimension Ge-doped flat fibers. The results of measurement were also compared with two of the more commonly used standard TLD media, TLD-100 (LiF:Mg,Ti-7.5%6LiF) and TLD-700 (7LiF:Mg,Ti-99.9%7LiF) chips. The flat cross-section samples (60×180) μm2, (100×350) μm2 and (200×750) μm2 were fabricated using the Modified Chemical Vapor Deposition (MCVD) process and pulled from the same "preform." In the study, all flat fiber samples provided good linear dose-response for the photon and electron beams generated using a medical linear accelerator (LINAC), for doses in the range 0.5-8 Gy. Among the samples, the smallest dimension flat fiber provided the best response, with a sensitivity of some 61% and 54%, respectively of that of the TLD-100 and TLD-700 chips. The energy responses of the samples were studied for various photon (6 MV, 10 MV) and electron (6 MeV, 9 MeV) beam energies. TL fading of around 20% was observed over a period of thirty (30) days. These favorable TL characteristics point towards promising development of Ge-doped flat fibers for use in radiotherapy dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korotkova, Anna M.; Lukstins, Juris
2010-01-05
Search of the decay vertex is an important part of the hypernuclear experiment, carried out of the Dubna nuclotron accelerator. The decay vertex is reconstructed from data from two sets of proportional chambers. The distribution of the vertex of decay of the hypernucleus allows to measure the lifetime of the hypernuclei. Algorithm for searches and automatically calculates the decay vertex has been written.
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.
Prasad, Gautam; Nir, Talia M; Toga, Arthur W; Thompson, Paul M
2013-04-01
Brain connectivity declines in Alzheimer's disease (AD), both functionally and structurally. Connectivity maps and networks derived from diffusion-based tractography offer new ways to track disease progression and to understand how AD affects the brain. Here we set out to identify (1) which fiber network measures show greatest differences between AD patients and controls, and (2) how these effects depend on the density of fibers extracted by the tractography algorithm. We computed brain networks from diffusion-weighted images (DWI) of the brain, in 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD). We derived connectivity matrices and network topology measures, for each subject, from whole-brain tractography and cortical parcellations. We used an ODF lookup table to speed up fiber extraction, and to exploit the full information in the orientation distribution function (ODF). This made it feasible to compute high density connectivity maps. We used accelerated tractography to compute a large number of fibers to understand what effect fiber density has on network measures and in distinguishing different disease groups in our data. We focused on global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity measures computed from weighted and binary undirected connectivity matrices. Of all these measures, the mean nodal degree best distinguished diagnostic groups. High-density fiber matrices were most helpful for picking up the more subtle clinical differences, e.g. between mild cognitively impaired (MCI) and normals, or for distinguishing subtypes of MCI (early versus late). Care is needed in clinical analyses of brain connectivity, as the density of extracted fibers may affect how well a network measure can pick up differences between patients and controls.
NASA Astrophysics Data System (ADS)
Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar
2012-04-01
Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.
Radiation tolerant passive and active optical fiber products for use in space environments
NASA Astrophysics Data System (ADS)
Hill, Mark; Hankey, Judith; Gray, Rebecca
2017-11-01
This paper reports the radiation performance results of several new product types designed for high radiation environments. The products tested include radiation hardened highly birefringent (HiBi) passive products for polarised applications and radiation tolerant active erbium doped fiber products for amplifiers. Radiation hardened, short beatlength HiBi fiber products have been developed for high accuracy polarisation maintaining (PM) gyros and sensors at both 1310nm and 1550nm operation in the space environment. The fibers have been tested up to 5kGy (500krad) - levels which could be expected in extreme, extra-terrestrial space environments. Results show a consistently low Radiation Induced Attenuation (RIA) of <7dB/km at 5kGy, giving a RIA value of 1.37×10-2 dB/km/krad at 1550nm for this product range. Radiation tolerant EDF AstroGain™ fibers are intended for use in multichannel amplifiers in optical intersatellite communications. The structure of the fibers have been designed to deliver an accelerated recovery of radiation damage through photo-annealing using only the residual energy already available in an amplifier using a 980nm pumping regime. These products have been tested up to 200Gy (20krad) - levels which can be expected in Earth orbit environments over a 20-30 mission lifetime. Results show up to 100% recovery under continuous use for dose rates of 0.11rad/hr. It has also been demonstrated through analysis of the optical spectral output that this effect reverses the gain tilt, or spectral narrowing, induced by radiation damage through the C and L band. These combined fiber characteristics allow performance stability of the amplifier over the lifetime of the space mission.
Particle Accelerator Focus Automation
NASA Astrophysics Data System (ADS)
Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João
2017-08-01
The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.
GN/C translation and rotation control parameters for AR/C (category 2)
NASA Technical Reports Server (NTRS)
Henderson, David M.
1991-01-01
Detailed analysis of the Automatic Rendezvous and Capture problem indicate a need for three different regions of mathematical description for the GN&C algorithms: (1) multi-vehicle orbital mechanics to the rendezvous interface point, i.e., within 100 n.; (2) relative motion solutions (such as Clohessy-Wiltshire type) from the far-field to the near-field interface, i.e., within 1 nm; and (3) close proximity motion, the nearfield motion where the relative differences in the gravitational and orbit inertial accelerations can be neglected from the equations of motion. This paper defines the reference coordinate frames and control parameters necessary to model the relative motion and attitude of spacecraft in the close proximity of another space system (Region 2 and 3) during the Automatic Rendezvous and Capture phase of an orbit operation.
NASA Astrophysics Data System (ADS)
Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao
2017-10-01
UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.
Distilling free-form natural laws from experimental data.
Schmidt, Michael; Lipson, Hod
2009-04-03
For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. A key challenge to finding analytic relations automatically is defining algorithmically what makes a correlation in observed data important and insightful. We propose a principle for the identification of nontriviality. We demonstrated this approach by automatically searching motion-tracking data captured from various physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated as laws found for simpler systems were used to bootstrap explanations for more complex systems, gradually uncovering the "alphabet" used to describe those systems.
Automatic fall detection using wearable biomedical signal measurement terminal.
Nguyen, Thuy-Trang; Cho, Myeong-Chan; Lee, Tae-Soo
2009-01-01
In our study, we developed a mobile waist-mounted device which can monitor the subject's acceleration signal and detect the fall events in real-time with high accuracy and automatically send an emergency message to a remote server via CDMA module. When fall event happens, the system also generates an alarm sound at 50Hz to alarm other people until a subject can sit up or stand up. A Kionix KXM52-1050 tri-axial accelerometer and a Bellwave BSM856 CDMA standalone modem were used to detect and manage fall events. We used not only a simple threshold algorithm but also some supporting methods to increase an accuracy of our system (nearly 100% in laboratory environment). Timely fall detection can prevent regrettable death due to long-lie effect; therefore increase the independence of elderly people in an unsupervised living environment.
Automatic Parking of Self-Driving CAR Based on LIDAR
NASA Astrophysics Data System (ADS)
Lee, B.; Wei, Y.; Guo, I. Y.
2017-09-01
To overcome the deficiency of ultrasonic sensor and camera, this paper proposed a method of autonomous parking based on the self-driving car, using HDL-32E LiDAR. First the 3-D point cloud data was preprocessed. Then we calculated the minimum size of parking space according to the dynamic theories of vehicle. Second the rapidly-exploring random tree algorithm (RRT) algorithm was improved in two aspects based on the moving characteristic of autonomous car. And we calculated the parking path on the basis of the vehicle's dynamics and collision constraints. Besides, we used the fuzzy logic controller to control the brake and accelerator in order to realize the stably of speed. At last the experiments were conducted in an autonomous car, and the results show that the proposed automatic parking system is feasible and effective.
Perimeter security alarm system based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Cui; Wang, Lixin
2010-11-01
With the development of the society and economy and the improvement of living standards, people need more and more pressing security. Perimeter security alarm system is widely regarded as the first line of defense. A highly sensitive Fiber Bragg grating (FBG) vibration sensor based on the theory of the string vibration, combined with neural network adaptive dynamic programming algorithm for the perimeter security alarm system make the detection intelligently. Intelligent information processing unit identify the true cause of the vibration of the invasion or the natural environment by analyzing the frequency of vibration signals, energy, amplitude and duration. Compared with traditional perimeter security alarm systems, such as infrared perimeter security system and electric fence system, FBG perimeter security alarm system takes outdoor passive structures, free of electromagnetic interference, transmission distance through optical fiber can be as long as 20 km It is able to detect the location of event within short period of time (high-speed response, less than 3 second).This system can locate the fiber cable's breaking sites and alarm automatically if the cable were be cut. And the system can prevent effectively the false alarm from small animals, birds, strong wind, scattering things, snowfalls and vibration of sensor line itself. It can also be integrated into other security systems. This system can be widely used in variety fields such as military bases, nuclear sites, airports, warehouses, prisons, residence community etc. It will be a new force of perimeter security technology.
Instrument-assisted cross-fiber massage accelerates knee ligament healing.
Loghmani, M Terry; Warden, Stuart J
2009-07-01
Controlled laboratory study. To investigate the effects of instrument-assisted cross-fiber massage (IACFM) on tissue-level healing of knee medial collateral ligament (MCL) injuries. Ligament injuries are common and significant clinical problems for which there are few established interventions. IACFM represents an intervention that may mediate tissue-level healing following ligament injury. Bilateral knee MCL injuries were created in 51 rodents, while 7 rodents were maintained as ligament-intact, control animals. IACFM was commenced 1 week following injury and introduced 3 sessions per week for 1 minute per session. IACFM was introduced unilaterally (IACFM-treated), with the contralateral, injured MCL serving as an internal control (nontreated). Thirty-one injured animals received 9 ACFM treatments, while the remaining 20 injured animals received 30 treatments. Ligament biomechanical properties and morphology were assessed at either 4 or 12 weeks postinjury. IACFM-treated ligaments were 43.1% stronger (P<.05), 39.7% stiffer (P<.01), and could absorb 57.1% more energy before failure (P<.05) than contralateral, injured, nontreated ligaments at 4 weeks postinjury. On histological and scanning electron microscopy assessment, IACFM-treated ligaments appeared to have improved collagen fiber bundle formation and orientation within the scar region than nontreated ligaments. There were minimal differences between IACFM-treated and contralateral, nontreated ligaments at 12 weeks postinjury, although IACFM-treated ligaments were 15.4% stiffer (P<.05). IACFM-accelerated ligament healing, possibly via favorable effects on collagen formation and organization, but had minimal effect on the final outcome of healing. These findings are clinically interesting, as there are few established interventions for ligament injuries, and IACFM is a simple and practical therapy technique. J Orthop Sports Phys Ther 2009;39(7):506-514, Epub 24 February 2009. doi:10.2519/jospt.2009.2997.
Atlas-Guided Cluster Analysis of Large Tractography Datasets
Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer
2013-01-01
Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment. PMID:24386292
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.
Fiber-optic fringe projection with crosstalk reduction by adaptive pattern masking
NASA Astrophysics Data System (ADS)
Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard
2017-02-01
To enable in-process inspection of industrial manufacturing processes, measuring devices need to fulfill time and space constraints, while also being robust to environmental conditions, such as high temperatures and electromagnetic fields. A new fringe projection profilometry system is being developed, which is capable of performing the inspection of filigree tool geometries, e.g. gearing elements with tip radii of 0.2 mm, inside forming machines of the sheet-bulk metal forming process. Compact gradient-index rod lenses with a diameter of 2 mm allow for a compact design of the sensor head, which is connected to a base unit via flexible high-resolution image fibers with a diameter of 1.7 mm. The base unit houses a flexible DMD based LED projector optimized for fiber coupling and a CMOS camera sensor. The system is capable of capturing up to 150 gray-scale patterns per second as well as high dynamic range images from multiple exposures. Owing to fiber crosstalk and light leakage in the image fiber, signal quality suffers especially when capturing 3-D data of technical surfaces with highly varying reflectance or surface angles. An algorithm is presented, which adaptively masks parts of the pattern to reduce these effects via multiple exposures. The masks for valid surface areas are automatically defined according to different parameters from an initial capture, such as intensity and surface gradient. In a second step, the masks are re-projected to projector coordinates using the mathematical model of the system. This approach is capable of reducing both inter-pixel crosstalk and inter-object reflections on concave objects while maintaining measurement durations of less than 5 s.
NASA Astrophysics Data System (ADS)
Noel, Jean; Prieto, Juan C.; Styner, Martin
2017-03-01
Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.
Comparison of mounting methods for the evaluation of fibers by phase contrast microscopy.
Lee, Eun Gyung; Pang, Thomas W S; Nelson, John; Andrew, Mike; Harper, Martin
2011-07-01
The objectives of this study were to evaluate mounting methods for fiber examination of air sample filters by phase contrast microscopy (PCM) and to evaluate differences in fiber counts that might be due to fiber movement. Acetone/triacetin (AT) with various amounts of triacetin and acetone/Euparal (AE) where the mounting medium was placed between the cleared filter wedge and the coverslip were tested as a function of time. Field sample slides collected from a taconite iron-ore processing mill, a tremolitic talc-ore processing mill, and from around a crusher in a meta-basalt stone quarry were prepared with relocatable coverslips to revisit the same field areas on the slides. For each slide, three or four field areas were randomly selected and pictures were taken every 2 weeks to determine any sign of fiber movement over time. For 11 AT slides (named as AT-3.5) prepared with 3.5 μl of the mounting medium according to the NIOSH 7400 method, no fiber movements were detected over 59 weeks. On the other hand, AT slides prepared with larger quantities (10, 15, and 20 μl) of the mounting medium (named as AT-10) and AE slides prepared with ∼10 μl mounting medium showed fiber movement from the eighth day at the earliest. Fiber movement began earlier for the slides mounted with excess triacetin than for those mounted with Euparal. The sample slide storage method, either vertically or horizontally, did not seem to accelerate fiber movement. Additionally, two other modified methods, dimethylformamide solution/Euparal (mDE) and dimethylformamide solution/triacetin (mDT), were also prepared where the mounting medium was placed between the cleared filter wedge and the glass slide. The findings of fiber movements were similar; when 3.5 μl of triacetin was used for the mDT slides, fiber movements were not detected, while fibers on slides prepared with 10 μl triacetin (mDT-10) moved around. No fiber movements were observed for the mDE slides at any time during 59 weeks. Once fiber movement started, fibers moved over distances measured from 4 μm and up to >1000 μm within 22 weeks. However, since then, no further fiber movements have been observed in any field sample slides. Additional sample slides, two Amosite and two chrysotile, were prepared from Union for International Cancer Control (UICC) samples using the AT method with 5 μl triacetin mounting medium. Fiber movements were also observed in these samples; chrysotile fibers began to migrate in 3 weeks, while Amosite fiber movement started after 3 months. Although fiber movement was observed for the AT-10, AE, and mDT-10 sample slides, fiber counts were not significantly different from AT-3.5 and mDE samples that exhibited no fiber movement. Although fiber counts would not be significantly changed by fiber movement, the type and amount of mounting medium for sample slide preparation remains critical for issues such as quality assurance and training of analysts by revisiting the same fibers.
Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.
Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y
2010-09-01
To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.
EXPO '02, Piazza Pinocchio: monitoring visitor live loads
NASA Astrophysics Data System (ADS)
Cerulli, Marco; Posenato, Daniele; Inaudi, Daniele; Glisic, Branko; Vurpillot, Samuel
2003-08-01
Once every generation, Switzerland treats itself to a National Exhibition commissioned by the Swiss Confederation. Expo 02 was spread out in five "Arteplage" over a whole region: the land of the three lakes, on the shores of the lakes of Biel, Murten and Neuchatel, which are located in the northwest of Switzerland. Each "Arteplage" relates to a theme, which is reflected in its architectures and exhibitions. The "Arteplage" of Neuchatel was related to "Nature and Artificiality" A big steel-wood whale eating a village represents the fairy tale named "Pinocchio" from the Italian writer Collodi. The "Piazza Pinocchio" was built together with other exposition buildings on one large artificial peninsula. The belly of the whale holds the exposition dedicated to robotic and artificial intelligence, while the rest of the village was developed on two floors with steel piles/beams and wood walls and floors. A fiber optic sensor system was commissioned to monitor the visitor's loads over the whole "Piazza Pinocchio." The main requirements were: real-time computer-screen figure-form results of the live loads during 18 hours a day, automatic thermal-induced strain compensation, real-time warnings and pre-warnings for each single pile, automatic phone call advises when reaching warning thresholds and remote monitoring for complete management of the monitoring sytem. The SOFO system based on low coherence fiber optic deformation sensors was selected to carry out the requirements. The aim of this paper is to present an overview of the project, the installation solution, the results, and data analysis of the installed monitoring system.
An Algorithm to Detect the Retinal Region of Interest
NASA Astrophysics Data System (ADS)
Şehirli, E.; Turan, M. K.; Demiral, E.
2017-11-01
Retina is one of the important layers of the eyes, which includes sensitive cells to colour and light and nerve fibers. Retina can be displayed by using some medical devices such as fundus camera, ophthalmoscope. Hence, some lesions like microaneurysm, haemorrhage, exudate with many diseases of the eye can be detected by looking at the images taken by devices. In computer vision and biomedical areas, studies to detect lesions of the eyes automatically have been done for a long time. In order to make automated detections, the concept of ROI may be utilized. ROI which stands for region of interest generally serves the purpose of focusing on particular targets. The main concentration of this paper is the algorithm to automatically detect retinal region of interest belonging to different retinal images on a software application. The algorithm consists of three stages such as pre-processing stage, detecting ROI on processed images and overlapping between input image and obtained ROI of the image.
NASA Astrophysics Data System (ADS)
Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zagnetko, Alexander; Zukerman, Igor
It is well known that during great SEP events, fluxes of energetic particles can be so big that the memory of computers and other electronics in space may be destroyed, and satellites and spacecraft may cease to function. According to the NOAA Space Weather Prediction Cen-ter, the following scales constitute dangerous solar radiation storms: S5-extreme (flux level of particles with energy ∼ 10 MeV more than 105 ); S4 - severe(f luxmorethan104 ); andS3 - strong(f luxmorethan103 ). In these persiods, it is necessary to switch off some of the electronics for a few hours energy particles (meaning those with a few GeV/nucleon and higher), whose transportation to Earthfrom the S20 minutes after they accelerate and escape into the solar wind) than the main bulk of the smaller energy particle 60 minutes later). Here we describe the principles and experience of the automatic function of the "SEP - Search" program. The positive result, showing the exact beginning of an SEP event on the Emilio Segre Observ 10.8GV ), is determined now automatically by simultaneously increasing by 2.5 St.Dev. in two sections of the ne search "programnext uses 1-mindata for checking whether or not the observed increase reflects the beginning Research "automatically starts to work online. We determine also the probabilities of false and missed alerts.
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments
NASA Technical Reports Server (NTRS)
Anderson, B. J.
1981-01-01
In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.
Monitoring the Corrosion Process of Reinforced Concrete Using BOTDA and FBG Sensors
Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong
2015-01-01
Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions. PMID:25884790
Accceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings
NASA Astrophysics Data System (ADS)
Apinis, R.
2004-03-01
The possibility of using high-frequency loading in fatigue tests of polymer composite materials is discussed. A review of studies on the use of high-frequency loading of organic-, carbon-, and glass-fiber-reinforced plastics is presented. The results obtained are compared with those found in conventional low-frequency loadings. A rig for fatigue tests of rigid materials at loading frequencies to 500 Hz is described, and results for an LM-L1 unidirectional glass-fiber plastic in loadings with frequencies of 17 and 400 Hz are given. These results confirm that it is possible to accelerate the fatigue testing of polymer composite materials by considerably increasing the loading frequency. The necessary condition for using this method is an intense cooling of specimens to prevent them from vibration heating.
Development of solar flares and features of the fine structure of solar radio emission
NASA Astrophysics Data System (ADS)
Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.
2017-11-01
The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.
Water monitor system: Phase 1 test report
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.
1976-01-01
Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.
J-Adaptive estimation with estimated noise statistics. [for orbit determination
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Hipkins, C.
1975-01-01
The J-Adaptive estimator described by Jazwinski and Hipkins (1972) is extended to include the simultaneous estimation of the statistics of the unmodeled system accelerations. With the aid of simulations it is demonstrated that the J-Adaptive estimator with estimated noise statistics can automatically estimate satellite orbits to an accuracy comparable with the data noise levels, when excellent, continuous tracking coverage is available. Such tracking coverage will be available from satellite-to-satellite tracking.
Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin
2014-09-15
This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.
Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.
1998-10-13
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
1998-01-01
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
Tramontana, Alfonso; Sorge, Roberto; Page, Juan Carlos Miangolarra
2016-12-30
Background and aims: The intervertebral disk degeneration is a pathological process determined by a decrease of mucopolysaccharides in the nucleus pulposus with the consequent dehydration and degeneration of the elastic fibers in the annulus fibrosus of the disk. The laser is a therapeutic tool that has, on the treated tissues, biostimulation effects with an increase of oxidative phosphorylation and production of ATP with an acceleration of the mucopolysaccharides synthesis with a consequent rehydration, biostimulation and production of new elastic fibers. The goal of this project is studying whether the laser stimulation may treat degenerated intervertebral disks. Materials and methods: 60 subjects with the same anthropometric parameters were selected and divided into two randomized groups. 30 subjects underwent laser stimulation, whereas 30 underwent placebo. All 60 subjects underwent a discectomy surgery and the intraoperative findings were examined in a lab, studying the positivity of the PAS reaction and the presence of potential newly formed elastic fibers. Results: It has been shown a higher number of mucopolysaccharides and young newly formed elastic fibers in the group that was treated with laser irradiation with a statistically significant difference, compared to the placebo group (p< 0.0001). Conclusions: Laser biostimulation can be an effective strategy in the therapy of the invertebral disks.
Remote Transmission at High Speed
NASA Technical Reports Server (NTRS)
2003-01-01
Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.
Automated mango fruit assessment using fuzzy logic approach
NASA Astrophysics Data System (ADS)
Hasan, Suzanawati Abu; Kin, Teoh Yeong; Sauddin@Sa'duddin, Suraiya; Aziz, Azlan Abdul; Othman, Mahmod; Mansor, Ab Razak; Parnabas, Vincent
2014-06-01
In term of value and volume of production, mango is the third most important fruit product next to pineapple and banana. Accurate size assessment of mango fruits during harvesting is vital to ensure that they are classified to the grade accordingly. However, the current practice in mango industry is grading the mango fruit manually using human graders. This method is inconsistent, inefficient and labor intensive. In this project, a new method of automated mango size and grade assessment is developed using RGB fiber optic sensor and fuzzy logic approach. The calculation of maximum, minimum and mean values based on RGB fiber optic sensor and the decision making development using minimum entropy formulation to analyse the data and make the classification for the mango fruit. This proposed method is capable to differentiate three different grades of mango fruit automatically with 77.78% of overall accuracy compared to human graders sorting. This method was found to be helpful for the application in the current agricultural industry.
Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Marvis, Dimitri N.
2014-01-01
The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar
2016-02-01
Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.
Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.
2016-01-01
The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
Liu, Yuanyuan; Li, Yu; Liu, Change; Sun, Yuanshao; Hu, Qingxi
2016-01-01
Vascularization plays a crucial role in the regeneration of different damaged or diseased tissues and organs. Vascularized networks bring sufficient nutrients and oxygen to implants and receptors. However, the fabrication of engineered structures with branched micro-channels (ESBM) is still the main technological barrier. To address this problem, this paper introduced a novel method for fabricating ESBM; the manufacturability and feasibility of this method was investigated. A triaxial nozzle with automatic cleaning function was mounted on a homemade 3D bioprinter to coaxially extrude sodium alginate (NaAlg) and calcium chloride (CaCl2) to form the hollow hydrogel fibers. With the incompleteness of cross-linking and proper trimming, ESBM could be produced rapidly. Different concentrations of NaAlg and CaCl2 were used to produce ESBM, and mechanical property tests were conducted to confirm the optimal material concentration for making the branched structures. Cell media could be injected into the branched channel, which showed a good perfusion. Fibroblasts were able to maintain high viability after being cultured for a few days, which verified the non-cytotoxicity of the gelation and fabrication process. Thus, hollow hydrogel fibers were proved to be a potential method for fabricating micro-channels for vascularization. PMID:27965729
Time resolved optical system for an early detection of prostate tumor
NASA Astrophysics Data System (ADS)
Hervé, Lionel; Laidevant, Aurélie; Debourdeau, Mathieu; Boutet, Jérôme; Dinten, Jean-Marc
2011-02-01
We developed an endorectal time-resolved optical probe aiming at an early detection of prostate tumors targeted by fluorescent markers. Optical fibers are embedded inside a clinical available ultrasound endorectal probe. Excitation light is driven sequentially from a femtosecond laser (775 nm) into 6 source fibers. 4 detection fibers collect the medium responses at the excitation and fluorescence wavelength (850 nm) by the mean of 4 photomultipliers associated with a 4 channel time-correlated single photon counting card. We also developed the method to process the experimental data. This involves the numerical computation of the forward model, the creation of robust features which are automatically correctly from numerous experimental possible biases and the reconstruction of the inclusion by using the intensity and mean time of these features. To evaluate our system performance, we acquired measurements of a 40 μL ICG inclusion (10 μmol.L-1) at various lateral and depth locations in a phantom. Analysis of results showed we correctly reconstructed the fluorophore for the lateral positions (16 mm range) and for a distance to the probe going up to 1.5 cm. Precision of localization was found to be around 1 mm which complies well with precision specifications needed for the clinical application.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Worawit, Chanatda; Cocovi-Solberg, David J; Varanusupakul, Pakorn; Miró, Manuel
2018-08-01
A novel concept for automation of nanostructured hollow-fiber supported microextraction, combining the principles of liquid-phase microextraction (LPME) and sorbent microextraction synergically, using mesofluidic platforms is proposed herein for the first time, and demonstrated with the determination of acidic drugs (namely, ketoprofen, ibuprofen, diclofenac and naproxen) in urine as a proof-of-concept applicability. Dispersed carbon nanofibers (CNF) are immobilized in the pores of a single-stranded polypropylene hollow fiber (CNF@HF) membrane, which is thereafter accommodated in a stereolithographic 3D-printed extraction chamber without glued components for ease of assembly. The analytical method involves continuous-flow extraction of the acidic drugs from a flowing stream donor (pH 1.7) into an alkaline stagnant acceptor (20 mmol L -1 NaOH) containing 10% MeOH (v/v) across a dihexyl ether impregnated CNF@HF membrane. The flow setup features entire automation of the microextraction process including regeneration of the organic film and on-line injection of the analyte-laden acceptor phase after downstream neutralization into a liquid chromatograph (LC) for reversed-phase core-shell column-based separation. Using a 12-cm long CNF@HF and a sample volume of 6.4 mL, linear dynamic ranges of ketoprofen, naproxen, diclofenac and ibuprofen, taken as models of non-steroidal anti-inflammatory drugs, spanned from ca. 5-15 µg L -1 to 500 µg L -1 with enhancement factors of 43-97 (against a direct injection of 10 µL standards into LC), and limits of detection from 1.6 to 4.3 µg L -1 . Relative recoveries in real urine samples ranged from 97% to 105%, thus demonstrating the reliability of the automatic CNF@HF-LPME method for in-line matrix clean-up and determination of drugs in urine at therapeutically relevant concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Yao, Ruiqing; Tanaka, Miyuki; Misawa, Eriko; Saito, Marie; Nabeshima, Kazumi; Yamauchi, Koji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi
2016-10-12
Estrogen deficiencies associated with menopause accelerate spontaneous skin aging and stimulate the ultraviolet (UV) irradiation-induced photoaging of skin. However, food compositions with the potential to ameliorate the UV irradiation-induced acceleration of skin aging with menopause have not yet been investigated in detail. In the present study, we examined the ability of plant sterols derived from Aloe vera gel to prevent the UV irradiation-induced acceleration of skin aging in ovariectomized mice. Skin transepidermal water loss (TEWL) was significantly higher in the ovariectomy group than in the sham operation group following UVB irradiation, whereas skin elasticity was significantly lower. Ultraviolet B (UVB) irradiation induced greater reductions in skin hyaluronic acid levels and more severe collagen fiber damage in the derims in the ovariectomy group than in the sham group. The intake of AVGP significantly ameliorated this acceleration in skin aging by reducing the expression of matrix metalloproteinases (MMPs) and increasing that of epidermal growth factor (EGF) and hyaluronan synthase (HAS) in the skin. These results indicate that AVGP supplementation prevents skin damage induced by UVB irradiation and ovariectomy in part by inhibiting damage to the extracellular matrix. © 2016 Institute of Food Technologists®.
Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images
NASA Astrophysics Data System (ADS)
Wang, Liming; Zhang, Kai; Liu, Xiyang; Long, Erping; Jiang, Jiewei; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Li, Wangting; Lin, Haotian
2017-01-01
There are many image classification methods, but it remains unclear which methods are most helpful for analyzing and intelligently identifying ophthalmic images. We select representative slit-lamp images which show the complexity of ocular images as research material to compare image classification algorithms for diagnosing ophthalmic diseases. To facilitate this study, some feature extraction algorithms and classifiers are combined to automatic diagnose pediatric cataract with same dataset and then their performance are compared using multiple criteria. This comparative study reveals the general characteristics of the existing methods for automatic identification of ophthalmic images and provides new insights into the strengths and shortcomings of these methods. The relevant methods (local binary pattern +SVMs, wavelet transformation +SVMs) which achieve an average accuracy of 87% and can be adopted in specific situations to aid doctors in preliminarily disease screening. Furthermore, some methods requiring fewer computational resources and less time could be applied in remote places or mobile devices to assist individuals in understanding the condition of their body. In addition, it would be helpful to accelerate the development of innovative approaches and to apply these methods to assist doctors in diagnosing ophthalmic disease.
Influence of automatic word reading on motor control.
Gentilucci, M; Gangitano, M
1998-02-01
We investigated the possible influence of automatic word reading on processes of visuo-motor transformation. Six subjects were required to reach and grasp a rod on whose visible face the word 'long' or 'short' was printed. Word reading was not explicitly required. In order to induce subjects to visually analyse the object trial by trial, object position and size were randomly varied during the experimental session. The kinematics of the reaching component was affected by word presentation. Peak acceleration, peak velocity, and peak deceleration of arm were higher for the word 'long' with respect to the word 'short'. That is, during the initial movement phase subjects automatically associated the meaning of the word with the distance to be covered and activated a motor program for a farther and/or nearer object position. During the final movement phase, subjects modified the braking forces (deceleration) in order to correct the initial error. No effect of the words on the grasp component was observed. These results suggest a possible influence of cognitive functions on motor control and seem to contrast with the notion that the analyses executed in the ventral and dorsal cortical visual streams are different and independent.
Semi-Automatic Determination of Rockfall Trajectories
Volkwein, Axel; Klette, Johannes
2014-01-01
In determining rockfall trajectories in the field, it is essential to calibrate and validate rockfall simulation software. This contribution presents an in situ device and a complementary Local Positioning System (LPS) that allow the determination of parts of the trajectory. An assembly of sensors (herein called rockfall sensor) is installed in the falling block recording the 3D accelerations and rotational velocities. The LPS automatically calculates the position of the block along the slope over time based on Wi-Fi signals emitted from the rockfall sensor. The velocity of the block over time is determined through post-processing. The setup of the rockfall sensor is presented followed by proposed calibration and validation procedures. The performance of the LPS is evaluated by means of different experiments. The results allow for a quality analysis of both the obtained field data and the usability of the rockfall sensor for future/further applications in the field. PMID:25268916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, F.C.; Sanz, A.T.
1959-01-01
In order to obtain deuterium for the feed of accelerator ion sources, a sample and automatic electrolytic installation was constructed. The installation, used with a small compressor, can fill pressure vessels of 1 to 2 liter capacity with deuterium up to a pressure of 4 atmospheres in a few hours of operation. The electrolytic cell has a "V" shape and can operate with only 3 cc of heavy water. The electrodes are platinum and NaOH solution in the proportion of 15 wt.% is the electrolyte. The operation is automatic. The compressor is small, and the charge is low so thatmore » an auxiliary motor is not needed. The compressor piston is the only moving part. Deuterium losses are practically zero. (auth)« less
Großekathöfer, Ulf; Manyakov, Nikolay V.; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S.
2017-01-01
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier. PMID:28261082
Großekathöfer, Ulf; Manyakov, Nikolay V; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S
2017-01-01
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier.
Development of medical electronic devices in the APL space department
NASA Technical Reports Server (NTRS)
Newman, A. L.
1985-01-01
Several electronic devices for automatically correcting specific defects in a body's physiologic regulation and allowing approximately normal functioning are described. A self-injurious behavior inhibiting system (SIBIS) is fastened to the arm of a person with chronic self-injurious behavior patterns. An electric shock is delivered into the arm whenever the device senses above-threshold acceleration of the head such as occur with head-bangers. Sounding a buzzer tone with the shock eventually allows transference of the aversive stimulus to the buzzer so shocks are no longer necessary. A programmable implantable medication system features a solenoid pump placed beneath the skin and refueled by hypodermic needle. The pump functions are programmable and can deliver insulin, chemotherapy mixes and/or pain killers according to a preset schedule or on patient demand. Finally, an automatic implantible defibrillator has four electrodes attached directly to the heart for sensing electrical impulses or emitting them in response to cardiac fibrillation.
High Temperature Mechanical Testing of a Cylindrical Weave Carbon-Carbon Composite.
1985-07-01
umentation. 11. Photograph of the Calcination Furnace 46 and Automatic Controller/"Recorder. 12. Shear-Lao Specimen for both Axial 47 and Radial Fiber...Pull-out.S 13. Photograph of Displacement Frame Used to 48 Load Both the Pull-out Specimens and Axial Rupture Specimens. 14. Graph i te Loadi ng B1...tested in creep at 1800 C the spec imen shoted no el onga t i on w i th an ao a: I stre=ss of 11.4 ksi for 20 min. This was not surp r is i rg si nce Lu an
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-09-18
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.
The effect of different dopant concentration of tailor-made silica fibers in radiotherapy dosimetry
NASA Astrophysics Data System (ADS)
Begum, Mahfuza; Mizanur Rahman, A. K. M.; Zubair, H. T.; Abdul-Rashid, H. A.; Yusoff, Z.; Begum, Mahbuba; Alkhorayef, M.; Alzimami, K.; Bradley, D. A.
2017-12-01
In thermoluminescence (TL) material dopant concentration has an important effect on their characteristics as a ;radiation-sensor;. The study investigates dosimetric properties of four different concentration (4 mol%, 5 mol%, 7 mol% and 25 mol%) tailor-made Ge-doped silica fibers. The intention is to seek development of alternative TL materials that offer exceptional advantages over existing passive systems of dosimetry, including improved spatial resolution, a water impervious nature and low cost. Photon beams (6 MV and 10 MV) from a clinical linear accelerator were used for irradiation of the fiber samples over radiation therapy doses, ranging from 0.5 Gy to 8 Gy. SEM-EDX analysis was also performed to investigate the homogeneity of distribution of Ge dopant concentration from the fiber samples. The results of measurement were also compared with two of the more commonly used standard TLDs, TLD-100 (LiF: Mg,Ti-7.5% 6LiF) and TLD-700 ((7LiF: Mg,Ti-99.9%7LiF) chips respectively. The TL intensity of the fiber samples was found to strongly depend on Ge dopant concentration, with samples showing enhanced TL yields with decreasing Ge dopant concentration. 4 mol% Ge-doped silica fiber provided the greatest response whereas the 25 mol% samples showed the least, indicative of the well-known concentration quenching effects All fiber TLDs provided linear dose response over the delivered radiotherapy dose-range, the fibers also showing a weak dependence on photon beam energies in comparing the TL yields at 6 and 10 MV. The fading behavior of the different concentration Ge doped TLD-materials were also measured over a period of thirty (30) days subsequent to irradiation. The relative sensitivity of the samples with respect to standard TLD-100 were found to be 0.37, 0.26, 0.13 and 0.02 in respect of the 4, 5, 7 and 25 mol% fibers. The primary dosimetry peak, which was by far the most prominent of any other feature covered by the glow curve, was found to be around 244 °C using the most sensitive silica fiber. The study is expected to pave the way in making more comprehensive investigations aimed at defining improved TL response fiber samples.
Two AFC Loops For Low CNR And High Dynamics
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.; Aguirre, Sergio
1992-01-01
Two alternative digital automatic-frequency-control (AFC) loops proposed to acquire (or reacquire) and track frequency of received carrier radio signal. Intended for use where carrier-to-noise ratios (CNR's) low and carrier frequency characterized by high Doppler shift and Doppler rate because of high relative speed and acceleration, respectively, between transmitter and receiver. Either AFC loops used in place of phase-locked loop. New loop concepts integrate ideas from classical spectrum-estimation, digital-phase-locked-loop, and Kalman-Filter theories.
2013-08-01
release; distribution unlimited. PA Number 412-TW-PA-13395 f generic function g acceleration due to gravity h altitude L aerodynamic lift force L Lagrange...cost m vehicle mass M Mach number n number of coefficients in polynomial regression p highest order of polynomial regression Q dynamic pressure R...Method (RPM); the collocation points are defined by the roots of Legendre -Gauss- Radau (LGR) functions.9 GPOPS also automatically refines the “mesh” by
Motor vehicle technology:Mobility for prosperity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on internal combustion engines for vehicles. Topics considered at the conference included combustion chambers, the lubrication of turbocharged engines, oil filters, fuel consumption, traffic control, crashworthiness, brakes, acceleration, unleaded gasoline, methanol fuels, pressure drop, safety regulations, tire vibration, detergents, fuel economy, ceramics in engines, steels, catalytic converters, fuel additives, heat exchangers, pump systems, emissions control, fuel injection systems, noise pollution control, natural gas fuels, assembly plant productivity, aerodynamics, torsion, electronics, and automatic transmissions.
NASA Technical Reports Server (NTRS)
Skoog, Mark A.
2016-01-01
NASAs Armstrong Flight Research Center has been engaged in the development of highly automatic safety systems for aviation since the mid 80s. For the past three years under Seedling and Center Innovation funding this work has moved toward the development of a software architecture applicable to autonomous safety. This work is now broadening and accelerating to address the airworthiness issues surrounding making a case for trustworthy autonomy. This software architecture is called the expandable variable-autonomy architecture (EVAA) and utilizes a run-time assurance approach to safety assurance.
Telemetric Sensors for the Space Life Sciences
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)
1996-01-01
Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.
Radiation reaction on a classical charged particle: a modified form of the equation of motion.
Alcaine, Guillermo García; Llanes-Estrada, Felipe J
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Radiation reaction on a classical charged particle: A modified form of the equation of motion
NASA Astrophysics Data System (ADS)
Alcaine, Guillermo García; Llanes-Estrada, Felipe J.
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Improvement in vehicle agility and stability by G-Vectoring control
NASA Astrophysics Data System (ADS)
Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato
2010-12-01
We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.
Automatic Phase Calibration for RF Cavities using Beam-Loading Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.
Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique couldmore » be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.« less
Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology
NASA Astrophysics Data System (ADS)
Andersen, Claus E.
2011-05-01
Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.
NASA Astrophysics Data System (ADS)
Alvanos, Michail; Christoudias, Theodoros
2017-10-01
This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.
Recent Developments in Microsystems Fabricated by the Liga-Technique
NASA Technical Reports Server (NTRS)
Schulz, J.; Bade, K.; El-Kholi, A.; Hein, H.; Mohr, J.
1995-01-01
As an example of microsystems fabricated by the LIGA-technique (x-ray lithography, electroplating and molding), three systems are described and characterized: a triaxial acceleration sensor system, a micro-optical switch, and a microsystem for the analysis of pollutants. The fabrication technologies are reviewed with respect to the key components of the three systems: an acceleration sensor, and electrostatic actuator, and a spectrometer made by the LIGA-technique. Aa micro-pump and micro-valve made by using micromachined tools for molding and optical fiber imaging are made possible by combining LIGA and anisotropic etching of silicon in a batch process. These examples show that the combination of technologies and components is the key to complex microsystems. The design of such microsystems will be facilitated is standardized interfaces are available.
Deng, Z D; Lu, J; Myjak, M J; Martinez, J J; Tian, C; Morris, S J; Carlson, T J; Zhou, D; Hou, H
2014-11-01
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a broader range of turbine designs and operating environments. It provides in situ measurements of three-dimensional (3D) linear accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio-frequency transmitter for recovery. The relative errors of the pressure, acceleration, and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2 °C. The new-generation Sensor Fish is becoming a major technology and being deployed for evaluating the conditions for fish passage of turbines or other hydraulic structures in both the United States and several other countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less
Harnessing AIA Diffraction Patterns to Determine Flare Footpoint Temperatures
NASA Astrophysics Data System (ADS)
Bain, H. M.; Schwartz, R. A.; Torre, G.; Krucker, S.; Raftery, C. L.
2014-12-01
In the "Standard Flare Model" energy from accelerated electrons is deposited at the footpoints of newly reconnected flare loops, heating the surrounding plasma. Understanding the relation between the multi-thermal nature of the footpoints and the energy flux from accelerated electrons is therefore fundamental to flare physics. Extreme ultraviolet (EUV) images of bright flare kernels, obtained from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, are often saturated despite the implementation of automatic exposure control. These kernels produce diffraction patterns often seen in AIA images during the most energetic flares. We implement an automated image reconstruction procedure, which utilizes diffraction pattern artifacts, to de-saturate AIA images and reconstruct the flare brightness in saturated pixels. Applying this technique to recover the footpoint brightness in each of the AIA EUV passbands, we investigate the footpoint temperature distribution. Using observations from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we will characterize the footpoint accelerated electron distribution of the flare. By combining these techniques, we investigate the relation between the nonthermal electron energy flux and the temperature response of the flare footpoints.
An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines
NASA Technical Reports Server (NTRS)
Novik, David; Otto, Edward W.
1947-01-01
Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.
MoSi2-Base Composite for Engine Applications
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Nathal, Michael V.
1997-01-01
The intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cm versus 8 g/cm for current engine materials), and ease of machining make it an attractive structural material. However, the use of MoSi2 has been hindered because of the brittle nature of the material at low temperatures, inadequate creep resistance at high temperatures, accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 400 and 500 C, and a coefficient of thermal expansion (CTE) that is relatively high in comparison to potential reinforcing fibers such as SiC. This CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling.
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
A New Automatic Method of Urban Areas Mapping in East Asia from LANDSAT Data
NASA Astrophysics Data System (ADS)
XU, R.; Jia, G.
2012-12-01
Cities, as places where human activities are concentrated, account for a small percent of global land cover but are frequently cited as the chief causes of, and solutions to, climate, biogeochemistry, and hydrology processes at local, regional, and global scales. Accompanying with uncontrolled economic growth, urban sprawl has been attributed to the accelerating integration of East Asia into the world economy and involved dramatic changes in its urban form and land use. To understand the impact of urban extent on biogeophysical processes, reliable mapping of built-up areas is particularly essential in eastern cities as a result of their characteristics of smaller patches, more fragile, and a lower fraction of the urban landscape which does not have natural than in the West. Segmentation of urban land from other land-cover types using remote sensing imagery can be done by standard classification processes as well as a logic rule calculation based on spectral indices and their derivations. Efforts to establish such a logic rule with no threshold for automatically mapping are highly worthwhile. Existing automatic methods are reviewed, and then a proposed approach is introduced including the calculation of the new index and the improved logic rule. Following this, existing automatic methods as well as the proposed approach are compared in a common context. Afterwards, the proposed approach is tested separately in cities of large, medium, and small scale in East Asia selected from different LANDSAT images. The results are promising as the approach can efficiently segment urban areas, even in the presence of more complex eastern cities. Key words: Urban extraction; Automatic Method; Logic Rule; LANDSAT images; East AisaThe Proposed Approach of Extraction of Urban Built-up Areas in Guangzhou, China
Intracellular Calcium Dynamics and the Acceleration of Sinus Rhythm by β-Adrenergic Stimulation
Joung, Boyoung; Tang, Liang; Maruyama, Mitsunori; Han, Seongwook; Chen, Zhenhui; Stucky, Marcelle; Jones, Larry R.; Fishbein, Michael C.; Weiss, James N.; Chen, Peng-Sheng; Lin, Shien-Fong
2009-01-01
Background Recent evidence indicates that membrane voltage and Ca2+ clocks jointly regulate sinoatrial node (SAN) automaticity. Here we test the hypothesis that sinus rate acceleration by β-adrenergic stimulation involves synergistic interactions between these clock mechanisms. Methods and Results We simultaneously mapped intracellular calcium (Cai) and membrane potential (Vm) in 25 isolated canine right atrium (RA), using previously described criteria of the timing of late diastolic Cai elevation (LDCAE) relative to the action potential (AP) upstroke to detect the Ca2+ clock. Before isoproterenol, the earliest pacemaking site occurred in the inferior SAN, and LDCAE was observed in only 4/25 preparations. Isoproterenol (1 μmol/L) increased sinus rate and shifted pacemaking site to superior SAN, concomitant with the appearance of LDCAE preceding the AP upstroke by 98 ± 31 ms. Caffeine had similar effects, while SR Ca2+ depletion with ryanodine and thapsigargin prevented isoproterenol-induced LDCAE and blunted sinus rate acceleration. Cai transient relaxation time during ISO was shorter in superior SAN (124 ± 34 ms) than inferior SAN (138 ± 24 ms, p = 0.01) or RA (164 ± 33 ms, p = 0.001), and was associated with a lower SR Ca2+ ATPase pump to phospholamban protein ratio in SAN than in RA. If current blockade with ZD 7288 modestly blunted, but did not prevent LDCAE or sinus rate acceleration by isoproterenol. Conclusions Acceleration of the Ca2+ clock in the superior SAN plays an important role in sinus acceleration during β-adrenergic stimulation, interacting synergistically with the voltage clock to increase sinus rate. PMID:19188501
Herold, Volker; Herz, Stefan; Winter, Patrick; Gutjahr, Fabian Tobias; Andelovic, Kristina; Bauer, Wolfgang Rudolf; Jakob, Peter Michael
2017-10-16
Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE (-/-) -mice) at 12 adjacent locations along the abdominal aorta. Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE (-/-) -group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE (-/-) -animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE (-/-) -mice as a relevant model of atherosclerosis.
Su, Chun-Kuei; Chiang, Chia-Hsun; Lee, Chia-Ming; Fan, Yu-Pei; Ho, Chiu-Ming; Shyu, Liang-Yu
2013-01-01
Sympathetic nerves conveying central commands to regulate visceral functions often display activities in synchronous bursts. To understand how individual fibers fire synchronously, we establish “oligofiber recording techniques” to record “several” nerve fiber activities simultaneously, using in vitro splanchnic sympathetic nerve–thoracic spinal cord preparations of neonatal rats as experimental models. While distinct spike potentials were easily recorded from collagenase-dissociated sympathetic fibers, a problem arising from synchronous nerve discharges is a higher incidence of complex waveforms resulted from spike overlapping. Because commercial softwares do not provide an explicit solution for spike overlapping, a series of custom-made LabVIEW programs incorporated with MATLAB scripts was therefore written for spike sorting. Spikes were represented as data points after waveform feature extraction and automatically grouped by k-means clustering followed by principal component analysis (PCA) to verify their waveform homogeneity. For dissimilar waveforms with exceeding Hotelling's T2 distances from the cluster centroids, a unique data-based subtraction algorithm (SA) was used to determine if they were the complex waveforms resulted from superimposing a spike pattern close to the cluster centroid with the other signals that could be observed in original recordings. In comparisons with commercial software, higher accuracy was achieved by analyses using our algorithms for the synthetic data that contained synchronous spiking and complex waveforms. Moreover, both T2-selected and SA-retrieved spikes were combined as unit activities. Quantitative analyses were performed to evaluate if unit activities truly originated from single fibers. We conclude that applications of our programs can help to resolve synchronous sympathetic nerve discharges (SND). PMID:24198782
Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
Riley, Mark R; Lucas, Pierre; Le Coq, David; Juncker, Christophe; Boesewetter, Dianne E; Collier, Jayne L; DeRosa, Diana M; Katterman, Matthew E; Boussard-Plédel, Catherine; Bureau, Bruno
2006-11-05
Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations. (c) 2006 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lange, Birgit; Cordes, Jens; Brinkmann, Ralf
2015-07-01
Holmium lasers are nowadays the gold standard for endoscopic laser lithotripsy. However, there is a risk of damaging or perforating the ureter or kidney tissue when the vision is poor. An automatic tissue/stone differentiation would improve the handling and safety of the procedure. To achieve this objective, an easy and robust real-time discrimination method has to be found which can be used to realize a feedback loop to control the laser system. Two possible approaches have been evaluated: White light reflectance and fluorescence spectroscopy. In both cases, we use the treatment fiber for detection and evaluate the possibility to decide whether the fiber is placed in front of tissue or calculus by the signal that is delivered by the surface in front of it. White light reflectance spectroscopy uses the standard light source for endourologic surgeries: Radiation of a Xenon light source is coupled to the ureteroscope via a liquid light guide. The part of the white light that is reflected back into the fiber is spectroscopically analyzed. In a clinical proof of concept study reflection signals were measured in vivo in 8 patients. For differentiation of stone and tissue via autofluorescence, excitation as well as detection was done via the treatment fiber. A suitable excitation wavelength was chosen with in vitro measurements (UV / visible) on several human renal calculi and porcine tissues. For verification of the positive results with green excitation in a clinical proof of concept study, a measurement set-up was realized which allows the recording of fluorescence signals during an endourological intervention.
NASA Astrophysics Data System (ADS)
Favre, Audrey
Rubber composites are widely used in several engineering fields, such as automotive, and more recently for inflatable dams and other innovative underwater applications. These rubber materials are composed by an elastomeric matrix while the reinforcing phase is a synthetic fabric. Since these components are expected to operate several years in water environment, their durability must be guaranteed. The use of rubber materials immersed in water is not new, in fact, these materials have been studied for almost one century. However, the knowledge on reinforced rubber composites immersed several years in water is still limited. In this work, investigations on reinforced rubbers were carried out in the framework of a research project in partnership with Alstom and Hydro-Quebec. The objective of this study was to identify rubber composites that could be used under water for long periods. Various rubber composites with ethylene-propylene-diene monomer (EPDM), silicone, EPDM/silicone and polychloroprene (Neoprene) matrices reinforced with E-glass fabric were studied. Thus, these materials were exposed to an accelerated ageing at 85 °C underwater for periods varying from 14 to 365 days. For comparison purposes, they were also immersed and aged one year at room temperature (21 °C). The impact of accelerated aging was estimated through three different characterization methods. Scanning electron microscopy (SEM) was first used to assess the quality of fiber-matrix interface. Then, water absorption tests were performed to quantify the rate of water absorption during immersion. Finally the evolution of the mechanical properties was followed by the determination of Young's modulus (E) and ultimate stress (sigmau) using a dedicated traction test. This analysis allowed to point out that the quality of the fiber-matrix interface was the main factor influencing the drop of the mechanical properties and their durability. Moreover, it was noticed that this interface could be improved by using appropriate coupling agent as confirmed by the silicone composite with treated fabric. It was also observed that fiber-matrix interface could be a place where high stresses were localized because of differential swelling leading to an important loss of mechanical properties. The results revealed very different behaviors from one composite to another. The accelerated aging of EPDM/silicone and Neoprene composites led to a rapid diminution of mechanical properties in only 14 days. Conversely, silicone composites showed a 20 % increase of mechanical properties after 75 days of immersion. EPDM composites exhibited an important variability from one sample to another. It can be concluded from this study that composites made from silicone matrix with treated E-glass result in a better durability underwater. Keywords: composite elastomer, accelerated ageing, immersion in the water
NASA Astrophysics Data System (ADS)
Bakrie, B.; Sente, U.; Mayasari, K.; Syah, R. F.
2018-02-01
The goat’s rumen contents is slaughterhouse waste that has potential to be used as animal feed, but it has to be first processed into silage. This study aims to determine the type of accelerator and to investigate whether the addition of inoculum was required during the fermentation process. The research was conducted using a Completely Randomized Factorial Design, consisting of 2 treatment factors and 6 replications. The treatment factors were: a) Accelerator (rice bran or cassava pomade/onggok); b) Inoculum Lactobacillus plantarum (with or without using inoculant). Results showed that there was an increase in crude protein (CP) content with the use of rice bran at after fermentation compared to before fermentation. The CP contents with the use of onggok almost the same at after and before fermentation. Increase in the content of crude fiber (CF) after fermentation was both for using rice bran or onggok. However, the content of CF using onggok was much higher than with rice bran. There was no significant effect for both types of accelerators used in CP and CF contents at after fermentation with or without the addition of Lactobacillus plantarum as the inoculant. It can be concluded that for the fermentation of goat’s rumen contents it is better to use rice bran rather than onggok as the accelerator and inoculant is not required during the fermentationprocess.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, Donald C.
1996-01-01
A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, D.C.
1996-12-17
A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.
Ge, Xiaolong; Tian, Hongliang; Ding, Chao; Gu, Lili; Wei, Yao; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou
2016-04-01
Intestinal microbiota and soluble dietary fiber play an important role in intestinal microecology, which is closely related to gut motility. Regulating intestinal microecology comprised of fecal microbiota transplantation (FMT) or fiber supplementation is becoming a novel therapy for functional gastrointestinal disease. We launched this study to evaluate the efficacy and safety of FMT combined with fiber for slow transit constipation (STC). We performed a study of 21 patients with STC. Participants received FMT (via nasojejunal tubes) on 3 consecutive days. After FMT, they were recommended to receive soluble dietary fiber for 4 weeks (8 g, twice daily). Rate of clinical improvement and remission, constipation-related symptoms (PAC-SYM scores), bowel movements per week, colonic transit time (CTT) and gastrointestinal quality-of-life index (GIQLI) were recorded during the 12-week follow-up. At the study end, clinical improvement and remission of constipated patients reached 66.7 and 42.9%, respectively. The patients showed an increased stool frequency from 1.7 ± 0.5 per week to 4.8 ± 2.1 per week (p <0.05) and an improved stool consistency after FMT combined with fiber. When compared to pre-treatment, PAC-SYM scores improved significantly from 2.0 ± 0.4 to 1.5 ± 0.6 after treatment (p <0.05). Meanwhile, patients showed an acceleration of colonic transit time from 81.9 ± 9.5 to 53.5 ± 11.2 h at week 12. During follow-up, patients felt satisfied with improved GIQLI. No serious adverse events were observed. This is a pilot study confirming that FMT combined with fiber may improve symptoms experienced by constipated patients by regulating intestinal microecology, without any serious adverse events. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Accelerated characterization of graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Griffith, W. I.; Morris, D. H.; Brinson, H. F.
1980-01-01
A method to predict the long term compliance of unidirectional off-axis laminates from short term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 and 90 degrees. Analytical predictions of long term compliance for 30 and 60 degrees laminates are made. Comparisons with experimental data are also given.